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ABSTRACT: A new tool for the interpretation of multiconfigura-
tional wave functions representing the spin states of exchange-
coupled transition metal complexes is introduced. Based on orbital
entanglement measures, herein derived from multiconfigurational
density matrix renormalization group calculations, the complexity
of the wave function is reduced, thus facilitating a connection with
established concepts for the interpretation of magnetically coupled
systems. We show that the entanglement of localized orbitals with a
small basis set is a good representation of the magnetic coupling
topology and that it is sensitive to chemical changes in homologous
complexes. Furthermore, we introduce a measure for the magnetic
relevance of orbitals in the active subspace and a concept for the
quantitative comparison of different chemical species. The approach presented here will be easily applicable to higher nuclearity
clusters, providing a direct insight into all states of the Heisenberg spin ladder for systems previously accessible only by single-
configurational methods.

Due to their inherent complexity, multiconfigurational
wave functions are often difficult to interpret. In contrast

to single-determinant wave functions that can be directly
associated with molecular orbital diagrams and electronic
configurations, the analysis of such wave functions requires
some form of information compression. In recent years, orbital
entanglement has proven a versatile tool to achieve this goal.1,2

Orbital entanglement is mostly discussed in the form of two
quantities:3 the single-orbital entropy si(1) and the mutual
information matrix I, which in turn is calculated from si(1) and
a third quantity, the two-orbital entropy sij(2). The single-
orbital entropy is defined as

s (1) lni i i
1

4

, ,∑ ω ω= − α α
α= (1)

where α is the occupation of a spatial orbital (unoccupied,
spin-up, spin-down, doubly occupied) and ωα,i is the
eigenvalue of the reduced one-orbital density matrix. This
Shannon-type entropy expression measures the deviation from
a well-defined (or pure) occupation of orbital i in the
multiconfigurational wave function and quantifies how much
the occupation of a given orbital is influenced by the presence
of all other orbitals.
The two-orbital entropy

s (2) lnij ij ij
1
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quantifies the uncertainty of the occupation defined for a pair
of orbitals and is calculated from the eigenvalues of the two-
orbital density matrix ωα,ij. These two quantities can be
combined to give the mutual information

I s s s
1
2

(1) (1) (2) (1 )ij i j ij ijδ= [ + − ] −
(3)

which quantifies the information loss on a pure orbital
occupation for each individual orbital pair in the wave
function. Because these entropy measures are calculated from
the optimized multiconfigurational wave function, they
strongly depend on both the spin state and the underlying
molecular orbital basis.
Orbital entanglement has become popular in conjunction

with the density matrix renormalization group (DMRG)4−15

but can in principle be calculated from any multiconfigura-
tional wave function.16,17 DMRG, however, offers the added
benefit of allowing access to large active spaces and will be the
multiconfigurational solver in this Letter. Recent applications
involving orbital entanglement in conjunction with DMRG
include an optimized orbital ordering based on graph theory,1

automated selection of active orbital spaces,18,19 and analyses
of chemical bonds.20
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One prominent example for a problem with intrinsic
multiconfigurational character is exchange coupling in
oligonuclear transition metal complexes. The magnetic
coupling in a system is often interpreted with magneto-
structural correlations, which connect empirically known
parameters, such as the types of bridge or metal−bridge−
metal angles, with the detected magnetic behavior through the
concepts of direct exchange and superexchange.21−26 These
correlations can often be linked straightforwardly to the results
of single-configurational calculations such as broken-symmetry
density functional theory (BS-DFT),27−30 for instance, through
the corresponding orbitals transformation.31,32 This approach
is generally applicable to two-spin-site systems but is of limited
utility for oligonuclear systems with more complex bridging
patterns.26,33 BS-DFT has become an unrivaled tool for the
interpretation of magnetic experiments due to its wide
applicability, high accuracy if calibrated correctly, and ease of
use. Disadvantages of BS-DFT include its inability to describe
all individual spin states of the Heisenberg ladder and its lack
of systematic improvability.34 Ab initio calculations on
magnetically coupled systems have been carried out with
difference-dedicated configuration interaction (DDCI) and
complete active space methods (CASSCF/CASPT2) among
others, including an analysis of the underlying physics.35−44

With the impending facile accessibility of multiconfigurational
descriptions for many oligonuclear systems with DMRG,45−49

analytical tools are needed that connect the quantum-chemical
description to established interpretations and chemical
concepts. Other efforts in this direction are based on a
Green’s-function approach that also allows a fragment-based
analysis.50,51

Herein, we show how orbital entanglement measures can be
connected to the magnetic topology of an exchange-coupled
system represented by a multiconfigurational wave function,
and demonstrate how changes in magnetic pathways due to
chemical modifications in homologous complexes can be
revealed and quantitatively analyzed. We note that for a
numerically accurate reproduction of the exchange coupling
constant itself, subsequent perturbation theory treatment as
described earlier is needed to recover dynamical correlation,
but the predicted coupling topology will not be affected by
this.46

Given that Mn-oxo dimers are particularly well understood
and the orbitals that need to be included in the active space are
clear from magnetostructural correlations and prior stud-
ies,52−58 they represent an ideal test case for such an analysis
that aims at a detailed understanding of the importance of
individual bridges to the magnetic coupling. The key geometric
features of three representative dimers and the coupling
constants predicted with BS-DFT are shown in Figure 1.
As long as all orbitals constituting the multiconfigurational

problem (e.g., the whole valence space) are included in the
wave function, any unitary transformation of this active orbital
subspace is valid. Given this freedom, we can choose an orbital
basis that best aligns with an intuitive chemical picture. In the
case of magnetic coupling, these are the metal-centered
magnetic orbitals and orbitals centered on the bridging ligands,
which can be generated by localization schemes. For the
present Letter, we sequentially apply the Pipek−Mezey
localization procedure to the doubly occupied, singly occupied,
and virtual orbital subspaces of the minimal basis high-spin
Hartree−Fock solution. From those, we select the bonding and
antibonding Mn−O σ-orbitals, noninteracting O pz orbitals,

and magnetic Mn 3d orbitals as an active orbital space for
multiconfigurational calculations (see Figures 2a and S1). For
the Mn2O2 core, the multiconfigurational problem is thus
defined by 16 orbitals (Figure S2 shows that the O 2s orbitals
are not relevant).
A straightforward graphical representation of the orbital

entanglement measures introduced above are entanglement
diagrams (see Figure 2), where all active orbitals are arranged
on a circle and the single-orbital entropy is proportional to the
radius of a red circle associated with each orbital. The
thickness of lines connecting these circles is proportional to the
mutual information element for each pair of orbitals. In the
entanglement diagram of the singlet state (Figure 2a, top), six
orbitals stand out: they have the largest single orbital entropies,
and all possible pairs are interconnected by a large mutual
information element. These are the magnetic orbitals, d(x2−
y2) and linear combinations of d(xz) and d(yz) oriented along
the Mn−O bonds. The mutual information on the latter with
the O pz orbitals they are oriented toward is almost as strong as
among the magnetic orbitals themselves, whereas there is no
significant mutual information connecting the O pz with the
remaining magnetic orbitals. This representation is congruent
with the empirical picture of superexchange mediated by
bridging ligands. In the orbital basis shown in Figure 2, the
other O p orbitals are part of σ/σ* pairs. Their mutual
information element is strongest among themselves and, in
fact, an order of magnitude larger than with any of the
magnetic orbitals. No significant mutual information is found
for the O pz orbitals and the σ/σ* pairs.
For the magnetically less coupled states of the Heisenberg

spin ladder (Figure 2a, bottom), the mutual information and
the single orbital entropies of the magnetic and O pz orbitals
are significantly decreased. In contrast, the entanglement of the

Figure 1. Key geometric features of the three Mn(IV) model dimers
and the coupling constant JBS (cm

−1) derived in ref 56 from BS-DFT
with the TPSSh density functional. Distances are given in Å (black),
angles in degrees (blue). (a) [Mn(IV)2(μ-O)2(NH3)8]

4+, (b)
[Mn(IV)2(μ-O)(μ-OH)(NH3)8]

5+, (c) [Mn(IV)2(μ-O)3(NH3)6]
2+.
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σ/σ* pairs remains unchanged. In the high spin (septet) state,
the only other relevant entanglement remaining is that of the
O pz and the corresponding d-orbital at each Mn ion. Hence,
the entanglement of the magnetic and O pz orbitals is strongly
spin dependent, which leads us to conclude that only these
orbitals are relevant for the description of exchange coupling.
We emphasize that the single-orbital entropy contains much
more information than the orbital occupation numbers. While
the occupation numbers of the magnetic orbitals are close to 1
for all spin states (Table S22), the single-orbital entropy
captures the fact that in the low spin states these electrons are
spin up in some determinants, whereas they are spin down in
others due to the antiferromagnetic coupling. The single-
orbital entropy is hence capable of reflecting their magnetic
relevance, whereas this is not the case for the occupation
numbers. As a quantitative measure for the spin-state

dependency of the entanglement, we calculate the relative
standard deviation of the single orbital entropy over all spin
states (bar diagram in Figure 2a; see Table S1 for absolute
values and Tables S2−S5 for mutual information matrices).
The most pronounced change is observed for the magnetic
orbitals, where the relative standard deviation reaches almost
50%. For the O pz orbitals, the change amounts to ca. 15% and
is thus much more significant than for the σ/σ* pairs (<5%).
The relative standard deviation of the single orbital entropy
allows us to rank the importance of orbitals in the active
subspace and will subsequently be referred to as the magnetic
relevance. We note that this resultthe spin state of the
system dominantly affecting pseudoatomic orbitals that can
interact in π/π* fashionaligns perfectly with the chemical
concept of π-exchange pathways.

Figure 2. Orbital entanglement diagrams of bis-μ-oxo-bridged dimer in the singlet, triplet, quintet, and septet states based on (a) localized orbitals
(DMRG-CI) with a small basis and (b) optimized orbitals (DMRG-SCF) with a larger triple-ζ basis. The bar diagrams show the relative standard
deviation of the single orbital entropy across all spin states.
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So far, localized orbitals in a small basis have been used.
Upon optimizing the orbitals for each spin state with DMRG-
SCF and a triple-ζ atomic orbital basis set, neither a qualitative
nor a quantitative change can be observed in the entanglement
measures (Figure 2b, see also Tables S6−S10). This shows
that for the present complex, the localized orbital basis is
already very close to the converged basis and highlights the
locality of the multiconfigurational problem. We observe that
for all systems studied herein a small, localized basis set is
adequate to obtain a qualitative insight into the magnetic
coupling. A projection of the localized orbitals onto a larger
basis set and subsequent state-specific optimization shows no
qualitative changes (see Figures S3 and S4). This is also
reflected in the unchanged orbital occupation numbers (max.
deviation: 0.04 for the oxygen pz orbitals in the singlet state).
The effect of adding a so-called double shell was investigated,
and the 4d orbitals are not entangled to a significant extent
(see Figure S12). Adding a double d shell is important for late
transition metals to recover correlation, but these orbitals are
not expected to be important for a qualitative representation of
the coupling topologyor in other words, they do not act as
acceptor orbitals in the types of charge-transfer excitation that
describe the fundamental physics involved in magnetic
coupling.42

To be useful in the analysis of exchange coupling pathways,
it is a fundamental requirement for a method to be able to
discriminate between different types of bridging ligand.
Therefore, we investigate if and how the entanglement analysis
differs for the singly protonated analogue of the bis-μ-oxo core:
the μ-oxo-μ-hydroxo-bridged Mn(IV) dimer. According to BS-
DFT calculations, the coupling strength decreases from −115
to −92 cm−1 upon protonation,56 a smaller decrease than
observed experimentally upon single protonation of salpn-
ligated Mn(IV) dimers (exptl, −92 to −48 cm−1; calcd crystal
structure −101 to −46 cm−1).59,58 The reason for this decrease
was postulated to originate from shutting down certain
exchange-coupling pathways. The entanglement of the
respective orbitals offers a direct way to evaluate this
assumption.
Indeed, protonation leads to a very small entanglement of

the σ/σ* orbitals involving the hydroxo bridge and of the OH-
centered pz orbital with the magnetic orbitals (Figures 3 and
S5), implying that the hydroxo bridge does not participate in
superexchange. In contrast, the entanglement of the oxo bridge
remains unchanged with respect to the Mn2O2 core (see
Tables S11−S15 for exact values). This observation holds true
for all spin states and thus aligns with the empirically deduced
picture of the deactivated pathway. The magnetic relevance of
the OH pz orbital is lowered to ca. 7%, i.e., only slightly larger
than any of the σ/σ* pairs (Figure 3, bar diagram). It is
important to note that in the ammonia-saturated model system
studied here, protonation leads to more pronounced structural
changes than in synthetically accessible complexes: an increase
in Mn−Mn distance by ca. 0.1 Å (salpn) vs ca. 0.3 Å (NH3),
and an increase in Mn−O−Mn angle by ca. 7° (salpn) vs 12°
(NH3). For the present system, we can therefore not firmly say
whether the increase in magnetic relevance of the O pz and
magnetic orbitals upon protonation is dominated by electronic
or structural differences within the Mn2O2 core.
For the orbital optimization, the weakly entangled O pz

orbital on the hydroxo bridge is excluded (Figures S6−S8; see
also Tables S16−S20). No qualitative change is observed,
confirming that the localized orbitals with a small basis set are

yet again a good qualitative approximation to the fully
optimized large basis set in which the multiconfigurational
problem is solved.
The above cases establish that entanglement analysis can

provide a picture of superexchange coupling pathways that
accurately identifies the role of chemically different bridging
ligands in accordance with experimentally known facts. An
important structural parameter pertaining to superexchange
paths is the metal−bridge−metal angle. We therefore studied a
tris-μ-oxo bridged Mn(IV) dimer with significantly more acute
angles (see Figure 1), the synthetic analogue of which shows
an exceptionally strong coupling constant (−390 cm−1).60 The
origin of this strong coupling has been attributed to direct
exchange contributions alongside superexchange pathways.56,61

As in the previous examples, the magnetic orbitals stand out in

Figure 3. Orbital entanglement diagrams for the μ-oxo-μ-hydroxo-
bridged dimer in all spin states based on localized orbitals (DMRG-
CI) with a small basis set, including a bar diagram of the relative
standard deviation of the single orbital entropy across all spin states.
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the entanglement diagrams because of their large single-orbital
entropy and the fact that they are all connected by large mutual
information elements (Figures 4 and S9−S11). The O pz
orbitals, however, despite still being connected to a magnetic
orbital on each manganese ion via a large mutual information
element, show a reduced single-orbital entropy when

compared to the μ-oxo bridges in the examples above. This
is likely the result of a reduced overlap of the O pz and
magnetic orbitals due to the acute Mn−O−Mn angles in the
tris-μ-oxo core. An analysis of the magnetic relevance, however,
shows a similar picture as in the case of the Mn2O2 model
compound: the magnetic, O pz and σ/σ* orbitals group by
decreasing spin-dependence of the single-orbital entropy.
Again, the qualitative analysis based on localized orbitals
with a small basis is practically identical to the results from
optimized orbitals with a large basis set (Tables S21−S30 and
Figures S9−S10).
So far, we have shown that orbital entanglement can serve as

an analysis tool for exchange coupling topologies and yields an
intuitive picture that aligns with empirical concepts for the
interpretation of magnetic interactions. Since the mutual
information measures to what extent each orbital within a pair
of orbitals influences the occupation of the other, we expect
different contributions to magnetic coupling to be reflected in
the mutual information sums calculated for groups of orbitals
reflecting the topology. For a comparative and quantitative
analysis of the individual contributors across different
complexes, we calculate the sum of mutual information
elements connecting particular orbital sets in the singlet
state: the three magnetic orbitals on each manganese ion (i.e.,
two sets of three orbitals each) and the O pz orbital (two or
three sets of one orbital each, see Figure 5).
All mutual information sums confirm that the same exchange

coupling picture emerges with localized (blue numbers in
Figure 5) and optimized (black numbers in Figure 5) orbitals.
Taking the bis-μ-oxo-bridged complex as a reference (Figure
5a), it is clear that the coupling pathway involving the hydroxo
bridge is switched off (Figure 5b), whereas the mutual

Figure 4. Orbital entanglement diagrams for the tris-μ-oxo-bridged
dimer in all spin states based on (a) localized orbitals (DMRG-CI)
with a small basis set, including a bar diagram of the relative standard
deviation of the single orbital entropy across all spin states.

Figure 5. Quantitative analysis of magnetic coupling with the sum of
mutual information elements for the most relevant orbital classes, the
magnetic orbitals on each manganese ion, and the O pz orbitals of the
oxo bridges. Bold blue numbers are from the DMRG-CI localized
orbital basis, and black numbers in parentheses are from the DMRG-
SCF optimized orbital basis.
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information sum involving the magnetic orbitals is slightly
increased in the case of the localized orbitals. We note that the
values for the optimized orbital basis associated with the oxo-
bridge in the protonated dimer are larger than in the bis-μ-oxo
example. While this observation is in qualitative agreement
with the magnitude of the exchange coupling pathway not
being halved (−115 cm−1 vs −92 cm−1), a quantitative analysis
also taking into account the structural changes induced upon
protonation will require a more extensive investigation. The
mutual information sums for the oxo bridges in the tris-μ-oxo
case are distinctly smaller than for the oxo bridges in the other
two examples, an effect that is more pronounced in the
optimized orbital basis (Figure 5c). Whether this can be
attributed to geometric effects due to the acute angle at the
oxo-bridges (Mn−O−Mn: ca. 81°), the shorter Mn−Mn
distance (2.82 Å in bis-μ-oxo vs 2.41 Å in tris-μ-oxo), and/or
dominant direct exchange effects can presently not be
ascertained.

■ CONCLUSIONS
We introduced a new type of analysis for magnetically coupled
systems based on orbital entanglement. We demonstrated that
DMRG-CI wave functions calculated in a localized orbital basis
constructed from a minimal atomic-orbital basis set are
adequate for an assessment of electronic structure differences
across all spin states of the Heisenberg ladder. Optimization of
these orbitals in a larger basis set affords an identical
interpretation. The entanglement diagrams readily show
which pathways are involved in the coupling. We introduce
the relative standard deviation of the single orbital entropy
across all spin states as the magnetic relevance of the respective
orbitals, i.e., their importance for the magnetic coupling
topology.
Our concept opens the possibility to investigate oligonuclear

systems that have active spaces for which orbital optimization
may not be easy. Given that DMRG-CI is presently feasible for
up to (40,40) active spaces,62 our analysis can target systems
previously accessible only by BS-DFT, for instance, the valence
active space of tetranuclear clusters with up to six bridges or
the valence active space plus a metal double d-shell for
trinuclear clusters with three bridging atoms. The orbital
entanglement analysis of exchange-coupled systems is appli-
cable to all individual spin states of the Heisenberg ladder and
can thus be viewed as complementary as well as supplementary
to a BS-DFT analysis, in particular for systems with more than
two magnetic centers. Furthermore, our approach permits the
individual assessment of particular elements of the magnetic
coupling topology, for instance, the contributions of specific
bridges or so-called “double shell” effects, without the need for
orbital optimization. In line with the orbital entanglement
based automated active space selection,18,19 for complicated
coupling topologies, such an analysis would identify the ideal
active space for a quantitative calculation of the coupling
constant magnitude. The latter would then be calculated with a
large atomic-orbital basis set, multispin state-averaging for the
orbital optimization, and subsequent perturbation theory
treatment.46,48

Computational Details. The coordinates for the three
dimers were taken from ref 56. All calculations were performed
with OpenMolcas62 and an interface to the QCMaquis DMRG
program.63,64 The two basis sets were ANO-RCC-MB on all
atoms, or ANO-RCC-VTZP for Mn and O and ANO-RCC-
VDZP on N and H.65,66 Scalar-relativistic effects were included

to second order by means of the Douglas−Kroll−Hess
Hamiltonian,67−69 and the localized orbitals were obtained
with the Pipek−Mezey localization scheme.70 In the DMRG
calculations, the maximum bond dimension was set to 1000,
and the number of sweeps was set to 20. Note that the
entanglement information converges much faster than the
energy. The convergence with respect to the maximum bond
dimension m was analyzed (Figure S13), and no meaningful
improvement was found for m = 2000 over m = 1000 such that
the latter was chosen in order to reduce the computational
cost. We use standard orbital ordering procedures according to
the default settings of the QCMaquis DMRG program.14,63

The orbital ordering was unaltered, meaning that it
corresponds to the results of the localization procedure with
doubly occupied orbitals at the beginning of the DMRG lattice,
followed by the singly occupied magnetic orbitals and the
unoccupied orbitals. Note that the entanglement diagrams
show a manipulated ordering that reflects the topology of the
complexes studied here. The initial guess for the matrix
product state (MPS) wave function was also obtained from the
default option in QCMaquis that employs random numbers
but generates an MPS structure with proper dimensionality on
each site. We emphasize that these standard settings may need
to be optimized for strongly correlated systems, where a CI-
DEAS initial guess1,71 and an orbital ordering according to the
Fiedler vector72,73 is likely to substantially improve the
convergence. The orbital entanglement information on these
DMRG calculations was analyzed with the autoCAS
program,74 which also provided the entanglement diagrams.
Orbital optimizations were carried out as state-specific
optimizations where indicated in the main text. Since purely
hypothetical model complexes are used, the aim of the
calculations is not the extraction of the exchange coupling
constant J but a representation of all spin states of the spin
ladder.
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