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Network models of stochastic power-laws

George Jack Peterson

Abstract

In this work, I investigate what power-law processes may have in common.

I propose that their common feature is a specific type of positive feedback.

Next, I discuss two specific power-law models for processes which appear to

be quite different from one another: (1) citations of scientific papers, and (2)

physical interactions between proteins in cells. Finally, I discuss a new theo-

retical framework for describing power-law phenomena, based on the principle

of maximum entropy, combined with a symmetry relationship.
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1 Introduction

Probability distributions with a heavy tail show up in a wide variety of real-world sys-

tems: the probability that a scientific paper will receive a certain number of citations

[1], the distribution of the number of interaction partners of proteins [2], the sizes of

fluctuations in the stock market [3], the intensity of solar flares [4], and many others.

In these systems, a distribution p(k) may have exponential behavior for small k and a

power-law tail for large k. Power-law tails imply that very large events occur with an

unusually high probability. This is of considerable practical interest: often, the most

consequential events – the stock market crash, the breakthrough paper, the conserved

hub protein – are the ‘outliers’ far out in the tail, rather than commonplace events

closer to the mean. My research has focused on the question: What mechanisms are

shared by these disparate systems that generate similar large-scale statistical behavior?

Over the past decade, there have been a number of efforts to explain the existence

of power-law tails using models of growing networks [5, 6, 7, 8, 9, 10] (see [4] for

review). Typically, these models start from an abstract mathematical framework

(e.g., a rule for the formation of an edge between two nodes), then fit the tail of

their model to the the tail of one or more real-world distributions. One shortcoming

of this approach is that the physical explanation for the heavy tail is often unclear.

I approached this problem from the opposite direction: I first built models for two

specific power-law phenomena, then worked backwards to see what their underlying

mechanisms have in common. My observations are as follows:

1. Power-law tails arise from positive feedback.

2. Exponential behavior observed near the origin can be explained by simple ran-

dom models.

3. Competition between the random and positive feedback mechanisms causes the

transition from exponential to power-law behavior.
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1.1 Two ways to cite a paper

The first system I examined is the distribution of citations to scientific papers [11].

A natural representation for this system is a directed graph, where nodes represent

papers, and an edge represents the citation of one paper (incoming) by another (out-

going). Citations are a convenient modeling testbed for two reasons: first, data is

plentiful, and easy to download, and, second, the model can be mathematically very

simple, because citations are only issued on the publication of a paper, and can not

be reassigned later.

In this model, citations are issued via two competing mechanisms:

1. A ‘direct’ mechanism, where all papers have an equal chance of being located

and cited.

2. An ‘indirect’ mechanism, where papers are found through the reference list of

one of the k papers which have already cited them. If that the number of

references per paper is some fixed value n, the probability of indirectly citing a

paper with k citations proportional to k/n.

Suppose that the probability of searching through a paper’s reference list and citing

one of its references is an unknown parameter c. The indirect mechanism is imitation:

an author is citing a paper because it has already been cited by another paper. The

parameter c represents the probability of an author citing a paper via imitation, and

1− c is the probability that the author will instead cite a paper independently.

The competition between these mechanisms can be encoded into a master equation

for p(k), which is sufficiently simple that it may be solved analytically. (See the

following chapter for details of the derivation.) The large-k tail scales as

p(k) ∼ k−(1+1/c). (1)
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This model predicts that the slope of the power-law exponent should be dependent on

a dataset-specific parameter, c, rather than a universal constant, and the transition to

power-law scaling occurs when the indirect overtakes the direct mechanism. Consis-

tent with this prediction, we discovered that a variable exponent is a feature of several

empirical citations datasets. We also found that the best-fit value of n (the number

of references given out per paper) is consistent with an empirical measurement of this

quantity made in [12].

1.2 A more severe test?

The basic idea behind this model seems sufficiently general that I wondered if it could

be applied to fit the probability distributions for a variety of phenomena that have

roughly the same shape as the citations distribution. For example, can stock price

fluctuations be explained in the same way, as a competition between the ‘rational

actor’ mind of a stock trader and the herd mentality that sets in once enough people

have bought or sold a particular stock? Does the distribution of links to web sites

arise because of the competition between the tendency to randomly surf the Internet,

and the many paths available to a site that has been linked to many times?

As shown in Figure 1, at first glance, the answer to these questions appears to be

‘yes’. The p(k) derived for the citations distribution fits these probability distributions

quite well. However, is this really a severe test of the hypothesis? It is possible that

there are many models capable of fitting to the distribution, particularly for intensely

studied systems such as the stock market.

A more convincing test would be to measure each system in several independent

ways, and show that a two-mechanism model successfully reproduces these features

(and that other models do not). The trouble is that for citations, stock prices, and

web links, the only readily-accessible data is of counts. It is straightforward to find the

number of citations a paper has, but very hard to assemble a full list of which papers

3



Figure 1: Curve fits of the citations model to (left) normalized 1-minute returns for
the S&P 500 index (c = 0.18, n = 0.25) and (right) distribution of links to about 200
million websites in 1997 (c = 0.76, n = 9.4) [13]. Data is shown in blue, and best-fit
p(k) in red.

cited which other papers. Likewise, it is difficult merely to get access to minute-to-

minute stock market data, and nearly impossible to get a complete list of buyers and

sellers for each trade. This is a great advantage of protein-protein interaction (PPI)

networks – it is simple to obtain a list of not only the number of interaction partners

each protein has, but exactly which proteins interact with which other proteins.

1.3 Two mechanisms for PPI network evolution

PPI networks are an important souce of information about the complex machinery

underlying cellular function. Clusters of interactions must be considered to analyze

the functional role of proteins in cells, as proteins typically work in large-scale path-

ways to execute specific tasks. The probability distribution of the PPI network has

the same general shape as the citations distribution; a recent statistical study showed

that the tails of both distributions are best fit by power-laws [14].

In chapter 3, I discuss a model our group developed for the evolution of eukaryotic

PPI networks. In this model, a cell’s protein network evolves by two known biological

mechanisms:
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1. Gene duplication, which is followed by rapid diversification of duplicate inter-

actions.

2. Neofunctionalization, in which a mutation leads to a new interaction with some

other protein. Many interactions are nonspecific, arising from proteins that

have exposed hydrophobic surface areas; these nonspecific interactions cause an

increased likelihood of interacting with other proteins in the target protein’s

neighborhood.

The model is in good agreement on 10 different network properties compared to high-

confidence experimental PPI networks in yeast, fruit flies, and humans. In this model,

PPI networks evolve modular structures, with no need to invoke particular selection

pressures. The model indicates that evolutionarily old proteins should have higher

connectivities and be more centrally embedded in their networks. This suggests a way

in which present-day proteomics data could provide insights into biological evolution.

1.4 A ‘cost sharing’ framework for social power-laws

Many of the real-world systems that exhibit power-laws are social phenomena, such

as the fluctuations in the stock market, citations to scientific papers, the sizes of

U.S. cities, etc. I was interested in whether power-laws might arise as a consequence

of a general variational principle for stochastic processes. In chapter 4, I describe

a model, based on the idea of communities of ‘social particles’, where the cost of

adding a particle to the community is shared equally between the particle joining

the community and the particles that are already members of the community. In

this model, power-law probability distributions of community sizes arise as a natural

consequence of the maximization of entropy, subject to this ‘equal cost sharing’ rule.

I also explore a generalization in which there is unequal sharing of the costs of joining

a community. Distributions change smoothly from exponential to power-law as a

5



function of a sharing-inequality quantity. This chapter gives an interpretation of

power-law distributions in terms of shared costs.
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2 The probability distribution of scientific cita-

tions

Commonly observed in nature and in the social sciences are probability distribution

functions that appear to involve dual underlying mechanisms, with a ‘tipping point’

between them. Examples of such probability distributions include the distributions of

city sizes [15, 16]; fluctuations in stock market indices [3, 17]; U.S. firm sizes [18, 19];

degrees of Internet nodes [20, 14]; numbers of followers of religions [14]; gamma-ray

intensities of solar flares [4]; sightings of bird species [14]; and citations of scientific

papers [1, 21, 22, 23]. In these situations, a distribution p(k) may have exponential

behavior for small k and a power-law tail for large k. Here we develop a generative

model for one such dual-mechanism process, scientific citations, for which databases

are large and readily available. Here, k represents the number of citations a paper

receives, ranging from 0 to hundreds or, sometimes, thousands. p(k) is the distribution

of the relative numbers of such citations, taken over a database of papers.

There have been several important studies of power-law tails of distributions,

including those involving scientific citations. Price noted that highly cited scientific

papers accumulate additional citations more quickly than papers that have fewer

citations [24]. He called this ‘cumulative advantage’ (CA): the probability that a

paper receives a citation is proportional to the number of citations it already has.

Price showed that this rule asymptotically gives a power law for large k. Power-law

tails have been widely explored in various contexts and under different names – ‘the

rich get richer’, the Yule process [25, 26], the Matthew effect [27], or preferential

attachment [5]. Barabási and Albert noted that networks, such as the World Wide

Web, often have power-law distributions of vertex connectivities, called ‘scale-free’

behavior [5]. Their model, called preferential attachment, leads to a fixed power-law

exponent of−3. Because many properties of physical systems near their critical points
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also display power-law behavior, and because such exponents are often universal (i.e.,

independent of microscopic particulars of the system), it raises the question of which

power-law distributions have universal exponents and which do not.

The tail of the scientific citations distribution has been fit by various distribu-

tions, including power law [1, 28], log-normal [29], and stretched exponential [30].

Recently, Clauset, Shalizi, and Newman proposed detailed statistical tests for deter-

mining whether various data sets have true power-law tails [14]. In agreement with

Redner’s earlier analysis [1], Clauset et al. confirm that the 1981 data set studied by

Redner is indeed well-fit by a power-law.

Our interest here is not just in the large-k tails of such distribution functions. We

are interested also in the small-k behavior and the tipping point between the two

different regions. After all, the preponderance of scientific papers are not cited very

commonly. Some previous models have explored both small-k and large-k regimes of

citations. In 2001, Krapivsky and Redner developed a rate equation method to obtain

solutions for several generalizations of the CA model, including results for nonlinear

connection probabilities [31]. Krapivsky and Redner proposed a ‘growing network

with redirection’ (GNR) for the citations network. They proposed that new papers

could randomly cite existing papers, or could be redirected to one of the papers in

its reference list. The GNR mechanism leads to a distribution with a non-universal

scaling exponent, depending on the value of the redirection parameter. An analysis

of this mechanism for arbitrary out-degree distribution was carried out by Rozenfeld

and ben-Avraham [32]. Recently, Walker et al. proposed a redirection algorithm

to rank traffic to individual papers, which, instead of an initial random attachment

probability, used an exponentially decaying probability of citation, according to the

age of the paper [33]. There have been many variations proposed of the basic CA

model, including CA with error tolerance [6], with an attractiveness parameter [34],

with a fitness parameter [7], with memory effects [8], with hierarchical organization

8



[35], with aging nodes [9], and a number of others. A useful overview of CA models,

and power laws in general, is by Newman [4].

Here, we develop a model to address three points of particular interest to us.

First, existing models focus on the power-law tail. We are interested here in the full

distribution function and the nature of the transition, or the ‘tipping point,’ from one

mechanism to the other. Second, we seek a mechanism that illuminates why the ‘rich

get richer’ in scientific citations. Third, a strictly linear attachment rule predicts a

single fixed exponent, γ = 3, where p(k) ∼ k−γ. Here, we ask whether the power-law

exponent for scientific citations is a universal constant, as is often observed in the

physics of critical phenomena, or whether the power-law exponent for citations is a

non-universal parameter which varies from one dataset to another.

The two-mechanism model we propose here is similar to the GNR model studied in

[31], generalized for an out-degree greater than one. A general treatment of the GNR

model with arbitrary out-degree distribution was given in [32]. Here, we derive p(k)

explicitly for the case of a fixed out-degree, and analyze the ‘tipping point’ transition

between the two mechanisms. We then fit our p(k) to several citations datasets,

and examine how the interactions between the two mechanisms produces different

distributions (with different tipping points) for each dataset. By sorting our datasets

according to h-index, we show that the scaling exponent, γ, decreases systematically

with increasing values of h. We interpret the changes in the scaling exponent using a

parameter of our model as an increasing bias towards indirect citation of well-known

scientists.

2.1 A two-mechanism model

Consider a directed graph on which each node represents a scientific paper. Each

edge represents a citation of one paper by another. An outgoing edge indicates giving

a citation, and an incoming edge indicates receiving a citation. At a given time,

9



the graph has N nodes, representing old papers that are already part of the graph.

At each time step, a new paper is published (a node is added to the graph). Each

new paper gives a fixed number of citations, n, distributed among the N old papers.

Hence the total number of citations given is Nn, and the total number of citations

received is also Nn. In general, we consider situations in which N is large. Let k

be the number of incoming links (citations) that a paper has received. For example,

a paper that has received no citations from other papers has k = 0. Some ‘classic’

papers have attracted more than k = 1000 citations. A given collection of papers will

have a distribution, p(k), of papers that have received k = 0, 1, 2, . . . citations.

We first focus on a particular old paper, paper A. The probability that a new

paper will randomly link to paper A is

rdirect =
1

N
. (2)

We call Equation 2 the direct mechanism of citations.1

In addition, scientific papers are also cited by an indirect mechanism: the author

of the new paper may first find a paper B and learn of paper A via B’s reference list.

On the citation graph, searching through B’s reference list is a nearest-neighbor-link

mechanism. Suppose there are already k incoming links to paper A. Because there

are a total of nN incoming links to all papers, the probability that the author of the

new paper randomly finds paper A, via the reference list of some other paper is

rindirect(k) =
k

Nn
. (3)

1Because each new paper will not cite an old paper more than once, the direct probability, Eq. 2,
of the first citation is 1/N , for the second citation is 1/(N − 1), and so on, and for the nth citation
is 1/(N − n+ 1). For real-world graphs, however, N is of the order of 500, 000 and n is around 20.
So, we assume N � n, and 1/(N − n + 1) ∼ 1/N . Similarly, the indirect probability, as Nn � n,
Eq. 3 is approximately k/(Nn−n+1) ∼ k/(Nn). Note also that, perhaps unrealistically, no special
weight is given to the possibility of simultaneously citing both paper A and one of its references.
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Given that the author of the new paper has found old paper A, the author will

either cite a paper from A’s reference list with probability c, or cite A itself with

probability 1− c. If paper A currently has k citations, then the number of citations,

R(k), to paper A from a new paper, through either the direct or indirect mechanism,

is

R(k) = n
[

(1− c) rdirect + c rindirect(k)
]

=
n(1− c)

N
+
kc

N
. (4)

Next, we compute the in-link distribution p(k), the fraction of the N papers that

have k incoming citations. The total number of papers having k citations is Np(k).2

We calculate p(k) using a difference equation to express the flows into and out of the

bin of papers having k citations for each time step (each time a new node is added).

The population of the bin of papers with k citations increases every time a paper

with k − 1 citations receives another citation and decreases every time a paper that

already has k citations receives another citation,

p(k) = N
[
R(k − 1)p(k − 1)−R(k)p(k)

]
(5)

=
[
n(1− c) + c(k − 1)

]
p(k − 1)−

[
n(1− c) + ck

]
p(k).

Equation 5 rearranges to:

p(k) =
α− 1 + k

α + 1/c+ k
· p(k − 1). (6)

where, to simplify the notation, we have defined

α =
n

c
− n. (7)

2The in-link distribution should be considered a function of both k and N , p(k,N). However, we
find that in the large N limit, the difference between p(k,N) and p(k,N − 1) decreases as 1/N . It
is therefore vanishingly small for very large N , and limN→∞ p(k,N) = p(k).
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Figure 2: Probability of receiving exactly k citations (PDF) and at least k citations
(CDF, inset) for datasets 1 (left), 2 (center), and 3 (right). Empirical data points are
shown as blue diamonds, and best-fit curves as solid red lines.

The equation for p(0) involves no inflow from a lesser bin. Instead, the inflow

comes from the addition of a new paper per time step, which is 1 by definition. The

outflow term is calculated as for other values of k. Therefore, p(0) = 1−n (1− c) p(0),

which rearranges to:

p(0) =
1

n− nc+ 1
. (8)

Substituting in Equation 8 and applying Equation 6 recursively gives3

p(k) =
1

αc+ 1
· (α− 1 + k)!(α + 1/c)!

(α− 1)!(α + 1/c+ k)!
. (9)

When α is sufficiently large, we apply Stirling’s approximation to Equation 9, which

yields

p(k) ≈ (α + 1/c)α+1/c

(αc+ 1) (α− 1)α−1

(
α− 1 + k

α + 1/c+ k

)α+k

× (α− 1 + k)−1
(
α +

1

c
+ k

)−1/c
. (10)

3The factorials in Equation 9 are understood to be gamma functions for non-integer 1/c values.
To show that equation 9 is normalized, we use

∞∑

k=0

(α− 1 + k)!

(α+ 1/c+ k)!
= (αc+ 1)

(α− 1)!

(α+ 1/c)!
.

Substituting into 9, we find that
∑

k p(k) = 1, as required.
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In the large-k tail (k � α), we have

(
α− 1 + k

α + 1/c+ k

)α+k
≈ e−(1+1/c),

and

(α− 1 + k)−1
(
α +

1

c
+ k

)−1/c
≈ k−(1+1/c).

Therefore, Equation 10 becomes, in the large-k tail:

p(k) ≈
[

(α + 1/c)α+1/ce−(1+1/c)

(αc+ 1) (α− 1)α−1

]
k−(1+1/c). (11)

Equation 10 gives our model’s prediction for the distribution of citations. It

expresses both the direct and indirect citation mechanisms. Equation 11 indicates

that once a paper’s number of citations, k, is large enough, further citations of that

paper undergo a sort of runaway growth because there are so many ways to find it

through other papers that have already cited it; for scientific citations, ‘the rich get

richer.’ The ‘tipping point’ where rindirect overtakes rdirect happens at

k = α. (12)

For example, if c = 1/2 and the average paper in the database gives out n = 15

citations, then after any particular paper in that database has received 15 citations,

it will begin to accumulate citations significantly faster than random – it will have

‘tipped over’ into the power-law scaling region. In this region, the power law exponent,

γ = 1 +
1

c
, (13)

is determined by the parameter c. Hence, ‘cumulative advantage’ arises in our model

because there are more routes (through the reference lists of other papers) for finding
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a classic paper than for finding a non-classic paper.

Table 1: Fitting parameters for datasets 1-3

Dataset c n γ α N
1. All 1981 publications 0.454(4) 17.3(3) 3.20(2) 20.8(4) 415229
2. High h-index chemists 0.517(1) 42.0(1) 2.935(5) 39.2(1) 245461
3. Phys. Rev. D publications 0.48(3) 27(2) 3.1(1) 29(3) 5327

2.2 The datasets

Figure 2 shows fits to normalized empirical probability distribution functions (PDFs,

the probability of receiving exactly k citations) and complementary cumulative dis-

tribution functions (CDFs, the probability of receiving at least k citations), P (k) =
∑∞

k′=k p(k
′) , for three datasets:

1. Citations of publications catalogued in the ISI Web of Science database in 1981

[1]

2. Citations of publications by authors on a 2007 list of the living highest h-index

chemists [36]

3. Citations of publications in the Physical Review D journal from 1975-1994 [1]

Datasets 1 and 3 were downloaded from Sidney Redner’s website4. We gathered

dataset 2 from the ISI Web of Knowledge5 using a Python script. Parameters for

these fits are shown in Table 1, and plots of the datasets and best-fit p(k) distributions

are shown in Figure 2. We also sorted dataset 2 by h-index. Parameters for different

h-index ranges are shown in Table 2, and fits are shown in Figure 3. The relation

between our estimates of γ and h is shown in Figure 4. To obtain estimates and 95%

4http://physics.bu.edu/∼redner/projects/citation/index.html
5http://isiwebofknowledge.com
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Figure 3: Comparison of the normalized PDFs and CDFs (inset) for chemists with
h = 100+ (red) and chemists with h = 50-53 (blue).

confidence intervals of c and n, we used Matlab’s implementation of the iteratively

reweighted least squares algorithm, using bisquare weights [37]. All curve fitting was

applied to the raw (not binned or log-transformed) data.

2.3 Results

Our model has two parameters: n, the average number of citations given out by all

the papers in the database, and c, the chance of citing from a paper’s reference list.

The model power-law exponent is then fixed by the relationship γ = 1 + 1/c. Our

best fit of dataset 1 gives a value of n = 17.3 ± 0.3, in approximate agreement with

the independent estimate of 15.01 found for papers published in 1980 [12]. Also,

our predicted value of γ = 3.20 ± 0.02 agrees with the best-fit power-law exponent

previously found by Clauset, of γ = 3.16 [14]. Table 1 shows the best-fit parameter

values for the three different datasets.

We explored the p(k) distributions for small groups of scientists, as shown in Figure
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3. We wanted to test an alternate hypothesis that some scientists might publish only

low-k papers and others might publish only classic high-k papers. Our limited tests

argue against this hypothesis. Figure 3 indicates that even highly cited scientists

have more low-k papers than high-k papers. One reason is that every publication in

the scientific literature is new for a while, and requires some time to become highly

cited.

Interestingly, the slope of the power-law region differs between the two groups

shown in Figure 2. To examine this difference in more detail, we parsed dataset 2

by h-index (Table 2). The h-index of a scientist is defined as the point where h of

the scientist’s papers have at least h citations each [38]. That is, h is defined by

the requirement to satisfy the expression, Np(h) = h. There is no simple analytical

relationship between a scientist’s h-index and the parameters of our model.

From Table 2, we conclude that c increases with h-index, indicating that there is

a bias towards selecting papers out of a reference list that were written by scientists

who are already very highly cited (Figure 3). This bias may reflect the tendency of

authors who, scanning a paper’s references for further information, are more likely to

select a paper written by an author they have previously heard of. The more highly

cited the scientist, the lower his or her power-law exponent (i.e., the fatter the tail);

see Figure 4. The error bars are sufficiently small to indicate that these trends are

real, and that there is not a single universal exponent, such as γ = 3; rather, the

exponent depends on the subset of scientists examined. Note that, here, we consider

a scientist to have authored a paper if his or her name appears anywhere in the list

of authors. An interesting question for future work might be to examine whether

this effect is changed by only considering the h-index of each paper’s leading and/or

corresponding author.

Our model bears some resemblance to Price’s application of CA to scientific cita-

tions [24]. One key difference is that our two parameters both have physical meaning.
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Figure 4: Power-law exponent γ plotted against h-index for subsets of dataset 2.

To avoid the issue of new papers having a citation probability of zero when k = 0,

Price proposed that the citation probability should be proportional instead to k+w,

where w is a constant that he refers to as a ‘fudge factor.’ He sets w = 1, although

as later noted by Newman, there does not seem to be a good reason to choose this

value [4]. The connection rule for our model is given by Equation 4, and suggests

a simple interpretation: Price’s constant arises from random connections, and the

tipping point, Equation 12, is determined by the average size of the reference lists

given out per paper, and the probability of searching through those reference lists.

This two-mechanism model also provides a justification for a CA mechanism.

Barabási and Albert remarked that CA only produced a power law distribution when

the connection probability was linearly proportional to k [5], but it was not clear what

was special about linearity. The present model presents a possible explanation for the

existence of this mechanism, and why the k dependence should be linear: k appears in

rindirect because a paper’s k incoming citations are represented by k nearest-neighbor

links on the graph.
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2.4 Conclusion

We have developed a model of scientific citations, involving both direct and indirect

routes to finding and citing papers. This two-mechanism model predicts exponential

behavior in the small-k region and power law tails in the large-k region. One param-

eter of the model, n, is the average number of citations given out per paper. Our

best-fit value of n is consistent with an independent, empirical measure of it made

by Biglu [12]. Our other parameter, c, defines the power-law exponent, γ = 1 + 1/c,

which is in agreement with data previously evaluated in [14]. Two key findings here

are: (1) the tipping point for a paper to reach ‘classic-paper’ status, i.e. its power-law

citation region, is about 21 citations for the ISI Web of Science database, and (2) the

power-law exponent is not a universal feature of all scientific citations. The exponent

diminishes systematically with increasing h-index of a scientist. Our model describes

systems that are governed by random choices in the small-k region, cumulative ad-

vantage in the high-k region, and a tipping point between them.

Table 2: Fitting parameters for h-index ranges within dataset 2

h range c n γ α N
100+ 0.57(1) 80(3) 2.77(5) 60(2) 11029
90-99 0.54(1) 77(3) 2.86(5) 66(3) 11476
80-89 0.53(1) 60(2) 2.89(4) 53(2) 15408
70-79 0.513(3) 40.6(4) 2.95(1) 38.5(4) 54236
60-69 0.494(2) 48.7(4) 3.02(1) 49.9(5) 56052
54-59 0.493(3) 34.9(3) 3.03(1) 35.9(4) 44715
50-53 0.489(3) 31.3(3) 3.04(1) 32.7(4) 46421

18



3 The evolution of protein-protein interaction net-

works

We are interested in the evolution of protein-protein interaction (PPI) networks. PPI

network evolution accompanies cellular evolution, and may be important for processes

such as the emergence of antibiotic resistance in bacteria [39, 40], the growth of

cancer cells [41], and biological speciation [42, 43, 44]. In recent years, increasingly

large volumes of experimental PPI data have become available [45, 46, 47, 48], and a

variety of computational techniques have been created to process and analyze these

data [49, 50, 51, 52, 53, 54, 55, 56]. Although these techniques are diverse, and the

experimental data are noisy [57], a general picture emerging from these studies is

that the evolutionary pressures shaping protein networks are deeply interlinked with

the networks’ topology [58]. Our aim here is to construct a minimal model of PPI

network evolution which accurately captures a broad panel of topological properties.

In this work, we describe an evolutionary model for eukaryotic PPI networks.

In our model, protein networks evolve by two known biological mechanisms: (i) a

gene can duplicate, putting one copy under new selective pressures that allow it to

establish new relationships to other proteins in the cell, and (ii) a protein undergoes

a mutation that causes it to develop new binding or new functional relationships with

existing proteins. In addition, we allow for the possibility that once a mutated protein

develops a new relationship with another protein (called the target), the mutant

protein can also more readily establish relationships with other proteins in the target’s

neighborhood. One goal is to see if random changes based on these mechanisms could

generate networks with the properties of present-day PPI networks. Another goal is

then to draw inferences about the evolutionary histories of PPI networks.
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3.1 Model

We represent a PPI network as a graph. Each node on the graph represents one

protein. A link (edge) between two nodes represents a physical interaction between

the two corresponding proteins. The links are undirected and unweighted. To model

the evolution of the PPI graph, we simulate a series of steps in time. At time t, one

protein in the network is subjected to either a gene duplication or a neofunctionalizing

mutation, leading to an altered network by time t + ∆t. We refer to this model as

the DUNE (DUplication & NEofunctionalization) model.

3.1.1 Gene duplication

One mechanism by which PPI networks change is gene duplication (DU) [59, 60, 61].

In DU, an existing gene is copied, creating a new, identical gene. In our model,

duplications occur at a rate d, which is assumed to be constant for each organism.

All genes are accessible to duplication, with equal likelihood. For simplicity, we

assume that one gene codes for one protein. One of the copies continues to perform

the same biological function and remains under the same selective pressures as before.

The other copy is superfluous, since it is no longer essential for the functioning of the

cell [62].

The superfluous copy of a protein/gene is under less selective pressure; it is free

to lose its previous function and to develop some other function within the cell. Due

to this reduced selective pressure, further mutations to the superfluous protein are

more readily accepted, including those that would otherwise have been harmful to

the organism [63, 64]. Hence, a superfluous protein diverges rapidly after its DU

event [65]. This well-known process is referred to as the post-duplication divergence.

Following [66], we assume that the link of each such superfluous protein/gene to its

former neighbors is deleted with probability φ. The post-duplication divergence tends

to be fast; for simplicity, we assume the divergence occurs within the same time step
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as the DU. The divergence is asymmetric [67, 68]: one of the proteins diversifies

rapidly, while the other protein retains its prior activity. We delete links from the

original or the duplicate with equal probability because the proteins are identical.6

In our model, φ is an adjustable parameter.

In many cases, the post-duplication divergence results in a protein which has

lost all its links. These ‘orphan’ proteins correspond to silenced or deleted genes in

our model. As discussed below, our model predicts that the gene loss rate should

be slightly higher than the duplication rate in yeast, and slightly lower in flies and

humans.

We simulate a DU event at time t as follows:

1a) Duplicate a randomly-chosen gene with probability d∆t.

2a) Choose either the original (50%) or duplicate (50%), and delete each of its

links with probability φ.

3a) Move on to the next time interval, time t+ ∆t.

3.1.2 Neofunctionalization

Our model also takes into account that DNA can be changed by random mutations.

Most such mutations do not lead to changes in the PPI network structure. However,

some protein mutations lead to new interactions with some other protein (which we

call the target protein). The formation of a novel interaction is called a neofunc-

tionalization (NE) event. NE refers to the creation of new interactions, not to the

disappearance of old ones. Functional deletions tend to be deleterious to organ-

isms [69]. We do not account for loss-of-function mutations (link deletions) except

during post-duplication divergence because damaged alleles will, in general, be elim-

inated by purifying selection. In our model, NE mutations occur at a rate µ, which

is assumed to be constant. All proteins are equally likely to be mutated.

6As discussed in the supporting information (SI), this is closely related to the idea of subfunc-
tionalization, where divergence freely occurs until redundancy is eliminated.
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How does the mutated protein choose a target protein to which it links? We

define a probability q that any protein in the network is selected for receiving the

new link from the mutant protein. To account for the possibility of multimerization,

the mutated protein may also link to itself. Random choice dictates that q = 1/N

(see SI).

Many PPI’s are driven by a simple geometric compatibility between the surfaces

of the proteins [70]. The simplest example is the case of PPI’s between flat, hy-

drophobic surfaces [71], a type of interaction which is very common [72]. These PPI’s

have a simple planar interface, and the binding sites on the individual proteins are

geometrically quite similar to one another. One consequence of these similar-surface

interactions is that if protein A can bind to proteins B and C, then there is a greater-

than-random chance that B and C will interact with each other. We refer to this

property as transitivity : if A binds B, and A binds C, then B binds C. The number of

triangles in the PPI network should correlate roughly with transitivity. As discussed

below, the number of triangles (as quantified by the global clustering coefficient) is

about 45 times higher in real PPI networks than in an equally-dense random graph.

This suggests that transitivity is quite common in PPI networks.7

A concrete example of transitivity is provided by the evolution of the retinoic acid

receptor (RAR), an example of neofunctionalization which has been characterized in

detail [74]. Three paralogs of RAR exist in vertebrates (RARα, β, and γ), as a result

of an ancient duplication. The interaction profiles of these proteins are quite different.

Previous work indicates that RARβ retained the role of the ancestral RAR [74], while

RARα and γ evolved new functionality. RARα has several interactions not found in

RARβ. RARα has novel interactions with a histone deacetylase (HDAC3) as well

7Another source of transitivity is gene duplication. If A binds B, then A is copied to create a
duplicate protein A’, then A’ will (initially) also bind B. If A interacts with A’, then a triangle is
formed. However, duplication is unlikely to be the primary source of transitivity; recent evidence
shows that, due to the post-duplication divergence, duplicates tend to participate in fewer triangles
than other proteins [73].
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as seven of HDAC3’s nearest-neighbors (HDAC4, MBD1, Q15959, NRIP1, Q59FP9,

NR2E3, GATA2). None of these interactions are found in RARβ. The probability

that all of these novel interactions were created independently is very low. RARα

has 65 known PPI’s and HDAC3 has 83, and the present-day size of the human PPI

network is a little over 3000 proteins. Therefore, the chance of RARα randomly

evolving novel interactions with 7 of HDAC3’s neighbors is less than 1 in a billion.

This strongly suggests that when a protein evolves an interaction to a target, it has

a greater-than-random chance of also linking to other, neighboring proteins.

How do similar-surface interactions affect the evolution of PPI networks? First,

consider how an interaction triangle would form. Suppose proteins A and B bind due

to physically similar binding sites. Protein X mutates and evolves the capacity to

bind A. There is a reasonable chance that X has a surface which is similar to both

A and B. If so, protein X is likely to also bind to B, forming a triangle. Denote the

probability that two proteins interact due to a simple binding site similarity by a.

The probability that A binds B (and X binds A) in this manner is a. Assuming these

probabilities are identical and independent, the probability that X binds B is a2.

So far, we have discussed transitivity as it affects the PPI’s in which protein A is

directly involved (A’s first-neighbors). We now introduce a third protein to the above

example, resulting in a chain of interactions: protein A binds B, B binds C, but C

does not bind A. Protein X mutates and gains an interaction with A (with probability

a2). What is the probability that X will also bind C? The probability that B binds

C due to surface similarity is a. Thus, X will bind C (A’s second-neighbor) with

probability a3. In general, the probability that X will bind one of A’s jth neighbors is

aj+1. We refer to this process as assimilation, and the ‘assimilation parameter’ a is

a constant which varies between species.8 Assimilation is assumed to act on a much

8As discussed in SI, it is primarily mutliple-partner proteins which bind to their partners at
different times and/or locations which are affected by this process; consequently, at most one link is
created by assimilation at the first-neighbor level, second-neighbor level, etc.
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shorter time scale than DU and NE; in our model, it is instantaneous.

As discussed above, evidence suggests that a protein which evolves a PPI to a

target protein should also have a greater-than-random chance of forming interactions

with its neighbors. Although this is not direct proof that the assimilation mechanism

exists exactly as proposed here, our proposed mechanism makes several predictions

that could be tested experimentally: (1) the probability of a protein assimilating into

a new pathway should be a2 (at the first-neighbor level), a3 (at the second-neighbor

level), and so on, where a is a constant which varies between species; (2) weak,

nonspecific binding and planar interfaces should be overrepresented in interaction tri-

angles (and longer cycles) between non-duplicate proteins; (3) competitive inhibitors

should be overrepresented in interaction triangles; and (4) domain shuffling should

be associated with assimilation. (See SI for discussion of (3) and (4).)

We simulate an NE event at time t as follows:

1b) Mutate a randomly-chosen gene with probability µ∆t.

2b) Link to a randomly-chosen target protein.

3b) Add a second link to one of the target’s first-neighbor proteins, chosen ran-

domly, with probability a2.

4b) Add a link to one of the target’s second-neighbor proteins, with probability

a3, etc.

5b) Move on to the next time interval, time t+ ∆t.

3.1.3 Model simulation and parameters

A flowchart of how PPI networks evolve in our model is shown in Figure 5. To sim-

ulate the network’s evolution, one of the two mechanisms above is used at each time

step, using Gillespie’s algorithm [75]. We call each possible time series a trajectory.

We begin each trajectory starting from two proteins sharing a link (the simplest con-

figuration that is still technically a network). Each simulated trajectory ends when
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Figure 5: DUNE model flowchart. At each time step, the simulated network under-
goes a DU or NE event. Red nodes/links indicate nodes/links that have been created
by DU during the current time step. Green links indicate links that have been created
by NE during the current time step. A dashed line indicates a duplicated link that
has been deleted during the post-duplication divergence (with probability φ). Only
up to 3 neighbors are shown for the assimilation mechanism; however, the actual
simulations included up to 20th neighbors. The simulated network evolves until its
number of links (K) meets or exceeds the number of links in the data (Kdata).
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Ndata Kdata d µ φ a
Yeast 2170 3819 0.01 7.86× 10−4 0.555 0.690
Fly 878 1140 0.0014 5.89× 10−4 0.866 0.546
Human 3165 5547 0.0037 7.62× 10−4 0.652 0.727

Table 3: Network sizes and model parameters. N and K are the numbers of proteins
and links, respectively. (Kdata is used to stop the simulation. Ndata is not used as
a constraint.) d and µ have units of per gene per million years (Myr). φ and a are
probabilities (unitless). K and d are constraints from the data, while µ, φ, and a are
adjustable parameters. We used Monte Carlo simulations to optimize the parameter
values, by minimizing the total symmetric mean absolute percentage error values of
the simulated versus the experimental data (see SI for details). Our values of µ are
substantially lower than d because µ is the rate of mutations leading to the creation of
a new PPI (rather than being a simple mutation rate, which would be much higher).

the model network has grown to have the same total number of links, K, as found in

the experimental data, Kdata. Here, we perform sets of simulations for three different

organisms: yeast (Saccharomyces cerevisiae), fruit flies (Drosophila melanogaster),

and humans (Homo sapiens). Because evolution is stochastic, there are different pos-

sible trajectories, even for identical starting conditions and parameters. We simulated

50 trajectories for each organism. Our figures below show the median values of each

feature as a heavy line, and individual trajectories as light lines.

For a given data set, the number of links (Kdata) is known. We estimate the DU

rate d from literature values. There have been several empirical estimates of DU rates,

mostly falling within an order of magnitude of each other [65, 76, 77, 78, 79, 78, 80, 81].

We averaged together the literature values to estimate d for each species (Table 7).

The quantity µ is not as well known. Its value relative to d has been the topic of

considerable debate [62, 82, 83, 84]. Although, in principle, µ is a measurable quantity,

it has proven difficult to obtain an accurate value, in part because the fixation rate of

NE alleles varies with population size [85, 86]. In the absence of a consensus order-of-

magnitude estimate, in our model, we treat µ as a fitting parameter. Consistent with

the findings of [87] and [82], our best-fit values of µ are within an order of magnitude
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of each other for yeast, fruit fly, and human networks. Best-fit parameter values are

given in Table 7.

3.2 Results

3.2.1 Present-day network topology

One test of an evolutionary model is its predictions for present-day PPI network

topologies. Current large-scale PPI data sets have a high level of noise, resulting in

significant problems with false positives and negatives [57, 88]. To mitigate this, we

compare only to ‘high-confidence’ experimental PPI network data gathered in small-

scale experiments (see Methods). We computed 10 topological features, quantify-

ing various static and dynamic aspects of the networks’ global and local structures:

degree, closeness, eigenvalues, betweenness, modularity, diameter, error tolerance,

largest component size, clustering coefficients, and assortativity. 7 of these properties

are described below (see SI for the others). These network properties are largely

uncorrelated (see SI).

The degree k of a node is the number of links connected to it. For protein networks,

a protein’s degree is the number of proteins with which it has a direct relationship.

Some proteins interact with few other proteins, while other proteins (called ‘hubs’)

interact with many other proteins. Previous work indicates that hubs have structural

and functional characteristics that distinguish them from non-hubs, such as increased

proportion of disordered surface residues and repetitive domain structures [91]. The

high degree of a protein hub could indicate that protein has unusual biological sig-

nificance [92]. The network’s overall link density is described by its mean degree, 〈k〉

(Table 4). The degree distribution p(k) is the probability that a protein will have k

links. PPI networks have a few hub proteins and many relatively isolated proteins.

The heavy tail of the degree distribution shows that PPI networks have significantly

more hubs than random networks have. Simulated and experimental degree distribu-

27



Q D f1 〈C〉 〈k〉
Yeast data 0.75 15 0.89 0.09 3.65
DUNE 0.74(7) 17(6) 0.8(1) 0.041(9) 4.0(8)
Vázquez 0.80(4) 21(5) 0.2(1) 0.045(5) 2.6(4)
Berg 0.518(4) 12.0(7) 0.990(3) 0.0027(9) 4.10(3)
RG 0.910(3) 36(3) 0.987(6) 0.475(8) 5.31(8)
MpK 0.58(6) 24(5) 1.000(2) 0.08(3) 4.4(6)
ER 0.588(8) 13.0(9) 0.995(2) 0.002(1) 3.5(6)
Fly data 0.86 23 0.73 0.10 2.93
DUNE 0.82(2) 20(2) 0.81(3) 0.09(1) 2.36(9)
Human data 0.75 15 0.88 0.08 3.69
DUNE 0.74(6) 17(2) 0.88(4) 0.09(1) 3.7(4)

Table 4: Modularity Q, diameter D, fraction of nodes in the largest component
f1, global clustering coefficient 〈C〉, and 〈k〉 is the average degree of proteins the
largest component. ‘Data’ is the empirical data, ‘DUNE’ is the model described here,
‘Vázquez’ is the duplication-only model of [66], ‘Berg’ is the link dynamics model [2],
‘RG’ is random geometric [89], ‘MpK’ is the physical desolvation model presented in
[88], and ‘ER’ is an Erdős-Rényi random graph [90]. Simulated values are the median
(± standard deviation) over 50 simulations. (See SI for details of each model’s setup
and optimization.)

tions are compared in Fig. 6. (For quantitative comparisons, see SI.)

Component refers to a set of reachable proteins. If any protein is reachable from

any other protein (by hopping from neighbor to neighbor), then the network only

has one component. If there is no path leading from protein A to B, then A and B

are in different components. The fraction of nodes in the largest component (f1) is a

measure of network fragmentation (Table 4 and Fig. 19). Note that, although silent

genes (proteins with no links) exist in real systems, these genes do not appear in

data sets consisting only of PPI’s. Therefore, calculations of f1 for all models exclude

orphan proteins (proteins with k = 0).

Gene loss, the silencing or deletion of genes, is known to play an important role in

evolution. The loss of a functioning gene will damage an organism, making the gene

loss unlikely to be passed on. The exception is if the gene is redundant. Consistent

with this reasoning, evidence suggests that many gene loss events are losses of one

28



10
−4

10
−2

10
0

Degree centrality

10
−4

10
−2

10
0

p
(k

)

10
0

10
1

10
2

10
−4

10
−2

10
0

k

Figure 6: Degree (k) distributions in human (green), yeast (blue), and fly (red).
Heavy lines are the median values from 50 simulations, and light lines are results
of individual simulations. Points represent high-confidence empirical data for each
organism (see Methods). Unless otherwise noted, color coding in the same in all
plots. Quantitative comparisons between simulation and experiment (for DUNE and
several other models) are detailed in SI.

copy of a duplicated gene [93, 67]. Although empirical estimates of the gene loss

rate varied considerably, a consistent finding across several studies is that the rates of

gene duplication and loss are of the same order-of-magnitude [65, 80, 77]. This broad

picture is in good agreement with our model. In our model, a gene is considered lost

when it has degree zero. Our model predicts that the ratio of orphan to non-orphan

proteins is 1.6±0.4 in yeast, 0.58±0.06 in flies, and 0.67±0.09 in humans. The gene

loss rate has been previously estimated to be about half the duplication rate in both

flies and humans [65, 80], consistent with our model’s prediction.

The distance between nodes i and j is defined as the number of node-to-node

steps that it takes along the shortest path to get from node i to j. The closeness

centrality of a node i, `i, is the inverse of the average distance from node i to all other

nodes in the same component. The diameter, D, of a network is the longest distance

in the network. Simulated closeness distributions are compared to experiments in
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Figure 7: (Left) Closeness (`) distributions in human (green), yeast (blue), and fly
(red). Heavy lines are the median values from 50 simulations, and light lines are
results of individual simulations. (Right) Examples of networks with low average
closeness 〈`〉 = 0.06 (top; each node is generally far away from most other nodes
because there are no ‘short cuts’) and high average closeness 〈`〉 = 0.28 (bottom; the
random connections allow each node to be only a short distance from the other nodes).
Note that both networks pictured here have the same number of nodes (N = 100)
and roughly the same average degree (top: 〈k〉 = 4, bottom: 〈k〉 = 3.7).

Fig. 7. Interestingly, proteins have about ‘six degrees of separation’, similar to social

networks [94, 95]. The closeness distribution p(`) has a peak around 1/` ≈ 5− 7.

Another property of a network is its modularity [96]. Networks are modular if they

have high densities of links (defining regions called modules), connected by lower

densities of links (between modules). One way to quantify the extent of modular

organization in a network is to compute the modularity index, Q [97, 98]:

Q ≡ 1

K

N∑

i,j

(
Aij −

kikj
K

)
δ(ui, uj), (14)

where ki and kj are the degrees of nodes i and j, ui and uj denote the modules to

which nodes i and j belong, δ(ui, uj) = 1 if ui = uj and δ(ui, uj) = 0 otherwise,

and Aij = 1 if nodes i and j share a link, and Aij = 0 otherwise. Q quantifies the
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difference between the actual within-module link density to the expected link density

in a randomly connected network. Q ranges between −1 and 1; positive values of Q

indicate that the number of links within modules is greater than random.9 As shown

in Table 4, PPI networks are highly modular, and our simulated Q values are in good

agreement with those of experimental data.

The clustering coefficient, Ci, for a protein i, is a measure of mutual connectivity

of the neighbors of protein i. Ci is defined as the ratio of the actual number of links

between neighbors of protein i to the maximum possible number of links between

them,

Ci =
# edges between neighbors of node i

ki(ki − 1)
. (15)

In a PPI network, clustering is thought to reflect the high likelihood that proteins

of similar function are mutually connected [100]. The average (or global) clustering

coefficient, 〈C〉, quantifies the extent of clustering in the network as a whole. As

shown in Table 4, PPI networks have large global clustering coefficient values; the

yeast PPI network, for example, has a value of 〈C〉 which is 45 times higher than

that of a random graph of equivalent link density. In flies and humans, our simulated

networks have 〈C〉 values in excellent agreement with the data; in yeast, our predicted

value is slightly low.

A network is said to be ‘hierarchically clustered’ if the clustering coefficient and

degree obey a power-law relation, C ∼ k−ξ [101] (Fig. 13), indicating that nodes are

organized into small-scale modules, and the small-scale modules are in turn organized

into larger-scale modules following the same pattern [102]. By plotting the median

clustering coefficient (per node) against degree, we observed a trend consistent with

hierarchical clustering, although data in the tail is very limited.

9The numerical value of Q required for a network to be considered ‘modular’ depends on the
number of nodes and links and method of computation. To calibrate baseline Q values given our
particular network data, we used the null model described in [99]. Our non-modular baseline values
are Q = 0.603 for the human PPI net, Q = 0.590 for yeast, and Q = 0.722 for flies (see SI).

31



10
−2

10
−1

10
−2

Betweenness centrality

10
−2

10
−1

10
−2

p
(b

)

10
−2

10
−1

10
−2

b

Figure 8: Betweenness (b) distributions in human (green), yeast (blue), and fly (red).
Heavy lines are the median values from 50 simulations, and light lines are results of
individual simulations.

The betweenness of a node measures the extent to which it ‘bridges’ between

different modules. Betweenness centrality, b, is defined as:

bi ≡
# shortest paths passing through node i

# total shortest paths
. (16)

Betweenness has been proposed as a uniquely functionally-relevant metric for PPI

networks because it relates local and global topology. It has been argued that knock-

ing out a protein that has high betweenness may be more lethal to an organism than

knocking out a protein of high degree [103]. Betweenness distributions are shown in

Fig. 8.

If a network’s well-connected nodes are mostly attached to poorly-connected

nodes, the network is called disassortative. A simple way to quantify disassorta-

tivity is by determining the median degree of a protein’s neighbors (n) as a function

of its degree (k). Previous work has found that yeast networks are disassortative

[99]. It has been argued that disassortativity is an essential feature of PPI network
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Figure 9: Median nearest-neighbor degree vs. degree in human (green), yeast (blue),
and fly (red). Heavy lines are the median values from 50 simulations, and light lines
are results of individual simulations.

evolution, and recent modeling efforts have heavily emphasized this feature [104, 105].

However, it was argued in [106] that disassortativity may simply be an artifact of the

yeast two-hybrid technique, and [107] pointed out that this trend is quite different

among different yeast datasets, and in some cases is completely reversed, resulting

in assortative mixing, where high degree proteins prefer to link to other high-degree

proteins. As shown in Fig. 9 and Table 5, the empirical data shows no evidence of

disassortativity in flies or humans, and even the trend in yeast is quite weak. This

conclusion is based solely on analysis of the empirical data, and casts further doubt

on the role of disassortative mixing in PPI network evolution.

3.2.2 Evolutionary trajectories

We now consider the full time trajectories and the question of how PPI networks

evolve in time. The static snapshots show a rich-get-richer structure: protein nets

tend to have both more well-connected nodes and more poorly connected nodes than
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random networks have. In our model, the rich-get-richer property has two bases:

duplication and assimilation. The equal duplication chance per protein means the

probability for a protein with k links to acquire a new link via duplication of one of

its interaction partners is proportional to k. Likewise, the probability of a protein

to receive a link from the first-neighbor assimilation probability a is proportional to

its degree k. ‘Rich’ proteins get richer because the probability of acquiring new links

rises with the number of existing links.

First, we discuss two dynamical quantities for which experimental evidence exists:

the rate of gene loss, and the relation between a protein’s age and its centrality. Gene

losses in our model correspond to ‘orphan’ proteins which have no interactions with

other proteins. As shown in Fig. 19, the fraction of orphan proteins grows quickly at

first, then levels off. This is consistent with the findings of [80]: in humans, while the

overall duplication rate is higher than the loss rate, when only data from the past

200 Myr are considered, the loss rate is slightly higher than the duplication rate. In

our model, after the initial rapid expansion, the rate of gene loss stabilizes relative to

the duplication rate.

Our model shows that a protein’s age correlates with certain network properties.

Consistent with earlier work [31, 108, 109], we find that older proteins tend to be

more highly connected. Interestingly, our model suggests that other centrality scores

(betweenness and closeness) are also correlated with age. Fig. 18 shows DUNE’s

prediction that a protein’s age correlates with degree, betweenness, and closeness

centrality. We confirmed this prediction by following the evolutionary trajectories

of individual proteins (Fig. 20). This suggests a way that present-day data could

be used describe the evolution of PPI networks. These results are consistent with

the eigenvalue-based aging method described in [109] (Fig. 21). Phylogenetic protein

age estimates indicate that older proteins tend to have a higher degree [108, 109],

which the DUNE model correctly predicts. Interestingly, the eigenvalue-based scores
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Figure 10: Network modularity Q and diameter D are both predicted to grow with
time in human (green), yeast (blue), and fly (red). Light lines indicate the evolu-
tionary trajectories of 50 individual simulations, and the heavy line is the median
value. The modularity and diameter of the empirical data are shown as dashed hori-
zontal lines. Time traces occasionally do not start at t = 0 because these simulations
spend the first few time steps in a completely disconnected state, so the dynamical
quantities are undefined. (See Fig. 19 for other dynamical plots.)

are only modestly correlated with other centrality scores (0.36 degree, 0.47 between-

ness, and 0.10 closeness correlations). Using the eigenvalue method in tandem with

our centrality-based method could provide stronger age-discriminating power for PPI

networks than either method alone.

In contrast to the two dynamical quantities discussed so far, most structural

properties of PPI networks have only been measured for the present-day network.

Although our model accurately reproduces the present-day values of these quantities,

there is no direct evidence that the simulated trajectories are correct; rather, these

are predictions of our model. Fig. 10 shows that both modularity Q and diameter

D increase with time. These are not predictions that can be tested yet for biolog-

ical systems, since there is no time-resolved data yet available for PPI evolution.

Time-resolved data is only currently available for various social networks (links to

websites, co-authorship networks, etc.). Interestingly, the diameters of social net-

works are found to shrink over time [110]. Our model predicts that PPI networks
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differ from these social networks in that their diameters grow over time. In addition

to Q and D, we tracked the evolutionary trajectories of several other quantities: the

evolution of the global clustering coefficient, the rate of signal propagation, the size of

the largest connected component (Fig. 19), as well as betweenness and degree values

for individual nodes (Fig. 20). These are discussed in more detail in the SI.

3.3 Discussion

The relevance of selection to PPI network evolution has been a topic of considerable

debate [111], particularly in the context of higher-order network features, such as

modularity. A number of authors have argued that specific selection programs are

required to generate modular networks, such as oscillation between different evolu-

tionary goals [112, 113, 114, 115, 116, 117]. However, previous work has shown that

gene duplication by itself, in the absence of both natural selection and neofunctional-

ization, can generate modular networks [118, 119].10 Unfortunately, duplication-only

models err in their predictions of other network properties (Tables 4 and 6). A well-

known problem with duplication models is that they generate excessively fragmented

networks, with only about 20% of the proteins in the largest component. This is

in sharp contrast to real PPI networks, which have 73% to 89% of their proteins in

the largest component. Neofunctionalization-only models have most of their proteins

in the largest component, but are significantly less modular than real networks. As

shown in Table 4, by modeling duplication and neofunctionalization simultaneously,

the DUNE model generates networks which have the modularity found in duplication-

only models, while retaining most proteins in the largest component. This lends

support to the idea that gene duplication contributes to the modularity found in real

biological networks, and that protein modules can arise under neutral evolution, with-

out requiring complicated assumptions about selective pressures. This is consistent

10Consistent with the findings of [118, 119], modularity in our model is primarily generated by
gene duplications (Fig. 16; see SI for sensitivity analysis).
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with recent experiments, which characterized a real-world fitness landscape, showing

that it is primarily shaped by neutral evolution [120].

Previous estimates of NE rates in eukaryotes have varied widely, generally falling

in the range of 100 to 1000 changes/genome/Myr [62, 2, 82], or on the order of

0.1 change/gene/Myr. However, more recent empirical work has identified several

problems with the methods used to obtain these estimates, suggesting that de novo

link creation is much less common than previously thought [84]. This is consistent

with our model. The best-fit values of our NE rate µ are in the range of 10−5 to

10−4/gene/Myr (Table 7), which in all three organisms are considerably slower than

the duplication rates d.

Biologically, many of the interactions created by our neofunctionalization mech-

anism are expected to initially be weak, non-functional interactions. The results of

[121] suggest that strong functional interactions are correlated with hydrophobicity,

which in turn is correlated with promiscuity. We posit that initially weak, non-

functional interactions are an essential feature of PPI evolution, as they provide the

‘raw material’ for the subsequent evolution of functional interactions. If this rea-

soning is correct, one consequence should be that hub proteins are, on average, more

important to the cell than non-hub proteins. This has been found to be true: both de-

gree [92] and betweenness centrality [103] have positive correlations with essentiality,

indicating that hub proteins are often critical to the cell’s survival.

In addition to the factors discussed here, there is an essentially limitless list of bio-

logical factors which could potentially be relevant for PPI network evolution: protein

copy numbers, alternative splicing, post-translational modifications, protein stability,

noise in gene expression levels, chromosomal organization, and many others. Our

model does not attempt to address all these issues. Rather, we have proposed a min-

imal model. Minimal models, which have been widely used in physics and biophysics,

are based on an idea best expressed by Mark Kac, who said that: “models are, for
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the most part, caricatures of reality, but if they are good, they portray some of the

features of the real world... (T)he main role of models is not so much to explain and

to predict ... as to polarize thinking and to pose sharp questions” [122]. In particu-

lar, in the present work, we hypothesize a mechanism of assimilation. We expect this

mechanism to exist, from both geometric and biological considerations, but, at the

present time, there is no direct evidence of it. Its value here is that it generates more

of the known data on PPI nets than other models with which we have compared.

Because cellular evolution is ‘data poor’, we believe there can be considerable value

in theoretical modeling that postulates mechanisms in advance of experimental data,

provided it leads to testable hypotheses.

We have described here a model for how eukaryotic protein networks evolved. The

model, called DUNE, assumes two well-known biological mechanisms: (1) gene dupli-

cations, leading to a superfluous copy of a protein that can change rapidly under new

selective pressures, giving new relationships with other proteins and (2) a protein can

undergo random mutations, leading to neofunctionalization, the de novo creation of

new relationships with other proteins. We assume these changes are otherwise ran-

dom. The model shows good agreement with 10 topological properties in yeast, fruit

flies, and humans. One finding is that PPI networks can evolve modular structures,

just from these random forces, in the absence of specific selection pressures. We also

find that the most central proteins also tend to be the oldest. This suggests that

looking at the structures of present-day protein networks can give insight into their

evolutionary history.

3.4 Methods

Genome-wide PPI screens have a high level of noise [57], and specific interactions

correlate poorly between data sets [88]. We found that several large-scale features

differed substantially between types of large-scale experiments (see SI). Due to con-
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cerns about the accuracy and precision of data obtained through large-scale screens,

we chose to work with ‘high-confidence’ data sets consisting only of pairwise inter-

actions confirmed in small-scale experiments, which we downloaded from the public

HitPredict database [123]. We found sufficient high-confidence data in yeast (S. cere-

visiae), fruit flies (D. melanogaster), and humans (H. sapiens).

All simulations and network feature calculations were carried out in Matlab. Our

scripts are freely available for download at http://ppi.tinybike.net. We computed

betweenness centralities, clustering coefficients, shortest paths, and component sizes

using the MatlabBGL package. Modularity values were calculated with the algorithm

of [124]. All comparisons (except the degree distribution) are between the largest

connected components of the simulated and experimental data.

Due to the human network’s somewhat larger size, most dynamical features were

calculated once per 50 time steps for the human network, but were updated at every

time step in the yeast and fly networks. For dynamical plots, the y coordinates of

the trend line are medians-of-medians. The amount of time elapsed per time step

(the x coordinate) varies between simulations. We binned the time coordinates to

the nearest 10 million years for yeast and fly, and 25 million years for human. When

multiple values from the same simulation fell within the same bin, we used the median

value. We then calculated the median value between simulations. Scatter plot trend

lines are calculated in a similar way. The trend line represents the median response

variable (C, b, or `) value over all nodes within a single simulation with degree k.

The y coordinate of the trend line is therefore the median (across 50 simulations)

of these median response variables. This median-of-medians includes all simulations

that have nodes of a given degree.
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3.5 Supporting Information

3.5.1 Subfunctionalization

One model for the fate of duplicate genes is subfunctionalization (SF). In SF, the

original and the duplicate genes are both free to lose their redundant functions, so

they can evolve freely until they exactly reproduce the ancestral function [143]. The

post-duplication divergence in our model is similar in spirit to SF, but it differs in

two significant ways: (1) in our model, the link loss is completely asymmetric, and

(2) a fraction (1−φ) of the redundant links are retained, so, unlike SF, not all of the

redundancy is eliminated. For the first point, empirical evidence suggests that the

divergence is asymmetric [68], although the assumption of complete asymmetry would

likely need to be revisited to build a finer-grained model. Second, genetic regulatory

networks have been shown to be robust to random link deletions, indicating that

these networks retain some degree of redundancy [144, 145, 146]. In silico evidence

suggests that a more accurate picture may be of a transient period of functional

divergence, followed by prolonged neofunctionalization, resulting in only a partial

loss of redundancy [147]. This is consistent with our model.

3.5.2 Large-scale duplications

Our model does not explicitly consider simultaneous duplication of multiple genes

(chromosomal duplications, whole genome duplications, etc.). However, as shown in

Table 7, duplication rates in our model are considerably higher than neofunctionaliza-

tion rates, so that, on average, there are multiple duplications per neofunctionalization

event. Sequential duplications of this type may be thought of as an (imperfect) rep-

resentation of multi-gene duplications. The advantage of this approach is that we do

not require separate rates for each duplication scale (one could imagine an extremely

detailed model which included separate rates for gene duplication, gene-pair dupli-
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cation, gene-triplet duplication, etc.). The downside is that our implementation of

larger-scale duplications will generally include some genes which have been duplicated

multiple times, and others which have not been duplicated at all. A potential miti-

gating factor is that the rate of gene loss (and evolution in general) following genome

duplication is very high [93, 67], so even a completely faithful large-scale duplication

would likely be altered within short order.

3.5.3 Randomness conjecture

We describe here a test of our randomness conjecture, q = 1/N . The implication

is that the average number of NE links per protein should be independent of N .

Another possibility is that q is constant, implying that the number of NE links per

protein is proportional to N . To test this, we compared NE rates in the human

and yeast PPI networks. The total number of proteins in humans is estimated to be

22740 [148] and in yeast, 5616 [149]. The number of mutations to coding DNA is

approximately 0.004/genome/replication in humans and 0.0027/genome/replication

in yeast [150]. If the number of new links is proportional to N , then, based on

the number of proteins and the mutation rate, there should be roughly 600% more

links created by NE in humans than in yeast. However, by counting the number of

nonredundant interactions in duplicate gene pairs, it has been shown empirically that

the average number of links created by NE per protein is only about 8% higher in

humans than in yeast [87]. These results support the conjecture that the probability

for a protein to receive a new link via point mutation is approximately independent

of N , as previously noted in [82]. Due to the finite copy number of proteins, as well

as the compartmentalization of eukaryotic cells, we regard it as unlikely that proteins

will simultaneously acquire multiple links to targets in different locations in the cell,

or which are involved in divergent biological processes.
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3.5.4 Assimilation is driven by single-interface proteins

Closely related to the randomness conjecture is the number of ‘extra’ links created by

each assimilation event, which should also independent of N . Proteins with multiple

interaction partners may interact with their partners simultaneously (so-called ‘party

hubs’) or at different times/locations (‘date hubs’) [151]. Since they bind to several

partners simultaneously, party hubs typically have multiple binding sites, each specific

to one binding partner [152]. This specificity suggests that a protein which evolved

the capability to bind to a party hub would be unlikely to undergo assimilation. By

contrast, the binding sites of date hubs are often disordered regions which are able

to form transient interactions with multiple partners [153, 154]. If a protein evolves

the capability to bind to a date hub, it is likely to share the physical characteristics

of the hub’s neighbors, leading to assimilation. However, to avoid competition for

the same binding site, the interaction partners of date hubs tend not to be coex-

pressed [152]. One consequence of this is that assimilating proteins will likely only

bind one of the target protein’s neighbors – whichever neighbor happens to be present

at that time and place. Although the capability to bind to the hub protein’s other

neighbors may initially be present, these will presumably remain unused in the cell.

Our expectation is that the assimilating protein will therefore be unlikely to retain

this capability, as it evolves. Similarly, only a single extra link should be generated

at the second-neighbor level, third-neighbor level, etc. Consistent with the evidence

discussed above, the number of links created by assimilation is approximately inde-

pendent of the total network size. Party hubs typically are centrally-located within

modules, while date hubs often function to stitch together large-scale modules in the

cell. It may be that duplication-only models are unrealistically fragmented (Table 4)

because their modules are not properly attached with date hubs; instead, the modules

are disconnected components.

42



3.5.5 Domain shuffling and assimilation

One example of a known biological mechanism which should lead to assimilation is

domain shuffling, the copy-and-pasting of part of one protein into another [155, 156].

The neofunctionalization mechanism described here is quite general, and includes

domain shuffling, among other methods of PPI creation. A PPI formed via domain

shuffling will often be the result of a binding site duplication. Assuming the binding

is due to simple surface similarity, the initial link will be to the protein which had its

domain copied. The likelihood of binding to neighbors of the original protein should

depend only on the probability that each interaction is due to surface similarity

because the copied binding site will be identical to the original.

The role of domain shuffling in assimilation raises the question of whether do-

mains should be modeled explicitly, rather than representing proteins as integral

units. Previous work indicates that overall PPI network topology is robust to the

details of domain shuffling [157]. Moreover, while proteins which have experienced

domain shuffling have a higher average degree than other proteins, high- and low-

degree proteins are equally likely to acquire new interactions this way [158]. Because

the creation of new links by domain shuffling should be topologically very similar to

the creation of new links by other neofunctionalization events, we believe our model

is a reasonable implementation of this mechanism, as it applies to the evolution of

network topology.

3.5.6 Network rewiring

Some higher-order features of the network are simply a result of its degree sequence,

and other features might be important in their own right. As discussed in [99], it

is possible to isolate the effects of the degree sequence by ‘rewiring’ (detaching then

reattaching links) the network at random, subject to the restriction that the degree

sequence must be preserved. If a property contains extra information about the
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network’s structure, then it should be different in the rewired network. On the other

hand, if the network is rewired many times, and the property is always the same, then

it is likely to just be a result of the degree sequence. We used a script downloaded from

http://www.cmth.bnl.gov/∼maslov/matlab.htm to randomly rewire the empirical

network 4Kdata times. As expected, modularity is decreased by random rewiring.

Upon rewiring, we find Q = 0.603 ± 0.002 in humans, Q = 0.590 ± 0.003 in yeast,

and Q = 0.722 ± 0.007 in flies (median ± standard deviation from 50 repeats of

the rewiring algorithm). Rewiring also shrinks the diameters of PPI networks to

D = 13 ± 0.9 in humans, D = 12 ± 1.0 in yeast, and D = 15 ± 1.1 in flies. These

results suggest that these features contain important structural information about

the network, and are not merely consequences of the degree sequence.

One reason we are interested in calculating Q and D is simply to check that the

values are comparable between the simulated and experimental networks. However,

on a more qualitative level, we would also like to have some idea of what the threshold

is for a network to be considered ‘modular’ or ‘small-diameter’. The rewired Q and

D values are useful because these features are dependent on the size of the network

(number of nodes N and links K); given an identical network construction method,

Q and D will generally be different in sparse versus dense networks. We use these Q

and D values as baseline values with which the experimental and simulated networks

can be compared; we considered Q and D values differing from the rewired values by

more than a standard deviation to be significantly different.

3.5.7 Eigenvalues

The connectivity of a network can be expressed by its adjacency matrix, an N × N

matrix A, in which the entries Aij equal 1 if a link exists between proteins i and j,

and 0 otherwise. If A is normalized by column, then the entries describe the rates of

a transition from i to j in one time step. The distribution of eigenvalues p(λ) is called
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Heavy lines are the median values from 50 simulations, and light lines are results of
individual simulations.

the network’s spectrum (Fig. 11). This matrix and its eigenvalues can be interpreted

in terms of a process in which a random walker starts on one node i, and, over a series

of time steps, reaches another node j. Intuitively, this can be thought of as a signal

propagation rate: if one protein is affected by an external signal, how long does it take

that signal to diffuse through the network? The eigenvalues λ of this ‘walk matrix’

describe the rate at which a random walk on the network reaches steady-state. The

second-largest eigenvalue (λ2) determines the rate of convergence of the random walk

(Fig. 19). A larger value of λ2 indicates a slower signal propagation rate.

3.5.8 Error tolerance

We measured the ‘error tolerance’ as described in [66]: we examined the decrease of

f1 when nodes (and their accompanying edges) were deleted from the network either

(1) at random, or (2) according to their degree, starting with the most well-connected

node. Results for the simulated and experimental networks were very similar (Fig. 12).
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3.5.9 Simulation length: early versus late evolution

The total time elapsed during our simulations varies considerably, with yeast and

human simulations running about 1 to 2 billion years, and the fly simulations about

5 billion years. This is compared to the rough estimate of 3.5 billion years since the

origin of life on Earth [159]. The exceptionally long duration of the fly simulations

are due to the very low gene duplication rate (d = 0.001/gene/Myr). The aim of

our model is to describe the evolution of PPI networks with all their present-day

machinery. Gene duplication, in the form in which it exists today, certainly would

not have existed at the origin of life! The initial state in our model consists of two

interacting proteins. Biologically, these are two polypeptides (or, more likely, RNA

molecules) in a pre-biotic soup, that happen to interact in a way that is mutually

beneficial. Each of these molecules has the ability to replicate. This autonomous

replication of individual proteins corresponds to ‘gene duplication’ in the very early

stages of evolution. However, this is a very different conceptual underpinning for the

duplication mechanism, and it seems unlikely to share the present-day values of the
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duplication rate. Because, in the early stages of evolution, each time step represents

a very long duration in real time, it is likely that this accounts for the discrepancy in

total time elapsed.

3.5.10 Empirical data

We downloaded large-scale data sets from BioGRID [160], and used the Wilcoxon

rank-sum test to compare aggregate statistical features across various experimental

types in yeast (S. cerevisiae) and humans (H. sapiens) [151]. As expected, we found

that data obtained by affinity capture was significantly different than pairwise exper-

imental data (primarily yeast two-hybrid and in vitro complexation), as the affinity

capture interactions represent entire complexes, which is somewhat different infor-

mation than the pairwise interactions we are attempting to capture using our model.

However, more surprisingly, the only feature to show significant agreement between

pair-wise techniques was the eigenvalue distribution of the walk matrix (P > 0.05).

Further sub-dividing the individual techniques into smaller data sets containing only

results obtained in single experiments, we discovered that, again, only the spectra

agreed between different screens.

Note that, due to the small size of the fly network, there may be too many missing

links to obtain an accurate description the network’s large-scale topology. Although,

by appropriate parameter tuning, our model is able to accurately reproduce the fly

network, it is possible that different parameters will be required to match the fly

network once it becomes more fully characterized experimentally. The data sets con-

sidered here do not include interactions which are enabled through post-translational

modifications. Although these data sets are far from complete, and may be suscepti-

ble to false-positive detections, these appear to be the most accurate data available

at the present time.
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γ β ξ α δ
Yeast 2.8(2) 2.4(1) 1.8(2) 1.2(2) 0.32(6)
Fly 3.1(2) 2.2(4) 0.8(5) 0.8(7) 0.0(3)
Human 2.8(1) 2.3(1) 1.5(3) 1.3(2) 0.0(1)

Table 5: Scaling exponents. Distributional exponents (p(k) ∼ k−γ, p(b) ∼ b−β) were

estimated using the maximum likelihood method of [14]. Other exponents (C̃ ∼ k−ξ,

b̃ ∼ kα, ñ ∼ k−δ) were estimated using nonlinear regression. Note that, due to
the relatively small sizes of the data sets, there is considerable uncertainty in these
estimates.

3.5.11 Fitting functions

The degree distribution obeys a power law in its tail, p(k) ∼ k−γ [14], with γ ≈ 3

(Table 5), implying that hub proteins are more common than would be expected for a

randomly connected network, which would have an exponentially decaying p(k). The

closeness distribution p(`) is approximately Gaussian, with mean 0.17 and standard

deviation 0.03 in humans, mean 0.19 and standard deviation 0.03 in yeast, and mean

0.13 and standard deviation 0.03 in flies. Closeness is a measure of distance, indicating

that the distances within the network are essentially a random walk in ‘node space’.

The betweenness distribution also follows a power law in its tail. This is an indication

of modular structure, due to the overrepresentation of ‘bridge’ proteins, relative to a

randomly connected network.

All species examined show a power law decay in median clustering coefficient as a

function of degree, C̃ ∼ k−ξ. Poorly-connected proteins therefore tend to have higher

clustering coefficients, meaning that a greater fraction of their neighbors are mutually

connected.

Disassortative mixing was quantified for the yeast PPI network in [99] as a power

law decrease in median neighbor degree, ñ ∼ k−δ. This is consistent with our data,

although the very small estimated value of δ = 0.32 indicates only a slight negative

relation (Table 5). Interestingly, δ = 0 in both human and fly networks, indicating

that disassortativity may be a trait unique to the yeast network.
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3.5.12 Principal component analysis

We examined six features which calculate a value for each node in the network: degree

centrality, clustering coefficients, closeness centrality, eigenvalue spectrum, between-

ness centrality, and mean nearest-neighbor degree. To quantify the independence of

these features, we used principal component analysis (PCA) [161]. Each feature as-

signs a value to each node in the network, giving a 6×N data matrix, where each row

represents a feature (signal), and each column is a node (sample). We subtract the

mean and divide by the standard deviation of each row. This results in a standardized

data matrix, denoted by Y. The 6× 6 correlation matrix for each species is defined

as C ≡ 1
N−1YYT:

Ch =




1 0.10 0.87 0.56 0.02 −0.12

0.10 1 −0.04 0.09 0.01 0.03

0.87 −0.04 1 0.44 −0.01 −0.08

0.56 0.09 0.44 1 0.00 0.34

0.02 0.01 −0.01 0.00 1 −0.02

−0.12 0.03 −0.08 0.34 −0.02 1




, (17)

Cy =




1 0.03 0.91 0.43 −0.02 −0.21

0.03 1 −0.06 0.04 0.01 0.03

0.91 −0.06 1 0.39 −0.01 −0.14

0.43 0.04 0.39 1 −0.03 0.34

−0.02 0.01 −0.01 −0.03 1 −0.04

−0.21 0.03 −0.14 0.34 −0.04 1




, (18)
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Cf =




1 0.15 0.62 0.36 −0.11 −0.15

0.15 1 −0.08 0.06 −0.10 −0.02

0.62 −0.08 1 0.40 0.02 −0.16

0.36 0.06 0.40 1 0.00 0.30

−0.11 −0.10 0.02 0.00 1 −0.05

−0.15 −0.02 −0.16 0.30 −0.05 1




. (19)

The entries of each C are (from left-to-right, and top-to-bottom): degree centrality,

clustering coefficients, betweenness centrality, closeness centrality, eigenvalue spec-

trum, and mean nearest-neighbor degree. Many of the off-diagonal elements of the C

matrices are close to zero, suggesting that the features are to a large extent indepen-

dent of one another.

To perform PCA, we diagonalized each correlation matrix,

C = SΛST, (20)

where Λ is a diagonal matrix of eigenvalues and S has the eigenvectors of C as its

columns. As shown in Fig. 15, the degree and betweenness show similar loadings on

the first two principal components, reflecting the nearly linear relation between these

centrality scores (Fig. 14).

The eigenvalue matrices Λ are given by:

Λh =




2.27

1.23

1.02

0.98

0.40

0.11




, (21)
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Λy =




2.20

1.30

1.01

0.98

0.43

0.08




, (22)

Λf =




1.95

1.24

1.13

0.91

0.44

0.32




. (23)

(Zeros have been suppressed for clarity.) The fraction of variance explained by the

ith principal component is given by Λii/
∑

j Λjj. The closer the number of compo-

nents required to explain most of the variance is to the total number of input signals,

the more independent the signals are. In yeast and humans, 4 components are re-

quired to explain 90% of the variance; in fruit flies, it requires 5 components. Linear

transformations are able to only modestly reduce the dimensionality of the prob-

lem, suggesting that each feature contributes unique information about the network’s

structure. This does not, of course, rule out the possibility of the existence of other

independent, informative features, a far more complicated question which is outside

the scope of this current work.

3.5.13 Sensitivity analysis

The DUNE model has four parameters. One parameter, the DU rate d, is estimated

from empirical data. The other three are adjustable parameters: the NE rate µ,
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Figure 16: Sensitivity analysis. Heat maps represent median values for 10 simulations
per parameter combination of the yeast network. Left: φ and a are varied, d and µ
values are kept fixed. Right: d and µ varied, φ and a kept fixed.
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the divergence probability φ, and the assimilation probability a. To gain a better

understanding of how these parameters affect the final network structure, starting

with each organism’s set of parameters, we systematically adjusted all 4 parameters.

Results are shown in Fig. 16.

As expected, the divergence parameter φ was positively correlated with both the

modularity Q and the diameter. When φ ≈ 0, the network quickly reaches a fully-

connected state, where all proteins are linked to all other proteins. Consequently, the

network is not organized into pathways, and all distances in the network are equal to

1. The ‘thinning out’ of duplicate links is therefore essential to generate non-trivial

network features. The opposite occurs when the NE rate µ is too low: f1 ≈ 0, and

the network evolves towards a completely disconnected state.

Why does gene duplication lead to modularity? Consider an initially uniform

network. When a node is duplicated at random, this causes the original node, the

copy, and their immediate neighbors to share more links internally than they do with

the rest of the network. Subsequent duplications amplify this effect: if a node that

has 10 links within a module but only 2 external links is duplicated, there are now

20 internal and 4 external links (prior to post-duplication divergence).

Interestingly, Q has a weak negative correlation with the assimilation parameter

a. When a is large, the probability to link to distant neighbors of the target protein is

relatively high, and mutated proteins have a non-negligible chance to generate links

to proteins outside of their target’s pathway. This causes pathways to blur at the

edges; their member proteins will share a higher number of links to other pathways

than for a low a network. Although the modularity is reduced for a high a network,

it does not disappear entirely. Similarly, there is a sharp decrease in Q as the NE

rate surpasses the DU rate, indicating the important role of the DU mechanism in

modular organization.

Diameter is also negatively correlated with a. When a single NE event has a
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significant chance to generate links to the target protein’s neighbors, this tends to

reduce the overall separation of proteins in the network.

3.5.14 Comparison to other models

Our model is rooted in previous modeling efforts. The basic framework for our model

combines the gene duplication mechanism described in [66] with a link creation mecha-

nism inspired by [2]. The principal difference between our model and previous models

is that our model considers duplication and mutation simultaneously. All previous

models attempted to construct the PPI network from a single mechanism. Another

significant difference is the existence of the assimilation mechanism. To the best of

our knowledge, previous work has not explicitly modeled proteins integrating into

biological pathways.

We compare the DUNE model to four models previously proposed for PPI net-

works. Two were evolutionary models: (1) the Vázquez model of DU followed by

rapid loss-of-function mutations [66];11 and (2) the Berg ‘link dynamics’ model of

point mutations coupled with a PA-like ‘rich-get-richer’ rule for assigning new in-

teractions [2]. Two others were static models (models of present-day networks that

do not simulate the network’s evolutionary path) that consider the primary organiz-

ing principle to be nonspecific interactions between proteins: (1) random geometric

(RG), a mathematical model where proteins are randomly scattered in a 2 to 4 di-

mensional box, and any proteins close enough to one another form an interaction [89];

and (2) the ‘MpK’ desolvation model, which assigns interactions based on proteins’

exposed hydrophobic surface areas [88]. For reference, we also calculated results for

an Erdős-Rényi (ER) random graph with N and 〈k〉 set by the data [90].

These models were originally validated against different features of the empirical

11A slightly different DU model is presented by Pastor-Satorras [162]. However, because the
Vázquez model has been shown to be a better fit to experimental data [163], we have limited our
DU-only comparison here to the Vázquez model.
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Figure 17: Comparison of five other models to the yeast PPI network: Vázquez [66]
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network, making it difficult to directly compare them. To characterize these models

in greater detail, we coded each of these models, and ran 50 simulations of each

model with identical parameters and starting conditions. Using Matlab, we coded

the Vázquez [66], Berg [2], RG [89], and MpK [88] models as described in the original

papers. Since each model was originally parametrized for older yeast PPI data sets,

we re-optimized the parameters for our yeast data as follows. We used a Monte Carlo

simulation to adjust each model’s parameters to minimize the total symmetric mean

absolute percentage error values (SMAPE; see below) for the yeast HitPredict data

set.

For the Vázquez model, we used a value of 0.582 for the post-duplication diver-

gence probability, and a value of 0.083 for the dimerization probability. As noted

by previous authors, duplication-only simulations produce networks which are ex-

tremely fragmented [118]. We observed that the Vazquez simulations typically had

around 20% of their nodes in the largest connected component (Table 4). Since most

of the network features we examined are limited to the largest component, in order

to make a reasonable comparison of the Vazquez simulation results to the data, we

allowed the simulated network to grow until its number of links met or exceeded 5

times the number of links in the data, K ≥ 5Kdata. Since the largest component

is not always exactly 20% of the total nodes, this stopping condition is somewhat

arbitrary; however, results for this model seem robust to small changes in the stop-

ping condition. For the Berg model, we used our empirically estimated duplication

rate of 0.01/gene/Myr, and found best-fit values of 24.5/gene/Myr for the mutation

rate, and Ndata − 98 proteins for the initial network size. For the RG model, we

used a 45.5 × 45.5 × 45.5 ‘box’ with a maximum interaction radius of 3.92. For the

MpK model, the number of exposed surface residues was 19, the fraction of exposed

hydrophobic residues was M = 0.230± 0.110 (mean ± standard deviation), and the

best-fit linear equation relating M to the binding threshold was 1.09M + 1.04.
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The Vázquez simulations were initialized with 2 connected nodes, and the simula-

tion was allowed to run until K ≥ Kdata. The Berg simulations were initialized with

Ndata − 98 randomly connected nodes, then run until N = Ndata. The RG and MpK

models (which are not evolutionary models and therefore create the network all at

once) were set up as described in the original papers.

To characterize the networks, we computed several network properties:

Single-value modularity Q, diameter D, fraction of nodes in the largest component

f1, global clustering coefficient 〈C〉, and mean degree in the largest component

〈k〉 (Table 4)

Distributional degree p(k), betweenness p(b), closeness p(`), eigenvalue p(λ), and

nearest-neighbor degree p(n) distributions

Scatter plot median closeness vs. degree ˜̀(k), median clustering coefficient vs. de-

gree C̃(k), median betweenness vs. degree b̃(k), and median nearest-neighbor

degree vs. degree ñ(k)

and compared these features to those of empirical data from yeast. As shown in

Fig. 17, we found that none of the previous models capture the full set of network

properties.

To quantify agreement with the data for non-single-value features, we calculated

the symmetric mean absolute percentage error (SMAPE) between simulation and

experiment [164, 165]:

SMAPE =
1

Y

Y∑

i

∣∣yi − ydatai

∣∣
yi + ydatai

, (24)

where Y is the number of data points, and yi and ydatai denote the ith point of the

response variable (Table 6) in the simulated and experimental data, respectively.

For the distributional features, Y is the number of bins (arbitrarily chosen to be 100)

minus the number of bins in which yi+y
data
i = 0. For non-distributional (scatter plot)
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features, Y is the number of k values with values for both simulation and experiment.

There are many possible measures of accuracy (such as the widely-used root mean

squared error); we used SMAPE for two reasons. First, because it relies on absolute

value, SMAPE does not over-emphasize the impact of outliers. Second, dividing by

yi+ydatai ensures that the magnitude of the response variable does not overwhelm the

sum. This is significant for the non-distrbutional features. For example, in a plot of

median betweenness vs. degree (Fig. 14), we are just as interested in the overlap of the

low-betweenness, low-degree region of the curve as we are with the high-betweenness,

high-degree region. SMAPE values are collected in Table 6. The total SMAPE values

shown in Table 6 indicate that, although previous models can accurately reproduce

certain features of the PPI network, only the DUNE model provides a reasonable

across-the-board fit.
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Figure 18: Older proteins are more central in PPI networks. Simulations of a protein’s
age index (time since introduction into the network) vs. degree (k), betweenness (b),
and closeness (`) centrality, for human (green), yeast (blue), and fly (red). The oldest
proteins are on the left in this figure, and the proteins get younger moving to the
right. There is an approximately monotonic increase in centrality with age.
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Figure 19: Evolution of several dynamical features in human (green), yeast (blue),
and fly (red). The increasing value of 〈C〉 over time indicates that the network
becomes more clustered as it grows. λ2 approaches 1 over time, indicating that signal
propagation is slower and slower as the network grows larger and more modular.
Light lines indicate the evolutionary trajectories of 50 individual simulations, and the
heavy line is the median value. Empirical data values are shown as a dashed line,
where available.
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4 Power-law distributions derived from maximum

entropy and a symmetry relationship

Power-law probability distributions are ubiquitous in nature, especially in social sys-

tems. For example, the fraction pk of U.S. cities with a population of k people scales

as pk ∼ k−2.37 [15, 16, 14]. Other examples of power-law distributions include in-

comes [18], Internet links [13, 20], fluctuations in stock market prices [125, 3, 17],

company sizes [19], numbers of citations received by scientific papers [24, 1, 11], and

many others [14].

Here, our interest is in how power-law distributions might arise from stochastic

processes, particularly in social physics. Our approach is based on the principle of

maximum entropy (MaxEnt) [126, 127, 128]. MaxEnt is widely used, not only in

thermal physics, but also in image analysis [129, 130, 131], drawing inferences [132,

133], and in nonequilibrium statistical mechanics [134, 135, 136]. We show here

that the same principle, with a ‘cost-sharing’ type of constraint, leads to power-law

distributions.

4.1 Theory

4.1.1 Clustering can be framed in terms of ‘joining costs’

We focus on a problem of particle clustering, which provides a convenient language

for comparing people joining cities to the statistical physics of growing colloids and

polymers. We first describe a standard growth mechanism, which we express in

terms of the ‘joining costs’ of a particle to a growing cluster. One particle may stick

to another, forming a cluster of size 2. Another particle may join the cluster, forming

a size 3 cluster, and so on. If there are N total particles, then the equilibrium of
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clusters of various sizes can be written as

1 + 1
K1


 2

1 + 2
K2


 3

... (25)

1 + (N − 1)
KN−1


 N

where Kk is the kth equilibrium binding constant. Let nk be the number of clusters

of size k at equilibrium, so that

Kk =
nk+1

nkn1

. (26)

Rearranging and solving for nk yields

nk = nk−1n1Kk−1 = n1
k−1Kk−1Kk−2 · · ·K1. (27)

The probability distribution, pk, of cluster sizes is the ratio of the number of size k

clusters to the total number of clusters of all sizes,

pk = Q−1nk, (28)

where Q is the grand canonical partition function,

Q =
N∑

k=1

n1
k−1

k−1∏

j=1

Kj. (29)

Statistical physics provides an alternative language for expressing the logarithms

of populations in terms of energies, free energies or chemical potentials, which are

cost-like additive quantities. Here, we define a dimensionless chemical-potential-like
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quantity, µk, that we call the joining cost for a particle to join a size-k cluster,

µk ≡ ln (Kkn1) . (30)

Re-expressing Q in terms of these costs gives

Q =
∑

k

e−
∑k−1
j=1 µj =

∑

k

e−wk , (31)

where

wk ≡
k−1∑

j=1

µj (32)

is the dimensionless cost of assembling the whole cluster. In this language, if wk is

positive, the distribution will be dominated by small clusters; if wk is negative, the

system will preferentially populate large clusters. We use this cost language for social

physics below. To proceed further, we need to know how wk depends on k.

4.1.2 Independent particle clusters are exponentially distributed

First, for illustration, we treat a standard problem of colloid assembly or polymeriza-

tion. Assume the cost µk for a particle to join a cluster is independent of k. Then

µk = µ◦, (33)

where the constant µ◦ is the cost of adding one particle to a cluster of any size. A

cluster of size k requires k − 1 particle additions, so the total cost of assembling the

cluster is

wk = µ◦ (k − 1) , (34)

67



and the average cost of adding a particle, taken over all cluster sizes, is

〈w〉 ≡
∑

k

wkpk = µ◦ (〈k〉 − 1) . (35)

To predict the probability distribution of cluster sizes, we maximize the entropy,

S = −
∑

k

pk ln pk, (36)

subject to two constraints: (1) a fixed known value of 〈w〉 (Eq. 35) and (2) normal-

ization (ensuring the probabilities sum to 1),

∑

k

pk = 1. (37)

A constraint on 〈w〉 gives the extremum function

〈w〉 − S = µ◦
∑

k

(k − 1)pk +
∑

k

pk ln pk, (38)

so that the optimization condition is

∑

k

dp∗k
[

ln p∗k + 1 + α + µ◦ (k − 1)
]

= 0, (39)

where α and µ◦ are the Lagrange multipliers that enforce normalization and con-

straint 35, respectively. Solving Eq. 39 gives the equilibrium probability distribution,

p∗k, which maximizes the entropy and satisfies the average cost and normalization

constraints. The solution is the standard exponential distribution of cluster sizes,

p∗k = e−1−αe−µ
◦(k−1) = Q−1 e−µ

◦k, (40)
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where Q is the grand canonical partition function,

Q =
N∑

k=1

e−µ
◦k =

1− e−µ
◦N

1− e−µ◦
. (41)

4.1.3 Equal cost sharing leads to power-law distributions

Now, we consider a more general notion of a particle’s joining cost when it enters a

k-mer cluster. A person is more likely to join a larger city than a smaller city because

of greater opportunities of jobs, infrastructure, services, entertainment, and other

economic and social factors. Existing citizens have already paid some of the cost of

entry for the new joiner ‘particle’. So, relative to the cost of joining an independent-

particle cluster (µ◦), the cost µk of joining a ‘social-particle’ cluster of size k is reduced

to

µk = µ◦ − krk. (42)

Eq. 42 expresses the idea of cost sharing, namely that the cost of joining a cluster is

reduced because the existing k member particles provide a discount of rk each to the

joiner particle.

There are two non-arbitrary limiting cases for how we might choose the value of

rk: (1) No sharing, rk = 0, and the particles are independent, as described above,

or (2) Equal sharing, where each member pays the same amount as the joiner when

it enters the cluster,

rk = µk. (43)

Substituting Eq. 43 into 42 and solving for µk yields

µk =
µ◦

1 + k
, (44)

which expresses how the costs diminish with cluster size in social-particle systems.
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The total cost to assemble a social cluster of k particles is

wk = µ◦
k−1∑

j=1

1

1 + j
. (45)

The sum in Eq. 44 can be written

k−1∑

j=1

1

1 + j
= ψ (k + 1) + γ − 1. (46)

where ψ(k) ≡ d ln Γ(k)/dk is the digamma function, and γ = 0.5772... is Euler’s

constant. ψ(k + 1) has asymptotic series [137]

ψ (k + 1) ∼ ln

(
k +

1

2

)
+O

(
k−2
)
. (47)

Dropping the order k−2 corrections, Eq. 44 becomes

wk ≈ µ◦
[
ln

(
k +

1

2

)
+ γ − 1

]
, (48)

and the average joining cost per particle is

〈w〉 ≈ µ◦
[〈

ln

(
k +

1

2

)〉
+ γ − 1

]
. (49)

To predict the social-particle probability distribution, we maximize the entropy

subject to constraint 49 on 〈w〉,

∑

k

dp∗k

{
ln p∗k + 1 + α + µ◦

[
ln

(
k +

1

2

)
+ γ − 1

]}
≈ 0. (50)

Solving for p∗k yields

p∗k ∼
(
k +

1

2

)−µ◦
, (51)
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giving a power-law distribution. The scaling exponent µ◦ is the ‘un-discounted cost’

of adding one particle to a cluster. Scaling form 51 is accurate for most values of k.

The exact distribution is given by

p∗k = Q−1e−µ
◦ψ(k+1), (52)

with partition function

Q =
∑

k

e−µ
◦ψ(k+1). (53)

The present work shows how power-law distributions can emerge naturally from

random clustering of particles that equally share the joining cost. The ‘rich-get-richer’

aspect of power-law size distributions is that social particles are more attracted to

bigger clusters than to smaller clusters. We have expressed this in a language of

‘costs’: the power-law arises because member particles equally share the joining costs

with joiner particles. The power-law exponent is the ‘un-reduced’ cost µ◦.12

4.1.4 A generalized model for partial cost sharing

Described above are two limiting cases: no cost sharing (independent particles) or

full cost sharing (the members pay the same as the joiner). What if the member

particles only pay a fraction s of the cost that the joiner particle pays? Now the cost

reduction is

rk = sµk. (54)

Combining Eq. 54 with Eq. 42 and solving for µk, we find

µk =
µ◦

1 + sk
, (55)

12Our term ‘costs’ here can alternatively be thought of in terms of ‘economies of scale’. Making
more widgets decreases the cost-per-widget. That is, if the cost of a widget factory is µ◦, then the
cost per widget for the first widget is µ◦ and the cost per widget for making two widgets is µ◦/2.
In this sense, the cost of the second is ‘shared’ by the first.
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Figure 22: Probability distributions for various sharing values, with µ◦ = 2. At
s = 0.1, the particles are barely helpful at all, and the entering particle must pay
most of its joining cost, so the distribution is nearly exponential. At s = 0.9, the
particles are very helpful, and the distribution is a power-law.

so the total cost of assembling a partially-social cluster of size k is

wk = µ◦
k−1∑

j=1

1

1 + sj
. (56)

The sum in Eq. 56 may be written

k−1∑

j=1

1

1 + sj
=

1

s

[
ψ

(
k +

1

s

)
− ψ

(
1 +

1

s

)]
, (57)

As with the social-particle case, we asymptotically expand ψ(k + 1/s) and drop the

order k−2 corrections, yielding

wk ≈
µ◦

s

[
ln

(
k +

1

s
− 1

2

)
− ψ

(
1 +

1

s

)]
. (58)
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Maximizing the entropy subject to a constraint on 〈w〉 gives

p∗k ∼
(
k +

1

s
− 1

2

)−µ◦/s
. (59)

As with the social-particle pk, this scaling form is accurate for most values of k. The

exact distribution is given by

p∗k = Q−1e−
µ◦
s
ψ(k+ 1

s), (60)

where

Q =
∑

k

e−
µ◦
s
ψ(k+ 1

s). (61)

We call s the sharing parameter: s = 0 involves no sharing (i.e., independent

particles) and s = 1 involves full equal sharing between the joiner particle and all

members. The s parameter controls the shape of the distribution. For s = 0, the entry

cost is the same for all clusters, and the distribution is exponential; there are very

few large clusters. For s = 1, the particles are social, and the entry cost is reduced

for larger clusters, resulting in a power-law distribution; there are more large clusters

in this case. Fig. 24 shows that varying s changes the distribution smoothly from

exponential to power-law. We refer to the limit s → ∞ as ‘super-social particles’:

the existing members pay the full cost, and the joiner particle pays nothing. For

super-social particles, we obtain a uniform distribution; all cluster sizes are equally

probable.

4.2 Results

We fit Eq. 60 to several empirical data sets, representing a wide variety of systems:

• Number of citations by 1997 to all scientific papers published in 1981 and stored

in the Institute for Scientific Information (ISI) database [1], number of citations
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to all papers in the ISI database for a 2007 list of the living highest h-index

chemists [36], and number of citations of papers published in the Physical Review

D journal from 1975 - 1994 [1]

• Number of pairwise, physical protein-protein interactions (PPI) of proteins de-

tected in small-scale PPI network data, in yeast (Saccharomyces cerevisiae),

fruit flies (Drosophila melanogaster), and humans (Homo sapiens) [123]

• Number of deaths resulting from terrorist attacks from February 1968 to June

2006 [138]

• Number of links to web pages in 1997 [13]

• Populations of cities in the United States, as of the 2000 census [14]

• Number of people affected per electrical blackout in the U.S. between 1984 and

2002 [4]

• Count of unique word use in the novel Moby Dick [4]

• Counts of surnames in the U.S., as of the 1990 census

• Daily, weekly, and monthly fluctuations in the closing price of the S&P 500,

from 1950 to 2010, in 2010 U.S. dollars

For each data set, we obtained best-fit parameter values (for µ◦ and s) and 95%

confidence intervals by fitting Eq. 60 to the data using nonlinear regression in Matlab.

Best-fit parameter values are shown in Table 7, and results are plotted against the

data in Fig. 23. To reduce noise in the U.S. city size data set, we binned the data,

using size 200 bins. The blackout data was binned using 100 equal sized bins. Stock

price fluctuations are reported as magnitudes (absolute values), and are rounded to

the nearest nickel, to reduce noise. All other distributions are raw (whole number)

counts.
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Figure 23: Partially-social pk (Eq. 60) fitted to several empirical distributions, using
the parameters listed in Table 7. Points are empirical data, and lines represent best-fit
distributions. Main plots show the probability distribution function (the probability
of exactly k events), and inset plots show the complementary cumulative distribution
function (the probability of at least k events),

∑∞
j=k pj. To help visualize the tail, all

plots have log-log axes.
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Data set µ◦ s N
1. Citations (1981) 0.2616(4) 0.0975(3) 415,229
2. Citations (chem) 0.05476(7) 0.01523(5) 245,461
3. Citations (PRD) 0.120(3) 0.044(2) 5,327
4. PPI (yeast) 1.08(3) 0.40(2) 2170
5. PPI (fruit fly) 1.0(1) 0.24(7) 878
6. PPI (human) 0.95(3) 0.33(2) 3165
7. Terrorist attacks 2.260(8) 1.045(5) 9,101
8. Weblinks 1.49652(5) 0.68823(4) 241,428,853
9. U.S. city sizes 0.001688(9) 0.000818(8) 19,447
10. Blackouts 0.000023(3) 0.000011(3) 211
11. Word use 2.501(4) 1.324(3) 18,855
12. Surnames* 1.962(4) 1 88,799
13. Stocks (daily) 0.358(8) 0.063(7) 15,601

Table 7: Fitting parameters µ◦ and s and data set sizes N . The surnames data set
appeared to be pure power-law, so we fixed s = 1 and only fitted µ◦.
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Figure 24: µ◦ plotted against s for the data sets, numbered as listed in Table 7. Error
bars are 95% confidence intervals. Best-fit linear regression is shown as a solid line,
s = 0.50µ◦ − 0.06 (R2 = 0.96).
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As shown in Fig. 23, Eq. 60 is a good fit to these 12 data sets. Eq. 60 may be useful

simply as a fitting function, even when the data sets are not clearly related to the

idea of cost-sharing (e.g., the number of people affected by blackouts). Eq. 60 is quite

versatile, in that it can fit both pure exponential and pure power-law distributions,

as well as more complicated distributions which appear to be exponential close to the

origin, but power-law in the tail. The ratio µ◦/s suggests whether the data is better

represented by a power-law (if the ratio is small) or an exponential (if it is large).

However, in many cases, the underlying system may be interpretable in terms of

shared costs. There is an extensive literature of models that generate power laws [139,

4]; here, we briefly discuss several well-known power-law distributions, and interpret

them in terms of cost-sharing.

In many situations involving people, the idea of cost-sharing arises naturally. For

example, a well-studied power-law distribution is of the number of citations to scien-

tific papers. Suppose the author of paper A is preparing to cite paper C. Every paper

in the set {B} that has already cited paper C can be thought of as a member of a

community that paper A is about to join. The larger is the community {B}, the more

likely it is for paper A to join that community, and cite paper C. The community {B}

has already paid a higher cost by finding paper C in sea of options that was larger

at the time. In this way, any paper B has lowered the cost for the author of paper A

to find and cite paper C. Note that the sharing values found for the three citations

data sets examined here are relatively small (s = 0.098, 0.015, and 0.044), suggesting

that each citation a paper receives only causes a minor reduction in the cost of citing

the paper. This may be because many papers are found essentially at random, rather

than through the reference lists of other papers.

For the distribution of links to webpages, the cost of making a link primarily

represents the difficulty of finding the site to begin with. Most visits to websites

occur because a person browing the web clicks on an existing link to the site, which
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is a sharp contrast with the situation for scientific citations, and is reflected in the

relatively high sharing value for this data set (s = 0.69). In this case, the cost of

making a link is substantially reduced by each previously made link.

The distribution of U.S. city sizes also has a power-law tail. It is more likely

a person will choose to move to Los Angeles, CA (population: 9 million) than to

Fields, Oregon (population: 86). Similar to the cost amortization obtained through an

economy of scale, the people of LA have already paid the development costs of creating

the companies, jobs, infrastructure, and services that attract new individuals. Thus,

the marginal cost of adding one more person is reduced, relative to the cost of adding

a person to a smaller city. The sharing value s = 0.00082 is quite small for this data

set, possibly because each person makes a relatively small contribution to the overall

cost amortization. Put another way, when considering a town’s economic climate,

infrastructure, etc., a town with population 86 is probably not terribly different, on

average, from a town of 172.

It has been argued that terrorism is intended for the survivors, rather than the

victims, since the goal of terrorist attacks is usually to attract attention to a cause,

whether that is religious fundamentalism, animal rights, national separatism, etc.

Because of this, the immediate result of terrorism (x number of people dead) might

be thought of as a proxy for the fearful reaction of viewers to news of terrorism (k

number of people terrified). In general, the more people killed, the more fearful the

reaction. However, once terrorism becomes commonplace, terrorists need to kill more

and more people to generate the same reaction. The news that 10 people were killed in

a bombing by terrorist group A on Monday might grab a viewer’s attention. Terrorist

group B sees that group A was successful in getting attention, so they so a similar

bombing on Thursday that also kills 10 people. Terrorist group C then does another

copycat bombing the followng Monday that kills another 10 people. Intuitvely, group

B might be expected to receive less attention than group A, and group C might receive
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less still. In recognition of this effect, it seems likely that groups B and C will try and

kill progressively larger numbers of people, in order to receive the same amount of

attention to their cause. The very high value of s = 1.045 for terrorist attack severity

suggests that this effect may be fairly strong.

It has been observed that the degree distributions (the probability for a protein

to have k physical interactions with other proteins) of PPI networks in cells have

power-law tails [2]. The cost of forming an interaction between two proteins repre-

sents the energy barriers required for two proteins to stick together. Previous work

suggests that one underlying force shaping the degree distribution of present-day PPI

networks are the fractions of exposed hydrophobic surface area per protein [88]. µ◦ is

the energy barrier that a protein’s first interaction partner is required to overcome,

which represents the cost to the proteins to have an energetically-unfavorable patch of

exposed hydrophobic surface area. A second interaction partner can now take advan-

tage of the pre-existing binding site, so it is easier to form the second link, compared

to the first. Alternatively, the second partner could require a completely different

binding site than the first; the medium-sized values of s for the three PPI networks

examined (0.40, 0.24, and 0.33) suggest that both mechanisms are probably common.

4.3 Discussion

We have shown how power-law distributions can arise naturally from the maximiza-

tion of entropy subject to a symmetry relationship in which all particles share the

cost incurred when a new particle joins a cluster. It has been noted before that

MaxEnt with logarithmic constraints leads to power-law distributions [140, 141].13

Exponential distributions result from constraints on linear averages such as 〈k〉, while

power-law distributions result from constraints on logarithmic averages such as 〈ln k〉.

Here, we have described how such constraints can be interpreted as a type symmetry

13Logarithmic constraints have also been justified in terms of the information content of lan-
guage [142], to explain the observation that word-use frequency obeys a power-law [15, 4].
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of sharing that is natural in the social realm.

Many previous studies on generative mechanisms for power-laws have investigated

a family of ‘proportional attachment’ (PA) rules [25, 26, 24, 5]. In the context of

particle clustering, a PA rule says that the probability of a cluster acquiring a new

particle is proportional to the number of particles it already contains. A premise of

the PA rule is that the joining particle is cognizant of the populations of the clusters

in the system. By contrast, our cost-sharing framework does not assume the particles

know anything about the system, so the present approach may be useful for modeling

systems composed of ‘uninformed’ particles.
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[136] S. Pressé, K. Ghosh, and K.A. Dill. Modeling stochastic dynamics in bio-

chemical systems with feedback using maximum caliber. Journal of Physical

Chemistry B, 115:6202–6212, 2011.

[137] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions:

with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1972.

[138] A. Clauset, M. Young, and K.S. Gleditsch. On the frequency of severe terrorist

events. J. Conflict Resolution, 51:58, 2007.

[139] M. Mitzenmacher. A brief history of generative models for power law and

lognormal distributions. Internet Mathematics, 1(2):226–251, 2004.

[140] M. Milakovic. A statistical equilibrium model of wealth distribution. Computing

in Economics and Finance, 214, 2001.

[141] John Harte. Maximum entropy and ecology: a theory of abundance, distribution,

and energetics. Oxford University Press, 2011.

[142] B. Mandelbrot. An informational theory of the statistical structure of language.

In W. Jackson, editor, Communication Theory, pages 486–502. Butterworth,

Woburn, MA, 1953.

[143] M. Lynch and A. Force. The probability of duplicate gene preservation by

subfunctionalization. Genetics, 154:459–473, 2000.

95



[144] M.L. Siegal and A. Bergman. Waddington’s canalization revisited: developmen-

tal stability and evolution. Proc. Natl. Acad. Sci. USA, 99(16):10528–10532,

2002.

[145] A. Bergman and M.L. Siegal. Evolutionary capacitance as a general feature of

complex gene networks. Nature, 424(6948):549–552, 2003.

[146] A. Wagner and J. Wright. Alternative routes and mutational robustness in

complex regulatory networks. BioSystems, 88:163–172, 2007.

[147] T. MacCarthy and A. Bergman. The limits of subfunctionalization. BMC

Evolutionary Biology, 7:213, 2007.

[148] S. Scherer. A Short Guide to the Human Genome. Cold Spring Harbor, NY,

2008.

[149] K.P. Byrne and K.H. Wolfe. The yeast gene order browser: combining curated

homology and syntenic context reveals gene fate in polyploid species. Genome

Res., 15:1456–1461, 2005.

[150] J.W. Drake, B. Charlesworth, D. Charlesworth, and J.F. Crow. Rates of spon-

taneous mutation. Genetics, 148:1667–1686, 1998.

[151] J.D. Han, N. Bertin, T. Hao, D.S. Goldberg, G.F. Berriz, L.V. Zhang, D. Dupuy,

A.J. Walhout, M.E. Cusick, F.P. Roth, and M. Vidal. Evidence for dynamically

organized modularity in the yeast protein-protein interaction network. Nature,

430(6995):88–93, 2004.

[152] P.M. Kim, L.J. Lu, Y. Xia, and M.B. Gerstein. Relating three-dimensional

structures to protein networks provides evolutionary insights. Science,

314(5807):1938–1941, 2006.

96



[153] D. Ekman, S. Light, A.K. Bjorklund, and A. Elofsson. What properties char-

acterize the hub proteins of the protein-protein interaction network of Saccha-

romyces cerevisiae? Genome Biol., 7(6):R45, 2006.

[154] G.P. Singh, M. Ganapathi, and D. Dash. Role of intrinsic disorder in transient

interactions of hub proteins. Proteins, 66(4):761–765, 2007.

[155] J.V. Moran, R.J. DeBardinis, and H.H. Kazazian. Exon shuffling by L1 retro-

transposition. Science, 283:1530–1534, 1999.

[156] L. Patthy. Genome evolution and the evolution of exon-shuffling – a review.

Gene, 238:103–114, 1999.

[157] K. Evlampiev and H. Isambert. Modeling protein network evolution under

genome duplication and domain shuffling. BMC Syst. Biol., 1:49, 2007.

[158] D.B. Cancherini, G.S. Franca, and S.J. de Souza. The role of exon shuffling in

shaping protein-protein interaction networks. BMC Genomics, 11(Suppl 5):S11,

2010.

[159] Neil A. Campbell, Jane B. Reece, and Lawrence G. Mitchell. Biology. Ben-

jamin/Cummings, Menlo Park, CA, 5th edition, 1999.

[160] C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers.

BioGRID: a general repository for interaction datasets. Nucleic Acids Res.,

34:D535–9, 2006.

[161] J. Shlens. A tutorial on principal component analysis. 2009.

[162] R. Pastor-Satorras, E. Smith, and R.V. Solé. Evolving protein interaction net-
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A Cost-sharing in growing network models

The independent and social particles frameworks are similar to two well-known models

of growing networks, random and preferential attachment networks. Here, we consider

the case of directed edges (distinguishing between outgoing and incoming edges),

although our results are easily adapted to undirected networks.

A.1 Random networks

In a growing random network, we begin with a single node, and at every time step,

a new node is added to the network, and forms a single edge to a previously existing

node. There is no limit to the number of edges that a node may acquire, and each

node is equally likely to receive an edge from the newly added node. The probability

per time step (q) of any node to acquire one additional edge is therefore

q =
1

N
, (62)

where N , the total number of nodes, increases as we add nodes to the network. q is

referred to as the connection or attachment kernel.

The probability pk,N that a node will have degree k when there are N total nodes

in the network is

pk,N ≡
# nodes with k edges

N
. (63)

To determine pk,N , we will write a difference equation describing the flows into and

out of a bin of nodes containing k incoming edges [4]. The total number of nodes

with k edges is Npk,N . If each new node makes 1 outgoing edge, and 1 node is added

per time step, then the number of nodes moving from the k bin to the k + 1 bin is

Nqpk,N = pk,N . The number of nodes moving from the k − 1 bin to the k bin is
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Nqpk−1,N = pk−1,N . Summing these contributions, we find

(N + 1)pk,N+1 = Npk,N + pk−1,N − pk,N , (64)

which rearranges to:

Npk,N+1 −Npk,N = −pk,N+1 + pk−1,N − pk,N . (65)

Dividing both sides by N , we see that the difference between pk,N+1 and pk,N decays

as 1/N :

pk,N+1 − pk,N =
1

N

(
− pk,N+1 + pk−1,N − pk,N

)
. (66)

Therefore, for very large networks (N →∞),

lim
N→∞

(
pk,N+1 − pk,N

)
= 0, (67)

and pk,N reaches a steady-state, which we will denote by pk. This is referred to as

the degree distribution.

At steady-state, Eq. 64 simplifies to

pk = pk−1 − pk, (68)

which can be rearranged to give a recursion relation between pk and pk−1:

pk =
1

2
pk−1. (69)

Recursively substituting in smaller and smaller k values into Eq. 69 yields

pk =

(
1

2

)k
p0. (70)
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A single node enters the p0 bin at each time step by definition:

p0 = 1− p0 =
1

2
. (71)

Putting this all together, we see that the probability distribution decays exponentially

with k,

pk = 2−(k+1). (72)

Eq. (72) is written as a product of independent factors. We are free to rewrite

each factor of 1/2 as an additive contribution,

1

2
= e− ln 2, (73)

so that the potential is:

µ ≡ ln 2, (74)

which is the work required to add a single edge to any node.14 Because we are adding

edges at random (i.e., independent of the degree of the node receiving the edge), µ

is independent of k, so that the work required to add k edges onto a node is

wk = µk. (75)

The optimization condition is therefore given by Eq. 39, so that p∗k is exponential,

p∗k = Q−1e−µk, (76)

and the partition function is:

Q =
1

1− e−µ
. (77)

14This generalizes in a straightforward way to the case where the entering node creates a fixed
number of edges n per time step. In that case, the potential is µ = ln(1 + 1/n).
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Substituting Eq. 74 into Eq. (77) gives

Q = 2, (78)

and we recover Eq. 72 for the probability distribution.

A.2 Preferential attachment networks

Another widely-studied class of networks are those in which the probability of a node

acquiring a new edge is proportional to the number of edges that is already has [24, 5].

This mechanism is often referred to as preferential attachment. Preferential attach-

ment is a specific example of a model where the ‘rich get richer’, and has a power law

degree distribution with a fixed exponent of 3. Although it is not exactly analogous

to our social particles model, it leads to similar form of constraint.

In this mechanism, nodes that are ‘rich’ – i.e., have many edges connecting them

to other nodes – become richer, acquiring new edges faster than poorly-connected

nodes do. The preferential attachment mechanism gives a power-law distribution for

the probabilities, pk, of the number k of edges attached to a node, with an exponent

of 3, pk ∼ k−3.

Formally, preferential attachment networks are defined by two things: growth (one

node is added per time step, which makes a connection to one of the N pre-existing

nodes), and the connection kernel,

qk =
k + 1

2N
, (79)

where k is the number of incoming edges.

Our strategy for determining the steady-state (N → ∞) pk for the preferential

attachment mechanism is the same as for the random network. The number of nodes
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going from the k bin to the k + 1 bin is

Nqkpk =
k + 1

2
· pk. (80)

This is the outflow from the k bin. The number of nodes going from the k− 1 bin to

the k bin is

Nqk−1pk−1 =
k

2
· pk−1. (81)

This is the inflow to the k bin. Therefore we write a recursion equation for pk,

pk =
k

k + 3
· pk−1, (82)

which we may step through to obtain

pk =
k

k + 3
· k − 1

k + 2
· · · 1

4
· p0. (83)

Since 1 new node (with 0 incoming edges) is added per time step, the inflow into the

k = 0 bin is simply 1. The outflow is

Nq0p0 =
1

2
· p0 (84)

which yields:

p0 =
2

3
. (85)

Substituting (85) into (83), we find

pk = 4 · k!

(k + 3)!
=

4

(k + 1)(k + 2)(k + 3)
. (86)
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These are the multiplicative contributions to pk. For large k, this scales as

pk ∼ k−3. (87)

PA gives an exponent of 3 because the attachment probability is equal to the node’s

degree (k), divided by the total number of edges in the network (normalization). So,

in the recursion equation (Eq. 83), the denominator is always equal to the numerator

+ 3. Therefore, solving the recursion explicitly, there are exactly 3 terms in the

denominator which depend on k that don’t cancel out: (k + 1)(k + 2)(k + 3). For

large k, the + 1,2,3 is negligible, and so the scaling is pk ∼ k−3. Thus, the exponent

of 3 always appears when the attachment rule is a linear proportionality.

The multiplicative terms in Eq. (83) may be re-written as:

pk = p0 exp

[
−

k∑

j=1

ln

(
1 +

3

j

)]
. (88)

Therefore, the work required to add the jth edge to a node that already has j − 1

edges is

µj = ln

(
1 +

3

j

)
. (89)

The total work wk to add k edges to a node is calculated by summing over Eq. (89),

wk = ln
[
(k + 1)(k + 2)(k + 3)

]
− ln 6, (90)

which, similar to the wk derived for social particles, is logarithmic. For large k, Eq. 91

is approximately

wk ≈ 3

[
ln (k + 2)− ln 6

3

]
, (91)

leading to the fixed scaling exponent of 3.
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B Sampling with double replacement

Here we discuss a simple statistical problem which leads to power-law distributions.

Although the problem is described as picking balls from a barrel, the following deriva-

tion applies equally well to the formation of edges between nodes on a graph.

If we start with a barrel with a mixture of red (r) and blue (b) balls in a barrel,

our initial probability of drawing a blue ball will be b/(b+r). The standard ‘sampling

with replacement’ rule gives, for the probability of drawing k blue balls in a row,

p(k) =
(

1 +
r

b

)−k
, (92)

which decays exponentially because each selection is independent. However, if every

time a ball is picked an extra ball of that color is placed into the barrel, the proba-

bilities are no longer independent. Instead, this ‘sampling with double replacement’

rule gives

p(k) =
(b+ r − 1)!

(b− 1)!
· (k + b− 1)!

(k + b+ r − 1)!
. (93)

How does Eq. 93 scale for relatively large values of k? First, apply Stirling’s approx-

imation to the factorials containing k,

(k + b− 1)!

(k + b+ r − 1)!
≈ er

(
k + b+ r − 1

k + b− 1

)1−k−b

(k + b+ r − 1)−r , (94)

then use the limit

lim
k→∞

(
k + b+ r − 1

k + b− 1

)1−k−b

= e−r (95)

to obtain:

p(k) ≈ (b+ r − 1)!

(b− 1)!
· (k + b+ r − 1)−r . (96)

If we assume that the barrel initially contains the same number of red and blue balls,
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r = b = n, this expression simplifies to

p(k) ≈ (2n− 1)!

(n− 1)!
· (k + 2n− 1)−r . (97)

where the scaling form is valid for the probability of picking many balls of the same

color in a row, k � n.

This is just the probability of picking k balls of the same color in a row. What

is the joint distribution p(kb, kr)? First, note that each selection is a Bernoulli trial,

where the possible outcomes are blue or red. The order of selection does not affect

the total probability. For example, if four balls have been picked, the probability of

three blue balls (kb = 3) and one red ball (kr = 1) does not depend on the order in

which they are picked. There are four total permutations of the four trials that result

in the state kb = 3, kr = 1:

p(b, b, b, r) = p(b, b, r, b) = p(b, r, b, b) = p(r, b, b, b).

The sequences by which we can arrive at this state are mutually exclusive, so the

total probability of this state is the sum of the four permutations,

p(kb = 3, kr = 1) = p(b, b, b, r) + p(b, b, r, b) + p(b, r, b, b) + p(r, b, b, b) = 4 · p(b, b, b, r).

This rule holds for arbitrary values of kb and kr. In general, for kb + kr balls

picked, there are 

kb + kr

kb


 =

(kb + kr)!

kb!kr!

equivalent permutations. Since the permutations are equal, we may pick any one we
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like to calculate p(kb, kr):

p(kb, kr) =



kb + kr

kb


 b(b+ 1) · · · (b+ kb − 1) r(r + 1) · · · (r + kr − 1)

(b+ r)(b+ r + 1) · · · (b+ r + kb + kr − 1)

=
(kb + kr)!

kb!kr!
· (b+ kb − 1)!

(b− 1)!
· (r + kr − 1)!

(r − 1)!
· (b+ r − 1)!

(b+ r + kb + kr − 1)!
.

This may be rearranged to the more intuitive form:

p(kb, kr) =



b+ kb − 1

kb






r + kr − 1

kr






b+ r + kb + kr − 1

kb + kr




. (98)

This is the Bose-Einstein distribution [166].

In general, if there are N different color balls, with initial numbers n1, n2, . . . , nN ,

we may calculate the multivariate p(k1, k2, . . . , kN) using the same strategy as in the

two-color case:

p(k1, k2, . . . , kN) =

∏

i



ni + ki − 1

ki






∑

i(ni + ki − 1)
∑

i ki




. (99)
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C Critical points of Ising models

A well-known source of power-laws in statistical physics are those power-laws associ-

ated with critical phenomena. These power-laws manifest as divergences in various

thermodynamic quantities, and are somewhat different than the power-laws discussed

thus far. One particularly well-known model of criticality is the Ising model. Ising

models were originally designed as a simplified models of ferromagnetics, and they ex-

hibit spontaneous magnetization in higher dimensions. They have been exhaustively

studied by physicists over the past century, and have been a useful model for studying

critical phenomena and universality. Although there are already very accurate ways

to calculate the critical points of Ising models, here we present a novel method of

locating critical points, using the decomposition of higher-order tensors.

We consider lattices where particles take one of two spin values (s = +1 or s =

−1). We generalize a recently developed singular value decomposition for third-order

tensors to fourth- and sixth-order tensors, and apply this method to the problem of

finding critical points in Ising models. We calculate the exact critical temperature of a

2-D square lattice by decomposing its fourth-order transfer tensor, and compute upper

and lower bounds on the critical temperature for the 3-D cubic lattice by decomposing

its sixth-order transfer tensor. This method also provides a novel approximation of

the 3-D critical temperature, which is accurate to 3 decimal points.

C.1 Linear chain

The Hamiltonian (H) for the 1-D Ising model, in the absence of an applied magnetic

field, is

H = −J
N∑

i=1

sisi+1, (100)
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where N is the length of the chain and J is the coupling constant. The partition

function is given by

Q =
∑

{s}=±1

e−H/(kBT ) =
∑

{s}=±1

N∏

i=1

eKsisi+1 , (101)

where we have defined K ≡ J/(kBT ). The energy of a single lattice site (site i) is

given by

E(si, si+1) = Ksisi+1. (102)

It is straightforward to calculate Q using a 2× 2 transfer matrix (A), which contains

all combinations of si = ±1 and si+1 = ±1 in its rows and columns:

A =




eE(1,1) eE(1,−1)

eE(−1,1) eE(−1,−1)


 =




eK e−K

e−K eK


 . (103)

The partition function can then be evaluated by matrix multiplication,

Q =

[
1 1

]
AN




1

1


 , (104)

where

[
1 1

]
and




1

1


 are boundary vectors. The eigenvalues of A are:

λ1 = 2 coshK, (105)

λ2 = 2 sinhK. (106)

Note that λ1 > λ2 for all temperatures (Fig. S1).

Assuming periodic boundary conditions, the partition function can be calculated
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Figure S1: Transfer matrix eigenvalues for a linear (1-D) Ising model. λ1 (blue) is
greater than λ2 (red) for all values of K.

directly from the eigenvalues,

Q = λN1 + λN2 . (107)

Because λ1 > λ2, as N becomes very large, Q is determined by λ1:

lim
N→∞

Q = λN1 . (108)

The second derivatives of lnQ are continuous. Therefore, the 1-D model lacks a

critical point.

C.2 Square lattice

A 2-D square (N ×N) lattice has Hamiltonian

H = −J
∑

i,j

si,j (si+1,j + si,j+1) . (109)
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Similar to 1-D, the 2-D partition function can be evaluated by diagonalizing its trans-

fer matrix [167, 168]. A complication is that, in 2-D, the size of the transfer matrix

grows exponentially (2N × 2N) with the size of the lattice.

One way to avoid this exponential growth in matrix size is to instead use a higher-

order transfer tensor [169], so that the 2-D model is represented by a fourth-order

(2 × 2 × 2 × 2) tensor, 3-D by a sixth-order (2 × 2 × 2 × 2 × 2 × 2) tensor, and

so on. This technique has been limited by the lack of analytical diagonalization

techniques for higher-order tensors. However, an equivalent of the matrix singular

value decomposition (SVD) was recently invented for third-order tensors [170]. We

show here that this technique generalizes in a straightforward way to tensors of fourth

and higher order.

We construct a 2 × 2 × 2 × 2 transfer tensor A as described in [169]. The sites

in the transformed lattice are distinguished from the original sites by half-integer

indices. The four tensor indices represent all possible spin states (±1) for the four

transformed lattice sites (si+ 1
2
,j, si− 1

2
,j, si,j+ 1

2
, and si,j− 1

2
). Using the transformed

lattice, the energy of site si,j is given by

E(si+ 1
2
,j, si− 1

2
,j, si,j+ 1

2
, si,j− 1

2
) = K

(
si,j− 1

2
+ si,j+ 1

2

)(
si− 1

2
,j + si+ 1

2
,j

)
. (110)
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The four 2× 2 matrices which form the ‘faces’ of A are

A1 =




eE(1,1,1,1) eE(1,−1,1,1)

eE(−1,1,1,1) eE(−1,−1,1,1)


 =




e4K 1

1 e−4K


 , (111)

A2 =




eE(1,1,−1,1) eE(1,−1,−1,1)

eE(−1,1,−1,1) eE(−1,−1,−1,1)


 =




1 1

1 1


 , (112)

A3 =




eE(1,1,1,−1) eE(1,−1,1,−1)

eE(−1,1,1,−1) eE(−1,−1,1,−1)


 =




1 1

1 1


 , (113)

A4 =




eE(1,1,−1,−1) eE(1,−1,−1,−1)

eE(−1,1,−1,−1) eE(−1,−1,−1,−1)


 =




e−4K 1

1 e4K


 . (114)

The 2-D partition function can be calculated by tensor multiplication, with appro-

priate boundary conditions. Unfortunately, this product appears to be analytically

intractible as N → ∞, preventing direct evaluation of the partition function. How-

ever, partial diagonalization of A is sufficient to locate the critical point, as shown

below.

Kilmer’s SVD for third-order tensors can be recursively generalized to fourth-

order tensors. We will use a tilde to denote tensors which have been ‘unfolded’ as

described in [170]. First, A is unfolded along its fourth index, giving us a 4 × 4 × 2

matrix-of-third-order-tensors, with front face given by

Ã1 =



A1 A3

A3 A1


 , (115)

and back face:

Ã2 =



A2 A4

A4 A2


 . (116)

Next, the third-order tensors Ã1 and Ã2 are individually unfolded, resulting in an
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8× 8 matrix,

˜̃A =




A1 A2 A3 A4

A2 A1 A4 A3

A4 A4 A1 A2

A4 A3 A2 A1




=




e4K 1 1 1 1 1 e−4K 1

1 e−4K 1 1 1 1 1 e4K

1 1 e4K 1 e−4K 1 1 1

1 1 1 e−4K 1 e4K 1 1

1 1 e−4K 1 e4K 1 1 1

1 1 1 e4K 1 e−4K 1 1

e−4K 1 1 1 1 1 e4K 1

1 e4K 1 1 1 1 1 e−4K




. (117)

Diagonalizing
˜̃A yields 8 eigenvalues:

λ1 = 2 (cosh 4K + 3) , (118)

λ2 = λ3 = λ4 = 2 (cosh 4K − 1) , (119)

λ5 = λ7 = sinh 4K, (120)

λ6 = λ8 = − sinh 4K. (121)

If re-folded, the eigenvalue matrix becomes a fourth-order tensor that is diagonal on

each face, but is not fully diagonal (i.e., all zeros except A1111 and A2222).

The eigenvalues weight the contributions of the eigenvectors to the partition func-

tion, so the dominant contribution is from the largest eigenvalue. However, in this
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Figure S2: Largest eigenvalues for a square (2-D) Ising model. The intersection
of λ1 (blue) and 3λ2 (red) gives the exact value of the critical temperature, Kc =
1
2

ln(1 +
√

2) ≈ 0.4407.

case, three smaller eigenvalues are equal (λ2 = λ3 = λ4). At low temperatures, their

net contribution (3λ2) is larger than that of λ1 (Fig. S2). The critical point is at the

intersection of λ1 and 3λ2. Setting λ1 = 3λ2 and solving for K, we recover the exact

critical temperature,

Kc =
1

2
ln
(

1 +
√

2
)
≈ 0.4407. (122)

C.3 Cubic lattice

The Hamiltonian of the 3-D cubic (N ×N ×N) lattice is

H = −J
∑

i,j,k

si,j,k (si+1,j,k + si,j+1,k + si,j,k+1) . (123)

We construct a 2 × 2 × 2 × 2 × 2 × 2 transfer tensor A using the same strategy

as before. The six indices represent all possible spin states for the six transformed
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lattice sites. The energy of site si,j,k is given by

E(si,j− 1
2
,k, si− 1

2
,j,k, si,j,k− 1

2
, si,j+ 1

2
,k, si+ 1

2
,j,k, si,j,k+ 1

2
) = (124)

K
{
si,j− 1

2
,k

(
si− 1

2
,j,k + si,j,k− 1

2
+ si+ 1

2
,j,k + si,j,k+ 1

2

)
+ si− 1

2
,j,k

(
si,j,k− 1

2
+ si,j+ 1

2
,k + si,j,k+ 1

2

)

(125)

+ si,j,k− 1
2

(
si,j+ 1

2
,k + si+ 1

2
,j,k

)
+ si,j+ 1

2
,k

(
si+ 1

2
+ si,j,k+ 1

2

)
+ si+ 1

2
,j,ksi,j,k+ 1

2

}
. (126)

There are sixteen 2× 2 ‘faces’ of A:

A1 =




e12K e4K

e4K 1


 A2 =




e4K 1

1 1


 A3 =




e4K 1

e−4K e−4K


 A4 =




1 1

e−4K 1




(127)

A5 =




e4K e−4K

1 e−4K


 A6 =




1 e−4K

1 1


 A7 =




1 e−4K

e−4K e−4K


 A8 =




1 1

1 e4K




A9 =




e4K 1

1 1


 A10 =




e−4K e−4K

e−4K 1


 A11 =




1 1

e−4K 1


 A12 =




e−4K 1

e−4K e4K




A13 =




1 e−4K

1 1


 A14 =




e−4K e−4K

1 e4K


 A15 =




1 1

1 e4K


 A16 =




1 e4K

e4K e12K




Kilmer’s SVD generalizes in a straightforward way to sixth-order tensors. After
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four recursive unfoldings, A is transformed into a 32× 32 matrix,




A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A2 A1 A4 A3 A6 A5 A8 A7 A10 A9 A12 A11 A14 A13 A16 A15

A3 A4 A1 A2 A7 A8 A5 A6 A11 A12 A9 A10 A15 A16 A13 A14

A4 A3 A2 A1 A8 A7 A6 A5 A12 A11 A10 A9 A16 A15 A14 A13

A5 A6 A7 A8 A1 A2 A3 A4 A13 A14 A15 A16 A9 A10 A11 A12

A6 A5 A8 A7 A2 A1 A4 A3 A14 A13 A16 A15 A10 A9 A12 A11

A7 A8 A5 A6 A3 A4 A1 A2 A15 A16 A13 A14 A11 A12 A9 A10

A8 A7 A6 A5 A4 A3 A2 A1 A16 A15 A14 A13 A12 A11 A10 A9

A9 A10 A11 A12 A13 A14 A15 A16 A1 A2 A3 A4 A5 A6 A7 A8

A10 A9 A12 A11 A14 A13 A16 A15 A2 A1 A4 A3 A6 A5 A8 A7

A11 A12 A9 A10 A15 A16 A13 A14 A3 A4 A1 A2 A7 A8 A5 A6

A12 A11 A10 A9 A16 A15 A14 A13 A4 A3 A2 A1 A8 A7 A6 A5

A13 A14 A15 A16 A9 A10 A11 A12 A5 A6 A7 A8 A1 A2 A3 A4

A14 A13 A16 A15 A10 A9 A12 A11 A6 A5 A8 A7 A2 A1 A4 A3

A15 A16 A13 A14 A11 A12 A9 A10 A7 A8 A5 A6 A3 A4 A1 A2

A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1




(128)

which we diagonalize using the discrete Fourier transform method of [170]. The three
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largest eigenvalues of 128 are

λ1 = e12K + 6 e4K + 9 e−4K + 16, (129)

λ2 = e12K + 2 e4K − 3 e−4K , (130)

λ3 = e12K − 2 e4K + e−4K , (131)

where λ1 is unique, λ2 is 5-fold degenerate, and λ3 is 7-fold degenerate.

As shown in Fig. S3, there are three distinct temperature ranges for the cubic

lattice. Below the value of K where λ1 = 5λ2 (that is, at high temperatures), λ1 is

dominant:

K− = − 1

36
ln

[
1 +

1

2

(
440 + 18

√
606
)1/3
− 7

(
440 + 18

√
606
)−1/3]

≈ 0.1436. (132)

Above the value of K where 5λ2 = 7λ3 (at low temperatures), 7λ3 is the largest

eigenvalue:

K+ =
1

8
ln(11) ≈ 0.2997. (133)

For intermediate temperatures (K− < K < K+), 5λ2 is dominant. This specifies a

range where the critical temperature Kc will be located – it is somewhere between

K− and K+. A simple approximation of Kc is the center of the region bounded by

the three eigenvalues. The intersection λ1 = 7λ3 is located at

K0 = −1

4
ln
(
−3 + 2

√
3
)
≈ 0.1919, (134)

and the center of mass is therefore:

Kc =

∫ K0

K−
K (5λ2 − λ1) dK +

∫ K+

K0
K (5λ2 − 7λ3) dK

∫ K0

K−
(5λ2 − λ1) dK +

∫ K+

K0
(5λ2 − 7λ3) dK

≈ 0.2212. (135)

This rough estimate is quite close to previous calculations of the critical temperature
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Figure S3: Three largest eigenvalues for a cubic (3-D) Ising model. The intersection
of λ1 (blue) with 5λ2 (red) gives the lower bound of the range of K where the critical
point is located, while the intersection of 5λ2 (red) with 7λ3 gives the upper bound.
The centroid of the region enclosed by λ1, 5λ2, and 7λ3 provides a reasonably accurate
estimate of the critical temperature, Kc ≈ 0.2212.

(Kc ≈ 0.2216) from series expansions and Monte Carlo simulations [171, 172, 173,

174].
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D A two-particle transition matrix

Finally, I will briefly discuss a purely mathematical topic. Although this work is not

directly connected to power-laws, I hope that a future application of this framework

could be to help model correlated, heavy-tailed dynamical phenomena.

A single particle hopping between two states (u1 and u2) starts in some initial

state: u1(0) = 1 and u2(0) = 0 if the particle is initially in state 1, or u1(0) = 0 and

u2(0) = 1 if the particle is initially in state 2. At each time step, the probability that

a particle in state 1 jumps to state 2 is σ21, and the probability that it stays in state

1 is σ11. The probability that a particle in state 2 jumps to state 1 is σ12, and the

probability that it stays in state 2 is σ22. After a single time step, we can calculate

the particle’s probability of being in either state:

u1(1) = σ11u1(0) + σ12u2(0) (136)

u2(1) = σ21u1(0) + σ22u2(0) (137)

And after two time steps:

u1(2) = σ11u1(1) + σ12u2(1) = σ11 (σ11u1(0) + σ12u2(0)) + σ12 (σ21u1(0) + σ22u2(0))

u2(2) = σ21u1(1) + σ22u2(1) = σ21 (σ11u1(0) + σ12u2(0)) + σ22 (σ21u1(0) + σ22u2(0))

Clearly, after a few time steps, these equations are going to turn into a confusing

mess. A way of cleaning this up is to write the coefficients as a matrix:



u1(1)

u2(1)


 =



σ11 σ12

σ21 σ22






u1(0)

u2(0)
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u1(2)

u2(2)


 =



σ11 σ12

σ21 σ22






u1(1)

u2(1)


 =



σ11 σ12

σ21 σ22




2 

u1(0)

u2(0)




And for τ time steps,

uτ = Guτ−1 = Gτu

where unsubscripted u is the initial state vector, uτ is the state vector at time τ , and

G is the transition matrix for this process. Since the total probability of the particle

either staying or jumping is 1 (those are the only two options available), the columns

of G sum to 1:

σ11 + σ21 = 1

σ12 + σ22 = 1

The partition function, Q, for a single particle after τ time steps is the sum of the

elements of the final state vector:

Q = u1(τ) + u2(τ) =

[
1 1

]
Gτu

The

[
1 1

]
is just a convenient way to ‘flatten’ uτ into a sum. The statistics of

N independent particles may be calculated by multiplying their partition functions

together:

QN =

([
1 1

]
Gτu

)N

If pairs of particles are coupled, then the problem becomes more complicated. To

consider two particles (u and v), consider a table of conditional jump/stay probabil-

ities:

We can use these conditional probabilities to write the equivalent of equations (1)
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u v P (u stays) P (u jumps) P (v stays) P (v jumps)
1 1 σ11|v=1 σ21|v=1 σ11|u=1 σ12|u=1

2 1 σ22|v=1 σ12|v=1 σ11|u=2 σ12|u=2

1 2 σ11|v=2 σ21|v=2 σ22|u=1 σ21|u=1

2 2 σ22|v=2 σ12|v=2 σ22|u=2 σ21|u=2

and (2) for coupled particles:

u1(1) =
(
σ11|v=1u1(0) + σ12|v=1u2(0)

)
v1(0) +

(
σ11|v=2u1(0) + σ12|v=2u2(0)

)
v2(0)

u2(1) =
(
σ21|v=1u1(0) + σ22|v=1u2(0)

)
v1(0) +

(
σ21|v=2u1(0) + σ22|v=2u2(0)

)
v2(0)

v1(1) =
(
σ11|u=1v1(0) + σ12|u=1v2(0)

)
u1(0) +

(
σ11|u=2v1(0) + σ12|u=2v2(0)

)
u2(0)

v2(1) =
(
σ21|u=1v1(0) + σ22|u=1v2(0)

)
u1(0) +

(
σ21|u=2v1(0) + σ22|u=2v2(0)

)
u2(0)

Iterating through more time steps this way would be an exercise in notational

slapstick, so we won’t. Instead, taking a cue from the single particle transition matrix,

we will try to write these equations in matrix form:



u1(1)

u2(1)


 =



σ11|v=1u1(0) + σ12|v=1u2(0) σ11|v=2u1(0) + σ12|v=2u2(0)

σ21|v=1u1(0) + σ22|v=1u2(0) σ21|v=2u1(0) + σ22|v=2u2(0)






v1(0)

v2(0)






v1(1)

v2(1)


 =



σ11|u=1v1(0) + σ12|u=1v2(0) σ11|u=2v1(0) + σ12|u=2v2(0)

σ21|u=1v1(0) + σ22|u=1v2(0) σ21|u=2v1(0) + σ22|u=2v2(0)






u1(0)

u2(0)




These equations can be further structured by writing the columns of the matrices in

matrix form:



u1(1)

u2(1)


 =






σ11|v=1 σ12|v=1

σ21|v=1 σ22|v=1






u1(0)

u2(0)






σ11|v=2 σ12|v=2

σ21|v=2 σ22|v=2






u1(0)

u2(0)









v1(0)

v2(0)
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v1(1)

v2(1)


 =






σ11|u=1 σ12|u=1

σ21|u=1 σ22|u=1






v1(0)

v2(0)






σ11|u=2 σ12|u=2

σ21|u=2 σ22|u=2






v1(0)

v2(0)









u1(0)

u2(0)




Therefore, two coupled particles require four ‘transition matrices’ to describe their

time evolution:

G1 =



σ11|v=1 σ12|v=1

σ21|v=1 σ22|v=1


 G2 =



σ11|v=2 σ12|v=2

σ21|v=2 σ22|v=2




G3 =



σ11|u=1 σ12|u=1

σ21|u=1 σ22|u=1


 G4 =



σ11|u=2 σ12|u=2

σ21|u=2 σ22|u=2




This allows us to write equations (3) through (6) in a more compact form:

u1 =

[
G1u G2u

]
v (138)

v1 =

[
G3v G4v

]
u (139)

Equations (7) and (8) are multilinear: the vectors u and v both multiply the

transition matrices. To evolve the system for many time steps, it will be useful to

break apart the multilinearity, to avoid dealing with equations containing matrices-

of-matrices-of-matrices-of... How can we do this? The matrix-of-matrices notation

suggests that each matrix is a component of a larger structure. Making use of 1

additional index, we obtain two third-order (2× 2× 2) transition tensors :

G1 and G2 are the front and back ‘faces’ of tensor A (the left ‘box’ pictured

above), and G3 and G4 are the front and back ‘faces’ of tensor B (the right ‘box’).

Viewed in tensor form, it is clear how to break apart the multilinearity: the vectors

u and v are simply operated on by different modes of the tensors. We see that u

multiplies mode 1 (rows) of A, and v multiplies mode 3 (tubes). u multiplies mode

3 of B, and v multiplies mode 1. Therefore, we ‘slice’ B along mode 2 (columns),
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producing a modified pair of transition matrices:

G′3 ≡



σ11|u=1 σ11|u=2

σ21|u=1 σ21|u=2


 G′4 ≡



σ12|u=1 σ12|u=2

σ22|u=1 σ22|u=2




We now have a full set of transition matrices that operate identically on the state

vectors u and v.

It is clear from the image of the tensors that to multiply different modes of the

tensors, the vectors u and v must be oriented orthogonally to each other. Therefore,

we can separate out the multilinearity by taking the Kronecker product15 (⊗) of v

with u,

u1 =

[
G1u G2u

]
v =

[
G1 G2

]
(v ⊗ u)

v1 =

[
G′3u G′4u

]
v =

[
G′3 G′4

]
(v ⊗ u)

For notational simplicity, we will denote the ‘unfolded’ tensor A as A ≡
[
G1 G2

]
.

15Let A = (aij) be an n× n matrix and let B be an m×m matrix. Then the Kronecker product
of A and B is the mn×mn block matrix

A⊗B =



a11B · · · a1nB

...
. . .

...
an1B · · · annB


 .

The Kronecker product of vectors v and u is v ⊗ u =
[
u1v1 u2v1 u1v2 u2v2

]T
= vec

(
uvT

)
.
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The unfolded tensor B is B ≡
[
G′3 G′4

]
. After the next time step:

u2 = A (v1 ⊗ u1) = A (B (v ⊗ u)⊗A (v ⊗ u)) = A (B⊗A) (v ⊗ u⊗ v ⊗ u)

v2 = B (v1 ⊗ u1) = B (B (v ⊗ u)⊗A (v ⊗ u)) = B (B⊗A) (v ⊗ u⊗ v ⊗ u)

using the identity (M1 ⊗M2) (M3 ⊗M4) = M1M3 ⊗M2M4. After another time

step,

u3 = A (v2 ⊗ u2) = A (B⊗A) (B⊗A)⊗2 (v ⊗ u)⊗4

v3 = B (v2 ⊗ u2) = A (B⊗A) (B⊗A)⊗2 (v ⊗ u)⊗4

where the exponent ⊗n is used to indicate n Kronecker products. By now the pattern

is becoming clear:

u4 = A (v3 ⊗ u3) = A (B⊗A) (B⊗A)⊗2 (B⊗A)⊗4 (v ⊗ u)⊗8

v4 = B (v3 ⊗ u3) = B (B⊗A) (B⊗A)⊗2 (B⊗A)⊗4 (v ⊗ u)⊗8

For τ time-steps:

uτ = A (vτ−1 ⊗ uτ−1) = A (B⊗A) (B⊗A)⊗2 (B⊗A)⊗4 · · · (B⊗A)⊗
1
2
2τ−1

(v ⊗ u)⊗
1
2
2τ

vτ = B (vτ−1 ⊗ uτ−1) = B (B⊗A) (B⊗A)⊗2 (B⊗A)⊗4 · · · (B⊗A)⊗
1
2
2τ−1

(v ⊗ u)⊗
1
2
2τ

Whether or not this framework will be useful depends on whether an analytical

method can be found to calculate repeated Kronecker products. Although this ap-

pears to be an intractible problem at the present time, multilinear algebra is still a

young and very much active area of mathematics research. If a technique is developed

that allows ‘Kronecker powers’ to be calculated as easily as ordinary matrix powers

are today, then this method may prove to be quite useful.
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