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Abstract

C-Graded Vertex Algebras and their Representations

by

Robert A. Laber

In this thesis we consider two related classes of vertex algebras. The first

class we consider consists of objects called C-graded vertex algebras. These are

vertex algebras with additional structure that allows for the construction of a Zhu

algebra with a sufficiently well-behaved representation theory. This additional

structure is minimal in the sense that it is necessary for the construction of the

Zhu algebra. Given a C-graded vertex algebra, we provide a construction of

the Zhu algebra and a pair of functors which are inverse bijections between the

appropriate module categories.

The second class we consider arises from considering conformal defor-

mations of vertex operator algebras. These structures are called pseudo vertex

operator algebras, and their main distinguishing feature is that the operator L(0)

is not assumed to be semi-simple and is permitted to have complex eigenvalues.

Similar theories have been studied: In the context of logarithmic conformal field

theory, for example, L(0) is not required to be semi-simple on modules. Here,

we extend that notion to allow L(0) to be non semi-simple on V itself. We show

how to construct a family of pseudo vertex operator algebras from a given ver-

tex operator algebra, and we prove that all such pseudo vertex operator algebras

are C-graded vertex algebras. We then prove that every pseudo vertex operator

algebra obtained via conformal deformation of a lattice vertex operator algebra

is regular, which means that the category of admissible modules is semi-simple.
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Chapter 1

Introduction

1.1 Overview

A common theme in the study of algebraic objects is the study of the

representations of that object. This study is often conducted by examining the

category of modules for a given object. Understanding the modules for an object

can illuminate certain features that may not be accessible from a structural

study of the object itself. We utilize this general heuristic in the study of vertex

algebras and vertex operator algebras.

There are three classes of modules for a vertex operator algebra V ,

each emphasizing different features. A vertex operator algebra can be roughly

summarized as a structure that is:

• A vertex algebra,

• A graded algebra,

• A sum of eigenspaces for the distinguished operator L(0).

For each of these characteristics, we have a class of V -module that

reflects that characteristic. A weak V -module M is a module for V as a vertex

algebra. In particular, no requirements are made regarding a grading on M . An

admissible V -module M is a module for V as a graded algebra. In this case, we

require a grading on M that is compatible with the grading on V . In particular,
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the grading on M is compatible with the modes of homogeneous elements in V .

Lastly, an ordinary V -module M is a module with a grading that is induced by

L(0)-eigenvalues.

It is easily seen that there is a forgetful functor from the category of

vertex operator algebras to the category of vertex algebras, and this functor

induces a forgetful functor from the category of admissible V -modules to the

category of weak V -modules. Otherwise stated, the category of admissible V -

modules is a full subcategory of the category of weak V -modules. Moreover,

it follows immediately from the definitions that an ordinary V -module is an

admissible V -module. We then have the following inclusions:

{ ordinary V -modules } ⊆ { admissible V -modules } ⊆ { weak V -modules }

It is demonstrated in several places ([DLM2], [ABD]), as well as in

Section 6.1 of this work, that a simple admissible V -module is a simple ordinary

V -module. Therefore, the categories of admissible V -modules and ordinary V -

modules share the same simple objects. For this reason, we concern ourselves

primarily with the category of admissible V -modules.

One of the most important tools for studying the admissible modules

of a vertex operator algebra V is the Zhu algebra A(V ). This is an associative

algebra which arises by considering a product on a certain quotient of V . The

importance of A(V ) comes from the relationship between the representation

theories of V and A(V ): Under suitable conditions, there is a natural bijection

between the simple objects in the category of A(V )-modules and the simple

objects in the category of admissible V -modules. This effectively reduces the

study of admissible V -modules to the study of modules for the associative (and

often finite-dimensional) algebra A(V ).

1.2 Motivation

In Part I of this work, we seek to extend the idea of the Zhu algebra to

a broader class of vertex algebras.
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The primary motivation for the generalization of the Zhu algebra comes

from the notion of a conformal deformation of a vertex operator algebra, which

we study in detail in Part II of this thesis. A conformal deformation yields

a structure which is not in general a vertex operator algebra, yet nevertheless

admits a suitable Zhu algebra. This leads one to ask whether there is a broad

class of vertex algebras that support the construction of an associative algebra

which preserves some aspects of the corresponding representation theory. In

particular, we seek a minimal set of conditions that allow for the construction

of a Zhu algebra.

A natural place to start would be to try to define an associative algebra

A(V ) from a vertex algebra V . The lack of grading on V , however, is problematic,

since the modes of elements (i.e., operators a(n) for a ∈ V and n ∈ Z) do not act

as weighted operators on V . Thus, there is no notion of a zero mode (see Section

3.2), nor any notion of a lowest weight space of V . Any subsequent notion of an

associative algebra associated to V would therefore be fundamentally distinct

from the Zhu algebra we seek to generalize.

This leads to the notion of a C-graded vertex algebra, which is a vertex

algebra equipped with a grading that is compatible with the modes of elements of

V , and which is generated by its lowest weight vectors. We prove that these two

additional features are sufficient for the construction of an associative algebra

A(V ) with the desired representation theory (see Theorem 5).
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Chapter 2

Vertex Algebras

2.1 Basic Definitions and Notation

We let N, Z, R, and C denote the sets of positive integers, integers, real

numbers and complex numbers, respectively. Given a complex number a, we let

Re(a) and Im(a) denote the real and imaginary parts of a, respectively. For a

vector space V , we let V [[x]] denote the ring of formal power series in x with

coefficients in V , and we let V [[x, x−1]] denote the ring of formal Laurent series

in x with coefficients in V . That is,

V [[x]] =

{ ∞∑
n=0

an x
n | an ∈ V

}
and

V [[x, x−1]] =

{∑
n∈Z

an x
n | an ∈ V

}
.

We denote by End(V ) the ring of linear endomorphisms of a vector space V . All

vector spaces are assumed to be defined over C.

2.1.1 Formal Calculus

In this section we let V denote an arbitrary vector space. We introduce

two important formal sums. First, we have the exponential

eTx =
∞∑
j=0

T j

j!
xj ∈ (End(V ))[[x]],
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where T is any element of End(V ) and x is any indeterminate. We also have the

δ-function, which is defined as the formal Laurent series

δ(x) =
∑
n∈Z

xn ∈ C[[x, x−1]].

This sum has the property that, for any formal Laurent series f(x) ∈ V [[x, x−1]]

such that the product δ(x)f(x) exists, one has

δ

(
x

y

)
f(x) = δ

(
x

y

)
f(y).

This δ-function should not be confused with the Dirac delta

δa,b =

1 a = b

0 a 6= b

which also appears in this work.

We have the linear operators

∂

∂x
: V [[x, x−1]] → V [[x, x−1]]∑

n∈Z
anx

n 7→
∑
n∈Z

nanx
n−1

and

Resx : V [[x, x−1]] → V∑
n∈Z

anx
n 7→ a−1.

If f(x) and g(x) are elements of V [[x, x−1]] such that the product f(x)g(x) is

defined, then the operator ∂
∂x acts as a derivation:

∂

∂x
(f(x)g(x)) =

(
∂

∂x
f(x)

)
g(x) + f(x)

(
∂

∂x
g(x)

)
. (2.1)

It is clear that

Resx

(
∂

∂x
f(x)

)
= 0

for any f(x) ∈ V [[x, x−1]], so using (2.1) we obtain the formula

Resx

((
∂

∂x
f(x)

)
g(x)

)
= −Resx

(
f(x)

(
∂

∂x
g(x)

))
.

We also have the change of variables formula for w = f(x) ∈ V [[x, x−1]]:

Resw g(w) = Resx

(
g(f(x))

∂

∂x
f(x)

)
. (2.2)
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2.1.2 Binomials

Definition 2.1.1 (Binomial Coefficients). Let α ∈ C and k ∈ N. We define the

binomial coefficient
(
α
k

)
as(
α

k

)
:=

1
k!

k−1∏
i=0

(α− i)

=
α(α− 1)...(α− k + 1)

k!
. (2.3)

Definition 2.1.2 (Binomial Expansion). Let α ∈ C. We define the binomial

expansion of (x+ y)α as

(x+ y)α :=
∞∑
i=0

(
α

i

)
xα−iyi. (2.4)

In other words, any binomial is to be expanded as a power series in the

second variable. One observes that if α ∈ N, then the previous two definitions

coincide with the usual definitions. It is important to note that, using our

binomial expansion convention (2.4), the expressions
1

x− y
and − 1

y − x
are not

equal as formal power series. Rather, we treat
1

x− y
as defined in the region

x > y and − 1
y − x

as defined in the region y > x, so we have

1
x− y

+
1

y − x
= x−1δ

(y
x

)
.

2.2 Vertex Algebras

We now come to the primary object of study in Part I of this thesis.

The reader should be aware that there are various formalisms for the following

axiomatic foundations. For alternative treatments, see [B], [FHL], or [FLM].

Definition 2.2.1 (Vertex Algebra). A vertex algebra is a triple (V, Y,1) con-

sisting of a vector space V , a distinguished vector 1 ∈ V , and a linear map

Y : V → (End(V )) [[z, z−1]]

a 7→ Y (a, z) =
∑
n∈Z

a(n) z−n−1

such that the following hold:
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(i) (Truncation) For any a, b ∈ V, we have a(n)b = 0 for all sufficiently large

n,

(ii) (Vacuum) Y (1, z) = IdV ,

(iii) (Creativity) For any a ∈ V, a(n)1 = 0 if n ≥ 0 and a(−1)1 = a,

(iv) (Translation Covariance) There is a linear operator T ∈ End(V ) with the

property that

[T, Y (a, z)] = Y (Ta, z) =
∂

∂z
Y (a, z),

(v) (Jacobi Identity) For any a, b ∈ V, one has

z−1
0 δ

(
z1 − z2
z0

)
Y (a, z1)Y (b, z2) − z−1

0 δ

(
z2 − z1
z0

)
Y (b, z2)Y (a, z1)

= z−1
2 δ

(
z1 − z0
z2

)
Y (Y (a, z0)b, z2).

Remark. From the creativity property, we see that the map Y (·, z) is injective.

It then follows that T1 = 0, since

Y (T1, z) =
∂

∂z
Y (1, z) = 0.

Remark. The translation covariance condition yields the following useful for-

mula: For any a ∈ V and any n ∈ Z, one has

(Ta)(n) = −na(n− 1). (2.5)

Remark. It should be noted that the Jacobi identity above resembles the fa-

miliar Jacobi identity from Lie algebras, which can be expressed as

ad(u) ad(v)− ad(v) ad(u) = ad(ad(u)v).

The resemblance is clear when one substitutes Y (·, z) for ad(·).

Taking various residues of the Jacobi identity yields three important

formulas which will be used repeatedly in the sequel. We have the commutator

formula,

[a(n), b(m)] =
∞∑
i=0

(
n

i

)
(a(i)b)(n+m− i), (2.6)
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the associator formula,

(a(n)b)(m) =
∞∑
i=0

(−1)i
(
n

i

)(
a(n− i)b(n+ i)− (−1)nb(n+m− i)a(i)

)
, (2.7)

and the skew-symmetry formula,

a(n)b =
∞∑
i=0

(−1)i+n+1T
i

i!
(b(n+ i)a). (2.8)

It should be noted that the sums above are all well defined. The sums

appearing in the commutator and skew-symmetry formulas are finite sums due

to the truncation axiom. The associator formula is an equality of operators, and

the truncation axiom again ensures that the right hand side yields a finite sum

when applied to an element of V .

2.3 C-Graded Vertex Algebras

Definition 2.3.1 (C-Graded Vertex Algebra). A vertex algebra V is said to be

C-graded if it has the following two properties:

(i) V is a direct sum

V =
⊕
µ∈C

Vµ,

such that for any element a ∈ Vλ, one has

a(n)Vµ ⊆ Vµ+λ−n−1, (2.9)

(ii) V is generated by a set of lowest weight vectors, where a lowest weight

vector is a vector v ∈ Vµ for some µ ∈ C that satisfies the following: For

any a ∈ Vλ, if a(n)v 6= 0, then either n = λ− 1 or n < Re(λ)− 1.

An element a ∈ Vµ is said to be homogeneous of weight µ, and we

denote this by |a| = µ. We can then define the operator L ∈ End(V ) as the

linear extension of the map

Vµ → Vµ

a 7→ µa = |a|a.

9



We find it convenient to introduce some notation here. To simplify

property (ii) above, when given two complex numbers a and b, we write

a ≺ b

if either a = b or Re(a) < Re(b). Using this notation and formula (2.9), we

have an alternative characterization of lowest weight vectors. A homogeneous

vector v ∈ Vµ is a lowest weight vector if the following implication holds: For

any homogeneous a ∈ V , if a(n)v 6= 0, then

|v| ≺ |a(n)v|.

Proposition 2.3.1. Let V =
⊕

µ∈C Vµ be a C-graded vertex algebra. Then

(i) 1 ∈ V0,

(ii) If a ∈ Vµ then Ta ∈ Vµ+1.

Proof. From the vacuum axiom, we know that 1(−1) is the identity operator

on V . Therefore, if a ∈ V is homogeneous of weight λ, then 1(−1)a = a must

also be homogeneous of weight λ. In view of (2.9), we deduce that 1 cannot be

a sum of homogeneous vectors of different weights, and therefore, 1 itself is a

homogeneous vector. Now use (2.9) again to see that

λ = |a| = |1(−1)a| = λ+ |1| − (−1)− 1,

whence we easily obtain |1| = 0.

Now suppose a ∈ V is homogeneous vector. From (2.5) we have

(Ta)(n) = −na(n− 1)

for all n ∈ Z. From this one sees that Ta must be homogeneous, since its modes

preserve the homogeneous subspaces of V . Then we use (2.9) to calculate

|Ta| = |(Ta)(−1)1| = |a(−2)1| = |1|+ |a|+ 2− 1 = |a|+ 1,

which proves (ii).

10



2.4 Modules

2.4.1 Weak Modules

Definition 2.4.1 (Weak V -Module). Let V be a vertex algebra. A weak V-

module is a pair (M,YM ) consisting of a vector space M and a linear map

YM : V → (End(M)) [[z, z−1]]

a 7→ YM (a, z) =
∑
n∈Z

aM (n) z−n−1

such that the following hold:

(i) (Truncation) For any a ∈ V and any w ∈M , we have aM (n)w = 0 for all

sufficiently large n,

(ii) (Vacuum) YM (1, z) = IdM ,

(iii) (Translation Covariance) For any a ∈ V ,

[T, YM (a, z)] = YM (Ta, z) =
∂

∂z
YM (a, z),

(iv) (Jacobi Identity) For any a, b ∈ V and any w ∈M , one has

z−1
0 δ

(
z1 − z2
z0

)
YM (a, z1)YM (b, z2)w − z−1

0 δ

(
z2 − z1
z0

)
YM (b, z2)YM (a, z1)w

= z−1
2 δ

(
z1 − z0
z2

)
YM (Y (a, z0)b, z2)w.

When there is no risk of confusion, we may simply denote by M the

weak V -module (M,YM ), and we may also suppress the subscript M from the

expressions aM (n) and YM (a, z).

Remark. We note that V is a weak module over itself. Indeed, the axioms for

a weak V -module are similar to those for a vertex algebra, the only difference

being that weak V -modules have no creativity property.

Definition 2.4.2 (Homomorphism of V -Modules). Let M and N be weak V -

modules. A linear map φ : M → N is said to be a homomorphism of V -modules

if

φ(aM (k)u) = aN (k)(φ(u)) (2.10)

for all a ∈ V , k ∈ Z and u ∈M .

11



2.4.2 Admissible Modules

We now define an important class of module for C-graded vertex alge-

bras. These modules play a central role in the construction of the Zhu algebra.

Remark. The reader may be familiar with the notion of admissible module

over a vertex operator algebra. Our choice of terminology here is deliberate: If

a C-graded vertex algebra V happens to be a vertex operator algebra, then the

two notions of admissible V -module coincide.

Definition 2.4.3 (Admissible V -Module). Let V be a C-graded vertex algebra.

An admissible V -module is a weak V -module M with a grading of the form

M =
⊕
0≺µ

M(µ)

such that M(0) 6= 0 and for any homogeneous a ∈ Vλ, one has

aM (n)M(µ) ⊆M(µ+ λ− n− 1). (2.11)

If M =
⊕

0≺µM(µ) is an admissible V module, then we say that an

element u ∈M(µ) is homogeneous of weight µ. A homogeneous element u ∈M
is called a lowest weight vector if the following holds: For any homogeneous

a ∈ V , if aM (n)u 6= 0, then |u| ≺ |aM (n)u|.
We see that any C-graded vertex algebra V is an admissible module

over itself as follows: Since V is generated by its lowest weight vectors, every

element in V is a sum of elements of the form

ar(nr)ar−1(nr−1)...a1(n1)w,

where ai is homogeneous element in V and w ∈ V is a lowest weight vector. We

define V (0) as the space of lowest weight vectors, and we define

deg
(
ar(nr)ar−1(nr−1)...a1(n1)w

)
:=

r∑
i=1

(
|ai| − ni − 1

)
.

One can use the commutator formula (2.6) and the fact that w is a lowest weight

vector to show that either

Re

(
r∑
i=1

(
|ai| − ni − 1

))
> 0

12



or (
r∑
i=1

(
|ai| − ni − 1

))
= 0.

Therefore, we define V (λ) to be the space of all v ∈ V with deg(v) = λ, and this

endows V with the structure of an admissible V -module.

13



Chapter 3

The Zhu Algebra

Throughout this section we let V = (V, Y,1) be a C-graded vertex

algebra with grading V =
⊕

µ∈C Vµ. We now fix some notation. For a ∈ Vµ, we

let |a| denote the ceiling of the real part of µ, i.e.,

|a| := min{ n ∈ Z | n ≥ Re(µ) }.

Let V r be the set of all elements a ∈ V with r = |a| − |a|. One has that

V =
⊕
r∈C

V r.

Of course, a ∈ V 0 if and only if |a| = |a|, or equivalently, La = |a|. In light

of formula (2.9), we can then characterize V 0 as the vertex subalgebra of V

consisting of all integrally graded vectors.

3.1 Construction of A(V )

Here we construct the Zhu algebra A(V ) associated to a C-graded ver-

tex algebra.

Remark. The construction of A(V ) in this section resembles the original con-

struction of A(V ) as described in [Z]. In that paper, V is assumed to be a vertex

operator algebra (see Section 5.1), however, one notices that only the integral

grading on V is used to construct A(V ). This means that if V is a C-graded

14



vertex algebra that carries an integral grading, i.e., if V = V 0, then we are es-

sentially in the case considered in [Z], and we may therefore appeal to the results

proved in that work.

Definition 3.1.1. Let a ∈ V r be homogeneous. Define the products “◦” and “?”

on V as the linear extensions of the following:

a ◦ b := Resz
(1 + z)|a|+δr,0−1

z1+δr,0
Y (a, z)b

and

a ? b := δr,0 Resz
(1 + z)|a|

z
Y (a, z)b.

We define O(V ) to be the linear span of all elements of the form a◦b for a, b ∈ V .

Lemma 3.1.1. If r 6= 0, then V r ⊆ O(V ).

Proof. Let a ∈ V r be homogeneous. Then

a = Resz
(1 + z)|a|−1

z
Y (a, z)1 = a ◦ 1 ∈ O(V ).

Lemma 3.1.2. For any homogeneous a ∈ V , one has

(T + L)a ≡ 0 (mod O(V )). (3.1)

In particular, Ta ≡ −La (mod O(V )).

Proof. Suppose that a ∈ V r for some r. Clearly La ∈ V r, and Ta ∈ V r by

Proposition 2.3.1. If r 6= 0, the result follows because (T + L)a ∈ V r ⊆ O(V ).

Otherwise, a ∈ V 0, and we have

(T + L)a = Ta+ |a|a = Resz
(1 + z)|a|

z2
Y (a, z)1 ∈ O(V ),

where we use the fact that Ta = a(−2)1.

Lemma 3.1.3. For any homogeneous a ∈ V r and any m ≥ n ≥ 0, we have

Resz
(1 + z)|a|+δr,0−1+n

z1+δr,0+m
Y (a, z)b ∈ O(V ). (3.2)

15



Proof. The proof is the same as [Z] Lemma 2.1.2 if one replaces L(−1) by T .

Lemma 3.1.4. Let a, b ∈ V be homogeneous elements. Then

Y (a, z)b ≡ (1 + z)−|a|−|b|Y
(
b,
−z

1 + z

)
a (mod O(V )). (3.3)

Proof. This result was proved in [Z] during the proof of Lemma 2.1.3, but we

provide additional details here. Using skew symmetry (2.8), we have

Y (a, z)b = ezTY (b,−z)a

=
∑
i∈Z

ezT b(i)a (−z)−i−1

=
∑
i∈Z

∑
j≥0

zjT j

j!
b(i)a (−z)−i−1.

Recall that La + Ta ∈ O(V ) for any a ∈ V , so we have the following

congruence (mod O(V )):

zjT j

j!
b(i)a =

zj

j!
(−L)T j−1b(i)a

≡ (−1)
zj

j!
(|a|+ |b| − i− 1 + j − 1)T j−1b(i)a

≡ (−1)
zj

j!
(|a|+ |b| − i− 1 + j − 1)(−L)T j−2b(i)a

≡ (−1)j
zj

j!
(|a|+ |b| − i− 1 + j − 1) . . . (|a|+ |b| − i− 1)b(i)a

= (−1)j
zj

j!
b(i)a

j−1∏
k=0

(|a|+ |b| − i− 1 + k)

=
(
−|a| − |b|+ i+ 1

j

)
b(i)a zj ,

where in the last equality we used the binomial convention (2.3). Returning to

the previous calculation, we have the congruence (mod O(V ))

Y (a, z)b ≡
∑
i∈Z

∑
j≥0

(
−|a| − |b|+ i+ 1

j

)
b(i)a zj(−z)−i−1

=
∑
i∈Z

(−1)i+1b(i)a (1 + z)−|a|−|b|+i+1z−i−1

= (1 + z)−|a|−|b|Y
(
b,
−z

1 + z

)
a.

16



The following lemma and its proof are analogs of Lemma 2.1.3 of [Z].

Lemma 3.1.5. If a and b are homogeneous elements in V 0, then we have the

identities

a ? b ≡ Resz
(1 + z)|b|−1

z
Y (b, z)a (mod O(V )) (3.4)

and

a ? b− b ? a ≡ Resz (1 + z)|a|−1Y (a, z)b (mod O(V )). (3.5)

Proof. Recall that |a| = |a| and |b| = |b| since a, b ∈ V 0. Then use (3.3) to

calculate (mod O(V )):

a ? b = Resz Y (a, z)b
(1 + z)|a|

z

≡ Resz Y
(
b,
−z

1 + z

)
a

(1 + z)|a|

z
(1 + z)−|a|−|b|

= Resz Y
(
b,
−z

1 + z

)
a

(1 + z)
z

(1 + z)−|b|−1

= Resw Y (b, w)a
(1 + w)|b|−1

w
,

where in the last equality, we set w = −z
1+z and used the change of variables

formula (2.2). This proves (3.4). Formula (3.5) follows directly from (3.4) and

the definition of “ ? ”.

Proposition 3.1.6. O(V ) is a left ideal of V with respect to the “ ? ” product.

Proof. We must show that a ? (b ◦ c) ∈ O(V ) for any a, b, c ∈ V . Note that if

a ∈ V r and r 6= 0, then a ? (b ◦ c) = 0 ∈ O(V ). Therefore, we may assume that

a ∈ V 0. If b ∈ V 0, then the result is true by Theorem 2.1.1 of [Z]. The only

remaining case is when a ∈ V 0 and b ∈ V r for some r 6= 0. We calculate

a ? (b ◦ c)− b ◦ (a ? c) = Resz Resw Y (a, z)Y (b, w)c
(1 + z)|a|

z

(1 + w)|b|−1

w

−Resw Resz Y (b, w)Y (a, z)c
(1 + z)|a|

z

(1 + w)|b|−1

w
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= Resw Resz−w Y (Y (a, z − w)b, w)c
(1 + z)|a|

z

(1 + w)|b|−1

w

= Resw Resz−w
∞∑

i,j=0

(
|a|
i

)
(−1)j(z − w)i+j

(1 + w)|b|+|a|−1−i

w2+j

· Y (Y (a, z − w)b, w)c

=
∞∑

i,j=0

(
|a|
i

)
(−1)j Resw

(1 + w)|b|+|a|−1−i

w2+j
Y (a(i+ j)b, w)c

=
∞∑

i,j=0

(
|a|
i

)
(−1)j Resw

(1 + w)|a(i+j)b|+j

w2+j
Y (a(i+ j)b, w)c,

which is a sum of terms in O(V ) by (3.2). Since b ◦ (a ? c) is clearly in O(V ),

and a ? (b ◦ c) − b ◦ (a ? c) ∈ O(V ) by the previous calculation, we see that

a ? (b ◦ c) ∈ O(V ), which proves that O(V ) is a left ideal of V with respect to

the star product.

Proposition 3.1.7. O(V ) is a right ideal of V .

Proof. We must show that any element of the form (a◦b)?c is in O(V ). It suffices

to prove this for homogeneous elements a, b, and c. By the definition of the star

product, we know that if a◦b ∈ V r for some nonzero r, then (a◦b)?c = 0 ∈ O(V )

for any c ∈ V . Therefore, we assume a ◦ b ∈ V 0. It is clear that V 0 ? V r ⊆ V r

for any r, so if c ∈ V r for some r 6= 0, then (a ◦ b) ? c ∈ V r ⊆ O(V ). We are then

reduced to the case where (a ◦ b) ∈ V 0 and c ∈ V 0. If a, b ∈ V 0, then the result

follows from [Z], so the only remaining case is where a ∈ V r for some nonzero r,

a ◦ b ∈ V 0, and c ∈ V 0. By (3.4) it suffices to show that

x = Resz
(1 + z)|c|−1

z
Y (c, z)(a ◦ b) ∈ O(V ).

We calculate

x = Resz Resw
(1 + z)|c|−1(1 + w)|a|−1

zw
Y (c, z)Y (a,w)b

= Resw Resz−w Y (Y (c, z − w)a,w)b
(1 + z)|c|−1(1 + w)|a|−1

zw

+ Resw Resz Y (a,w)Y (c, z)b
(1 + z)|c|−1(1 + w)|a|−1

zw
.
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Since a 6∈ V 0, we see that the second term in the above sum is in O(V ). Therefore

we have (mod O(V ))

x ≡ Resw Resz−w Y (Y (c, z − w)a,w)b
(1 + z)|c|−1(1 + w)|a|−1

zw

=
∞∑
i=0

∞∑
j=0

(
|c| − 1
i

)
Resw Resz−w Y (Y (c, z − w)a,w)b

· (z − w)i+j(1 + w)|a|+|c|−2−i

w2+j

=
∞∑
i=0

∞∑
j=0

(
|c| − 1
i

)
Resw Y (c(i+ j)a,w)b

(1 + w)|a|+|c|−2−i

w2+j

=
∞∑
i=0

∞∑
j=0

(
|c| − 1
i

)
Resw Y (c(i+ j)a,w)b

(1 + w)|c(i+j)a|−1+j

w2+j
.

Again, since c ∈ V 0 and a 6∈ V 0, we see that c(i+ j)a 6∈ V 0, and we use (3.2) to

see that the last line above is a sum of terms in O(V ). We conclude that x ≡ 0

(mod O(V )), and the result follows.

Theorem 1. Define A(V ) := V/O(V ). Then A(V ) is an associative algebra

with respect to the “ ? ” product.

Proof. We may assume that a, b, c ∈ V 0, since otherwise a?(b?c) = (a?b)?c = 0

in A(V ). This result was proved in [Z].

3.2 The functor Ω

The goal of this section is to construct a functor Ω from the category

of admissible V -modules to the category of A(V )-modules. Throughout, we let

M =
⊕

0≺µM(µ) be an admissible V -module.

Definition 3.2.1 (Vacuum Space). The vacuum space Ω(M) of M is the set of

all lowest weight vectors of M .

Proposition 3.2.1. Let M be a simple admissible V -module. Then Ω(M) =

M(0).
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Proof. First, observe that Ω(M) is a graded subspace of M , since it consists of

lowest weight vectors. In particular,

Ω(M)(µ) = Ω(M) ∩M(µ).

It is clear that M(0) ⊆ Ω(M). If Ω(M)(µ) 6= 0 for some µ 6= 0, then M contains

a lowest weight vector w of weight µ with Re(µ) > 0. Since w is a lowest weight

vector, it generates a submodule W of the form

W =
⊕
µ≺λ

W (λ).

Note that any homogeneous vector u ∈W satisfies Re(|u|) > 0. This shows that

M(0) ∩W = 0, but this contradicts the fact M must equal W , as M is simple.

Thus, Ω(M)(µ) = 0 if µ 6= 0.

Remark. Recall from (2.11) that for any admissible V -module M , and any

homogeneous element a ∈ V , one has

a(n)M(µ) ⊆M(|a|+ µ− n− 1).

From this, it is evident that not every element a ∈ V has a mode that acts on

the graded subspaces of M . Indeed, if

|a|+ µ− n− 1 = µ,

we see that |a| = n + 1. In particular, |a| ∈ Z, which is only true for those

elements a ∈ V 0.

Definition 3.2.2 (Zero Mode). Let a ∈ V be a homogeneous element. We define

the zero mode o(a) of a as

o(a) = a(|a| − 1).

We extend this definition to all of V by linearity.

Note that if a ∈ V r for some nonzero r, then |a| − 1 > Re(|a|)− 1, and

so o(a) = a(|a| − 1) annihilates any lowest weight vector. On the other hand, if

a ∈ V 0, then |a| = |a|, so this definition of o(a) reduces to the definition given

in [Z].
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Theorem 2. Let M be a simple admissible V -module. Then there is an action

of the associative algebra A(V ) on Ω(M), with a ∈ A(V ) acting via its zero mode

o(a).

Proof. Proposition 3.2.1 shows that Ω(M) = M(0), so we must show that O(V )

annihilates M(0), and that o(a ? b) = o(a)o(b) on M(0) for a, b ∈ A(V ). First,

we show that O(V ) annihilates M(0). By the previous discussion, we see that

V r annihilates M(0) whenever r 6= 0. Therefore, we must show that V 0 ∩O(V )

annihilates M(0). For this it suffices to show that

o(a ◦ b)M(0) = 0

for a ◦ b ∈ V 0. If a, b ∈ V 0, this result was proved in [Z]. Thus, we assume that

a ∈ V r for some nonzero r, and a ◦ b ∈ V 0. Note that, in this case, b 6∈ V 0, and

we have

|a(n)b| = |a|+ |b| − n− 2

for any n ∈ Z. Now let w ∈ M(0). Following [DLM2], we use a property of the

δ function to rewrite the Jacobi identity as

z−1
1 δ

(
z0 + z2
z1

)
Y (a, z1)Y (b, z2)w − z−1

0 δ

(
z2 − z1
−z0

)
Y (b, z2)Y (a, z1)w

= z−1
1 δ

(
z2 + z0
z1

)
Y (Y (a, z0)b, z2)w.

Since a, b 6∈ V 0, we know that a(|a| − 1)w = b(|b| − 1)w = 0. Thus,

Resz1 Resz2 z
|a|−1
1 z

|b|−1
2 of the left hand side is equal to 0. Then we have

0 = Resz1 Resz2 z
|a|−1
1 z

|b|−1
2 z−1

1 δ

(
z2 + z0
z1

)
Y (Y (a, z0)b, z2)w

= Resz2 z
|b|−1
2 (z2 + z0)|a|−1Y (Y (a, z0)b, z2)w

= Resz2
∞∑
i=0

(
|a| − 1
i

)
zi0z
|a|+|b|−2−i
2 Y (Y (a, z0)b, z2)w

= Resz0 z
−1
0 Resz2

∞∑
i=0

(
|a| − 1
i

)
zi0z
|a|+|b|−2−i
2 Y (Y (a, z0)b, z2)w

=
∞∑
i=0

(
|a| − 1
i

)
(a(i− 1)b)(|a|+ |b| − 2− i)w

= o(a ◦ b)w.
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Altogether, this shows that O(V ) annihilates M(0). To see that

o(a ? b) = o(a)o(b) on M(0), observe that if a 6∈ V 0, then o(a) annihilates M(0),

and a ? b = 0, so the result holds. If a ∈ V 0 and b 6∈ V 0, then a ? b ∈ O(V ), and

therefore o(a ? b) = 0 = o(b) = o(a)o(b) on M(0). The only remaining case is

when a, b ∈ V 0, and this case was proved in [Z].

The following corollary is the main result of this section.

Corollary 3.2.2. Let M be any admissible V -module. Then there is an action

of A(V ) on Ω(M). In particular, Ω defines a covariant functor from the category

of admissible V -modules to the category of A(V )-modules.

Proof. The action of A(V ) on Ω(M) follows from the fact that Ω(M) is a sum

of lowest weight spaces of M , hence a sum of modules for A(V ). The remaining

functorial properties of Ω follow from (2.10), together with the fact that an

element a ∈ A(V ) acts on Ω(M) via its zero mode o(a).

3.3 The functor Λ

In this section we provide a natural construction of an admissible V -

module from an A(V )-module, thereby giving a functor Λ from the category

of A(V )-modules to the category of admissible V -modules. This construction

requires several steps. We first construct a Lie algebra VLie, whose elements

are the modes of elements of V . We endow this Lie algebra with a suitable

grading, and then construct an induced module for VLie from a simple A(V )-

module. Finally, we take a quotient of this induced module, and show that it is

an admissible V -module with a unique simple quotient.

3.3.1 The Lie Algebra VLie

In [DLM2] we encounter a Lie algebra which plays a role in their con-

struction of an admissible V -module from a module for the twisted Zhu algebra

Ag(V ). In this section, we construct a Lie algebra VLie which plays an analogous

role. The construction of VLie is similar to the construction found in [DLM2],
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but with some notable differences. These differences primarily stem from the

fact that our construction of VLie does not yield a Lie algebra with a suitable

triangular decomposition, since certain subspaces of VLie do not close on a Lie

algebra.

Let t be an indeterminate, and set L(V ) = C[t, t−1] ⊗ V . There is

a natural vertex algebra structure on C[t, t−1], and so L(V ) is a vertex algebra,

as it is a tensor product of vertex algebras (see [K], [LL]). The translation

covariance operator of L(V ) is given by

D =
d

dt
⊗ 1 + 1⊗ T.

A standard calculation shows that the space

L(V )/DL(V )

carries the structure of a Lie algebra with Lie bracket given by

[a+DL(V ), b+DL(V )] = a(0)b+DL(V ).

Therefore, we define

VLie := L(V )/DL(V ).

We let an denote the image of tn ⊗ a in VLie. Then note that

[an, bm] =
∞∑
i=0

(
n

i

)
(a(i)b)m+n−i. (3.6)

We give a complex grading to VLie by declaring, for homogeneous a ∈ V ,

deg(an) = |a| − n− 1.

We then have the Lie subalgebras

(VLie)+ = 〈 an | Re(deg(an)) > 0 〉

and

(VLie)0 = 〈 an | deg(an) = 0 〉 .

The space

(VLie)
− = 〈an | Re(deg(an)) < 0 or Re(deg(an)) = 0 and Im(deg(an)) 6= 0 〉
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is not a Lie subalgebra of VLie. Indeed, if |a| = n + iλ for some n ∈ Z and

nonzero λ ∈ R, and |b| = n − iλ, then a|a|−1
= an−1 and b|b|−1

= bn−1 are in

(VLie)−, but

[an−1, bn−1] =
∞∑
i=0

(
n− 1
i

)
(a(i)b)2n−2−i ∈ (VLie)0.

Therefore, we have that

(VLie)≤0 = (VLie)0 ⊕ (VLie)−

is a Lie subalgebra of VLie.

Of course, it is easy to see that (VLie)0 is spanned by elements of the

form a|a|−1 for homogenous a ∈ V 0. This gives a surjection

V 0 � (VLie)0.

Proposition 3.3.1. The kernel of the map

φ : V 0 → (VLie)0

a 7→ a|a|−1

is (T + L)V 0.

Proof. The zero element in the quotient space (VLie)0 is equal to the space

D 〈an | deg(an) = −1 〉 .

A typical element in this space is a sum∑
j

D(bjj) =
∑
j

j(bjj−1) + (Tbj)j

for some homogeneous bj ∈ Vj . One notes that j(bjj−1) = φ(Lbj) and (Tbj)j =

φ(Tbj). The result then follows from the fact that

∑
j

D(bjj) =
∑
j

φ(Lbj) + φ(Tbj) = φ

(T + L)
∑
j

bj

 .

For further discussion, see Section 4 of [DLM2].
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The next lemma was proved in [DLM2]. Recall that any associative

algebra has a natural Lie structure given by the commutator bracket.

Lemma 3.3.2. The map

(VLie)0 → A(V )Lie

a|a|−1 7→ a+O(V )

is a Lie algebra epimorphism, where A(V )Lie is the natural Lie algebra on A(V ).

Proof. First observe that we have the inclusions

(T + L)V 0 ⊆ O(V 0) ⊆ O(V ) ∩ V 0,

which give rise to the corresponding epimorphisms

(VLie)0 ∼= V 0/
(
(T + L)V 0

)
� A(V 0) ∼= V 0/O(V 0) � A(V ) ∼= V 0/(O(V ) ∩ V 0),

which in turn induce the desired linear epimorphism. We use (3.5) and (3.6) to

see that a|a|−1 7→ a+O(V ) is a Lie algebra morphism.

3.3.2 The Space M(U)

Throughout this section, we let U be a module for the associative al-

gebra A(V ).

Since U is a module for A(V ), and hence for A(V )Lie, we can lift U

to a module for (VLie)0 via

(VLie)0 � A(V )Lie → End(U)

a|a|−1 7→ a+O(V ) 7→ o(a).

Thus, a|a|−1 ∈ (VLie)0 acts as o(a) on U . We want to extend this action to

(VLie)≤0 = (VLie)0 ⊕ (VLie)−,

and we do so by letting (VLie)− annihilate U . It is not immediately clear that

this definition does in fact yield an action of (VLie)≤0, however, the next result

shows that this is indeed the case.

25



Proposition 3.3.3. The linear extension of the map

φ : (VLie)≤0 → A(V )Lie

a|a|−1 7→ a+O(V ) (a|a|−1 ∈ (VLie)0)

an 7→ O(V ) (an ∈ (VLie)−)

is a morphism of Lie algebras.

Proof. We have already seen that φ restricted to (VLie)0 is a morphism of Lie

algebras. Therefore, it suffices to show that the image of the space

(VLie)0 ∩ [(VLie)−, (VLie)−]

under φ lies in O(V ).

Assume that an, bm ∈ (VLie)−, and [an, bm] ∈ (VLie)0. Then it follows

that |a| = |b| = Re(|a|) = Re(|b|), and |a|+|b| ∈ Z. We also have n = m = |a|−1.

We calculate

φ ([an, bm]) = φ
([
a|a|−1

, b|b|−1

])
= φ

∑
i≥0

(
|a| − 1
i

)
(a(i)b)|a|+|b|−2−i


= φ

∑
i≥0

(
|a| − 1
i

)
(a(i)b)|a(i)b|−1


=

∑
i≥0

(
|a| − 1
i

)
(a(i)b)

= Resz
(
Y (a, z)b (1 + z)|a|−1

)
.

Note that an element of the form b ◦ a− a ◦ b is in O(V ) by definition of O(V ).

Therefore, the lemma follows from the claim that

Resz
(
Y (a, z)b (1 + z)|a|−1

)
≡ b ◦ a− a ◦ b (mod O(V )). (3.7)

To see this congruence, we use (3.3) and the fact that |a| + |b| = |a| + |b| to
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calculate (mod O(V ))

a ◦ b = Resz

(
Y (a, z)b

(1 + z)|a|−1

z

)

≡ Resz

(
Y (b,

−z
1 + z

)a
(1 + z)|a|−1

z
(1 + z)−|a|−|b|

)

= Resz

(
Y (b,

−z
1 + z

)a
(1 + z)−|b|+1

−z
∂

∂z

(
−z

1 + z

))

= Resw

(
Y (b, w)a

(1 + w)|b|

w

)
,

where in the last equality we use formula (2.2). Then we have (mod O(V ))

a ◦ b− b ◦ a ≡ Resz

(
Y (a, z)b

(1 + z)|a|−1

z

)
− Resz

(
Y (a, z)b

(1 + z)|a|

z

)

= Resz
(
Y (a, z)b (1 + z)|a|−1

)(1
z
− 1 + z

z

)
= −Resz

(
Y (a, z)b (1 + z)|a|−1

)
,

which proves (3.7), and hence the result.

To summarize, we have an action of the Lie subalgebra (VLie)≤0 on U ,

where a|a|−1 acts as o(a), and (VLie)− annihilates. We now consider the induced

module

M(U) = IndU(VLie)

U((VLie)≤0)
U ∼= U(VLie)⊗U((VLie)≤0) U

∼= S((VLie)+)⊗C U, (3.8)

where S(V ) denotes the symmetric algebra on V and U(·) denotes the universal

enveloping algebra.

Note that M(U) inherits a C-grading from S((VLie)+) if we assert that

the subspace U has degree 0. More precisely, we can write

M(U) =
⊕
0≺µ

M(U)(µ) (3.9)

where M(U)(0) = U .
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3.3.3 Action of V on M(U)

We define an action of V on M(U) via

YM(U)(v, z) =
∑
n∈Z

vn z
−n−1, (3.10)

so that v(n) = vn for all v ∈ V and n ∈ Z. Our goal is to show that a certain

quotient of M(U) is an admissible V -module. Note that (M(U), YM(U)) satisfies

the requirements to be an admissible V -module, except for the Jacobi identity.

Establishing the Jacobi identity directly is often difficult. We therefore

make use of the following result (see [LL] Proposition 3.4.3, or [FHL] for a

systematic treatment):

Proposition 3.3.4. Let u ∈M(U) and a, b ∈ V . Assume that the formal sums

Y (a, z)b, YM(U)(a, z)u and YM(U)(b, z)u are truncated as in Definitions 2.2.1 and

2.4.1. Then the Jacobi identity as applied to the elements a, b and u is equivalent

to the existence of integers k and l, depending only on a and u, that satisfy

(z1 − z2)k[YM(U)(a, z1), YM(U)(b, z2)]u = 0 (3.11)

and

(z0 + z2)l
(
YM(U)(Y (a, z0)b, z2)u− YM(U)(a, z0 + z2)YM(U)(b, z2)u

)
= 0. (3.12)

Remark. Conditions (3.11) and (3.12) above are often called weak commutativ-

ity and weak associativity, respectively.

To see that the operators YM(U)(a, z) satisfy (3.11), we make use of

Theorem 2.3 (iv) of [K], which states that (3.11) is equivalent to the commutator

formula

[a(n), b(m)] u =
∞∑
i=0

(
n

i

)
(a(i)b)(m+ n− i) u. (3.13)

The definition of the action (3.10) and commutator formula (3.6) imply that

(3.13) holds, so (3.11) holds as well.

It is not in general true that the operators YM(U)(a, z) satisfy (3.12).

Therefore, we must work with a suitable quotient of M(U).
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In particular, let W be the subspace of M(U) spanned by the coeffi-

cients of zi0z
j
2 in the expressions

(z0 + z2)|a|−1+δr,0Y (a, z0 + z2)Y (b, z2)u− (z2 + z0)|a|−1+δr,0Y (Y (a, z0)b, z2)u

(3.14)

for homogeneous a ∈ V r, b ∈ V , and u ∈ U . Now define

M̄(U) = M(U)/U(VLie)W.

Note that U(VLie)W is a graded VLie-submodule of M(U), and so M̄(U) inherits

the C-grading from M(U). It is not yet clear that M̄(U)(0) 6= 0, but this will

be established in the course of proving Theorems 3 and 4.

Proposition 3.3.5. Let M be a module for VLie with the property that there is

a subspace X of M such that X generates M as a module for VLie and, for any

a ∈ V r and any u ∈ X, there is an integer k such that

(z0 + z2)kY (a, z0 + z2)Y (b, z2)u = (z2 + z0)kY (Y (a, z0)b, z2)u (3.15)

for any b ∈ V . Then M is a weak V -module.

Proof. See [DLM2] Proposition 6.1, and take r = s = 0.

Theorem 3. The space M̄(U) is an admissible V -module. Moreover, M̄(U)

is a universal object in the sense that given any admissible V -module N and

any morphism of A(V )-modules φ : U → Ω(N), there is a unique morphism

of admissible V -modules M̄(U) → N which extends φ. In particular, if φ is

surjective, then N is a quotient of M̄(U).

Proof. Since U generates M(U) as a VLie-module, it follows that U + U(VLie)W

generates M̄(U) as a VLie-module. Clearly, U + U(VLie)W satisfies property

(3.15), so Proposition 3.3.5 implies that M̄(U) is a weak V -module. Moreover,

by previous remarks, we know that M̄(U) satisfies the grading requirements,

except for possibly the requirement that M̄(U)(0) 6= 0, but this is demonstrated

in the proof of Theorem 4.

In fact, in proving Theorem 4 we will show that M̄(U)(0) = U . The

universal property that M̄(U) satisfies will then be a simple consequence of the

construction of M̄(U) and Definition 2.4.2.
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3.3.4 Construction of Λ(U)

We now describe the construction of the Λ functor. Note that M(U)

has a unique maximal graded VLie-submodule J subject to J ∩ U = 0. Indeed,

one may take J to be the sum of all submodules N satisfying N ∩ U = 0. The

main result of this section is the following:

Theorem 4. The space Λ(U) = M(U)/J is an admissible V -module with the

property that the lowest weight space of Λ(U) is U .

The main goal in the proof of this theorem is to show that U(VLie)W ⊆
J , and most of this section is devoted to this goal. Once we establish this fact, it

will be clear that Λ(U) is an admissible V -module, as it is a quotient of M̄(U).

First, we note that we can give an alternative characterization of J as

follows: Let U∗ denote the set of linear functionals on U . Given u′ ∈ U∗, we can

extend u′ to all of M(U) be declaring that u′ annihilates all graded subspaces of

M(U) which are not equal to U . One then sees that the VLie-submodule J can

be described alternatively as

J = {v ∈M(U) |
〈
u′, xv

〉
= 0 for all u′ ∈ U∗, x ∈ U(VLie) }, (3.16)

where 〈·, ·〉 denotes the natural pairing U∗ ⊗M(U)→ C.

We use this characterization of J in what follows. The next lemma and

its proof are modifications of Lemma 6.7 of [DLM2]. Since there is little risk of

confusion, we omit the subscripts M(U) from the operators YM(U)(a, z).

Lemma 3.3.6. Let a ∈ V be homogeneous with a ∈ V r for some nonzero r, let

u′ ∈ U∗, and let u ∈ U . Then, for any i, j ≥ 0, we have

Resz0 z
−1+i
0 (z0 + z2)|a|−1+j

〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
= Resz0 z

−1+i
0 (z2 + z0)|a|−1+j

〈
u′, Y (Y (a, z0)b, z2)u

〉
for any b ∈ V .

Proof. Since j ≥ 0 and |a| 6= |a|, we know that a|a|−1+j
is an element of (VLie)−,

and therefore a(|a| − 1 + j) annihilates u. Then, for any i ≥ 0, we have

Resz1(z1 − z2)iz|a|−1+j
1 Y (b, z2)Y (a, z1)u = 0.
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Note that we also have the commutator formula

[Y (a, z1), Y (b, z2)] = Resz0 z
−1
2 δ

(
z1 − z0
z2

)
Y (Y (a, z0)b, z2),

which is simply a reformulation of (3.11). Then

Resz0 z
i
0(z0 + z2)|a|−1+jY (a, z0 + z2)Y (b, z2)u

= Resz1(z1 − z2)iz|a|−1+j
1 Y (a, z1)Y (b, z2)u

= Resz1(z1 − z2)iz|a|−1+j
1 [Y (a, z1), Y (b, z2)]u

= Resz0 Resz1(z1 − z2)iz|a|−1+j
1 z−1

2 δ

(
z1 − z0
z2

)
Y (Y (a, z0)b, z2)u

= Resz0 Resz1z
i
0z
|a|−1+j
1 z−1

1 δ

(
z2 + z0
z1

)
Y (Y (a, z0)b, z2)u

= Resz0 z
i
0(z2 + z0)|a|−1+jY (Y (a, z0)b, z2)u,

which proves the lemma for i ≥ 1. Now assume that i = 0. Then

Resz0 z
−1
0 (z0 + z2)|a|−1+j

〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
=
∞∑
k=0

(
j

k

)
Resz0(z0 + z2)|a|−1zk−1

0 zj−k2

〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
=
∞∑
k=1

(
j

k

)
Resz0(z2 + z0)|a|−1zk−1

0 zj−k2

〈
u′, Y (Y (a, z0)b, z2)u

〉
+ Resz0(z0 + z2)|a|−1z−1

0 zj2
〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
The lemma then follows from the claims that

Resz0 z
−1
0 (z0 + z2)|a|−1

〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
= 0 (3.17)

and

Resz0 z
−1
0 (z2 + z0)|a|−1

〈
u′, Y (Y (a, z0)b, z2)u

〉
= 0. (3.18)

To see (3.17), recall that b(|b|− 1−n)u = 0 since b|b|−1+n
∈ (VLie)− for

n ≤ 1. Then we have

〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
=
∑
n≥0

〈
u′, a(|a| − 1 + n)b(|b| − 1− n)u

〉
(z0 + z2)−|a|−nz−|b|+n2 .
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This gives

Resz0 z
−1
0 (z0 + z2)|a|−1

〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
= Resz0

∑
n≥0

〈
u′, a(|a| − 1 + n)b(|b| − 1− n)u

〉
(z0 + z2)−n−1z

−|b|+n−1
2

= Resz0
∑
n≥0

∑
k≥0

(
−n− 1
k

)〈
u′, a(|a| − 1 + n)b(|b| − 1− n)u

〉
· z−|b|+n−1+k

2 z−n−1−k
0

=
〈
u′, a(|a| − 1)b(|b| − 1)u

〉
z
−|b|−1
2

= 0,

where the last equality holds because a ∈ V r, so a(|a|−1) annihilates b(|b|−1)u.

This proves (3.17). An analogous calculation shows that

Resz0 z
−1
0 (z2 + z0)|a|−1

〈
u′, Y (Y (a, z0)b, z2)u

〉
=
∑
k≥0

(
|a| − 1
k

)〈
u′, (a(k − 1)b)(|a(k − 1)b| − 1)u

〉
z
−|a|−|b|+|a|−1
2 ,

where we make the assumption that |a(j)b| = |a(j)b| for j ∈ Z. This assumption

is justfied because otherwise the element a(j)b would have a zero mode that does

not preserve the graded subspace U , which would then imply that〈
u′, (a(j)b)(k)u

〉
= 0

for any k ∈ Z. Then (3.18) follows from the fact that∑
k≥0

(
|a| − 1
k

)
(a(k − 1)b)(|a(k − 1)b| − 1)u = o(a ◦ b)u = 0,

which holds since O(V ) annihilates U .

Lemma 3.3.7. Let a, u, and u′ be as in the previous lemma. Let j ≥ 0 and

i ∈ Z. Then we have

Resz0 z
i
0(z0 + z2)|a|−1+j

〈
u′, Y (a, z0 + z2)Y (b, z2)u

〉
= Resz0 z

i
0(z2 + z0)|a|−1+j

〈
u′, Y (Y (a, z0)b, z2)u

〉
for any b ∈ V .
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Proof. The result holds for i ≥ −1 by the previous lemma. The proof then

follows from the T derivative property together with induction on i. A complete

proof is given in [DLM2] Lemma 6.8.

Proposition 3.3.8. The following holds for any homogeneous a ∈ V r, b ∈ V ,

u′ ∈ U∗, u ∈ U and j ≥ 0 :〈
u′, (z0 + z2)|a|−1+δr,0+jY (a, z0 + z2)Y (b, z2)u

〉
=
〈
u′, (z2 + z0)|a|−1+δr,0+jY (Y (a, z0)b, z2)u

〉
. (3.19)

In particular, U∗ annihilates W .

Proof. Assume that b ∈ V s for some s. If r = 0 and s 6= 0, then both sides of

(3.19) are equal to 0. This follows from the fact that the modes of a act on V 0,

but the modes of b do not, i.e., for any i ∈ Z,

b(i)V 0 ∩ V 0 = 0.

Now assume that r = s = 0. Then this is essentially the case where

V = V 0, so we appeal to [DLM2] Proposition 6.5. The only remaining case is

where r 6= 0, and this case follows from the previous two lemmas.

Proposition 3.3.9. For any u′ ∈ U∗, one has

〈
u′,U(VLie)W

〉
= 0.

In particular, U(VLie)W ⊆ J .

Proof. Let X be the subset of U(VLie) that satisfies

〈
u′, XW

〉
= 0.

To prove the proposition, we must show that X = U(VLie). Note that (3.9) and

Proposition 3.3.8 imply that U((VLie)+) ⊆ X and U((VLie)0) ⊆ X. Therefore, it

suffices to show that U((VLie)−) ⊆ X. Since U((VLie)−) is generated by elements

of the form ck with c homogeneous and k ≥ |c| − 1, and since 1 ∈ X, it suffices
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to show that Xck ⊆ X. Let x ∈ X, a ∈ V r, b ∈ V , u ∈ U , and u′ ∈ U∗. We will

show that 〈
u′, (z0 + z2)|a|−1+δr,0 xck · Y (a, z0 + z2)Y (b, z2)u

〉
=
〈
u′, (z2 + z0)|a|−1+δr,0 xck · Y (Y (a, z0)b, z2)u

〉
(3.20)

Note that

|c(i)a| = |c|+ |a| − i− 1− ε,

where ε is equal to 0 or 1. We may further assume that c(i)a ∈ V s for some s,

so that we have

|a| − 1 + δr,0 + k − i = |c(i)a| − 1 + δs,0 + α,

where α = k − |c|+ 1− δs,0 + δr,0 + ε. Note that α ≥ 0 since k ≥ |c| − 1, and if

r 6= 0 and s = 0, then ε must equal 1.

We also have the following formula, which is equivalent to (3.6) :

[ck, Y (a, z0)] =
∞∑
i=0

(
k

i

)
zk−i0 Y (c(i)a, z0).

For notational convenience, we set

β =
〈
u′, (z0 + z2)|a|−1+δr,0 xck · Y (a, z0 + z2)Y (b, z2)u

〉
,

and then calculate:
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β =
〈
u′, (z0 + z2)|a|−1+δr,0 xY (a, z0 + z2)Y (b, z2)cku

〉
+

〈
u′,

∞∑
i=0

(
k

i

)
(z0 + z2)k−i+|a|−1+δr,0 xY (c(i)a, z0 + z2)Y (b, z2)u

〉

+

〈
u′,

∞∑
i=0

(
k

i

)
zk−i2 (z0 + z2)|a|−1+δr,0 xY (a, z0 + z2)Y (c(i)b, z2)u

〉
=

〈
u′, (z0 + z2)|a|−1+δr,0 xY (a, z0 + z2)Y (b, z2)cku

〉
+

〈
u′,

∞∑
i=0

(
k

i

)
(z0 + z2)|c(i)a|−1+δs,0+α xY (c(i)a, z0 + z2)Y (b, z2)u

〉

+

〈
u′,

∞∑
i=0

(
k

i

)
zk−i2 (z2 + z0)|a|−1+δr,0 xY (Y (a, z0)c(i)b, z2)u

〉
=

〈
u′, (z0 + z2)|a|−1+δr,0 xY (a, z0 + z2)Y (b, z2)cku

〉
+

〈
u′,

∞∑
i=0

(
k

i

)
(z2 + z0)|c(i)a|−1+δr,0+α xY (Y (c(i)a, z0)b, z2)u

〉

+

〈
u′,

∞∑
i=0

(
k

i

)
zk−i2 (z2 + z0)|a|−1+δr,0 xY (Y (a, z0)c(i)b, z2)u

〉
=

〈
u′, (z0 + z2)|a|−1+δr,0 xY (a, z0 + z2)Y (b, z2)cku

〉
+

〈
u′,

∞∑
i=0

(
k

i

)
(z2 + z0)k−i+|a|−1+δr,0 xY (Y (c(i)a, z0)b, z2)u

〉

+

〈
u′,

∞∑
i=0

(
k

i

)
zk−i2 (z2 + z0)|a|−1+δr,0 xY (c(i)Y (a, z0)b, z2)u

〉

−

〈
u′,

∞∑
i=0

∞∑
j=0

(
k

i

)(
i

j

)
zk−i2 zi−j0 (z2 + z0)|a|−1+δr,0 xY (Y (c(j)a, z0)b, z2)u

〉

For i, j ≥ 0, we have the identity(
k

i

)(
i

j

)
=
(
k

j

)(
k − j
i− j

)
,

which we use to see that the second and fourth terms in the last expression
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cancel:
∞∑
i=0

∞∑
j=0

(
k

i

)(
i

j

)
zk−i2 zi−j0 (z2 + z0)|a|−1+δr,0 xY (Y (c(j)a, z0)b, z2)u

=
∞∑
j=0

∞∑
i=0

(
k

i

)(
i

j

)
zk−i2 zi−j0 (z2 + z0)|a|−1+δr,0 xY (Y (c(j)a, z0)b, z2)u

=
∞∑
j=0

∞∑
i=j

(
k

j

)(
k − j
i− j

)
zk−i2 zi−j0 (z2 + z0)|a|−1+δr,0 xY (Y (c(j)a, z0)b, z2)u

=
∞∑
j=0

(
k

j

)
(z2 + z0)k−j+|a|−1+δr,0 xY (Y (c(j)a, z0)b, z2)u.

Returning to the previous calculation, we have

β =
〈
u′, (z0 + z2)|a|−1+δr,0 xY (a, z0 + z2)Y (b, z2)cku

〉
+

〈
u′,

∞∑
i=0

(
k

i

)
zk−i2 (z2 + z0)|a|−1+δr,0 xY (c(i)Y (a, z0)b, z2)u

〉
=

〈
u′, (z0 + z2)|a|−1+δr,0 xY (a, z0 + z2)Y (b, z2)cku

〉
+
〈
u′, (z2 + z0)|a|−1+δr,0 x [ck, Y (Y (a, z0)b, z2)]u

〉
=

〈
u′, (z2 + z0)|a|−1+δr,0 xck · Y (Y (a, z0)b, z2)u

〉
,

where in the last step we used the fact that if cku 6= 0, then cku ∈ U , since

k ≥ |c| − 1. This proves (3.20), and thus we have shown that X = U(VLie), as

desired.

We now return to the proof of Theorem 4. Recall that our main goal

was to show that U(VLie)W ⊆ J , which we accomplished in Proposition 3.3.9.

Since U +J generates Λ(U) as a VLie-module, and since W = 0 in Λ(U), we can

use Proposition 3.3.5 to see that Λ(U) is a weak V module, and it is a quotient

of M̄(U). Moreover, J is a graded submodule of M(U), so Λ(U) inherits the C-

grading from M(U) and is therefore an admissible V -module. Since J ∩ U = 0,

we further have that Ω(Λ(U)) = Λ(U)(0) = U . This proves Theorem 4 and

completes the proof of Theorem 3.

Proposition 3.3.10. Let U be a simple A(V )-module. Then Λ(U) is a simple

admissible V -module.
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Proof. The assertion that Λ(U) is simple is equivalent to the assertion that J is a

maximal U(VLie)-submodule of M(U). Let X be a graded U(VLie)-submodule of

M(U) which properly contains J . Then X necessarily has nonempty intersection

with M(U)(0) = U , and so the space X ∩ U is a nonzero A(V )-submodule of

U . Since U is a simple A(V )-module, it must be that X ∩ U = U , and since U

generates M(U) as a U(VLie)-module, it follows that X = M(U). This shows

that J is a maximal graded submodule of M(U), and hence Λ(U) is a simple

V -module.

3.4 A Categorical Bijection

In this section we establish the main result of this chapter.

Proposition 3.4.1. Let M be a simple admissible V -module. Then Ω(M) is a

simple A(V )-module.

Proof. Recall from Proposition 3.2.1 that Ω(M) = M(0). Assume that M(0)

contains a nonzero A(V )-submodule U , and let N denote the admissible V -

module generated by U . We use Theorem 3 to see that N is a quotient of M̄(U)

and N(0) = U . On the other hand, the simplicity of M implies that N = M ,

hence N(0) = M(0) = U .

Theorem 5. The functors Λ and Ω induce mutually inverse bijections on the

isomorphism classes of the categories of simple A(V )-modules and simple admis-

sible V -modules.

Proof. First, Theorem 4 implies that Ω(Λ(U)) = U for any A(V )-module U

so that Ω ◦ Λ = Id on the full category of A(V )-modules. Now assume that

M is a simple V -module. Then Propositions 3.4.1 and 3.3.10 show that Ω(M)

is a simple A(V )-module and Λ(Ω(M)) is a simple V -module. Then M and

Λ(Ω(M)) are both simple quotients of the universal object M̄(Ω(M)). Since

M̄(Ω(M)) has a unique maximal ideal J subject to J ∩ Ω(M) = 0, it follows

that M ∼= M̄(Ω(M))/J ∼= Λ(Ω(M)) .
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Remark. The failure of Λ and Ω to be inverse bijections on the full categories of

A(V )-modules and admissible V -modules follows from the existence of admissible

V -modules which are not completely reducible. For example, suppose that M

is an indecomposable admissible V -module that contains a proper admissible

submodule N with Ω(N) ⊆M(µ) for some nonzero µ. Then as an A(V )-module,

Ω(M) has a direct sum decomposition

Ω(M) = Ω(N)⊕ P,

where P is an A(V )-submodule which contains the nonzero subspace M(0). The

V -module Λ(Ω(M)) then has the corresponding direct sum decomposition

Λ(Ω(M)) = Λ(Ω(N))⊕ Λ(P ),

which is clearly not isomorphic to the indecomposable module M .
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Part II

Pseudo Vertex Operator

Algebras
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Chapter 4

Introduction

4.1 Overview

A vertex operator algebra V is a Z-graded vertex algebra with a dis-

tinguished element ω ∈ V , called the conformal vector (see Section 5.1.1). In

general, V contains many conformal vectors, and each of these vectors induces

an alternative vertex operator algebra structure on V (see [DM], [Lian], [MN]).

Interestingly, this “shifted” vertex operator algebra structure is not in general

isomorphic to the original vertex algebra structure, and this idea has been ex-

plored in various contexts to obtain new examples of vertex operator algebras.

Noteworthy examples include the triplet algebra W(p) (see [AM2]) and the work

of Dong and Mason in constructing examples of “exotic” vertex operator algebras

(see [DM]).

The triplet algebra is one example of a class of vertex operator algebra

called logarithmic vertex operator algebras. These logarithmic theories are char-

acterized by the fact that ω(1) does not necessarily act semisimply on admissible

modules. Such theories have been studied extensively, often under the name log-

arithmic conformal field theory (see [AM1], [AM2], [AM3], [F1], [F2], [FFHST],

[G], [GK]). These logarithmic theories are interesting in part because they give

rise to novel features in the representation theory of the Virasoro algebra, in-

cluding examples of modules for the Virasoro algebra which are not completely

reducible.
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4.2 Motivation

The motivation for the results of Part II of this thesis comes from the

two related ideas mentioned above. The first concerns the notion of a conformal

shift of a vertex operator algebra V = (V, Y,1, ω). As discussed above, one

can shift the conformal vector ω to obtain a new conformal vector ω′ with the

property that V ′ = (V, Y 1, ω′) is another vertex operator algebra. We may view

ω and ω′ as the endpoints of a continuous path Γ ⊂ Ck (see Section 5.1.2). The

intermediate points ω′′ ∈ Γ are conformal vectors in the sense that they generate

the Virasoro algebra, but it is not in general true that V ′′ = (V, Y,1, ω′′) is a

vertex operator algebra. One then asks what kind of structure does V ′′ possess?

We show that, for a class of vertex operator algebra called strongly regular, each

intermediate ω′′ gives rise to a structure which we call a pseudo vertex operator

algebra. Thus, any strongly regular vertex operator algebra generates a space of

pseudo vertex operator algebras, and we view Γ as a path in this space.

The second motivation comes from the study of logarithmic confor-

mal field theories. Given the importance of these objects, it is natural to relax

the assumptions on ω(1) to include the case that ω(1) does not have integral

spectrum, nor does it act semisimply on any V -module, including V itself. We

prove that these relaxed assumptions describe the intermediate structures V ′′

discussed above (see Theorem 9). Therefore, using the framework of pseudo

vertex operator algebras, we seek to understand the nature of the relationship

between conformal shifts of vertex operator algebras and the corresponding rep-

resentation theory.
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Chapter 5

Vertex Operator Algebras

5.1 Vertex Operator Algebras

A vertex operator algebra is a particular type of vertex algebra. We

introduce some background.

5.1.1 Definitions

Definition 5.1.1 (Virasoro Lie Algebra). The Virasoro Lie algebra is the vector

space

V irc = Ck ⊕
⊕
n∈Z

L(n),

with Lie algebra structure given by

[k, L(n)] = 0,

[L(n), L(m)] = (n−m)L(n+m)− cm
3 −m
12

δm+n,0k, (5.1)

where c is a complex number called the central charge.

Definition 5.1.2 (Vertex Operator Algebra). Let c be a complex number. A

vertex operator algebra of central charge c is a quadruple (V, Y,1, ω) consisting of

a vertex algebra (V, Y,1), and a distinguished vector ω ∈ V called the conformal

vector (or Virasoro vector). If we set L(n) = ω(n+ 1) for each n, so that

Y (ω, z) =
∑
n∈Z

L(n) z−n−2,
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then we require that the operators {L(n)}n∈Z generate the Virasoro Lie algebra

(with k acting as IdV ). We also require the following:

(i) L(−1) is the translation covariance operator T for the vertex algebra (V, Y,1),

(ii) V carries a truncated Z-grading

V =
∞⊕
n=N

Vn

for some N ∈ Z, such that each graded subspace Vn is of finite dimension,

(iii) L(0) is semisimple on V , with L(0) acting as the scalar n on each Vn.

When there is no danger of confusion, we often denote by V the vertex operator

algebra (V, Y,1, ω).

Definition 5.1.3 (CFT Type). A vertex operator algebra V =
⊕

n∈Z Vn is said

to be of CFT type if Vn = 0 for any n < 0 and V0 = C1.

Remark. The letters “CFT” in the previous definition are an abbreviation of

“conformal field theory”. Most of the first examples of vertex operator algebras

were of CFT type (see [FLM], [D]), and little work had been done in exploring

the existence of non-CFT type vertex operator algebras. Dong and Mason were

among the first to systematically produce new families of non-CFT type vertex

operator algebras, demonstrating that such structures exist in abundance (see

[DM]).

Proposition 5.1.1. Let V be a CFT type vertex operator algebra. Then V1

carries the structure of a Lie algebra with bracket given by [a, b] = a(0)b.

Proof. First, we recall that L(−1) = T annihilates V0 = C1 and a(n)b = 0 for

n ≥ 2. Then the skew-symmetry (2.8) immediately gives

[a, b] = a(0)b = −b(0)a = − [b, a] .

Similarly, the Jacobi identity for Lie algebras is an immediate consequence of

the associator formula (2.7) with m = n = 0.
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Definition 5.1.4 (C2-Cofinite). A vertex operator algebra V is called C2-cofinite

if the space

C2(V ) = {a(−2)b | a, b,∈ V }

has finite codimension in V .

Remark. The C2-cofiniteness condition is an internal condition that is related

to certain finiteness conditions in the representation theory of a given vertex

operator algebra V . A routine argument shows that the codimension of C2(V ) in

V is an upper bound on the dimension of A(V ). C2-cofiniteness therefore implies

that a vertex operator algebra V has a finite dimensional Zhu algebra A(V ),

which, together with mild additional assumptions, implies that there are only

finitely many isomorphism classes of simple admissible V -modules (see [ABD],

[DLM1], [L2], [Z]).

5.1.2 Conformal Shifts

In this section we assume that V =
⊕

n≥0 Vn is a CFT type vertex

operator algebra of central charge c. We note that if h ∈ V1, then h(1)h and

L(1)h are both elements in V0, and are therefore equal to scalar multiples of 1.

Proposition 5.1.2. Let h ∈ V1 and let α and β be the complex numbers defined

by h(1)h = α1 and L(1)h = β1. Then ωh = ω + L(−1)h satisfies the Virasoro

relations with central charge ch = c+ 12(β − α).

Proof. We let Y (ωh, z) =
∑

n∈Z Lh(n)z−n−2, and use (2.5) to obtain

Lh(n) = L(n)− (n+ 1)h(n). (5.2)

We then calculate:

[Lh(m), Lh(n)] = [L(m), L(n)] + (m+ 1)(n+ 1)[h(m), h(n)]

−(n+ 1)[L(m), h(n)]− (m+ 1)[h(m), L(n)]
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= [L(m), L(n)] + (m+ 1)(n+ 1)[h(m), h(n)]

−(n+ 1)
∞∑
i=0

(
m+ 1
i

)
(ω(i)h)(m+ n+ 1− i)

+(m+ 1)
∞∑
i=0

(
n+ 1
i

)
(ω(i)h)(m+ n+ 1− i)

= [L(m), L(n)] + (m+ 1)(n+ 1)[h(m), h(n)]

−(n+ 1)
∞∑
i=0

(
m+ 1
i

)
(L(i− 1)h)(m+ n+ 1− i)

+(m+ 1)
∞∑
i=0

(
n+ 1
i

)
(L(i− 1)h)(m+ n+ 1− i)

= [L(m), L(n)] + (m+ 1)(n+ 1)[h(m), h(n)]

−(n+ 1)
(

(L(−1)h)(m+ n+ 1) + (m+ 1)(L(0)h)(m+ n)
)

−(n+ 1)
(
m(m+ 1)

2
(L(1)h)(m+ n− 1)

)
+(m+ 1)

(
(L(−1)h)(m+ n+ 1) + (n+ 1)(L(0)h)(m+ n)

)
+(m+ 1)

(
n(n+ 1)

2
(L(1)h)(m+ n− 1)

)
= (m− n)L(m+ n) +

m3 −m
12

δm+n,0c Id +(n+ 1)(m+ 1)[h(m), h(n)]

+(m− n)(L(−1)h)(m+ n+ 1)

+(m+ 1)(n+ 1)
(n−m)

2
(L(1)h)(m+ n− 1)

= (m− n)L(m+ n) +
m3 −m

12
δm+n,0c Id−(m− n)(m+ n+ 1)(h)(m+ n)

+(n+ 1)(m+ 1)[h(m), h(n)]

+(m+ 1)(n+ 1)
(n−m)

2
(L(1)h)(m+ n− 1)

= (m− n)Lh(m+ n) +
m3 −m

12
δm+n,0c Id

+(n+ 1)(m+ 1)
(

[h(m), h(n)] +
(n−m)

2
(L(1)h)(m+ n− 1)

)
= (m− n)Lh(m+ n) +

m3 −m
12

δm+n,0c Id

+(n+ 1)(m+ 1)

( ∞∑
i=0

(
m

i

)
(h(i)h)(m+ n− i)

)

+(n+ 1)(m+ 1)
(

(n−m)
2

(β1)(m+ n− 1)
)
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= (m− n)Lh(m+ n) +
m3 −m

12
δm+n,0c Id

+(n+ 1)(m+ 1)
(

(h(0)h)(m+ n) +m(h(1)h)(m+ n− 1)
)

+(n+ 1)(m+ 1)
(n−m)

2
βδm+n,0 Id

= (m− n)Lh(m+ n) +
m3 −m

12
δm+n,0c Id

+(n+ 1)(m+ 1)
(
m(α1)(m+ n− 1) +

(n−m)
2

βδm+n,0 Id
)

= (m− n)Lh(m+ n) +
m3 −m

12
δm+n,0c Id

+(n+ 1)(m+ 1)
(
mαδm+n,0 Id +

(n−m)
2

βδm+n,0 Id
)

= (m− n)Lh(m+ n) +
m3 −m

12
δm+n,0c Id +

m3 −m
12

12(β − α)δm+n,0 Id

= (m− n)Lh(m+ n) +
m3 −m

12
δm+n,0(c+ 12(β − α)) Id

Remark. In what follows, we will concern ourselves primarily with the case

where h is a primary vector, i.e., L(1)h = 0, so that β = 0 in the previous

proposition.

Definition 5.1.5. The quadruple (V, Y,1, ωh) is called a shifted vertex operator

algebra, and is denoted V h.

Remark. We emphasize here that a shifted vertex operator algebra is not in

general a vertex operator algebra, the choice of terminology being historical

([DM]). The shifted vertex operator algebra V h is, however, a vertex algebra,

since shifting the conformal vector does not change the underlying vertex algebra

structure. Indeed, V h satisfies all of the requirements to be a vertex operator

algebra except for possibly the semisimplicity of Lh(0) and the grading require-

ments on V . From (5.2) we see that

Lh(0) = L(0)− h(0),
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so Lh(0) is semisimple if and only if h(0) is a semisimple operator. Moreover, the

integrality and finite dimensionality of the Lh(0)-eigenspaces are determined by

the h(0)-eigenspace decomposition of V . Even if h(0) is semisimple on V with

integral spectrum, it is not clear if the Lh(0)-eigenspaces are finite dimensional.

Remark. Since V and V h share the same underlying vertex algebra, it follows

that they have the same set of weak modules. Thus, the categories of weak

V -modules and weak V h-modules are equivalent.
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Chapter 6

Pseudo Vertex Operator Algebras

6.1 Pseudo Vertex Operator Algebras

Definition 6.1.1 (Pseudo Vertex Operator Algebra). A pseudo vertex operator

algebra is a C-graded vertex algebra V =
⊕

µ∈C Vµ with the following additional

properties:

(i) There is a vector ω ∈ V2, called the conformal vector, such that the

operators {L(n)} defined by Y (ω, z) =
∑

n∈Z L(n) z−n−2 generate the Virasoro

Lie algebra,

(ii) L(−1) = T ,

(iii) For any v ∈ Vµ, there is some n ∈ N such that (L(0)−µ)nv = 0,

and dim(Vµ) <∞ for all µ ∈ C,

(iv) Re(µ) ≥ | Im(µ)| for all but finitely many µ ∈ SpecV (L(0)).

Remark. A pseudo vertex operator algebra satisfies the axioms of a vertex oper-

ator algebra with the exception of the semisimplicity of L(0) and the integrality

of the spectrum of L(0). Moreover, since ω ∈ V2, it follows from (2.9) that any

pseudo vertex operator algebra contains the vertex operator algebra generated

by ω.

We let V denote a pseudo vertex operator algebra. The conformal

structure of V allows us to define a new class of V -module.

Definition 6.1.2 (Ordinary V -Module). A weak V -module M is called ordinary
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if M has a C-grading induced by LM (0)-eigenvalues

M =
⊕

µ∈SpecM (LM (0))

M(µ),

such that each graded subspace M(µ) is finite dimensional and satisfies

(LM (0)− µ)nM(µ) = 0

for some n ∈ N. We also require that Re(µ) > 0 for all but finitely many

µ ∈ SpecM (LM (0)).

Remark. An ordinary V -module is an admissible module for V as a C-graded

vertex algebra. We also note that if V is a vertex operator algebra, the definition

of ordinary V -module agrees with the usual definition of ordinary V -module as

found in the literature (see [DLM1], [L2]).

Remark. If V is a pseudo vertex operator algebra, then a simple admissible

V -module M has a very particular grading. First, the simplicity of M implies

that Ω(M) = M(λ) for some λ ∈ C. Then we have

M =
⊕

µ∈SpecV (L(0))

M(λ+ µ). (6.1)

From this, it is evident that each graded subspace M(λ+µ) is of finite dimension,

and therefore we see that a simple admissible V -module is a simple ordinary V -

module.

Definition 6.1.3 (Conformal Weight). Let M be a simple admissible V -module

with grading as in (6.1). The complex number λ is called the conformal weight

of M .

6.2 Pseudo Vertex Operator Algebras via Conformal

Shift

The main goal of this section is to construct a family of pseudo vertex

operator algebras via conformal shifts of a vertex operator algebra V . In order
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to ensure that the shifted vertex operator algebra V h is a pseudo vertex operator

algebra, we restrict our attention to a class of vertex operator algebras called

strongly regular. This is a reasonably general class of vertex operator algebra.

6.2.1 Strongly Regular Vertex Operator Algebras

Definition 6.2.1. A vertex operator algebra V is called strongly regular if V is

C2-cofinite, CFT type, L(1)V1 = 0, and the category of admissible V -modules is

semisimple.

Remark. The property that the category of admissible V -modules is semisimple

is often called rationality.

Remark. It is shown in [L2] and [DLM2] that if V is a strongly regular vertex

operator algebra, then a simple admissible V -module is a simple ordinary V -

module.

The following two theorems are proved in [M]. Theorem 6 is a strength-

ening of Proposition 5.1.1.

Theorem 6. Let V be a strongly regular vertex operator algebra. Then the Lie

algebra V1 is reductive.

This theorem allows us to work with a Cartan subalgebra of V1. Indeed,

a reductive Lie algebra g can be written as

g = gss ⊕ a,

where gss is a semisimple Lie algebra and a is an abelian ideal of g. In this case,

if h is a Cartan subalgebra of gss, then H = h⊕ a is a Cartan subalgebra of g.

Theorem 7. Let V be a strongly regular vertex operator algebra. Then any

Cartan subalgebra H ⊆ V1 has a basis {h1, ... , hr} such that each hi satisfies the

following two properties:

(i) hi(0) is a semisimple operator with integral eigenvalues,

(ii) hi(1)hi ∈ 2Z1.
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Now we consider a strongly regular simple vertex operator algebra V .

In this case, it is known that V has finitely many inequivalent simple admissible

modules, which we denote by {M1 = V, ...,Mk} (see [ABD], [DLM2] or [L2]).

Let h be an element in V1 with the property that h(0) acts semisimply on every

Mi with integral spectrum. Then for each i ∈ {1, ...k}, we define

J i(τ, z) = TrMi q
L(0)−c/24ζh(0),

where q = e2πiτ and ζ = e2πiz. Here we have omitted the subscripts from the

expressions LMi(0) and hMi(0), since the spaces on which these operators act

should be clear from context.

We note that J i(τ, z) is, up to an overall shift, a power series in q:

J i(τ, z) = qsi

∞∑
n=0

∑
r∈Z

ci(n, r)qnζr. (6.2)

where si = −c/24 + λi and λi is the conformal weight of Mi. We have the

following result ([KM]):

Theorem 8. Let V be a strongly regular simple vertex operator algebra. Let

H ⊆ V1 be a Cartan subalgebra of V1, and let h ∈ H be such that h(0) is

semisimple on every Mi with integral spectrum, and h(1)h = β1 with β ∈ 2Z.

Then the functions J i(τ, z) are holomorphic in H × C, and the following func-

tional equations hold for all γ =

a b

c d

 ∈ SL(2,Z) and (u, v) ∈ Z2 :

(i) There are scalars aij(γ) depending only on γ such that

J i
(
γτ,

z

cτ + d

)
= eπicz

2β/(cτ+d)
r∑
j=1

aij(γ)J j(τ, z),

(ii) There is a permutation i 7→ i′ of {1, ..., k} such that

J i(τ, z + uτ + v) = e−πiβ(u2τ+2uz)J i
′
(τ, z). (6.3)

Our goal is to use the transformation property (6.3) to deduce infor-

mation about the coefficients ci(n, r). For each i ∈ {1, ..., k}, set

di = max
j∈{1,...,k}

|si − sj |,
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and set m = β/2 ∈ Z, with β defined as in the statement of Theorem 8. We

then have the following proposition:

Proposition 6.2.1. With the previous notation, one has ci(n, r) = 0 if

r2 > m2 + 4m(n+ di).

Proof. The transformation property (6.3) implies that

ci
′
(n+ ru+mu2 + si − si′ , r + 2um) = ci(n, r).

Then using (6.2), we see that ci(n, r) = 0 if n + ru + mu2 + si − si′ < 0.

From this we can see that ci(n, r) = 0 whenever there is an integer u such that

(n+ di) + ru+mu2 < 0.

The condition (n+ di) + ru+mu2 < 0 is equivalent to the condition

that the quadratic polynomial f(x) = (n+ di) + rx+mx2 has a negative value

when evaluated at some integer u. Since m is a positive number, elementary

algebra tells us that this condition is satisfied if the roots of f are more than 1

unit apart, i.e., if √
r2 − 4m(n+ di)

2m
>

1
2
,

which is equivalent to r2 > m2 + 4m(n+ di).

Note that the coefficient ci(n, r) is the dimension of the space

Mi(n, r) = { u ∈Mi | L(0)u = nu and h(0)u = ru }.

In particular, one has

c1(n, r) = dim{ v ∈ Vn | h(0)v = rv }.

Now define hn ∈ Z≥0 to be the largest element of the set

{ |m| | m is an eigenvalue of h(0) on Vn },

where |m| denotes the usual absolute value of m. In other words, c1(n, hn) 6= 0

and c1(n, r) = 0 if |r| > hn.
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Remark. In the next few results, we make use of the so-called “big O” notation.

To be precise, we say that f(n) is big O of g(n) as n→∞ if there is a nonnegative

real number c such that

lim
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ ≤ c,
and we denote this by f(n) ∼ O(g(n)).

Lemma 6.2.2. Let V and h be as above. Then the following inequality holds

for every n:

(hn)2 ≤ n(4m) +m2 + 4md1.

In other words, hn ∼ O(
√
n) as n→∞.

Proof. By Proposition 6.2.1, it follows that (hn)2 ≤ m2 + 4m(n + d1) for every

n.

Of course, one obtains a similar statement if we replace h by any com-

plex scalar multiple λh of h. In this case, the previous proposition says that

|λhn| ∼ O(
√
n). This leads us to the following extension of Lemma 6.2.2:

Lemma 6.2.3. Let V be a simple strongly regular vertex operator algebra and

let h ∈ V1 be such that h(0) is semisimple. Then |hn| ∼ O(
√
n) as n→∞.

Proof. Since h is a semisimple element of V1, we know that h is an element of

some Cartan subalgebra H of V1. Now using a basis {h1, ..., hk} of H as in

Theorem 7, we write

h =
k∑
i=1

λihi

for some λi ∈ C, so that

h(0) =
k∑
i=1

λihi(0). (6.4)

Since {hi(0)} is a set of commuting, semisimple operators, it follows that

0 ≤ |hn| ≤
k∑
i=1

|λihni |.

Our prior remarks show that each of the above summands satisfies |λihni | ∼
O(
√
n), and so it follows that |hn| ∼ O(

√
n).
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Lemma 6.2.4. Let V and h be as in Proposition 6.2.3, and consider Lh(0) =

L(0)− h(0). Then Re(µ) ≥ | Im(µ)| for all but finitely many µ ∈ SpecV (Lh(0)).

Proof. Making use of the decomposition (6.4), one sees that

SpecV (Lh(0)) ⊆ Z−
k∑
i=1

λiZ ⊂ C.

Any µ ∈ SpecV (Lh(0)) is of the form

µ = n−
k∑
i=1

λiai,

where ai ∈ SpecVn
(hi(0)) ⊂ Z.

If h(0) does not act as 0 on Vn, then hni > 0 for some i. Without loss

of generality we may assume hn1 > 0. Now choose m ∈ R such that

mhn1 > k ·max
i
|Re(λihni )|+ k ·max

i
| Im(λihni )|.

Using Lemma 6.2.3, we see that that n −mhn1 > 0 for all but finitely

many n. Therefore, since hn1 > 0, we have

n− k ·max
i
|Re(λihni )| − k ·max

i
| Im(λihni )| > n−mhn1 > 0

for all but finitely many n. In particular,

n− k ·max
i
|Re(λihni )| > k ·max

i
| Im(λihni )|.

for all but finitely many n.
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Then we have

Re

(
n−

k∑
i=1

λiai

)
= n− Re

(
k∑
i=1

λiai

)

≥ n−

∣∣∣∣∣Re

(
k∑
i=1

λiai

)∣∣∣∣∣
≥ n− k ·max

i
|Re(λihni )|

> k ·max
i
| Im(λihni )|

≥
k∑
i=1

| Im(λihni )|

≥
k∑
i=1

| Im(λiai)|

≥

∣∣∣∣∣Im
(

r∑
i=1

λiai

)∣∣∣∣∣
for all but finitely many n. Since h(0) has only finitely many eigenvalues on each

Vn, it follows that the above inequality holds for all but finitely many Lh(0)-

eigenvalues µ.

Lemma 6.2.5. Let V and h be as in Proposition 6.2.3. Then the Lh(0) eigenspaces

are all finite dimensional.

Proof. Assume to the contrary that µ is an eigenvalue corresponding to an infi-

nite dimensional Lh(0)-eigenspace. Since each Vn is of finite dimension, it follows

that there must be an infinite number of k ∈ N for which

k − µ ∈ SpecVk
(h(0)),

which is impossible due to Lemma 6.2.3.

Theorem 9. Let V be a simple strongly regular vertex operator algebra . Then

V h is a simple pseudo vertex operator algebra for any h ∈ V1.

Proof. We first remark that simplicity of V h is equivalent to simplicity of V

since they are both the same underlying vertex algebra. The C2-cofiniteness of
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V implies that V is finitely generated, that is,

V =

〈
N⊕
n=0

Vn

〉
.

Then the action of h(0) on V is completely determined by the action of h(0) on⊕N
n=0 Vn, which is a finite dimensional V1-module. Therefore, we consider the

abstract Jordan decomposition h(0) = hss(0) + hn(0), with hss(0) a semisimple

operator and hn(0) a nilpotent operator such that hss(0) and hn(0) commute.

The theory of Lie algebras then ensures that the operators hss(0) and hn(0) are

modes of elements hss, hn ∈ V1. Thus any h ∈ V1 decomposes as h = hss + hn,

where hss(0) is a semisimple operator on V and hn(0) is a nilpotent operator on

V that commutes with hss(0).

First assume that hn = 0. Then Lh(0) = L(0)−hss(0) is a semisimple

operator. In this case V h has a grading

V h =
⊕

µ∈Spec
V h (L(0))

Vµ,

which satisfies (2.9). Moreover, we know that 1 ∈ V0, so V0 6= 0. This fact,

together with Lemma 6.2.4, implies that V h has a lowest weight space V h
λ . Since

V h is simple as a vertex algebra, it is generated by V h
λ . This shows that V h is a

C-graded vertex algebra. It is clear from (5.2) that L(−1) = Lh(−1). Therefore,

recalling Lemmas 6.2.5 and 6.2.4, we see that V h is a pseudo vertex operator

algebra.

If hn is not zero, then hn(0) simply acts on each Lssh (0)-eigenspace

since [hn(0), Lssh (0)] = 0, and so we see that the generalized Lh(0)-eigenspaces

are precisely the Lssh (0)-eigenspaces. The finite dimensionality of each Lssh (0)-

eigenspace V h
λ implies that (Lh(0)−λ) is a nilpotent operator on V h

λ . The result

follows.
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6.3 Regularity of Lattice Pseudo Vertex Operator Al-

gebras

Let VL be the vertex operator algebra associated to a rank k positive

definite even lattice L (see [FLM], [K], or [LL]). Dong [D] proved that VL is a

rational vertex operator algebra, and that the irreducible ordinary modules for

VL correspond to cosets of L in its dual lattice L◦. In particular, the irreducible

ordinary VL-modules are of the form

VL−λ = M(1)⊗ C[L− λ],

where λ ∈ L◦ and C[L − λ] is the corresponding module for the twisted group

algebra C{L}.
We recall Theorem 3.16 of [DLM1]:

Theorem 10. Let L be any positive definite even lattice. Then any weak VL-

module is completely reducible, and any simple weak VL-module is isomorphic to

VL−λ for some λ in L◦. In other words, VL is regular.

Since VL is a simple, strongly regular vertex operator algebra, we know

that for any h ∈ V1, one obtains a pseudo vertex operator algebra by shifting the

conformal structure on VL by the element h. Specifically, we have the pseudo

vertex operator algebra V h
L = (VL, Y,1, ωh), where ωh = ω − L(−1)h.

Theorem 11. The pseudo vertex operator algebra V h
L is regular. In other words,

any weak V h
L -module is a direct sum of simple ordinary V h

L -modules.

Before beginning the proof of Theorem 11, we recall some details

about partition functions. For any coset L− h of L in H, we define the formal

sum

θL−h(q) =
∑

α∈L−h
q〈α,α〉/2 = q〈h,h〉/2

∑
α∈L

q〈α,α〉/2−〈h,α〉.

We define the partition function of a V h
L -module M as

ZM,V h
L

(q) = TrM qLh(0)−ch/24.
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This expression is to be treated only as a formal sum, since it may contain

complex powers of q. Since we are primarily interested in the spectrum of Lh(0)

we only need to consider the operator Lssh (0) = L(0) − hss(0). Therefore, we

assume that hn = 0 (see the proof of Theorem 9). For λ ∈ L◦, we consider the

partition function of the V h
L -module V [L − λ]. If u ∈ M(1)(n) and α ∈ L − λ,

we have

(L(0)− h(0))(u⊗ eα) =
(
n+

1
2
〈α, α〉 − 〈h, α〉

)
(u⊗ eα). (6.5)

As a formal sum, we have that

TrV [L−λ] q
Lh(0) =

∑
µ∈C

dim(V [L− λ](µ)) qµ,

where V [L−λ](µ) is the Lh(0)-eigenspace with eigenvalue µ. Then we calculate:

ZV [L−λ],V h
L

= TrV [L−λ] q
Lh(0)−ch/24

= TrV [L−λ] q
L(0)−h(0)−k/24+〈h,h〉/2

= ZM(1),VL
(q) · TrV [L−λ] q

L(0)−h(0)+〈h,h〉/2

= ZM(1),VL
(q) · q〈h,h〉/2

∑
α∈C[L−λ]

q〈α,α〉/2−〈h,α〉

= ZM(1),VL
(q) · θL−h−λ(q).

Proof of Theorem 11. Let M be any weak V h
L -module. Since V h

L has the same

modes as VL, it follows that M is a weak module for VL. Due to the regularity

of VL, M must decompose as a direct sum of simple ordinary VL-modules. By

[D] we know that each simple ordinary VL-module must be of the form VL−λ for

some λ ∈ L◦. Thus, M decomposes as a sum of simple weak V h
L -modules, each

of which is of the form VL−λ. Moreover, we calculated above that the partition

function of VL−λ as a V h
L -module satisfies

ZV [L−λ],V h
L

= ZM(1),VL
(q) · θL−h−λ(q),

and this is sufficient to show that VL−λ satisfies the grading requirements for

ordinary V h
L -modules. Thus, M is a sum of simple ordinary V h

L -modules. �

Corollary 6.3.1. A(V h
L ) is a finite dimensional semisimple algebra.
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