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Magnetoentropic signatures of skyrmionic phase behavior in FeGe

Joshua D. Bocarsly,1 Ryan F. Need,1 Ram Seshadri,1 and Stephen D. Wilson1, ∗

1Materials Department and Materials Research Laboratory,
University of California, Santa Barbara, California 93106

(Dated: March 12, 2018)

We demonstrate that magnetocaloric measurements can rapidly reveal details of the phase dia-
grams of high temperature skyrmion hosts, concurrently yielding quantitative latent heats of the
field-driven magnetic phase transitions. Our approach addresses an outstanding issue in the phase
diagram of the skyrmion host FeGe by showing that DC magnetic anomalies can be explained in
terms of entropic signatures consistent with a phase diagram containing a single pocket of skyrmionic
order and a Brazovskii transition.

Magnetic anomalies corresponding to skyrmion lattice
ordering or “precursor” states are well known in chiral
helimagnets such as MnSi and FeGe [1–8] and were ob-
served long before the first reciprocal space [9, 10] or
real space [11] observations of magnetic skyrmions. In
general, these anomalies appear as subtle bumps and
kinks in the magnetization expected for a ferromagnet
near its magnetic transition temperature, as illustrated
in Fig. 1. In skyrmion hosts, these features represent
magnetization steps expected for the first-order phase
transitions between topologically distinct spin states. In
real materials, however these discontinuities are always
smeared out by experimental convolution and inherent
thermal/configurational disorder. This often renders
mapping the bulk magnetic phase diagrams of skyrmion
hosts a subtle endeavor, and discrepancies have arisen
regarding the number of distinct topological phases that
exist in key materials [12–17].

This problem is exacerbated in high temperature
skyrmion hosts, where direct calorimetric techniques
identifying topological phase boundaries (e.g. heat ca-
pacity studies) suffer from large lattice background sig-
nals. The B20 high temperature skyrmion host FeGe
is a prominent example of this challenge, where several
reports suggest that the skyrmion A phase in FeGe is
in fact broken into several sections, each hosting distinct
skyrmionic states [12–15]. The inability to directly quan-
tify the entropic response from each of these phases in
FeGe hearkens to parallel studies of the low temperature
skyrmion host MnSi, where similar multiple “A-phase”
states were proposed [18] but eventually precluded via
high resolution heat capacity measurements [16, 19]. Re-
solving whether there is only a single pocket in the “A
phase” that hosts skyrmionic spin texture or multiple in
FeGe remains an open question.

More broadly, the continued unveiling of magnetic
skyrmions in materials near and above room temperature
and their potential uses in practical applications [20–27]
has further highlighted the need to quantify the thermo-
dynamically distinct spin states in their high temperature
magnetic phase diagrams. New materials continue to be
discovered, many with near-room-temperature skyrmion
states [22, 28–32]. Precise and quantitative techniques

for rapidly interpreting magnetic anomalies in this new
realm of materials and for ultimately surveying thermo-
dynamically distinct magnetic states in their phase dia-
grams are needed.

Here we present a rapid DC magnetization technique
for mapping the magnetocaloric response of skyrmion
hosts. This method is effective even at high temperatures
and is sensitive to the field driven entropy changes asso-
ciated with entering/exiting the first-order phase bound-
aries expected for topologically distinct spin states. As
a result, the magnetic phase diagram for a given com-
pound can be mapped in under 24 hours, and the entropy
changes associated with a given state can be quantified.
We leverage this technique to address an outstanding is-
sue in the high temperature skyrmion material FeGe by
demonstrating that the entropic response can be under-
stood via a single skyrmion “A-phase” and a nearby line
of first-order phase transitions representing Brazovskii
transitions into a fluctuation disordered state.

Magnetocaloric effects can be quantified as the mag-
nitude of isothermal entropy change upon magneti-
zation, ∆SM (H,T ), near a magnetic phase transi-
tion. ∆SM (H,T ) is obtained from the Maxwell relation
(dS/dH)T = (dM/dT )H , where S is the total entropy,
H is the magnetic field, M is the magnetization, and T
is the temperature. This allows the isothermal entropy
change upon application of field H to be calculated from
bulk DC magnetic measurements at many fields and tem-
peratures using

∆SM (T,H) =

∫ H

0

(
dM

dT

)
H′
dH ′ (1)

Comparisons to heat capacity measurements carried out
under field have validated the use of this approach, even
for the analysis of first-order phase transitions if suitable
measurement parameters are chosen [33–35]. Measuring
M(T ) under different applied magnetic fields and calcu-
lating dM/dT allows a map of ∆SM (T,H) to be obtained
using Eq. 1.

To date, applications of these methods have been
largely limited to using DC magnetization to calculate
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FIG. 1. (a) Crystal structure of cubic B20 FeGe (space-
group P213), shown along the (111) axis. (b) Magnetiza-
tion as a function of field collected at 10 K is very sharp,
saturates at low field, and shows no hysteresis. (c) Magne-
tization as a function of temperature collected under applied
field H = 20 mT shows an anomaly near TC . (d) M(T ) col-
lected under different applied fields. This is a subset of the
data set (18 total fields) used to calculate the course-grained
map of ∆SM (H,T ) shown in (e).

∆SM (T,H) at a few temperatures and fields to evalu-
ate materials for applications in magnetic refrigeration
[36] and to determine critical constants [37]. For these
applications, low data densities and simple numerical
methods are adequate. However, in order to apply these
techniques to measure, in resolution, the entropic effects
of the subtle field-driven phase transitions in magnetic
skyrmion hosts, far higher data densities are required and
more sophisticated data processing is needed to separate
signal from noise.

To demonstrate this concept, single crystals of the high
temperature skyrmion host FeGe were grown using a
standard iodine vapor transport technique (see Supple-
mental Material [38]) and a Quantum Design DynaCool
Vibrating Sample Magnetometer (VSM) was used to col-
lect two datasets: a “course-grained” set taken while
sweeping temperature at a rate of 7 K min−1 with fields
ranging from 20 mT to 5 T and a “fine-grained” set taken
while sweeping at a rate of 1 K min−1 at closely-spaced
fields around the magnetic transition. The former was
taken to evaluate the general high field magnetocaloric
response and the latter to analyze the skyrmion phase
transition. By operating the VSM continuously, tens of
thousands of data points are collected in an ≈18 hour
measurement span. The dM/dT numerical derivatives

FIG. 2. The process for obtaining high-resolution mag-
netoentropic information using Eq. 1. (a) DC M(T ) data
taken at many closely-spaced fields (24 fields between 5
and 120 mT) (b) Temperature derivatives of magnetization
dM/dT = dS/dH are calculated directly using Tikhonov
regularization. For visual clarity, the curves are each offset
by 0.1 J kg−1 K−1 T−1. The antiderivatives of the calculated
derivatives are shown as colored lines in (a), and match the
raw data (grey crosses) very well. (c) Integrals of the dM/dT
curves with respect to field give the isothermal magnetic en-
tropy change at each temperature and applied field. Curves
are each offset by 1 J kg−1 K−1.

cannot be calculated using traditional finite differences
without introducing unnacceptable noise. Rather, a sta-
tistical technique based on Tikhonov regularization [39]
was employed. Briefly, the derivatives are determined
so as to simultaneously minimize the deviation of their
antiderivatives from the data and the roughness. From
these smooth derivatives, the integrals with respect to
field were evaluated to obtain ∆SM (T,H). Details of
the technique are included in the Supplemental Material
[38].

Figure 1(a) shows the B20 magnetic lattice of FeGe
looking along the (111) axis of the cubic unit cell. A chi-
ral spin state is known to manifest below 280 K in this
system with the helix propagating along this (111) wave
vector and moments rotating in the plane orthogonal to
this axis. Upon applying a modest field, this helical spin
state rapidly tilts into a conical phase and eventually into
a polarized ferromagnet state as shown in Fig. 1(b). The
low field susceptibility χ(T ) is shown in Fig. 1(c) and
the characteristic cusp near TC is apparent. Magnetiza-
tion data at higher fields are shown in Fig. 1(d) while
the resulting ∆SM determined from this course-grained
sampling of the phase diagram is shown in Fig. 1(e). As
expected, a negative peak in ∆SM is seen near the mag-
netic ordering temperature as the magnetic field aligns
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FIG. 3. Detailed magnetoentropic maps of FeGe near the ordering temperature. (a) A map of dM/dT = dS/dH reveals clear
ridges (red) and valleys (blue) indicating lines of first-order phase transitions. Note that the ridges and valleys are actually
continuous; the segmented appearance is an artifact of the 2-D interpolation. (b) Map of ∆SM (T,H). (c) dM/dH calculated
from the DC magnetization dataset. (a) is used to find the phase boundaries of the phase diagram drawn on (b), where solid
lines represent first-order phase transitions.The dashed line between C and P indicates a continuous transition. The dashed
line between FD and FP represents a crossover. P: paramagnetic, FD: fluctuation disordered, FP: field polarized, C: conical,
SkX: skyrmion lattice, TCP: tricritical point.

paramagnetic spins and decreases the entropy of the sys-
tem.

At lower fields, however, the magnetization and mag-
netocaloric behavior are more complex. Figure 2(a) il-
lustrates how the low field magnetization evolves as a
function of temperature under a series of closely spaced
fields near the magnetic ordering temperature. This rich
behavior is then processed into dM/dT at each tempera-
ture and field point as shown in Fig. 2(b). The final inte-
grated ∆SM curves are plotted in Fig. 2(c). These data
are then presented in Fig. 3 as (T,H) maps of dM/dT ,
∆SM , and instantaneous DC susceptibility dM/dH near
the onset of the “A phase” cusp.

dM/dT = dS/dH can be viewed as a thermodynamic
capacity which gives complementary information to tra-
ditional measurements of heat capacity C = T (dS/dT ).
Peaks and valleys in dS/dH can indicate field-driven
first-order phase transitions and ultimately can give en-
tropies of transitions. In the map shown in Fig. 3(a),
the high-field region is blue, indicating the conventional
(negative) magnetocaloric behavior of a ferromagnet dis-
cussed above. At lower fields and temperatures, however,
a white region (dS/dH ≈ 0) can be seen with clear ridges
(red lines) and valleys (blue lines) corresponding to phase
transformations within that region.

When integrated over field (∆SM ), the phase regions
separated by features in dS/dH are visualized in terms
of their entropy, as seen in Fig. 3(b). The sharp nearly-
vertical phase line near 276 K denotes a line of first-order

phase transitions between the ordered state and the fluc-
tuation disordered state, as discussed later. At temper-
atures below this first-order line, a single, small pocket
of increased entropy (about 0.3 J kg−1 K−1) is observed
about the expected skyrmion phase. All other points in
the white region, which corresponds to the ordered heli-
cal and conical phases, can be reached without a change
in entropy from the zero-field state. The observation that
the skyrmion lattice shows distinctly higher entropy than
the conical phase is consistent with the idea that the
skyrmion lattice is stabilized by thermal fluctuations. As
further reference, Fig. 3(c) shows a map of static dM/dH
illustrating the onset of an enhanced susceptibility at
≈ 279 K, far above the first-order line and indicative of
the onset of the fluctuation disordered regime. Anoma-
lies in the susceptibility map of Fig. 3(c) bracket both the
upper and lower field phase boundaries of the single “A
phase” skyrmion state resolved in the ∆SM map.

The assignment of a skyrmion lattice pocket approxi-
mately 3 K in width and 10 mT in height within the con-
ical phase is consistent with previous phase diagrams of
FeGe based on AC and DC susceptibility, specific heat,
and small angle neutron scattering measurements. [12–
15] However, variations in AC susceptibility and SANS
neutron scattering intensities caused speculation that
the conventional skyrmion state, termed the A1 pocket,
was neighbored by between one and three additional
“A phase” pockets. Notably none of the signatures of
these new “A phase” pockets arise from thermodynamic
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TABLE I. Latent entropies and heats of transitions as de-
termined by integrating the dS/dH curves shown in Fig. 4.
The errors are a generous estimate based on performing the
integration at several closely-spaced temperatures.

transition ∆S (mJ kg−1 K−1) Q (mJ kg−1)

(i) C → FP na na

(ii) C → SkX 0.25(5) 69(14)

(iii) SkX → C −0.35(5) −96(14)

(iv) C → SkX 0.9(1) 248(28)

(v) SkX → C −0.29(2) −80(6)

(vi) C → FD 0.81(3) 223(8)

measurements nor via the identification of broken sym-
metries, and here, our thermodynamic magnetoentropic
measurements resolve that none of those regions except
the expected main A-phase show increased entropy rel-
ative to the helimagnetic state. Therefore, we conclude
that the previous signatures of additional states near the
“A phase” arise from dissipative processes or mixed phase
regions due to the nearby line of first order Brazovskii
transitions. Any true thermodynamic phases must have
much smaller skyrmion numbers than the skyrmion lat-
tice phase and entropies nearly indistinguishable from the
topologically trivial helical and conical phases.

To further quantify the entropies associated with the
phase boundaries in Fig. 3(a), Fig. 4(a) shows dS/dH vs.
H cuts at fixed temperatures across the phase diagram of
FeGe. At temperatures below the skyrmion lattice phase
(Fig. 4(a)), the conical to field polarized phase transition
can be seen as a sudden change in slope of the dS/dH
vs. H curve. At all fields below this critical field, it can
be seen that dS/dH is zero. This indicates that there
is no change in entropy as the system is polarized from
the helical magnetic state, through the conical state until
the collinear ferromagnetic state is reached. Once in the
ferromagnetic state, application of a magnetic field sup-
presses spin fluctuations, reducing entropy as expected.
One consequence of this constant entropy in the low field
phase, is that there is no signature in dS/dH for the
helical to conical phase transition at low field.

Turning to Fig. 4 (b), dS/dH cuts along H near
274.5 K show there is both a peak and a valley prior
to entering the field polarized state. Hence as field is
increased, there is first an absorption of heat and then
a release of heat. This is consistent with the expected
entropic signature of first-order phase transitions into
and out of the skyrmion lattice phase based on heap ca-
pacity measurements of low-temperature skyrmion hosts
[14, 17, 19]. These peak and valley features form the ex-
tended ridges in (H,T ) space (Fig. 3(b)) that define the
top and bottom of the skyrmion lattice phase.

At higher temperature (T ≈ 276 K), the nearly verti-
cal ridge in the dS/dH is split into a lower and an upper
section by the intersection of the skyrmion phase bound-

FIG. 4. (a-c) shows dS/dH vs. H at four representative
temperatures. Field-driven phase transitions are easily found:
first-order transitions show up as peaks (ii-vi) in the this ther-
modynamic capacity, while continuous phase transitions show
up as changes in the slope (i). Integration of the peaks gives
entropies of transitions and latent heats, as shown in Table I.
(d) gives a reproduction of the heatmap of dS/dH vs. T and
H, as shown in Figure 3b with the slices shown in (a-c) over-
laid as dashed colored vertical lines. Refer to the caption of
Fig. 3 for the definitions of the phase abbreviations.

aries (Fig. 4(d)). This vertical ridge indicates another
line of first-order phase transitions where the application
of a magnetic field disorders the system. This is consis-
tent with the theory of a Brazovskii scenario of a strong
fluctuations driving the magnetic ordering into a line of
first-order transitions terminating in a tricritical point at
nonzero field (here, around 50 mT) [40–42]. Crucially,
because the slope of this ridge in (T,H) space is neg-
ative, application of a field drives the system from the
ordered helimagnetic state to the fluctuation disordered
state: hence the sign of the dS/dH is positive. Therefore,
this unique transition appears as a striking line of anoma-
lous (positive) dS/dH on the magnetocaloric maps. The
entropies associated with crossing each of these phase
boundaries are summarized in Table I.

This global picture shows that the very complex shape
of the DC magnetic anomalies in FeGe can in fact be
elegantly associated with the magnetoentropic response
expected for a phase diagram containing a single thermo-
dynamic A phase (skyrmion lattice) contained within the
conical phase that borders out of a line of first-order Bra-
zovskii transitions. To verify that features of this phase
diagram were not affected by the use of several single
crystals, the same procedure was carried out on a fixed
single crystal (≈ 0.1 mg) and yielded the same phase di-
agram (Supplemental Material Fig. S3 [38]). This is con-
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sistent with observations of very low anisotropy fields in
FeGe [2].

In summary, we have demonstrated a rapid magne-
toentropic mapping technique that harnesses DC mag-
netization data to resolve the magnetic entropies asso-
ciated with the complex phase diagrams of helimagnets
in very high resolution. This technique allows for the
clear demarcation of thermodynamic phase boundaries
in FeGe, which have been difficult to study in traditional
calorimetry measurements due to a high ordering tem-
perature and accompanying large lattice background. We
observe clear entropic signatures of transitions into and
out of a single skyrmion lattice phase as well as observe
a nearly vertical line of first-order transitions terminat-
ing in a tricritical point, consistent with the first-order
Brazovskii transition observed in MnSi. The technique
presented here is expected to be of significant utility for
the rapid discovery and study of new skyrmion hosts,
especially those with transitions near and above room
temperature.

This work was supported by the National Science
Foundation through the MRSEC Program of the Na-
tional Science Foundation through DMR-1720256 (IRG-
1). J.D.B. and R.F.N are supported by NSF Graduate
Research Fellowship Program under Grant No. 1650114
and Grant No. 1144085, respectively.
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I. MAPPING MAGNETOENTROPY USING A VIBRATING SAMPLE MAGNE-
TOMETER

A. Principles of measurement and data analysis

In the study of magnetocaloric materials, the isothermal change in entropy upon appli-
cation of a magnetic field, ∆SM(T,H), is routinely calculated from magnetization data by
leveraging the thermodynamic Maxwell relation:(

∂S

∂H

)
T

=

(
∂M

∂T

)
H

(S1)

Here, S is the total entropy, H is the magnetic field, M is the magnetization, and T is the
temperature. This implies that the isothermal entropy change upon application of field H
can be calculated from magnetic measurements by:

∆SM(H,T ) =

∫ H

0

(
∂M

∂T

)
H′
dH ′ (S2)

In this contribution, we use a vibrating sample magnetometer to rapidly collect M(T,H)
data to evaluate Eq. S2 in high resolution. The data is collected continuously while slowly
ramping temperature at different fixed magnetic fields. This procedure gives a very high
density of data points along the temperature axis (many points per Kelvin). While in
principle this data density is beneficial, the small T and M differences between neigh-
boring points means that simple numerical differentiation via the finite difference method
(dM/dT ≈ ∆M/∆T ) gives extremely large errors that far outweigh the signal. This prob-
lem persists even if spline smoothing is applied to each M(T ) before the finite differences
are taken. To avoid this problem and use the data density to our advantage, we employ a
statistical Tikhonov regularization procedure to calculate the numerical derivative. In this
method, a derivative curve of a dataset is directly calculated such that it has minimum
roughness while still having an antiderivative that matches the magnetization data closely.
Given a set of observations (measurements) of magnetization, M̂ , this means finding a curve,
M ′, that minimizes:

Q(M ′) =

∫ Tmax

Tmin

|M(T )− M̂(T )|dT + λ

∫ Tmax

Tmin

|M ′′(T )|2dT (S3)

The first term is the total deviation of the M , the antiderivative of M ′, from the obser-
vations M̂ . The second term is the roughness of the derivative curve. λ is a regularization
parameter that determines the relative importance of the two terms such that larger values
of λ lead to a smoother calculated derivative, potentially at the cost of fidelity to the ob-
servations. A procedure to calculate these derivatives has been implemented by Stickel in
the Python package scikit.datasmooth [1]. A suitable λ may be inferred from the data
directly; however, it is generally better to manually set this parameter by eye, as shown in
Fig. S2.

Numerical integration does not present the same noise issues as numerical derivation, so
the integration step may be performed using the standard trapezoid method.
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FIG. S1. Comparison of finite differences and Tikhonov regularization for calculating the derivative
of magnetization as a function of temperature (H =30mT) taken on a single crystal of FeGe
(see Section III, below). The top graphs show the magnetization data and antiderivatives of the
calculated derivatives, which are shown on the bottom graphs. (a) The finite difference method
gives an unusable derivative dominated by noise. (b) The regularization method gives a smooth
derivative that matches the input data well.

B. Measurement Procedure and data analysis

Here, we include an example procedure used to collect DC magnetization data and trans-
form it into mangetoentropic maps. Sample Python code (magentro.py) to analyze DC
magnetization data to create magnetoentropic maps is included with this Supplemental
Material.

1. TheM(T,H) data set must be collected with high data density along the temperature
axis. In the case of the fine-grained magnetoentropic mapping of 0.75 mg of FeGe, the
data points were taken with 5 seconds of averaging of the VSM signal while sweeping
temperature at a rate of 1 K/min from 282K to 268K (approximately 12 points/
K). This temperature sweep was repeated under 24 different applied fields, ranging
from 5 mT to 120 mT in increments of 5 mT. The sweep rate and averaging time
were chosen so that many points would be collected across each feature of interest
(magnetic anomaly). Faster sweep rates and shorter averaging times are possible for
samples with larger moments.

2. Abnormal measurement points are removed and placed the data set is placed into S.I.
units. If using a Quantum Design VSM, this can be accomplished using the function
magentro.prep_qdvsm_file(). Data for all fields should be be included in a single
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FIG. S2. Calculation of regularized derivative of FeGe M(T ) data collected at H=10mT with
different choices of the regularization parameter λ in Eq. S3. (a) λ is too small. The antiderivative
matches the input data well, but the derivative itself is unnacceptably noisy. (b) λ is chosen ap-
propriately. The calculated derivative is reasonably smooth and has an antiderivative that matches
the input data well. (c) λ is too large. The derivative is oversmoothed and the antiderivative no
longer matches the data. Note that λ must be determined for each data set.

measurement data file. In addition, if there are random outlier measurements, it may
be beneficial to manually remove them at this stage.

3. The data set is split into individual M(T ) sweeps at fixed fields. For each one, the
numerical derivative is performed by minimizing Eq. S3. In general, this step should be
tried with multiple values of λ to visually choose an optimum value that is acceptably
smooth while still having an antiderivative that matches the input data. Larger values
will give smoother derivatives, while smaller values will match the input data more
closely. Oftentimes the same λ can be used for all fields. Sometimes, however, it is
advantageous to choose a different λ for each applied field, moving from smaller values
at low fields to larger values at high fields. Figure S2 shows an example of correctly
choosing λ. The function magentro.process_MTs() calculates the derivatives for a
data set given a λ value (or λ values for each field). Note that the derivative curve
is effectively continuous, but it is actually calculated and provided as a collection of
discrete (temperature, value) points.
Alternatively, good values of λ may be inferred from the data using a variety of nu-
merical methods, as outlined in Ref. [1]. However, we have found that it is generally
easier to simply choose the λ parameters manually.

4. Numerical integrations of the derivatives with respect to field are performed using the
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trapezoid method at each temperature to give ∆SM(T,H). This step is also performed
by magentro.process_MTs().

5. The smoothed magnetization, derivatives (dM/dT = dS/dH), and ∆SM have now
been obtained as a function of temperature at the fixed measurement fields. This may
be plotted as is (magentro.plot_property_as_lines()) or further processed into 2-
D (T,H) heat maps (magnetro.plot_property_as_map()). Furthermore, cuts may
be taken along the field direction at any temperature to create figures like Fig. 4 in
the main text (magentro.plot_H_cut()).

II. DETAILS OF THE PREPARATION OF B20 FeGe SINGLE CRYSTALS

FeGe crystals in the B20 structure (P312) were grown using iodine vapor transport from
precursor powder and iodine in a 130:1 mass ratio. The precursor FeGe powder was gener-
ated by arc melting pieces of Fe and Ge (99.999%, Sigma Aldrich) together under an argon
atmosphere. The arc melted pellet was flipped and remelted at least 12 times to increase
mixing and homogeneity, and subsequently annealed under vacuum in a sealed quartz am-
poule at 580◦C for a period of 7 days. This procedure resulted in FeGe powder that was 25%
B20 and 75% B35 as determined by Rietveld analysis of x-ray powder diffraction data. The
powder and iodine (99.999% Alfa Aesar) were then sealed in one end of a quartz ampoule
under vacuum below 5 × 10−5 mbar. The ampoule was placed in a three zone tube furnace
with the precursors held at 570◦C, the middle zone at 565◦C, and the far end at 570◦C for
fourteen days. The middle portion of the ampoule, with smooth side walls, was chosen to be
the cold deposition region to reduce the number of nucleation sites. In subsequent crystal
growths subsequent, small (<100 um diameter) B20 crystals were placed in the middle of the
ampoule to act as nucleation sites. Successful crystal growth using this procedure resulted
in B20 crystals roughly 250 um in diameter with a truncated octahedron morphology. The
B20 phase of these crystals was confirmed via single crystal X-ray diffraction and SQUID
magnetometry.

III. MAGNETOENTROPIC MAP OF A SINGLE FeGe SINGLE CRYSTAL

In order to verify that the magnetoentropic maps presented in the main text were not
largely influenced by the use of multiple single crystals, we performed the same measurement
on a single crystal (about 0.03mg, arbitrarily oriented). The results are shown in Fig. S3.
The results are qualitatively the same, although there is much more noise in the single crystal
measurement due to weak signal. Due to the very small size of the crystal, the weight is not
known precisely, and therefore the magnitude of the values in Fig. S3 should not be treated
as exact.

[1] J. J. Stickel, Computers and Chemical Engineering 34, 467 (2010).
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FIG. S3. Magnetoentropic maps of a single FeGe crystal. (a) Sample of the DC magnetization
data (grey crosses) overlayed with the antiderivatives of the regularized derivatives, showing a very
good fit despite experimental noise. (b) Map of dM/dT showing ridges and valleys matching those
in Fig. 3 in the main text. (c) Map of ∆SM (T,H) with phase diagram overlayed. Solid lines
indicate first-order transitions. The dashed line between C and P indicates a continuous transition.
The dashed line between FD and FP represents a crossover. P: paramagnetic, FD: fluctuation
disordered, FP: field polarized, C: conical, SkX: skyrmion lattice, TCP: tricritical point.
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