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ABSTRACT 

 

Impacts of climate change and agricultural water demand on groundwater in the 

Greater Kern County Region 

by  

Jorge Alberto Valero Fandiño 

Doctor of Philosophy in Environmental Systems  

University of California Merced, 2023 

Dr. Thomas Harmon, Chair 

 

 

This research analyzes the potential effects of climate change and land use dynamics on 

groundwater in highly productive agricultural regions dependent on water imports and 

groundwater regulation. Before focusing on the research topic, solving a series of conceptual, 

operational, and computational challenges, such as having reliable, integrable, and fast models, 

was necessary. So, in the first part of the research, we evaluate the performance of three 

emulators of the sophisticated hydrology model known as the Fine Grid California Central Valley 

Groundwater-Surface Water Simulation Model (C2VSimFG) to estimate how climate and 

agriculture affect groundwater levels. Once the best emulator was identified, we assessed the 

hypothesis that groundwater levels in the Greater Kern County Region would exhibit a more 

rapid decline with projected climate change scenarios compared to a historical climate resembling 

1995 and 2015. Finally, we focus on determining economically and environmentally optimal 

operational policies for the Shafter-Wasco irrigation district by considering the conjunctive water 

use approach and identifying the best policies through Bayesian Optimization Programming. The 

findings suggest groundwater levels are likely to decline unless agricultural water demand is 

reduced and recharge is increased, with climate scenarios exacerbating this decline compared to 

historical conditions. Our findings underscore the balance between profit and aquifer recovery, 

indicating farmers' need to curtail profits to achieve groundwater sustainability. Ultimately, our 

method can potentially integrate water and agricultural systems facing various uncertainties, 

providing valuable insights into optimal operational policies and tradeoffs. 
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Chapter 1 Introduction 

Water is a precious and limited resource on Earth, and its responsible use is essential for the 

survival of all living things. While it may seem that the planet is plentiful in water resources, a 

closer examination shows from all supplies that only 2.5% is freshwater, of which 68.7% is 

trapped in glaciers and ice caps, 30.1% is groundwater, and a mere 0.25% is in lakes and streams 

(Shiklomanov's, 1993). Despite lakes and rivers containing a small fraction of all water (about 

1/156 of one percent), they are the primary water sources for most of the world's population 

(USGS, 2018). Groundwater plays a more prominent role in regions where access to surface 

water supply is inaccessible, scarce, or too costly to obtain. However, challenges arise due to 

population growth and climate fluctuations. Over the past 50 years, the global population has 

doubled from 3.9 billion in 1973 to 8.0 billion in 2022 (United Nations, 2022). This growth 

intensifies the demand for various resources, including water, food, technology, and recreational 

spaces. Also, climate change shifted in rainfall distribution across the planet, a trend expected to 

continue with rising global temperatures (Fawzy et al., 2020). Groundwater often serves as a 

buffer to alleviate precipitation deficits, particularly in places with highly variable surface water 

supplies. As a result, planning and designing infrastructure based on assumptions of a stable 

climate must be reevaluated to address emerging challenges. Therefore, adaptations are necessary 

to ensure sustainable water use and preservation in evolving environmental conditions. 

A reliable water supply is indispensable in agricultural areas, supporting various stages of the 

production chain, from preparing the land for planting to harvesting. However, farmers face 

multiple challenges when water becomes scarce due to droughts. They may resort to importing 

water from alternative sources, utilizing groundwater, engaging in water exchanges, constructing 

infrastructure for water storage, and, in extreme cases, reducing crop areas. As scarcity cost can 

be high, the optimal portfolio of sources ant their selected reliability for a region often involves 

economic, technological, and political considerations. For instance, during California's 2012-216 

drought, agricultural economic losses to agriculture were approximately 3.8 billion dollars (Lund 

et al., 2018). Contributing factors to the strain on water resources include the misconception that 

groundwater is nearly limitless (Khair et al., 2019), recurrent droughts, inadequate legislation, lax 

control over water extractions, prioritization of economic goals over environmental concerns, 

advancements in pumping technology, and reduced energy costs associated with pumping (Closas 

& Rap, 2017; Perrone & Jasechko, 2019; Wada et al., 2010). Droughts may exacerbate the 

overuse of resources, particularly groundwater. Excessive groundwater withdrawal can lead to 

reduced underground reserves and the deterioration of water quality, land subsidence, changes in 

the interactions between aquifers and surface waters, and adverse impacts on ecosystems 

(Jakeman et al., 2016).  

This merits an improved understanding of how climate change, land use, and environmental 

legislation may affect water availability for agriculture. However, assessing the potential impacts 

varies in complexity depending on the specific water source to study. Analyzing historical records 

is a viable method for estimating the effects of climate change on stream flows. In contrast, 

evaluating the impact on groundwater necessitates the use of models to overcome the scarcity of 

information (Foster et al., 2020; Taylor, 2013) and to trace the connections between the 

atmosphere and aquifers, which in many cases are weak or obscured due to the intermediate 

processes that separate them (Cuthbert et al., 2019). 
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Studying the connections between the atmosphere and aquifers poses several operational 

challenges since climate and groundwater models typically operate independently. They function 

under different spatial and temporal scales, have distinct information requirements, and are often 

developed using other programming languages. As a result, most studies primarily focus on how 

climate change impacts the visible aspects of the water cycle, such as precipitation, flows, and 

snowmelt (Amanambu et al., 2020). These conflicting modeling approaches have led to a 

fragmented understanding of the complex interactions between climate and groundwater. 

Recognizing this, numerous scholars have underscored the importance of addressing the 

operational challenges to enhance our comprehension of the effects of climate change on 

groundwater (Blöschl et al., 2019; Larocque et al., 2019; Meixner et al., 2016; Ouhamdouch et 

al., 2019).  

This research seeks to enhance our understanding of the interplay among the atmospheric water 

cycle, water demand, and groundwater levels within the context of climate change. Despite the 

seemingly straightforward question—how do climate change and agricultural water demand 

impact groundwater reserves?—we encounter various conceptual, operational, and computational 

challenges in addressing it. To answer this question, the initial step involved defining key 

parameters, including the study area, the timeframe for analysis, computational methods, and 

statistical tests. We identified the models to be employed, specifying their information 

requirements and establishing how these models would be integrated. Subsequently, we gathered 

the necessary data to run the models, conducting numerous simulations. The resulting information 

was then scrutinized using statistical indices and graphical representations to draw meaningful 

insights. 

This study focuses on groundwater behavior in the Greater Kern County Region (GKCR) at the 

water district level across different time intervals. Various Global Climate Models (GCMs) are 

employed under diverse Representative Concentration Pathways (RCPs) to assess the impact of 

climate change on precipitation, surface water deliveries, agricultural water demand, and depth to 

groundwater. We define the GKCR as a region located south of the Central Valley in Kern and 

Tulare counties in California, United States. The GKCR comprises a selectin of 15 water districts 

namely: Semitropic WSD, Wheeler Ridge-Maricopa WSD, Rosedale-Rio Bravo WSD, Southern 

San Joaquin MUD, Arvin- Edison WSD, Kern Delta WD, Cawelo WD, Shafter-Wasco ID, Buena 

Vista WSD, Henry Miller WD, North Kern WSD, Tulare ID, Saucelito ID, Delano Earlimart ID, 

Kern Tulare WD. The agricultural production value of Kern and Tulare counties in 2021 was 

$8.34 and $8.09 billion, respectively (Kern County Department of Agriculture and Measurement 

Standards, 2021; Tulare County, 2021). The GKCR has low average precipitation and runoff 

levels, substantial evaporative demands, and a heavy dependence on groundwater for irrigation 

(Ghasemizade et al., 2019).  

Our interest in this region lies in its history of groundwater overexploitation, attributed to 

droughts over the past few decades (Jasperse & Pairis, 2020) and the expansion of irrigated 

agriculture, particularly permanent crops. The groundwater overexploitation has led to the 

depletion of shallow wells and caused subsidence (Faunt et al., 2016) and dry wells (R. Pauloo et 

al., 2020). Additionally, climate projections for the Central Valley suggest an increase in 

temperatures and more precipitation variability (CDWR (California Department of Water 

Resources), 2017; Fernandez-Bou et al., 2021). As a result, the region is likely to face more 

frequent and severe droughts and floods (Smerdon, 2017). The repercussions of recent droughts 

and the shift from annual to perennial crops have further intensified groundwater challenges. In 

response to these issues, the state of California implemented the 2014 Sustainable Groundwater 

Management Act (SGMA) to prevent excessive groundwater extraction and improve water 
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supply resilience. SGMA targets six undesirable outcomes resulting from unsustainable 

groundwater management: lowering groundwater levels, reduction in storage, seawater intrusion, 

degraded quality, land subsidence, and surface water depletion (California State Legislature, 

2014). 

While the GKCR draws groundwater from various aquifer layers, our research concentrates on 

the contribution from the uppermost confined aquifer because this layer supplies approximately 

80% of the agricultural wells, as detailed in Chapter 2. Although the unconfined aquifer supplies 

15.1% of agricultural wells, many farmers prefer deeper wells because they are less susceptible to 

low water levels and contamination and have greater pumping capacities (R. Pauloo et al., 2020). 

Before assessing the potential impacts of climate change on aquifers in the study area and 

formulating operational policies for irrigation districts, there is a significant operational modeling 

challenge. This challenge involved creating a versatile and efficient model for incorporating 

climatic and hydrological characteristics to facilitate modeling of thousands of scenarios. After 

evaluating various groundwater models, we decided to use the Fine Grid California Central 

Valley Groundwater-Surface Water Simulation Model (C2VSimFG) (DWR, 2020). As part of a 

collaborative project for simulating surface and groundwater hydrology, the California Food-

Energy-Water System (CALFEWS) (Zeff et al., 2021) was selected for water allocation to 

irrigated areas in the GKCR. Integrating these models presented operational challenges since 

climatic, hydrologic, and groundwater models typically function independently and are designed 

more from a scientific perspective than an operational one. Also, they differ in spatial and 

temporal scales, information requirements, and programming languages.  

To overcome these challenges, we devised the use of a C2VSimFG emulator. This emulator 

streamlines the integration of C2VSimFG, CALFEWES, and the GCMs, simultaneously reducing 

computation times. Chapter 2 assesses of three C2VSimFG emulators: Multiple Linear 

Regression (MLR), Multilayer Perceptron (MLP), and Long Short-Term Memory (LSTM). We 

aimed to address the scarcity of reliable, integrable, and swift hydrological models. Our goal was 

to overcome the lack of reliable, integrable, and fast hydrological models, mainly when scientists, 

planners, and decision-makers only accept highly complex Process-Based Models (PBMs) 

(Castelletti, Galelli, Restelli, et al., 2012). Therefore, Chapter 2, focuses on How changes in depth 

to groundwaters can be reproduced using emulators in agricultural regions dependent on water 

imports and pumping? This question is related to one of the 23 unsolved problems in the field of 

hydrology: "What are the synergies and tradeoffs between societal goals related to water 

management (e.g., water–environment–energy–food–health)" (Blöschl et al., 2019). This study is 

innovative in developing an emulator for a widely used yet computationally expensive 

groundwater model like C2VSimFG, a common problem with comprehensive models (Simpson 

et al., 2008). The assessment of the three pilot emulators through the metrics Root Mean Squared 

Error (RMSE), Nash–Sutcliffe Efficiency coefficient (NSE), and the Kling-Gupta Efficiency 

coefficient (KGE) demonstrated that the LSTM exhibited the best performance. 

The third chapter tested the hypothesis that groundwater levels would decline more rapidly under 

climate change scenarios compared to climate within the recent historical period (between 1995 

and 2015). This evaluation relied on climate projections from six GCMs under two RCPs (4.5 and 

8.5) for nine water districts in the GKCR. The selected GCMs, included CanESM2, CCSM4, 

CNRM-CM5, HadGCM2-CC, HadGCM2-ES, and MIROC5. The GCMs were chosen based on 

their ability to represent California's climate accurately (Pierce et al., 2018). The downscaled and 

bias-corrected models were sourced from the California Climate Adaptation Planning Tool (Cal-

Adapt) webpage (Cal-Adapt, 2022). We also employed CALFEWS, to estimate surface water 

deliveries (SWD) to agriculture. Agricultural water demands (AWD) were calculated, accounting 
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for carbon dioxide (CO2) emissions adjustments. Three sets of scenarios—Business as Usual 

(BU), Influence of climate change on two dynamic variables (IC2D), and Influence of climate 

change on three dynamic variables (IC3D)—were examined to understand the implications of 

climate change on groundwater levels. The findings suggest groundwater levels are likely to 

decline unless agricultural water demand is reduced or recharge is increased, with climate change 

scenarios exacerbating this decline compared to historical conditions. 

Chapter 4, identifies optimal operational policies for the Shafter-Wasco Irrigation District 

(SWID), considering the impact of climate change and groundwater regulation. We defined an 

operational policy as maximizing profits and minimizing depth to the groundwater based on the 

areas of annual and perennial crops and expected climatic conditions from 2020 to 2040, the time 

horizon of groundwater regulation. We pursued a sustainable and strategic approach by 

simultaneously employing surface and groundwater resources, a method referred to as 

conjunctive water use (CWU). Our goal was to address social, economic, and environmental 

objectives effectively. We used the CanESM2 GCM under RCP 4.5 to estimate precipitation and 

surface water deliveries. The selection of the CanESM2 model was based on its ability to 

accurately represent California's average climate (Pierce et al., 2018). Bayesian Optimization was 

used to derive the Pareto front and optimal operational policies. Utilizing the k-means clustering 

method, we categorized points on the Pareto front into three groups: lowest, medium, and highest 

net revenue and depth to groundwater. Our findings underscore the balance between profit and 

aquifer recovery, indicating farmers' need to rethink the intertemporal choice of cropping 

decisions to maximize profits while attaining groundwater sustainability. Ultimately, our method 

can potentially integrate water and agricultural systems facing various uncertainties, providing 

valuable insights into optimal operational policies and associated tradeoffs. 

In Chapter 5, the research culminates in presenting the overall conclusions. This section 

underscores the significance of integrating climate, hydrology, water allocation, and optimization 

within a unified framework. This approach reveals comprehensive insights on a broader scale into 

the intricate interplay among these concepts. Without integrated research efforts, valuable 

knowledge would remain disjointed, limiting our understanding of the world. In this study, our 

focus wasn't solely on generating new fragments of knowledge but rather on interconnecting 

existing elements to attain a more comprehensive and reliable perspective on sustained water 

resource management. Furthermore, this research demonstrated that coupling these knowledge 

pieces is not feasible for individuals; it requires collaboration and interdisciplinary expertise. 
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Chapter 2 Change in depth to groundwater through deep learning models in 

agricultural regions. 

Abstract 

Thanks to the development of science and computers, the Process-Based Models (PBMs) used in 

water resources can accurately represent individual processes. However, the integration 

challenges and computational demands of the PBMs often result in significant simplifications or, 

even worse, the exclusion of the hydrological component in complex studies. This research 

addresses this issue by developing reliable, integrable, fast hydrological emulators of the 

sophisticated hydrological model known as the Fine Grid California Central Valley Groundwater-

Surface Water Simulation Model (C2VSimFG). The evaluated emulators were Multiple Linear 

Regression (MLR), Multilayer Perceptron (MLP), and Long Short-Term Memory (LSTM). The 

emulators calculate the change in the groundwater levels as a function of precipitation, surface 

water deliveries, and agricultural demand, variables whose selection was inspired by the law of 

conservation of mass. The case study focuses on the Great Kern County Region (GKCR), one of 

the highest agricultural production regions in the United States and the world, highly dependent 

on water imports and groundwater pumping. The most relevant results of this research are: First, 

developing a method to emulate highly complex mechanistic models dependent on space and 

time. Second, the studied emulators are characterized by their simplicity, run time speed and 

quality of results. With these tools, decision-makers can evaluate multiple scenarios more 

efficiently without compromising the quality of the results.  

2.1 Introduction 

Thanks to the development of science and computers, the Process-Based Models (PBMs) used in 

water resources can accurately represent individual processes (Razavi et al., 2012). However, 

running PBMs can be computationally demanding since these models are conceived more from a 

scientific point of view (to facilitate the understanding of the processes) than from an operational 

point of view (to facilitate the simulation of possible scenarios) (Castelletti, Galelli, Restelli, et 

al., 2012). In other words, although current supercomputers have notably reduced model run time, 

they have also promoted the development of more realistic and complex models, keeping run 

times and other limitations almost unchanged (Castelletti, Galelli, Restelli, et al., 2012).  

In many studies, the PBM’s integration challenges and computational demands lead to massive 

simplifications or, even worst, the absence of the hydrological component. A possible solution is 

to develop computationally efficient simplified models called emulators (Castelletti, Galelli, 

Restelli, et al., 2012). The goal of an emulator is to represent the most relevant attributes of a 

PBM without drastically reducing the accuracy of the estimates so that a computationally-

demanding model is replaced by a computationally-efficient model (Cui et al., 2018). Also, 

according to Ray et al. (2018), in coupled systems, the uncertainty associated with hydrology is 

usually tiny compared to other sources of uncertainty. For this reason, with hydrological 

emulators, a large portion of the computational load can be alleviated to dedicate more resources 

to modeling anthropogenic uncertainties and improve the understanding of the water systems 

(demographic or financial) (Tracy et al., 2022).  

In groundwater systems, PBMs can be classified into two categories: Pure Groundwater Models 

(PGM) and Integrated Hydrology Models (IHM) (Dogrul et al., 2016). PGMs are exclusively 

dedicated to modeling the aquifer, leaving aside its interactions with other systems. Conversely, 
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IHMs incorporate most or all of the hydrological cycle components, water demands, and 

environmental regulations. Although IHMs seem more attractive, as happens with PBMs, they 

require highly specialized knowledge, large volumes of information, numerous parameters, and 

often unknown boundary conditions (Bowes et al., 2019; L. Chen et al., 2018; Nourani & 

Mousavi, 2016). Hence, many parameters are assumed, the calibration processes are 

computationally demanding (Bowes et al., 2019), and the run times are expensive (Cui et al., 

2018; Tran et al., 2021). Nonlinear interactions, spatial heterogeneity, and time delays between 

the occurrence of a phenomenon and the arrival of its effects (for example, rainfall and aquifer 

recharge) pose additional challenges (Sahoo et al., 2017).  

This research seeks to overcome the lack of reliable, integrable, and fast hydrological models; 

mainly when scientists, planners, and decision-makers only accept highly complex Process-Based 

Models (PBMs) (Castelletti, Galelli, Restelli, et al., 2012). Hence, we evaluate the performance of 

three emulators of a highly complex hydrological model to facilitate its integration with other 

models and promote a run times reduction. The emulated model was the Fine Grid California 

Central Valley Groundwater-Surface Water Simulation Model (C2VSimFG). The three evaluated 

emulators were Multiple Linear Regression (MLR), Multilayer Perceptron (MLP), and Long 

Short-Term Memory (LSTM). The three analyzed emulators allow calculating the change in the 

groundwater level as a function of precipitation, surface water deliveries, and agricultural 

demand, variables whose selection was inspired by the law of conservation of mass. In addition, 

we propose a novel approach that simultaneously considers space and time to simulate 

groundwater's complex spatiotemporal dynamics. 

We were interested in answering the question: How can changes in depth to groundwater be 

reproduced using emulators in agricultural regions dependent on water imports and pumping? 

This question is closely related to one of the 23 unsolved problems in the field of hydrology: 

"What are the synergies and tradeoffs between societal goals related to water management (e.g., 

water–environment–energy–food–health)" (Blöschl et al., 2019). Also, this study is timely as no 

other research is devoted to IWFM emulation. Research like this is essential since the high cost of 

simulations is a common topic in the most cited review articles on emulation (Simpson et al., 

2008). Finally, the case study focuses on the Great Kern County Region (GKCR), one of the 

highest agricultural production regions in the United States and the world, highly dependent on 

water imports and groundwater pumping. 

This document is organized as follows: Section two describes the theoretical framework focusing 

on the most widely used groundwater models, the emulators discussed here, and the metrics 

selected to assess their performance. Section three describes the study area, particularly the 

evaluated aquifer. Section four describes the structure of analyzed emulators, focusing on variable 

selection, training, validation, and testing. Section five presents the results and discussion. 

Finally, the conclusions are shown in section 6. 

2.2 Theoretical framework 

2.2.1 Groundwater models 

Some of the most widely used IHMs at present are HydroGeoSphere (HGS), the Penn State 

Integrated Hydrologic Model (PIHM), the Modular Groundwater Flow (MODFLOW), and the 

Integrated Water Flow Model (IWFM). First, HGS couples processes such as precipitation, 

streamflow, evapotranspiration, snowmelt, soil freeze/thaw, groundwater recharge, and 

subsurface discharge into surface water bodies such as rivers or lakes. Using finite elements, HGS 
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simultaneously solves the 2D diffusive wave equation for overland flow and the 3D form of the 

Richards equation for saturated groundwater flow (Brunner & Simmons, 2012). Likewise, PIHM 

simulates the major hydrological processes at a catchment scale. PIHM considers processes such 

as channel routing, surface overland flow, subsurface flow, interception, snowmelt, and 

evapotranspiration. The model uses kinematic and diffusion wave approximations for channel 

routing and overland flow modeling. For saturated groundwater flow, PIHM considers the 2-D 

Dupuit approximation. The unsaturated flow is simulated through the 1-D Richards equation 

(Duffy et al., 2014). 

On the other hand, MODFLOW is a fully distributed, three-dimensional PBM developed by the 

U.S. Geological Survey (Molina-Navarro et al., 2019). MODFLOW simulates groundwater 

management, coupled groundwater/surface-water systems, aquifer parameter estimation, aquifer-

system compaction, land subsidence, variable-density flow (including saltwater), and solute 

transport (USGS, 2019). On the other hand, the State of California Department of Water 

Resources (CDWR) has been developing IWFM. This widely accepted model is oriented to the 

planning of groundwater resources, capable of simulating not only the groundwater flow in 

complex multi-layered aquifers; but also essential components of the hydrological cycle; 

agricultural and urban water demands; water supply in terms of pumping and surface water 

diversions; and the effect of water supply on surface and groundwater resources (Dogrul et al., 

2016). 

The IWFM’s application to the Central Valley is known as the California Central Valley 

Groundwater–Surface Water Simulation Model (C2VSim), and depending on the finite element 

mesh resolution, the model can be called coarse grid (C2VSimCG) or fine grid (C2VSimFG). For 

the coarse grid model, the average area of the grid cells is 37.17 km2, whereas for the fine grid 

model, it is 1.65 km2 (Dogrul et al., 2016; DWR, 2020). Indeed, in C2VSimFG, the Central 

Valley is represented by more than 32,000 grid cells, 110 stream reaches, four aquifer layers, and 

1,024 small watersheds that supply surface and subsurface boundary flows to the Central Valley 

(DWR, 2019). C2VSimFG inputs include historical precipitation, stream inflows, surface water 

diversions, and land use. According to Dale et al. (2013), C2VSim simulates at a monthly level 

rainfall-runoff; stream flow diversions; irrigation return flows; stream-aquifer interaction; 

infiltration and recharge to the groundwater due to precipitation and irrigation; tile drainage; 

subsidence; and land surface and root zone flow processes at urban and native vegetation lands. 

Also, for each grid cell, C2VSim dynamically calculates the available surface water (irrigation, 

precipitation, and soil moisture) and the water demand (agricultural and urban). Pumping is 

obtained as the difference between surface water supply and demand. C2VSimFG was calibrated 

considering surface water flows, groundwater heads, groundwater head differences between well 

pairs, and stream-groundwater flows (DWR, 2020). However, the C2VSimFG’s computational 

requirements are remarkable due to its ability to model high-resolution areas. For example, run 

time can be in the order of hours to model California's Central Valley monthly from 1,974 to 

2,015, considering four aquifer layers and a fine grid resolution. Like other IHMs, using 

C2VSimFG for water management and planning could be challenging. Besides, modifying or 

adding new modules is an arduous task (Goharian & Burian, 2018). 

In this research, we use the C2VSimFG version 1.01 model as the basis for the development of 

the emulators after considering its widespread use in studies of planning and operation of water 

resources (Escriva-bou et al., 2020), climate change studies (Alam et al., 2019), groundwater 

storage investigations (Dale et al., 2013), as well as its possible future applications in ecosystem 

and infrastructure improvements. 
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2.2.2 Analyzed emulators 

Emulation is the second level of modeling abstraction (Benjamin et al., 1998; Razavi et al., 2012) 

oriented to developing a PBM approximation to replace the latter in computationally intensive 

applications (Castelletti, Galelli, Ratto, et al., 2012). Emulation can receive different names such 

as meta-modelling, surrogate modeling, response surface modelling, response landscape 

modeling, model approximation, reduced models, proxy models, lower fidelity modeling, or 

model of a model (L. Chen et al., 2018; Cui et al., 2018; Razavi et al., 2012). According to Ratto, 

Castelletti, and Pagano (2012), since its beginnings in the 1970s, emulation has evolved 

considerably to the point where today it is considered an important area of research and one of the 

most significant advances in the study of complex mathematical models. 

The running times' reduction in emulation is explained by how PBMs and emulators perform 

their calculations (Weber de Melo et al., 2022). For instance, while the IWFM’s computational 

resources are dedicated to solving the conservation equation for the multilayer aquifer system 

using the Galerkin finite element method (Dogrul & Kadir, 2020b), emulators perform operations 

more straightforwardly, such as simple matrix operations. In the latter case, the computational 

demand is dedicated to the emulator’s calibration rather than its execution (Weber de Melo et al., 

2022). 

Emulators can be classified into hierarchical-based, projection-based, and data-driven models 

(Asher et al., 2015). On the one hand, in hierarchical-base models (also known as multi-fidelity 

models), the physical system representation is simplified by reducing the resolution (spatial, 

temporal, or numerical) or by suppressing specific components (Asher et al., 2015). On the other 

hand, in projection-based models (also called structural-based models), the main equations of the 

original model are projected onto a reduced-dimensional subspace characterized by a base of 

orthonormal vectors (Asher et al., 2015; Tracy et al., 2022). Finally, the data-driven models are 

dedicated to capturing relationships between the inputs and outputs of the original model (Asher 

et al., 2015). According to Castelletti, Galelli, Restelli, et al. (2012), data-driven models have 

been the most explored emulators in the environmental literature. 

An emulator must guarantee three conditions: credibility, efficacy, and efficiency. The essential 

emulator’s feature is credibility, or what is the same, reflecting the transparency and 

interpretability of the emulated PBM. (Castelletti, Galelli, Ratto, et al., 2012). Efficacy refers to 

reproducing the original model's results, especially when the emulator faces scenarios different 

than those used during its conception or training (Cui et al., 2018). Finally, efficiency means that 

the emulator’s demand for resources (processing capacity, storage, run time) should be much 

lower than those used by the original model (L. Chen et al., 2018). Some examples of 

groundwater model emulators are described by Asher et al. (2015) and Cui et al. (2018). 

2.2.2.1 Multiple Linear Regression 

An MLR is a model that follows the form of Equation 3-11 where y is the dependent variable, β0 

is the intercept of the hyperplane, and βi is the coefficient of the i-th explanatory variable xi. The 

MLR is used here as a reference model because it is less expensive regarding the number of 

parameters and calibration requirements. According to Østergård, Jensen, and Maagaard (2018), 

these models are simple, fast, easy to interpret, and valuable when dealing with scarce data and 

high noise. 
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𝑦 = 𝛽0 + ∑ 𝛽𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

 
Equation 

2-1 

 

Aware of the highly nonlinear relationships between the variables that characterize environmental 

phenomena, we implemented two of the most widely used Artificial Neural Networks (ANNs) in 

time series analysis: an MLP and an LSTM. According to Krogh (2008), an ANN is a 

mathematical model inspired by sensory processing models of the brain, made up of 

interconnected artificial neurons, which receive information from external resources or other 

neurons. After adding the weights of their inputs and passing the results through activation 

functions, they can solve classification or regression problems. 

2.2.2.2 Multilayer Perceptron 

An MLP is a network consisting of an input layer, an output layer, and two or more hidden layers 

(Struye & Latré, 2020), where information flows in only one direction: from input to output. On 

the one hand, the numbers of neurons in the input and output layers coincide with the numbers of 

input and output variables, respectively. Through an optimization process known as hyper 

parameterization, the numbers of hidden layers and their corresponding neurons are calculated. 

Additionally, the training of an MLP is carried out through a process known as backpropagation 

(Shen, 2018), where the MLP receives inputs and generates outputs that are compared with the 

observed values. The differences between the estimated and observed values are distributed 

among the neuron weights, starting with those located in the output layer and continuing to the 

preceding layers. In this way, the error distribution, by derivation, indicates the direction in which 

the neurons' weights should be adjusted to improve the accuracy of the results (Struye & Latré, 

2020). 

Although MLPs have produced good results working with time series (Gers et al., 2002; Huang et 

al., 2020; Struye & Latré, 2020), their main disadvantage is that the temporal structure of the data 

does not play any role. For example, two MLPs that use the same input variables might produce 

similar results when the order of the input variables is different. That situation violates the 

definition that a time series is a set of data ordered sequentially or chronologically, where the 

order of the observations is decisive (Box et al., 2016; Hipel & McLeod, 1994). 

2.2.2.3 Long short-term memory artificial neural network 

To remedy the order independence suffered by MLPs, recurrent neural networks (RNN) were 

developed in the 1980s (J. Zhang et al., 2018). Since then, this type of ANN has been used to 

consider the effect of time on speech recognition, language processing, automatic image 

captioning, machine translation, and multiple scientific applications (Karpatne et al., 2017; J. 

Zhang et al., 2018). An RNN has two inputs, two outputs, and two ANNs (see Figure 2-1a). After 

each ANN, there are sigmoidal or logistic activation functions (black semicircles). The RNN 

inputs include the input vector at time t (𝑥𝑡) and the hidden state at time t-1 (ℎ𝑡−1). The outputs 

are ℎ𝑡 and the vector of outputs (𝑦𝑡). Although this type of network is capable of handling 

variable-length sequences (Cheng & Zhao, 2019), modeling long-term dependencies 

(Kumaraswamy, 2021), and sharing parameters across all time steps (Shi et al., 2018), it may face 

vanishing or exploding gradient problems by using the backpropagation algorithm over time. The 
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vanishing gradient problem prevents the network from remembering past events (J. Zhang et al., 

2018). The exploding gradient problem can lead to wrong solutions or high computational times. 

 

 

 
a) 

 
b) 

Figure 2-1. Visualization of a) RNN. b) LSTM. 

 

One way to overcome the difficulties mentioned above is through a type of RNN known as Long 

Short-Term Memory (LSTM) (Wunsch et al., 2020). An LSTM has three input and two output 

variables (see Figure 2-1b). The input variables are 𝑥𝑡, ℎ𝑡−1, and the cell memory (or cell state) 

of the previous time (𝑐𝑡−1). The output variables 𝑐𝑡 and ℎ𝑡 are the two-state vectors used to store 

the long-term memory and the short-term memory, respectively (Yu et al., 2020). In this way, the 

straight horizontal path that connects the variables 𝑐𝑡−1 and 𝑐𝑡 acts as a conveyor belt that 

preserves the system's long-term memory (Huang et al., 2020). Since there is no ANN on the 

conveyor belt, the gradient does not degrade as quickly as in the case of RNN. For this reason, 

LSTMs can capture long-term relationships, and the information can remain in memory for many 

steps (Hochreiter & Schmidhuber, 1997). 

A LSTMs have four ANNs fed by ℎ𝑡−1 and 𝑥𝑡. Three of the ANNs act as logic gates, while the 

fourth ANN is responsible for generating candidate vectors (𝑐𝑡̃) to be included in memory (green 

path Figure 2-1b and Equation 2-3). Gates (forget, input, and output) are symbolized in Figure 

2-1b by purple, orange, and pink paths, respectively. Finally, the activation function at the end of 

each gate can be sigmoidal or logistic (black semicircles). Thanks to these activation functions, 

the results are scaled between zero and one to restrict or allow the information flow. 

Once the four ANNs have been trained, the information flows as follows: First, the forget gate 

(Equation 2-2) decides what information from the previous state 𝑐𝑡−1 should be forgotten (first 

term on the right-hand side of Equation 2-5). Second, the input gate (Equation 2-4) decides which 

components of 𝑐𝑡̃ will be included in memory (second term on the right-hand side of Equation 

2-5). Third, once the irrelevant information has been ignored and the network memory has been 

updated, the new 𝑐𝑡 is obtained (Equation 2-5). Subsequently, with the help of a hyperbolic 

tangent function (red circle in Figure 2-1b), the values of 𝑐𝑡 are scaled between negative one and 

one. Finally, the output gate (Equation 2-6) is responsible for choosing the scald elements that 

will be shown as output at time t (ℎ𝑡) (Equation 2-7) (Wunsch et al., 2020). 
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𝑓𝑡 = 𝜎(𝒘𝒇𝑥𝑡 + 𝒖𝒇ℎ𝑡−1 + 𝒃𝒇) Equation 2-2 

  

𝑐𝑡̃ = 𝑡𝑎𝑛ℎ(𝒘𝒄𝑥𝑡 + 𝒖𝒄ℎ𝑡−1 + 𝒃𝒄) Equation 2-3 

  

𝑖𝑡 = 𝜎(𝒘𝒊𝑥𝑡 + 𝒖𝒊ℎ𝑡−1 + 𝒃𝒊) Equation 2-4 

  

𝑐𝑡 = 𝑓𝑡⨂𝑐𝑡−1 + 𝑖𝑡⨂𝑐𝑡̃  Equation 2-5 

  

𝑜𝑡 = 𝜎(𝒘𝒐𝑥𝑡 + 𝒖𝒐ℎ𝑡−1 + 𝒃𝒐) Equation 2-6 

  

ℎ𝑡 = 𝑜𝑡⨂𝑡𝑎𝑛ℎ(𝑐𝑡) Equation 2-7 

 

In the previous equations, w and u represent the weight matrices for 𝑥𝑡 and ℎ𝑡−1 respectively, 

while b represents the bias vectors. The subscripts f, i, and o refer to the forget, input, and output 

gates, while the subindex c refers to the candidate vector. The symbol ⨂ represents element-wise 

multiplication. Finally, for the first time step, the hidden and cell states are initialized with a 

vector of zeros (ℎ0 = 0, 𝑐0 = 0) (J. Zhang et al., 2018). 

2.2.3 Performance metrics 

Emulators' performance was analyzed considering three metrics: the Root Mean Squared Error 

(RMSE), Nash–Sutcliffe Efficiency coefficient (NSE), and the Kling-Gupta Efficiency 

coefficient (KGE) (see equations from Equation 2-8 to Equation 2-12) (Gupta et al. 2009; Clark 

et al. 2021; Ghaseminejad and Uddameri 2020). 

𝑅𝑀𝑆𝐸 = (
1

𝑛
∗ ∑(𝑂𝑖 − 𝑆𝑖)2

𝑛

𝑖=1

)

0.5

 

 Equation 2-8 

   

𝑁𝑆𝐸 = 1 −
𝑅𝑀𝑆𝐸2

𝜎𝑂
2  

 Equation 2-9 

   

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2  Equation 2-10 

   

𝛼 =
𝜎𝑠

𝜎𝑜
  Equation 2-11 

   

𝛽 =
𝜇𝑠

𝜇𝑜
  Equation 2-12 
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Where O and S represent the observed and emulated values, respectively. Furthermore, the means 

of these variables are 𝜇𝑜 and 𝜇𝑠, while their deviations are 𝜎𝑜 and 𝜎𝑠. Additionally, r is the linear 

correlation coefficient between O and S. We used the RMSE to measure the average difference 

between observations and emulations in the same units of the analyzed variables (meters) so that 

values close to zero reflect an excellent emulator. The NSE criteria was used for its 

straightforward interpretation since as its value approaches one, the quality of the emulator 

increases. On the other hand, an NSE close to zero indicates that the emulator estimates are as 

good as the mean of the observations. In contrast, a negative value reveals that the mean of the 

observations is better than the emulator estimates. Finally, the KGE criteria was chosen because it 

integrates several statistical parameters. A KGE close to one represents a good model because the 

means, deviations, and correlation between O and S are similar. Also, the model’s performance is 

considered reasonable when KGE exceeds -0.41, and the mean is used as its benchmark (Knoben 

et al., 2019). 

2.3 Model application area 

This research focuses on the Greater Kern County Region (GKCR), comprised of 15 water 

districts whose areas add up to 4,496 km2. The GKCR is located south of the Central Valley in 

Kern and Tulare counties in California, United States. The region borders Fresno County to the 

north, the Tehachapi Mountains to the south, the Sierra Nevada to the east, and the South Coast 

Range to the west (Figure 2-2). As in California’s Central Valley, agriculture is part of the 

GKCR’s identity since it constitutes a significant gross revenue source, net income, and 

employment (Hanak et al., 2019). For instance, the agricultural production value of Kern and 

Tulare counties in 2021 were $8.34 and $8.09 billion, respectively, the highest in the state (Kern 

County Department of Agriculture and Measurement Standards, 2021; Tulare County, 2021). 

Agriculture is the largest water user in California and consumes 80% of the water in a typical 

year (Lund et al., 2018), of which groundwater supplies about 30, 40 and 60% of the water 

demand on average dry and drought years, respectively (Perrone & Rohde, 2016). However, the 

GKCR lacks enough natural surface water, relying on groundwater pumping, and imported water 

to meet demand. Thanks to a sophisticated network of canals and pipes, water is distributed from 

groundwater wells, reservoirs, and the Sacramento-San Joaquin Delta to different users (cities, 

irrigation districts, industries, etc.). 

Drought is the greatest threat to agriculture in this region, leading to groundwater 

overexploitation that causes aquifer depletion, dries shallow wells, and promotes subsidence 

(Faunt et al., 2016). Additionally, according to the climatic projections for California's Central 

Valley, an increase in temperature and more significant precipitation variability are expected for 

the next decades (CDWR (California Department of Water Resources), 2017; Fernandez-Bou et 

al., 2021); therefore, frequent and severe droughts and flood events are expected (Smerdon, 

2017). Moreover, the droughts of recent decades have promoted the transition from annual to 

perennial crops, whose irrigation has exacerbated the persistent groundwater overexploitation. To 

prevent such overdrafts and other undesirable effects, the State of California enacted the 2014 

Sustainable Groundwater Management Act (SGMA), which will further reduce groundwater 

availability. The studied emulators were selected to support decision-making in the study region, 

which may be affected by climate change and environmental regulations such as SGMA. 
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Figure 2-2. Fifteen water districts in the Greater Kern County Region (GKCR). 

2.3.1 Analyzed aquifer 

Two sources of information were analyzed to identify the aquifers that feed the agricultural wells 

in the study area. The sources were the stratigraphy of the study area and the vertical wells’ 

screen location. Data related to the stratigraphy was reported in the C2VSimFG. In that model, 

the Central Valley aquifer is represented by four layers of variable thickness, where the 

unconfined aquifer, or layer 1, sits over three confined aquifers numbered from top to bottom as 

layers 2 through 4. On the other hand, the vertical location of the well screens was obtained from 

the California groundwater wells database known as Well Completion Report (WCR) (CDWR, 

2020). The WCR database has more than one million wells of different uses. That information 

was filtered to guarantee that wells had agricultural use, belonged to the studied districts, were in 

operation, and the depth to the top and bottom of the well screen were congruent.  

In the GKCR, 62.5% of the wells are fed by a single layer, while the remaining wells receive 

water from two or more layers (Figure 2-3). A single aquifer layer feeds a well if the top and 

bottom of the well screen belong to the same layer. The bars in Figure 2-3 have different colors to 

show the layers that feed the wells in the most unfavorable scenario: when the water level 

decreases until it approaches the bottom of the screen. For example, if the top of a well screen is 

in layer 1 and its base is in layer 2, the well will receive water from both layers under normal 
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operating conditions. However, the worst operating condition occurs when the water level drops 

below layer 1, and the well can only be supplied by layer 2. Our research focuses on modeling the 

depths to groundwater of layer 2 because, under the most unfavorable condition, this layer is fed 

by around 80% of the wells. In addition, layer 2 was also selected because although the number 

of agricultural wells supplied by layer 1 was 15.1%, most farmers tend to invest in deeper wells, 

which are less susceptible to lower water levels and contamination and have higher pumping 

capacities (R. A. Pauloo et al., 2020). 

 

 

Figure 2-3. Aquifers that feed the study area's wells 

2.4 Emulators’ structure 

Commonly, emulators consider time and space independently. Some models can make local 

estimates, in which time varies, while others are useful for making spatial predictions 

independent of time. For example, MacEwan et al. (2017) used independent MLRs to estimate 

changes in depth to groundwater for three hydrological regions in Central Valley, California. On 

the other hand, when time is left aside, the emulators focus on recreating similar surfaces to those 

generated by the reference PBMs. This approach includes spatial interpolation methods such as 

kriging (Razavi et al., 2012). Some researchers follow a multi-step algorithm for simultaneous 

consideration of time and space. First, an independent model is trained for each observation point, 

and then the model’s outputs are interpolated using geostatistical methods. Although this 

approach has many advantages, groundwater systems are tightly integrated in time and space 

(Ghaseminejad & Uddameri, 2020) and require consistency with the law of conservation of mass. 

The emulators we present in this study integrate time and space simultaneously to estimate the 

change in depth to groundwater (ΔGWD). As these emulators aim to support future planning 

processes, the spatial resolution was set at the water district level. In contrast, the temporal 

resolution of the original model (monthly basis) was maintained. Hence, the proposed emulators 

can be classified as hierarchical-based and data-driven models. Additionally, we used static and 

dynamic variables to model the combined effects of space and time, as Kratzert et al. (2019) 

proposed. We used static variables to consider space patterns and dynamic variables to model 

time dependencies. The static variables refer to water districts’ average characteristics. They can 
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be classified into geometric features (surface area and ground surface slope), soil characteristics 

(field capacity, saturated hydraulic conductivity, and total porosity), and aquifer characteristics 

(hydraulic conductivity, aquifer vertical hydraulic conductivity, specific yield, and specific 

storage). Precipitation (P), surface water deliveries (SWD), and agricultural water demands 

(AWD) constitute the dynamic components of the model. Ranges of the static and dynamic 

variables for the 15 analyzed water districts are shown in Table 2-1. A detailed analysis of the 

dynamic variables selection is made in section 2.4.1. All variables, except geometric features, 

were extracted from C2VSimFG databases. Water district areas were obtained from the 

California Department of Water Resources Geographical Information System (CDWR, 2021b). 

The ground surface slope was derived from the Digital Elevation Model from the National 

Aeronautics and Space Administration web page (NASA, 2018). General emulators’ structure is 

shown in Figure 2-4. 

 

 

 

Figure 2-4. General emulators’ structure. 
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Table 2-1. Ranges of the static and dynamic variables for the 15 water districts analyzed 

Category Input variables Units Range 

Static 

Variables 

Geometric 

features 

Surface area Hectares 7,963 ~ 90,451 

Ground surface slope Percentage 0.11 ~ 2.25 

Soil 

Properties 

Field capacity Dimensionless 0.18 ~ 0.37 

Saturated hydraulic conductivity m/s 7.23*10-9 ~ 6.34*10-8 

Total porosity Dimensionless 0.37 ~ 0.50 

Aquifer 

properties 

Hydraulic conductivity m/s 8.6*10-7 ~ 4.33*10-6 

Vertical hydraulic conductivity m/s 7.14*10-9 ~ 3.02*10-8 

Specific yield Dimensionless 0.08 ~ 0.14 

Specific storage 1/m 7.97*10-5 ~ 2.52*10-4 

Dynamic variables 

Precipitation (P) km3/month 0 ~ 0.13 

Surface water deliveries to 

agriculture (SWD) 
km3/month 0 ~ 0.07 

Agricultural water demands 

(AWD) 
km3/month 0 ~ 0.14 

 

2.4.1 Dynamic variables’ selection 

Dynamic variables were selected following the principle of conservation of mass to guarantee the 

emulators’ consistency with the physical processes. Although ANNs can reproduce complex 

interactions between input and output, ignorance of the physical laws or principles that govern 

such relationships can lead to inaccurate or false predictions (Read et al., 2019). In 2008, Google 

Flu Trends (GTF) was presented as a successful model for predicting influenza incidence. 

However, GTF received widespread criticism for overestimating the proportion of doctor visits 

for influenza-like illnesses compared to the widely accepted models developed by the Centers for 

Disease Control and Prevention (CDC). GTF failed due to using an exploratory variable highly 

correlated to influenza susceptibility but structurally unrelated (Lazer et al., 2014). Similar 

problems have been observed across different fields. 

To avoid the shortcomings of the GTF approach, we identified the variables structurally most 

related to the depth to groundwater for the second aquifer layer yet preserving the principle of 

conservation of mass. According to Khan et al. (2020), the groundwater system in a region 

extends vertically from the unsaturated zone (water table) to the bottom of the groundwater basin, 

which may include several aquifer layers in between. Water inflows to the groundwater system 

are recharge due to precipitation, recharge due to applied water, managed aquifer recharge, 

seepage from conveyance infrastructure, groundwater gain from streams and lakes, subsurface 

inflows, and water release caused by land subsidence (Khan et al., 2020). Water outflows include 

pumping, groundwater loss to streams and lakes, and subsurface outflows. The difference 

between inputs and outputs is the change in groundwater storage (ΔGWS) per time step. 
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After comparing the contributions of input and output variables to the groundwater system 

reported by C2VSimFG, we found that precipitation (P), surface water deliveries (SWD), and 

pumping (PG) were the variables that affected the ΔGWS estimation the most. However, 

C2VSimFG estimates pumping as the difference between Applied Water (AW) and the SWD 

(Dogrul & Kadir, 2020a; DWR, 2020) because pumping records are scarce in the Central Valley, 

as well as in other parts of the world (Massoud et al., 2018). If AW is assumed to be equal to the 

Agricultural Water Demand (AWD), the most relevant variables to estimate ΔGWS are P, SWD, 

and AWD. Figure 2-5 shows that these variables have a consistent seasonal behavior of 12 months 

for the Semitropic Water District (similar charts are in Appendix A.1). 

 

  
Figure 2-5. Standardized water volumes for Semitropic Water District. 

 

Figure 2-6 compares each dynamic variable with the ΔGWS for the Semitropic Water District. 

The time series were de-seasonalized and standardized to facilitate their comparisons. The 

deseasonalization was made by the difference between the observed values in months t and t-12. 

Standardization consisted of transforming the deseasonalized variables into values with zero 

mean and one standard deviation. According to Figure 2-6a, SWD and ΔGWS have a positive 

correlation so that when deliveries increase, the change in groundwater storage also increases, 

which implies an increase in aquifer recharge. Figure 2-6b shows the relationship between P and 

ΔGWS. From that figure, we can see a lag between P and ΔGWS, so minimum and maximum 

values of change in storage follow the minimum and maximum values of precipitation. The lag 

refers to the time between the rainfall and the aquifer recharge. Finally, AWD and ΔGWS have a 

negative correlation since when AWD decreases (high values in the chart due to the effect of the 

sign change), the ΔGWS increases (Figure 2-6c). Similar graphs for the other districts can be 

found in Appendix A.2. 
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a) 

 

 
b) 

 
c) 

Figure 2-6. Standardized and deseasonalized water volumes for Semitropic Water District. a) 

Change in groundwater storage (ΔGWS) versus surface water deliveries (SWD). b) ΔGWS versus 

precipitation (P). c) ΔGWS versus agricultural water demand (AWD). AWD’s signs were 

reversed to facilitate data comparisons. 

 

Figure 2-7 shows the standardized moving average values for depth to groundwater (GWD) and 

groundwater storage (GWS) for the Semitropic Water District, considering the C2VsimFG data. 

Note that the vertical axis has been reversed to facilitate variable interpretation. The decrease in 

the brown and black lines represents the increase in depth and the decrease in storage, 

respectively. Similar images are in the supplementary material for the other districts. Here, the 

GWS refers to the sum of the groundwater storage of the four aquifers. On the other hand, GWD 
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refers to the average depth of the mesh nodes that belong to the second aquifer layer. Although 

the GWS does not refer exclusively to the second aquifer layer, GWS can be used to estimate 

GWD because most of the wells belong to the second aquifer layer (see Figure 2-3). Considering 

that the two-time series (GWD and GWS) have similar behaviors (Figure 2-7), GWS can be used 

to estimate GWD, or even better, the dynamic variables (P, SWD, and AWD) can be used to 

estimate ΔGWD. 

 

Figure 2-7. Standardized moving average values for depth to groundwater (GWD) and 

groundwater storage (GWS) for Semitropic Water District. The vertical axis was reversed to 

facilitate interpretation. The decrease in the brown and black lines represents the increase in depth 

and the decrease in storage, respectively. 

The dynamic variables selected here are similar to those in other studies. For example, Massoud 

et al. (2018) developed an aggregate model to estimate the ΔGWS in Central Valley California, 

considering the relationships between precipitation, supply, and demand. Murray and Lohman 

(2018) showed that the seasonal cycles of precipitation, land use, and water use had a close 

relationship with the elastic deformation of the aquifer/aquitard system during the storm events 

between 2016 and 2017 in the Tulare Basin. Finally, C. Chen, He, Zhou, Xue, & Zhu (2020) 

estimated groundwater levels in the Heihe River Basin, northwestern China, as a function of two 

inflows: recharge and stream flow, and one outflow: pumping. In this study, our inflows P and 

SWD contribute to recharge, and the stream flow role is represented by the surface water 

delivered to districts. Finally, here pumping is expressed as the difference between AWD and 

SWD. 

2.4.2 Models’ architecture 

During the LSTM training, fragments of the time series must be shown to the emulator. The time 

series fragments length (FL) refers to the time until past events could affect current events. For 

instance, if FL is three, the emulator will receive the present and the three previous dynamic 

values for the ΔGWD estimates. Considering that FL plays a significant role in the model results, 

researchers like Kratzert et al. (2019) have proposed to use optimization methods for its definition 

(hyperparameter tuning). Here, the FL was estimated by analyzing a graph that we called 

Multiple Squared Correlation Function (MSCF), equivalent to the autocorrelation function used 

in time series analysis. To draw the MSCF, first, we remove the seasonal effect of the dynamic 

variables and ΔGWD by subtracting its values in the months t and t-12. Subsequently, we 

calculated the square of the multiple correlation coefficient (R2) for the deseasonalized variables 
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for different lags using Equation 2-13 and Equation 2-14. In these equations, xi refers to i-th 

dynamic variable or predictor; y is the output variable (ΔGWD); Rxx is the correlation matrix 

between predictors; and C is the vector that storages the correlations between predictors and the 

output variable (rxi,y). 

 

𝑅2 = 𝑪𝑇 ∗ 𝑹𝑥𝑥
−1 ∗ 𝑪 Equation 2-13 

𝑪𝑇 = (𝑟𝑥1,𝑦, 𝑟𝑥2,𝑦, … , 𝑟𝑥𝑛,𝑦) Equation 2-14 

 

According to the MSCF for Semitropic Water District (Figure 2-8), the relationship between the 

dynamic variables and ΔGWD is relevant for up to 12 months. Until that lag, most R2 values are 

above the limit defined by a 0.95 confidence level (see red line). Since similar behaviors were 

identified in the other water districts, a 12-month FL was assumed (see Appendix A.4). 

 

 

Figure 2-8. Multiple Squared Correlation Function (MSCF) between the dynamic variables and 

ΔGWD for the Semitropic Water District after removing seasonal effects. 

For the analyzed emulators, the number of input variables (NIV) was calculated using Equation 

2-15. In that equation, NSV is the number of static variables, and number three refers to the 

number of dynamic variables. Note that one is added to FL to indicate that ΔGWD in the current 

month depends on the dynamic variables in the same month and the previous months defined by 

FL. Therefore, the NIV for each emulator is 48, that is, nine static input variables plus 39 dynamic 

variables. In sum, the studied emulators preserve the temporal resolution of the original model 

(monthly basis) and consider the effect of dynamic variables’ previous observations (12 months) 

in estimating ΔGWD. 

 

𝑁𝐼𝑉 = 𝑁𝑆𝑉 + 3 ∗ (𝐹𝐿 + 1) Equation 2-15 
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The architecture of each emulator implies different numbers of parameters. For example, the 

number of parameters for the MLR is 49, equal to the NIV plus one additional parameter to 

represent the intercept (see Equation 3-11). MLP architecture was defined by contemplating the 

LSTM because the last one is more complex since it consists of four gates, each with an ANN. 

After performing the hyper-parametrization process, we found that an LSTM with a hidden layer 

of 20 neurons (which means 2,661 parameters) could emulate the relationship between inputs and 

outputs the best. Finally, given the large number of possible architectures for the MLP, we 

decided to train a model with four hidden layers (alluding to the total number of hidden layers of 

the LSTM) with the same number of neurons in each layer. To guarantee that the total number of 

parameters of the MLP and the LSTM were equal, the theoretical number of neurons in each 

hidden layer of the MLP should be around 7.18. Given the infeasibility of using a non-integer 

number of neurons, we selected eight neurons per hidden layer. As a result, the MLP has four 

hidden layers, each with eight neurons, which means 3,296 parameters. 

2.4.3 Training, validation, and testing 

Many studies recommend running the Physical Based Models under different conditions to 

generate a significant number of training patterns for the emulator (Castelletti, Galelli, Ratto, et 

al., 2012; L. Chen et al., 2018; Weber de Melo et al., 2022). However, the C2VSimFG historical 

scenario provides enough patterns to train the three emulators because each emulator receives 

patterns from all the districts, guaranteeing that the models are trained under different conditions. 

The validity of this hypothesis was corroborated by the good estimates made by the emulators 

during testing (see section 2.5). The idea implemented here agrees with Cui et al. (2018), who 

affirm that the training samples can also correspond to historical scenarios. For the MLP and 

LSTM, we divided the number of patterns into three categories: 70 % for training, 15 % for 

validation, and 15 % for testing. The training data set was used to fit the model parameters 

(neuron weights). The validation dataset was defined to unbiased evaluate the models while 

adjusting for their hyperparameters: learning rate and the number of neurons. A testing data set 

was used to assess the quality of the final models using an independent data set. Training, 

validation, and test samples were randomly selected from the entire time series length to improve 

the emulators‘ generalizability. Therefore, thanks to the samples‘ random selection, we 

abandoned the common practice of choosing the training samples from the oldest portion of the 

time series and selecting the test samples from its most recent periods. 

 

Before and after training, validation, and testing, input and output data were normalized to reduce 

the influence of the variables’ ranges on the results. Thanks to Equation 2-16, the variables were 

normalized in the range [0, 1], where x is the original data; x* represents the normalized ones; xmin 

and xmax are the minimum and maximum values of x. Finally, the MLP and LSTM were trained to 

minimize the output layer's mean square error (MSE) using the Adaptive Moment Estimation 

(ADAM) optimizer. 

 

𝑥∗ =
(𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Equation 2-16 

2.5 Results and discussion 

Table 2-2 summarizes the emulators' ability to replicate ΔGWD during the testing phase for the 

15 water districts. MLR results appear in columns two to four (from left to right). The MLR-

RMSE ranges between 0.11 m and 1.39 m. Although 0.11 m reflects a good model, an RMSE of 
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1.39 m is relatively high. When the RMSE is large, the ΔGWS errors are magnified by the effect 

of the water district surface area due to ΔGWS can be expressed as the product of the ΔGWD, the 

water district surface area, and the storage coefficient or storativity (S) (Fetter, 2001). As 

mentioned in section 2.2.3, an emulator is attractive when the RMSE is close to zero. The positive 

skewness of the MLR-RMSE indicates that most of the RMSEs were small. On the other hand, 

MLR-NSE values vary between 0.09 and 0.93. As marked above, an NSE value close to zero 

indicates that the emulator cannot capture the time series details but only their mean, whereas 

values close to one reflect a good model. The negative skewness of the MLR-NSE means that 

high NSE values are abundant. Finally, the MLR-KGE fluctuates between -0.46 and 0.88. From 

the KGE’s point of view, a model is acceptable when values are close to one. The negative 

skewness of the MLR-KGE reveals the model's good qualities. 

MLP summary results are shown in Table 2-2 in columns five to seven (from left to right). The 

MLP-RMSE oscillates between 0.08 m and 0.52 m. There is an upgrade concerning the MLR-

RMSE because the maximum MLP-RMSE was reduced by 0.87 m. In addition, MLP- NSE 

values also improved substantially, now ranging between 0.85 and 0.97. Finally, the MLP-KGE 

ranges from -2.02 to 0.97. The negative MLP-KGE skewness and positive MLP-KGE kurtosis 

mean that MLP is a good model. 

Columns eight to ten (from left to right) in Table 2-2 shows the LSTM summary results. The 

LSTM-RMSE varies between 0.06 m and 0.39 m. There is a significant improvement in relation 

to the MLR-RMSE because the maximum MLP-RMSE was reduced by 1.0 m. The LSTM- NSE 

values also improved substantially, now ranging between 0.90 and 0.99. However, the LSTM-

KGE ranges from -5.52 to 0.94. The negative LSTM-KGE skewness and positive LSTM-KGE 

kurtosis mean that higher KGE values were abundant. 

 

Table 2-2. Summary metrics for the emulators: MLR, MLP, and LSTM. 

Summary 

metric 

 MLR   MLP   LSTM 

  
RMSE 

(m) 
NSE KGE  RMSE 

(m) 
NSE KGE  RMSE 

(m) 
NSE KGE 

Minimum   0.11 0.09 -0.46   0.08 0.85 -2.02   0.06 0.9 -5.52 

Mean  0.62 0.63 0.29  0.25 0.93 0.52  0.21 0.95 -0.19 

Standard 

dev.   
0.43 0.25 0.33 

  
0.12 0.04 0.76 

  
0.1 0.03 1.71 

Skewness  1.00 -0.95 -0.31  0.57 -0.72 -3.05  0.32 -0.56 -2.52 

Kurtosis   -0.37 0.15 1.09   0.12 -0.77 10.19   -0.87 -1.27 6.86 

Maximum   1.39 0.93 0.88   0.52 0.97 0.97   0.39 0.99 0.94 
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Figure 2-9 shows the Cumulative Distribution Functions (CDF) for each metric. Considering the 

curves shown in Figure 2-9a and that a model has good quality when the RMSE is close to zero, 

the best model from the RMSE’s point of view is the LSTM. Regarding the NSE and KGE 

metrics (Figure 2-9 b and c, respectively), the models are suitable to the extent that these indices 

are close to one. According to the NSE, the LSTM is the best model, and from the KGE’s 

perspective, the MLP is the best. The LSTM has the best performance in terms of RMSE and 

NSE from the three analyzed models. A deeper analysis indicates that lower LSTM-KGE values 

echo differences between the observed and emulated means (𝜇𝑜 and 𝜇𝑠). However, the maximum 

means difference was 0.16 m. 

 

 

 
a) 

 

 
b) 

   

 
c) 

Figure 2-9. Cumulative Distribution Functions (CDF) for emulators' metrics during the testing 

phase. a) CDF for the RMSE. b) CDF for NSE. c) CDF for KGE. 

Figure 2-10 shows the ΔGWD estimates for the Semitropic Water District using the emulators. 

The red and blue lines represent the observed and emulated values, respectively. Figure 2-10a 

shows that the MLR can reproduce the trend and seasonality but not the minimum and maximum 

values. On the other hand, Figure 2-10b and Figure 2-10c show a notable improvement in 

emulating extreme values using an MLP and an LSTM, respectively. Similar figures for the other 

water districts are in the Appendix A.5. 
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c) 

Figure 2-10. Emulators’ ΔGWD estimations for the Semitropic Water District. a) MLR, b) MLP, 

and c) LSTM. Observed values are in red, and emulated values are in blue. 

The metrics' spatial distribution is shown in Figure 2-11, where brown and yellow colors 

represent a continuum between poor and good performances, respectively. In this figure, each 

row represents the same metric, while the columns refer to the same emulator. In addition, the 

intervals for the same metric (row) are similar to facilitate comparisons. 

The RMSE (first row of Figure 11) shows a noticeable improvement from the MLR to the LSTM. 

The MLP and LSTM emulators have lower RMSE values regardless of the location of the water 

district. According to the RMSE metric, the best model is the LSTM, and its maximum values 

occurred in Buena Vista WSD (RMSE = 0.39 m) and Henry Miller WD (RMSE = 0.34 m). 

However, those values are low compared to the standard deviations of the ΔGWD values 

simulated by C2VSimFG, 2.12 m, and 1.55 m, respectively. 

The middle row of Figure 11 shows that the NSE metric also upgraded from MLR to LSTM. For 

the LSTM-NSE image, some water districts look brown for the use of a common scale for the 

three emulators. However, for those brown areas, their LSTM range between 0.90 and 0.92. 
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Finally, according to the KGE (last row of Figure 11), the MLP was the best model, with good 

results (KGE > -0.41) for 14 of the 15 water districts, especially for those located in the middle of 

the analyzed area. The minimum MLP-KGE was -2.01 and occurred in Henry Miller WD (located 

in the bottom center of the study area). However, for the same district and emulator, the RMSE 

was 0.51 m. LSTM-KGE values were better than those for the MLR, but with some negative 

values distributed across the entire area. Nonetheless, a more exhaustive analysis showed that the 

worst LSTM-KGE (-5.52) occurred again in Henry Miller WD. However, in this case, the LSTM-

RMSE was 0.34 m (a low value compared to the standard deviations of its ΔGWD, 1.55 m). 

On the other hand, several experiments were carried out to compare the C2VSimFG and the 

emulators' run times. Those experiments were done on a computer with the following 

characteristics. Processor Intel(R) Core(TM) i7-9700 3.00GHz CPU, 16GB of RAM, with 1 TB 

NVMe Solid State Drive. While C2VSimFG's runtime was 4.2 hours, the emulators' run times 

were 3.8 s, 4.2 s, and 9.1 s for the MLR, MLP, and LSTM, respectively. Although a noticeable 

reduction in time is observed at first glance, it is necessary to remember that C2VSimFG 

simulates most (if not all) of the Central Valley hydrologic cycle components. Besides, 

C2VSimFG considers four aquifer layers and has an average horizontal grid resolution of 1.65 

km2. Instead, the studied emulators focus on estimating the second aquifer's ΔGWD as a function 

of three variables (P, SWD, and AWD) and offer aggregated results for 15 water districts with an 

average area of 299.75 km2. However, for both C2VSimFG and the emulators, the time window 

(from 1974 to 2015) and the temporal resolution (monthly) were the same. In short, time 

decreases due to spatial aggregation, variables reduction, and focus on the second aquifer layer. 

In some cases, the C2VSimFG’s ability to model Central Valley's hydrology with high resolution 

(spatial and temporal) becomes a disadvantage when looking for its coupling with other models 

due to run time and complexity. Consequently, simplifying the model and reducing the spatial or 

temporal resolutions is a suitable alternative that does not compromise model output accuracy. 

Without the emulators studied here, running C2VSimFG for the entire area and performing the 

desired aggregations later is necessary. Thanks to the developed emulators, it is possible to 

quickly know the response of the second aquifer under different conditions. 
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Figure 2-11. Spatial distribution of metrics for each emulator. Analyzed emulators: Multiple 

Linear Regression (MLR), Multilayer Perceptron (MLP), and Long Short-Term Memory 

(LSTM). Metrics: Root Mean Squared Error (RMSE), Nash–Sutcliffe Efficiency coefficient 

(NSE), and the Kling-Gupta Efficiency coefficient (KGE). 
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2.6 Conclusions 

This study presents three emulators to reproduce groundwater patterns in California's Kern and 

Tulare counties. Our analyses show that the emulators adequately replicate the ΔGWD as a 

function of precipitation, surface water deliveries, and applied water demand. Some important 

results arise from this work. First, we identified variables more structurally related to the depth to 

groundwater for the second aquifer layer within the conservation of mass. The methodology 

includes comparing the input and output variables after removing the trend and seasonality 

effects. Second, developing a method to emulate highly complex mechanistic models dependent 

on space and time. Third, this research proposes a simple way to estimate the fragment length of 

the time series presented to the emulators during their training phase using the Multiple Squared 

Correlation Function (MSCF) graphs. Fourth, the studied emulators are characterized by their 

credibility, efficacy, and efficiency, facilitating groundwater integration in broader modeling 

frameworks. Hence, decision-makers will be able to evaluate multiple scenarios relatively simply 

and accurately without compromising the quality of the results. 

Emulators like the ones proposed here can be used in regions lacking detailed information on the 

groundwater system but with rainfall records, aquifer levels, water deliveries, agricultural 

demands, and easily acquired hydrogeological parameters. Emulators’ input variables were 

classified into static and dynamic. The first focused on modeling the spatial patterns, and the 

second on the temporal component. Whereas the static variables include the geometry of the 

districts, the characteristics of the soil and the aquifer, the dynamic variables include the most 

relevant variables of the groundwater balance: water inflows (precipitation and SWD), outflows 

(AWD), and change in storage (ΔGWS). The latter is highly related to the depth to groundwater of 

the uppermost confined aquifer (ΔGWD). 

Results indicate that the LSTM is the best emulation alternative because it meets the desired 

attributes, such as conservation of mass, quality of the results, and reduction of computation 

times. First, from the credibility point of view, this model considers the effects of previous events 

on future estimates. In addition, using static variables, we sought to address the spatial 

component. Therefore, LSTMs are one of the best alternatives to represent environmental 

phenomena. Second, all metrics (except the KGE index) show that the LSTM performs best. On 

the other hand, the MLP has the second-best performance. However, the fact that the temporary 

structure of variables does not play any role detracts from emulation credibility. Finally, the 

MLR, with its reduced number of parameters, can also simulate the trend and seasonality of the 

observations. However, the MLR cannot represent the maximum and minimum values, which is 

reflected in the quality of the metrics. 

Commonly, LSTM models consider the effect of preceding observations of the output variable. 

However, a novel approach is proposed here, in which the output variable does not depend on its 

previous values but on the static variables and earlier observations of the dynamic variables. This 

approach was adopted to prevent error propagation when calculating depth to groundwater. In 

addition, thanks to the analysis of fragments of the time series of 13 months of extension (12 

lagged months and the current month), the LSTM can learn the aquifer's behavior hidden in the 

data. For future studies, evaluating the performance of LSTM in diverse districts within the 

Central Valley distinct from those constituting the GKCR is recommended to assess the LSTM 

generalization ability. Finally, this work is expected to contribute to the hydrological process 

modeling literature. 
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Chapter 3 Climate change impacts on groundwater levels for irrigated 

agriculture in the greater Kern County region 

 

Abstract 

Understanding the complex interplay among climate, environment, and society is crucial for 

preserving ecosystems, communities, and production systems. While most studies focus on how 

climate change affects the visible elements of the water cycle (precipitation, streamflow, 

snowmelt, etc.), this research aims to improve our understanding of how the atmospheric water 

cycle and groundwater levels interact under changing climate conditions. This study assesses the 

hypothesis that groundwater levels in nine water districts of the Great Kern County Region 

(GKCR) will exhibit a more rapid decline under projected climate change scenarios compared to 

a historical climate resembling the period between 1995 and 2015. We are interested in the 

GKCR due to its history of groundwater overexploitation, linked to recent droughts, increased 

irrigated agriculture, and the region's ability to handle water shortages thanks to a complex water 

system. To test this hypothesis, we analyzed the climate projections from six Global Climate 

Models (GCMs) under two scenarios: the intermediate (RCP 4.5) and high (RCP 8.5) greenhouse 

gas and aerosol emissions. Using the water allocation model California Food-Energy-Water 

System (CALFEWS), we estimate surface water deliveries (SWD) to agriculture. Besides, we 

estimate agricultural water demands (AWD) considering adjustments for carbon dioxide (CO2) 

emissions. Also, we employed the Long Short-Term Memory Emulator (LSTME), developed in 

the preceding chapter, to effectively integrate direct and indirect climate change effects on 

groundwater levels within the studied water districts. Three scenario groups, Business as usual 

(BU), Influence of Climate Change in Two Dynamic Variables (IC2D), and Influence of Climate 

Change in Three Dynamic Variables (IC3D), are examined to test the research hypothesis. 

Findings indicate that groundwater levels will mainly decline unless agricultural water demand is 

reduced and/or recharge augmented. Moreover, results show that groundwater levels would 

experience a more rapid decline under climate change scenarios compared to historical 

conditions. 

3.1 Introduction 

Understanding the complex interplay among climate, environment, and society is crucial for 

preserving ecosystems, communities, and production systems. By thoroughly examining these 

interrelationships, it becomes possible to devise feasible and practical approaches to mitigate the 

potential negative consequences of climate change. However, merely understanding the climatic 

and hydrological processes is insufficient. Identifying the most effective ways to couple these 

processes (Schneider et al., 2022) and recognizing that the uncertainties associated with climate 

change can cloud those relationships are also necessary (Hallegatte et al., 2012).  

While most studies focus on how climate change affects the visible elements of the water cycle 

(precipitation, streamflow, snowmelt, etc.) (Amanambu et al., 2020), this research aims to 

improve our understanding of how the atmospheric water cycle and groundwater levels interact 

under changing climate conditions. The limited number of studies examining the interrelations 

between climate change and groundwater levels can be attributed to three key factors. The first is 

the scarcity of groundwater information (Foster et al., 2020; Taylor, 2013). Second, since the 
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atmosphere and groundwater stand in extremes within the hydrological cycle, their 

interconnections are weakened or obscured by intermediate processes separating them (Cuthbert 

et al., 2019). These processes include snowmelt, surface runoff, river flow, infiltration, 

percolation, and aquifer-river interactions. Third, there are several operational challenges to 

integrating these processes because climate and groundwater models typically operate 

independently. Also, these models exhibit distinct spatial and temporal scales, possess differing 

information requirements, and generally are developed using dissimilar programming languages. 

The absence of direct monitoring and analysis of climate effects on groundwater (Kurylyk & 

MacQuarrie, 2013) and the substantial reliance on groundwater for freshwater withdrawals 

(Taylor, 2013) have led to the misconception that groundwater is near limitless (Khair et al., 

2019). However, heightened water demand, more frequent and prolonged droughts, 

advancements in pumping technology, and reduced energy costs associated with pumping have 

led to decreased aquifer levels worldwide (Closas & Rap, 2017; Perrone & Jasechko, 2019; Wada 

et al., 2010). Therefore, numerous scholars have emphasized that improving our understanding of 

the climate change effects on groundwater represents one of the main challenges in hydrology 

(Blöschl et al., 2019; Larocque et al., 2019; Meixner et al., 2016; Ouhamdouch et al., 2019). 

This study assesses the hypothesis that groundwater levels in nine water districts of the Great 

Kern County Region (GKCR) will exhibit a more rapid decline under projected climate change 

scenarios compared to a historical climate resembling the period between 1995 and 2015. In this 

context, the term "groundwater level" refers to the potentiometric level of the uppermost confined 

aquifer. As previously defined in Chapter 2, the GKCR is in southern California's Central Valley. 

This region is marked by distinctive features, including notably low average precipitation and 

runoff levels, substantial evaporative demands, and a heavy dependence on groundwater for 

irrigation (Ghasemizade et al., 2019). Our interest in this region lies in its history of groundwater 

overexploitation, which can be attributed to the droughts over the past few decades (Jasperse & 

Pairis, 2020) and the expansion of irrigated agriculture, particularly permanent crops. The 

resilience of the GKCR region in mitigating water shortages hinges on an intricate water system 

comprising reservoirs, aquifers, canals, pipelines, pumping stations, irrigation districts, and urban 

aqueducts.  

To test this hypothesis, we analyzed the climate projections from six Global Climate Models 

(GCMs) under two scenarios: the intermediate (RCP 4.5) and high (RCP 8.5) greenhouse gas and 

aerosol emissions (Moss et al., 2010). Using the water allocation model California Food-Energy-

Water System (CALFEWS) (Zeff et al., 2021), we estimate surface water deliveries (SWD) to 

agriculture. Besides, we estimate agricultural water demands (AWD) considering adjustments for 

carbon dioxide (CO2) emissions. Also, we employed the Long Short-Term Memory Emulator 

(LSTME), developed in the preceding chapter, to effectively integrate direct and indirect climate 

change effects on groundwater levels within the studied water districts. Three scenario groups, 

Business as usual (BU), Influence of Climate Change in Two Dynamic Variables (IC2D), and 

Influence of Climate Change in Three Dynamic Variables (IC3D), are examined to test the 

research hypothesis. For these scenarios, the climate change effects are gradually included. For 

the BU scenario, precipitation (P), surface water deliveries (SWD), and agricultural water 

demands (AWD) - retain their 1995-2015 historical patterns. In the IC2D scenario, climate change 

impacts are incorporated into P and SWD. In contrast, in the IC3D scenario, climate change 

influences all three variables (P, SWD, and AWD). We test the hypothesis on the influence of 

climate on groundwater levels in nine water districts of the Great Kern County Region (GKCR) 

defined in Chapter 2.  
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This chapter is organized as follows. Section two presents the theoretical foundation for the study. 

Section three provides an overview of the study area, followed by section four, which outlines the 

modeling scenarios and the techniques used to estimate dynamic variables essential for the 

emulator. In section five, we examine the behavior of input and output dynamic variables to 

identify potential impacts of climate change on groundwater. Lastly, section six summarizes the 

key findings derived from this research. 

3.2 Theoretical framework 

3.2.1 Climate change impacts on groundwater 

It is crucial to incorporate various elements of the hydrological cycle to enhance our 

understanding of the impacts of climate change on groundwater resources. However, this 

endeavor faces challenges due to scarce observational and measuring data on groundwater 

processes (Green, 2016), leading to the use of groundwater models to infer the aquifers' behavior. 

Hence, the challenges of investigating the influence of climate on groundwater are more 

formidable compared to examining surface water resources. As a result, many studies prioritize 

assessing the impacts of climate on surface water resources (Amanambu et al., 2020), leading to 

research gaps. 

The impacts of climate change on the groundwater system can be direct or indirect. Direct effects 

refer to the immediate consequences of climate change on recharge, discharge, storage, flow, 

water quality, and subsidence, among others (Amanambu et al., 2020; Murray & Lohman, 2018). 

The indirect impacts arise through a series of interconnected processes affecting the groundwater 

system. The indirect effects include changes in land use, surface water, water demand, saltwater 

intrusion, and vegetation (Amanambu et al., 2020; Taylor, 2013). Although climate change's 

direct and indirect impacts on the groundwater system are not yet fully understood (Amanambu et 

al., 2020), some researchers suggest that indirect effects may have more significant consequences 

than direct ones (Taylor, 2013). This research incorporated precipitation to evaluate the direct 

impacts of climate change projections on the groundwater system. At the same time, surface 

water deliveries to agriculture and agricultural water demand were considered to simulate indirect 

effects. 

3.2.2 Climate models 

A Global Climate Model, or General Circulation Model (GCM), is a mathematical representation 

of the Earth's climate capable of simulating physical processes in the atmosphere, ocean, land 

surface, and cryosphere (IPCC, 2014). These models are supported by physics, chemistry, 

thermodynamics, and fluid dynamics to describe the conservation principles of mass, energy, and 

momentum (Kashinath et al., 2021). GCMs divide the Earth into a three-dimensional grid, for 

which mathematical equations are solved for each element and time step (NOAA, 2022). 

Typically, GCMs use a horizontal resolution ranging from 250 to 600 km, a vertical resolution of 

1 km, and a temporal resolution of 30 minutes. GCMs usually employ between 10 and 20 layers 

to represent the atmosphere and about 30 layers for the ocean (Curry, 2017; IPCC, 2022). GCMs 

help comprehend past and current climate conditions and estimate future climate scenarios to 

assess the potential adverse effects of climate change and create policies to lessen them (Cubasch 

et al., 2013). 
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The climate modeling community has developed a set of standardized emission scenarios called 

Representative Concentration Pathways (RCPs) to consider the effect of greenhouse gases 

(GHG), aerosols, active chemical gases, and land/use cover on climate (van Vuuren et al., 2011). 

The term "representative concentration" indicates that each RCP represents just one among 

numerous possible scenarios that could lead to a particular radiative forcing level (Moss et al., 

2010). At the same time, the term "pathway" signifies that the trajectory taken to attain the final 

concentration is equally significant as the GHG concentrations (Moss et al., 2010). For example, 

an RCP 8.5 refers to a scenario in which radiative forcing will be at least 8.5 W/m2 by 2100. In 

sum, GCMs allow climate simulation at different emission levels, while the RCPs offer a 

standardized way of referring to those emission scenarios. 

When utilizing GCMs for impact studies in specific regions, it is crucial to account for both the 

spatial resolution and the presence of systematic errors, referred to as biases (D. Pierce et al., 

2016). These biases reflect the tendency of GCMs to either underestimate or overestimate specific 

climatic phenomena (D. Pierce et al., 2016). Corrections and adjustments, known as downscaling, 

are implemented to enhance GCMs' spatial resolution and minimize their biases. Downscaling 

techniques can be either dynamic or statistical. In dynamic downscaling, results from a GCM are 

used like boundary conditions to feed a Regional Climate Model (RCM) to get higher spatial 

resolution results (Murphy, 1999; Rummukainen, 2010). On the other hand, statistical 

downscaling refers to using statistical models that capture the relationship between the coarse‐

resolution predictors derived from a GCM and the fine‐scale predictors from historical 

observations (Walton et al., 2020). 

We selected six GCMs from the Climate Model Intercomparison Project version 5 (CMIP5) 

based on their ability to represent California's climate accurately, according to Pierce et al. 

(2018). The analyzed models were: CanESM2, CCSM4, CNRM-CM5, HadGCM2-CC, 

HadGCM2-ES, and MIROC5 (see Table 3-1). We analyzed them under two scenarios: the 

intermediate greenhouse gas and aerosol emissions (RCP 4.5) and the higher greenhouse gas and 

aerosol emissions (RCP 8.5). The downscaled and bias-corrected models were downloaded from 

the California Climate Adaptation Planning Tool (Cal-Adapt) web page (Cal-Adapt, 2022). For 

Cal-Adapt data, the bias correction process aims to prevent false or unrealistic changes in the 

original climate change signal predicted by GCMs (Pierce et al., 2018). In contrast, the original 

coarse resolution (about 150 km, 93 miles) is transformed to a finer resolution (about 6 km, or 3.7 

miles) using a statistical downscaling method known as Localized Constructed Analogs (LOCA) 

(D. Pierce et al., 2016).  
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Table 3-1. Global Climate Models analyzed in this research. Adapted from Pierce et al. (2018). 

Model Model institution Description 

CanESM2 
Canadian Centre for Climate Modeling and 

Analysis. Canada 
Average model 

   

CCSM4 
National Center for Atmospheric Research. United 

States 
 

   

CNRM-CM5 

Centre National de Recherches Meteorologiques / 

Centre Europeen de Recherche et Formation 

Avancees en Calcul Scientifique. France 

Cool/wet model 

   

HadGCM2-

CC 

Met Office Hadley Centre. United Kingdom 
 

   

HadGCM2-

ES 

Met Office Hadley Centre. United Kingdom 
Warm/dry model 

   

MIROC5 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology. Japan 

Most unlikely model compared 

to CanESM2, CNRM-CM5, and 

HadGCM2-ES 

 

3.2.3 Groundwater models 

Groundwater hydrology in California's Central Valley has been simulated using models like the 

Central Valley Hydrologic Model (CVHM) (Faunt, 2009) or the California Central Valley 

Groundwater–Surface Water Simulation Model (C2VSim) (Brush & Dogrul, 2016). Such models 

estimate variables that are difficult to measure, like lateral and vertical flows, exchanges between 

aquifers and surface water bodies (rivers, lakes, reservoirs), and groundwater pumping. To 

simulate the possible effects of climate change on the GKCR, we decided to use the fine grid 

version of C2Vsim (C2VSimFG) (DWR, 2020). However, to enhance the integration of 

C2VSimFG with other models and to minimize computational time, we employed the LSTM 

emulator (LSTME) developed in the preceding chapter. LSTME focuses on simulating the 

changes in depth to groundwater (ΔGWD) for the uppermost confined aquifer of the GKCR 

because that aquifer feeds about 80% of the wells in the study region (see Chapter 2). Besides, 

LSTME depends on static and dynamic variables to capture spatial patterns and temporal 

dependencies. The static variables encompass average characteristics of water districts, including 

geometric features and soil and aquifer properties. Dynamic variables enable the model to 

account for changes over time. Static and dynamic variables are summarized in Table 3-2. For 

more details about static and dynamic variables, see section 2.4 of Chapter 2. 
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Table 3-2. Long Short-Term Memory Emulator (LSTME) input variables. For more details, see 

Table 2-1in Chapter 2. 

Category  Input variables 

Static 

Variables 

geometric features  Surface area and ground surface slope 

   

Soil Properties  
field capacity, saturated hydraulic conductivity, and total 

porosity 

   

Aquifer properties  
Hydraulic conductivity, aquifer vertical hydraulic 

conductivity, specific yield, and specific storage 

    

Dynamic variables  
Precipitation (P), surface water deliveries to agriculture 

(SWD), and agricultural water demands (AWD) 

 

3.2.4 Surface water allocation models 

We employ a water allocation model to estimate surface water deliveries to agriculture under 

different projected climate scenarios. A water allocation model takes into account various factors, 

including the water availability (measured by indicators like precipitation, reservoir storage, and 

snowpack), the demands of agriculture and urban areas, the hydraulic infrastructure used to 

distribute water, and factors such as environmental flow needs, the hierarchy of water rights, and 

operational regulations (CWEMF, 2021). Some examples of water allocation models are the 

California Value Integrated Network (CALVIN) (Draper et al., 2003), the California Water 

Resources Simulation Model (CalSim) (Draper et al., 2004), the Water Evaluation and Planning 

(WEAP) model (Forni et al., 2016; Yates et al., 2005), and the California Food-Energy-Water 

System (CALFEWS) (Zeff et al., 2021). Each of these models is briefly described below. 

CALVIN is a comprehensive hydro-economic optimization model of California's water system 

(Null, 2016). Draper et al. (2003) state that CALVIN allocates surface and groundwater resources 

to meet urban and agricultural water demand by maximizing the economic values derived from 

urban and agricultural water usage throughout the state, considering environmental, physical, and 

carefully chosen policy constraints. CalSim, developed by the California Department of Water 

Resources (DWR), is a simulation model designed to assess operation alternatives for both the 

Central Valley Project (CVP) and the California State Water Project (SWP). This comprehensive 

model includes the management of reservoirs, streams, aqueducts, and water exports to southern 

California (Jayasundara et al., 2020). The Stockholm Environment Institute developed WEAP for 

long-term scenario planning and water policy analysis. The WEAP application designed for the 

Sacramento Valley water system has several key components like reservoirs, alluvial aquifers, 

rivers, trans-basin diversion from the Trinity River, major irrigation canals, and water demand 

centers for municipal, agricultural, and industrial uses (Joyce et al., 2005). Finally, CALFEWS, 

created by Zeff et al. (2021), integrates water storage and conveyance networks, connecting the 

operations of irrigation districts with the CVP and SWP. This model incorporates a set of decision 

rules based on the historical regulatory conditions, hydrological data, and system infrastructure. 

CALFEWS input variables are snowpack, flow, and service area water demands. 



54 

 

 

 

3.3 Model application area 

This study concentrates on nine water districts of the Great Kern County Region (GKCR). The 

GKCR is situated south of California's Central Valley and includes water districts spanning Kern 

and Tulare counties. Figure 3-1 illustrates the nine water districts under examination in this 

chapter, and Table 3-3 provides information about the major crop groups in each water district 

and the total irrigated area by district. Crops listed in that table are the ones that cover more than 

5% of the district's irrigated area. Whereas four aquifers supply agricultural wells in the GKCR 

(comprising one unconfined aquifer and three confined aquifers), this research specifically 

targeted the uppermost confined aquifer because it supplies approximately 80% of the agricultural 

wells in the region (see section 2.3.1 of the preceding chapter). The GKCR was selected because 

the groundwater contribution to agriculture is significant, especially during dry years. In the 

Central Valley of California, groundwater provides approximately 30% of the water demand 

during average years, 40% during dry years, and 60% during drought years (Perrone & Rohde, 

2016). The additional groundwater extractions during dry and drought years have led to aquifers 

overexploitation, threatening future reserves and water supply infrastructure due to subsidence 

(Murray & Lohman, 2018). 

 

 

 

Figure 3-1. Study area. The impact of climate change on groundwater levels in the uppermost 

confined aquifer is evaluated in nine water districts. 
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Table 3-3. Major crop groups and irrigated areas by water district. Reference 1: 2021 database 

from Kern County Department of Agriculture and Measurement Standards (2015). Reference 2: 

Delano Earlimart Irrigation District GSA (2022). Reference 3: Kern-Tulare Water District (2022) 

Water District Major crops groups 
Total irrigated 

area (hectares) 
Reference 

Semitropic 

WSD 
Almonds and pistachios, grains, corn, alfalfa                60,249  1 

Wheeler Ridge 

Maricopa WSD 

Vineyard, almonds and pistachios, subtropical, 

other truck 

                

46,007  
1 

Kern Delta WD 
Grains, almonds and pistachios, corn, alfalfa, 

other truck 

                

52,672  
1 

Cawelo WD Almonds and pistachios, subtropical, vineyard 
                  

15,196  
1 

Shafter Wasco 

ID 

Almonds and pistachios, vineyard, other 

deciduous 

                 

12,456  
1 

Buena Vista 

WSD 

Almonds and pistachios, cotton, vineyard, 

grains, alfalfa, other deciduous, corn 

                  

15,814  
1 

North Kern 

WSD 

Almonds and pistachios, other truck, vineyard, 

potatoes 

                

25,327  
1 

Delano 

Earlimart ID 

Vineyard, pistachios, almonds, citrus, and 

various tree fruit 
               22,396  2 

Kern - Tulare 

WD 
Almonds and pistachios, oranges, vineyard.                  6,677  3 

 

3.4 Modeling future climate change impacts on Groundwater 

Three scenario groups were examined to assess the indirect effects of climate change on 

groundwater in the GKCR from 2015 to 2099. These scenarios cover different behaviors of the 

dynamic variables that feed the LSTME model (Table 3-2). The three groups are Business as 

usual (BU), Influence of Climate Change in Two Dynamic Variables (IC2D), and Influence of 

Climate Change in Three Dynamic Variables (IC3D). The BU groups one thousand scenarios, 

whereas the IC2D and IC3D group 12 scenarios each, corresponding to the possible combinations 

between six GCMs and the two RCPs (Table 3-4). 
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Table 3-4. Analyzed scenarios for the dynamic input variables 

Scenario group 
Number of 

scenarios 
Precipitation (P) 

Surface Water 

Deliveries (SWD) 

Agriculture Water 

Demand (AWD) 

      

Business as usual 

(BU) 
1,000 

Variables generated by the univariate seasonal, lag-one, 

autoregressive model proposed by Fiering & Jackson (1971) 

      

Influence of 

Climate Change 

in Two Dynamic 

Variables (IC2D) 

12 

Six GCMs under 

two RCPs (4.5 and 

8.5) downloaded 

from Cal-Adapt 

Projected by 

CALFEWS 

considering six 

GCMs under two 

RCP (4.5 and 8.5) 

Monthly median 

values from 1995 to 

2015 

          

Influence of 

Climate Change 

in Three Dynamic 

Variables (IC3D) 

12 

Six GCMs under 

two RCPs (4.5 and 

8.5) downloaded 

from Cal-Adapt 

Projected by 

CALFEWS 

considering six 

GCMs under two 

RCP (4.5 and 8.5) 

Function of the 

reference 

evapotranspiration 

(ETo) adjusted by the 

effect of carbon 

dioxide 

 

 

BU is the reference scenario against which the other two groups' results are compared. Through 

BU, we aim to mimic the aquifer's behavior as if P, SWD, and AWD followed a similar trajectory 

to the historical data between 1974 and 2015. BU scenarios were created as described in section 

3.4.1. The IC2D scenario considers climate change's impact in only two variables: P and SWD. 

For AWD, we use the monthly median values from 1995 to 2015. We use the median instead of 

the mean because the first is less affected by data asymmetry and outliers (Loucks & van Beek, 

2017). For the IC3D scenario group, all variables consider climate change. Also, for the IC2D 

and IC3D categories, precipitation data (P) was downloaded from the Cal-Adapt site, and the 

SWD values were calculated by CALFEWS (Zeff et al., 2021). Additionally, for the IC3D 

scenario group, agricultural demand (AWD) was estimated as a function of the reference 

evapotranspiration (ETo) adjusted by the effect of carbon dioxide (CO2) (see section 3.4.3). In 

summary, the BU scenario group assumes no climate change, whereas the IC3D scenario group is 

highly influenced by climate change. Table 3-2 shows the static and dynamic variables that feed 

the LSTME model under the IC3D scenario group. 

 



57 

 

 

 

 

Figure 3-2. Hydroclimatic coupling considering Influence of Climate Change in Three Dynamic 

Variables (IC3D) 

 

To determine the depth to groundwater (GWDg,t) of the uppermost confined aquifer in irrigation 

district g for a given month (t), we employ the Long Short-Term Memory network (LSTME), 

which provides the change in depth to groundwater (ΔGWDg,t) or what is the same the difference 

between the depths to groundwater at month t and the previous month (t-1) (Equation 3-1). 

Expanding this equation back to the initial time (t=0), we derive Equation 3-2. In essence, the 

depth to groundwater for irrigation district g at time t depends on the initial groundwater level 

(GWDg,0) in September 2015 and the cumulative changes in depth to groundwater up to the 

specified month t. 

 

𝐺𝑊𝐷𝑔,𝑡 = 𝐺𝑊𝐷𝑔,𝑡−1 + ∆𝐺𝑊𝐷𝑔,𝑡 Equation 3-1 

  

𝐺𝑊𝐷𝑔,𝑡 = 𝐺𝑊𝐷𝑔,0 + ∑ ∆𝐺𝑊𝐷𝑔,𝑖

𝑡

𝑖=1

 
Equation 3-2 

 

3.4.1 Synthetic time series for the BU scenario 

We generated synthetic time series data for the BU scenario group by applying the univariate 

seasonal, lag-one, autoregressive model proposed by Fiering & Jackson (1971), an extension of 

the famous Thomas-Fiering model. Although the Thomas-Fiering model was initially designed as 

an annual autoregressive Markov model (Diaz-Granados, 2023), we have employed the Fiering & 
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Jackson model because it can generate monthly data, its use is extensive, and it preserves the 

mean, variance, skewness, and lag-one correlation coefficient of the original data (Bras & 

Rodriguez-Iturbe, 1993). For the Fiering & Jackson model, synthetic values can be generated 

through Equation 3-3, where Xt,j represents the value of the random process (P, SWD, or AWD) 

at year t and season j. The parameters mj, σj, and γj denote the mean, standard deviation, and 

skewness at season j. Besides, ρj is the lag-one correlation coefficient between seasons j and j-1. 

Equation 3-3 incorporates a random number εt,j, following a gamma distribution to prevent 

negative values' generation. According to Equation 3-4, it is possible to generate gamma 

distributed numbers as a function of the independent normal variable Wt,j (with mean zero and 

variance one) and the adjusted skewness γε,j (Equation 3-5). 

 

𝑋𝑡,𝑗 = 𝑚𝑗 + 𝜌𝑗 ∗
𝜎𝑗

𝜎𝑗−1
∗ (𝑋𝑡,𝑗−1 − 𝑚𝑗−1) + 𝜎𝑗 ∗ 𝜀𝑡,𝑗 ∗ (1 − 𝜌𝑗

2)
1/2

 
Equation 3-3 

  

𝜀𝑡,𝑗 =
2

𝛾𝜀,𝑗
∗ (1 +

𝛾𝜀,𝑗 ∗ 𝑊𝑡,𝑗

6
−

𝛾𝜀,𝑗
2

36
)

3

−
2

𝛾𝜀,𝑗
 

Equation 3-4 

  

𝛾𝜀,𝑗 =
(𝛾𝑗 − 𝜌𝑗−1

3 ∗ 𝛾𝑗−1)

(1 − 𝜌𝑗
2)

1.5  
Equation 3-5 

 

3.4.2 Surface Water Deliveries for IC2D and IC3D scenario groups 

Before using the water deliveries projected by CALFEWS from 2016 to 2099, we compared the 

water deliveries generated by CALFEWS and those from C2VSimFG for the historical timeframe 

from 1974 to 2015. This evaluation was necessary because the LSTME model was trained using 

historical data from C2VSimFG. After comparing the two models, we found that SWDs from the 

two models differed in magnitudes. To address this discrepancy, we normalized CALFEWS 

output so that its mean was one and its deviation zero. Later, we incorporated the mean and 

standard deviation values of the historical C2VSimFG data, as shown in Equation 3-6. In this 

equation, subscripts 1 and 2 refer to the C2VSimFG and CALFEWS models, respectively, while 

the "hist" subscript refers to the historical period. SWD2, adj represents the adjusted SWDs ready to 

be used in the emulator, whereas SWD2 are the original values generated by CALFEWS. Finally, 

𝑆𝑊𝐷𝑖,ℎ𝑖𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑆𝑆𝑊𝐷𝑖,ℎ𝑖𝑠𝑡 (for i=[1, 2]) represent the means and standard deviations of the two 

models during the historical period, respectively. 

 

𝑆𝑊𝐷2,𝑎𝑑𝑗 =
𝑆𝑆𝑊𝐷1,ℎ𝑖𝑠𝑡

𝑆𝑆𝑊𝐷2,ℎ𝑖𝑠𝑡
∗ (𝑆𝑊𝐷2 − 𝑆𝑊𝐷2,ℎ𝑖𝑠𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) + 𝑆𝑊𝐷1,ℎ𝑖𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Equation 3-6 
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3.4.3 Agriculture Water Demand for IC3D scenario group 

The Agricultural Water Demand (AWD), called in C2VSimFG Agricultural Supply Requirement 

(ASR), indicates the amount of water farmers need to provide to the soil to reach irrigation 

demands (DWR, 2020), enabling optimal plant growth and productivity (Wallace, 2000). AWD 

contributes to plant tissue formation and satisfies evaporation, transpiration, return flow, and 

percolation demands (Dogrul and Kadir, 2020). These crop water demands can be classified as 

recoverable and non-recoverable losses. Recoverable losses include return flow (RF) and 

percolation (PC). Non-recoverable losses, also known as Consumptive Use of Applied Water 

(CUAW), refer to water that cannot be reused in the same area from which it was extracted 

(OpenET, 2023; Shaffer and Runkle, 2007). CUAW includes Water in Plant Tissues (WPT) and 

evapotranspiration (ET) (Cooley, 2015). However, CUAW is generally set equal to ET because, 

during the growing season, WPT is typically much lower than ET (Bhatt and Hossain, 2019). 

For a time step t, AWD can be expressed as the sum of return flow (RF), percolation (PC), and 

ET, where the subscript i refers to the crops in the study area (Equation 3-7). In Equation 3-8, the 

volume of ET depends on the crop area (A), the water stress coefficient (Ks), the crop coefficient 

(Kc), and the reference evapotranspiration (ETo). These terms represent the climatic factors, crop 

characteristics, and agricultural practices that affect ET (Allen et al., 1998). By replacing 

Equation 3-8 in Equation 3-7, we get Equation 3-9, where RFT and PCT represent the return flow 

and percolation of all crops in the study area. After regrouping some terms, Equation 3-9 can be 

written as shown in Equation 3-10, where β0t groups recoverable losses and β1t the factors that 

transform ETo into ET. Note that all terms in Equation 3-10 change over time, so this equation 

does not represent a linear regression. 

Figure 3-3 illustrates box plots summarizing the R-squared values between AWD and ETo 

adjusted by the carbon dioxide effect (ETo adj), categorized by GCM and RCP. Box plots were 

generated considering information from the analyzed water districts. The medians of the box plots 

in Figure 3-3, represented by the center horizontal lines, exceed 0.84, indicating that ETo adj 

generally accounts for over 84% of the AWD variance. Consequently, we substitute Equation 

3-10 with Equation 3-11, where the coefficients 𝛽0̃ and 𝛽1̃ represent the intercept and slope of 

the linear models established for each water district, GCM, and RCP. By doing so, Equation 3-11 

establishes a time-independent relationship between the agricultural water demand and reference 

evapotranspiration adjusted by the carbon dioxide effect (AWD and ETo adj). In summary, our 

estimation of future AWD relies on the ETo adj values between 2016 and 2099. 

 

𝐴𝑊𝐷𝑡 = ∑(𝑅𝐹𝑡,𝑖 + 𝑃𝐶𝑡,𝑖 + 𝐸𝑇𝑡,𝑖)

𝑛

𝑖=1

 
Equation 3-7 

  

𝐸𝑇𝑡,𝑖 = 𝐴𝑖 ∗ 𝐾𝑠𝑡,𝑖 ∗ 𝐾𝑐𝑡,𝑖 ∗ 𝐸𝑇𝑜𝑡 Equation 3-8 

  

𝐴𝑊𝐷𝑡 = 𝑅𝐹𝑇𝑡 + 𝑃𝐶𝑇𝑡 + 𝐸𝑇𝑜𝑡 ∗ ∑ 𝐴𝑖 ∗ 𝐾𝑠𝑡,𝑖 ∗ 𝐾𝑐𝑡,𝑖

𝑛

𝑖=1

 
Equation 3-9 
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𝐴𝑊𝐷𝑡 = 𝛽0𝑡 + 𝛽1𝑡 ∗ 𝐸𝑇𝑜𝑡 Equation 3-10 

  

𝐴𝑊𝐷 = 𝛽0̃ + 𝛽1̃ ∗ 𝐸𝑇𝑜𝑎𝑑𝑗 Equation 3-11 

 

 

Figure 3-3. R-squared distribution for the variables Agricultural Water Demand (AWD) and 

Reference Evapotranspiration adjusted by CO2 (ETo adj,t) for different Global Climate Models 

(GCMs) and Representative Concentration Pathways (RCPs). 

 

Climate models without the ETo adjustment tend to overestimate ETo and provide contradictory 

results, like projecting dry climates with increased runoff (McEvoy et al., 2020; Yang et al., 

2019). Thus the ETo adj, allows us to consider the effect of carbon dioxide (CO2) on vegetation 

water demand. Here, we consider the approach of Yang et al. (2019), which suggests that 

imposing a penalty on CO2 values greater than 300 ppm increases the vegetation surface 

resistance (rs), leading to decreased plant transpiration. Where rs encompasses the resistance of 

vapor to flow through stomata openings, total leaf area, and soil surface (Allen et al., 1998). 

3.4.4 Comparison between scenarios without and with climate change 

The Welch's t-test was used to determine if climate change significantly impacts groundwater 

levels. Welch's t-test, also known as the unpaired t-test, is commonly used in planned experiments 

to verify if altering the experimental conditions has a statistically significant impact on the 

outcome of a process (DeCoursey, 2003; Kanji, 2006). For instance, Lavers et al. (2015) applied 

Welch's t-test to investigate the similarity of global atmospheric water vapor changes between 

historical and future scenarios, analyzing data from 22 GCMs. With Welch's t-test, we wanted to 
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know if the null hypothesis that the depletion or replenishment rate (DRR) under the BU scenario 

is equal to that of the IC2D and IC3D scenarios at a significance level of 5%. We define DRR as 

the first derivative of depths to time or, what is the same, the change of depth to groundwater over 

time. Before applying Welch's t-test, we estimated each scenario group's average DRR from 2015 

to 2099 in meters per year. Using the nonparametric Shapiro-Wilk test (Kottegoda & Rosso, 

2008) at a significance level of 5%, we tested the normality of the DRRs as a prerequisite before 

running Welch's t-test. 

3.5 Results and discussion 

We summarize the intra and inter-annual behavior of the dynamic variables in two seasons and 

four periods, respectively. The seasons were irrigation (dry months) and non-irrigation (wet 

months). The time periods were Historical (HIST, 1974-2015), beginning of the century (BOC, 

2016-2040), middle of the century (MOC, 2041-2070), and end of the century (EOC, 2071-2099). 

We set the irrigation period from March 1 to September 30 every year following Kadir (2017), 

although, for the Central Valley, this interval can be defined in alternative ways (Budd et al., 

2009; Medellín-Azuara et al., 2015; Vahmani et al., 2022). The 2040 time horizon was 

established as the upper limit for the BOC period, given that critically over-drafted groundwater 

basins, such as those analyzed in this study, are required to achieve balance in recharge and 

extraction to comply with the California 2014 Sustainable Groundwater Management Act 

(SGMA) around that time. The remaining period (from 2040 to 2099) was split into two equal-

duration categories, MOC and EOC. 

Figure 3-4 illustrates the dynamic variables' behavior for the Semitropic Water District under 

historical records (green box) and two RCPs (blue for RCP 4.5 and orange for RCP 8.5) of the 

CNRM-CM5 global climate model for the IC3D scenario group. Regarding precipitation (Figure 

3-4a), non-irrigation months consistently display higher precipitation than irrigation months. The 

left-hand side of Figure 3-4a shows no substantial change in precipitation across the four periods 

(HIST, BOC, MOC, and EOC). However, when comparing future projections to historical data, 

there is an increase in median precipitation during the non-irrigation season. However, there is no 

discernible trend from BOC to EOC for the two seasons. On the other hand, future surface water 

deliveries for agriculture during the irrigation season (left-hand side of Figure 3-4b) show an 

increase in median and lower dispersion concerning the historical period. During the non-

irrigation season (right-hand side of Figure 3-4b), no consistent pattern was found in the median 

values, but variability increased for projected periods. The differences between historical and 

future values can be attributed to the normalization process outlined in Equation 3-6. This process 

encompasses the entire period from 1974 to 2015 without distinguishing between irrigation and 

non-irrigation seasons. Finally, the agricultural water demand for the irrigation and non-irrigation 

seasons (Figure 3-4c) exhibits a gradual increase over time (from HIST to EOC). This can be 

attributed to the fact that AWD was expressed as a function of the EToadj (Equation 3-11), and 

that variable is expected to increase over time (from 2015 to 2099) (McEvoy et al., 2020).  
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Similar patterns to those in Figure 3-4 are shown in Appendix B.1 for other water districts. First, 

precipitation variability during the non-irrigation months tends to be greater than or equal to 

historical values, whereas, during the irrigation season, it tends to be constant. Second, the most 

significant differences between historical and future scenarios were observed in the SWD values. 

While the historical values are based on records stored in C2VSimFG, the projected values were 

estimated by CALFEWS and later adjusted to maintain the mean and deviation of the historical 

values. Since it is difficult to predict a variable highly dependent on human decisions, such as 

SWD, using CALFEWS is a viable option. Finally, the agricultural water demand (AWD) tends 

to increase over time due to the projected increase in the reference evapotranspiration (EToadj). 

 

 
a) 

 
b) 

 
c) 

Figure 3-4. Seasonal distribution of precipitation (a), Surface Water Deliveries (b), and 

Agricultural Water Demand (c) in Semitropic Water District for the historical (green) and future 

climate considering the CNRM-CM5 GCM under two RCPs (Blue, 4.5; Orange, 8.5). The 

horizontal axis displays four temporal intervals: Historical (HIST, 1974-2015), beginning of the 

century (BOC, 2016-2040); middle of the century (MOC,2041-2070), end of the century (EOC, 

2071-2099). The irrigation period runs from March 1 to September 30. 
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3.5.1 Future depths to groundwater 

Figure 3-5 shows the projected depths to groundwater for selecting water districts (rows) over the 

two RCPs (columns). The vertical axis of these figures has been inverted to facilitate their 

interpretation. Each of the six figures (from a to f) contains the three scenario groups: BU (blue 

area), IC2D (green area), and IC3D (orange area). The shaded regions comprise the results of the 

scenarios analyzed for each scenario group (see Table 3-4). Thick lines in the middle of the 

shaded areas symbolize the median for each scenario group. In addition, each figure has three 

horizontal lines: measurable objective (MO, yellow), minimum threshold (MT, gray), and bottom 

of the uppermost confined aquifer (BL, brown). MO refers to the desired depth for 2040 that 

guarantees sustainable aquifer operation, while MT refers to the depth beyond which undesired 

results can occur in the groundwater basin (CDWR, 2017). The MO and MT values used in this 

research correspond to the averages of the projected values for the monitoring sites reported in 

the Groundwater Sustainability Plans (GSPs) related to each water district (Eastern Tule GSA, 

2020; GEI Consultants Inc, 2019, 2020; MID-Kaweah GSA, 2022).  

The first two rows of Figure 3-5 represent one of the two possible behaviors for the GWDs in the 

study area. The first row illustrates districts where the depths estimated by the BU scenario group 

are greater than those estimated by the other scenarios (IC2D and IC3D). This behavior was noted 

in eight districts: Semitropic WSD, Wheeler Ridge-Maricopa WSD, Kern Delta WD, Cawelo 

WD, Shafter Wasco ID, North Kern WSD, Delano-Earlimart ID, and Kern-Tulare WD. The 

second row of the exact figure exemplifies districts where the depths of the BU scenario fall 

within the range of depths estimated by the other scenarios as in Buena Vista WSD. The third row 

separately examines the Wheeler Ridge-Maricopa WSD district based on the aquifer recovery 

under the BU scenario. Similar images to those in Figure 3-5 are shown in 0  for the other 

districts. 

Figure 3-5 demonstrates the LSTME's ability to replicate historical patterns. When historical data 

exhibits a downward trajectory, the LSTME foresees a decline in the BU scenario. Conversely, 

the model predicts an upturn in the BU scenario when historical data reflects an upward trend, as 

in Wheeler Ridge-Maricopa WSD for both RCPs (Figure 3-5 e and f). This congruence between 

the model's forecasts and historical trends in the BU scenario stems from the approach detailed in 

section 3.4.1, where input variables for the BU scenario were tailored to maintain the historical 

data's behavior. On the other hand, projected depths by the IC2D and IC3D scenarios decrease for 

all water districts, which mainly depend on the unique conditions within each district concerning 

AWD and SWD rather than precipitation, whose behavior is similar across districts. SWD plays a 

pivotal role in replenishing aquifers and consequently boosting groundwater levels. Conversely, 

the decline in groundwater levels is primarily linked to heightened agricultural water demand. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 3-5. Depths to groundwater for different water districts and scenario groups of 

Precipitation, Agricultural Water Demand, and Surface Water Deliveries. The scenario groups are 

Business as Usual (BU, blue area), Influence of Climate Change in Two Dynamic Variables 

(IC2D, green area), and Influence of Climate Change in Three Dynamic Variables (IC3D, orange 

area). The thick lines in the middle of the shaded regions symbolize the median of the scenario 

group. The vertical axis has been inverted to facilitate interpretation. 
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3.5.2 Hypothesis testing 

We used Welch's t-test to assess whether the depletion or replenishment rate (DRR) under the BU 

scenario is equivalent to that of the IC2D and IC3D scenarios at a 5% significance level. To do 

this, we first needed to confirm the normal distribution of the DRR data. This was achieved by 

conducting the Shapiro-Wilk test at a 5% significance level. The average DRR and p-values from 

the Shapiro-Wilk test are presented in Table 3-5 for each scenario group (BU, IC2D, and IC3D) 

and RCPs (4.5 and 8.5). Table 3-5, on the right-hand side, displays the results of these tests. 

Notably, all the p-values were greater than or equal to 0.05, suggesting we cannot reject the 

hypothesis that the populations follow a normal distribution. However, it's worth mentioning that 

some districts, like Kern Delta WD (IC3D at 8.5), Sharter Wasco ID (for IC2D and IC3D at 4.5), 

and Delano Earlimart (IC3D at 4.5), exhibited borderline results in the test. 

 

Table 3-5. Groundwater depletion or recharge rate (DRR) and p-values for the Shapiro-Wilk's test 

for normality for each water district, scenario group (BU, IC2D, and IC3D), and RCP (4.5 and 

8.5) 

Water 

District 

DRR (m/yr)   P-values 

BU 
RCP 4.5 RCP 8.5  

BU 
RCP 4.5 RCP 8.5 

IC2D IC3D IC2D IC3D   IC2D IC3D IC2D IC3D 

Semitropic 

WSD  
0.49 0.96 1.43 0.88 1.57   0.94 0.36 0.8 0.8 0.39 

Wheeler 

Ridge 

Maricopa 

WSD 

-0.24 0.16 0.44 0.14 0.48  0.64 0.74 0.28 0.12 0.4 

Kern Delta 

WD  
0.5 2.25 2.07 2.31 2.3   0.21 0.58 0.64 0.15 0.06 

Cawelo 

WD  
0.77 1.14 1.31 1.09 1.39  0.37 0.56 0.34 0.64 0.14 

Shafter 

Wasco ID 
0.55 1.52 1.49 1.57 1.63   0.68 0.07 0.05 0.82 0.47 

Buena 

Vista WSD 
0.77 1.65 0.84 1.76 0.97  0.46 0.97 0.28 0.74 0.45 

North Kern 

WSD 
0.63 1.13 1.21 1.18 1.3   0.36 0.39 0.22 0.75 0.44 

Delano 

Earlimart 

ID 

0.98 1.64 1.78 1.72 1.97  0.43 0.58 0.05 0.8 0.59 

Kern - 

Tulare WD 
0.95 1.39 1.45 1.38 1.49   0.85 0.25 0.72 0.24 0.8 
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The depletion or replenishment rates for each scenario group (BU, IC2D, and IC3D) and RCP 

(4.5 and 8.5) from Table 3-5 are displayed in Figure 3-6. Positive values indicate depletion, 

whereas negative values mean replenishment (blue area). Figure 3-6a shows DRRs for the BU 

scenario group under historical conditions that do not consider projected climate change. In 

Figure 3-6a, the highest depletion rates are between 0.58 and 1.16 m/yr located in Buena Vista 

WSD, North Kern WSD, Cawelo WD, Kern – Tulare WD, and Delano – Earlimart ID. At the 

same time, the aquifer in the Wheeler Ridge-Maricopa WSD experiences recovery (Figure 3-6a 

and Table 3-5). Figure 3-6b to e show the DRRs for different combinations of scenario groups 

and RCPs, while the hatched areas indicate the rejection of the null hypothesis for Welch's t-test. 

For example, for Semitropic WSD, when comparing the BU and the IC3D scenario for RCP 8.5 

(Figure 3-6 a and e), the district is hatched, indicating that the two scenario groups (BU and 

IC3D, RCP 8.5) are different for a significance level of 5%. Figure 3-6 b to e show that the null 

hypothesis is rejected in all cases except for both RCPs of the IC3D scenario group of Buena 

Vista WSD.  

We assess the impact of the RCP on the DRR by comparing images within the same row in 

Figure 3-6. On the other hand, when comparing images by column, we investigate the influence 

of AWD because the distinction between the IC2D and IC3D scenarios arises from the different 

approaches used to estimate AWD, as outlined in Table 3-4. Elevating the RCP correlates with an 

amplified depletion rate, particularly in the IC2D scenario (Figure 3-6 b and c). When we 

examine Figure 3-6 d and e, the RCP seems not to influence the DRRs. Nevertheless, upon 

examining the IC3D columns for both RCPs in Table 3-5, it becomes apparent that as the RCP 

increases, the depletion also increases. On the other hand, when we analyze images by columns, it 

can be seen that in most cases, the IC3D scenario leads to greater than or equal DRRs than those 

generated by the IC2D scenario (see Table 3-5). 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 3-6. Average depletion or replenishment rates (DRR) in meters per year for different water 

districts, scenarios, and RCPs. a) Business as usual (BU) scenario. b) Influence of Climate 

Change in Two Dynamic Variables under RCP 4.5. c) Influence of Climate Change in Two 

Dynamic Variables under RCP 8.5. d) Influence of Climate Change in Three Dynamic Variables 

under RCP 4.5. e) Influence of Climate Change in Three Dynamic Variables under RCP 8.5. 

Hatched areas in Figure 3-6 b-e represent districts where Welch's t-test null hypothesis for equal 

means between the BU scenario and other scenarios (IC2D and IC3D under RCPs 4.5 and 8.5) is 

rejected at a 5% significance level.  

3.5.3 Groundwater depletion or replenishment rates (DRR) 

We analyzed the relationship between the projected DRRs for each time frame (BOC, MOC, and 

EOC) and scenario group (BU, IC2D, and IC3D), as illustrated in Figure 3-7 and 0. This figure 

denotes different climate conditions by distinct color-coded areas (historical: green, RCP 4.5: 

blue, RCP 8.5: orange). The border color of the circles indicates whether depletion (red) or 

replenishment (black) is anticipated. Additionally, the numerical values inside the circles on the 

right-hand side indicate the magnitude of DRR in meters per year. The circles and semicircles in 

Figure 3-7 of a given water district can be read either row-wise or column-wise. When read row-
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wise, it allows observing DRR evolution over time within the same scenario group. When the 

figure is read column-wise, it provides insights into how the DRR changes between climate 

scenario groups for a specific time period. In general, the projected DRRs under the BU scenario 

remain relatively constant for all water districts (depicted in green circles in Figure 3-7 and blue 

lines in Figure 3-5) since the dynamic input variables were synthetically generated to preserve the 

mean, deviation, skew, and lag-one correlation coefficient (between seasons t and t-1) of 

historical data (P, SWD, and AWD). Also, groundwater levels are expected to keep decreasing 

until the end of the century for all scenario groups and RCPs except for Wheeler Ridge-Maricopa 

WSD under the BU scenario, reflecting that the aquifer shows signs of recovery under future 

conditions similar to historic conditions.  

We compared time frames and scenario groups to know if the groundwater levels in the Kern 

region would experience a more accelerated decline from 2016 to 2099 under scenarios without 

climate change and with climate change. However, this postulate holds only for seven water 

districts: Semitropic WSD, Kern Delta WD, Cawelo WD, Shafter Wasco ID, North Kern WSD, 

Delano-Earlimart ID, and Kern - Tulare WD. For instance, in Figure 3-7a, when comparing the 

scenario groups (rows) of Semitropic WSD, it is observed that the depletion rate increases 

(indicated by larger circles) when transitioning from a scenario group without projected climate 

change (BU) to a scenario incorporating climate change in two variables (IC2D), and to the more 

climate change influenced scenario (IC3D). Furthermore, for the Semitropic WSD, it seems the 

DRR increases over time (from left to right) for the IC2D and IC3D groups. However, for 

Semitropic WSD, the RCP effect is not as relevant.  

For the other districts shown in Figure 7 (Wheeler Ridge-Maricopa WSD and Buena Vista WSD), 

the DRR does not exhibit a general change pattern between scenario groups and time periods. For 

Wheeler Ridge-Maricopa WSD (Figure 3-7b), the DRRs of the IC3D group increase in time from 

BOC to EOC and are higher than those of the other scenario groups. However, when comparing 

the DRRs of the BU and IC2D group scenarios, it is observed that the latter are lower. Also, in 

the IC2D scenario group, the DRRs do not increase over time. Finally, in the case of Buena Vista 

WSD (Figure 3-7c), the DRRs increase over time, and the results of IC2D are greater than those 

of the IC3D scenario group.  
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a) 

 
b) 

 
c) 

Figure 3-7. Groundwater depletion or recharge rate (DRR) by timeframe (columns) and scenario 

group (rows). Different colors represent different RCPs: Historical (green), 4.5 (blue), and 8.5 

(orange). The circle's border color indicates whether the depth increases (red) or decreases (black) 

over time. The number inside the circles on the right shows the yearly DRR magnitude in meters. 

3.6 Conclusions 

This research examines the projected impact of climate change on groundwater levels for the 

uppermost confined aquifer for a selection of nine water districts of the Great Kern County 

Region (GKCR). Findings indicate that under a six-GCM ensemble of climate change scenarios, 

groundwater levels will mainly continue to decline unless agricultural water demand is reduced 

and/or recharge augmented. Moreover, results show that groundwater levels would experience a 

more rapid decline under climate change scenarios compared to historical conditions.  

Precipitation was considered in the analysis to assess the direct effects of climate change on the 

groundwater system. Surface Water Deliveries to agriculture (SWD) and Agricultural Water 

Demand (AWD), on the other hand, were considered to account for the indirect effects of climate 

change. Besides, we employed an innovative approach characterized by the following: first, the 

AWDs change over time based on the ETo adjusted by the influence of carbon dioxide 

projections (ETo adj,t). Second, the Long Short-Term Memory Emulator (LSTME) was the 

framework to integrate the water allocation model CALFEWS, precipitation, and agricultural 

water demands under the six-GCM ensemble for two Representative Concentration Pathways 

(RCPs 4.5 and 8.5). Third, the selected water districts overlay an area where aquifers have been 

critically overdrafted (CDWR, 2021a).  

Three scenario groups (BU, IC2D, and IC3D) were proposed to test the hypothesis that climate 

change may increase aquifer drawdown rates. Such scenarios incept climate change gradually; 
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thus, the BU scenario assumes climate conditions similar to those from 1974 to 2015. For the 

IC2D scenario, the effect of climate change was included in two dynamic variables: precipitation 

and surface water deliveries. Lastly, for the IC3D scenario, a third adjustment was introduced for 

the agricultural water demand by adjusting the reference evapotranspiration to account for higher 

temperatures and carbon dioxide concentrations. Also, the GCMs used here correspond to six of 

the GCMs that best describe California's climate following the state's Fourth Climate 

Assessment" (D. Pierce et al., 2016). Finally, the water allocation model used here (CALFEWS) 

was selected for its ability to resemble historical deliveries in the southern California Central 

Valley. 

Here, we utilized an ensemble of six GCMs and two RCPs to study projected climate impacts on 

groundwater. However, we only used a hydrological model (C2VSimFG) and a water allocation 

model (CALFEWS). For future research, we recommend a more comprehensive approach 

employing ensembles of hydrological models, such as HydroGeoSphere (HGS), the Penn State 

Integrated Hydrologic Model (PIHM), Modular Groundwater Flow (MODFLOW), and 

ensembles of water allocation models like CALVIN or CALSIM. This broader approach will 

provide a more holistic perspective on future groundwater levels. Furthermore, we advise 

considering the dynamic changes in land use over time. By incorporating this aspect, we can 

conduct more realistic simulations to reflect the intricate relationship between climate change and 

groundwater dynamics. Lastly, it is imperative to consider the regulatory constraints on 

groundwater pumping. Doing so can mitigate undesirable consequences for the aquifers' 

structure. Nonetheless, our current analysis does offer valuable insights into the potential impact 

of various climate scenarios on groundwater levels over time. 
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Chapter 4 An application of conjunctive water use under climate change and 

groundwater regulation in a semiarid region of California 

Abstract 

Growing water demand, overexploitation of rivers and aquifers, declining water quality, and the 

impact of climate change highlight the need for innovative water planning and management 

methods. The coordinated use of surface and groundwater, known as conjunctive water use 

(CWU), offers a strategic approach to sustainably meeting social, economic, and environmental 

objectives. This research focuses on finding optimal operational policies for the Shafter-Wasco 

irrigation district (SWID) using CWU while considering the influence of climate change and 

groundwater regulation. We employ Bayesian Optimization Programming (BOP), a 

comprehensive water management method that combines simulation and optimization. BOP 

encourages simultaneous decision-making, collective performance evaluation, and guided 

decision search through multiobjective optimization. We formulate a multiobjective optimization 

problem that maximizes average net revenue in farming and minimizes average depth to 

groundwater between 2020 and 2040. We use the Global Climate Model, CanESM2, under the 

RCP 4.5 emissions scenario to estimate precipitation and surface water deliveries. To derive the 

Pareto front and optimal operation policies, we use Bayesian Optimization with 5,000 objective 

function evaluations. By employing the k-means clustering method, we categorized points on the 

Pareto front into three groups: lowest, medium, and highest net revenue and depth to 

groundwater. Our findings highlight the balance of profit and aquifer recovery, supporting prior 

research indicating farmers need to curtail pumping and profits to promote groundwater 

sustainability. Finally, our method can be applied to integrate water and agricultural systems 

facing various uncertainties, providing insights into optimal policies and associated tradeoffs. 

4.1 Introduction 

In light of escalating water demand, the overexploitation of rivers and aquifers, deterioration in 

water quality, and visible manifestations of climate change, it is imperative to incorporate 

innovative methods in water planning and management (Gorelick & Zheng, 2015; Sabale et al., 

2023). The conventional planning aims to identify the best solution for a problem and implement 

it incrementally. However, if the conditions deviate from the initial assumptions while executing 

the solution, it can result in substantial cost overruns (Hallegatte et al., 2012). Recent studies 

suggest climate change is challenging the notion of a stable climate, with projections of rising 

temperatures and increased variability in precipitation in the forthcoming decades (Fawzy et al., 

2020). That situation threatens the effectiveness of various planning methodologies. 

Consequently, farmers will likely need to shift towards groundwater as a buffer for droughts. 

Unfortunately, on a global scale, the absence of groundwater regulation and insufficient oversight 

in groundwater pumping have led to diminishing aquifer levels and various environmental and 

socioeconomic challenges like reduced agricultural yields, job losses, declining quality of life in 

rural areas, heightened energy expenses associated with accessing deeper wells, and decreased 

land values (Famiglietti, 2014). On the other hand, stakeholders typically negotiate and decide 

operation policies based on their expertise. However, implementing those policies without a 

simulation and optimization framework could lead to high costs, especially when the decision 

space is not fully sampled. 
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The conjunctive use of surface and groundwater, known as conjunctive water use (CWU), 

presents a strategic approach to achieving social, economic, and environmental goals by 

optimally using all the region's water resources (Sepahvand et al., 2019). We can effectively 

address water scarcity by integrating CWU with a managed aquifer recharge (MAR) program. In 

this manner, surface water sources can be used during wet years for irrigation and replenishing 

groundwater. In contrast, we can withdraw water from the reserves during dry years through 

pumping (Faunt et al., 2016). The CWU-MAR approach contributes significantly to agricultural 

production by providing stable access to water and aiding in compliance with groundwater 

regulations (Sabale et al., 2023; Safavi et al., 2010; Sepahvand et al., 2019). However, it is crucial 

to employ simulation and optimization techniques to implement the CWU-MAR approach 

(Nematollahi et al., 2023; Rafipour-Langeroudi et al., 2014). In this way, simulation is a cost-

effective means of understanding system behavior under various conditions, while optimization 

identifies the most efficient ways to operate these systems. 

This research seeks operational policies that ensure a CWU strategy maximizing farmers' net 

revenue while avoiding groundwater overdrafts. We examine optimal operating policies for the 

Shafter-Wasco irrigation district (SWID) employing the CWU approach, considering the 

influence of climate change and groundwater regulation. We consider a multiobjective 

optimization framework instead of the conventional stakeholder water negotiation mechanism. In 

agricultural regions, that mechanism is a cooperative process where farmers, local communities, 

governmental agencies, and environmental groups discuss, plan, and establish agreements to 

strike a balance that addresses the interests, sustainability, and concerns of the involved parties 

(D'Agostino et al., 2020; Loucks & Beek, 2017). Here, we allow the policies to change every two 

years, depending on climate conditions and water availability. Our study sets forth two 

objectives: maximizing farmers' net revenue while preserving groundwater levels. The Pareto 

front is drawn to identify the best solutions for the multiobjective optimization problem solved 

using Bayesian Optimization.  

The optimization problem solutions are expected to provide valuable insights into a seemingly 

conflicting situation, maximizing farmers' net revenue while avoiding groundwater overdrafts. 

Although the two goals might appear at odds initially, further analysis reveals that they 

complement and reinforce each other because effectively managing and maintaining the 

groundwater system is essential for achieving sustainable economic growth. The proposed 

methodology allows the identification of optimal policies and their associated tradeoffs in 

integrating water and agricultural systems characterized by abundant economic, institutional, 

hydrological, and biological uncertainties. This framework is significant in agricultural regions 

experiencing high water stress and heavy reliance on groundwater. 

This chapter is organized as follows. Section two overviews the research's fundamental concepts, 

including adaptive pathways and multiobjective optimization methods. In section three, the study 

area is described. The fourth section addresses our optimization problem and the underlying 

assumptions. Lastly, sections 5 and 6 present the results and conclusions drawn from the research, 

respectively. 
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4.2 Theoretical framework 

4.2.1 Adaptative pathways 

Traditional planning aims to identify and systematically apply the most effective solution to a 

problem. Yet, if circumstances deviate from the initial assumptions while implementing the 

solution, it may cause substantial cost overruns (Hallegatte et al., 2012). Here is when the 

adaptative pathways (AP) approach becomes relevant. AP offers an analytical method for 

examining and arranging a series of potential actions in response to different external 

developments over time (Haasnoot et al., 2013). AP method suggests flexible strategies that can 

be modified over time in response to changing conditions or the availability of new information. 

Also, AP enables decision-makers to navigate a dynamic and uncertain environment effectively 

(Haasnoot et al., 2011). Here, we propose identifying APs by solving a multiobjective 

optimization problem in which decisions about fractions of perennial and annual crops change 

every two years for SWID. 

4.2.2 Multiobjective optimization 

Optimization consists of finding the best possible solution to a problem from a set of alternatives. 

In mathematical terms, optimization seeks to maximize or minimize a function, considering 

constraints to the input variables (Nocedal & Wright, 2000). With a single objective, the solution 

is generally unique and is called the optimal solution. However, when two or more competing 

objectives exist, this problem is known as multiobjective optimization (MO). Typically, the MO 

problem does not have a single solution but rather a set of Pareto optimal or non-dominated 

solutions located on the Pareto front (Branke et al., 2008). Consequently, solutions in the Pareto 

front can only improve on one objective by deteriorating at least one of the other (Rachmawati & 

Srinivasan, 2006). Also, MO problems in water resources need diverse observations of climate, 

hydrology, and water demand to guide the actions required to enhance the proposed objectives 

(Cohen & Herman, 2021). Some popular methods to solve MO problems are Weighted Sum, 

Non-Dominated Sorting Genetic Algorithm (NSGA-II), and Bayesian Optimization.  

4.2.2.1 Weighted Sum 

The weighted sum method consolidates all objectives in a unique objective function, the weighted 

sum of them (Loucks & Beek, 2017). As an example, Nouiri et al. (2015) developed the 

ALL_WATER_gw groundwater management tool, which addresses four objectives: i) meeting 

demand, ii) minimizing drawdown, iii) reducing costs, and iv) satisfying salinity requirements. To 

tackle this, researchers employed the weighted sum method to consolidate the initial objectives 

into two groups. Thus, objectives i) and ii) were consolidated into one group, while objectives iii) 

and iv) were grouped into another group. Subsequently, a multiobjective genetic algorithm was 

used to identify the Pareto front for the consolidated objectives. However, the weighted sum 

method has some issues: difficulty selecting each objective weight without bias, normalizing 

objectives without knowing their limits, and finding Pareto-optimal solutions when the feasible 

objective space is non-convex. 

4.2.2.2 Non-Dominated Sorting Algorithm Version II 

The Non-dominated Sorting Algorithm Version II (NSGA-II) offers an alternative to the 

weighted sum by generating a set of non-dominated solutions using an elitist principle (Branke et 

al., 2008; Majedi et al., 2021) without additional parameters such as the weights mentioned 

above. The elitist principle is a strategy designed to preserve diversity among solutions, ensuring 
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that the best solutions are kept once they are found (Deb et al., 2002). NSGA-II is a 

multiobjective evolutionary algorithm (MOEA) based on genetic algorithms that has provided 

optimal solutions for multiple problems (Majedi et al., 2021). 

According to (Deb et al., 2002), the NSGA-II algorithm involves creating an initial parent 

population (Pt) consisting of N individuals, representing potential candidates for the Pareto front. 

A new offspring (Qt) population is generated with the same Pt size through tournament selection, 

crossover, and mutation applied to the Pt genes. Subsequently, Pt and Qt are combined into a 

single population called Rt, where objectives are evaluated, and dominance fronts are established. 

If the stopping criteria (convergence or a specified number of iterations) are not met, a new 

population Pt+1 is formed by selecting individuals from each front, starting with the best-

nondominated set (F1), progressing to the second-best front (F2), until reaching the FL front. The 

aim is to choose enough individuals to get N elements. However, when the number of selected 

elements exceeds N, it must be decided which elements of the FL front will be incorporated. For 

this task, crowding distance criteria or a comparable approach could be used, ensuring a well-

distributed space sampling and preventing overemphasis on local optimal points. This iterative 

process continues until the stopping criteria are met. Notably, NSGA-II necessitates numerous 

evaluations of objective functions, which can be limited in time, money, or other resources 

(Manoj et al., 2022). Examples of costly objective function evaluations include conducting 

physical experiments or running complex computer simulations (Nguyen, 2023). In our research, 

we abstain from employing the NSGA-II algorithm to identify solutions for our optimization 

problem (see section 4.4) due to the computationally demanding nature of the functions used 

here. 

4.2.2.3 Bayesian Optimization 

Bayesian Optimization uncovers comparable or superior solutions to NSGA-II, requiring fewer 

objective function evaluations (Manoj et al., 2022; Saad et al., 2022). Bayesian optimization's 

main idea consists of replacing objectives and constraints with surrogate functions described by 

Gaussian Processes (GP) (see section 4.2.2.4) that gradually increase their ability to emulate the 

original functions and locate optimal solutions. According to (Mathern et al., 2021), the original 

objective functions and constraints are initially evaluated on randomly selected points that satisfy 

the search space (S) constraints. GPs are trained to replace original objectives and constraints 

thanks to the initial points and their evaluations. Considering the mean and covariance functions 

of the GPs, a new sampling point is identified. This new point is added to the initial sample set, 

and the GPs are retrained. The process is repeated until the stopping criterion is met. Identifying 

the Pareto front with a limited number of evaluations of expensive objective functions has led to 

the wide adoption of the Bayesian optimization method in fields such as materials research, 

power plant production, computer games engagements, and neuroscience (Manoj et al., 2022). 

Although Bayesian Optimization has proven to be appropriate to solve most multiobjective 

optimization problems, it requires specialized knowledge in mathematics and programming, 

contributing to its lack of spread. 

Unlike deterministic interpolation models, GP provides the mean and the covariance function, 

which help quantify uncertainty in unsampled areas of S. These functions can be used to explore 

and exploit the search space (Manoj et al., 2022). We pinpoint the function's minimum by 

minimizing the mean function, exhibiting space exploitation. On the other hand, minimizing the 

covariance function helps locate regions where adding a new point reduces uncertainty, revealing 

space exploration (Manoj et al., 2022). However, using the mean and covariance functions 

separately is not recommended. Instead, combining these two functions into an acquisition 

function to balance exploration and exploitation is advisable (Manoj et al., 2022). Some 
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acquisition functions for a single objective are Expected Improvement, Probability of 

Improvement, and Lower Confidence Bound (Nguyen, 2023). In multiobjective optimization, a 

famous acquisition function is the Expected Hypervolume Improvement (EHVI), which guides the 

selection of points that extend the Pareto frontier (Nguyen, 2023). The larger the volume under 

the Pareto frontier (i.e., the hypervolume of the dominated region), the better the set of optimal 

solutions. In this research, we used the EHVI acquisition function and 5,000 evaluations of the 

objective functions as stopping criteria.  

4.2.2.4 Gaussian process 

Gaussian processes support Bayesian Optimization. According to (Rasmussen, 2004), a Gaussian 

process is a collection of random variables such that any finite collection of these variables 

follows a multivariate normal distribution. In other words, a Gaussian process is the 

generalization of multivariate normal distributions to infinite dimensions (Sun et al., 2014). While 

conventional regression models aim to find the function that best fits the input and output data, 

with a Gaussian Process, it is possible to obtain the probability distribution of all the functions 

that fit the input and output variables. The GPs heart is the covariance function (also called 

similarity function or kernel function), which captures the similarities between pairs of points in 

space (Østergård et al., 2018). Some examples of covariance functions are the Gaussian Kernel, 

the Matern Kernel, and the periodic Kernel (Saad et al., 2022). However, when choosing a 

covariance function, it's important to fine-tune its hyperparameters for optimal performance. For 

instance, Equation 4-1 shows that the Gaussian kernel (k), also known as the squared exponential 

kernel, has hyperparameters (θ) comprising the variance (σf
2), the Euclidean distance (r), and the 

characteristic length-scale (l). On the one hand, r represents the Euclidean distance between pairs 

of points xi and xj. In the same equation, l means the average length at which pairs of points cease 

to impact each other. 

 

𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) = 𝜎𝑓
2 ∗ exp (−

1

2
∗

𝑟2

𝑙2 ) 
Equation 4-1 

 

By applying Bayes' theorem in conjunction with the Gaussian Processes properties, we can 

determine the probability of the latent function f(x), given a specific set of observed values for the 

output variable y, as is shown in Equation 4-2 (Bradford et al., 2018; Frazier, 2018; Rasmussen, 

2004). Thanks to the Bayes theorem, we can update probability estimates based on new information 

or evidence (Box et al., 2016). Also, a latent function is a hidden function that captures underlying 

relationships between inputs (x) and outputs (y). In Equation 4-2, mp(x) and kp (x) are the posterior 

mean and posterior covariance, respectively. According to Equation 4-3, mp(x) represents the 

weighted mean of prior outcomes (y), considering the covariance matrix between the observed 

values Σ(x,x) (commonly referred to as prior covariance) and the covariance matrix between the 

observed values and the interest points Σ(x,x*). kp(x) equals the prior covariance minus a term that 

reflects the improvement by considering the point x* (Equation 4-4). Elements from the covariance 

matrices could be estimated by a covariance function, as described by Equation 4-1.  
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𝑓(𝑥)|𝑦~𝐺𝑃 (𝑚𝑝(𝑥), 𝑘𝑝(𝑥)) Equation 4-2 

  

𝑚𝑝(𝑥) = 𝚺(𝑥, 𝑥∗)𝑇𝚺(𝑥, 𝑥)−1𝒚 Equation 4-3 

  

𝑘𝑝(𝑥) = 𝚺(𝑥, 𝑥) − 𝚺(𝑥, 𝑥∗)𝑇𝚺(𝑥, 𝑥)−1𝚺(𝑥, 𝑥∗) Equation 4-4 

4.3 Model application area 

Shafter-Wasco Irrigation District (SWID) is in southern California's Central Valley (CCV) near 

the lower Sierra Nevada mountains (Figure 4-3). The SWID is neighbored by the Semitropic 

Water Storage District, North Kern Water Storage District, and Rosedale-Rio Bravo Water 

Storage District. Even though the cities of Shafter and Wasco are in the district, they don't get 

water directly from it. Nevertheless, such cities gain advantages from SWID's groundwater 

recharge efforts because the recharge initiatives benefit the wells that supply water to those 

municipalities (GEI Consultants. Inc, 2022). SWID has an area of 157.2 km2, with elevations 

ranging from 114.3 m on the east to 91.44 m on the west side, which can be broadly described as 

flat terrain. Also, SWID's soil is made up of sandy loam and clay loam, which is not challenged 

by issues like salinity, high water table, or high or low infiltration rates, making it suitable for 

numerous crops (GEI Consultants. Inc, 2022). In 2020, 75% of the SWID's area was cultivated. 

The crop distribution for the same period was 78.6% almond trees, 3.9% grapes, 3.7% alfalfa, 

1.6% wheat, and the remaining percentage with other crops (Figure 4-1). 

SWID considers the combined use of surface water and groundwater resources (CWU). SWID 

lacks surface water streams within its boundaries or adjacent to them. In 2020, the SWID 

received 65.9 million cubic meters of surface water. The majority, 93.1%, came from the Central 

Valley Project through the Friant-Kern Canal, followed by 4.7% from recycled water, 2.1% from 

transferred water from the North Kern Water Storage District, and 0.1% from banked water 

(Figure 4-2). Regarding groundwater, farmers extract water from wells, typically located in the 

uppermost confined aquifer. In contrast, most domestic wells draw water from the unconfined 

aquifer. These aquifers are separated by layers of Corcoran E-clay or similar materials (GEI 

Consultants. Inc, 2022) and are prone to compaction (Faunt, 2009). 
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Figure 4-1. Percentage of crop areas for 

Shafter-Wasco Irrigation District (SWID) 

during 2020 (GEI Consultants. Inc, 2022). 

 Figure 4-2. Percentage of water supplies 

during the calendar year 2020 for Shafter-

Wasco Irrigation District (SWID) (GEI 

Consultants. Inc, 2022). 

 

The climate of the study area can be classified as Mediterranean, from warm to hot, with dry 

summers and mild wet winters. The average monthly temperature ranges from 6.6 Celsius in 

December to 27.2 Celsius in July. The average monthly precipitation ranges from 0 mm in July 

and August to 27.4 mm in March. The reference evapotranspiration ranges from 38.1 mm in 

January to 214.12 mm in July (GEI Consultants. Inc, 2022). Droughts have affected SWID and 

other irrigation districts in CCV, leading farmers to increase groundwater pumping due to water 

scarcity, causing significant groundwater depletion. For instance, during the 2006-2009 drought, 

CCV's groundwater reserves decreased between 24 to 31 km2 (Taylor, 2013). Alam et al. (2019) 

reported that from 1950 to 2009, the depletion rate of CCV's aquifer was 3 km3/yr. Furthermore, 

the same study projects that these depletion rates will rise in the future under climate change 

scenarios if no mitigation measures are implemented. As highlighted in the previous chapter and 

reiterated by Taylor (2013), the impact of climate change on both water demand and surface 

water deliveries can have a more pronounced indirect effect on groundwater, surpassing the direct 

consequences of climate change on aquifer recharge. 

SWID was legally established in 1937, and from its inception, its mission went beyond merely 

supplying water to users; it also included preventing aquifer depletion (GEI Consultants. Inc, 

2022). Protecting underground resources became more significant after the Sustainable 

Groundwater Management Act (SGMA) was passed. SGMA mandates that by 2040, all critically 

over-drafted groundwater basins, including the one supplying SWID, must attain sustainability 

(Sustainable Groundwater Management Act (SGMA), 2014; CDWR, 2017). Currently, SWID 

operates under the purview of the Kern Groundwater Authority (KGA), a designated 

Groundwater Sustainability Agency (GSA) responsible for formulating and executing the 

Groundwater Sustainability Plans (GSPs) to achieve basin sustainability and avoid undesirable 

results (CDWR, 2017). To complete sustainable groundwater management, SWID initiated the 

operation of the Kimberlina Recharge Facility in 2017, covering an initial area of 0.89 km2, with a 

projected expansion to encompass 2.5 km2 by the year 2030. Furthermore, in 2022, the US 

Department of the Interior invested more than 1.8 million dollars in two projects to reduce the 

drought's effect. The approved projects encompassed the Southeast Recharge Facility and 

Conveyance Improvements ($500,000) and the Kimberlina Pipeline Conveyance Improvement 

Project ($1,315,083) (Bureau of Reclamation, 2022). 
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Figure 4-3. Study area. Shafter-Wasco Irrigation District is a Great Kern County Region (GKCR) 

member. 

4.4 Optimization problem 

To identify the optimal water operating policies in SWID under climate change and groundwater 

regulation, the central objective of this research, a multiobjective optimization problem, was 

formulated with two goals, two decision variables, and four constraints. The two objectives are 1) 

maximizing the average farmers' Net revenue (Equation 4-5) and 2) minimizing the average depth 

to groundwater (Equation 4-6) from 2020 to 2040. This timeframe was chosen to align with the 

critical period for achieving sustainability goals in overdrafted groundwater basins like the one 

studied. The two decision variables, x1, and x2, correspond to two time-series of coefficients (x1,t, 

and x2,t) that reflect the fractions of annual and perennial crops for the year t relative to their 

average values from 1996 to 2015. When the fractions take a value of one, the reference areas 

remain unchanged. In contrast, fractions less than one represent area reductions, and values 

greater than one indicate area increases. Annual crops include grain, cotton, corn, dry beans, 

alfalfa, pasture, tomato, cucurbits, onions, garlic, potatoes, and other trucks. In contrast, perennial 

crops include almonds, pistachios, citrus, subtropical crops, vineyards, and other deciduous. 

Constraints (from Equation 4-13 to Equation 4-16) limit groundwater levels and fraction values 

x1,t, and x2,t. The multiobjective optimization problem posed here is solved using Bayesian 

Optimization. So, we will indistinctly employ the terms "decision variable" or "time series" to 

denote x1 and x2. The values within these variables, represented as x1,t, and x2,t, will be called 

"fractions." In summary, a "decision variable" or "time series" is a collection of fractions. 

For the first objective, the net revenue for annual and perennial crops was calculated as the 

product of their crop areas (AAt and PAt) and their corresponding average net revenues expressed 

in dollars per area (𝑁𝑅𝐴̅̅ ̅̅ ̅̅  and 𝑁𝑅𝑃̅̅ ̅̅ ̅̅ ) (Equation 4-7). For the second objective, Equation 4-8 shows 

that depth to groundwater for time t (GWDt) depends on the initial depth to groundwater (GWD0: 

September 2015) and the cumulative changes in depth to groundwater (ΔGWD) up to month T.  
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We estimate ΔGWD by the Long Short-Term Memory  (LSTM) artificial neural network, 

developed in Chapter 2, that emulates the C2VSimFG hydrologic model (Equation 4-9). As in 

Chapter 3, the emulator is also called LSTME. As mentioned in Chapter 2, LSTME requires static 

and dynamic variables. Static variables include surface area, ground surface slope, field capacity, 

saturated hydraulic conductivity, total porosity, hydraulic conductivity, aquifer vertical hydraulic 

conductivity, specific yield, and specific storage. Dynamic variables consist of Precipitation (P), 

Surface Water Deliveries (SWD), and Agricultural Water Demand (AWD). The subindex t-12 ~ t 

indicates that the LSTME considers the influence of the current and the 12 preceding 

observations to make a prediction.  

To estimate the dynamic input variables, P and SWD, for the hydrological model (Equation 4-9) 

from 2015 to 2040, we resort to the CanESM2 Global Climate Model (GCM) developed by the 

Canadian Center for Climate Modeling and Analysis under the intermediate greenhouse gas and 

aerosol emissions, RCP 4.5. We selected the CanESM2 model based on its ability to represent 

California's average climate accurately, according to (Pierce et al., 2018). The downscaled and 

bias-corrected precipitation for CanESM2-RCP 4.5 was downloaded from the California Climate 

Adaptation Planning Tool (Cal-Adapt, 2022). On the other hand, the Surface water deliveries 

(SWD) for the same period were obtained from the  California Food-Energy-Water System 

model, CALFEWS (Zeff et al., 2021), considering CanESM2-RCP 4.5. The remaining dynamic 

variable, Agricultural Water Demand (AWD), was determined  by multiplying the areas of annual 

(AAt) and perennial crops (PAt) with their respective average water demands per unit area (𝑊𝐷𝐴̅̅ ̅̅ ̅̅ ̅ 

and 𝑊𝐷𝑃̅̅ ̅̅ ̅̅ ̅) using Equation 4-10. Areas of annual and perennial crops are determined as the 

product of the fractions x1,t and x2,t, and the average area of annual and perennial crops (𝐴𝐴̅̅ ̅̅  and 

𝑃𝐴̅̅ ̅̅ ) between 1996 and 2015 (as per Equation 4-11 and Equation 4-12).  

Constraints are described from Equation 4-13 to Equation 4-16. Equation 4-13 allows GWD to 

oscillate between root depth (RD) and the minimum threshold (MT). RD selection aims to avoid 

rising groundwater levels that impede root respiration. We adopted an RD of 1.82 m (6 ft) 

considering the crops in the study area and the root depth guidelines provided by NRCS (2016). 

The MT was set to avoid undesired effects on the aquifer (CDWR, 2017). We adopted an MT of 

160 m after analyzing the MT values for the SWID documented in the Groundwater 

Sustainability Plan for Kern County (GEI Consultants Inc, 2020). The specified bounds for RD 

and MT imply that there could be situations where GWDt assumes these extreme values. 

Nevertheless, it is unlikely for GWDt to sustain such extremes over an extended period because 

maintaining constant extreme values would counter one of the established objectives (Equation 

4-5 or Equation 4-6). 

Equation 4-14 to Equation 4-16 delineate the constraints governing the fractions (x1,t and x2,t). 

According to these equations, the model considers a finite amount of land and crop areas that can 

oscillate within established limits. The bounds for x1,t and x2,t stem from the analysis of historical 

records on annual and perennial crop areas, which were sourced from the C2VSimFG1.01 and the 

Kern County databases (Kern County Department of Agriculture and Measurement Standards, 

2015). Equation 4-16 places restrictions on the fluctuations of perennial crops, ensuring they do 

not deviate by more than 30% from their values at the preceding time step. We used the same 

databases to define this limit. In essence, the fractions for annual crops can change independently 

over time, but the fractions associated with perennial crops are temporally interconnected to 

prevent abrupt changes in cultivated areas. 
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Equation 4-5 

  

𝑀𝑖𝑛 𝐺𝑊𝐷 =
1

𝑇
∗ ∑ 𝐺𝑊𝐷𝑡

𝑇

𝑡=1

 
Equation 4-6 

 

Where: 

 

𝑁𝑅𝑡 = 𝐴𝐴𝑡 ∗ 𝑁𝑅𝐴̅̅ ̅̅ ̅̅ + 𝑃𝐴𝑡 ∗ 𝑁𝑅𝑃̅̅ ̅̅ ̅̅  Equation 4-7 

  

𝐺𝑊𝐷𝑡 = 𝐺𝑊𝐷𝑜 + ∑ ∆𝐺𝑊𝐷𝑡

𝑇

𝑡=1

 
Equation 4-8 

  

∆𝐺𝑊𝐷𝑡 = 𝐿𝑆𝑇𝑀𝐸 (𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑃𝑡−12~𝑡, 𝑆𝑊𝐷𝑡−12~𝑡, 𝐴𝑊𝐷𝑡−12~𝑡) Equation 4-9 

  

𝐴𝑊𝐷𝑡 = 𝐴𝐴𝑡 ∗ 𝑊𝐷𝐴𝑡
̅̅ ̅̅ ̅̅ ̅̅ + 𝑃𝐴𝑡 ∗ 𝑊𝐷𝑃𝑡

̅̅ ̅̅ ̅̅ ̅̅  Equation 

4-10 

  

𝐴𝐴𝑡 = 𝑥1,𝑡 ∗ 𝐴𝐴̅̅ ̅̅  Equation 4-11 

  

𝑃𝐴𝑡 = 𝑥2,𝑡 ∗ 𝑃𝐴̅̅ ̅̅  Equation 4-12 

 

Subject to: 
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𝑅𝐷 ≤ 𝐺𝑊𝐷𝑡 ≤ 𝑀𝑇 Equation 4-13 

  

0.45 ≤ 𝑥1,𝑡 ≤ 1.4 Equation 4-14 

  

0.65 ≤ 𝑥2,𝑡 ≤ 1.6 Equation 4-15 

  

0.7 ∗ 𝑥2,𝑡−1 ≤ 𝑥2,𝑡 ≤ 1.3 ∗ 𝑥2,𝑡−1 Equation 4-16 

 

In this research, an operational policy is a way to operate SWID under forecasted climatic 

conditions from 2020 to 2040 as a function of annual and perennial crop areas. In practical terms, 

it is a matrix that combines the two-time series, x1 and x2. Also, an operating policy is feasible if 

all fractions x1,t and x2,t adhere to the specified constraints. Nonetheless, the feasibility of a policy 

does not necessarily imply its optimality. Therefore, a policy is deemed optimal when it 

successfully achieves the stated objectives and satisfies the constraints. In this study, rather than 

employing Dynamic Programming (DP) to identify policies, we formulated an optimization 

problem that simultaneously addresses all fractions that make up the time series, x1 and x2. In 

other words, while DP involves decision-making stage-wise (Feng et al., 2023; Yakowitz, 1982), 

our approach, called Bayesian Optimization Programming (BOP), finds all fractions x1,t, and x2,t at 

the same time by solving the problem described from Equation 4-5 to Equation 4-16 through 

Bayesian optimization. Another difference from the DP approach is our use of continuous 

decision variables. In contrast, DP usually discretizes variables (Herman et al., 2020), limiting the 

options for choosing the best policies. 

The solutions to our optimization problem live in a multidimensional space with ND dimensions, 

encompassing the various components constituting a policy. ND can be calculated as the product 

between the number of time series and the number of time windows. For example, if the fractions 

that make up the decision variables change every five years, as seen in Figure 4-4, then ND 

amounts to eight (from x1,2025 to x2,2040). To calculate fractions within each time window, we use 

linear interpolation. For the 5-year windows example, fractions x1,2027 and x2,2027 result from linear 

interpolation between the 2025 and 2030 fractions.  
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Figure 4-4. Fractions for annual and perennial crops considering a 5-year time window. Each 

decision variable or time series has four fractions. 

 

Bayesian optimization was used to identify the policies that are part of the Pareto front, called 

optimal policies, since evaluating all possible combinations of x1,t, and x2,t is impossible, resulting 

in the well-known curse of dimensionality (Powell, 2007). For example, if the fractions (x1,t, or 

x2,t) adopt the same number of values at each time step, the number of policies (NP) required to 

define the Pareto front can be calculated using the following equation: 

 

𝑁𝑃 = (𝑎 ∗ 𝑏)𝑚+1 Equation 4-17 

 

Where a and b represent the number of values that the fractions x1,t, and x2,t can adopt, 

respectively, and m is the number of time windows. In this way, for the example described in 

Figure 4-4, if each fraction can take only three values, almost 59,000 policies are needed to 

evaluate to create the Pareto Front. However, if we allow each variable to take five values (a=b 

=5) and increase the number of windows to ten (changes every two years), 2.38x1015 policies 

should be evaluated. Although the number of policies to be assessed is enormous in the latter 

case, exploring the fractions domain remains limited because we only explore five values per 

variable by time step. Here, we explore the decision variables x1 and x2 in a continuous space 

every two years from 2020 to 2040. Therefore, the solutions to our optimization problem exist 

within a 20-dimensional space (ND=20). 

4.4.1 Bayesian optimization algorithm 

The procedure to identify operational policies through Bayesian optimization consisted of six 

steps. First, 10,000 operating rules that met the constraints (from Equation 4-13 to Equation 4-16) 

were randomly generated. For each of these operating rules, the average net revenue and depth to 

groundwater were calculated during the 20 years of analysis (2020 to 2040). Second, two GPs 

were trained to emulate each of the stated objectives. Third, from these GPs, the mean and 

variance values were calculated for a set of auxiliary operating rules to expand the solution space 

exploration. At this stage, the variances were calculated using Equation 4-1. Fourth, through the 

EHVI acquisition function, a score was assigned to each operating rule, representing how useful 

the auxiliary rule is in meeting the objectives and minimizing the variance (Nguyen, 2023). Since 

the EHVI indicates the contribution of each auxiliary rule in increasing the area under the Pareto 

front when both objectives are subject to maximization, it was necessary to transform the 
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objective described by Equation 4-6 from minimization to maximization by a simple 

multiplication by negative one. Fifth, the rule that contributes the most to the increase in EHVI is 

added to the set of initial rules, so the number of initial rules is now 10,001. Implementing stages 

one to five was named New Rule Addition Cycle (NRAC). Here, the NRAC was repeated 5,000 

times after observing that the EHVI values did not increase beyond this number of iterations. 

4.5 Results and discussion 

To obtain the Pareto front and optimal SWID operation policies, we use the BoTorch library 

developed by the Facebook Artificial Intelligence Research (FAIR) lab (Balandat et al., 2020). 

With BoTorch, we performed 5,000 evaluations of the objective functions (number of queries), 

with ten restarts per query to prevent the algorithm from getting stuck in local optima. 

Furthermore, 10,000 samples were generated to explore the decision space before starting the 

optimization algorithm. Generating 15,000 samples for a 20-dimensional space is equivalent to 

randomly sampling each variable 750 times within the ranges defined by Equation 4-14 and 

Equation 4-15. 

Figure 4-5 shows the Pareto front for the two defined objectives: maximization of average 

farmers' Net revenue and minimization of average depth to groundwater from 2020 to 2040. 

Regarding Net revenue on the horizontal axis, a favorable decision is preferable when points are 

situated farther to the right, indicating a higher annual profit for farmers. Alternatively, the 

average depths to groundwater should be positioned towards the top of the figure due to the 

vertical axis inversion, ensuring low GWDs. In the same figure, dominated solutions are gray, 

while the points on the Pareto front are found in other colors. The Pareto front points were 

classified into three categories using the k-means clustering algorithm. In this way, the points 

with low net revenue and low depths are in green (upper-left cluster), those with high net revenue 

and high depths are in blue (lower-right cluster), and those with medium net revenue and depths 

are in orange (intermediate cluster). Also, numbers from one to seven, close to the Pareto front, 

identify each cluster's extreme points and midpoints. Finally, for points over the Pareto front, the 

average GWD ranges between 93.0 and 116.6 m, while the average net revenue is between 49.9 

and 70.6 million dollars annually. Observe that the GWDs of the Pareto front correspond to 

average depths as defined in Equation 4-6. Additionally, these depths consistently adhere to the 

constraints outlined in Equation 4-13, ensuring that the GWDt values fall within the range of 1.82 

to 160 m. Variations of the optimal decisions for each cluster over time are shown in Figure 4-7 

and discussed in the following paragraphs. 

The objectives along the Pareto front can be rewritten as stated by Equation 4-18, where GWD is 

the average depth to groundwater (in meters), and NR is the average net revenue (in millions of 

dollars per year). The R-squared for that equation is 0.99, and the Root Mean Square Error 

(RMSE) is 0.68 m. According to Equation 4-18, GWD increases quadratically as a function of 

NR for points over the Pareto front. 

 

𝐺𝑊𝐷 = 6.07 ∗ 10−2 ∗ 𝑁𝑅2 − 6.19 ∗ 𝑁𝑅 + 251.03 Equation 4-18 

 

On the other hand, the scarcity of points on the Pareto front (nine points) comes from various 

factors. The endeavor to reconcile two conflicting objectives limits the number of viable 

solutions, given that optimizing one objective compromises the other. Tackling a 20-dimensional 
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optimization problem poses a formidable challenge since identifying the set of 20 values that 

satisfy the constraints and optimize the objectives is demanding. Finally, our optimization 

problem constraints significantly limit the solution space since they not only restrict the fraction 

values (Equation 4-14 and Equation 4-15) but also govern the temporal interactions among the 

fractions (Equation 4-16) and the possible outcomes for depths (Equation 4-13). 

The Bayesian optimization algorithm detailed in section 4.4.1 was run twice for result 

verification. This procedure was conducted on a computer with the following characteristics: 

Processor Intel(R) Core(TM) i7-9700 3.00GHz CPU, 16GB of RAM, and 1 TB NVMe Solid 

State Drive. Each of the two runs of the Bayesian optimization algorithm spanned a week and 

involved 10,000 initial operating rules and 5,000 NRACs. Despite the random generation of the 

10,000 initial operating rules, the Pareto front results remained consistent in both cases, 

generating only nine points. However, the two runs of the Bayesian optimization algorithm do not 

provide insights into potential intermediate solutions between the Pareto front points illustrated in 

Figure 4-5. Consequently, future research should run the Bayesian optimization algorithm 

multiple times to uncover any intermediate solutions. As highlighted by C. Zhang et al. (2022), 

the Pareto front in real-world applications may exhibit discontinuities, as seen in Figure 4-5, due 

to constraints, problem complexity, and discontinuities in the search space. 

 

 

Figure 4-5. Pareto front considering two objectives: maximization of average farmers' net revenue 

and minimization of average depth to groundwater from 2020 to 2040. The gray dots represent 

dominated solutions, while the colored dots indicate points on the Pareto front or non-dominated 

solutions. The numbers near the Pareto front correspond to the extreme and medium points for the 

three defined clusters. 

The Pareto front solution emphasizes the tradeoff between the two objectives. Figure 4-5 depicts 

an increase in net revenue corresponding to higher depths to groundwater. This correlation 

implies that farmers must utilize available water resources to maximize profits, resulting in 

increased groundwater use, as shown in point 7 in Figure 4-5. Moreover, the Pareto front 

highlights the need for conjunctive water use reductions via reduced irrigated land to contribute to 

aquifer recovery, as seen in point 1 in Figure 4-5. Transitioning from a scenario where economic 
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benefits prevail (point 7 in Figure 4-5) to one where aquifer preservation becomes the priority 

(point 1 in Figure 4-5) entails a $20.7 million reduction in profits and 23.6 m of aquifer recovery 

regarding point 7.  

Figure 4-6 illustrates the Net Revenue Loss (NRloss) resulting from aquifer recovery, measured in 

millions of dollars per meter. These values were computed using Equation 4-19, with point 7 of 

the Pareto front as a reference due to its highest net revenue and Depth to groundwater (GWD). In 

that equation, NR refers to net revenue, GWD to Depth to groundwater, and the subindex i to the 

points shown in Figure 4-5. For instance, reaching point 1 on the Pareto front corresponds to a 

NRloss of 0.87 million dollars per meter of aquifer recovery. Upon careful analysis of Figure 4-6, 

we opted for point 3 as an intermediate solution between points 1 and 7. Despite the similar 

NRloss values within the central cluster (orange bars in Figure 4-6), point 3 stands out for a 

superior aquifer recovery (See Figure 4-5). Therefore, for those who find the profit reduction 

from point 7 to point 1 too drastic, point 3 offers an intermediate alternative. At point 3, net 

revenue is $59.2 million, with a GWD of 96.7 m. Thus, moving from point 7 to point 3 implies a 

profit decrease of $11.4 million while simultaneously achieving a 19.9 m aquifer recovery 

(NRloss=0.57). Therefore, point 3 represents a balanced approach, with an intermediate level of 

profit but substantial aquifer restoration. 

 

 

Figure 4-6. Net revenue loss due to aquifer recovery in millions of dollars per meter. 

 

𝑁𝑅𝑙𝑜𝑠𝑠 =
𝑁𝑅7 − 𝑁𝑅𝑖

𝐺𝑊𝐷7 − 𝐺𝑊𝐷𝑖
 

Equation 4-19 

 

Figure 4-7 illustrates the trajectories taken by x1, x2, net revenue, and GWD for the points and 

clusters identified along the Pareto front, as presented in Figure 4-5. To break it down, the green-

shaded regions in the left column of Figure 4-7 correspond to the points of the same color in 

Figure 4-5. Likewise, the orange-shaded areas in the central column represent the points in the 

middle cluster, while the blue areas in the right column indicate the lower-right cluster of Figure 

4-5. Furthermore, within each panel of Figure 4-7, there are three distinct colored lines: green, 

orange, and blue. Green lines signify the points within each cluster with the lowest net revenue 

and GWD, specifically points 1, 3, and 6, as seen in Figure 4-5. The orange lines correspond to 
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the trajectory nearest to the centroid of each cluster, aligning with point 4 along the Pareto front. 

Lastly, the blue lines pertain to the points within each cluster with the highest net revenue and 

GWD: points 2, 5, and 7. For example, the green line in the upper-left panel of Figure 4-7 (annual 

crops – upper left cluster) represents the temporal changes in the fraction of annual crops for 

point 1 in Figure 4-5. Similarly, the blue line in the lower-right panel (GWD – lower right cluster) 

illustrates the GWD for point 7 in Figure 4-5. 

 

  Upper-left Cluster Intermediate cluster Lower-right cluster 

  

 
a) 

 
b) 

 
c) 

 

 
d) 

 
e) 

 
f) 

 

 
g) 

 
h) 

 
i) 

 

 
j) 

 
k) 

 
l) 

Figure 4-7. Trajectories of the Pareto front points grouped by variable (row) and cluster (column). 

Shaded areas delimit the minimum and maximum values per variable and cluster. Lines depict the 

trajectories followed by the cluster's representative points. 

In Figure 4-7, trajectories for the same variable and different clusters are conveniently placed 

alongside each other in the same row. This arrangement allows us to assess the similarities in 

trajectories and the spatial regions covered by them. First, to evaluate the similarity among 

trajectories within the same cluster, we examine the size of the shaded areas. Narrow areas 
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indicate trajectories closely resembling each other, while broader areas suggest significant 

variability within the same cluster. As depicted in the left column of Figure 4-7, the green areas 

are notably narrow. This is because the upper-left cluster comprises only two points from the 

Pareto front close to each other. In contrast, the broader shaded areas belong to the intermediate 

cluster, encompassing five points from the Pareto front. Lastly, for the lower-right cluster, which 

includes two points, the shaded regions exhibit a moderate size or level of variability among the 

trajectories because the points are not close. Secondly, we investigate whether the trajectories of 

each cluster cover distinct regions of the solution space by analyzing what occurs when we 

superimpose the shaded areas of the same row. When the superimposed areas overlap, it becomes 

evident that the compared clusters share some solutions within the decision space. The row-by-

row analysis of Figure 4-7 indicates that all clusters share common regions in the solution space, 

suggesting no discernible relationship between the clusters and the specific areas they occupy 

within the solution space. 

Upon analyzing the panels of Figure 4-7 by columns, a discernible pattern emerges. Initially, 

there is a reduction in annual and perennial crop areas, contributing to a decline in net revenue 

and promoting aquifer recovery. Subsequently, the model expands crop areas, increasing profits 

but decreasing depth to groundwater. If, on the contrary, crop areas follow an opposite trend—

larger initially and smaller towards the end—the net revenues would remain constant. However, 

the average GWD would be higher due to an initial drop followed by a subsequent rise. 

Therefore, the observed policies (x1,t and x2,t temporal distribution) effectively address 

groundwater level restrictions, ensuring sustainable water use between 2020 and 2040. A new 

pattern emerges when comparing fractions of annual and perennial crops within the same cluster 

(comparing the first two rows of Figure 4-7). The trajectories of annual crops exhibit more abrupt 

jumps from one year to the next, showcasing the flexibility of this crop type in achieving the 

proposed objectives. In contrast, the trajectories of permanent crops follow a more consistent 

pattern, lacking unexpected changes from one year to the next, aligning with the constraints set 

by Equation 4-16. Hence, the model encourages conjunctive water use by leveraging surface 

water deliveries in the initial years to recharge the aquifer, subsequently utilizing aquifer water 

for agricultural production.  

However, a limitation in our model is evident—the trends of annual and permanent crops are 

similar. Thus, when the areas dedicated to annual crops increase, the areas allocated to permanent 

crops rise, and vice versa. This situation limits the validity of our results because perennial crops 

have shown an increasing trend over the last three decades, while annual crops have tended to 

decrease (Mall & Herman, 2019). Another limitation of our model arises when the fractions of 

permanent crops (x2,t) are positive, resulting in a sudden increase in areas filled with fully grown 

plants. This situation diverges from reality, as the expansion of planting areas typically involves 

the presence of young plants with lower water demands. Nonetheless, the solutions presented 

here consistently adhere to the SGMA requirements, preserving the GWD above the specified 

minimum threshold of 160 m. 
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As mentioned in section 4.4, an operational policy describes how maximize profits and minimize 

the depth to groundwater based on the areas of annual and perennial crops and the expected 

climatic conditions from 2020 to 2040. Here, we focus on the three operational policies described 

by points 1, 3, and 7 of the Pareto front (Figure 4-5). Points 1 and 7 are our initial selections, as 

they represent the extremes of the Pareto front. Point 1 underscores the prioritization of 

groundwater depletion avoidance, while point 7 signifies putting more weight on economic goals. 

In contrast, point 3 represents the central cluster's upper-left point, which boasts a significant 

aquifer recovery despite its moderate net revenue. This suggests that allowing a marginal 

decrease in net revenue may substantially improve depth to groundwater.  

Point 1 of the Pareto front is represented by green lines in the left panels of Figure 4-7. In most 

cases, the fractions x1,t, and x2,t tend to be less than one, reducing crop areas. As anticipated, 

reducing crop areas leads to declining net revenue, as shown by the green line at the bottom of 

Figure 4-7 g. Also, the hypothesis that the aquifer recovery depends on crop reduction is verified 

in Figure 4-7 j, where the groundwater level corresponding to point 1 (green line) generates the 

lowest GWD.  

On the contrary, in the right panels of Figure 4-7, the blue lines represent the trajectories that lead 

to point 7 of the Pareto front. In terms of annual crops, depicted in Figure 4-7c, the x1,t fractions 

exhibit oscillations between the maximum and minimum values within the cluster (blue area). 

These oscillations illustrate the flexibility of annual crops. Meanwhile, Figure 4-7f shows that the 

fractions of perennial crops, x2,t, generally tend to be the largest within the cluster over time. This 

situation results in net revenues (Figure 4-7 i) that follow a similar trajectory as the perennial 

crops, with only minor decreases from reductions in the areas allocated to annual crops. However, 

it's important to note that the high water consumption associated with perennial crops impacts 

aquifer levels, as shown by the blue line in Figure 4-7 l, where the aquifer levels tend to be the 

lowest. In sum, the charts in the right panel of Figure 4-7 further emphasize that groundwater 

levels tend to decrease as crop areas increase. 

As mentioned above, point 3 of the Pareto front constitutes a decision balancing farming 

economic goals and aquifer recovery. Trajectories that give rise to point 3 appear in the central 

column of Figure 4-7, described by the green lines over orange areas. During the simulation's last 

ten years, the model tended to increase crop areas, which promoted increased profits and 

decreased aquifer levels. In the second decade (2030 - 2040), the model increasingly turning to 

groundwater as their primary water source due to the plentiful availability of groundwater and a 

decrease in surface water.  

The GWD projections from 2020 to 2040 show a noticeable aquifer recovery in the initial years, 

followed by a subsequent rise in depths (Figure 4-7 j, k, and l). This situation originates from the 

fact that the highest precipitation and Surface Water Deliveries (SWD) are observed at the 

beginning of the simulation, as observed in Figure 4-8. After aquifer recovery, the model begins 

to extract groundwater, considering that the water inputs are insufficient to satisfy the objectives. 

On the other hand, our projected GWDs range between the levels outlined in the Shafter-Wasco 

ID Groundwater Sustainability Plan (GSP) between 2020 and 2040 (GEI Consultants Inc, 2020). 

In that GSP, GWDs fluctuate between 88.1 and 136.9 m, as shown in Figure 4-9, where six 

monitoring were analyzed. The depths shown in Figure 4-9 reflect the minimum and maximum 

value projected between 2020 and 2040 considering six models: Baseline, Baseline with projects, 

2030 Baseline, 2030 with projects, 2070 Baseline, and 2070 with projects (GEI Consultants Inc, 

2020). 
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Figure 4-8. Annual variation of precipitation 

and surface water deliveries (SWD) for 

Shafter-Wasco Irrigation District. 

Figure 4-9. Projected GWD from 2020 to 2040 

for different C2VSimFG-Kern model 

scenarios. Adapted from GEI Consultants Inc 

(2020) 

 

Figure 4-10 describes how the optimal operating policies behave biannually from 2022 to 2040. 

In this figure, the colored trajectories result from connecting through straight segments the values 

that the four variables, x1, x2, GWD, and Net revenue, take for a particular year and a specific 

point on the Pareto front. The axes of the fractions x1,t and x2,t ascend vertically, with the top 

representing the highest proportions of crop areas. However, the GWD axis has been reversed to 

facilitate results interpretation. Thus, the greatest depths are at the bottom of the graph. All 

variables have been adjusted to have zero mean and one standard deviation. This makes it easier 

to compare variables and trajectories. The lines' colors depend on the net revenue, so warm colors 

indicate net revenue (NR) above its average from 2020 to 2040, and cold colors indicate NR 

below the average. In Figure 4-10, there are 90 trajectories. This number is determined by 

multiplying the number of points on the Pareto front (nine) by the ten possible values each 

variable can take from 2022 to 2040 in biannual increments. The results show that net revenues 

tend to be high (red lines) when the fractions of annual and perennial crops are high, and GWD is 

low. On the other hand, when the crop areas are low, the net revenues are low (blue lines), and 

the GWD tends to increase. 
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Figure 4-10. Biannual behavior of the operational policies for the Shafter-Wasco Irrigation 

District. All variables are standardized (mean zero, standard deviation one). The parallel axis 

includes annual crop fractions (x1,t), perennial crop fractions (x2,t), and depth to groundwater 

(GWDt). Warm colors indicate net revenue (NR) above its average from 2020 to 2040, and cold 

colors indicate NR below the average. 

4.6 Conclusions 

Our research employed an integrated water management framework comprising surface and 

groundwater hydrology elements and agricultural production. Through Bayesian Optimization 

Programming (BOP), simulation and optimization were combined to determine the best policies. 

The employed BOP uses perfect foresight by simultaneously optimizing all variables for all 

periods, evaluating their performance collectively, and guiding the decision search process using 

Bayesian Optimization. Through this approach, we successfully identified operational policies 

that maximize farmers' net revenue and minimize depth to groundwater. To validate the 

effectiveness of the BOP approach, we selected the Shafter-Wasco irrigation district (SWID). 

This district relies on groundwater from one of California's overexploited basins and faces 

potential impacts on its future water supply due to climate change.  

We defined an operational policy as maximizing profits and minimizing the depth to groundwater 

based on the areas of annual and perennial crops and the expected climatic conditions from 2020 

to 2040. Also, a policy was deemed optimal when it successfully met the stated objectives and 

satisfied the constraints. We formulated an optimization problem with two objectives, two 

decision variables, and four constraints to determine the optimal policies. The proposed 

objectives aimed to maximize the average net revenue and minimize the average depth to 

groundwater between 2020 and 2040. The two decision variables, x1 and x2, represent the 

proportions of annual and perennial crops. The four constraints limit the fractions of annual and 

perennial crops and groundwater levels to meet SGMA requirements. Also, we employed the 

Global Climate Model called CanESM2 under the intermediate greenhouse gas and aerosol 

emissions scenario, RCP 4.5, to simulate future climate conditions. The Long Short-Term 

Memory Emulator (LSTME), introduced in Chapter 2, facilitated the estimation of depth to 

groundwater, while CALFEWS was employed for estimating surface water deliveries. 
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Instead of using the commonly employed NSGA-II algorithm, we utilized Bayesian Optimization 

for solving the multiobjective optimization problem. This decision was motivated by the fact that 

while NSGA-II is more straightforward to understand and implement, Bayesian Optimization 

proves to be more efficient in navigating the solution space with fewer iterations. This efficiency 

is particularly advantageous in scenarios like the one presented here, where we explore the 

decision variables x1 and x2 in a continuous space every two years from 2020 to 2040, resulting in 

a 20-dimensional solution space. The enhanced efficiency of Bayesian Optimization translates to 

significant time and cost savings, especially when dealing with computationally expensive 

objective functions such as the Long Short-Term Memory Emulator (LSTME) developed in 

Chapter 2. 

The Pareto front highlights tradeoffs between farming profits and aquifer recovery. Shifting from 

a scenario where economic gains are prioritized (point 7 in Figure 4-7) to one that prioritizes 

aquifer preservation (point 1) leads to a $20.7 million profit reduction, resulting in a 23.6 m 

aquifer recovery. However, for those who find the profit reduction from point 7 to point 1 too 

extreme, point 3 in Figure 4-7 presents an appealing option. It boasts a net revenue of $59.2 

million and a depth to groundwater of 96.7 m. Transitioning from point 7 to point 3 involves a 

profit decrease of $11.4 million while simultaneously achieving a 19.9 m aquifer recovery. 

Hence, point 3 represents a balanced approach between profit and aquifer restoration. In sum, the 

Pareto front highlights the need for conjunctive water use reductions via reduced irrigated land to 

contribute to aquifer recovery. 

The method proposed in this study should be viewed more as an academic exercise than as a 

practical guide for operating the Shafter-Wasco Irrigation District, as certain crucial aspects were 

not considered. First, the research does not simulate how farmers make decisions regarding 

economic or climate factors. Additionally, the categorization of crops at the Shafter-Wasco 

Irrigation District was relatively broad, and it is suggested that more specific categories be 

included in future research. Also, it is recommended that surface water and groundwater costs be 

differentiated in future research. Furthermore, it would be worthwhile to use alternative global 

climate models (GCMs) and representative concentration pathways (RCPs) to identify additional 

optimal policies. Last, our model could not capture the growth trend of perennial crops and the 

decline of annual crops over the last decades. 

Despite the limitations of the proposed model, it effectively captures the dynamics of depth to 

groundwater and net revenue in response to changing climatic conditions. The model responds to 

high surface water deliveries and precipitation by projecting aquifer recharge, while it turns to 

groundwater use when surface water supply diminishes. Additionally, the model demonstrates 

flexibility in managing annual crops, allowing for adjustments based on climatic conditions. 

Another crucial aspect of this research is its insight into the cost of avoiding aquifer depletion, as 

the metric NRloss indicates. Finally, the solutions generated by the model consistently meet the 

Sustainable Groundwater Management Act (SGMA) requirements, ensuring that the Depth to 

groundwater (GWD) remains above the specified minimum threshold of 160 meters. 
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Chapter 5 Conclusions 

This study examines the potential impacts of climate change on groundwater and proposes 

operational policies for managing irrigation districts to ensure farmers' profits while safeguarding 

aquifers. We developed an emulator for an existing groundwater model, namely C2VSimFG. The 

model can integrate climate, hydrological, and water distribution components. The emulator 

reduces computational time and allows exploring a wide range of scenarios. Due to the lower 

hydrological uncertainties in C2VSim compared to climatic uncertainties and its extended 

computational time, employing emulators proved to be an efficient strategy. We tested three 

emulators (MLR, MLP, LSTM) incorporating static and dynamic variables to address spatial and 

temporal effects. The selected emulator, LSTM, performed best based on the results of the 

metrics Root Mean Squared Error (RMSE), Nash–Sutcliffe Efficiency coefficient (NSE), and the 

Kling-Gupta Efficiency coefficient (KGE). Findings using the LSTM emulator supported the 

hypothesis that climate change would significantly impact groundwater levels in the region 

compared to a historical climate (1995-2015). However, by implementing appropriate measures 

(such as reducing crop consumptive use), we demonstrated that achieving sweet spots for both 

financial and groundwater sustainability is feasible. 

In the face of forthcoming challenges, including elevated temperatures and increased variability 

in precipitation, scientific progress plays a crucial role. Advancements in climatic, hydrological, 

statistical, and optimization models empower us to forecast and proactively implement effective 

adaptation strategies. By integrating climate and groundwater monitoring networks, enhancing 

model accuracy, and utilizing optimization techniques, there is potential to identify practical and 

economically viable solutions for managing water in irrigation districts. The research presented 

here is a compelling example of such feasibility in examining operational policies for an 

irrigation district based on crop areas, groundwater, and climate change projections (Chapter 4). 

To identify such policies, we had to use advanced optimization techniques (Chapter 4), quantify 

potential climate change effects on groundwater (Chapter 3), and use reliable and agile models 

that allowed the simulation of thousands of scenarios (Chapter 2). 

On the other hand, while California enjoys a privileged position in terms of information and 

model availability compared to other regions worldwide, it grapples with unique challenges, as 

discussed in Chapter 2. This challenge involves identifying optimal ways to couple existing 

models, reconciling diverse databases and programming languages, and navigating different time 

and space scales. We overcome those challenges by implementing an emulator for the widely 

accepted C2VsimFG model. 

This work underscores the need for connecting elements within a framework to unveil 

comprehensive images at a larger scale. Without integrated research efforts, valuable knowledge 

would remain disjointed, limiting our understanding of the world. In this study, our focus wasn't 

solely on generating new fragments of knowledge but rather on interconnecting existing elements 

to attain a more comprehensive and reliable perspective on sustained water resource management. 

Furthermore, this research demonstrated that coupling these knowledge pieces is not feasible for 

individuals; it requires collaboration and interdisciplinary expertise. 

Some significant findings arise from this work on several fronts.  

Our analyses show that the emulators can adequately replicate the change in depth to groundwater 

as a function of static and dynamic variables to consider space and time interactions. On the one 

hand, static variables include the geometry of the districts and soil and water characteristics. In 
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contrast, the dynamic variables include water inflows (precipitation and surface water deliveries), 

water outflows (agricultural water demand), and changes in groundwater storage. The latter is 

highly related to the depth to groundwater of the uppermost confined aquifer. 

The three emulators consider the effect of previous precipitation, surface water deliveries, and 

agricultural water demand in estimating the change in depth to groundwater. For this reason, 

fragments of these time series known as fragment lengths (FL) were shown to the emulators 

during training. Instead of using an optimization method for the FL definition, FL was estimated 

by examining a graph termed the Multiple Squared Correlation Function (MSCF), akin to the 

autocorrelation function utilized in time series analysis. Based on the MSCF analysis 

encompassing all water districts (as depicted in Figure 2-8 and detailed in Appendix A.4), it was 

observed that the relevance of the relationship between dynamic variables and change in depth to 

groundwater extends up to 12 months. 

The performance of the analyzed emulators considered credibility, efficacy, and efficiency, 

facilitating groundwater integration in broader modeling frameworks. Hence, decision-makers 

will be able to evaluate multiple scenarios relatively simply and accurately without compromising 

the quality of the results. Besides, our findings indicate that the LSTM is the best emulation 

alternative because it meets the desired attributes, such as the quality of the outcomes, compared 

to the other two emulators (MLR and MLP).  

In Chapter 3, three scenario groups (BU, IC2D, and IC3D) were proposed to test the hypothesis 

that climate change may increase aquifer drawdown rates. Such scenarios incept climate change 

gradually; thus, the BU scenario assumes climate conditions similar to those from 1974 to 2015. 

In the IC2D scenario, climate change impacts are incorporated into P and SWD. In contrast, in the 

IC3D scenario, climate change influences all three variables (P, SWD, and AWD). Also, under a 

six-GCM ensemble of climate change scenarios, groundwater levels will mainly continue to 

decline unless agricultural water demand is reduced or recharge augmented. Moreover, results 

show that groundwater levels would experience a more rapid decline under climate change 

scenarios compared to historical conditions (1995-2015).  

In Chapter 4, we defined an operational policy as maximizing profits and minimizing the depth to 

groundwater based on the areas of annual and perennial crops and the expected climatic 

conditions from 2020 to 2040. Therefore, we formulated an optimization problem with two 

objectives, two decision variables, and four constraints to determine the optimal policies. The two 

decision variables, fractions of annual and perennial crops, represent the proportions of annual 

and perennial crops. The four constraints limit the fractions of annual and perennial crops and 

groundwater levels to meet SGMA requirements. Through Bayesian Optimization Programming 

(BOP), simulation and optimization were combined to determine the best policies for the Shafter-

Wasco Irrigation District. BOP uses perfect foresight by simultaneously optimizing all variables 

for all periods, evaluating their performance collectively, and guiding the decision search process 

using Bayesian Optimization. The BOP approach highlights the importance of adapting annual 

crop management to accommodate changes in climatic conditions. The strategies developed 

through this approach consistently align with the Sustainable Groundwater Management Act 

(SGMA) requirements, ensuring that the Depth to groundwater (GWD) in the Shafter-Wasco 

Irrigation District is maintained above the designated minimum threshold of 160 meters. 
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The Pareto front highlights tradeoffs between farming profits and aquifer recovery. Shifting from 

a scenario where economic gains are prioritized (point 7 in Figure 4-7) to one that prioritizes 

aquifer preservation (point 1) leads to a $20.7 million profit reduction, resulting in a 23.6 m 

aquifer recovery. However, for those who find the profit reduction from point 7 to point 1 too 

extreme, point 3 in Figure 4-7 presents an appealing option. It boasts a net revenue of $59.2 

million and a depth to groundwater of 96.7 m. Transitioning from point 7 to point 3 involves a 

profit decrease of $11.4 million while simultaneously achieving a 19.9 m aquifer recovery. 

Hence, point 3 represents a balanced approach between profit and aquifer restoration. 

Despite the limitations of the BOP approach, it effectively captures the dynamics of depth to 

groundwater and net revenue in response to changing climatic conditions. The model responds to 

high surface water deliveries and precipitation by projecting aquifer recharge, while it turns to 

groundwater use when surface water supply diminishes.  

5.1 Recommendations and future work 

It is crucial to evaluate the LSTM performance in districts within the Central Valley that are 

distinct from those included in the GKCR to estimate the LSTM’s generalization capacity, or 

what it is the same, the ability to infer behavioral patterns beyond those encountered during 

training, validation, and testing. Therefore, feeding the LSTM emulator with data from different 

water districts in the Central Valley spanning from 1974 to 2015 will be necessary. The goal is to 

compare the emulator's results with those obtained from C2VSimFG, aiming to determine how 

much the LSTM can replicate C2VSimFG results across diverse districts. 

In Chapter 3, we utilized an ensemble of six GCMs and two RCPs to study projected climate 

impacts on groundwater. However, we only used a hydrological model (C2VSimFG) and a water 

allocation model (CALFEWS). For future research, we recommend a more comprehensive 

approach employing ensembles of hydrological models, such as HydroGeoSphere (HGS), the 

Penn State Integrated Hydrologic Model (PIHM), Modular Groundwater Flow (MODFLOW), 

and ensembles of water allocation models like CALVIN or CALSIM. This broader approach will 

provide a more holistic perspective on future groundwater levels because there is uncertainty 

associated with the climatic data and the results the models can offer regarding the same input 

values. 

During optimal operating policy identification, we employed the Global Climate Model called 

CanESM2 under the intermediate greenhouse gas and aerosol emissions scenario, RCP 4.5, to 

simulate future average climate conditions. It is recommended to analyze other Global Climate 

Models and RCPs to better understand possible policies under different climate scenarios. 

Certain crucial aspects must be considered to improve the BOP methodology and validity of its 

results. Firstly, the research does not simulate how farmers make decisions regarding economic or 

climate factors. Additionally, the categorization of crops at the Shafter-Wasco Irrigation District 

was relatively broad, and it is suggested that more specific categories be included in future 

research. Also, it is recommended that surface water and groundwater costs be differentiated in 

future research. Furthermore, it would be worthwhile to use alternative global climate models 

(GCMs) and representative concentration pathways (RCPs) to identify additional optimal 

policies. Lastly, our model could not capture the growth trend of perennial crops and the decline 

of annual crops over the last decades. Therefore, additional efforts must be undertaken to solve 

this critical situation 
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Appendix A Change in depths to groundwater through deep learning models in 

agricultural regions, additional information 
 

Appendix A.1 Comparison of standardized water volumes 
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Appendix A.2 Comparison of standardized and de-seasonalized water volumes 
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Appendix A.3 Standardized moving average values for depth to groundwater 

(GWD) and groundwater storage (GWS) 
The vertical axis was reversed to facilitate interpretation. The decrease in the brown and black 

lines represents the increase in depth and the decrease in storage, respectively. 
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Appendix A.4 Multiple Squared Correlation Function (MSCF) between the 

dynamic variables and change in depth to groundwater (ΔGWD) after removing 

seasonal effects. 
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Appendix A.5 Changes in depths to groundwater (ΔGWD) using emulators 
Left column: Multiple Linear Regression (MLR). Middle column: Multilayer Perceptron (MLP). 

Right column: Long Short-Term Memory (LSTM) 
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Appendix B Climate change impacts on groundwater levels for irrigated 

agriculture in the greater Kern County region, additional information 

Appendix B.1 Seasonal distribution of precipitation, surface water deliveries, and 

agricultural water demand for historical and projected climate 
Historical data is presented in green, while the future climate projections for each Global Climate 

Model (GCM) are depicted in blue for RCP 4.5 and orange for RCP 8.5. The horizontal axis 

displays four temporal intervals: Historical (HIST, 1974-2015), beginning of the century (BOC, 

2016-2040); middle of the century (MOC, 2041-2070), end of the century (EOC, 2071-2099). 

The irrigation period runs from March 1 to September 30. 
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North Kern WSD, CCSM4 
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North Kern WSD, CNRM-CM5 

   
 
 

North Kern WSD, HadGEM2-CC 
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North Kern WSD, HadGEM2-ES 

   
   

 
North Kern WSD, MIROC5 
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Delano - Earlimart ID, CanESM2 

   
   

 
Delano - Earlimart ID, CCSM4 
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Delano - Earlimart ID, CNRM-CM5 

   
 
 

Delano - Earlimart ID, HadGEM2-CC 
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Delano - Earlimart ID, HadGEM2-ES 

   
   

 
Delano - Earlimart ID, MIROC5 
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Kern - Tulare WD, CanESM2 

   
   

 
Kern - Tulare WD, CCSM4 
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Kern - Tulare WD, CNRM-CM5 

   
 
 

Kern - Tulare WD, HadGEM2-CC 
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Kern - Tulare WD, HadGEM2-ES 

   
   

 
Kern - Tulare WD, MIROC5 
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Appendix B.2 Depths to groundwater for different scenario groups of 

Precipitation, Agricultural Water Demand, and Surface Water Deliveries 
The analyzed scenario groups are Business as Usual (BU, blue area), Influence of Climate 

Change in Two Dynamic Variables (IC2D, green area), and Influence of Climate Change in 

Three Dynamic Variables (IC3D, orange area). The thick lines in the middle of the shaded 

regions symbolize the median of the scenario group. The vertical axis has been inverted to 

facilitate interpretation. 
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Appendix B.3 Groundwater depletion or recharge rates 
Groundwater depletion or recharge rate (DRR) by timeframe (columns) and scenario group 

(rows). Different colors represent different RCPs: Historical (green), 4.5 (blue), and 8.5 (orange). 

The circle's border color indicates whether the depth increases (red) or decreases (black) over 

time. The number inside the circles on the right shows the yearly DRR magnitude in meters. 

  
  

  
  

  
 

 

  

 




