
UC San Diego
UC San Diego Previously Published Works

Title
Chaotic tip trajectories of a single spiral wave in the presence of heterogeneities.

Permalink
https://escholarship.org/uc/item/8x42z8z9

Journal
Physical review E (statistical, nonlinear, biological, and soft matter physics), 99(6-1)

Authors
Lombardo, Daniel
Rappel, Wouter-Jan

Publication Date
2019-06-01

DOI
10.1103/PhysRevE.99.062409
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x42z8z9
https://escholarship.org
http://www.cdlib.org/


Chaotic tip trajectories of a single spiral wave in the presence of 
heterogeneities

Daniel M. Lombardo, Wouter-Jan Rappel*

Department of Physics, University of California, San Diego

Abstract

Spiral waves have been observed in a variety of physical, chemical, and biological systems. They 

play a major role in cardiac arrhythmias, including fibrillation where the observed irregular 

activation patterns are generally thought to arise from the continuous breakup of multiple unstable 

spiral waves. Using spatially extended simulations of different electrophysiological models of 

cardiac tissue, we show that a single spiral wave in the presence of heterogeneities can display 

chaotic tip trajectories, consistent with fibrillation. We also show that the simulated spiral tip 

dynamics, including chaotic trajectories, can be captured by a simple particle model which only 

describes the dynamics of the spiral tip. This novel result shows that spiral wave breakup, or 

interactions with other waves, are not necessary to initiate chaos in spiral waves.

I. INTRODUCTION

Spiral waves are generic dynamical states of spatially extended excitable systems. They are 

observed in a variety of biological and non-biological systems, including aggregates of 

Dictyostelium discoideum cells [1], chicken retinas [2], surface catalytic oxidation reaction 

systems [3], and in chemical Belousov-Zhabotinsky systems [4, 5]. Spiral waves can also 

form in cardiac tissue, where they are believed to play a critical role in life-threatening 

arrhythmias [6]. In particular, they are responsible for the maintenance of fibrillation during 

which the activation pattern of the tissue is incoherent, resulting in insufficient pumping of 

blood [7–11].

Spiral waves are characterized by a tip, corresponding to a phase singularity, and a rotating 

wave that propagates outwards. Simulations have revealed that the tip trajectory of a single, 

stable spiral wave can trace a variety of periodic patterns [12–17]. These patterns include 

circular trajectories, regular meandering trajectories, and hypermeandering trajectories 

during which the tip traces an irregular path. Many computational studies have also 

demonstrated that spiral waves can be unstable, both in homogeneous and in highly 

heterogeneous domains [6, 18–21]. This instability leads to continuous breakup and 

formation of new spiral waves, accompanied by removal of spiral waves through collisions. 

This multi-wave state results in incoherent activity, consistent with recordings of fibrillation.
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Recent studies in humans have demonstrated the existence of spatially localized spiral 

sources during atrial fibrillation [9–11, 22]. The ablation of tissue at these locations can 

result in acute termination of fibrillation, suggesting that these localized spirals are the 

driving factor of fibrillation [23]. Furthermore, it suggests that these tissue regions have 

different electrophysiological properties, consistent with the observation that cardiac tissue 

is rarely homogeneous and typically exhibits variations either due to inherent differences in 

cell properties [24] or due to injury and disease such as ischemic fibrosis [25]. In these 

studies, fibrillation would not require a multi-spiral state but, instead, can be due to a single 

spiral wave. Consistent with this hypothesis is that tracking of the spiral tip of the localized 

source has revealed that it does not appear to trace a regular path, but instead displays a 

complex trajectory [10, 26]. Thus the question arises: Can a single spiral in the presence of a 

small number of heterogeneities exhibit irregular tip trajectories, and can it generate 

irregular activations patterns even in the absence of spiral wave breakup?

We address this question by computationally examining the trajectory of a single spiral wave 

in the presence of tissue heterogeneities, modeled as small regions with decreased 

excitability. Previous numerical studies have shown that a spiral wave can be attracted to an 

isolated heterogeneity, causing it to eventually be anchored and resulting in a regular 

activation pattern [19, 27–31]. Furthermore, a recent study has shown that multiple 

heterogeneities can have a profound impact on the stability of spiral waves and can result in 

chaotic activation patterns consisting of multiple spiral waves [32]. Here, we will show that 

the tip trajectory of a single spiral can become chaotic in the presence of just two small 

heterogeneities and that these dynamics can be captured by a simple model in which the tip 

is represented by a particle in a force field.

II. TIP DYNAMICS OF ELECTROPHYSIOLOGICAL MODELS

We start with a standard model for cardiac tissue which describes the potential u of cardiac 

cells as

du
dt = D∇2u − Iion

Cm
. (1)

Here D is a diffusion coefficient responsible for the spreading of the activation front and Cm 

is the capacitance of the membrane. Iion represents the membrane currents and models for 

these currents range from relatively simple to very detailed [33]. We used both a simplified 

electrophysiological model, the Fenton-Karma (FK) model [34] which contains only 3 

currents and 13 parameters, and the detailed Koivumäki, Korhonen, and Tavi (KKT) model, 

which contains 13 currents and more than 40 parameters [35]. The parameters of the FK 

model can easily be changed to fit different electrophysiological data, including human [18, 

36] while the KKT model has been specifically developed for human atrial tissue [37–39].

The equations for the gating variables (v,w) and the currents (Ifi, Iso, Isi) for the FK model 

used in our study are:
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dv
dt = 1 − H u − V c (1 − v)

1 − H u − V v τv1− + H u − V v τv2− − H u − V c v
τv+

. (2)

dw
dt = 1 − H u − V c (1 − w)

τw−
− H u − V c w

τw+
(3)

Ifi = − H u − V c u − V c (1 − u)v
τd

(4)

Iso = u 1 − u − V c
τo

+ H u − V c
τr

(5)

Isi = − w
1 + tanh k ui − V c

si

2τsi
(6)

where H is the Heaviside step function and u is the membrane potential. We used two 

parameter sets, Set I and Set II, for the FK model which are listed in Table I. The equations 

of the KKT model are to numerous to reproduce here and can be found in the literature [35, 

37]. Parameters for the KKT model are based on the most recently published values [37] and 

are given in Table II.

Our simulations were performed on a two dimensional square sheet with a spatial 

discretization of 0.025 cm and a side length of 200 elements (FK model) or 400 elements 

(KKT model) and no-flux boundary conditions. The time step was chosen to be 0.05 ms and 

0.01 ms for the FK and KKT model, respectively. We used the Cuda Parallel Computing 

platform to calculate each grid element simultaneously, resulting in very efficient 

computational algorithms. Numerical integration was performed using the forward Euler 

method, and we simulated a 60s time segment. In order to allow the system to reach a steady 

state, only the last 30s of the simulation were recorded. The coordinates of the tip trajectory 

were saved every 5 ms. We have verified that the results did not significantly change if the 

time step was lowered by a factor of 5.

We first focused on the FK model, which can produce a variety of stable, regular single 

spiral trajectories in homogeneous media by varying just a few of the parameters [18]. This 

is evident from Fig. 1A and C where we show snapshots of a simulation using parameter set 

I (A) and II (C). The power spectrum of the time series of the x coordinate of the tip for set I 

shows a single peak while for set II it shows two peaks (Fig. 2A). Furthermore, set I 

produces a circular trajectory and set II results in a flower-like trajectory with inward petals, 

shown in more detail in Fig. 2B.

To examine how the model behaves in heterogeneous media, we added two identical, 

circular regions with decreased excitability to the computational domain. Within these 

regions we decreased the excitability of the fast inward current by raising the value of the 
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parameter τd to 0.5ms. For consistency, the initial conditions used in each simulation 

consisted of a spiral wave in the lower left region of the sheet. We adjusted the size and 

spacing between the heterogeneities, and quantified their effects on the dynamics of the 

spiral wave trajectory. We have verified that these effects are relatively insensitive to initial 

conditions and that, as long as the spiral wave trajectory crosses the heterogeneity at some 

point in time, the resulting dynamics will be similar to what is reported here.

Our simulations revealed that the presence of the two circular heterogeneities can 

dramatically alter the tip trajectory of the spiral wave and the activation patterns of the 

tissue. This is shown in Fig. 1B and D where we have plotted phase diagrams of the tip 

trajectory found in the simulations corresponding to set I and II. In these diagrams the x-axis 

represents the heterogeneity size while the y-axis represents the spacing between 

heterogeneities. Since very small heterogeneities leave the trajectory unaffected, we only 

focus on heterogeneity sizes that are large enough to alter the tip behavior. Also, note that 

since the distance between the heterogeneities is at least twice their radius, the phase 

diagram is only shown above the line y = 2x. The phase diagram shows that for small 

spacings, the spiral wave is anchored to both heterogeneities and orbits around them (blue 

region, Fig. 1B and D), while for large spacings the spiral wave rotates around one of the 

two heterogeneities (purple region, Fig. 1B and D). The regular, periodic spiral tip 

trajectories corresponding to a representative point within these two regions are also shown 

in Fig. 1B and D. Interestingly, there is a region in phase space between these two regular 

domains for which the trajectory becomes irregular. Within this region, the spiral tip 

alternately circulates, in a non-periodic fashion, around one or the other heterogeneity. Thus, 

the presence of a pair of heterogeneities is sufficient to drastically alter the tip dynamics of a 

single spiral and to render it irregular. To ensure this behavior is not caused by the boundary 

conditions, we have confirmed that doubling the domain size produces similar results. We 

further verified that the spiral wave does not breakup into multiple waves, and remains a 

single spiral throughout the simulation.

To quantify the dynamics of the irregular trajectories, we computed the leading Lyapunov 

exponent, λ, which measures the rate of exponential divergence of nearby trajectories using 

a standard procedure [40] (see Appendix A). We found that λ for the irregular patterns, 

corresponding to the yellow region in the phase diagrams of Fig. 1B and D, was large and 

positive while for the regular tip trajectories it was close to zero. Therefore, our simulations 

show that the presence of heterogeneities and a single spiral wave are sufficient to produce 

chaotic dynamics.

We then investigated the KKT model [35, 37] which, in homogeneous tissue, exhibits a 

spiral wave that is stable, with a tip trajectory that shows a flower pattern with outward 

petals (Fig. 3A). The power spectrum of the tip coordinates again shows only two dominant 

frequencies (Fig. 2A). We then added circular heterogeneities by decreasing the permittivity 

of the sodium channel INa to half of its original value. Since this model is computationally 

much more demanding than the FK model, we did not map out the entire phase space shown 

in Fig. 1. Instead, we fixed the radius of the heterogeneities to 0.5 cm and varied their 

spacing, corresponding to a cut through phase space. The results are shown in Fig 3B where 

we have plotted the tip trajectory for different spacings of the heterogeneities. As in the case 
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of the FK model, the KKT model shows regular dynamics when the spacing is small, with a 

tip trajectory that spans both heterogeneities, and when the spacing is large, corresponding 

to the tip rotating around one of the heterogeneities. For intermediate spacings, the trajectory 

alternates in a non-regular fashion between the two heterogeneities and computing the 

Lyapunov exponent revealed that the dynamics was chaotic. Thus, as found in the FK model, 

a single spiral wave in the presence of heterogeneities can produce chaotic activation 

patterns.

III. DYNAMICS OF A SINGLE PARTICLE MODEL

Previous studies have noted that spiral waves in excitable media exhibit both wave-like and 

particle-like properties [41, 42]. The waves can react to small perturbations as particle-like 

objects and asymptotic theories have been developed to describe their interactions with 

periodic perturbations and localized inhomogeneties [43, 44]. Furthermore, previous studies 

have described the dynamics of spiral tips in terms of ordinary differential equations near 

bifurcation points [45, 46] and have developed simple equations for circular tip trajectories 

in the presence of periodic modulations [47].

Here, we constructed a simple model in which the tip trajectory is described by a single 

particle moving in a potential landscape and subject to periodic forcing terms. The aim is to 

describe the transition between regular and chaotic trajectories shown in our spatially 

extended simulation. Our single particle (SP) model is a phenomenological description of 

the tip trajectory and consists of equations for the x and y coordinates of the tip in the 

presence of external forces. Contrary to these earlier studies, the model includes an explicit 

description of heterogeneities. To reproduce the tip trajectories in homogeneous tissue we 

include two forcing terms with frequencies ω1 and ω2 and amplitudes F1 and F2, 

respectively. We note that, if necessary, it is trivial to extend the equations to include forcing 

terms with more frequencies. Our equations take the form:

d2x(t)
dt2 = F1cos ω1t + ϕ + F2cos ω2t − ξdx

dt − dU(x, y)
dx . (7)

d2y(t)
dt2 = F1sin ω1t + F2sin ω2t − ξdy

dt − dU(x, y)
dy . (8)

where the phase ϕ determines whether the pattern is inward (ϕ = 0) or outward (ϕ = π) and 

where the third term represents a damping that prevents the model from drifting and allows 

it to converge to a steady state quickly. The last term in the model describes a potential 

energy landscape that can be added to model heterogeneities and which is described below.

For the case of homogeneous media (U(x, y) = 0) the model can be trivially solved and the 

parameters can be immediately determined from the tip trajectory computed using the 

spatially extended electrophysiological models. First, the frequencies ω1 and ω2 are simply 

the frequencies obtained from the power spectrum of the trajectory (Fig. 2A). The value of 

ω1 is related to the overall period of the spiral, while ω2 is the angular frequency of the 

petals in the flower patterns. Second, the amplitudes of the forcing terms, F1 and F2, are 
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determined by the overall size of the trajectory, and the size of the petals (Fig. 2B). Explicit 

expressions that relate these amplitudes to the maximum, A1, and minimum value, A2, of the 

spatial extent of the tip trajectory are given in Appendix B, along with the complete solution 

for the homogeneous case. Obviously, for circular tip patterns ω2 = 0 and F2 = 0 and the 

model contains only a single forcing term.

Using parameter values obtained as described above we find that the SP model is able to 

faithfully reproduce the tip trajectories for the homogeneous cases. This is shown in Fig. 4A 

where we plot the trajectories for the FK and KKT models (blue) along with the trajectories 

of the corresponding SP model (red). The parameters of these SP models are listed in Table 

III. To determine the parameter sensitivity of the SP results we determined the trajectories 

for a range of parameter values. These trajectories were then quantitatively compared to the 

trajectory obtained from the full model. For this, we computed the Euclidean distance d 
between the tip position of the FK model (xFK , yFK ) and of the SP model (xSP , ySP ) for 

each ms

d = xFK − xSP
2 + yFK − ySP

2 (9)

The total error was then defined as the sum of d over a full rotation of the FK model (214 ms 

for Set I, and 1080 ms points for Set II).

The results of these simulations are shown in Fig. 4B and C where we plot the error for the 

FK Set I and II models in the A1- ω1 and A2- ω2 parameter space, respectively, using a color 

coded scheme. As expected, parameter values obtained using the derived expressions result 

in trajectories that can most faithfully reproduce the results of the full model. Deviations 

from these values lead to trajectories with different periodicity and shape. An example of 

such a less-than-perfect trajectory is shown in Fig. 4D, corresponding to the parameter 

values of the white dot in Fig. 3C. Note that for Set I the graph represents the entire 

parameter space of the SP model. For Set II, on the other hand, the results are shown for 

fixed values of A1 and ω1 obtained using the explicit expressions in Appendix B and values 

listed in Table III. We have verified that the results do not change qualitatively when other 

parameter combinations are kept fixed.

We next investigated the effect of including heterogeneities in the SP model, keeping the 

forcing parameters fixed to the values determined for the homogeneous case. Circular 

heterogeneities can be incorporated in the SP model by introducing a potential energy term 

with circular symmetry and that has a local minimum at the locations of the heterogeneities. 

Here, we chose a potential of the form

U(x, y) = − g
2π exp[− x − cx1

2 + y − cy1
2

2s2 ] + exp[− x − cx2
2 + y − cy2

2

2s2 ]
(10)

In this potential, the heterogeneities are described by two Gaussian wells with circular 

symmetry that are centered at coordinates (cx1, cy1) and (cx2, cy2), respectively (Fig. 5). The 
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width of the Gaussian wells, s, determines the size of the heterogeneous region. The 

parameter g controls the depth of the wells, and therefore the strength of the heterogeneities. 

Here we report results for a value of g = 0.0022cm2/ms2 to match the dynamics of Set I and 

II, and g = 0.0088cm2/ms2 for matching the KKT spiral dynamics. Note that an exact 

mapping of the effects of heterogeneities in the full model to the potential of the SP model is 

not possible. Therefore, the trajectories of the tips in the full model will no longer match 

exactly those of the SP model. The qualitative dynamics, however, can be similar, as we will 

describe below.

We then determined whether the SP model in the presence of heterogeneities was able to 

qualitatively reproduce the FK and KKT results. Fig. 6A and B show phase diagrams and tip 

trajectories for the SP model with parameters based on Set I and II of the FK model. For 

both sets, the phase diagrams are qualitatively similar to the ones obtained using the FK 

model (Fig. 1B and D). Specifically, for small spacing, the trajectory migrates around both 

heterogeneities while for large spacing the particle migrates around one of the two 

heterogeneities. In both cases, the trajectory dynamics is regular with a Lyapunov exponent 

close to zero. For intermediate spacings, however, there is a region in parameter space for 

which the spiral tip describes an irregular pattern. In this region, the largest Lyapunov 

exponent was found to be large and positive, indicating chaotic particle trajectories. In Fig. 

3C we show the phase diagram results for the SP model with parameters corresponding to 

the KKT model. Note that contrary to the KKT model, it is computationally trivial to obtain 

this diagram. The phase diagram shows a similar structure as the phase diagram for the FK 

model with a chaotic region sandwiched between regular and periodic regions. The 

trajectories within these regions show good qualitative agreement with the ones obtained 

using the KKT model. We should point out that anisotropy can also be included into the SP 

model by modifying the forcing terms for the x and y coordinates, as shown in Appendix B. 

Since the SP model only describes the tip and not the entire spiral wave, these results show 

that the tip dynamics does not critically depend on the properties of the spiral wave arms. 

Furthermore, our results demonstrate that the existence of a chaotic region for a single spiral 

wave in the presence of heterogeneities is not dependent on the specifics of the model, but 

rather a generic property of spiral waves.

As for the case without heterogeneities, we addressed the parameter sensitivity of the SP 

model. In particular, we determined how the depth g affected the trajectories by computing 

the trajectories for different values of this parameter. The results can be seen in Fig. 6C 

where we plot the phase diagram of trajectories in the spacing-g space for s = 0.5cm. Small 

values of g correspond to minor conductance variations in the electrophysiological models 

and lead to less significant effects on the tip trajectory. As a result, the region in which the 

tip trajectory orbits both heterogeneities increases in size and no chaotic region is present. 

For large values of g, corresponding to more fully non-conducting regions, trajectories are 

increasingly trapped by the heterogeneities. Therefore, upon increasing the spacing between 

the heterogeneities, the trajectory changes abruptly from orbiting around a single 

heterogeneity to orbiting around both heterogeneities. Thus, the region of chaotic trajectories 

is only present for intermediate values of g.
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Finally, we show that these results are not limited to a pair of heterogeneities by examining 

the trajectories of the models in the presence of six, equal sized heterogeneities, randomly 

assigned to a coarse grid. For some of these configurations, the FK model displays a regular, 

periodic trajectory, as seen in Fig. 7A. This same type of trajectory, in which the tip circles 

around two heterogeneities, is also captured by the SP model, again using model parameters 

corresponding to the homogeneous case (Fig. 7B). We have verified that this correspondence 

holds for 9 out of 10 randomly selected configurations. Furthermore, for some 

configurations the FK model displays a chaotic trajectory, as determined by computing the 

Lyapunov exponents (Fig. 7C). This chaotic dynamics is also consistent with the dynamics 

obtained by the SP model for the same configuration, again demonstrating that the simple 

particle model is able to qualitatively capture the dynamics of the more complex spatially 

extended model (Fig. 7D). To determine the effect of the chaotic spiral tip trajectory on 

recordings of electrical activity, we computed the electrocardiogram (ECG) at a location 

near one of the heterogeneities [48]. As seen in the inset of Fig. 7C, the ECG is irregular, 

resembling ECGs seen during cardiac fibrillation. Importantly though, this irregular ECG is 

not due to spiral wave breakup but is solely due to the presence of a single spiral wave with a 

chaotic tip trajectory.

IV. SUMMARY

To summarize, we have demonstrated that the presence of a pair of heterogeneities is 

sufficient to change the tip trajectory of a single spiral from periodic to chaotic, 

demonstrating that spiral wave breakup is not required to generate complex and irregular 

activity. Note that, similar to the mother rotor hypothesis, this single spiral wave may drive 

further complex dynamics, including wave break [49]. We have also developed a model of 

the spiral tip trajectory with parameters that can be directly determined from tip trajectories 

obtained using spatially extended simulations. This model can accurately capture both the 

stable spiral tip trajectories observed in spatially extended homogeneous models and can 

qualitatively capture the transition from periodic to chaotic trajectories observed in 

heterogeneous models. Our results indicate that this transition is largely independent of the 

dynamics of the spiral wave arm and the type of electrophysiological model.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for 
part of this research. This work was supported by National Institutes of Health R01 HL122384.

APPENDIX A:: METHOD OF ESTIMATING LYAPUNOV EXPONENTS

As a measure of chaos for each of the spiral trajectories in the two models, the dominant 

Lyapunov exponent was estimated using a procedure developed by Wolfe et. al [40]. This 

exponent is a measure of how many bits of information are lost per second of simulation 

time and a positive value of λ indicates that the dynamics is chaotic. We used a publicly 

available Matlab version of this procedure. First, an attractor is constructed from delay 

coordinates of the time series of the tip trajectory. The Lyapunov exponent is then 

approximated by looking at two nearby points in the phase space and observing how the 

distance between them changes as the system evolves. If the separation grows past a given 
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tolerance, then a new set of points is chosen and the process is repeated. A more detailed 

description of the method can be found in both the original paper, and the documentation for 

the Matlab code.

Both 4- and 3-dimensional delay coordinates were used for calculating the dominant 

exponent, as recommended in the original paper. It was found that the results did not 

significantly vary between the two, and so all values are reported with the 4-dimensional 

delay coordinates. The time delay was set to be approximately equal to 1/3 the orbital 

period, and varies for different configurations. The tolerance level for the distance, 

determining when to stop the comparison between two points and choose a new set, is set to 

be between 10 – 15% of the spatial extent of the x-coordinate of the tip trajectory. For all 

simulations shown here, the tip position is recorded once every 5 ms, giving approximately 

20 to 50 points per orbit. The final output of the Lyapunov exponent is given in units of bits/

second. This is then an indication of how many bits of information are lost each second of 

the simulation.

APPENDIX B:: ANALYTIC SOLUTION FOR THE PARTICLE MODEL

For the specific case of homogeneous media, the equations for the SP model become 

analytically solvable.

x(t) = − e−ξt

ξ C1x + C2x + F1
ξsin ω1t + ϕ − ω1cos ω1t + ϕ

ω1 ξ2 + ω1
2

+ F2
ξsin ω2t − ω2cos ω2t

ω2 ξ2 + ω2
2 .

(11)

y(t) = − e−ξt

ξ C1y + C2y − F1
ξcos ω1t + ω1sin ω1t

ω1 ξ2 + ω1
2

− F2
ξcos ω2t + ω2sin ω2t

ω2 ξ2 + ω2
2 .

(12)

The constants C1x,y and C2x,y are determined by the initial conditions of the system. The 

parameter ϕ is equal to zero for circular and inward flower patterns, and is equal to π for the 

outward flower patterns.

The values of both angular frequencies ω1 and ω2 and forcing amplitudes F1 and F2 can be 

directly determined from the spiral tip pattern of the spatially extended models. First, the 

frequencies are found explicitly from the Fourier power spectrum of the coordinates for the 

tip trajectory, as shown in Fig. 2A. Second, explicit expressions for the forcing amplitudes 

can be derived by determining the maximum value, A1, and minimum value, A2, of r = x2 + 

y2, the spatial extent of the tip trajectory (see Fig. 2B). This results in the following 

expressions for the forcing amplitudes:

F1 = 1
2ω1 A1 + A2 ξ2 + ω1

2 (13)
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F2 = ω2 ξ2 + ω2
2 A1 − F1

ω1 ξ2 + ω1
2

. (14)

Resulting values for the SP model parameters are given in Table III.

Anisotropy can also be incorporated into the SP model. For simplicity we will only consider 

FK Set I. For this case, the tip trajectory in the presence of anisotropy becomes an ellipse 

with a long/short axis given by A1x and A1y, respectively. The amplitude of the forcing term 

in the SP model for x is now given by:

F1x = ω1A1x ξ2 + ω1
2 (15)

with a similar expression for the forcing amplitude in the y equation. Fig. 8 shows that the 

SP model can accurately capture the tip dynamics of the anisotropic FK model.
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FIG. 1. 
A, C: Snapshot of a counter-clockwise rotating spiral wave for two different parameter sets 

of the FK model (voltage color-coded ranging from high (red) to low (blue) values, tip 

trajectory shown in white, A: Set I, C: Set II). B, D: Phase diagrams in the spacing-size 

space for the FK model. In this, and all other figures, blue area indicates regular trajectories 

that wrap around both heterogeneities, purple region represents tip trajectories that circle 

either one of the heterogeneities, and yellow region corresponds to chaotic trajectories. 

Displayed spiral tip trajectories correspond to the white dots in the phase diagram. Red X’s 

mark the locations of the circular regions with decreased excitability. Lyapunov exponents 

(λ) for the chaotic trajectories are given in units of bits/second (B: Set I, D: Set II).
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FIG. 2. 
A: Power spectrum of the x-component of the tip trajectory for the different 

electrophysiological models and parameter sets used in the main text. The spectra have 

either one or two peaks, corresponding to the frequencies ω1 = 2π/T1 and ω2 = 2π/T2 (left 

panel: FK Set I, middle panel: FK Set II, right panel: KKT). B: The spiral tip trajectory for 

set II. The maximum and minimum value of the spatial extent of the tip trajectory are 

denoted by A1 and A2, respectively.
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FIG. 3. 
A: Snapshot of a counter-clockwise rotating spiral wave in the homogeneous KKT model. 

B: Sample tip trajectories of the KKT model, for different spacings of heterogeneities with 

radius 0.5cm. C: Phase diagrams of tip trajectories for the SP model. All scale bars are 1cm. 

See also Fig. 1.
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FIG. 4. 
A: Comparison between the full models (FK Set I right panel, FK Set II middle panel, and 

KKT right panel) and SP model for homogeneous media. Scale bars are 0.5cm. B, C: 

Cumulative error (measured in cm, and plotted using a color scheme) in the tip trajectory 

from the SP model for Set I (B) and II (C) as compared to the trajectory of the full model. 

The error was computed for every ms and for an entire rotation of the full model. D: 

Example of a trajectory of the SP model for the non-optimal parameters corresponding to 

the white symbol in C (A1 = 1.075 cm, A2 = 0.2 cm, ω1 = 0.0058 ms−1 , and ω2 = 0.0439 

ms−1).
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FIG. 5. 
Schematic representation of a particle moving in a potential landscape with two wells, 

representing tissue heterogeneities.
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FIG. 6. 
A, B: Phase diagrams of tip trajectories for set I (A) and set II (B) in the SP model, with tip 

trajectories and Lyapunov exponents. See also Fig. 1. C: Phase diagram for Set I, illustrating 

the effect of different well depths g. The circles correspond to the parameter values of the 

circles in (A).
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FIG. 7. 
Spiral trajectories for the FK (left column) and SP models (right column) in the presence of 

six randomly placed heterogeneities. Regular (A, B) and chaotic (C, D) trajectories with 

matching placement of the heterogeneities. The radius of the heterogeneities in the FK 

model was 0.3cm, and the s parameter in the SP model was 0.275cm. All scale bars are 1cm.
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FIG. 8. 
Example trajectories for the homogeneous (left column) and heterogeneous (right column) 

case with added anisotropy. In the FK model, the diffusion constant in the y (vertical) 

direction was chosen to be 50% of the value for the homogeneous case (i.e., Dy = 0.0005 

cm2/ms). In the SP model, the forcing amplitude in the x and y equation can be directly 

determined from the tip trajectory in the homogeneous FK model. The tip trajectories in the 

SP model capture the FK trajectories for both the homogeneous (left column) and 

heterogeneous case (right colum). Specifically, the chaotic regime is still present in both 

models. All scale bars are 1cm.
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TABLE I.

Parameters used for the Fenton Karma model simulations as shown in the main text. All time constants τ are 

in milliseconds, all voltages are in rescaled, arbitrary units. The diffusion constant has units of cm2/ms.

Parameter Set I Set II

Τv
+ 3.33 3.33

Τv1 19.6 19.6

Τv2 1000 1000

Τw
+ 50 50

Tw 11 11

Τd 0.43 0.403

Τo 8.3 8.3

Τr 50 50

Τsi 45 45

k 10 10

Vc
si 0.85 0.85

Vc 0.13 0.13

Vv 0.055 0.055

D 0.001 0.001
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TABLE II.

Parameters used for the KKT model simulations as shown in the main text. PNa was lowered to 0.001 nL/s in 

order to improve stability of the spiral wave.

Parameter Value

Nao(mM) 130.0

Cao(mM) 18.0

Ko(mM) 5.4

Cm(nF) 0.05

BNa(mM) 1.132

KdBNa(mM) 10.0

INaKmax (pA) 70.0

kNaKK (mmol/L) 1.0

kNaKNa(mmol/L) 11.0

Bca(mM) 0.024

KdBCa(mM) 2.38E-03

PNa (nL/s) 1.0E-03

Ecaapp (mV) 60

kCan 2

kCa(mM) 6.00E-04

ICaPmax(pA) 2

kCaP (mM) 5.00E-04

γ 0.45

dNaCa(mmol/L)−4 3.00E-04

Dca(μ2/s) 780

DcaSR(μ2/s) 44

DcaBm(μ2/s) 25

DNa(μ2/s) 0.12

k4(s−1) 13

kSRleak (s−1) 6.00E-03

CSQN (mM) 6.7

KdCSQN (mM) 0.8

kNaCa(pA/(mmol/L)4) 0.0084

gKs(nS) 1

gK1 (nS) 3.45

gNab(nS) 0.0606

gCab(nS) 0.0952

gif (nS) 1.0

gCaL(nS) 15.0

gt(nS) 8.25
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Parameter Value

gsus (nS) 2.25

gKr (nS) 0.50

SLlow(mM) 165.0

SLhigh(mM) 13.0

KdSLlow (mM) 1.10

KdSLhigh(mM) 13E-3

D(cm2/ms) 1.00E-03
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TABLE III.

The parameters for the SP model that reproduce the homogeneous patterns of Set I, Set II, and the KKT model 

in the main text. The forcing terms F1 and F2 can be found from A1 and A2 using the equations given above.

Pattern ξ(1/ms) F1(cm/ms2) F2(cm/ms2) A1(cm) A2 (cm) T1 (ms) T2 (ms) Ф

FK(Set I) 0.05 0.001 0.0 0.625 0.625 214 - 0

FK(Set II) 0.05 2.1E-4 1.1E-3 1.075 0.347 1080 137 0

KKT 0.05 5.4E-4 7.2E-4 1.574 0.1374 518 335 π
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