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Abstract

In a Bayesian model with proper prior, all functions of the parameters
and data are known. After observing the data, the joint prior specification
of data and parameters can be checked by comparing the posterior of any
function of the parameters to its assumed prior. This paper gives checks for
missing predictors, goodness-of-fit, and over-diffuseness of the prior. The
approach is illustrated in a hierarchical random effects model.

Key Words: Bayesian Data Analysis, Diagnostics, Goodness-of-Fit, Longitu-
dinal Data, Outlier, Quantile-Quantile Plots.

1 Introduction.

This paper introduces a general approach to Bayesian model checking. Like pre-
vious authors (Box, 1981; Chaloner and Brant 1988; Dey, Gelfand, Vlachos and
Schwarz 1994; Gelman, Meng and Stern 1996; Meng 1994; Rubin 1984), we may
consider a model suspect when some residual or checking function ¢, a function

of the data Y and/or parameters 0, is far from an appropriate measure of center,
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or out in the tails of some distribution. The art and science of Bayesian model
checking currently lies in (i) picking the diagnostic function g; (ii) the choice of rel-
evant diagnostic distribution(s) for ¢; and (iii) the definition of when the measures

indicate a lack of fit.

Zellner (1975) first proposed looking at the posterior distribution of the residu-
als and functions of the residuals in linear regression. Chaloner and Brant (1988),
and Chaloner (1991, 1994), discuss outlier checking in various models and Albert
and Chib (1996) extend these methods to discrete data. Box (1980) proposed a
special case of the methodology to be proposed here; he marginalizes the param-
eters out of the prior and permits g to be a function of the data only; Hodges
(1994) proposes similar analyses in hierarchical models. Meng (1994) and Gelman
et al (1996) permit g to be a function of both data Y and parameters 6. Gelman
et al (1996) and Dey et al (1994) give relatively complete presentations of com-
peting methodologies, but their approaches are much more complicated than the
approach here; the major differences are in the choice of distributions for com-
parison. My approach is given in the next section; it includes the methodology of
Chaloner and Brant (1988) as a special case and is more formal than the method-
ology of Zellner (1975). Section 3 gives examples of diagnostics; I propose novel
Bayesian checks for missing predictors, goodness-of-fit, and over-diffuseness of the
prior in the linear model. The methods and specific checks are applied in section

4 to a random effects model. The paper finishes with a short discussion.

2 Full Prior Predictive Model Checking

A Bayesian model specifies a joint prior distribution po(Y,#) for the data Y
and parameters 6. This also implies a prior distribution po(g) for any univari-
ate function ¢ = ¢(Y,0). After observing the data Y, we calculate a posterior
p(01Y) = po(Y,0)/po(Y), where po(Y) = [ po(Y,0)df. This induces a posterior



p(g]Y") for g. The prior completely specifies the distributional assumptions in-
volved in the analysis; if these assumptions are violated, inference from the model
is suspect. Suppose for the moment that ¢(Y,8) is fully observed at gops and de-
fine Py(g) to be the cumulative distribution function corresponding to the prior
density po(g). If gobs is in the tails of FPy(g), then doubt is cast on the model
po(Y,0). We can formalize this. Consider the classical test of the hypothesis Hy
that gobs comes from the density po(g). We might reject Hy if Po(gobs) < 9, the left
tail test where 0 < § < 1 is an appropriately chosen constant. We can similarly
handle a right tailed or two tailed test. The smallest § with which we reject Hy
is the p-value associated with the test. When ¢ is a function of 4 as well as Y, it
is not fully observed. In this case, I propose to calculate the posterior probability

of rejecting Ho.

One practical advantage of the approach just sketched is that automatically,
classical residual diagnostics for the linear model have potential use for Bayesian
model checking. Consider the linear model Y = X3 + o€, with X a known n x p
matrix; regression coefficients 3; € ~ N, (0, I'), and prior p(3), where N, (x, ) is an
n-dimensional normally distributed random variable with mean y and covariance
matrix 3. Take 0% known to fix ideas; the example in section 4 takes all variance
parameters unknown. Define e = QY /o, with @ = (I — X(X'X)™'X"); a priori
e has a known singular N (0, Q) distribution. Apparent disagreements between e

and this distribution cast doubt upon the model.

A simple but key example sheds light on the difference between this Bayesian
approach and classical residual analysis, and why Bayesian analysis improves on
the older classical analysis. Consider the i element e; of e. When ¢; is far from
its prior mean of zero, doubt is cast upon the model. This has traditionally been
taken as evidence that the it" observation y; is outlying. However, since e¢; = Q'Y,

where Q; is the ith column of @Q, is a linear combination of the y vector, actually



it is evidence that the linear combination, Q'Y and not necessarily y;, is outlying.
This distinction is particularly important when the leverage h; = x}{(X'X) ™'z, of

the it observation is large.

A Bayesian approach for checking the i*" case for outlyingness was given by
Chaloner and Brant (1988). To check for outlyingness, interest actually lies in ¢;,
not e;. A posteriori, ¢;|c ~ N(e;, h;); for high leverage points, this distribution has
a large variance, and we are uncertain as to the exact value of ¢; and we can’t tell
if case 7 is outlying. Chaloner and Brant’s outlier diagnostic P(|e;| > z1_5/2]Y)
falls directly in the current framework. It can be interpreted as the posterior
probability of rejecting the null hypothesis that ¢; has prior mean zero at a level ¢,
where z1_s/5 is the 1 — /2 quantile of a standard normal. The Bayesian approach
potentially permits classification of cases into not outlying, outlying, and can’t
tell classes, corresponding respectively to |e| known small, |¢| known large, and h;

large.

3 Three Diagnostic Measures.

This section illustrates three novel Bayesian diagnostic measures which are spe-
cific applications of the methodology developed so far. Possibly due to a lack
of practical experience, priors in Bayesian practice are often quite diffuse if not
actually improper; subsection 3.1 presents a check for over-diffuseness. The sec-
ond diagnostic is for the situation when model misspecification is suspected but
details are unknown. In this situation, a lack of fit statistic may be useful, and I
propose a Bayesian lack of fit check. The third is for when a known covariate has
been omitted and we wish to check for the usefulness of adding the covariate to
the model. For this section, the model is the linear model of the previous section;

I take p(3) as N(fBo,02A) and continue to condition on ¢ to fix ideas.



3.1 Over-diffuseness of the Prior

A common conjugate prior for the p regression coefficients is 3|c? ~ N (8o, a*A).

A priori given o?

Qp = (8= Bo) A~ (B = Bo)/o® ~ X*(p)

Often the eigenvalues of A are taken to be larger than is actually believed, so as to
lead to “a conservative inference”, or alternately, an inference dominated by the
data. However when the eigenvalues of A are overly large, a posteriori, ()5 will
be approximately zero, and a posteriori, P(Qs < x*(p,d)|Y") will be suspiciously
large, even for § quite small, where \*(p;§) is the § quantile of a chi-square
random variable with p degrees of freedom. This suggests that the prior is too
diffuse. Another possibility is that the prior mean By or A may have been derived
from the data; for example 3y might be chosen to be equal to the posterior mean
of # given a flat prior. In either case the prior is not a representation of true
prior belief. An alternative problem is that the prior may have been derived from
incorrect information; if P(Qp > x*(p,1 — §)|Y) is large again for small §, then
the prior is refuted by the data.

3.2 Goodness of Fit

Goodness-of-fit statistics assess the fit between the model and data. Poor fit
should leave the model with too many outliers; an overfitted model may exhibit
too few outliers. Define 1{|¢;| > 21_s/2}, the indicator function that |¢;| is greater
than z_s/5; traditional choices are 6 = .05 or .01. Define

n

o(6) =Y el > z1-5p2} -

i=1

If ¢ were fully observed, ¢s is the number of outliers at the |z;5/,| level. A priori,

@(9) is distributed Binomial(n,d). A posteriori, ¢s has support on 0,...,n. If



the posterior distribution of ¢s is on values that had large prior support, then
no lack of fit is found by the statistic. If the posterior probability is partially on
implausible values a priori, then there is some probability of lack of fit. Finally,
if the posterior is entirely on implausible values, then lack of fit is definitely
identified. For example, if the posterior probability is high that &(§) > nd +
z1-5,(nd(1 — %VVH\N for suitable choice of §, such as .05 or .01, the model does not
fit the data. If a posteriori, ¢(8) < nd — zy_5,(nd(1 — §))"/?, we might say that
the model over-fits the data. In practice we can investigate the entire posterior

p(p(0)]Y), as a simple table can display the entire prior and posterior.

The statistic ¢(d) is an omnibus statistic capable of responding to many dif-
ferent potential model failures; it is non-specific and may therefore presumably
exhibit moderate ability to detect any one of a wide range of problems. In con-
trast, if a specific model failure is suspected, then a targeted diagnostic will likely
have much greater ability to identify such problems. Examples are the previous
prior diffuseness diagnostic or the diagnostics in the next subsection for omitted

predictors.

3.3 Omitted Predictors

Let W be a known n by r matrix with columns W;; W represents a set of covariates
not in the regression model. To see if W; could be a useful addition to the model,
it would be helpful to plot W, directly against e¢. Since we cannot, we plot W;
against samples from the posterior distribution of e. Dynamic graphics makes
this relatively easy. We then summarize the plots qualitatively after viewing

many plots or numerically through use of a summary statistic.

A numerical summary of the plot is v; = AS\MS\QAVL\NS\MQ a priori distributed
N(0,1). Then ~; is a function of Y, 3, and o suitable for testing whether ¢

and W; are linearly correlated. Since «; is a function of the parameters as well



as Y, it has a posterior distribution ~;|Y,0* ~ N(m;,V;) based on the prior
Blo? ~ N(fBo,c?A) from subsection 3.1 where

WY — Xp)
AR

with 3 = E[3|Y] and

WEX(X'X + A7 X W,
WIW; .

V=

We can investigate p(v;|Y) through appropriate posterior summaries. One sum-
mary borrowed from Chaloner and Brant (1988) is the probability ¢(W;, z1_s5/2) =
P(|v;| > #1-5/2|Y). The cutoff value z,_s5/, comes from the N(0,1) prior dis-
tribution of v;. This is the posterior probability of rejecting the two sided test
for Hy : v; = 05 alternatively, (W, z1_5/2) is the posterior probability that the
vector € is outlying in Euclidian n-space in the direction of W;. When W, = «,,
the coordinate indicator vector of the i*! case, q(W;, z1_52) is the Chaloner and

Brant (1988) posterior probability E[1{|¢;| > z1_s/2}|Y].

When the prior for 3 is flat, A=! = 0, then E[y;]Y] = S\MQM\AQNS\MS\EL\N
is proportional to the classical test statistic AQNS\MQS\QAVL\NAS\MQM\V for testing
the coefficient of W, equal to zero in the regression ¥V = X3 + W,a +e¢e. If
X(X'X)"'X'W,; = W;, we have v,;]Y ~ N(0,1), the posterior is the same as the
prior, and the data do not tell us about whether W, is correlated with e. When
WIX =0, then v; = E[y;|Y, 0% = AQNS\MS\&L\NS\U\“ there is no uncertainty in
our posterior estimate of the test statistic, and we reject Hy at the level § that a

priori v; is N(0,1) if |v;| = _AQNS\MS\EL\NS\U\_ > 21-5/2-

Sometimes we have more than one predictor W, we wish to explore for adding
to the model. For example, W5 might be the element-wise square of Wy; or W
could include all interactions amongst variables already in the model. In this

case we can explore the posterior distribution of v = (W'W)"'W'e. A simple



summary of this distribution is v*(W*W )~ which is distributed a priori as a chi-
square random variable with r degrees of freedom. We can summarize further
using P(e'W(W'W)™'Whe > x*(r;1 —4)|Y). If the rows of W are a permutation
of a r by r identity matrix and an n —r by r matrix of zeros, then we are checking

for a r-variate outlier.

4 Weight Loss Data.

Here I illustrate the proposed diagnostics in a hierarchical random effects model
(REM) of a repeated measures (RM) weight loss data set. Four different models

will be considered and compared.

4.1 The Model and Notation

The basic RM REM is

Yi = Xia+ZiBi+¢
¢ ~ N(0,0°1),

for i = 1,...,n; where Y; = (yi,...,%in,)" is the n; by 1 vector of repeated
measurements on subject i taken at times t; = (¢;1,...,tm,)"; Xi, ni by p, and 7,
n; by ¢ are matrices of known covariates; « is a p by 1 parameter vector of fixed
effects; (3; is a ¢ by 1 parameter vector of random effects with ¢ < p. Except to

illustrate the prior diffuseness diagnostic, a flat prior p(a, o?, D) o 1 is used.

The Gibbs sampler (Gelfand, Hills, Racine-Poon, and Smith 1990; Zeger and
Karim 1991; Gilks, Wang, Yvonnet, and Coursaget 1993) permits straightforward
Markov chain Monte Carlo sampling from the posterior of the parameters § =

(e, B1,. .., B0, D,0?) given the data. I assume that samples 0) ¢ = 1,... L are



available from p(A]Y'). Define ¢ = (€l, ..., €. )? the vector of residuals; then ¢ is a

single sample from p(¢|Y’). Calculations are based on Gibbs samples of sizes 1000

or 2000.

4.2 Data Description.

The data set contains up to 8 weekly observations per person at times t; = 1
through t;3 = 8 on n = 38 women enrolled in a diet study. Some measurements
are missing for a total of 265 individual observations. Initial plots (not shown)
of the raw data suggested a random intercept model was appropriate. Model 1
has X; = Z; both a vector of n; ones. Analysis from this random intercept model
showed the need for an additional fixed slope. Model 2 has Z; as in model 1,
but X; has two columns, a column of ones and a column ¢;. Analysis of model 2
suggested the need for a random slope. Model 3 has X; = 7Z; with X; the same as
in model 2. Finally, analysis of model 3 shows the population mean at each time
does not follow a linear trend, so the final model, model 4, has Z; as in model
3, but there are 8 parameters in «, so that each week has a different population
mean. To summarize, model 1 has p = 1, models 2 and 3 have p = 2, and model

4 has p = 8; models 1 and 2 have ¢ = 1, and models 3 and 4 have ¢ = 2.

4.3 Over-Diffuseness of the Prior

Consider a prior for the fixed effects a where a|a?, D is distributed N(ug,o?V),
with V' possibly a function of D. Our test statistic for over-diffuseness of the
prior is Q, = o *(a — o)V~ (a — po), with prior distribution, given o* and
D, that is x? with p degrees of freedom. Since the prior conditional distribution
doesn’t depend upon o2 or D, the prior distribution unconditional on 2 and D
is also x*(p). A possible prior for a in model 4 is o ~ N(ug,0?V) with uf =
(200,0,0,0,0,0,0,0) and V is diagonal with initial element 10000 and remaining



7 diagonal elements 1000. The parameterization of & = («;) has «; the population
mean at time 1, and for j = 2,...,8, ¢; is the difference in population mean value
at time 5 minus that at time 1. The posterior mean of a from model 4, based on
the flat prior, rounded to the nearest pound is (193,1, -2, —5,—6,—5, —6, —8)7,
with posterior standard deviations ranging from .4 to 1.3 pounds. The posterior
probability that @, < x*(8,.01) is 1.0, suggesting that either the prior is overly
diffuse, or that the prior was chosen using the data. Changing the prior mean
to 0 for «y, and increasing the variance of the first term to 100000 also gives

P(Q. < x*(8,.01)|Y) = 1.0, again suggesting an unreasonable prior.

4.4 Goodness of Fit Checks

There are several ways to extend the goodness-of-fit check to multivariate hier-
archical data, because there are several different ways to identify outliers. We
can consider goodness-of-fit based on R;; = Y;; — X;a based on a marginal model
derived from (1) by integrating out the (; from the model or we can investigate
the hierarchies separately by investigating the ¢;; residuals and the 3;; residuals.
It seems preferable to consider the €’s and (3’s separately to permit targeted re-
mediation in case of discovered problems, so I don’t consider the R;; further. We
can treat the residuals as either univariate or multivariate residuals. Define the

following sums of outlier indicator statistics

Pe(6) = MuMU:_m&_ > 0z1_5/2}
=1 5=1
Gou(8) = D UHIBal > Dif*z1sp2}
=1
U.(8) = > Hee > a’x*(n;, 1 —0)}
=1

Us(d) = D HBDTB > x*(q.1-d)},

=1

10
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p
1
2
3
4

0
1424
.0055
.0045
0175
.0155

.6826
.2464
1924
3333
ST713

S oo ok o

0
.6826
0
0
018
.019

1
.2848
7506
7521
5243
3228

.2620
7521
.8061
5612
5257

013

1
.2620
.003
.081
.052
364

2
2773
.1464
1299
BT73
4098

.0490
.0015
.0015
.0960
.0975

2773

.001
078
164

2
.0490
.036
263
.650
477

3
1751
.0620
.0695
.2064
1989

.0059

.0095
.0050

1751
.019
.009
285
502

3
.0059
639
222
234
124

p(¥5(.05)[Y)

4
.0807
.0330
.0360
.0645
.0475

5
.0289
.0015
.0050
.0070
.0040

p(¥s(OD)]Y)

4

.00053  3.6e-05

.0005

5

p(Ye(05)[Y)

4
.0807
610
.093
284
279

5
.0289
309
585
209
162

p(¥e(01)[Y)

4
.0005
305
329
.041
014

5

3.6e-05

017
.099
.005
.002

6 7
.0084 .0020
.0010
.0030
.0030
.0010 .0005

6 7

2.0e-06  9.2e-08

6 7
.0084 .0020
.054 .007
.255 .050
.096 .034
071 .009

6 7

2.0e-06  9.2e-08

.006

8+
.0005

8+
3.7e-09

8+
.0005
.001

.007

013

8+
3.7e-09

Table 1: Goodness of fit statistics. The symbol p indicates the prior distribution
of the number of outliers, rows beginning 1, 2, 3, or 4 are posterior distributions
of the number of outliers conditional on that model. The 3 and ¢ posteriors are
based on Gibbs samples of size 2000 and 1000 respectively.

11



where Dy, is the kM diagonal element of D, and § is the probability content
in the tail where an observation is declared an outlier. The ¢ statistics treat
the ¢’s and 3’s univariately, and the U’s treat them multivariately. If ¢ = 1
then ¢51(8) = Ws(d). Each of these statistics leads to a different goodness of fit
statistic. The multivariate W.(§) and Wz(d) get at the multivariate relationships
among the ¢ or # in a way that the univariate ¢3(d) and ¢.(4) do not.

All of the goodness of fit statistics were calculated for § = .01 and § = .05
for all four models. The first two sections of Table 1 check for an excess of
multivariate 3 outliers at § = .05 and é = .01. The row labeled p gives the prior
probability mass function of the number of outliers; this is calculated using the
binomial(n = 38,7 = §) distribution, with § = .05 or .01. For example with
& = .01, the prior probability of zero, one or two 3 outliers is .6826, .2620, and
.0490 respectively. We see that models 1 and 2 have most of their probability
mass on either zero or at most one 3 outlier. Models 3 and 4 have approximately
10% chance of having 2 outliers, but still have almost 90% of their probability
on either zero or one 3 outliers. The number of outliers is not unusual, and we
do not flag the (3’s as exhibiting any lack of fit. Other goodness of fit statistics

involving the (3’s were similar in not showing any lack of fit.

The second two sections of table 1 check for an excess of multivariate € outliers,
also at tail areas § = .05 and é = .01. Inspection of W.(.05) suggests that there
are somewhat more ¢ outliers than expected a priori, especially for models 1
and 2, with model 2 being slightly worse than model 1. The results for W (.01)
are clearer; the number of outliers appears to be largest with model 1 and least
with model 4. For model 1, the prior probability of three or more outliers is less
than 1%, while the posterior probability is over 95%. For model 2 it is still 65%
while for models 3 and 4 the percentage drops to 28% and 14% respectively of

three or more outliers. This suggests substantial lack of fit for model 1 that is

12



improved as we move from model 1 to model 4, but there may still be some lack
of fit even in model 4. Because the mean structure is as general as this data
structure is capable of supporting, any inappropriateness in the model must be in
the covariance structure or in the choice of the normal distribution. A reasonable
further expansion of the model would be to a general covariance structure from

the random effects model.

FEach goodness of fit statistic has a quantile-quantile (QQ) plot associated
with it. For example, for &.(§), we could draw a single sample ¢‘/o(¥ and
look at a QQ plot against quantiles of the normal distribution. Since this is
only a single sample, we would take several samples, and construct several QQQ
plots. For Wg(§), we can either investigate a x*(¢) QQ plot of samples from
the posterior of A@S%AUQJL@S“ or we can transform to normality by plotting
elﬁuxfﬁmwsvxbgVL@SVVV against quantiles of the normal distribution, where
®~1(-) is the inverse cumulative distribution function (cdf) of the standard normal
distribution and F\z2 , is the cdf for the x? distribution with ¢ degrees of freedom.
For W.(4), we also map to the standard normal but replace the ¢ degrees of free-

dom by n; degrees of freedom. Thus we plot ordered values of ®~'(F\2 , (ele;/a?)))

against order statistics from a standard normal distribution.

Figure la shows a representative QQ plot of 3;/D'/? for model 1. Since g = 1
for model 1 and 2. In figure la, we see a possible single outlier at the upper
right of the plot. Figure 1b is also a single representative of several plots. We see
that the transformed efe/a? appear to have several very large outliers making up
for a host of generally too small outliers at the bottom left. Recall that before
transformation, the points at the bottom left of figure 1b corresponded to x?*(n;)
quantiles near zero. We see that the observations are not distributed like a N(0, 1),

and thus, that the model does not fit.

13



4.5 Missing Fixed Effects Predictors

Here we consider diagnostics to check for particular missing univariate predictors.
Let U; be a vector the same length as e. For the weight loss study, I consider
four predictors; the first Uy = (¢1,...,t,)" is the vector of times that individual
observations are taken. To get the second, third and fourth predictors, consider
the elementwise square U7, cube U} and fourth power U} of Uy; let Ul = U; and
define U° be the vector of ones. Regress Qw for 3 = 1,2,3,4 on all lower order
powers of U;. Define W; to be the residuals from each of these four regressions
standardized to have length 1. Then W/W; =1, and W/ W; = 0 if ;' # j and the
W, are an orthonormal basis of a four dimensional subspace of 265 dimensional
Euclidean space. If ¢/o is a sample from a N(0, 1), then the ; = Wie/o should
also behave like a single draw from a N(0,1). If W; is in the span of the columns of
X = (Xi,..., X])!, then approximately,a posteriori, we might expect S\wmQL ~
N(0,1), and the posterior expected value of ¢'W;Wte should be approximately

one and the posterior probability that the contrast is an outlier should be equal

to the prior probability.

I then calculated the posterior distributions of v;, for all four models, where
J = 1,2,3,4 represent the linear through quartic effects respectively. Effects
through the quartic in time were chosen because prior information about the
design and additional graphical diagnostics not shown here suggested that a quar-
tic effect might reasonably be anticipated. Table 2 summarizes the results. For
model 1, the linear contrast was an enormous outlier, with ¢(W1,3) = 1, and a
posterior expected mean square E[¢'W(W!'W)~'W'e|Y] of 108.2. This indicates
that model 1 is missing a linear time fixed effect and that the effect is quite large.
As expected, for models 2, 3, and 4, the posterior probabilities are approximately
equal to the prior probabilities that the linear effect is an outlier. In contrast,
the quartic effect contrast is a strong outlier for models 1, 2, and 3. After remov-

ing the linear trends from the residual, the W5 contrast is a moderate outlier for

14



effect model mean

square ¢(W;,2) q(W;,3)

linear
1 108.2 1 1
2 .95 .038 .002
3 1.00 .049 .002
4 1.05 .057 .004
quadratic
1 3.82 .362 0
2 5.71 987 0
3 9.54 999 .h82
4 .96 .044 .002
cubic
1 .64 0 0
2 1.43 0 0
3 2.21 .010 0
4 91 031 .002
quartic
1 14.8 1 1
2 28.73 1 1
3 47.79 1 1
4 .99 .050 .005

Table 2: Checks for needed polynomial effects. The first column indicates an effect
linear, quadratic, cubic or quartic in time. The second column indicates model 1,
2, 3, or 4. The mean square is E[(W'e)*/(0?)|Y], which should be approximately 1
if W, has already been included in the model, and approximately x*(1) if the model
is well specified and W; is orthogonal to any predictors in the model. The next

two columns are g(W;,2) = P(|W'¢| > 20|Y") and ¢(W;,3) = P(|W'| > 3c]Y).

15



model 2 and more so for model 3; only for model 4 is it not an outlier. The cubic

effect is apparently not an outlier for any model.

5 Discussion

With the current approach, any function of the parameters and data can be used
to check the model. The challenge is to choose useful functions for model checking.
With our approach, classical residual checks and hypothesis tests with asymptotic
but no exact results are approximate Bayes checks and tests, but now these asymp-
totic results have a small sample distribution with which the asymptotic results

can be compared.
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Figure Caption
Figure 1. (a) A QQ plot of 3;/D'/? for model 1. (b) A QQ plot of the transformed

multivariate ele/o? residuals.
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