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RESEARCH ARTICLE
Gene networks and pathways for plasma lipid traits via
multitissue multiomics systems analysis
Montgomery Blencowe1,2,‡ , In Sook Ahn1,‡, Zara Saleem1, Helen Luk1, Ingrid Cely1,
Ville-Petteri Mäkinen1,3, Yuqi Zhao1,* , and Xia Yang1,2,4,*
1Department of Integrative Biology and Physiology and 2Molecular, Cellular, and Integrative Physiology Interdepartmental
Program, University of California, Los Angeles, Los Angeles, CA, USA; 3South Australian Health and Medical Research
Institute, Adelaide, Australia; and 4Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los
Angeles, CA, USA
Abstract Genome-wide association studies (GWASs)
have implicated �380 genetic loci for plasma lipid
regulation. However, these loci only explain 17–27%
of the trait variance, and a comprehensive under-
standing of the molecular mechanisms has not been
achieved. In this study, we utilized an integrative
genomics approach leveraging diverse genomic data
from human populations to investigate whether ge-
netic variants associated with various plasma lipid
traits, namely, total cholesterol, high and low density
lipoprotein cholesterol (HDL and LDL), and tri-
glycerides, from GWASs were concentrated on spe-
cific parts of tissue-specific gene regulatory
networks. In addition to the expected lipid meta-
bolism pathways, gene subnetworks involved in
“interferon signaling,” “autoimmune/immune acti-
vation,” “visual transduction,” and “protein catabo-
lism” were significantly associated with all lipid
traits. In addition, we detected trait-specific sub-
networks, including cadherin-associated subnetworks
for LDL; glutathione metabolism for HDL; valine,
leucine, and isoleucine biosynthesis for total choles-
terol; and insulin signaling and complement path-
ways for triglyceride. Finally, by using gene-gene
relations revealed by tissue-specific gene regulatory
networks, we detected both known (e.g., APOH, APOA4,
and ABCA1) and novel (e.g., F2 in adipose tissue) key
regulator genes in these lipid-associated subnetworks.
Knockdown of the F2 gene (coagulation factor II,
thrombin) in 3T3-L1 and C3H10T1/2 adipocytes
altered gene expression of Abcb11, Apoa5, Apof, Fabp1,
Lipc, and Cd36; reduced intracellular adipocyte lipid
content; and increased extracellular lipid content,
supporting a link between adipose thrombin and
lipid regulation. Our results shed light on the
complex mechanisms underlying lipid metabolism
and highlight potential novel targets for lipid regu-
lation and lipid-associated diseases.
This article contains supplemental data.
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Lipid metabolism is vital for organisms as it provides
energy as well as essential materials such as membrane
components and signaling molecules for basic cellular
functions. Lipid dysregulation is closely related to many
complex human diseases, such as atherosclerotic car-
diovascular disease (CVD) (1), Alzheimer's disease (2, 3),
type 2 diabetes (T2D) (4), and cancers (5). The notion of
targeting lipid metabolism to treat human diseases has
been reinforced by the fact that many disease-
associated genes and drug targets (e.g., HMGCR as the
target of statins and PPARA as the target of fibrates) are
involved in lipid metabolic pathways (6–8).

Accumulating evidence supports that plasma lipids
are complex phenotypes influenced by both environ-
mental and genetic factors (9, 10). Heritability estimates
for main plasma lipids are high [e.g., �70% for low
density lipoprotein cholesterol (LDL) and �55% for
high density lipoprotein cholesterol (HDL)] (11), indi-
cating that DNA sequence variation plays an important
role in explaining the interindividual variability in
plasma lipid levels. Indeed, genome-wide association
studies (GWASs) have pinpointed a total of 386 genetic
loci, captured in the form of single nucleotide poly-
morphisms (SNPs) associated with lipid phenotypes
(12–16). For example, the most recent GWAS on lipid
levels identified 118 loci that had not previously been
associated with lipid levels in humans, revealing a
daunting genetic complexity of blood lipid traits (16).

However, there are several critical issues that cannot
be easily addressed by traditional GWAS analysis. First,
even very large GWAS may lack statistical power to
identify SNPs with small effect sizes and as a result the
most significant loci only explain a limited proportion
of the genetic heritability, for example, 17.2–27.1% for
lipid traits (17). Second, the functional consequences of
the genetic variants and the causal genes underlying
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Fig. 1. Overall design of the study. The statistical framework can be divided into four main parts, including Marker Set Enrichment
Analysis (MSEA), merging and trimming of gene sets, Key Driver Analysis (KDA), and validation of the key drivers (KD) using
in vitro testing.
the significant genetic loci are often unclear and await
elucidation. To facilitate functional characterization of
the genetic variants, genetics of gene expression studies
(18, 19) and the ENCODE efforts (20) have documented
tissue- or cell-specific expression quantitative trait loci
(eQTLs) and functional elements of the human
genome. These studies provide the much-needed
bridge between genetic polymorphisms and their po-
tential molecular targets. Third, the molecular mecha-
nisms that transmit the genetic perturbations to
complex traits or diseases, that is, the cascades of mo-
lecular events through which numerous genetic loci
exert their effects on a given phenotype, remain
elusive. Biological pathways that capture functionally
related genes involved in molecular signaling cascades
and metabolic reactions and gene regulatory networks
formed by regulators and their downstream genes can
elucidate the functional organization of an organism
and provide mechanistic insights (21). Indeed, various
pathway- and network-based approaches to analyzing
GWAS datasets have been developed (18, 22–24) and
demonstrated to be powerful to capture both the
2 J. Lipid Res. (2021) 62 100019
missing heritability and the molecular mechanisms of
many human diseases or quantitative phenotypes
(18, 23, 25, 26). For these reasons, integrating genetic
signals of blood lipids with multitissue multiomics
datasets that carry important functional information
may provide a better understanding of the molecular
mechanisms responsible for lipid regulation as well as
the associated human diseases.

In this study, we apply an integrative genomics
framework to identify important regulatory genes,
biological pathways, and gene subnetworks in relevant
tissues that contribute to the regulation of four critical
blood lipid traits, namely, total cholesterol (TC), HDL,
LDL, and triglyceride (TG). We combine the GWAS
results from the Global Lipids Genetics Consortium
(GLGC) with functional genomics data from a number
of tissue-specific eQTLs and the ENCODE project, and
gene-gene relationship information from biological
pathways and data-driven gene network studies. The
integrative framework comprises four main parts
(Fig. 1): 1) Marker Set Enrichment Analysis (MSEA)
where GWAS, functional genome, and pathways or



coregulated genes are integrated to identify lipid-
related functional units of genes, 2) merging and
trimming of identified lipid gene sets, 3) key driver
analysis (KDA) to pinpoint important regulatory genes
by further integrating gene regulatory networks, and 4)
validation of key regulators using genetic perturbation
experiments and in silico evidence. This integrated
systems biology approach enables us to derive a
comprehensive view of the complex and novel mech-
anisms underlying plasma lipid metabolism.
MATERIALS AND METHODS

GWAS of lipid traits
The experimental design, genotyping, and association an-

alyses of HDL, LDL, TC, and TG were described previously
(12). The dataset used in this study comprises >100,000 in-
dividuals of European descent (sample size 100,184 for TC,
95,454 for LDL, 99,900 for HDL, and 96,598 for TG), ascer-
tained in the United States, Europe, or Australia. More than
906,600 SNPs were genotyped using Affymetrix Genome-
Wide Human SNP Array 6.0. Imputation was further car-
ried out to obtain information for up to 2.6 million SNPs
using the HapMap CEU (Utah residents with ancestry from
northern and western Europe) panel. SNPs with minor allele
frequency (MAF) <1% were removed. Finally, a total of �2.6
million SNPs tested for association with each of the four lipid
traits were used in our study.

Genetic association study of lipid traits using
MetaboChip

The experimental design, genotyping, and association an-
alyses of the lipid MetaboChip study were described previ-
ously (15). The study examined subjects of European ancestry,
including 93,982 individuals from 37 studies genotyped with
the MetaboChip array, comprising 196,710 SNPs representing
candidate loci for cardiometabolic diseases. There was limited
overlap between the individuals involved in GWAS and those
in MetaboChip.

Knowledge-based biological pathways
We included canonical pathways from the Reactome

(version 45), Biocarta, and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases (27, 28). In addition to the
curated pathways, we constructed four positive control path-
ways based on known lipid-associated loci (P < 5.0 × 10−8) and
candidate genes from the GWAS Catalog (29). These gene sets
were based on 4, 11, 13, and 13 studies for TC, TG, LDL, and
HDL, respectively (full lists of genes in each positive control
sets are in supplemental Table S1), and serve as positive con-
trols to validate our computational method.

Data-driven modules of coexpressed genes
Beside the canonical pathways, we used coexpression

modules that were derived from a collection of genomics
studies (supplemental Table S2) of liver, adipose tissue, human
aortic endothelial cells (HAECs), brain, blood, kidney, and
muscle (30–39). A total of 2,706 coexpression modules were
used in this study. Although liver and adipose tissue are likely
the most important tissues for lipid regulation, we included
the other tissue networks to confirm whether known tissue
types for lipids could be objectively detected and whether any
additional tissue types are also important for lipids.
Mapping SNPs to genes
Three different mapping methods were used in this study

to link SNPs to their potential target genes.

Chromosomal distance-based mapping. First, we used a standard
distance-based approach where a SNP was mapped to a gene
if within 50 kb of the respective gene region. The use of ± 50
kb to define gene boundaries is commonly used in GWAS.

eQTL-based mapping. The expression levels of genes can be
seen also as quantitative traits in GWAS. Hence, it is possible
to determine eQTLs and the expression SNPs (eSNPs) within
the eQTLs that provide a functionally motivated mapping
from SNPs to genes. Moreover, the eSNPs within the eQTL
are specific to the tissue where the gene expression was
measured and can therefore provide mechanistic clues
regarding the tissue of action when intersected with lipid-
associated SNPs. Results from eQTL studies in human adi-
pose tissue, liver, brain, blood, and HAEC were used in this
study (30, 32–34, 38–45). We included both cis-eSNPs (within
1 Mb distance from gene region) and trans-eSNPs (beyond
1 Mb from gene region), at a false discovery rate (FDR) <10%.

ENCODE-based mapping. In addition to the eQTLs and
distance-based SNP-gene mapping approaches, we integrated
functional data sets from the Regulome database (20), which
annotates SNPs in regulatory elements in the Homo sapiens
genome based on the results from the ENCODE studies (46).

Nine unique combinations of SNP-gene mapping. Using the
above three mapping approaches, we derived nine unique sets
of SNP-gene mapping. These are: eSNP adipose, eSNP liver,
eSNP blood, eSNP brain, eSNP HAEC, eSNP all (i.e., combining
all the tissue-specific eSNPs above); Distance (chromosomal
distance-based mapping); Regulome (ENCODE-based map-
ping); and Combined (combining all the above methods).
Removal of SNPs in linkage disequilibrium
We observed a high degree of linkage disequilibrium (LD)

in the eQTL, Regulome, and distance-based SNPs, and this LD
structure may cause artifacts and biases in the downstream
analysis. For this reason, we devised an algorithm to remove
SNPs in LD while preferentially keeping those with a strong
statistical association with lipid traits. Technical details are
available in supplementary methods. We chose an LD cutoff
(R2 < 0.5) to remove redundant SNPs in high LD.
Marker Set Enrichment Analysis
We applied a modified MSEA method (24, 47) to find

pathways/coexpressed modules associated with lipid traits
(supplemental methods). FDRs were estimated with the
method by Benjamini and Hochberg (48). Pathways or coex-
pression modules with a FDR < 10% were considered
statistically significant. MSEA was applied to both the GLGC
GWAS dataset and the MetaboChip dataset. The combined
FDR from these two datasets was expected to be <1% (10% ×
10% = 1%).
Systems regulation of plasma lipids 3



Comparison between MSEA and other
computational methods

To ensure that the pathway results from MSEA are
reproducible, we used the improved gene-set-enrichment
analysis (iGSEA) approach (49). In the iGSEA analysis, we
generated gene sets using the same canonical pathways and
coexpression modules in MSEA. The SNPs were mapped to
genes using the default settings of iGSEA. For each given
gene set, significance proportion-based enrichment score
was calculated to estimate the enrichment of genotype-
phenotype association. Then, iGSEA performed label per-
mutations to calculate nominal P-values to assess the sig-
nificance of the pathway-based enrichment score and FDR
to correct multiple testing, with a FDR < 25% (default
setting) regarded as significant pathways. Considering that
MSEA and iGSEA were independent, the combined FDR
from these two methods of analysis was expected to be <5%
(10% × 25% = 2.5%).
Construction of independent supersets and
confirmation of lipid association

Because the pathways or coexpression modules were
collected from multiple sources, there were overlapping or
nested structures among the gene sets. To make the results
more meaningful, we constructed relatively independent
supersets that captured the core genes from groups
of redundant pathways and coexpression modules
(supplemental methods). After merging, we annotated each
superset based on function enrichment analysis of the known
pathways from the Gene Ontology and KEGG databases (P <
0.05 in Fisher's exact test after Bonferroni correction). The
supersets were given a second round of MSEA to confirm
their significance associated with lipids using P < 0.05 after
Bonferroni correction as the cutoff.
Key driver analysis
We adopted a previously developed KDA algorithm

(50–52) of gene-gene interaction networks to the lipid-
associated supersets in order to identify the key regulatory
genes (Fig. 1). In the study, we included Bayesian gene reg-
ulatory networks from diverse tissues, including adipose
tissue, liver, blood, brain, kidney, and muscle (30–38). A key
driver (KD) was defined as a gene that is directionally con-
nected to a large number of genes from a lipid superset,
compared with the expected number for a randomly
selected gene within the Bayesian network (details in
supplemental methods). The MSEA, merging, and KDA were
performed using R.
Enrichment analysis of lipid-associated
subnetworks in human complex diseases

We collected disease susceptibility genes from the GWAS
Catalog with GWAS P < 10E-5 for four human complex
diseases, including CVD [“myocardial infarction,” “myocar-
dial infarction (early onset),” “coronary artery calcification,”
and “coronary heart disease”], Alzheimer's disease, T2D, and
cancer (“colon cancer,” “breast cancer,” “pancreas cancer,”
“prostate cancer,” and “chronic lymphocytic leukemia”).
Fisher's exact test was used to explore the enrichment of
genes in the lipid-associated subnetworks in the disease gene
sets. Bonferroni-corrected P < 0.05 was considered
significant.
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Validation of F2 in adipocyte functions via F2 siRNA
transfection in 3T3-L1 and C3H10T1/2 adipocyte cell
lines

The mouse preadipocytes 3T3-L1 and C3H10T1/2 cells
were obtained from ATCC and maintained and differenti-
ated to adipocytes according to the manufacturer's instruc-
tion. For knockdown experiments, three predesigned siRNAs
targeting F2 gene (sequences in supplemental Table S3; Gen-
ePharma, Paramount, CA) were tested and the most effective
one was selected for the experiment (supplemental Fig. S1).
We first measured F2 expression during adipocyte differen-
tiation and found increased F2 expression on days 8–10 in
3T3-L1 and days 6–10 in C3H10T1/2 during differentiation,
which helped inform on the timing of siRNA transfection in
these cell lines. 3T3-L1 adipocytes were transfected with
50 nM of F2 siRNA using Lipofectamin 2000 on day 7 (D7) of
differentiation, a day before F2 increase. Followed by 72 h of
siRNA treatment, adipocytes were processed for Oil red O
staining of lipids and Real-time qPCR for select genes.
C3H10T1/2 adipocytes were transfected with 50 nM of F2
siRNA using Lipofectamin 2000 on day 5 (D5) and day 7 (D7),
and adipocytes were processed on day 9 (D9) for Oil red O
staining of lipids, real-time qPCR for select genes, and quan-
titative lipid assays. As control, 50 nM of scrambled siRNA
(GenePharma) was transfected at the same time points as the
F2 siRNA in the two cell lines. To determine changes in lipid
accumulation, adipocytes were stained by Oil red O stain so-
lution. After obtaining images, Oil red O was eluted in iso-
propyl alcohol and absorbance values were measured at
490 nm.
RNA extraction and real-time qPCR
Total RNA was extracted from the adipocytes (Zymo

Research, Irvine, CA), and RNA was reverse transcribed using
cDNA Reverse Transcription Kit (Thermo Scientific, Madi-
son, WI), real-time qPCR for select network and nonnetwork
genes was performed using the primers shown in
supplemental Table S3. Each reaction mixture (20 μl) is
composed of PowerUp SYBR Green Master Mix (Applied
Biosystems), 0.5 μM each primer, and cDNA (150 ng for F2
gene, 20–50 ng for the other genes). Each sample was tested in
duplicate under the following amplification conditions: 95◦C
for 2 min, and then 40 cycles of 95◦C for 1 s and 60◦C for 30 s
in QuantStudio 3 Real-Time PCR System (Applied Biosystems,
Foster City, CA). PCR primers were designed using the
Primer-BLAST tool available from the NCBI web site (53).
Melt curve was checked to confirm the specificity of the
amplified product. Relative quantification was calculated us-
ing the 2 ˆ (−ΔΔ CT) method (54). Beta-actin was used as an
endogenous control gene to evaluate the gene expression
levels. All data are presented as the mean ± SEM of n = 4/
group. Statistical significance was determined by two-tailed
Student's t-test and values were considered statistically sig-
nificant at P < 0.05.
Extraction and quantification of lipids in cells and
media

Lipids were extracted from C3H10T1/2 cells and culture
media using the Folch method (55) with minor modifications.
Briefly, whole culture medium (1 ml) from each well of a 12-
well plate was collected in a separate tube. Cells were washed
with phosphate buffered saline (PBS) and collected in 1 ml
PBS and homogenized. The media or cell homogenate was



TABLE 1. Common pathways shared by the four lipid traits in SNP set enrichment analysis

Categories Descriptions

Traitsa

MetaboChip iGSEAHDL LDL TC TG

Positive controls Positive control gene set for TG 1,2,3,5,6,7,8,9 2,3,5,6,7,8,9 2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes
Positive control gene set for LDL 5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes
Positive control gene set for TC 3,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes
Positive control gene set for HDL 1,2,3,4,5,6,7,8,9 2,6,7,8,9 2,5,6,7,8,9 1,2,5,6,7,8,9 Yes Yes

Lipid metabolism Lipoprotein metabolism 1,2,5,6,7,8,9 5,6,7,8,9 5,6,7,8,9 5,6,7,8,9 Yes Yes
Chylomicron-mediated lipid
transport

5,6,7,8,9 7,8,9 5,6,7,8,9 5,6,7,8,9 Yes Yes

LDL-mediated lipid transport 6,7,9 6,7,9 6,7,9 6,7,9 No Yes
HDL-mediated lipid transport 1,2,5,6,7,8,9 5,7,8,9 5,7,8,9 5,7,8,9 Yes Yes

Protein catabolism ER-phagosome pathway 1,5,8,9 1,3,5,6,8,9 1,2,3,5,6,8,9 1,3,5,6,8,9 Yes Yes
Antigen processing and
presentation

5,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes

Interferon signaling Interferon signaling 7,9 1,3,5,6,8,9 1,2,3,5,6,8,9 1,3,5,8 Yes Yes
Autoimmune/immune
activation

Type I diabetes mellitus 1,5 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes
Scavenging by class B receptors 6,7,8,9 7,9 7,9 7,9 No Yes
Asthma 6 1,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes
IL 5 signaling pathway 5 1,5,6,8,9 1,5,6,8,9 5,6,8 No No
Th1/Th2 differentiation 3 1,3,5,6,8 1,3,5,6,8,9 1,3,5,6,8 No Yes
Natural killer cell-mediated
cytotoxicity

5 1,3,5 1,3,5,6,9 1,3,5 Yes Yes

HLA genes 1,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes
Cell adhesion molecules (CAMs) 5 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,3,5,6,8,9 Yes No
Autoimmune thyroid disease 1,3,5,6,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 Yes Yes

Visual transduction Diseases associated with visual
transduction

7 7,8,9 7,8,9 7,9 Yes Yes

Visual phototransduction 7 7,8,9 7,8,9 7,9 Yes Yes

aThe Traits columns represent in which methods the MSEA of the pathways is significant with FDR < 10%. Numbers 1–9 represent
adipose eSNP (1), blood eSNP (2), brain eSNP (3), human aortic endothelial cells (HAEC) eSNP (4), liver eSNP (5), all eSNP (6), distance (7),
regulome (8), and combined (9), respectively. The MetaboChip and iGSEA columns tell whether the gene set can also be detected as statis-
tically significant in the analysis.
mixed in 5 ml of chloroform:methanol (2:1, vol/vol) by
shaking vigorously several times and centrifuged at 2,500 g
for 15 min. The bottom organic layer was transferred to a new
glass tube. The remaining aqueous phase and interphase
including the soluble protein were mixed with 5 ml chloro-
form by vigorous shaking, followed by centrifugation at 2,500
g for 15 min. The bottom organic layer was combined with the
first collected organic layer. The combined organic phase was
evaporated using nitrogen, and then the dried lipids were
resuspended in 0.5% Triton X-100 in water. Samples were
stored in −80◦C until lipid analysis. TG, TC, unesterified
cholesterol (UC), and phospholipid levels in lipid extractions
from cells and from culture media were measured separately
using a colorimetric assay at the UCLA GTM Mouse Transfer
Core (56). Intracellular lipids were normalized to the cellular
protein amount measured by BCA protein assay kit (Pierce,
Rockford, IL). Extracellular lipids are presented as lipid
quantity in 1 ml of collected media.

RESULTS

Identification of pathways and gene coexpression
modules associated with lipid traits

To asses biological pathway enrichment for the four
lipid traits with GLGC GWAS, we curated a total of
4,532 gene sets including 2,705 tissue-specific coex-
pression modules (i.e., highly coregulated genes based
on tissue gene expression data) and 1,827 canonical
pathways from Reactome, Biocarta and KEGG. These
gene sets were constructed as data- and knowledge-
driven functional units of genes. Four predefined
positive control gene sets for HDL, LDL, TC, and TG
were also created based on candidate genes curated
from the GWAS catalog (57). To map potential func-
tional SNPs to genes in each gene set, tissue-specific
eQTLs, ENCODE functional genomics information,
and chromosomal distance-based mapping were used
(details in Methods). Tissue-specific eQTL sets were
obtained from the GTEx database from studies on
human adipose tissue, liver, brain, blood, and HAECs,
and a total of nine SNP-gene mapping methods were
created. The liver and adipose tissues have established
roles in lipid regulation, whereas the other tissues are
included for comparison.

On integration of the datasets mentioned above us-
ing MSEA, we identified 65, 86, 90, and 92 gene sets
whose functional genetic polymorphisms showed sig-
nificant association with HDL, LDL, TC, and TG,
respectively, in GLGC GWAS (FDR < 10%;
supplemental Table S4). The predefined positive con-
trols for the four lipid traits were among the top signals
for their corresponding traits (Table 1), indicating that
our MSEA method is sensitive in detecting true lipid
trait-associated processes. Compared with other tissues,
more pathways were captured when using liver and
adipose eSNPs to map GWAS SNPs to genes
(supplemental Table S4). For example, 56 of the 86
LDL-associated pathways were found when liver and
adipose eSNPs were used in our analysis. These results
confirmed the general notion that liver and adipose
Systems regulation of plasma lipids 5



TABLE 2. Trait-specific pathways identified in the SNP set enrichment analysis for four lipid traits

Traits Modules Descriptions Methodsa

HDL rctm0846 Packaging of telomere ends 1
Haec:M1b (Cholesterol biosynthesis) 9
M12882 Taurine and hypotaurine metabolism 1,5
rctm0060 Activation of genes by ATF4 9
rctm0216 Cation-coupled chloride cotransporters 7,8,9
rctm0697 Metabolism of water-soluble vitamins and cofactors 5
Cerebellum:M1b (Alcohol metabolism) 3
Cerebellum:M2b 3
rctm0507 Glutathione synthesis and recycling 5
Liver:M1b (Transition metal ion homeostasis) 2,9
rctm0937 RIG-I/MDA5-mediated induction of IFN-alpha/beta pathways 7,8,9
rctm0772 Negative regulators of RIG-I/MDA5 signaling 7,8,9
rctm0255 Cobalamin (Cbl, vitamin B12) transport and metabolism 1,5
M15902 Glycerolipid metabolism 6,7,9
rctm1178 Striated muscle contraction 9
rctm0696 Metabolism of vitamins and cofactors 5

LDL Haec:M2b (Positive regulation of cellular metabolism) 3
Liver:M2b (Cadherin) 6
Cerebellum:M3b (Immunity and defense) 8
M6831 The citric acid cycle 6
rctm0876 Platelet sensitization by LDL 7,9

TC M17946 Valine, leucine, and isoleucine biosynthesis 1,6,9
PC:M1b (Chaperone) 3
Cerebellum:M4b (Response to wounding) 9
Adipose:M1b 8
Omental:M1b 3
rctm1111 Signal transduction by L1 3

TG rctm1276 Tight junction interactions 1,6,8,9
rctm0589 Initial triggering of complement 1
rctm0235 Cholesterol biosynthesis 2
M18155 Insulin signaling pathway 1
Blood:M1b (Carbohydrate metabolism) 1,6
rctm0225 Cell-cell junction organization 1,6,8
Blood:M3b (Transferase activity, transferring glycosyl groups) 1
M7146 Classical complement pathway 1
rctm0059 Activation of gene expression by SREBP (SREBF) 2
M917 Complement pathway 1
M5872 Steroid biosynthesis 2
Omental:M2b (Hemopoietic or lymphoid organ development) 8
M2164 Leukocyte transendothelial migration 1

PC, prefrontal cortex.
aThe method column represents in which methods the MSEA of the pathways is significant with FDR < 10%. Numbers 1–9 represent:

adipose eSNP (1), blood eSNP (2), brain eSNP (3), human aortic endothelial cells (HAEC) eSNP (4), liver eSNP (5), all eSNP (6), distance (7),
regulome (8), and combined (9), respectively.

bCoexpression modules. The statistically overrepresented Gene Ontologies satisfying P < 0.01 in Fisher's exact test after Benjamini-
Hochberg correction within the modules are listed in the parentheses.
tissue play critical roles in regulating plasma lipids,
leading us to focus the bulk of our analysis on these two
tissues, with the remaining tissues serving as a
supplement.

Among the significant gene sets, 39 were shared
across the four lipid traits. These gene sets represented
the expected lipid metabolic pathways as well as those
that are less known to be associated with lipids, such as
“antigen processing and presentation,” “cell adhesion
molecules,” “visual phototransduction,” and “IL-5
signaling pathway” (summary in Table 1; details in
supplemental Table S4). We broadly classified the
common gene sets detected into “positive controls,”
“lipid metabolism,” “interferon signaling,” “autoim-
mune/immune activation,” “visual transduction,” and
“protein catabolism” (Table 1).

Beside the common gene sets described above, we also
detected 18, 5, 6, and 17 trait-specific pathways/modules
for HDL, LDL, TC, and TG, respectively (Table 2;
6 J. Lipid Res. (2021) 62 100019
supplement Table S4), suggesting trait-specific regula-
tory mechanisms. Among the 18 pathways for HDL were
“cation-coupled chloride transporters,” “glycerolipid
metabolism,” and “negative regulators of RIG-I/MDA5
signaling” across analyses using different tissue eSNP
mapping methods; “alcohol metabolism” from brain-
based analysis; “packaging of telomere ends” in adipose
tissue; “glutathione metabolism” in liver; and “cobalamin
metabolism” and “taurine and hypotaurine metabolism”

in both adipose and liver-based analyses. LDL-specific
pathways included the “platelet sensitization by LDL”
pathway and a liver coexpression module related to
cadherin. TC-specific pathways included “valine, leucine,
and isoleucine biosynthesis” across tissues and “wound
healing” in the brain-based analysis. When looking at the
TG-specific pathways, gene sets associated with “cellular
junctions”were consistent across tissues, whereas “insulin
signaling” and complement pathways were exclusively
seen in adipose tissue-based analysis.



TABLE 3. Supersets shared by four lipid traits and key driver genes

Supersets
No. of
Genes

Methodsa

Top Adipose KDs Top Liver KDsHDL LDL TC TG

Lipid metabolism 793 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 APOH, ABCB11, F2, ALB,
APOA5, APOC4, DMGDH,
SERPINC1, APOF, HADHB,
ETFDH, KLKB1

HMGS1, FDFT1,
FADS1, DHCR7,
ACAT2, ACSS2

Protein catabolism 253 1,3,4,5,6,7,8,9 1,3,5,6 1,3,5,6,9 1,3,5,6,8 PSMB9 PSMB9
Interferon
signaling

171 1,3,5,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,7,8,9 1,2,3,5,6,8,9 NUP210 MX1, ISG15, MX2,
IFI44, EPSTI1

Autoimmune/
immune activation

152 1,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 HLA-DMB, HCK, SYK,
CD86

HLA-DMB, CCL5,
HLA-DQA1

Visual
transduction

86 7,9 7,8,9 7,8,9 7,8,9 - -

aThe method column represents in which methods the MSEA of the pathways is significant with Bonferroni-adjusted P < 0.05. Numbers
1–9 represent: adipose eSNP (1), blood eSNP (2), brain eSNP (3), human aortic endothelial cells (HAEC) eSNP (4), liver eSNP (5), all eSNP (6),
distance (7), regulome (8), and combined (9), respectively.
Replication of lipid-associated pathways using
additional dataset and method

To replicate our results from the analysis of GLGC
GWAS datasets, we utilized an additional lipid genetic
association dataset based on a MetaboChip lipid asso-
ciation study (15), which involved individuals indepen-
dent of those included in GLGC. The gene sets detected
using this independent dataset highly overlapped with
those from the GLGC dataset (Table 1; supplemental
Fig. S2; overlapping P values < 10−20 by Fisher's exact
test). We also utilized a different pathway analysis
method iGSEA (49) and again many of the gene sets
were found to be reproducible (Table 1; supplemental
Fig. S2; overlapping P values < 10−20).

Construction of nonoverlapping gene supersets for
lipid traits

As the knowledge-based pathways and data-driven
coexpression modules used in our analysis can
converge on similar functional gene units, some of the
lipid-associated gene sets have redundancies. We
therefore merged overlapping pathways to derive in-
dependent, nonoverlapping gene sets-associated lipid
traits. For the 39 shared pathways/coexpression mod-
ules across the four lipid traits described earlier, we
merged and functionally categorized them into five
independent supersets (Table 1; Table 3). For the sig-
nificant gene sets for each lipid trait, we merged them
into 17, 16, 18, and 14 supersets for HDL, LDL, TC, and
TG, respectively (Table 3; supplemental Table S5), and
confirmed that the merged supersets still showed sig-
nificant association with the corresponding lipid traits
in a second round of MSEA (P < 0.05 after Bonferroni
correction for the number of supersets tested; Table 3).

Identification of central regulatory genes in the
lipid-associated supersets

Subsequently, we performed a KDA (Fig. 1) to iden-
tify potential regulatory genes or KDs that may regu-
late genes associated with each lipid trait using Bayesian
networks constructed from genetic and gene
expression datasets of multiple tissues (detailed in
Methods; full KD list in supplemental Table S6). The
top adipose and liver KDs for the shared supersets of all
four lipid traits and the representative Bayesian sub-
networks are shown in Fig. 2.

In adipose tissue (Fig. 2A), the top KDs for the “lipid
metabolism” subnetwork include well-known lipopro-
teins and ATP-binding cassette (ABC) family members
that are responsible for lipid transport, such as APOF,
APOA5, and ABCB11. We also found several KDs that are
less known to be associated with lipid metabolism,
particularly F2 (coagulation factor II or thrombin). For
the autoimmune/immune activation subnetwork, CD86,
HCK, and HLA-DMB were identified as KDs. PSMB9 was
a KD for the protein catabolism subnetwork, whereas
NUP210 is central for the interferon signaling subnet-
work. Moreover, the SYK gene is a shared KD between
lipid metabolism and autoimmune/immune activation.

In the liver (Fig. 2B), the top KDs for the lipid
metabolism subnetwork are enzymes involved in lipid
and cholesterol biosynthesis and metabolism, such as
FADS1 (fatty acid desaturase 1), FDFT1 (farnesyl-diphos-
phate farnesyltransferase 1), HMGCS1 (3-hydroxy-
3-methylglutaryl-CoA synthase 1), and DHCR7
(7-dehydrocholesterol reductase). We also identified
more KDs for the interferon signaling subnetwork in
the liver compared with the adipose tissue, with MX1,
MX2, ISG15, IFI44, and EPSTI1 being central to the sub-
network. Similar to the adipose network, PSMB9 and
HLA-DMB were also identified as KDs for protein
catabolism and autoimmune/immune activation sub-
networks in liver, respectively. We did not detect KD
genes for the visual transduction subnetwork in either
tissue, possibly because the networks of liver and adi-
pose tissues did not capture gene-gene interactions
important for this subnetwork.

In addition to the KDs for the subnetworks shared
across lipid traits as discussed above, we identified
tissue-specific KDs for individual lipid traits
(supplemental Table S6). In adipose, PANK1 and H2B
histone family members were specific for the HDL
Systems regulation of plasma lipids 7



Fig. 2. Common KDs and their neighboring genes in the shared lipid-associated subnetworks. A: Adipose KDs and subnetworks. B:
Liver KDs and subnetworks. The subnetworks shared by HDL, LDL, TC, and TG are depicted by different colors according to the
difference in their functional categories. Nodes are the KDs and their adjacent regulatory partner genes, with KDs depicted as
square nodes and their gene symbols labeled in red letters. Only network edges that were present in at least two independent network
studies were included. The node size corresponds to the GWAS significance.
subnetworks (Fig. 3A); HIPK2 and FAU were top KDs for
the LDL subnetworks (Fig. 3B); genes associated with
blood coagulation such as KNG1 and FGL1 were KDs for
8 J. Lipid Res. (2021) 62 100019
the TC and TG subnetworks (Fig. 3C, D). Of interest,
genes related to insulin resistance, PPARG and FASN,
were KDs for both the HDL and TG subnetworks.



Fig. 3. Adipose KDs and subnetworks for each lipid trait. Panels (A)–(D) represent HDL, LDL, TC, and TG subnetworks. Nodes are
the KDs and their adjacent regulatory partner genes, with KDs depicted as larger nodes. Different colors indicate genes involved in
different pathways.
Similarly, trait-specific KDs and subnetworks were also
detected in the liver; 37 KDs were identified for the TG
subnetwork including ALDH3B1 and ORM2, whereas
AHSG, FETUB, ITIH1, HP, and SERPINC1 were KDs found
in the LDL subnetwork. We note that most of the KDs
are themselves not necessarily GWAS hits but are sur-
rounded by significant GWAS genes. For example,
gene F2 is centered by many GWAS hits in the adipose
subnetwork (APOA4, APOC3, APOA5, LIPC, etc.; Fig. 2;
supplemental Fig. S3). The observation of GWAS hits
being peripheral nodes in the network is consistent with
previous findings from our group and others (24,
58–62) and again supports that important regulators
may not necessarily harbor common variations owing
to evolutionary constraints.

Experimental validation of F2 KD subnetworks in
3T3-L1 and C3H10T1/2 adipocytes

Taking into account that the F2 gene is surrounded
by various significant GWAS hits within its subnetwork,
we aimed to validate the role of the F2 gene subnetwork
in lipid regulation through siRNA-mediated knock-
down experiments in two adipocyte cell lines (3T3-L1
and C3H10T1/2) to ensure reproducibility and robust-
ness of our results. We found that F2 gene expression
was low in preadipocytes for both cell lines but grad-
ually increased during adipogenesis. In fully differen-
tiated adipocytes between day 8 and day 10, the F2 gene
expression level was higher than in preadipocytes by 12-
fold and sixfold for 3T3-L1 and C3H10T1/2 lines,
respectively (Fig. 4A, B). When treated with F2 siRNA,
both adipocyte cell lines showed a significant decrease
(P < 0.01) in lipid accumulation based on Oil red O
staining, as compared with controls treated with
scrambled siRNA (Fig. 4C, D). Subsequently, we tested
the effect of F2 gene siRNA knockdown on 10 neigh-
bors of the F2 gene in the adipose network (selected
from Fig. 2A). With 60% knockdown efficiency of F2
siRNA in the 3T3-L1 adipocytes, seven F2 network
neighbors (Abcb11, Apoa5, Apof, Fabp1, Lipc, Gc, and Proc)
exhibited significant changes in expression levels
(Fig. 4E). With 74% knockdown efficiency of F2 in
C3H10T1/2 adipocytes, six F2 network neighbors
(Abcb11, Apoa5, Apof, Fabp1, Lipc, and Plg) showed signifi-
cant changes in expression levels (Fig. 4F). Several of
these genes are involved in lipoprotein transport and
Systems regulation of plasma lipids 9
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Fig. 4. Validation of F2's predicted subnetwork and regulatory role in adipocytes. A, B: Time course of F2 expression during
adipocyte differentiation in 3T3-L1 cells (A) and C3H10T1/2 cells (B). D-2, D0, D2, D3, D4, D6, D8, D10 indicate 2 days before initiation
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10 J. Lipid Res. (2021) 62 100019



fatty acid uptake. In contrast, none of the four negative
controls (random genes not in the F2 network neigh-
borhood) showed significant changes in their expres-
sion levels for the 3T3-L1 cell line. However, one
negative control gene (Snrpb2) did change in the
C3H10T1/2 cell line. These results overall support our
computational predictions on the structures of F2 gene
subnetworks.

Next, we measured the expression levels of genes
related to adipogenesis (Pparg, Cepba, Srepb1, Fasn), lipol-
ysis (Lipe), fatty acid transport (Cd36, Fabp4), and other
adipokines following F2 siRNA treatment. We found no
change in the expression of most of the tested genes,
with the exception of Fasn (in C3H10T1/2), important in
the formation of long-chain fatty acids, and Cd36 (in
both 3T3-L1 and C3H10T1/2), which encodes fatty acid
translocase facilitating fatty acid uptake. Cd36 expres-
sion was decreased by 15% in 3T3-L1 cells (Fig. 4G) and
35% in C3H10T1/2 cells (Fig. 4H) (P < 0.05), and Fasn
expression was decreased by 25% (Fig. 4H) (P < 0.01) in
C3H10T1/2 cells compared with control. The decreases
in Cd36 and Fasn after F2 knockdown suggest that fatty
acid synthesis and uptake by adipocytes are compro-
mised, which could contribute to alterations in circu-
lating lipid levels.

We subsequently measured the lipid contents within
the cells and in the media of C3H10T1/2 adipocytes.
Following F2 siRNA treatment, we found significant
decreases in the total intracellular lipid levels (cTotal
Lipid), total cholesterol (cTC), and unesterified choles-
terol (cUC), as well as a nonsignificant trend for
decreased triglycerides (cTG) (Fig. 4I). By contrast, in
the culture media, there were significant increases in
the total lipid levels (mTotal Lipid) and triglycerides
(mTG) following F2 siRNA treatment (Fig. 4J). These
results support that F2 knockdown led to decreased
intracellular lipids and increased extracellular lipids,
agreeing with the overall decreased expression of F2
network neighbor genes involved in lipid transport and
uptake.

The association between the lipid subnetworks and
human diseases

Epidemiological studies consistently show that
plasma lipids are closely associated with human com-
plex diseases. For example, high TC and LDL levels are
associated with an increased risk of CVD. Here, we
examined the association between the lipid sub-
networks identified in our study and four human
complex diseases, namely, Alzheimer's disease, CVD,
adipokine/adipogenesis-related genes in 3T3-L1 (G) and in C3H10T
normalized to beta-actin. The fold changes were relative to scram
files: total lipid, triglyceride (TG), total cholesterol (TC), unesterified
and in media (J). Total Lipid was estimated using the sum of the fou
normalized to total cellular protein quantity. Extracellular lipids p
media. Sample size n = 6/group. Results represent mean ± SEM. Sta
(*P < 0.05 and **P < 0.01).
T2D, and cancer (Materials and Methods). We found
that the gene supersets identified for each lipid traits
were significantly enriched for GWAS candidate genes
reported by GWAS catalog for the four diseases at
Bonferroni-corrected P < 0.05 (Fig. 5; supplemental
Table S7). The superset lipid metabolism, which was
shared across lipid traits, was associated with Alz-
heimer's disease and CVD. When trait-specific sub-
networks were considered, those associated with TC,
LDL, and TG had more supersets associated with CVD
compared with those associated with HDL, a finding
consistent with recent reports (15, 63, 64). In addition,
supersets of each lipid trait, except HDL, were also
found to be significantly associated with cancer,
whereas supersets associated with HDL, LDL, and TG,
but not TC, were linked to T2D.
DISCUSSION

To gain comprehensive insights into the molecular
mechanisms of lipid traits that are important for
numerous common complex diseases, we leveraged the
large volume of genomic datasets and performed a
data-driven multiomics study combining genetic asso-
ciation signals from large lipid GWASs, tissue-specific
eQTLs, ENCODE functional data, known biological
pathways, and gene regulatory networks. We identified
diverse sets of biological processes, guided by their
tissue-specific gene-gene interactions, to be associated
with individual lipid traits or shared across lipid traits.
Many of the lipid-associated gene sets were signifi-
cantly linked to multiple complex diseases including
CVD, T2D, cancer, and Alzheimer's disease. More
importantly, we elucidated tissue-specific gene-gene
interactions among the gene sets and identified both
well-characterized and novel KDs for these lipid-
associated processes. We further experimentally vali-
dated a novel adipose lipid regulator, F2, in two
different adipocyte cell lines. Our results offer new
insight into the molecular regulation of lipid meta-
bolism, which would not have been possible without the
systematic integration of diverse genetic and genomic
datasets.

We identified shared pathways associated with all
four lipid traits, including lipid metabolism and auto-
immune/immune activation, which have been consis-
tently linked to lipid phenotypes, as well as additional
pathways such as interferon signaling, protein catabo-
lism, and visual transduction. Interferon factors have
previously been linked to lipid storage attenuation and
1/2 (H). Gene expression levels were determined by RT-qPCR,
bled siRNA control. Sample size n = 4/group. I, J: Lipid pro-
cholesterol (UC), and phospholipid (PL) in C3H10T1/2 cells (I)
r lipids (TG, TC, UC, PL). Intracellular lipids plotted in (I) were
lotted in (J) are presented as lipid quantity in 1 ml of collected
tistical significance was determined by two-sided Student's t-test
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Fig. 5. The associations between lipid-associated supersets and human complex diseases. The edges represent the associations
between supersets for the specific lipid classes matched by color and diseases (P value < 0.05; Fisher exact test with Bonferroni
correction). AD, Alzheimer's disease; CVD, cardiovascular diseases; T2D, type 2 diabetes.
differentiation in human adipocytes (65). Protein
catabolism has only recently been identified to be
important in regulating lipid metabolism through the
PSMD9 protein, which had no previously known func-
tion but was shown to cause significant alterations in
lipid abundance in both a gain of function and loss of
function study in mice (66). The visual transduction
superset contains retinol-binding proteins, which are
carrier proteins involved retinol transport, and play key
roles in gene expression regulation and developmental
processes (67). Visual transduction also shares lipopro-
tein genes with lipid metabolism, suggesting that
retinol-related signal transduction is intimately linked
to lipoprotein transport and hence plasma lipid levels.

Furthermore, our results indicate that the trait-
specific supersets are tissue specific. For example,
most TG-specific pathways were found to be significant
when adipose eSNPs were used, and complement and
insulin signaling pathways in the adipose tissue were
specific for TG. This is in line with adipose tissue
functioning as the major storage site for TG and the
regulatory role of immune system and insulin signaling
in adipocyte functions and fat storage (68). We also
found five HDL-specific pathways, most of which are
associated with glucose, lipid, and amino acid meta-
bolism and were signals derived from liver eSNPs. As
HDL acts as the major vehicle for transporting choles-
terol to the liver for excretion and catabolism, the
critical role of the liver as well as the connections be-
tween major metabolic pathways in HDL regulation is
recapitulated by our analysis. Of interest, the TC-
specific pathways can be found only when brain
eSNPs are used. The brain accounts for 2% of body
12 J. Lipid Res. (2021) 62 100019
weight, whereas it contains 23% of TC in the body (69),
and dysregulated cholesterol trafficking appears to be
involved in the pathogenesis of neurodegenerative
diseases, such as Parkinson's and Alzheimer's disease
(70). These tissue- and trait-specific pathways or pro-
cesses support the unique features of each lipid species
and point to tissue-specific targeting strategies to
modulate levels of individual lipid traits and the asso-
ciated diseases.

In addition to detecting trait- and tissue-specific
causal pathways for the lipid traits, our study attemp-
ted to delineate the interactions between lipid genes
and pathways through gene network analysis. Indeed,
the tissue-specific gene networks revealed in our study
highlight the regulatory connections between lipid
genes and pathways and thus put individual genes in a
broader context. The identification of KDs in a
network is essential for uncovering key regulatory
components and for identifying drug targets and bio-
markers for complex diseases (24, 71). Here, we adopted
data-driven Bayesian gene regulatory networks that
combine various genomic data (50) to detect the central
genes in plasma lipid regulation. The power of this
data-driven objective approach has been demonstrated
recently (24, 51, 60, 61, 72, 73) and is again supported in
this study by the fact that many KDs detected are
known regulators for lipids or have served as effective
drug targets based on the DrugBank database (74). For
instance, for the shared lipid metabolism subnetwork,
four top KDs (ACAT2, ACSS2, DHCR7, and FADS1) are
targeted by at least one US Food and Drug
Administration-approved anticholesteremic drug.
Another KD, HMGCS1, is a rate-limiting enzyme of



cholesterol synthesis, and is considered a promising
drug target in lipid-associated metabolic disorders (75).
These lines of evidence lead us to speculate that the
other less-studied KDs are also important for lipid
regulation.

Among the top network KDs predicted, several,
including F2, KLKB1, and ANXA4, are involved in blood
coagulation. A previous study revealed that poly-
morphisms in the anticoagulation genes modify the
efficacy of statins in reducing the risk of cardiovascular
events (76), which in itself is not surprising. However,
the intimate relationship between a coagulation gene F2
and lipid regulation predicted by our analysis is
intriguing (Fig. 4). We found that the partner genes in
the adipose F2 subnetwork tend to be differentially
expressed after F2 knockdown in both 3T3-L1 and
C3H10T1/2 adipocytes, with several of the altered genes
(Apoa5, Apof, Abcb11, Fabp1, Fasn, and Cd36) closely asso-
ciated with cholesterol and fatty acid transport and
uptake. We further observed that F2 knockdown affects
lipid storage in adipocytes, with a decrease in the
intracellular lipid content and an increase in the
extracellular lipid content in the media. Of interest, the
F2 expression level is low in preadipocytes and only
increases during the late phase of adipocyte differen-
tiation. Our findings support a largely untapped role of
F2 in lipid transport and storage in adipocytes and
provide a novel target in the F2 gene.

In addition to the shared KDs such as F2 for different
lipids, itmay also be of value to focus on the trait-specific
KDs as numerous studies have revealed that these lipid
phenotypes play different roles inmanyhumandiseases.
For example, LDL and TC are important risk factors for
CVD (77) and TG has been linked to T2D (78), whereas
the role of HDL in CVD has been controversial (79). We
detected 37 genes as TG-specific KDs in liver regulatory
subnetworks. Among these, CP (ceruloplasmin) and
ALDH3B1 (aldehyde dehydrogenase 3 family, member
B1) were clinically confirmed to be associated with T2D
(80, 81) whereas most of the other genes such as DHODH
andANXA4were less known to be associatedwithTGand
thus may serve as novel targets. In adipose tissue, genes
important for insulin resistance and diabetes such as
PPARG and FASN were found to be KDs for TG, further
supporting the connection between TG and diabetes. In
addition, FASN has been implicated as a KD in numerous
studies for nonalcoholic fatty liver disease (62, 73, 82),
again highlighting the importance of this gene in com-
mon metabolic disorders.

We acknowledge some potential limitations to our
study. First, the GWAS datasets utilized are not the most
recently conducted and therefore provide the possi-
bility of not capturing the full array of unknown
biology. However, despite this, our results are consistent
with the biology found more recently including over-
lapping signals in pathways for chylomicron-mediated
lipid transport and lipoprotein metabolism (83) as well
as more novel findings such as visual transduction
pathways. In addition, one of our KDs KLKB1, which
was not found to be a GWAS hit in the dataset we
utilized, has since been found to pass the genome-wide
significance threshold in more recent larger GWASs
and is a hit on apolipoprotein A-IV concentrations,
which is a major component of HDL and chylomicron
particles important in reverse cholesterol transport (84).
This further exemplifies the robustness of our inte-
grative network approach to find key genes important
to disease pathogenesis even when smaller GWASs
were utilized.

In summary, we used an integrative genomics
framework to leverage a multitude of genetic and
genomic datasets from human studies to unravel the
underlying regulatory processes involved in lipid phe-
notypes. We not only detected shared processes and
gene regulatory networks among different lipid traits
but also provide comprehensive insight into trait-
specific pathways and networks. The results suggest
there are both shared and distinct mechanisms under-
lying very closely related lipid phenotypes. The tissue-
specific networks and KDs identified in our study
shed light on the molecular mechanisms involved in
lipid homeostasis. If validated in additional population
genetic and mechanistic studies, these molecular pro-
cesses and genes can be used as novel targets for the
treatment of lipid-associated disorders such as CVD,
T2D, Alzheimer's disease, and cancers.
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