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Abstract

Theory and Applications of Pull-Back Operator Methods in Dynamical Systems

by

Allan Manrique Avila

During the 1930s, researchers realized that an abstract dynamical system induces a

group of linear operators acting on the space of square-integrable functions. For measure-

preserving systems, the induced operator is unitary and self-adjoint. As such, its spectrum

is restricted to the unit circle and has been shown to encode many important statistical

and geometric properties of the dynamical system. Since then, the induced Koopman

group of operators’ spectral properties have drawn an immense amount of research interest

over the last decade. Due to the rise of computing capabilities and data availability, there

has been an explosive amount of research into developing data-driven algorithms that can

compute the spectrum numerically from data.

In the first part of this dissertation, we demonstrate how Koopman operator methods

can offer a model-free, data-driven approach to analyze and forecast highway traffic

dynamics. By obtaining a decomposition of data sets collected by the Federal Highway

Administration and the California Department of Transportation, we can reconstruct

observed data, distinguish any growing or decaying patterns, and obtain a hierarchy of

previously identified and never before identified spatiotemporal patterns. Furthermore,

it is demonstrated how this methodology can be utilized to forecast highway network

conditions. The developed forecasting scheme readily generalizes to the much-needed

scenario of multi-lane highway networks without any loss to its performance or efficiency.

Also, we do not rely on large historical training data nor parameter tuning or selection.

Thereby providing a completely efficient and accurate method of analyzing and forecasting
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traffic patterns at the levels required by modern intelligent transportation systems.

In the second part of this dissertation, we consider the equivalent induced linear

operators acting on the space of sections of the tangent, cotangent, and tensor bundles of

the state space. We begin by first demonstrating how these operators are indeed natural

generalizations of Koopman operators acting on functions. The fundamental insight lies in

understanding the connection between the differential geometric concept of pulling back

objects (functions, vector fields, covector fields, tensor fields) under a diffeomorphism and

how their pull-back relates to the Lie derivative of that object. We then draw connections

between the various operators’ spectrum and characterize the algebraic and differential

topological properties of their spectrum. We describe these operators’ discrete spectrum

for linear dynamical systems and derive spectral type expansions for linear vector fields.

The expansions derived resemble the familiar spectral expansion of functions under the

Koopman operator. We define the notion of an "eigendistribution" and provide conditions

for when an eigendistribution is integrable. We then demonstrate how to recover the

foliations arising from their integral manifolds via the level sets of Koopman eigenfunctions.

Many of the results presented in the second part of this dissertation stem from well-known

differential geometric concepts. Prior work on such generalized operators on vector fields

exists but has remained mostly unnoticed by the growing Koopman operator community.

We conclude with an application to differential geometry where the well-known fact

that the flows of commuting vector fields commute is generalized. Specifically, we show

that the flows of two vector fields commute, subject to an appropriate rescaling of the

flow time, if and only if one vector field is an eigensection of the other vector field. The

eigenvalue prescribes the required time scaling, and we recover the original statement that

the flows of commuting vector fields commute as a particular case of our result. We also

apply our results to the study of a hyperbolic toral automorphism known as Arnold’s Cat

map. We demonstrate that the Lyapunov exponents are contained within the spectrum

viii



of the induced operator on vector fields, and we recover the stable and unstable foliations

via the level sets of the joint eigenfunctions of the stable and unstable eigendistributions.
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Chapter 1

Introduction

Historically, the field of dynamical systems arose from studying the behavior of physical

systems. The study of a specific system required identifying and solving the appropriate

differential equations that model the system of interest. The result is a solution of

the dynamical system’s behavior as a function of time. Despite several procedures

for solving differential equations, many differential equations do not admit closed-form

analytic solutions. Thus, despite yielding a precise and complete description of the

system’s behavior, this technique is very limited to particular types of "solvable" systems.

Furthermore, the class of solvable differential equations is so small it is seldom the case

that a system of interest is explicitly solvable.

The advent of the "qualitative theory" of dynamical systems enabled insight into the

possible types of behaviors a system can exhibit without explicitly solving the differential

equations. Poincare’s work accomplished this by reformulating the underlying differential

equations in terms of a vector field defined over the space of states that the system can

exhibit. The attention is now shifted away from an explicit, value-versus-time, solution

of a differential equation and instead placed on quantifying the geometry of the state

space. One now places special attention to dynamically invariant geometrical objects

1



Introduction Chapter 1

such as fixed points, periodic orbits, limit cycles, invariant manifolds, and attractors.

Nevertheless, one frequently encounters complicated systems for which computing the

geometrical invariants of interest is a difficult, if not intractable, task. In the presence of

nonlinearity, one often resorts to linearization techniques around fixed points or special

orbits. As a result, the system’s behavioral properties, such as stability, can only be

guaranteed locally, in a neighborhood of the linearization. Yet another obstacle can arise

from the high dimensionality of the system itself. In such cases, a geometric analysis of the

state space is complicated, and one resorts to reducing the system’s dimensionality. The

dimensionality reduction is typically accomplished by exploiting symmetries, obtaining

invariants of motion, or finding a topological conjugacy to a simpler system. Lastly and

perhaps the most obstructive situation is when one lacks knowledge of the dynamical

equations, in which case, the geometric analysis can not even proceed.

To address the previously described obstacles, one could attempt to characterizing the

dynamics of a system directly from data or measurements. Mathematically, one would

interpret a measurement of the system as a function defined over the state space. From

this perspective would then seek to characterize the dynamics by studying the evolution

of functions under the system’s dynamics. This point of view arose during the 1930s when

it was realized that an abstract dynamical system induces a group of linear operators

acting on the space of square-integrable functions. The induced group of operators are

linear, and it has been shown that their spectrum encodes many important statistical

and geometric properties of the dynamical system. The method of studying a dynamical

system via the spectral properties of its induced operator was pioneered by Bernard

Koopman, whose name has been attributed to the induced group of operators.

2



Introduction Chapter 1

1.1 Contributions of this Dissertation

Chapter 2:

Chapter 2 contains no results by the author and is intended to provide the setting of

this dissertation and motivate the results to come.

Chapter 3:

In chapter 3 we demonstrate how the Koopman mode decomposition (KMD) can offer

a model-free, data-driven approach for analyzing and forecasting traffic dynamics. By

obtaining a KMD of data sets collected by the US Federal Highway Administration and

the California Department of Transportation, we are able to reconstruct observed data,

distinguish any growing or decaying patterns, and obtain a hierarchy of previously identified

and never before identified spatiotemporal patterns. Furthermore, it is demonstrated how

the KMD can be utilized to forecast highway network conditions.

Chapter 4:

In chapter 4 we consider "Koopman-type" operators acting on the space of vector

fields, covector fields and arbitrary tensor fields induced by a dynamical system. We

first demonstrate how these operators are indeed natural generalizations of the standard

Koopman operators and then study how the spectrum of the operators on vector fields

and covector fields relates to the underlying dynamics.

1.2 Guide For the Reader

1. For ease of reference, the dissertation provides the relevant chapter citations at the

end of each chapter.

2. Mathematical concepts, definitions and results are collected and weaved into the

relevant sections. For the reader who is familiar with the topics of a certain section

3



Introduction Chapter 1

these portions of the dissertation can be skipped over.

3. For the proofs of results that already exist we simply reference an appropriate

citation, not necessarily the original citation.

1.3 Permissions

The entire contents of chapter 3, section 2.6 and section 5.1.1 are from:

Avila, A.M., Mezić, I. Data-driven analysis and forecasting of highway traffic dynamics.

Nat Commun 11, 2090 (2020). https://doi.org/10.1038/s41467-020-15582-5
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Chapter 2

Koopman Operator Methods in

Dynamical Systems

The Koopman family of operators of a dynamical system is a group of infinite-dimensional,

linear operators that describe the time evolution of an observable (measurable quantity)

under the dynamics of the system[Koo31; KN32]. From this viewpoint, one can utilize

measurements and data to interpret a complex system’s underlying dynamics via the asso-

ciated Koopman operator’s spectral properties. The spectrum of the Koopman operator

leads to a "triple decomposition" of a nonlinear and non-stationary dynamical system

into its mean, periodic, and fluctuating components[MB04; Mez05]. Specifically, this

linear operator’s discrete spectrum (eigenvalues and eigenfunctions) accurately describes

the mean (period zero) and periodic components of a nonlinear dynamical system. The

continuous spectrum (spectral measure) of this linear operator captures the system’s

stochastic or chaotic dynamics.

5
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2.1 The Koopman Group of a Dynamical System

In this section, we formally define the Koopman group of operators induced by a

dynamical system. The mathematical setting will be in the context of ergodic measure-

preserving dynamical systems, which is the setting in which the operators were originally

conceived. However, we will also have an eye towards laying the foundation for chapter

4 in which the equivalent induced operators on sections of the tangent and cotangent

bundles will be considered.

2.1.1 Relevant Definitions and Results

We begin by establishing some notation and recalling some basic definitions and

results.

Dynamical Systems

Definition 2.1.1. An abstract dynamical system is a triplet (M, µ, St) where (M, µ)

is a measure space together with a one-parameter group of automorphisms St. If t ∈ R

the dynamical system is said to be a continuous-time dynamical system. If t ∈ Z the

dynamical system is said to be a discrete-time dynamical system.

To avoid any possible confusion, St with t ∈ R will always denote a continuous-time

dynamical system and Sn with n ∈ Z will always denote a discrete-time dynamical system.

Both St and Sn will also be assumed to be diffeomorphisms for every t and n. Lastly, the

spaceM will be assumed to be a finite measure space with µ(M) = 1

Definition 2.1.2. The space M is referred to as the state space of the dynamical

system.

Definition 2.1.3. Let x ∈M, t ∈ R and n ∈ Z. The map

6
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1. S :M× Z→M defined as S(x, n) = Sn(x) is called the flow map or simply the

map of a discrete-time dynamical system.

2. S :M× R →M defined as S(x, t) = St(x) is called the flow of a continuous-

time dynamical system.

In the continuous-time case, we also assume the state spaceM has the structure of a

smooth manifold, and we denote its tangent bundle (see 4.1.14) by TM, and denote by

X(TM) a vector space of vector fields onM.

Definition 2.1.4. The generator of a

1. discrete-time dynamical system Sn, denoted by S, is defined to be the first iterate

map S = S(x, 1) = S1(x).

2. continuous-time dynamical system is usually a vector field F :M→ TM such that

d
dt
St = F ◦ St for all t ∈ R.

In light of definitions 2.1.3-2.1.4 we will interchangeably denote a discrete-time dynam-

ical system by the discrete group Sn or its generator S. Also, since we will only consider

a continuous-time dynamical system generated by a vector field, we will interchangeably

denote a continuous-time dynamical system by the continuous group St or its vector field

generator F.

Definition 2.1.5. An abstract dynamical system is said to be measure preserving if

for all measureable subsets A ⊂M

1.

µ(S−t(A)) = µ(A) (2.1)

for all t ∈ R in the continuous-time case

7
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2.

µ(S−1(A)) = µ(A) (2.2)

in the discrete-time case.

Definition 2.1.6. An abstract dynamical system is said to be ergodic if

1. in the continuous-time case, the only measureable subsets A ⊂M such that S−t(A) ⊂

A, for all t ∈ R+, have either full µ(A) = 1 or zero µ(A) = 0 measure.

2. in the discrete-time case, the only measureable subsets A ⊂M such that S−1(A) ⊂ A

have either full µ(A) = 1 or zero µ(A) = 0 measure.

Definition 2.1.7. An abstract dynamical system is said to be weakly mixing if

1. in the continuous-time case, for any pair of measureable subsets A,B ⊂M we have

that

lim
T→∞

1

T

∫ T

0

|µ(S−t(A) ∩B)− µ(A)µ(B)|dt = 0 (2.3)

2. in the discrete-time case, for any pair of measureable subsets A,B ⊂ M we have

that

lim
N→∞

1

N

N−1∑
n=0

|µ(S−n(A) ∩B)− µ(A)µ(B)| = 0 (2.4)

Definition 2.1.8. An abstract dynamical system is said to be strongly mixing, or

simply mixing, if

1. in the continuous-time case, for any pair of measureable subsets A,B ⊂M we have

that

lim
t→∞

µ(S−tA ∩B) = µ(A)µ(B) (2.5)

8
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2. in the discrete-time case, for any pair of measureable subsets A,B ⊂ M we have

that

lim
n→∞

µ(S−nA ∩B) = µ(A)µ(B) (2.6)

Semigroups

Definition 2.1.9. Let M be a Banach space, and suppose that to every t ∈ [0,∞) is

associated an operator Q(t), such that

1. Q(0) = I

2. Q(s+ t) = U(s)U(t) for all s, t ≥ 0

3. limt→0 ‖Q(t)x− x‖ = 0 for all x ∈M

then {Q(t)} is called a strongly continuous semigroup of operators denoted C0- semi-

group.

Definition 2.1.10. For x ∈ M and ε > 0 we can associate with {Q(t)} the operators

Aε, by

Aεx =
1

ε
[Q(ε)x− x] (2.7)

the operator A defined by

Ax = lim
ε→0

Aεx (2.8)

is said to be the infinitesimal generator of the C0-semigroup {Q(t)} for all x in the

domain of A.

Spectrum of An Operator

Definition 2.1.11. The spectrum of a linear operator Q, denoted σ(Q) is the set of

scalars {λ ∈ C|Q− λI is not invertible}. Furthermore,
9
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1. a scalar λ is said to be an eigenvalue of Q if Q− λI is not injective. The set of

all eigenvalues of Q, denoted σp(Q), is said to be the point or discrete spectrum

of Q.

2. the set of all scalars λ such that Q − λI is injective, has dense range but is not

surjective, denoted σ(Q)c, is said to be the continuous spectrum of Q.

3. the set of all scalars λ such that Q− λI is injective but does not have dense range,

denoted σ(Q)r, is said to be the residual spectrum of Q.

2.1.2 The Induced Koopman Operators

Throughout this dissertation, we will denote by C(M,F) a vector space of functions

from the state space M to a field of scalars F. Of course, this prescription is rather

vague, and we do so to avoid an over commitment to any particular choice of function

space. Thus, we allow the reader to infer from the context what additional structure

the space C(M,F) should or could have. For example, when we speak of the Koopman

group generator, which is a differential operator, we assume the functions in C(M,F)

are at least C1-differentiable. On the other hand, when speaking of the group itself, the

functions in C(M,F) need not be differentiable nor even continuous. However, in many

cases, we will consider the Hilbert space of complex-valued, square-integrable functions

onM, denoted by L2(M, µ). The inner product is of course, the usual L2 inner product

given by 〈f, g〉 =
∫
M f · ḡdµ, where ḡ denotes the complex conjugate of g.

Definition 2.1.12. Let C(M,F) denote a vector space of functions fromM to a field

of scalars F with F = R or C. The space C(M,F) is called the space of observables

and an element f ∈ C(M,F) is called an observable.

10



Koopman Operator Methods in Dynamical Systems Chapter 2

Definition 2.1.13. For a function f ∈ C(M, µ) the Koopman group of operators

induced by a

1. continuous-time dynamical system St is defined as

U tf(x) = f ◦ St(x) (2.9)

2. discrete-time dynamical system S is defined as

Unf(x) = f ◦ Sn(x) (2.10)

For the Koopman group of operators induced by a continuous-time dynamical system

St, it is straightforward to check that the induced Koopman group is a C0-semigroup

and in fact a C0-group since we assumed that St is an automorphism for every t ∈ R.

The fact that condition (3) in definition 2.1.9 holds for the Koopman group implies the

existence of a generator which can be shown to be d
dt
|t=0Q(t) [Rud73]. Specifically, the

infinitesimal generator of the Koopman C0-group is the first-order differential operator,

which assigns to a function f its directional derivative in the direction of the vector field

F :M→ TM generating St.

Proposition 2.1.1. The Koopman group of operators induced by a continuous time

dynamical system St is a C0-group and its infinitesimal generator, denoted by L, is given

by

Lf(x) = ∇f(x) · F(x) (2.11)

Proof: See [Mez20a]

Since the induced Koopman group is a group of linear operators there is an associated

spectrum.

11
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Definition 2.1.14. A scalar λ ∈ C and a function ψ(x) ∈ C(M,F) such that for a

discrete-time or continuous-time dynamical system satisfy

Unψ(x) = λnψ(x), n ∈ Z (2.12)

in the discrete-time case or

U tψ(x) = eλtψ(x), t ∈ R (2.13)

in the continuous-time case are said to be a Koopman eigenvalue and Koopman

eigenfunction, respectively.

Also, for a continuous-time dynamical system if

Lnψ(x) = λnψ(x), n ∈ Z (2.14)

then λ and ψ(x) are said to be an eigenvalue of the Koopman generator and eigen-

function of the Koopman generator, respectively.

2.1.3 The Induced Koopman Operators Revisited

The introduction of the Koopman group of a dynamical system has thus far been

purely analytical namely, in terms of composition operators. To lay the foundation for

chapter 4 it worth noting, what could be said to be, an equivalent differential geometric

formulation of the Koopman group of operators. To this end, let us, for the moment,

assume the absence of a dynamical system and letM and N be smooth manifolds. Again,

we denote by C(M,F) a vector space of functions and also assume the existence of a

mapping S :M→N . Let us discuss under what conditions on S and by which means

12
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can one take a function f defined on N or M and create from it a function on the

other space. We will explicitly state the regularity of S or f when required. When f

is a function defined on N , this can be accomplished for a continuous, not necessarily

differentiable, mapping S via the differential geometric concept of pulling-back a scalar

function f by a mapping S. Similarly, if one instead considers a function f defined onM

and assumes the mapping S is a homeomorphism, one can then define a function on N

via the push-forward. Specifically, we have the following definitions.

Definition 2.1.15. Let S : M→ N be a continuous mapping and f ∈ C(N ,F). The

pull-back of f by S is defined as

S∗f(x) = f ◦ S(x) ∈ C(M,F)

If S is a homeomorphism then the push-forward of f ∈ C(M,F) by S is defined as

S∗f(x) = f ◦ S−1(x) ∈ C(N ,F)

It should be clear to see that if the mapping S :M→M is a dynamical system, the

pull-back of f by S is precisely the action of the Koopman operator on f . Thus, the

induced Koopman group of operators of a dynamical system could equivalently be called

the induced pull-back group of operators on functions. In the presence of a vector field,

F ∈ X(TM) one can also define the differential geometric concept of a Lie derivative

operator on functions.

Definition 2.1.16. Let f ∈ C(M,F) be a differentiable function and F ∈ X(TM). The

Lie derivative of f , denoted LF, said to be along or in the direction of F is defined

as

LFf(x) = ∇f(x) · F(x) (2.15)
13



Koopman Operator Methods in Dynamical Systems Chapter 2

Proposition 2.1.2. The collection of operators L(·) forms a vector space, a C(M,F)-

module and is isomorphic to X(TM) as both.

Proof: see [AMR83] page 216.

Proposition 2.1.2 demonstrates that every vector field F ∈ X(TM) induces an operator

LF. The relation between the Lie derivative of vector field and the flow it generates is a

standard result in differential geometry.

Theorem 2.1.1. Let f ∈ C(M,F) be a differentiable function, F ∈ X(TM) and let St

be the flow generated by F. Then

d

dt

∣∣∣
t=0
St∗f(x) = LFf(x) (2.16)

Proof: See [AMR83] page 213.

In the language of semigroup theory theorem 2.16 is stating that the infinitesimal

generator of the C0-group of pull-back operators is the Lie derivative operator. It is also

clear that the Lie derivative and the generator of the Koopman are the same operators.

The fact that the Koopman group of operators, a functional analytic concept, can also

be formulated in terms of purely differential geometric concepts will be the fundamental

motivation for the contents of chapter 4. We ask the reader to keep the observations

mentioned above in mind.

Lastly, note that the quantity LFf(x) = ∇f(x) ·F(x) could equivalently be expressed

as LFf(x) = Fᵀ(x) · (∇f(x))ᵀ where (∇(·))ᵀ denotes the transpose of the gradient row

vector. Throughout the rest of this dissertation we adopt the latter expression since it

better demonstrates that LF = Fᵀ(x) · ∇(·) namely, that it is an operator.

14
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2.2 Background & History

2.2.1 The spectral Invariants of Dynamical System

Koopman showed that for a measure-preserving system, the induced group of linear

operators are unitary over L2 functions [Koo31]. Hence, by the spectral theorem for

unitary operators, the spectrum of the Koopman group of operators induced by a measure-

preserving system is restricted to the unit circle [Rud73].

Definition 2.2.1. The spectrum of a dynamical system is the spectrum of the

Koopman group of operators induced by the dynamical system.

Definition 2.2.2. A dynamical system is said to have:

1. A pure discrete spectrum or pure point spectrum if the eigenfunctions of the

induced operator form a basis for L2(M, µ).

2. A pure continuous spectrum if the only eigenfunctions of the induced operator

are the constant functions.

3. A mixed spectrum if the dynamical system has neither a pure point spectrum nor

a pure continuous spectrum.

4. A Lebesgue Spectrum LI if there exists an orthonormal basis of L2(M, µ) formed

by the function g(x) = 1 and some set of functions fi,j(x) i ∈ I, j ∈ Z such that

Ufi,j = fi,j+1 (2.17)

The cardinality of I is said to be the multiplicity of the Lebesgue spectrum. If

I is countably infinite then the dynamical system is said to have countably infinite
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Lebesgue spectrum and if I has only one element the dynamical system is said to

have simple Lebesgue spectrum.

It was quickly realized that the spectrum of a dynamical system encodes many

important statistical and geometric properties of the dynamics [Koo31; KN32; Hal49]. For

example, many ergodic properties of a dynamical system are reflected in the spectrum.

Theorem 2.2.1. Let (M, µ, S) be a discrete-time, measure-preserving, ergodic, dynamical

system and Un the induced Koopman group of operators.

The dynamical system is ergodic

1. if and only if the only eigenfunctions of Un at eigenvalue λ = 1 are µ-almost

everywhere constant.

2. if and only if 1 is a simple eigenvalue of U .

3. the absolute value of every eigenfunction is constant µ-almost everywhere.

The dynamical system is weakly mixing

1. if and only if

lim
N→∞

1

N

N−1∑
n=0

|〈Unf, g〉 − 〈f, 1〉 · 〈1, g〉| = 0 (2.18)

for every f, g ∈ L2(M, µ)

2. if and only if Un has a continuous spectrum.

The dynamical system is mixing

1. if and only if

lim
n→∞
〈Unf, g〉 = 〈f, 1〉 · 〈1, g〉 (2.19)

for every f, g ∈ L2(M, µ)

16
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2. if and only if the only eigenvalue of U is 1.

3. if it has a Lebesgue spectrum.

Proof:

1. For the ergodic properties see [Hal49; Hal56; AA68].

2. For the weakly mixing properties see [Hal49; Hal56].

3. For the mixing properties see [Hal49; Hal56; AA68].

Definition 2.2.3. Two dynamical systems (M, µ, S) and (N , ν, T ) are said to be spec-

trally isomorphic dynamical systems if there induced operators US and UT are uni-

tarily equivalent. In other words, there exists a unitary operator V : L2(M, µ)→ L2(N , ν)

such that

US = V ∗UTV (2.20)

Definition 2.2.4. The spectral invariants of a dynamical system are properties which

are the same for spectrally isomorphic dynamical systems.

2.2.2 The Isomorphism Problem in Dynamical Systems

At the time of its inception, the Koopman group of operators were generally perceived

as a possible framework for solving one of the most famous and elusive problems in

ergodic dynamical systems theory known as the isomorphism problem. The isomorphism

problem was set forth by John Von Neumann [Von32b; RW12; Wei72] and is concerned

with classifying dynamical systems up to an isomorphism. This call for classification is

in the spirit of similar classification problems in other branches of mathematics, such as

topology (classification of manifolds) or group theory (classification of groups).

17
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Definition 2.2.5. Two discrete-time, measure-preserving, dynamical systems (M, µ, S)

and (N , ν, T ) are said to be isomorphic dynamical systems if there is a bijection

h :M→N such that

1. h and h−1 are measureable.

2. ν(h(A)) = µ(A) for all measureable subsets A ⊂M.

3. h(S(x)) = T (h(x)) for all x ∈M.

Initially, the isomorphism problem was considered for discrete-time systems only but

the problem in the continuous-time case has an equivalent definition. One of the main

approaches to tackling the isomorphism problem [RW12] is concerned with with finding a

sufficiently large number of invariants of a dynamical system which collectively provide

sufficient conditions for two dynamical systems to be isomorphic. One example is the

spectral invariants of a dynamical system. Since equivalent operators share a set of

eigenvalues the spectrum itself is clearly a spectral invariant. Also, if two dynamical

systems (M, µ, S) and (N , ν, T ) are isomorphic then they are spectrally isomorphic

[RW12]. For example, if h is the isomorphism then the operator V defined as

V f(x) = f(h−1(y)) (2.21)

for all x ∈M and y ∈ N provides the spectral isomorphism. The pertinent question now

is whether the spectrally isomorphic also implies isomorphic.

Systems With Pure Discrete Spectrum

The fact that many dynamical properties are reflected in the induced operators’

spectrum, lead Von Neumann and others to conjecture that the spectral invariants should

18
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be strong enough to classify dynamical systems. Von Neumann gave the first breakthrough

in 1932, which gave a partial resolution to the isomorphism problem.

Theorem 2.2.2 (Von Neumann’s discrete spectrum theorem). Two dynamical systems

(M, µ, S) and (N , ν, T ) with pure point spectrum are isomorphic if and only if they are

spectrally isomorphic.

Proof: See [Von32b].

The following result by Paul Halmos and Von Nuemann complemented the discrete

spectrum theorem.

Theorem 2.2.3.

1. Every countable subgroup of the circle group T = {z|z ∈ C, |z| = 1} is the point

spectrum of an ergodic dynamical system with discrete spectrum.

2. Every ergodic dynamical system with discrete spectrum is isomorphic to a translation

on a compact abelian group.

Proof: See [HN42]

The previous theorems give a complete classification of ergodic dynamical systems with

pure discrete spectrum and Von Neumann conjectured that theorem 2.2.2 should also

hold for systems with pure continuous spectrum [Von32a]. Unfortunately, further research

showed that the conjecture does not hold for general systems with a mixed [RW12; Hal49;

Hal56] or continuous spectrum [Kol85; Kol59; Sin59b; Sin59a].

Systems With Mixed Spectrum

In an unpublished letter written in 1941 by Von Neumann to Stanislaw Ulam, Von

Neumann constructed a counterexample to his conjecture by providing an example showing

that two spectrally isomorphic dynamical systems with a mixed spectrum need not be
19
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isomorphic. To see how Von Neumann accomplished this, let G be a family of functions

whose constant absolute value is equal to 1. Furthermore, let G′ be the family of all

functions whose constant absolute value is equal to 1 and for which there exists a function

g ∈ G such that Uf(x) = f ◦ S(x) = g(x)f(x), f ∈ G
′ . Denote by G1 the set of all

constant functions and define Gn inductively as Gn+1 = G
′
n for n ∈ Z+. Now, since for

an ergodic dynamical system the only eigenfunctions ψ(x) at eigenvalue λ = 1 are the

constant functions, G2 = G
′
1 is the set of all constant functions of absolute value 1 and

G3 = G
′′
1 is the set of all eigenfunctions of absolute value 1.

Definition 2.2.6. The functions in G3, G4, G5, . . . are said to be generalized eigen-

functions with generalized eigenvalues in G2, G3, G4, . . .

We remark that there is an unfortunate clash of terminology here with the generalized

eigenfunctions in the sense of those corresponding to a linear dynamical system with

degenerate spectrum and with a generalized eigenfunction in the distributional sense.

Now, if the two dynamical systems are isomorphic then their induced operators are

related via the operator V given by equation 2.21. As such, USf(x) = g(x)f(x) if and only

if UTV f(x) = V g(x)f(x), and hence f is a generalized eigenfunction of US if and only if

V f(x) is a generalized eigenfunction of UT . Von Nuemann then proceeds to construct two

dynamical systems (M, µ, S) and (M, ν, T ) with mixed spectrum which are spectrally

isomorphic but shows that G4 6= G3 for S while on the other hand G4 = G3 for T and

thus S and T are not isomorphic.

It is useful to note that if H ⊂ G then H
′ ⊂ G

′ from which one can see that the

sequence {Gn} is increasing namely, (G1 ⊂ G2 ⊂ G3 ⊂ . . . ). Additionally, if it ever

happens that Gn = Gn+1 then Gn = Gn+k for all k. Denote by n(S) the least positive

integer for which this happens, without excluding the possibility that n(S) be infinite.

The function n(S) is an invariant of S [Hal56] and thus, if S and T are isomorphic
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then n(S) = n(T ). A counterexample similar to Von Neumann’s is constructed by Paul

Halmos [Hal49; Hal56] in which he constructs two dynamical systems that are spectrally

isomorphic but for which n(S) 6= n(T ).

Systems With Pure Continuous Spectrum

The Von Neumann and Halmos counterexamples thus showed that spectrally iso-

morphic systems with a mixed spectrum need not be isomorphic. However, since for a

dynamical system with a pure continuous spectrum, the only eigenfunctions are constant

eigenfunctions: G1 = G2 = G3 = · · · . Thus, the same construction does not apply to two

spectrally isomorphic dynamical systems with a pure continuous spectrum. This gave

hope that the spectral invariants may still be strong enough to characterize systems pure

continuous spectrum. Unfortunately, Kolmogorov and Sinai’s works soon realized that

two spectrally isomorphic dynamical systems with pure continuous spectrum need not be

isomorphic.

Specifically, in 1958 Kolmogorov [Kol85; Kol59] introduced the notion of entropy

of a dynamical system, and Sinai improved the concept in 1959 [Sin59b]. The next

ingredient in Kolmogorov’s work dealt with a specific dynamical system known as the

Bernoulli shift on n symbols. It was shown that the Kolmogorov-Sinai entropy of a

Bernoulli shift on n symbols is equal to
∑n

i=1 pi log(pi) where pi is the probability of the

n’th symbol. From this, one can see that given an arbitrary nonnegative a ∈ R, there

exists a Bernoulli shift whose Kolmogorov-Sinai entropy is equal to a. Lastly, it was

shown that the Kolmogorov-Sinai entropy is an invariant of the dynamical system [Kol85;

Kol59]. Thus, two dynamical systems with different Kolmogorov-Sinai entropy can not be

isomorphic. As a result, two Bernoulli shifts with different entropy can not be isomorphic.

However, in terms of the spectral characterization of the Bernoulli shifts, we have the

following result.
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Proposition 2.2.1. The Bernoulli shifts have a countable Lebesgue spectrum and are

spectrally isomorphic to each other.

Proof: See [AA68] pages 30-31.

Combining this result with the entropic properties of the Bernoulli shift mentioned, we

have the following:

Theorem 2.2.4.

1. There are dynamical systems with a pure continuous spectrum that are spectrally

isomorphic but are not isomorphic.

2. There is an uncountable number of dynamical systems that are spectrally isomorphic

but not isomorphic.

In summary, a dynamical system’s spectral invariants are not strong enough to

characterize systems with continuous or mixed spectrum. To make matters worst, Halmos

showed that the set of mixing, measure-preserving dynamical systems is a comeagre set

in the strong neighborhood topology [Hal44]. Specifically, this shows that systems with a

continuous spectrum are very generic.

Over time there have been several results involving the spectral invariants of ergodic

and non-ergodic dynamical systems and how they relate to the isomorphism problem

[Lin75; Ede17; Cho63; Bro72; Zim76; Mac64; Kwi81; NW72].

2.3 The Spectral Decomposition of A Dynamical Sys-

tem

Since the induced operator was mostly utilized as a method for tackling the isomor-

phism problem, a detailed spectral decomposition of the operator was not actively pursued
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until 2004-2005 in the works of Mezić [MB04; Mez05]. In this section, we summarize

those works.

We begin by recalling the some definitions and the various ergodic theorems.

Definition 2.3.1. The time average of a function f ∈ C(M,C), denoted by f ∗, if it

exists, is defined

1. for a continuous-time dynamical system as

f ∗(x) = lim
T→∞

1

T

∫ T

0

f ◦ St(x)dt (2.22)

2. for a discrete-time dynamical system as

f ∗(x) = lim
N→∞

1

N

N−1∑
n=0

f ◦ Sn(x) (2.23)

Definition 2.3.2. The space average of a function f ∈ C(M,C), denoted by f̄ , if it

exists, is defined for a continuous or discrete-time dynamical system as

f̄(x) =

∫
M
f(x)dµ (2.24)

Theorem 2.3.1 (Birkhoff’s point-wise ergodic theorem). Let S be a measure preserving

transformation w.r.t to µ of a finite measure space (X,µ). For any f ∈ L1(X,µ)

f ∗ = lim
n→∞

1

n

n−1∑
j=0

f ◦ Sn(x) (2.25)

exists and

f ∗(x) = f̄(x) (2.26)

µ-almost everywhere.
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Theorem 2.3.2 (Von Neumann’s mean ergodic theorem). Let H be a Hilbert space and

U : H → H be a unitary operator. Let P be the orthogonal projection onto the eigenspace

Eλ=1 = {ψ ∈ H|Uψ = ψ}, then for any f ∈ H

lim
n→∞

1

n

n−1∑
j=0

Unf = Pf (2.27)

Theorem 2.3.2 shows that the eigenfunctions of the Koopman group of operators at

eigenvalue 1 can be obtained by infinite-time averages and theorem 2.3.1 guarantees that

these averages exist.

Definition 2.3.3. The operator PSf(x) = f ∗(x) or PStf(x) = f ∗(x) corresponding

to a discrete-time or continuous-time dynamical system is called the time-averaging

operator.

The time-averaging operator can be considered as a member of a family of averaging-type

operators.

Definition 2.3.4. The operators P ω
S defined by

P ω
S f(x) = lim

n→∞

n−1∑
k=0

e2πikωf ◦ Sk(x) (2.28)

for a scalar ω ∈ C, are called the harmonic time-averaging operators.

Definition 2.3.5. The harmonic time average of a function f ∈ C(M,C), if it exists,

is defined as

1. for a continuous-time dynamical system as

f ∗ω(x) = lim
T→∞

1

T

∫ T

0

e−iωtf ◦ St(x)dt (2.29)
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2. for a discrete-time dynamical system as

f ∗ω(x) = lim
n→∞

1

n

n−1∑
k=0

e−2πiωkf ◦ Sk(x) (2.30)

As one might expect the harmonic averages also play a role in the spectrum of the induced

Koopman operators.

Theorem 2.3.3. The harmonic time-averages f ∗ω of a function f ∈ C(M,C) are eigen-

functions of the Koopman group of operators at eigenvalue eiωt for a continuous-time

dynamical system and e2πiω for a discrete-time dynamical system

Proof: See [Pet83; Mez05]

The existence of harmonic averages is guaranteed by the following ergodic theorem.

Theorem 2.3.4 (Wiener & Wintner’s ergodic theorem). Let S be a measure preserving

transformation w.r.t to µ of a finite measure space (X,µ). For any f ∈ L1(X,µ)

f ∗ω = lim
n→∞

1

2n+ 1

n∑
k=−n

f(Skx)e−kω (2.31)

exists µ-almost everywhere and for every −∞ < ω <∞.

Much like the time-averaging operator, it can also be shown that the harmonic

time-averaging operators are orthogonal projectors onto the eigenspace Eλ=e2πiω [Yos95].

Furthermore, the harmonic time-averaging operators are nonzero only on, at most, a

countable set of ω’s [WW41] and when it is non zero the works of Mezić have shown that

they provide substantial amount of information regarding the dynamics of the system

[MW99; LM10; MB04].

Again, since the induced operators of a measure-preserving system are unitary, the

operators admit a unique decomposition U = Us + Ur into a singular and regular part
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[Ple69]. Moreover, the operator Us has a pure discrete spectrum, and the operator Ur

has a pure continuous spectrum. Mezić leveraged this fact to give the following spectral

decomposition and a spectral expansion for the evolution of an L2 observable.

Theorem 2.3.5. Let Un or U t be the Koopman group of operators induced by an ergodic,

measure-preserving, discrete-time or continuous-time dynamical system. Let dE(λ) denote

the spectral measure associated with a resolution of the identity, denoted E, on subsets of

the spectrum of Un or U t. The following spectral decomposition holds

1. for the continuous-time case

U t = U t
s + U t

s = PSt +
∑
k

e2πiωktP ωk
St +

∫ ∞
−∞

e2πiλtdE(λ) (2.32)

2. for the discrete-time case

Un = Un
s + Un

r = PS +
∑
k

e2πiωknP ωk
S +

∫ 1

−1

e2πiλdE(λ) (2.33)

Theorem 2.3.6. Let Un or U t be the Koopman group of operators induced by an ergodic,

measure-preserving, discrete-time or continuous-time dynamical system and let f ∈

L2(M, µ) be an arbitrary square-integrable observable. Denote by Pλk(f(x)) the projection

of f(x) onto the k’th eigenspace Eλk = span{ψk(x)}, where ψk(x) is an eigenfunction of

Un or U t at eigenvalue λk. Also, denote by f̂(β) the spectral density of f . The following

spectral expansion for the time evolution of f holds

1. for the continuous-time case

U tf(x) = f ∗(x) +
∑
k

e2πiωktPλk(f(x))ψk(x) +

∫ ∞
−∞

e2πiβtf̂(β)φ(x, β)dβ (2.34)
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2. for the discrete-time case

Unf(x) = f ∗(x) +
∑
k

e2πiωknPλk(f(x))ψk(x) +

∫ 1

−1

e2πiβnf̂(β)φ(x, β)dβ (2.35)

We conclude this section with the following definitions.

Definition 2.3.6. The spectral decomposition of a dynamical system, if it exists,

is the spectral decomposition of its induced Koopman group of operators given by theorem

2.3.5.

Definition 2.3.7. Let (λ, ψ(x)) be an eigen-pair of Un or U t the Koopman mode of a

scalar observable f(x) at eigenvalue λ, if it exists, is the projection Pλ(f(x)) of f(x) onto

the eigenfunction ψ(x). The definition also holds for a vector valued observable or a field

of observables.

Definition 2.3.8. The Koopman mode decomposition of an observable f(x), if it

exists, is the spectral expansion given by theorem 2.3.6.

2.4 Algebraic and Topological Properties of Eigenfunc-

tions

In this section, we summarize some of the algebraic and topological properties that

eigenfunctions enjoy. The purpose of this summary is to motivate the equivalent algebraic

and topological properties that will hold for the "Koopman-type" operators studied in

chapter 4.
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2.4.1 Algebraic Properties of Eigenfunctions

Theorem 2.4.1. Let Un or U t be the Koopman group of operators induced by a discrete-

time or continuous-time dynamical system. Denote by A a subset of C(M,C) that is

a commutative algebra of functions containing the constant function equal to 1. Also,

denote by AU the eigenfunctions of Un or U t that also belong to A. Then AU forms a

commutative monoid under pointwise products. Specifically,

1. in the continuous-time case, if ψ1(x), ψ2(x) ∈ AU are eigenfunctions at eigenvalue

eλ1t and eλ2t then ψ1(x) · ψ2(x) is an eigenfunction at eigenvalue e(λ1+λ2)t.

2. in the discrete-time case, if ψ1(x), ψ2(x) ∈ AU are eigenfunctions at eigenvalue λ1

and λ2 then ψ1(x) · ψ2(x) is an eigenfunction at eigenvalue λ1 · λ2.

Proof: See [Koo31; Mez20b].

It is worth noting that it is possible for a chosen space of observables to not a priori

be an algebra of functions. For example, the product of two square-integrable functions

is not guaranteed to be square-integrable. Thus, it may be possible for the product of

two L2 eigenfunctions to not be in L2. To avoid this issue, theorem 2.4.1 relies on a

subspace A which forms an algebra (thus closed under products) and considers only the

eigenfunctions belonging to the algebra A.

2.4.2 Topological Properties of Eigenfunctions

We now summarize the behavior of eigenfunctions in the presence of a topological

conjugacy. Consider two dynamical systems, one defined on the spaceM generated by a

vector field F(x) ∈ X(TM) or a mapping S(x) and another on the space N generated by

the vector field G(y) ∈ X(TN ) or a mapping T (y). Furthermore, denote by StF(x) and

StG(y) the flows generated by F(x) and G(y). Lastly, denote the associated Koopman
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group of operators by U t
F, U

t
G, or US, UT .

Definition 2.4.1. The two dynamical systems (StF, S
t
G) or (S, T ) are said to be topolog-

ically conjugate if there exists a homeomorphism h :M→N such that

h ◦ StF(x) = StG ◦ h(x)

or

h ◦ S(x) = T ◦ h(x)

(2.36)

If h is a diffeomorphism then h is said to be a diffeomorphic conjugacy.

Theorem 2.4.2. Let ψk(x) be an eigenfunction of U t
G or UT at eigenvalue eλkt or λk.

Then the function ψk ◦ h(x) is also an eigenfunction of U t
F or US at eigenvalue eλkt or λk.

Proof: See [Mez05].

Theorem 2.4.2 shows that the spectral properties of the induced Koopman operators

transform nicely under conjugacy. In the language of definition 2.1.15 one would say that

eigenfunctions pull-back to eigenfunctions under a conjugacy.

2.5 Spectral Expansions for Linear Systems With Sim-

ple Spectrum

In this section, we summarize the spectral properties of the Koopman group induced

by a linear dynamical system. Again, this summary’s sole purpose is to motivate and

foreshadow some of the results that will appear in chapter 4.

In what follows, we will consider a linear continuous-time dynamical system generated

by the vector field F(x) = Ax or a linear discrete-time dynamical system generated by

the transformation S(x) = Ax with A ∈ Rn×n. We will assume that the matrix A has
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distinct eigenvalues λi and a full set of linearly independent right and left eigenvectors.

Trivially, every constant function is an eigenfunction of the Koopman group. The next

question is: What are the linear eigenfunctions corresponding to a linear dynamical

system?

Theorem 2.5.1. Let λi, wi denote the the eigenvalues and left eigenvectors of the matrix

A corresponding to the linear continuous-time or discrete-time dynamical system.

1. for the continuous-time case, the linear functions ψi(x) = 〈x,wi〉 are linear eigen-

functions of U t at eigenvalue eλit.

2. for the discrete-time case, the the linear functions ψi(x) = 〈x,wi〉 are linear eigen-

functions of U at eigenvalue λi.

Proof: See [Mez20b]

Since the matrix A was assumed to be diagonalizable, the eigenvectors form a basis for

Rn. Motivated by this we can expand the state x in the eigenvector basis as follows

x =
n∑
i=1

〈x,wi〉vi =
n∑
i=1

ψi(x)vi (2.37)

Theorem 2.5.2. The time evolution of an arbitrary linear observable f(x) = Cx, C ∈

Rn×n under the dynamics F(x) = Ax, is given by the following spectral expansion.

U tf(x) =
n∑
i=1

eλitψi(x)Cvi (2.38)

Proof: See [Mez20b].

The expansion above provides the evolution of a linear observable in terms of the

eigenvalues, eigenfunctions and the Koopman modes, which in this case are Cvi. However,

it is worth noting that if the linear observable was instead g(x) = Dx then only the modes
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would change to Dvi, indicating that the eigenvalues and eigenfunctions are intrinsic to

the dynamics while the Koopman modes depend on the modality of observation. In a

similar fashion it is also possible to describe the time evolution of a nonlinear real analytic

observable under linear or nonlinear dynamics. For the details of such an expansion we

refer the reader to [Mez20b].

2.6 Numerical Computation of the Spectrum

As previously mentioned, in the context of modern-day engineering systems, one

usually deals with nonlinear and typically high dimensional dynamical systems for which

explicit formulas that describe the dynamics are not available. The difficulty in deriving

such equations and the ever-growing capabilities of computers, algorithms, and data

collection have dramatically shifted researchers’ attention towards data-driven techniques.

This paradigm shift towards data-driven techniques coupled with algorithms for computing

spectral properties of the Koopman operator from data has fueled an explosive revival in

research interest into Koopman operator techniques.

The ability to compute the spectrum of the Koopman group of operators directly from

real-world data is indeed an appealing feature. With the Koopman mode decomposition in

hand, one can decompose the observed quantity into a hierarchy of simpler, yet dynamically

important, periodic sub-patterns that describe a complex system’s behavior. Specifically,

the Koopman modes describe the shape of dynamically important spatiotemporal patterns

found within the data, and the eigenvalues describe how these modes evolve (grow or

decay) in time. Specifically, the real part of a Koopman eigenvalue yields the growth

or decay rate of a mode and measures how long the pattern persists within the data.

Similarly, the imaginary part of a Koopman eigenvalue produces the period of oscillation

of the mode and measures how frequently the pattern repeats within the data. In systems
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with a pure discrete spectrum, the Koopman modes allow one to reconstruct and forecast

the observed data accurately. At this point, several algorithms exist for computing the

spectrum of a dynamical system directly from data. A large portion of these methods

belong to the class of algorithms known as dynamic mode decomposition (DMD)[Sch10;

AM17; Row+09; WKR15; Tu+14; Kut+16; Li+17; JSN14] and the applications range

over a wide span of systems [PRR20].

2.6.1 The Hankel Dynamic Mode Decomposition Algorithm

In this dissertation, we have made no contributions to developing or improving any of

the numerical algorithms that exist. For this reason, a complete account of all the various

types of algorithms is not the focus of this chapter. However, in the next chapter, we

will utilize the Hankel dynamic mode decomposition algorithm (Hankel-DMD)[AM17] to

approximate the Koopman mode decomposition of highway traffic data. For this reason,

we believe it necessary to summarize at least the specific procedure we have utilized.

Formally, we assume to have a time-ordered data matrix X, which contains a total of

m data vectors. Typically, the velocity or density profile along the highway, at an instant

in time i, constitutes a single data vector labeled xi and corresponds to the i’th column

of the data matrix X. The number of rows in X, labeled by k, is dictated by the number

of locations along the highway at which the velocity or density is measured (number of

sensors). Hence, the data matrix has the following form shown below.

X =

[
x1 x2 . . . xm

]
(2.39)

Again, in equation (2.39) m is the number of data snapshots acquired, xi ∈ Rk, i ∈

{1, . . . ,m} is a single data vector at time i and X is a k ×m matrix.

In our work we begin by computing the mean subtracted data matrix X̂ according to
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equation (2.40) shown below.

X̂ =

[
x1 − 1

m

∑m
i=1 xi x2 − 1

m

∑m
i=1 xi . . . xm − 1

m

∑m
i=1 xi

]
(2.40)

It is clear to see that X̂ is obtained by computing the time averages of the original

data and subtracting the computed average from the data. This is motivated by the

fact that time averages of the system are in the spectrum of the Koopman group and

so we pre-compute this quantity. The mean-subtracted data matrix is then fed to the

Hankel-DMD algorithm[AM17] which is a combination of a time-delay (Hankel matrix)

embedding that is followed by an exact dynamic mode decomposition algorithm [Tu+14]

(Exact-DMD). The method of delay embedding is a state-space reconstruction technique

that has been shown to recover the attractor of the original dynamical system generating

the data [Tak81; Rob08; DS11].

A delay embedding d ∈ N is then chosen and the mean subtracted data is embedded

as shown below in equation (2.41).

X =

[
x1 · · · xm

]
−→ H =



x1 x2 x3 · · · xm−d

x2 x3 x4 · · · xm−d+1

...
...

... . . . ...

xd xd+1 xd+2 · · · xm


=

[
h1 · · · hl

]
(2.41)

Now, what the exact Exact-DMD algorithm seeks to approximate is a finite dimensional

representation of the Koopman operator which must satisfy the following relation shown

below in (2.42).

H2 = KH1 + r (2.42)

Where K is a finite matrix representation of the Koopman operator and r is a residual
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error term due to the fact that we only have a finite-dimensional approximation of a

possibly infinite expansion. H1 and H2 are the time-shifted matrices as shown below.

H1 =

[
h1 h2 . . . hl−1

]
(2.43a)

H2 =

[
h2 h3 . . . hl

]
(2.43b)

The Exact-DMD obtains this approximation by minimizing the residual term in a least

squares sense. By utilizing the singular value decomposition (SVD) of H1 = UΣW∗ we

can rewrite (2.42) as shown below.

H2 = KH1 = KUΣW∗ + r (2.44)

Multiplying both sides of (2.44) with U∗, and recalling that minimizing the residual term

requires r to be orthogonal to U we obtain the following expression.

U∗H2 = U∗KUΣW∗ + U∗r = U∗KUΣW∗ (2.45)

By rearranging equation (2.45) we obtain a matrix S that is related to K via a similarity

transformation.

U∗H2WΣ−1 = U∗KU ≡ S (2.46)

Since K and S are related they share common eigenvalues and the eigenvectors are the

same up to the similarity transformation. Hence, if (λi,wi) are an eigen-pair of S then

(λi,v = Uwi) is an eigen-pair of K.

Furthermore, since the sampled data produced a discrete-time description of an

originally continuous-time process, the eigenvalues {λi} we obtained lie on the unit circle.

Therefore, the continuous-time eigenvalues can be recovered by ωi = ln(λi)
T

, where T is
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the sampling rate at which the data was collected. Finally, we can use the numerically

approximated KMD to obtain a description of the observed data points xi via the following

expression.

xkmd(t) =
l∑

i=1

b0vie
ωit = Veωtb0 (2.47)

Where V = {v1, . . . ,vl} is a matrix whose columns are the eigenvectors vi and b0 is

an initial amplitude coefficient associated with the initial data snapshot x1, specifically

b0 = V†x1. Where † represents the Moore-Penrose pseudoinverse of a matrix and eωt

represents a diagonal matrix whose elements are eωit.

A detailed discussion on how we select the number of delays can be referenced in the

online methods section. Pseudocode of the Hankel-DMD algorithm can be referenced in

supplemental algorithm 1 and the corresponding source code is made available according

to the code availability statement.
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Chapter 3

Applications of Koopman Operator

Methods to Highway Traffic Dynamics

Highway traffic congestion in 2013 cost Americans $124 billion in direct and indirect losses

[TC14]. This number is higher for some European countries [TC14] and is only expected to

rise without the development of intelligent transportation systems (ITS) and the accurate

forecasting of traffic conditions that ITS rely on to mitigate traffic. Traditionally, the

analyzing and forecasting of highway traffic was performed via simulations of mathematical

models [VKG14; Dag95]. However, the combination of data availability, modern processing

capabilities, and development of machine learning (ML) algorithms has enabled an

enormous amount of research into empirical data-driven algorithms [ZZH14; Zhu+18;

WHL04; OS84; VDW96; Sun+03; IA02; Wu+18; Cla03; Tak+]. The first class of data-

driven algorithms were primarily parametric models that rely on the user’s ability to

accurately estimating the model’s parameters. Historically, this point of view led to the

use of linear and nonlinear regression techniques [WHL04; Sun+03], Kalman filtering

[OS84] and time-series models [VDW96; IA02]. Recently there has been a large and

growing interest in non-parametric models that rely on historical training data to estimate
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their own parameters. Among the most popular of these methods include the neural and

deep neural network models (NN,DNN) [SHG12; Wu+18; Ngu+18; Gir+10], K-nearest

neighbors [Cla03; Tak+], Bayesian networks [Zhu+16] and (parametric/non-parametric)

hybrid models [ZZH14]. Nevertheless, describing and forecasting the time evolution of

traffic systems remains a challenging problem [VKG14; BAR15; NN05; SH07; Oh+18;

BS16; JS18; Com+13].

A majority of the published literature in this field has focused on testing and validating

a particular method’s ability to describe real-world traffic data accurately. However, the

issue discussed much less than accuracy is that of a model or algorithm’s capability of

generalizing to a real-world implementation [VKG14; Oh+18]. Many of the traditional

mathematical models are known to be unfeasible for real-time implementation, tedious to

solve numerically, and depend on parameter accuracy [VKG14]. The modern ML-based

methods also rely heavily on accurate parameters. They typically require large amounts

of training data [ZZH14; Zhu+18; Wu+18; Oh+18], which is usually limited and costly to

collect [NN05; Oh+18]. Therefore, even if the state-of-the-art traffic models were accurate,

typically, they would require an unrealistic amount of data collection and parameter

tuning to function across differing highways [ZBT08; Zhu+18; Oh+18]. The first attempts

at empirically characterizing highway traffic’s country-specific differences can be found

in [ZBT08], where traffic data from the United States, United Kingdom, and Germany

were empirically analyzed and compared. This international comparison was motivated

because different countries have different infrastructure, vehicle class mix, driving rules,

and even different driver behavior. Indeed, the works of [ZBT08] confirm key differences

in the periods of oscillation and speeds of propagation of traffic jams between the three

countries. It is further stated how this country-specific dynamics of traffic will require the

re-calibration of current models or the development of more general models. The findings

of [ZBT08] validate our view, in that some of the shortcomings of previous research
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approaches are not primarily their lack of accuracy but more so their heavy dependence

on parameters and large amounts of training data. This renders many state-of-the-art

techniques developed today unfeasible for a large scale global implementation across

differing highways [Oh+18].

In addition to traffic data’s stochastic features, wave-like patterns have also been

identified within traffic data [NN05; Dag95; SH07; Ahn05; AC07; CM01; ALC10; TBO12].

The exact cause of such traffic waves is still an open topic, although several mechanisms

have been proposed [Dag02; Wil08; SH07]. A common theme across many of these

proposed mechanisms is the effect that lane changing can have on a highway system. The

empirical works of Ahn [AC07; ALC10] and Laval [LD06] provide evidence showing that

lane changing maneuvers are critical in the development of traffic waves. Unfortunately,

research into multi-lane traffic dynamics has proven to be an even more challenging

task [MR13; AC07; Dag02; Wil08]. The complex lane changing dynamics and human

interaction within a multi-lane highway have restricted many state-of-the-art techniques to

analyze and forecast traffic at the highway corridor scale. Furthermore, generalizing these

techniques to the multi-lane scenario is typically difficult [MR13; Dag02; VKG14; Wil08].

Ultimately, traffic management is generally applied at the network level [Oh+18]. However,

an accurate and efficient method for the analysis and forecasting of multi-lane highway

network conditions is perhaps the most challenging and strongly lacking component of

modern ITS [VKG14; SHG12; BS16; JS18; Com+13]. Furthermore, many state-of-the-art

techniques frequently require extensive parameter tuning and the proper pre-processing

of raw data to perform adequately [Oh+18]. This has lead to the common practice of

removing previously computed seasonal averages, aggregating, and smoothing raw data

[SH07; TH03; VKG14; Che+01]. Additionally, the differing dynamics between weekday,

weekend, holiday, and adverse weather conditioned traffic has led to the common practice

of utilizing case-specific training data to forecast only case-specific data [Che+12; Oh+18;
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ZZH14; VK12]. Lastly, the challenge in forecasting multiple detector data typically results

in verifying methods over only a single or possibly few detectors [Wu+18; Che+12; ZZH14;

TBO12]. Therefore, many state-of-the-art benchmarks have been obtained at the highway

corridor (single lane) level, over a limited number of sensor locations, and incapable of

generalizing to handle the multi-lane network scenario without extensive re-training.

Overall, a systematic and accurate method for identifying, analyzing, and forecasting

spatiotemporal traffic features from data is still an open and challenging issue [VKG14;

BAR15; NN05; SH07]. In this work, we demonstrate how the Koopman operator’s

spectral properties, specifically the Koopman mode decomposition (KMD), can offer a

model-free, parameter-free, data-driven approach for accurately identifying, analyzing,

and forecasting spatiotemporal traffic patterns. The methods we develop allow one

to distinguish any growing or decaying phenomena and obtain a hierarchy of coherent

spatiotemporal patterns hidden within the data. Furthermore, the forecasting scheme we

propose readily generalizes to the much-needed scenario of multi-lane highway networks

without any loss to its performance or efficiency. We do not rely on large historical

training data, nor do we distinguish between weekday, weekend, holiday, or adverse

weather conditions. Our method’s performance does not rely on parameter tuning or

selection. Thereby providing a completely efficient and accurate method of analyzing and

forecasting traffic patterns at the levels required by modern ITS.

3.1 Koopman Mode Analysis of Spatiotemporal High-

way Traffic Data

We begin by studying the Next Generation Simulation (NGSIM) data set collected

by the US Federal Highway Administration. The NGSIM data set provides the precise
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location of every vehicle, its lane position, and location relative to other vehicles for

every one-tenth of a second on 2100ft and 1640ft segments of the southbound US-101 and

eastbound I-80 highways, respectively. Overall, the NGSIM data provides a microscopic

description of traffic in that it is the individual vehicles that are tracked and not the

velocity or density of the bulk, macroscopic flow. However, in this work, we are interested

in identifying macroscopic spatiotemporal patterns. Therefore, the we convert the NGSIM

trajectory data into spatiotemporal data via the binning method developed by [Edi63]

and utilized by [Jin10; Bel+15]. This procedure allows the construction of macroscopic

velocity and density profiles from vehicle trajectory data. The resulting spatiotemporal

data is a matrix whose columns correspond to time. Its rows correspond to a position

along the highway, and the entries contain the velocity, density, or flow at that location

and time. The resulting spatiotemporal data for the US-101 highway is shown below in

figure 3.1, and the I-80 highway data can be referenced in supplementary figures 1-2. A

more detailed discussion on the binning method and formulas can be referenced in the

online methods section, and access to the spatiotemporal data is also made available.

In this work, we categorize traffic patterns according to [SH07]. In addition to the well

known free-flowing and congested traffic states, some of the various patterns identified by

[SH07] are the pinned localized cluster (PLC), moving localized cluster (MLC), stop and

go waves (SGW), and oscillating congested traffic (OCT). PLC type traffic oscillations do

not propagate along the highway but are instead pinned or localized at a specific spatial

location. On the other hand, MLC type phenomena, also called traffic jams, propagate

backward along the highway, affect the entire highways, and their amplitudes are not

perturbed by on or off-ramps. The SGW and the OCT, according to [SH07] are almost

indistinguishable without the proper data filtering technique, and thus, in this work, we

refer to both as SGW or traffic waves. The presence of such patterns for the US-101

highway data can be seen below in figure 3.1a.
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Figure 3.1: (3.1a) Plot of the trajectory data for the first fifteen minutes. The data
was collected between the hours of 7:50 am-8:35 am, during the onset of congestion.
The section of the highway studied consists of five main lanes, a single on and off-ramp,
and an auxiliary lane between the on and off-ramp. Every colored line corresponds
to a unique vehicle. (3.1b) Spatiotemporal velocity data. The locations of the ramps
have been labeled with dark-orange dotted lines. During the first twelve minutes,
the post-off-ramp section of the highway experiences a period of free-flowing traffic.
However, during this same time, the highway’s mid and pre-on-ramp sections are
experiencing stop and go wave traffic, labeled as SGW. During the last thirty minutes
of the study, the highway experiences a series of moving localized clusters labeled ML,
which correspond to traffic jams. (3.1c) Spatiotemporal flow data. The flow data is
obtained as the product of the velocity and density data sets. (3.1d) As expected, the
density appears to be the inverse of the velocity profile. Specifically, one can observe
that periods corresponding to free-flowing traffic have smaller density and periods
corresponding to traffic jams resulting from high density. The source data underlying
figures 3.1b-d are provided in the Source Data file.
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By applying a KMD to the velocity data in figure 3.1, we seek to uncover traffic patterns

that may be hidden within the data. Patterns revealed by the KMD for the US-101

highway density and flow and the I-80 highway can be referenced in supplementary figures

4-12 at https://www.nature.com/articles/s41467-020-15582-5. In our works, we

sort the resulting Koopman modes according to their period of oscillation. Therefore, the

slowest evolving pattern is what we refer to as the "first" mode and so on. A table listing

the exact periods of oscillation of the modes discussed can be referenced in supplementary

table 1.

By plotting some of the leading Koopman modes in figure 3.2-3.3, we find, that the

first three modes (figure 3.2a-3.2c), modes five (figure 3.2e), ten (figure 3.3d), eleven,

eighteen, nineteen ( supplementary figure 3a,3d,3e), and thirteen (figure 3.2e) all share the

common structure of a PLC. Specifically, their amplitude is entirely localized around the

post-off-ramp (1280ft-2100ft) section of the highway. However, mode five is also spatially

localized about the mid-ramp section of the highway. The double-peaked structure of

mode five strongly resembles a sort of spatial harmonic feature of modes one through

three. Interestingly, mode five along with modes eight (figure 3.3b), nine (figure 3.3c),

and thirteen (figure 3.3e) display a standing wave node at precisely the on and off-ramp

locations, which have been labeled with dark orange dotted lines. Modes sixteen (figure

3.3f), twenty, twenty-one, twenty-five, and twenty-eight ( supplementary figures 3f,4a and

supplementary figures 4d,4f) differ from the other PLC waves in that their amplitudes

appear to grow or decay in time. The ability to uncover such growing and decaying

patterns is a strongly distinguishing feature between the KMD and a Fourier analysis.

It is also clear to see how the amplitudes of mode seven (figure 3.3a) and twenty-six (

supplementary figure 4e) are unperturbed as they travel along the highway, indicating that

they correspond to traffic jams that affect the entire highway as they propagate by. Several

modes within figures 3.2-3.3 are harmonics of the first mode, which corresponds well
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with the known fact that harmonics of eigenvalues are also eigenvalues of the Koopman

operator [MB04; Mez05; Mez20]. A complete list containing the periods of oscillation of

the modes we discussed can be referenced in supplementary table 1 .
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Figure 3.2: The on/off-ramp locations have been labeled with dark orange dotted
lines. Modes one to three have a very localized structure near the post-off-ramp section,
indicating that they correspond to pinned localized clusters (PLC). Furthermore, the
first three modes capture the general transition from high to low velocities during the
onset of traffic. Mode 5 seems to be a spatial harmonic of the first three modes in that
it has another peaked structure in the mid-ramp section of the highway. Modes four
and six provide clear evidence for the pumping effect, where an apparent increase in
amplitude followed by a decrease can be seen in these modes as they propagate past
the off and on-ramps, respectively. Overall, the Koopman modes uncover complex
spatiotemporal wave structures that are hidden within traffic data. Furthermore,
according to the imaginary part of its corresponding eigenvalue, every mode oscillates
with a single known frequency. This can be contrasted to a Fourier analysis that
would yield modes and frequencies specific to the highway positions. A complete list
containing the periods of oscillation of the modes we discussed can be referenced in
supplementary table 1.
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We now demonstrate how the patterns we identify relate to previous research efforts and

offer new insight. The empirical findings of Ahn [Ahn05] demonstrate how the amplitude

of a traffic wave decreases when it propagates upstream past an on-ramp. Similarly, it

was postulated that the amplitude should increase when propagating past an off-ramp.

However, no validation for the off-ramp scenario is found by [Ahn05; ZBT08]. This

phenomenon was referred to as the "pumping effect" [ZBT08; Ahn05; AC07]. Evidence of

this effect is clearly displayed by figures 3.2d, 3.2f and 3.3c. However, figure 3.3b seems

to display a decrease in amplitude followed by another decrease when propagating past

the off and on-ramp, respectively. This phenomenon, to the author’s knowledge, has not

been reported by other empirical studies. Furthermore, analyzing time-series data from

multiple sensors across large distances is regarded as a more challenging problem than a

single or local group of sensor data [Che+12]. The works of [Che+12] confirm that similar

frequencies are usually detected across nearby sensors, and remote sensors usually detect

differing frequencies. It is believed differences in frequencies across distant sensors is due

to the effect that on and off-ramps have on the volume of cars that flow by a specific

group of detectors [ZZH14]. We emphasize that the Koopman modes we obtain disprove

this notion by uncovering patterns defined across all detector locations yet oscillate with

a single frequency regardless of the presence of on and off-ramps.
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Figure 3.3: The on/off-ramp locations have been labeled with dark orange dotted
lines. Mode seven propagates across the entire highway without disturbances to its
amplitude and thus corresponds to a highway wide traffic jam, also known as a moving
localized cluster (MLC). Mode nine provides further evidence for the pumping effect,
where an apparent increase in amplitude followed by a decrease can be seen as the
mode propagate past the off and on-ramps, respectively. However, mode eight seems
to decrease in amplitude followed by another decrease when propagating past the off
and on-ramp, respectively. This phenomenon, to the author’s knowledge, has not
been reported by other empirical studies. Modes ten and sixteen demonstrate our
method’s ability to uncover growing or decaying patterns. Specifically, mode sixteen
appears to contain its amplitude almost entirely during the first ten to fifteen minutes
and is concentrated in the highway’s pre-on-ramp location. This indicates that mode
sixteen corresponds to the stop and go waves (SGW) present during the exact same
region of the spatiotemporal data in figure 3.1a. The exact growth or decay rate of
the mode is dictated by the real part of its corresponding eigenvalue. This again is a
distinguishing feature of our methodology from a Fourier analysis in that Fourier modes
do not capture growing or decaying features. Lastly, mode thirteen also demonstrates
a double-peaked structure resembling a spatial harmonic feature of figures 3.2a-c. A
complete list containing the periods of oscillation of the modes we discussed can be
referenced in supplementary table 1.
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The works of Kim [TM04] postulate that high-frequency oscillations are more likely to

decay in time. Evidence for such a phenomenon can be found by plotting the eigenvalues

over the unit circle in the complex plane (figure 3.4a). Eigenvalues whose magnitudes are

within a very narrow threshold (.001) of the unit circle are labeled neutral and correspond

to persistent sub-patterns that neither decay nor grow in time. Likewise, eigenvalues with

a magnitude larger (or smaller) than this threshold fall outside (or inside) the unit circle

and have been labeled as unstable (or stable). What can be seen from figure 3.4a is a

cluster of neutral eigenvalues on the far right side (within the dark-grey box) of the unit

circle corresponding to the slowest frequencies. This confirms the works of [TM04] in

that the slowest evolving patterns persist in time. Furthermore, the works of Gartner

[NMR01] find that larger amplitudes typically accompany patterns associated with longer

periods of oscillation. We find evidence for this trend by plotting each Koopman mode’s

average amplitude against its period (figure 3.4b). Indeed, one can clearly see a drop in

amplitude for decreasing periods of oscillation.

In addition to the daily and weekly cycles, the works of Dendrinos [Den10] demonstrate

the existence of intra-day (less than 24 hours) patterns [Den10]. Plotting the oscillation

periods for the first fifteen modes (figure 3.4c) clearly verifies this phenomenon. Further

evidence of the existence of intra-day as well as intra-week patterns can be referenced

in supplementary figures 13-15. Furthermore, the periods of oscillation we identify are

stable across various observation choices such as velocity, density, flow, or a concatenation.

Lastly, we demonstrate that the modes we recover are indeed physically relevant to

the dynamics by plotting the modes corresponding to the stable, unstable, and neutral

eigenvalues separately (figures 3.4d-f). We then superimpose them (figures 3.4g-h) along

with the previously removed average (figure 3.4i) to reconstruct the original data. This

demonstrates that the modes we have uncovered are dynamically important sub-patterns

and reconstruct the data when superimposed together.
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Figure 3.4: (3.4a) Plotting the color-coded eigenvalues on the unit circle confirms
the findings of Kim [TM04] in that slowly evolving patterns persist in time. (3.4b)
Plotting the average amplitude of the modes against their period confirms the findings
of Gartner [NMR01] in that slower evolving patterns carry larger amplitudes. (3.4c)
Plotting the timescales identified for various data choices demonstrates the KMD to be
a robust methodology for extracting fundamental frequencies regardless of the modality
of observation and verify the existence of intra-day patterns. (3.4d-3.4i) Plots of the
corresponding stable, unstable, and neutral modes and various superpositions of them.
These figures verify that the individual modes correspond to coherent and dynamically
important sub-patterns and, when superimposed, reconstruct the data.
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3.2 Koopman Mode Analysis of Multi-Lane Highway

Traffic Data

We demonstrate how the KMD readily generalizes to the multi-lane scenario by

analyzing multi-lane spatiotemporal density data for the US-101 highway. The multi-lane

data was generated by binning the individual lanes of the NGSIM data. With the addition

of an extra spatial coordinate (Lane #), the Koopman modes are now two-dimensional

spatiotemporal patterns and best visualized as a video, which can be referenced in the

online supplementary videos 1-14. However, we have also provided figures containing

snapshots of the videos over an entire cycle in supplementary figures 16-22.

The first multi-lane mode (supplementary figure 16) is a spatially localized PLC about

the post-off-ramp section of the highway similar to the first mode of the corridor-wide

(single lane) analysis. The second and the third mode (supplementary figures 17-18) are

again harmonics of the first. Interestingly, modes four, five, and ten (supplementary

figures 19-21) display a dynamic lane-changing (zig-zag) motion within the mid-ramp

section where lane-changing maneuvers are highest due to merging/diverging vehicles. The

seventh mode is plotted below in figure 3.5. From top-left (figure 3.5a) to bottom-right

(figure 3.5f) one can observe how the seventh mode corresponds to an MLC that affects

the entire highway. However, the MLC’s travel is out of phase across the different lanes,

giving the jam an apparent top-left to bottom-right travel. We encourage the reader to

reference the supplementary videos 1-14 online to properly visualize the multi-lane modes.
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Figure 3.5: The mode has a period of approximately six minutes, and the time for each
figure is given in minutes-seconds. Mode seven captures the dynamics of a highway wide
traffic jam. It is interesting to note how the moving localized cluster’s (MLC) travel
can be out of phase across differing lanes. This results in the apparent top-left to a
bottom-right direction of travel and is a feature impossible to recover from a single-lane
analysis. Lastly, one can observe that the vehicles’ on-ramp density is not merging
at the time of peak congestion. Specifically, the on-ramp is most heavily congested
during figures 3.5c-d at which point the MLC has already propagated by. However,
mode fourteen, a harmonic of this mode, clearly displays the opposite effect. This
demonstrates how our multi-lane analysis can be utilized to verify the successful timing
of static ramp metering algorithms and identify the correct timescales for dynamic
ramp metering algorithms. Mode fourteen can be referenced in supplementary figure
22.
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Lastly, one can see how the merging on-ramp densities (multiplied by five for visual

purposes) and highway densities are out of phase. This indicates the ramp metering’s

successful timing by verifying that incoming vehicles are not allowed to merge while the

highway is jammed. The proper implementation of ramp metering algorithms has been

shown to improve traffic congestion significantly, reduce travel times, and reduce accidents

between merging and flowing traffic [CMR05; PR95; LHO06]. However, the proper tuning

of the control algorithm’s parameters and identifying congestion patterns is critical for a

successful implementation. Figure 3.5 and supplementary figures 6-12 demonstrate how

our analysis can be utilized to identify multi-lane and on-ramp congestion patterns along

with their associated timescales. This information can, in turn, be used to verify the

proper timing of static ramp meters and incorporated into the development of dynamic

ramp metering algorithms.

3.3 Forecasting the California Performance Measure-

ment System

The California Department of Transportation (Caltrans) Performance Measurement

System (PeMs) data set is a real-time monitoring system for hundreds of highways across

California. This measurement system processes 2GB of real-time data per day and

provides access to years of historical data. The historical and real-time nature of the

PeMs repository has led to its widespread use for implementing and verifying forecasting

methodologies [Che+01; Zhu+18]. In this work, we have implemented a moving horizon

Hankel dynamic mode decomposition (MH-HDMD). The algorithm utilizes a subset of s

data vectors (sampling window) to forecast the next f data vectors (forecast window)

updated every h time steps (horizon window). The specific highways we study are as
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follows. First, we forecast a week and month’s worth of data for one-hundred and three-

hundred-mile sections of the eastbound Interstate 10 highway (I-10) and northbound

Interstate 5 highway (I-5), respectively. Next, a network of the ten largest highways

connecting Los Angeles to the greater southern California area is forecasted for the week

of Christmas 12/21-12/26 of 2016. Additionally, we forecast one-hundred miles of the

northbound US-101 highway during the deadly [Por17] southern California rainstorm

that occurred February 17, 2017. The data for this example was collected from February

16-17, 2017. In all cases, we utilize the last fifteen minutes to forecast for the next fifteen

minutes, updating our forecasts every fifteen minutes. The original and forecasted data

for the weekly and Christmas holiday network data sets are shown below in figure 3.6.

The original and forecasted data for the I-5 and US-101 data sets can be referenced in

supplementary figures 23-24.
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Figure 3.6: (3.6a-b) Raw data collected from PeMs for the I-10E and southern
California network. The data was collected for a week and five days, respectively. The
I-10 highway seems to be mostly congested throughout the week until Sunday. As
expected, all highways within the network seem to be congested on the days leading
up to Christmas eve (12/21-12/22). Interestingly, there appears to be drastic relief in
congestion during and after the actual holiday dates of 12/24-12/26. (3.6c-d) Forecasted
data generated by the MH-HDMD utilizing the last fifteen minutes of data to forecast
the next fifteen minutes. The network was forecasted by concatenating data obtained
for individual highways and applying the MH-HDMD algorithm to the concatenated
data. By visual inspection alone, the raw and forecasted data sets are indistinguishable,
indicating an accurate forecast. Nevertheless, there is an error present within our
forecasts, which can be referenced in figure 3.7. The source data underlying figures
3.7a-b are provided in the Source Data file.
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We quantify the performance of our method by computing the mean absolute error

(MAE), mean relative error (MRE), root mean squared error (RMSE), the spatial and

temporal averages of the mean absolute error (SMAE, TMAE), and the spatial and

temporal correlations (SCorr, TCorr) according to formulas (3.1)-(3.5) described below.

MAE =
1

N

n,m∑
i,j=1

|Ti,j − Fi,j| (3.1)

MRE =
1

N

n,m∑
i,j=1

|Ti,j − Fi,j|
|Ti,j|

(3.2)

RMSE =

√√√√ 1

N

n,m∑
i,j=1

|Ti,j − Fi,j|2 (3.3)

In the above formulas T is the true data matrix, F the forecasted data matrix, n is the

number of rows in T (number of sensor locations), m the number of columns in T (number

of time points) and N = n ·m is the total number of elements in T. The spatial and

temporal averages of the absolute error (SMAE) and (TMAE) as well as the spatial and

temporal correlations (SCorr) and (TCorr) are computed according to formulas 3.4-3.5

shown below. Where E = |T − F| is the absolute error matrix. The average value of

correlation coefficients across different detectors (rows of T) is used to compute what we

refer to as the spatial correlation. The temporal correlation is computed by reshaping

(vectorizing) T and F into a single vector time series and computing their corresponding

correlations.

TMAE =
1

m

m∑
j=1

Ei,j, SMAE =
1

n

n∑
i=1

Ei,j (3.4)

SCorr =
1

n

m∑
j=1

Corr(Ti,j,Fi,j), TCorr = Corr(Ti,j,Fi,j) (3.5)
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The SMAE and TMAE for the 1-week I-10E, 1-month I-5N, and holiday network data sets

are plotted below in figure 3.7a-3.7f. Our method obtains an average MAE between one to

two miles per hour across all detectors, for weeks/months data, across differing highways

and network of highways. Furthermore, since highway traffic’s unpredictability renders an

absolutely perfect forecast impossible, we plot, in figures 3.7g-i, the probability distribu-

tions of the original and forecasted velocities. It is clear to see the near-perfect matches

between the raw traffic data statistics and our forecasted data statistics. Furthermore,

we can match the distribution of higher velocities with much more accuracy than lower

velocities. Nevertheless, the subplots of the lower velocity distributions demonstrate that

although states of congestion are inherently more unpredictable [Oh+18], our forecasts

match the statistics of the data. This indicates that despite the higher variability be-

lieved to exist within congested traffic, wave-like patterns account for most of the system

dynamics. A similar error analysis for the US-101 highway data set can be referenced

in supplementary figure 25. A complete summary of our error analysis for all highways

studied can be referenced in supplementary table 1.
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Figure 3.7: (3.7a-3.7c) Spatial MAE across detector locations and its average across
all detectors for the I-10, I-5, and Los Angeles network. The SMAE is stable across
different highways and networks of highways and is on average between one to two miles
per hour. (3.7d-3.7f) Temporal MAE and its time average. Again, it is evident that our
method is stable across differing highways and spatial scales and stable across a wide
range of time scales (days, week, month). (3.7g-3.7i) Normalized histograms of highway
velocities for both true and forecasted data sets. The near-perfect matches for low and
high speeds indicate that despite the unpredictability present in a highway system, our
forecasts’ statistics are nearly identical to the real physical system statistics. A complete
summary of the error analysis for all highways can be referenced in supplementary
table 2.
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We can further investigate how the mean absolute error varies for different choices of

(s, f), by simulating for values of sampling and forecasting windows that are multiples of

fifteen minutes. For every choice of (s, f, f) we record the MAE and generate a colormap

for the I-10 highway (figure 3.8a) and the US-101 (figure 3.8b). Intuitively, our error

should increase with longer forecast windows for a fixed sampling rate, a phenomenon

previously observed by others [Oh+18]. The counter-intuitive aspect of figures 3.8a-d is

that for a fixed forecasting window, increasing the sampling window’s size hinders our

forecasts. This is best seen by looking across rows and observing how the error increases.

The results in figure 3.8 suggest that the accurate forecasting of traffic is dependant

on the most current traffic conditions and not necessarily on the historical past. This

indicates that costly training over extensive amounts of historical data is unnecessary

and may hinder the ability to forecast. Although this is directly contrary to what many

researchers believe[Oh+18], it is, in fact, beneficial as it indicates that accurate forecasts

can be obtained efficiently with limited data.

3.4 Forecasting and Analysis of Multi-Lane Network

Highway Traffic Data

This section demonstrates how the KMD can be utilized to analyze and forecast

highway traffic at the multi-lane network scale. We do so by applying the KMD to

highway occupancy data for a network of highways within Los Angeles. The highway

occupancy is a normalization of the highway density by the maximum density of the

highway. We plot below in figure (3.9a) a map, taken from Map data c©2019 Google,

of Los Angeles. The highways studied are highlighted, and a plot of the twenty-four-

hour Koopman modes (figure 3.9b) along with the average phase and magnitude (figure
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Figure 3.8: (3.8a-b) The top row was generated utilizing the MH-DMD algorithm.
(3.8c-d) The bottom row was generated utilizing the DMD algorithm. It is evident that
the Hankel-DMD can provide greater accuracy than a standard DMD analysis. This
is best seen by observing the increase of blue-colored squares in figures 3.8a-b versus
figures 3.8c-d. In both cases, the results of figure 3.8 suggest that traffic forecasting is a
temporally local task and that current and future conditions depend very little on the
historical past. Furthermore, increasing the amount of historical data utilized can hinder
the accuracy of forecasts. This demonstrates the need for intelligent transportation
systems to have sufficient analytic capabilities of detecting dynamic traffic patterns in
real-time and that training over extensive amounts of historical data is not necessary.
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3.9c,3.9d) is also shown. The magenta horizontal lines in figure 3.9d serve to divide the

data corresponding to differing highways.

From the twenty-four-hour mode itself, we can immediately observe that the onset

of congestion occurs in a specific order within the network. Specifically, the I-105W,

I-10W, and I-405N are congested first, then the I-710N followed by the I-110N. One can

conclude this by observing that the (green) areas of congestion for every highway are

staggered; their staggering order reveals the order in which they are congested. The order

of congestion indicated corresponds with the well-known fact that morning traffic travels

in the direction of Los Angeles from San Bernardino County (east to west) and Orange

County (southeast to northwest). This is further verified by observing the near equal

phases for the west and northbound directions coming into LA (figure 3.9c) and the nearly

identical, but opposite, phases for the east and southbound directions leaving LA (figure

3.9i).

Furthermore, figure 3.9d displays the highest level of magnitude within the I-10E

and I-105E highways, indicating that, on a twenty-four-hour basis, traffic congestion is

heaviest along these highways than all others within the network. This is also in line with

the fact that the I-10E and I-105E highways connect LA to Orange and San Bernardino

County. Interestingly, it is the east directions corresponding to the afternoon rushes that

are most heavily congested. This suggests that more vehicles are traveling outside of LA

in the afternoon than the original number of morning commuters entering LA.
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Figure 3.9: (3.9a) Map of the multi-lane network obtained from Map data c©2019
Google. The highways studied are highlighted, and data for three lanes of both
north-south and east-west directions are collected for the entire day of December 20th,
2018. (3.9b) The twenty-four-hour Koopman mode reveals the order of congestion
within the network. Specifically, by observing the staggering of the amplitude, one
can see that during the morning rush, the westbound I-105 and I-10 along with the
northbound I-405 and I-110 jam first. In the afternoon, traffic switches directions, and
it is the eastbound and southbound directions of the previously mentioned highways
which are jammed. This corresponds with the well-known fact the morning commuters
generally travel from San Bernardino (east to west) and Orange County (southeast to
northwest) into Los Angeles. (3.9c) A plot of the average phase of the mode sorted
by highway confirming the previously mentioned synchrony of congestion. Specifically,
the north and west directions seem to be in phase with each other and likewise for the
south and east directions. (3.9d) The magnitude of the twenty-four-hour mode along
with magenta-colored lines used to divide the differing highways. The magnitude of
the mode reveals that the eastbound I-10 and I-105 highways are more occupied than
the other highways.
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Lastly, we forecast the highway occupancy data for the above-mentioned multi-lane

network of highways within Los Angeles. Again, we utilize the last fifteen minutes to

forecast the next fifteen minutes and visualize our results as a video, which can be

referenced in the supplementary video 15. We plot below snapshots from the multi-lane

network forecast video for the morning (figure 3.10a-b) and afternoon (figure 3.10c-d)

rush hours. The forecasted and real traffic conditions at 5:45 am, and 6:00 pm are shown.

For every plot within figure 3.10, the top and bottom horizontal highways correspond

to the (I-10E, I-10W), and (I-105E, I-105W), respectively. The Left, center, and right

vertical highways correspond to the (I-405S, I-405N), (US-110S, US-110N), and the (I-

710S, I-710N), all of these highways are highlighted within figure 3.9a. Both morning

and afternoon forecasts demonstrate a high level of similarity with the real conditions.

However, the forecasts were available between five to fifteen minutes before the actual

conditions occurring. The corresponding error analysis, shown in figures 3.10e-3.10g,

validates that our forecasts remain accurate over the entire day. We encourage the reader

to view the whole video of the forecasting results for the Los Angeles multi-lane network,

which is available online in supplementary video 15.
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Figure 3.10: For every plot within figure 3.10a-3.10d the top and bottom horizontal
highways correspond to the I-10, and I-105, respectively. The Left, center, and right
vertical highways correspond to the I-405, I-110, and I-710. (3.10e and 3.10f) Plots of
the spatial and temporal mean absolute errors indicating that, on average, we obtain
an error of two percent occupancy. The highway occupancy is a measure corresponding
to the highway density’s normalization by the maximum density of the highway. (3.10g)
Histogram of the raw and forecasted data sets indicating that our forecasts’ probability
density functions match the statistics of the system. We encourage the reader to
reference the complete video of the forecasts available online in supplementary video
15.
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Chapter 4

Pull-Back Operator Methods in

Dynamical Systems

In this chapter, we consider the induced group of linear operators acting on the space of

sections of the tangent, kth cotangent, and general tensor bundle of the state space. To

the author’s knowledge, prior results exist primarily for the operators that act on sections

of the tangent bundle. In some instances, these results can be related to the equivalent

operators acting on differential one-forms by duality. However, the operators acting on

higher-order forms or arbitrary tensor fields, to our knowledge, have not been previously

investigated. The one exception to this is the Ruelle-Perron-Frobenius operator acting on

densities, which is equivalent to the space of generalized top-degree differential forms.

4.1 The Pull-Back Groups of a Dynamical System

In this section, we will convince the reader that the induced group of operators

on sections we consider are natural generalizations of the standard Koopman group of

operators on functions. The fundamental insight lies in understanding the connection
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between the differential geometric concepts of pulling back objects (functions, vector fields,

covector fields, tensor fields) under a diffeomorphism and how their pull-back relates to

the Lie derivative of that object.

4.1.1 The General Setting

We first provide the setting in a general form to illustrate the idea. We begin by

collecting some relevant definitions and results.

Vector Bundles

Definition 4.1.1. Let E and F be vector spaces with U an open subset of E. The

Cartesian product U × F is said to be a local vector bundle. The space U is said

to be the base space, which can be identified with U × {0} called the zero section.

Furthermore, for u ∈ U , {u} × F is said to be the fiber of u, which inherits the vector

space structure of F . Lastly, the map π : U × F → U given by π(u, f) = u is said to be

the projection map of U × F .

Definition 4.1.2. Let S be a set. A local bundle chart of S is a pair (W,α) where

W ⊂ S and α : W → U × F is a bijection onto a local bundle. A vector bundle atlas

on S is a family B = {(Wi, αi)} of local bundle charts satisfying

1. S =
⋃
{Ui}

2. B covers S

3. For any two local bundle charts (Wi, αi) and (Wj, αj) in B with Wi

⋂
Wj 6= ∅,

αi(Wi

⋂
Wj) is a local vector bundle map, and the transition map γji = αj ◦ α−1

i

restricted to αi(Wi

⋂
Wj) is a C∞ local vector bundle isomorphism.
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Definition 4.1.3. If B1 and B2 are two vector bundle atlases on S, they are said to be

equivalent if B1

⋃
B2 is also a vector bundle atlas.

Definition 4.1.4. An equivalence class of vector bundle atlases on a set S is said to be a

vector bundle structure.

Definition 4.1.5. Let S be a set and V a vector bundle structure on S. A vector bundle,

denoted by E, is a pair (S,V).

Definition 4.1.6. For a vector bundle E = (S,V) the zero section or base is defined

by

B = {e ∈ E| there exists (W,α) ∈ V and u ∈ U with e = α−1(u, 0)}

Essentially, B is the union of all the zero sections of the local vector bundles.

Theorem 4.1.1. Let E be a vector bundle. The base B of E is a submanifold of E there

is a surjective and C∞ map π : E → B said to be the projection map. For each b ∈ B,

π−1(b), is said to be the fiber over b, and has a vector space structure.

Proof: See [AMR83] page 139.

Due to the properties mentioned in theorem 4.1.1 one typically denotes a vector bundle

by π : E → B in place of E = (S,V) and if the base and projection map are understood

then the vector bundle is simply denoted by E. We will use this convention throughout

and also denote the fiber over b as Eb.

Definition 4.1.7. Let U×E and U ′×E ′ be local vector bundles. A map g : U×E → U ′×

E ′ is said to be a Cr local vector bundle map if it has the form g(u, e) = (g1(u), g2(u)·e)

where g1 : U → U ′ and g2 : U → L(E,E ′) are Cr. Where L(E,E ′) represents the space

of linear transformations from E to E ′. If g is a bijection then g is said to be a local

vector bundle isomorphism.
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Definition 4.1.8. Let E and E ′ be two vector bundles. A map g : E → E ′ is said to be

a Cr vector bundle mapping if for each e ∈ E and each local bundle chart (V, ψ) of

E ′ for which g(e) ∈ V there is a local bundle chart (W,φ) with g(W ) ⊂ V such that the

ψ ◦ g ◦ φ−1 is a Cr local vector bundle mapping. If ψ ◦ g ◦ φ is a Cr local vector bundle

isomorphism then g is said to be a vector bundle isomorphism.

Proposition 4.1.1. Let E and E ′ be two vector bundles and let f : E → E ′ be a vector

bundle map. Then

1. f preserves the zero section: f(B) ⊂ B.

2. f induces a unique mapping fB : b→ B′ such that π′ ◦ f = fB ◦ π.

3. A smooth map g : E → E ′ is a vector bundle map if and only if there is a smooth

map gB : B → B′ such that π′ ◦ g = gB ◦ π and g restricted to each fiber is a linear

continuous map into a fiber.

Proof: See [AMR83] page 142.

Definition 4.1.9. A vector bundle map g : E → E such that π′ ◦ g = gB ◦ π is said to

cover gB.

Definition 4.1.10. Let E be a vector bundle and t ∈ R or Z. A vector bundle flow is

a pair one-parameter group (St,St) for which St is a vector bundle map which covers a

flow St on B for every t.

Definition 4.1.11. Let E be a vector bundle and U ⊂ B an open set. A map f : U → E

such that for each b ∈ U , π ◦ f(b) = b is said to be a local section of E. If U = B then

f is called a global section or simply a section of E.

Definition 4.1.12. The vector space of sections, denoted Γ(E) on a vector bundle E will

be called the space of sections of E.
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The Group of Operators Induced By a Vector Bundle Flow

Let (M, E, π) denote a continuous complex vector bundle with linear fibers (each

fiber is a linear vector space) defined over a compact metric spaceM. Let t ∈ R or Z

and (St,St) be a vector bundle flow of automorphisms of E. By defining a Finsler

metric |·| on E one induces a norm ‖·‖ on each fiber Ex. In this setting, the space of

continuous complex sections Γ(E) forms a Banach space with norm ‖F‖ = supx∈M|F(x)|

for F ∈ Γ(E). By compactness ofM, the topology of Γ(E) is independent of the choice

of a specific Finsler metric. The vector bundle flow (St,St) naturally induces a C0-group,

denoted St∗, of bounded linear operators acting on Γ(E) defined for G(x) ∈ Γ(E), as

follows:

St∗G(x) = S−t ◦G ◦ St(x) (4.1)

with t ∈ R or Z. When t ∈ R, the infinitesimal generator of the group, again denoted by

L, is given by:

LF =
d

dt

∣∣∣
t=0
St∗F (4.2)

In this work we consider the case when the base of E is either a smooth manifold

M or a smooth Riemannian manifold (M, g) and in particular is the state space of a

discrete-time or continuous-time dynamical system. In the case of a Riemannian manifold,

the metric g(·, ·) provides the fiber-wise norm; otherwise, we rely on a properly defined

Finsler metric as previously described. As in chapter 2, in the continuous-time case, we

will only consider a dynamical system StF, which is generated by a complete C1 vector

field F ∈ X(TM). In this case, the vector bundle flow (St,St) is provided by the tangent

flow generated by StF namely, (StF,S
t
F) = (StF,∇StF). The specific choice of fibers (tangent

spaces, cotangent spaces, tensor spaces) of E will lead to the various induced operators

we describe in the following sections. We will first consider the induced operators on
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sections of the tangent bundle.

4.1.2 The Induced Operators on Sections of the Tangent Bundle

The Tangent Bundle of M

Definition 4.1.13. Let M be a manifold and m ∈ M. A curve at m is a C1 map

c : I →M from an interval I ⊂ R intoM with 0 ∈ I and c(0) = m. Let c1 and c2 be two

curves at m and (U, α) a chart with m ∈ U . Then it is said that c1 and c2 are tangent

at m with respect to α if and only if (α ◦ c1)′(0) = (φ ◦ c2)′(0).

Definition 4.1.14. The tangent space toM at m is the set of equivalence classes of

curves at m:

TmM = {[c]m| c is a curve at m}

Furthermore, the tangent bundle ofM, denoted TM is defined as TM =
⊔
m∈M TmM.

The mapping πm : TM → M defined by πM([c]m) = m is called the tangent bundle

projection map ofM.

Definition 4.1.15. LetM be a manifold, and TM the tangent bundle. A vector field

is a section of TM. The space of sections of the tangent bundle of a manifold will be

denoted X(TM)

The Induced Group of Operators

Let the vector bundle E be the tangent bundle TM of the manifold M. In this

setting the operator St∗ : X(TM)→ X(TM) induced by a continuous or discrete-time
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dynamical system has the following explicit form.

St∗F G(x) = ∇S−tF |St(x) ·G ◦ StF(x) (4.3)

with t ∈ R or Z. The fact that we have labeled the operator with a superscript ∗ is

indicative of the fact that the operator corresponds to the differential geometric concept

of a pull-back operation.

Definition 4.1.16. Let f : M → N be a diffeomorphism and G ∈ X(TN ). The

pull-back, denoted by f ∗, of G by f is defined as

f ∗G(x) = (∇f)−1 ·G ◦ f(x) ∈ G ∈ X(TM) (4.4)

and the push-forward is defined as

f∗G(x) = ∇f ·G ◦ f−1(x) ∈ G ∈ X(TN ) (4.5)

It should be clear to see that a similar story to that of chapter 2 is unfolding. Namely,

if the mapping f is the flow of a dynamical system, the pull-back of G(x) by f is precisely

the action of the induced group of operators on sections of TM. Thus, the induced group

of operators St∗ of a dynamical system can equivalently be called the induced pull-back

group of operators on sections of the tangent bundle. Similarly, one can also define the

differential geometric concept of a Lie derivative operator on vector fields.

Definition 4.1.17. Let G,F ∈ X(TM) and LF,LG : C(M,F) → C(M,F) be the

associated Lie derivative operators acting on functions. The Lie derivative, denoted
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LFG, of G said to be along or in the direction of F is defined as

LFG = LFLG − LGLF (4.6)

Theorem 4.1.2. Let G,F ∈ X(TM). The lie derivative of G in the direction of F can

be computed as

LFG(x) = ∇G(x) · F(x)−∇F(x) ·G(x) (4.7)

Proof: See [AMR83] pages 223-224.

As expected the the C0-group of pull-back operators St∗ are related to the Lie derivative

operators.

Theorem 4.1.3. Let G,F ∈ X(TM) and denote by StF the flow generated by F. Then

d

dt

∣∣∣
t=0
St∗F G(x) = LFG(x) (4.8)

Proof: See [AMR83] page 220.

4.1.3 The Induced Operators on Sections of the the kth Cotan-

gent Bundle

As mentioned, we will also consider the induced operators on sections of the kth

cotangent bundle. These spaces correspond to differential forms which are themselves

covariant tensor fields with certain properties. Since we will also propose the study of the

induced operators on sections of tensor bundles, we will set the stage in the framework of

tensor fields and recover the differential forms case along the way.

77



Pull-Back Operator Methods in Dynamical Systems Chapter 4

Tensor Bundles

Throughout the next set of definitions, E and F will be vector spaces, and E ′ F ′ will

denote their dual space. The space of all linear mappings from E to a space F will be

denoted L(E;F ).

Definition 4.1.18. For a vector space E let T rs (E) = Lr+s(

r︷ ︸︸ ︷
E∗, · · · , E∗,

s︷ ︸︸ ︷
E, · · · , E;R).

The elements of T rs (E) are called tensors on E of contravariant order r and covariant

order s; or simply of type
(
r
s

)
.

Definition 4.1.19. Given t1 ∈ T r1s1 (E) and t2 ∈ T r2s2 (E) their tensor product is the

tensor t1 ⊗ t2 ∈ T r1+r2
s1+s2 (E) defined as

t1 ⊗ t2(β1, · · · , βr1 , γ1, · · · , γr2 , f1, · · · , fs1 , g1, · · · , gs2) =

t1(β1, · · · , βr1 , f1, · · · , fs1)t2(γ1, · · · , γr2 , g1, · · · , gs2)

(4.9)

Definition 4.1.20. The interior product, denoted ι, of a vector v ∈ E or a linear

functional β ∈ E ′ with a tensor t ∈ T rs (E) is a
(
r
s−1

)
or
(
r−1
s

)
type tensor, respectively,

defined by

ιvt(β
1, · · · , βr, v1, · · · , vs−1) = t(β1, · · · , βr, v, v1, · · · , vs−1)

ιβt(β1, · · · , βr−1, v1, · · · , vs) = t(β, β1, · · · , βr−1, v1, · · · , vs)
(4.10)

Definition 4.1.21. If f : E → F is a linear mapping the pull-back mapping, denoted

f ∗∗ ∈ L(T 0
s (E), T 0

s (F )), of f is defined as

f ∗∗t(e1, · · · , es) = t(f(e1), · · · , f(es)) (4.11)

where t ∈ T 0
s (F ). When f is an isomorphism the push-forward mapping, denoted
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f∗∗ ∈ L(T rs (F ), T rs (E)), of f is defined as

f∗∗t(β
1, · · · , βr, e1, · · · , es) = t(f̃(β1), · · · , f̃(βr), f−1(e1), · · · , f−1(es)) (4.12)

for t ∈ T rs (F ). Where f̃ : F ′ → E ′ is the adjoint of f .

Definition 4.1.22. If f : U ×F → U ′×F ′ is a local vector bundle mapping such that for

each u ∈ U , fu is an isomorphism, then let f loc∗ : U × T rs (F )→ U ′× T rs (F ′) be defined as

f loc∗ (u, t) = (f0(u), (f0)∗∗t) (4.13)

where t ∈ T rs (F ). We call the mapping f loc∗ a local tensor bundle mapping

Definition 4.1.23. Let (B,E, π) be a vector bundle and Eb = π−1(b) the fiber over b ∈ B.

Define the bundle of type
(
r
s

)
tensors of E as T rs (E) = ∪b∈BT rs (Eb)

Definition 4.1.24. If (B,E, π) and (B′, E ′, π′) are two vector bundles and (f, f0) : E →

E ′ is a vector bundle isomorphism for every b ∈ B then define the tensor bundle

isomorphism f glo∗ : T rs (E)→ T rs (E ′), as f glo∗ |T rs (Eb) = (fb)
loc
∗

The Tensor Bundle of M

Definition 4.1.25. LetM be a manifold. The tensor bundle T rs (M) is called the tensor

bundle of contravariant order r and covariant order s; or simply of type
(
r
s

)
.

Definition 4.1.26. A tensor field of type
(
r
s

)
onM is a smooth section of the tensor

bundle T rs (M). The space of smooth sections of T rs (M) is denoted T rs (M)

Definition 4.1.27. The algebra of tensor fields onM, denoted T (M), is direct sum

T 0
0 (M)⊕ T 0

1 (M)⊕ T 1
0 (M)⊕ · · · (4.14)
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together with the vector space structure of each T ji (M) and the tensor product ⊗.

Definition 4.1.28. If f : M → N is a diffeomorphism and t ∈ T rs . The pull-back,

denoted f ∗t, of t ∈ T rs (M) by f is defined as

f ∗t = (∇f−1)glo∗ ◦ t ◦ f(x) (4.15)

the push-forward, denoted f∗t, of t ∈ T rs (F ) by f is defined as

f∗t = (∇f)glo∗ ◦ t ◦ f−1(x) (4.16)

Exterior Forms

Definition 4.1.29. Let σ ∈ Sk where Sk denotes the permutation group on k elements.

A covariant tensor t ∈ T 0
k is called skew symmetric if

t(e1, · · · , ek) = sign(σ)t(eσ(1), · · · , eσ(k)) (4.17)

Definition 4.1.30. The subspace of skew symmetric elements of T 0
k (E) is denoted Λk(E)

and the elements are called exterior k-forms.

Definition 4.1.31. The Alternation mapping Alt: T 0
k (E)→ T 0

k (E) is defined as

Alt t(e1, · · · , ek) =
1

k!

∑
σ∈Sk

sign(σ)t(eσ(1), · · · , eσ(k)) (4.18)

Definition 4.1.32. If α ∈ T 0
k (E) and β ∈ T 0

l (E) their wedge product denoted α∧β ∈

Λk+l(E) is defined as

α(x) ∧ β(x) =
(k + l)!

k!l!
Alt(α(x)⊗ β(x)) (4.19)
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The kth Cotangent Bundle of M

Definition 4.1.33. The tensor bundle T 0
s (M) is called the cotangent bundle of M

and is denoted T ∗M.

Definition 4.1.34. A covector field or differential one-form or cosection is an

element of T 0
1 (M).

Definition 4.1.35. The vector bundle of exterior k-forms on the tangent spaces ofM is

called the kth cotangent bundle ofM.

Definition 4.1.36. A differential k-form is a section of the kth cotangent bundle of

M. The space of smooth sections of the kth cotangent bundle will be denoted Ωk(T
∗M).

The Induced Group of Operators

As before, we consider the case of of a discrete-time or continuous-time dynamical

system generating a vector bundle flow (St,St) = (St,∇St), t ∈ R or Z on a smooth

manifoldM or Riemannian manifold (M, g). Let v1, · · · ,vs be a collection of s tangent

vectors at x ∈ M. The induced group of operators on the space of differential k-forms

St∗ : Ωk(T
∗M)→ Ωk(T

∗M) have the following form

St∗α(x)(v1, · · · ,vk) = α ◦ St(x)(∇St|x · v1, · · · ,∇St|x · vs) (4.20)

As in the case of functions and vector fields these operators also correspond to a pull-back

operation.

Definition 4.1.37. If f :M→ N is a mapping, t ∈ T 0
s and {v1, · · · ,vs} a collection

of s tangent vectors at the point x. The pull-back, denoted f ∗t, of t ∈ T 0
s (F ) by f is

defined as

f ∗t(x)(v1, · · · ,vs) = t ◦ f(x)(∇f |xv1, · · · ,∇f |xvs) (4.21)
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The notion of a Lie derivative can also be defined for a one-form and from there used

to build the definition for a higher order form or arbitrary tensor for that matter.

Definition 4.1.38. Let F ∈ X(TM) and α(x) ∈ Ω1(T
∗M). The Lie Derivative,

denoted LFα said to be along or in the direction of F is defined as follows

LFα(x) = Fᵀ(x) · (∇αᵀ(x))ᵀ +α(x) · ∇F(x) (4.22)

Definition 4.1.39. Let F,G1, · · · ,Gs ∈ X(TM), α1, · · · ,αr ∈ Ω1(T
∗M) and t ∈

T rs (M). The Lie Derivative, denoted LFt said to be along or in the direction of F

can be shown to have the following form

(LFt)(x)(α1(x), · · · ,αr(x),G1(x), · · · ,Gs(x))

= LFt(x)(α1(x), · · · ,αr(x),G1(x), · · · ,Gs(x))

+
r∑
i=1

t(x)(α1(x), · · · ,LFαi(x), · · · ,αr(x),G1(x), · · · ,Gs(x))

+
s∑
i=1

t(x)(α1(x), · · · ,αr(x),G1(x), · · · ,LFGi(x), · · · ,Gs(x))

(4.23)

The relationship between the Lie derivative of functions and vector fields to their

respective pull-backs can be shown to also hold for an arbitrary tensor field.

Theorem 4.1.4. Let F ∈ X(TM) and t ∈ T rs (M) and denote by StF the flow generated

by F. Then
d

dt

∣∣∣
t=0
St∗F t(x) = LFt(x) (4.24)

Proof: See [AMR83] pages 304-306.
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4.2 Background & History

We now summarize prior works on the operator on sections of the tangent bundle.

Again, to our knowledge, besides the Ruelle-Perron-Frobenius operator, only the operator

on sections of tangent bundle has been previously studied. By no means is this section an

exhaustive literature review, nor is it our intention to be one. The history we provide, we

hope, will convince the reader of the fruitfulness of studying the spectrum of the induced

operators beyond the well known Koopman operator.

4.2.1 A New Spectral invariant

The earliest results, to our knowledge, can be traced back to the works of John

Mather [Mat68] who utilized the spectrum of the induced group of operators on the

space of continuous sections of the tangent bundle to characterize the hyperbolicity of a

discrete-time diffeomorphism.

Definition 4.2.1. A discrete-time dynamical system (M, S) is said to be Anosov or

hyperbolic if there exists two subbundles ES and Eu such that

1. The tangent bundle ofM splits as a continuous Whitney sum TM = Es ⊕ Eu.

2. For every positive integer n and for some Riemannian metric g:

‖∇Snv‖g ≥ a · eλn‖v‖g, ‖∇S−nv‖g ≤ b · e−λn‖v‖g, if v ∈ Eu

‖∇Snv‖g ≤ b · e−λn‖v‖g, ‖∇S−nv‖g ≥ a · eλn‖v‖g, if v ∈ Es

(4.25)

The constants a, b, λ are positive and independent of n and v but a and b depend on the

metric g. The subbundle Eu is said to be the unstable subbundle and the subbundle

Es is said to be the stable subbundle.
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Definition 4.2.2. An operator Q is said to be hyperbolic if it contains no eigenvalues

of modulus 1.

Specifically, Mather showed that a discrete-time dynamical system S : M → M is

Anosov if and only if 1− S∗ : X(TM)→ X(TM) is an automorphism or, equivalently,

the spectrum of S∗ contains no eigenvalues of modulus 1. Mather’s result provides a

characterization of a diffeomorphism’s hyperbolicity entirely in terms of the "hyperbolicity"

of S∗.

To fully appreciate Mather’s result, recall that the Koopman operator’s spectrum

on functions encoded many dynamic properties of a dynamical system (ergodicity, weak

mixing, mixing) referred to as the spectral invariants. Furthermore, recall that a measure-

preserving system induces a group of unitary operators on the space L2(M, µ). As

such, the spectrum of the induced operator in functions is restricted to the unit circle.

What Mather’s result shows is that by considering the induced operator on the space of

continuous sections of the tangent bundle, one arrives at a new spectral invariant which

is not a spectral invariant of the induced operator on functions, namely hyperbolicity.

Mather’s result has since been extended in several directions. For a measure-preserving

system one can define an inner product on X(TM) as

〈F(x),G(x)〉 =

∫
M
g(F(x),G(x))dµ. (4.26)

Let X(TM) be the space of continuous sections of the tangent bundle. The completion

of X(TM) under the the induced norm is the space of square-integrable sections denoted

X2(TM). Carmen Chicone and Richard Swanson (C&S) have shown the following

Theorem 4.2.1.
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1. For a measure-preserving, discrete-time dynamical system

σ(S∗,X(TM)) = σ(S∗,Xp(TM)) (4.27)

2. For a measure-preserving, continuous-time dynamical system , if the non-periodic

points are dense then

eσ(L,X2(TM))t = σ(St∗,X2(TM)) (4.28)

3. For a continuous-time dynamical system

eσ(L,X(TM))t = σ(St∗,X(TM)) (4.29)

Proof: See [CS80]

Definition 4.2.3. The operator L is said to be infinitesimally hyperbolic if it is

invertible equivalently, if it has no eigenvalues with zero real part.

By well known results in semigroup theory the following spectral inclusion e(σ(LF)t) ⊆

σ(St∗F ) holds for an arbitrary C0-semigroup [HPS08]. From this one can see that hy-

perbolicity implies infinitesimal hyperbolicity. A corollary of part 1 of theorem 4.2.1 is

that the spectral invariant of hyperbolicity carries over when working in the space of

square-integrable sections. A corollary, of parts 2 and 3 of Theorem 4.2.1 is that the

flow StF is hyperbolic if and only if the generator LF is infinitesimally hyperbolic on

X(TM/[F]) or X2(TM/[F]). C&S strengthen the result in [CS81b] where they prove the

following,

Theorem 4.2.2 (Annular Hull Theorem). The annular hull denoted A, of a set of

complex numbers, consists of the disjoint union of all circles centered at the origin which
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intersect the set.

e(σ(LF)t) ⊆ σ(St∗F ) ⊆ A(e(σ(LF)t)) (4.30)

The significance of the result is that while the spectrum of LF may not always

exponentiate to the spectrum of St∗ the infinitesimal hyperbolicity of LF does exponentiate.

Furthermore, since one does not need to know the flow StF to compute the spectrum of LF,

the infinitesimal hyperbolicity condition provides an unintegrated condition for showing a

flow is hyperbolic. C&S exploit this to show that normal hyperbolicity, in the sense of

Hirsch, Pugh, and Shub [HPS77], can be determined from spectral properties of LF.

Definition 4.2.4. Let H1(TM) denote the Sobolev space of sections of the tangent bundle

with one square-integrable weak derivative. A discrete-time dynamical system S is said to

be infinitesimally ergodic if the operator S∗ − 1 : H1(TM) → H1(TM) has a dense

range.

The concept of infinitesimal ergodicity was introduced for discrete-time dynamical

systems by J. Robbin [Rob72] who proves that infinitesimally ergodic implies ergodic.

C&S have extended this result to continuous-time dynamical systems. They utilize this to

show that the geodesic flow on a compact Riemannian manifoldM of constant negative

curvature is hyperbolic and ergodic by showing that LG is invertible and infinitesimally

ergodic [CS81c], where G ∈ X(T 2M) is the geodesic spray. Although it was well-known

[AA68] that the geodesic flow on a Riemannian manifold of negative curvature was Anosov

and ergodic the original proofs were somewhat involved. The fact that these results

followed from spectral properties of the induced operators, we hope, illustrates their value.

For other results on these operators, we refer the reader to [CS81d; CS81a; Mañ77; Kre19;

Sei20; Yan91; Guc72]
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4.2.2 Notation & Terminology

We first fix the notation and terminology for this chapter.

1. The word section will be reserved for sections of the tangent bundle and will thus be

synonymous with the word vector field. The two words will be used interchangeably

in a few cases, but section will be the preferred choice.

2. The word cosection will be reserved for differential one-forms, and all higher-order

forms will be referred to as differential k-forms. If a statement is made for k-forms

without explicitly specifying k, it also regards the k = 1 case.

3. As before, The flow of a continuous-time dynamical system will be denoted StF

and will be generated by a vector field F(x). The transformation generating a

discrete-time dynamical system will be denoted by the mapping S and its iterates

Sn.

4. When speaking of eigenvalues/eigenfunctions/eigensections/eigenforms of a dynami-

cal system that is not specified we mean the the spectrum of the dynamics generated

by F(x) or S(x).

5. The Koopman group of operators on functions will be denoted by its usual symbol

U t
F, t ∈ R or Un

S , n ∈ Z. The pullback group of operators on sections will be denoted

by V t
F, t ∈ R or V n

S , n ∈ Z. The pullback group of operators on differential forms

(of all degrees) will be denoted W t
F, t ∈ R or W n

S , n ∈ Z. The subscript denotes the

vector field or transformation that is inducing the operator.

6. In terms of the infinitesimal generators, they will all be referred to as the Lie

derivative operator, sometimes Lie bracket in the case of sections and sometimes

Koopman generator in the case of functions. They will all be denoted as L and
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the specific type of Lie derivative operator will be clear from the object it is acting

on.

7. The symbol ψ(x) ∈ C(M,F) will be reserved for eigenfunctions of U t
F. The

symbol Φ(x) ∈ X(TM), will be reserved for eigensections of V t
F. The symbols

ω(x) ∈ Ω1(T ∗M) will be reserved for eigencosections and α(x) ∈ Ωk(T ∗M) will be

reserved for eigen k-forms of W t
F respectively.

8. The symbol λ will always denote the eigenvalue of an operator. If the eigenvalues of

several operators appear in a single statement the symbols λψ, λΦ and λω (or λα)

will be used to distinguish between the eigenvalues of U t
F, V t

F and W t
F, respectively.

9. As in chapter 2, we allow the reader to infer from the context what additional

structure the spaces C(M,F ),X(TM),Ω(T ∗M) should or could have. For example,

when we speak of the infinitesimal generators, which are first-order differential

operators, we assume the functions/sections/forms are at least C1-differentiable.

On the other hand, when speaking of the group itself, the functions/sections/forms

need not be differentiable nor even continuous.

4.3 Connections Amongst the Induced Operators

Perhaps the most immediate curiosity that might come to one’s mind is determining

how the spectrum of U t, V t, and W t relate to each other. For example, can knowledge of

one operator’s spectrum help determine or generate more spectral quantities of another?

This section is devoted to answering such questions and finding the interplay between the

various operators’ spectrum. Many of the results will follow naturally from well-known

differential geometric concepts.
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4.3.1 Lie Derivatives of Eigenfunctions & Eigenforms

One might ask if the eigenfunctions of U t
F are preserved under Lie differentiation in

the direction of an eigensection Φ(x) of V t
F and indeed this turns out to be true as the

first part of proposition 4.3.1 shows.

Proposition 4.3.1. For a continuous-time or discrete-time dynamical system, let ψi(x)

be an eigenfunction, Φj(x) an eigensection. Then

1. in the continuous-time case, LΦj
ψi(x) is also an eigenfunction of the Koopman

generator at eigenvalue λψi + λΦ
j equivalently, at eigenvalue e(λψi +λΦ

j )t for U t
F.

2. in the discrete-time case, LΦj
ψi(x) is also an eigenfunction of US at eigenvalue

λψi + λΦ
j .

3. If the eigenspace corresponding to ψ(x) is one-dimensional and λΦ = 0 then ψ(x) is

also an eigenfunction of LΦj
and U t

Φj
.

Proof: The following formula will be useful when showing the above result holds for

the groups.

∇S−tF |StF(x)(Φj ◦ StF(x)) = eλ
Φ
j tΦj(x) ⇐⇒ (Φj ◦ StF(x)) = eλ

Φ
j t∇StF|xΦj(x) (4.31)

and

∇S−1|S(x)(Φj ◦ S(x)) = λΦ
j Φj(x) ⇐⇒ (Φj ◦ S(x)) = λΦ

j ∇S|xΦj(x) (4.32)
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For the first claim, in the continuous-time case, we have

LFLΦj
ψi(x) = L[F,Φj ]ψi(x) + LΦj

LFψi(x)

= LλΦ
j Φj

ψi(x) + λψi LΦj
ψi(x)

= (λΦ
j + λψi )LΦj

ψi(x)

(4.33)

for the generator and for the group we have

U t
FLΦj

ψi(x) = (Φᵀ
j (x) · (∇ψi(x))ᵀ) ◦ StF(x)

= Φᵀ
j (S

t
F(x)) · (∇ψi(StF(x)))ᵀ

= eλ
Φ
j tΦᵀ

j (x)(∇StF|x)ᵀ · (∇ψi(StF(x)))ᵀ

= eλ
Φ
j tΦᵀ

j (x) · ( ∂
∂x

(ψ ◦ StF(x)))ᵀ

= eλ
Φ
j tΦᵀ

j (x) · eλ
ψ
i t(

∂

∂x
ψ(x))ᵀ

= eλ
Φ
j teλ

ψ
i tΦᵀ

j (x) · (∇ψ(x))ᵀ

= e(λψi +λΦ
j )tLΦj

ψi(x)

(4.34)

In the discrete-time case we have

USLΦj
ψi(x) = (Φᵀ

j (x) · (∇ψi(x))ᵀ) ◦ S(x)

= Φᵀ
j (S(x)) · (∇ψi(S(x)))ᵀ

= λΦ
j Φᵀ

j (x)(∇S|x)ᵀ · (∇ψi(S(x)))ᵀ

= λΦ
j Φᵀ

j (x) · ( ∂
∂x

(ψ ◦ S(x)))ᵀ

= λΦ
j Φᵀ

j (x) · λψi (
∂

∂x
ψ(x))ᵀ

= λΦ
j λ

ψ
i Φᵀ

j (x) · (∇ψ(x))ᵀ

= (λψi λ
Φ
j )LΦj

ψi(x)

(4.35)
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For the proof of the second claim observe that since λΦ = 0, then

LFLΦj
ψi(x) = λψi LΦj

ψi(x)

This means that LΦj
ψi(x) is an eigenfunction of LF at λψi . However, since the eigenspace

corresponding to (λψi , ψi(x)) is one-dimensional LΦj
ψi(x) must be a scalar multiple of

ψi(x). In other words, LΦj
ψi(x) = λ̃ψi(x) for some λ̃ ∈ C. The same argument can be

repeated to show the claim also holds for U t
Φ.

Now, since functions are technically forms of degree zero it is plausible to expect

that the contents of proposition 4.3.1 (or most results involving eigenfunctions) holds for

differential k-forms.

Proposition 4.3.2. For a continuous-time or discrete-time dynamical system, let Φj(x)

be an eigensection and αk(x) be an eigen k-form. Then,

1. in the continuous-time case, LΦj
αk(x) is also an eigen k-form of LF at eigenvalue

λΦ
j + λαk equivalently, at eigenvalue e(λΦ

j +λαk )t for W t
F.

2. in the discrete-time case, LΦj
αk(x) is also an eigen k-form of US at eigenvalue

λΦ
j λ

α
k .

3. If the eigenspace corresponding to αk(x) is one dimensional and λΦ = 0 then αk(x)

is also an eigen k-form of LΦj
and W t

Φj
.

Proof: For the first claim, we make us of the fact that

LFLΦj
αk(x) = L[F,Φj ]αk(x) + LΦj

LFαk(x) (4.36)

also holds for a differential k-form, see [AMR83] page 366. The rest of the calculation is

the same as in 4.3.1
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For the group we will make use of the fact that

g∗LFαk(x) = Lg∗Fg∗αk(x) (4.37)

holds for a diffeomorphism g :M→M, see [AMR83] page 372. Thus,

W t
FLΦj

αk(x) = St∗FLΦj
αk(x)

= LSt∗F Φj
St∗Fαk(x)

= L
e
λΦ
j
t
Φj

eλ
α
k tαk(x)

= e(λΦ
j +λαk )tLΦj

αk(x)

(4.38)

The argument for the second claim is the same as in proposition 2.1.2.

4.3.2 Interior Products of Eigenforms and Eigensections

We now consider how an eigenform ω(x), in the presence of an eigensection Φ(x),

can lead to a new eigenform. Specifically, we consider ιΦj
ω(x) where ιG : Ωk(T ∗M)→

Ωk−1(T ∗M) for G ∈ X(TM) is the interior product.

Proposition 4.3.3. For a continuous-time or discrete-time dynamical system, let Φi(x)

be an eigensection and αj(x) be an eigen k-form. Then

1. in the continuous-time case, ιΦi
αj(x) is an eigen (k − 1)-form of LF at eigenvalue

λΦ
i + λαj equivalently, at eigenvalue e(λΦ

i +λαj )t of W t
F.

2. in the discrete-time case, ιΦi
αj(x) is an eigen (k − 1)-form of at eigenvalue λΦ

i λ
α
j

of WS.
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Proof: In the continuous-time case, we make use of the fact that

LFιG − ιFLG = ιLFG (4.39)

holds for F,G ∈ X(TM), see [AMR83] page 366. Thus, for the generator, we have that

LFιΦi
αj(x) = ιLFΦi

αj(x) + ιΦi
LFαj(x)

= λΦ
i ιΦi

αj(x) + λ
αj
j ιΦi

αj(x)

= (λΦ
i + λ

αj
j )ιΦi

αj(x).

(4.40)

For the group we make use use of the fact that

g∗ιΦi
αj(x) = ιg∗Φi

g∗αj(x) (4.41)

holds for a diffeomorphism g :M→M, see [AMR83] page 364. Thus, we have that

W t
FιΦi

αj(x) = St∗F ιΦi
αj(x)

= ιSt∗F Φi
St∗Fαj(x)

= ι
eλ

Φ
i
tΦi
eλ
α
j tαj(x)

= e(λΦ
i +λαj )tιΦi

αj(x).

(4.42)

In the discrete-time case we have

WSιΦi
αj(x) = S∗ιΦi

αj(x)

= ιS∗FΦi
S∗Fαj(x)

= ιλΦ
i Φi

λαj αj(x)

= λΦ
i λ

α
j ιΦi

αj(x).

(4.43)
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Proposition 4.3.3 demonstrates how an eigensection and an eigen k-form can be used

to generate and eigen (k − 1)-form. In the specific case of an eigencosection we get the

following corollary regarding eigenfunctions.

Corollary 4.3.0.1. For a continuous-time or discrete-time dynamical system, let

Φi(x) be an eigensection and ωj(x) be an eigencosection. Then

1. in the continuous-time case, ιΦi
ωj(x) is an eigenfunction of the Koopman generator

at eigenvalue λΦ
i + λωj equivalently, at eigenvalue e(λΦ

i +λωj )t for U t
F.

2. in the discrete-time case ιΦi
ωj(x) is an eigen eigenfunction of US at eigenvalue

λΦ
i λ

ω
j .

4.4 Algebraic and Differential Topological Properties

of Eigensections and Eigenforms

In this section, we develop the algebraic and differential topological properties that

eigensections and eigenforms possess.

4.4.1 Algebraic Properties of Eigensections

We begin by recalling that the induced operators’ eigenfunctions enjoy algebraic

properties that allow one to create new eigenfunctions out of old ones. Specifically, theorem

2.4.1 stated that the pointwise product of two eigenfunctions is again an eigenfunction

and, under certain conditions, a set of Koopman eigenfunctions forms an abelian monoid.

Thus, it is reasonable to expect that a similar situation should hold for the other induced

operators. In any case, the insight lies in understanding the appropriate algebraic structure

of the objects one is considering.
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Algebraic Properties of Eigensections

Definition 4.4.1. Let N be a vector space over a field F. The vector space N together

with an operation, denoted [·, ·] : N ×N → N , called the Lie product or Lie bracket

such that

1. [·, ·] is bilinear over F.

2. [n, n] = 0 for all n ∈ N .

3. [n1, n2] = −[n2, n1] for all n1, n2 ∈ N .

4. [n1, [n2, n3]] + [n2, [n3, n1]] + [n3, [n1, n2]] = 0.

is said to be a Lie Algebra. The last property is called the Jacobi identity.

Proposition 4.4.1. Let X(TM) denote the space of smooth vector fields. The Lie bracket

[F(x),G(x)] = LFG(x) on X(TM), along with the vector space structure of X(TM),

form a Lie algebra.

Proof: See [AMR83] page 222.

Proposition 4.4.2. For a continuous-time or discrete-time dynamical system, the set

of all smooth eigensections, form a Lie sub-algebra of X(TM). Specifically, if Φi,Φj are

eigensections, then

1. in the continuous-time case, [Φi,Φj] is also an eigensection of LF at eigenvalue

λi + λj equivalently at eigenvalue e(λi+λj)t for V t
F.

2. in the discrete-time case, [Φi,Φj] is also an eigensection of VS at eigenvalue λiλj.
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Proof: For the first claims we have

[F, [Φi,Φj]] = −[Φj, [F,Φi]]− [Φi, [Φj,F]]

= [[F,Φi],Φj] + [Φi, [F,Φj]]

= [λiΦi,Φj] + [Φi, λjΦj]

= (λi + λj)[Φi,Φj]

(4.44)

for the generator. For the group, we make use of the fact that

g∗[F(x),G(x)] = [g∗F(x), g∗G(x)] (4.45)

holds for F,G ∈ X(tM) and a diffeomorphism g :M→M, see [AMR83] pages 222-223

and 369. Thus, we have that

V t
F[Φi,Φj] = St∗F [Φi,Φj]

= [St∗F Φi,S
t∗
F Φj]

= [eλitΦi, e
λjtΦj]

= e(λi+λj)t[Φi,Φj].

(4.46)

(2) In the discrete-time case we have

VS[Φi,Φj] = St∗[Φi,Φj]

= [St∗Φi,S
t∗Φj]

= [λiΦi, λjΦj]

= λiλj[Φi,Φj].

(4.47)

Of course, there is nothing that prevents us from considering higher order Lie products.
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To that end, denote by LnrΦi
LmsΦj
· · · Ln1

Φi
Lm1

Φj
, the following nested brackets of eigensections.

LnrΦi
LmsΦj
· · · Ln1

Φi
Lm1

Φj
:= [

nr︷ ︸︸ ︷
Φi, · · · [Φi,

ms︷ ︸︸ ︷
[Φj, · · · [Φj, . . . [

n1︷ ︸︸ ︷
Φi, · · · [Φi,

m1︷ ︸︸ ︷
[Φj · · · ,Φj]] . . . ]] (4.48)

.

Proposition 4.4.3. Let t ∈ {1, 2, . . . r}, u ∈ {1, 2, . . . s} and nt,mu ∈ {1, 2, · · · }. If

m1 = 1 and nt,mu > 0 for t ≥ 1 and u ≥ 2 then

1. in the continuous-time case, LnrΦi
LmsΦj
· · · Ln1

Φi
Lm1

Φj
is also an eigensection of LF with

eigenvalue (
∑r

t=1 ntλi+
∑s

u=1 muλj) and at eigenvalue e(
∑r
t=1 ntλi+

∑s
u=1muλj)t for V t

F.

2. in the discrete-time case, LnrΦi
LmsΦj
· · · Ln1

Φi
Lm1

Φj
is also an eigensection of VS with

eigenvalue eigenvalue (Πr
t=1ntλiΠ

s
u=1muλj).

Proof: We begin by noting that, since [G,G] = 0 for any G ∈ X(TM), we have

that

1. ifm1 > 1 then the inner most term is

m1︷ ︸︸ ︷
[Φj · · · ,Φj] = 0 and thus LnrΦi

LmsΦj
· · · Ln1

Φi
Lm1

Φj
=

0 which is never a valid eigensection.

2. if m1 = 0 and n1 > 0 then a similar situation arises, in that the inner most term

is now

n1︷ ︸︸ ︷
[Φi · · · ,Φi] = 0 and thus LnrΦi

LmsΦj
· · · Ln1

Φi
Lm1

Φj
= 0 which is never a valid

eigensection.

In light of this, we assume m1 = 1 and nt,mu > 0 for t ≥ 1 and u ≥ 2 as the assumption

states. The proof is by induction. The first step would be to take the base case of t, u,

nt, and show the base case on mu holds.
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We first show that

[F,Ln1
Φi
Lm1

Φj
] = [F,Ln1

Φi
L1

Φj
] = (n1λi + λj)[Φi,Φj] = (n1λi +m1λj)[Φi,Φj]

This is done by induction on the integer n1, the base case of which is

[F,L1
Φi
L1

Φj
] = [F, [Φi,Φj]] = (λi + λj)[Φi,Φj]

and corresponds exactly with proposition 4.4.2 so we are done with this case. Now suppose

that [F,LkΦi
L1

Φj
] = (kλi + λj)LkΦi

L1
Φj

then

[F,Lk+1
Φi
L1

Φj
] = [F, [Φi,LkΦi

L1
Φj

]]

= −[LkΦi
L1

Φj
, [F,Φi]]− [Φi, [LkΦi

L1
Φj
,F]]

= [[F,Φi],LkΦi
L1

Φj
] + [Φi, [F,LkΦi

L1
Φj

]]

= λi[Φi,LkΦi
L1

Φj
] + (kλi + λj)[Φi,LkΦi

L1
Φj

]

= ((k + 1)λi + λj)Lk+1
Φi
L1

Φj

(4.49)

This completes the induction and shows that [F,Ln1
Φi
Lm1

Φj
] = (n1λi +m1λj)[Φi,Φj]

Next we show that

[F,Ln2
Φi
Lm2

Φj
Ln1

Φi
Lm1

Φj
] = ((n1 + n2)λi + (m1 +m2)λj)Ln2

Φi
Lm2

Φj
Ln1

Φi
Lm1

Φj

This is shown by induction on the two integers n2 and m2 which, in its entirety, consists

of four proofs corresponding to 2 base cases and 2 induction cases. Note that if m2 = 0

then

Ln2
Φi
Lm2

Φj
Ln1

Φi
Lm1

Φj
= Ln2

Φi
Ln1

Φi
Lm1

Φj
= Ln2+n1

Φi
Lm1

Φj
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which is the case previously considered. Thus we take take n2 = 0, m2 = 1 as the base

cases and to reduce notational clutter we hereby denote LniΦi
LnjΦj

as Lni,njΦij
.

(Base Case: n2 = 0, m2 = 1)

[F,L1
Φj
Ln1,m1

Φij
] = [F, [Φj,Ln1,m1

Φij
]]

= −[Ln1,m1

Φij
, [F,Φj]]− [Φj, [Ln1,m1

Φij
,F]]

= [[F,Φj],Ln1,m1

Φij
] + [Φj, [F,Ln1,m1

Φij
]]

= λj[Φj,Ln1,m1

Φij
] + (n1λi +m1λj)[Φj,Ln1,m1

Φij
]

= (n1λi + (m1 + 1)λj)L1
Φj
Ln1,m1

Φij

= ((n1 + n2)λi + (m1 +m2)λj)L1
Φj
Ln1,m1

Φij

(Inductive Case: n2 = 0, m2 = k + 1)

[F,Lk+1
Φj
Ln1,m1

Φij
] = [F, [Φj,LkΦj

Ln1,m1

Φij
]]

= −[LkΦj
Ln1,m1

Φij
, [F,Φj]]− [Φj, [LkΦj

Ln1,m1

Φij
,F]]

= [[F,Φj],LkΦj
Ln1,m1

Φij
] + [Φj, [F,LkΦj

Ln1,m1

Φij
]]

= λj[Φj,LkΦj
Ln1,m1

Φij
] + (n1λi + (m1 + k)λj)[Φj,LkΦj

Ln1,m1

Φij
]

= (n1λi + (m1 + k + 1)λj)Lk+1
Φj
Ln1,m1

Φij

= ((n1 + n2)λi + (m1 +m2)λj)Lk+1
Φj
Ln1,m1

Φij
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(Base Case: n2 = k + 1, m2 = 1)

[F,Lk+1,1
Φij
Ln1,m1

Φij
] = [F, [Φi,Lk,1Φij

Ln1,m1

Φij
]]

= −[Lk,1Φij
Ln1,m1

Φij
, [F,Φi]]− [Φi, [Lk,1Φij

Ln1,m1

Φij
,F]]

= [[F,Φi],Lk,1Φij
Ln1,m1

Φij
] + [Φi, [F,Lk,1Φij

Ln1,m1

Φij
]]

= λi[Φi,Lk,1Φij
Ln1,m1

Φij
] + ((n1 + k)λi + (m1 + 1)λi)[Φi,Lk,1Φij

Ln1,m1

Φij
]

= ((n1 + k + 1)λi + (m1 + 1)λj)Lk+1
Φi
Ln1,m1

Φij

= ((n1 + n2)λi + (m1 +m2)λj)Lk+1
Φi
Ln1,m1

Φij

(Inductive Case: n2 = k + 1, m2 = k + 1)

[F,Lk+1,k+1
Φij

Ln1,m1

Φij
] = [F, [L1,1

Φij
,Lk,kΦij

Ln1,m1

Φij
]]

= −[Lk,kΦij
Ln1,m1

Φij
, [F,L1,1

Φij
]]− [L1,1

Φij
, [Lk,kΦij

Ln1,m1

Φij
,F]]

= [[F,L1,1
Φij

],Lk,kΦij
Ln1,m1

Φij
] + [L1,1

Φij
, [F,Lk,kΦij

Ln1,m1

Φij
]]

= (λi + λj)[L1,1
Φij
,Lk,kΦij

Ln1,m1

Φij
]

+ ((n1 + k)λi + (m1 + k)λj)[L1,1
Φij
,Lk,kΦij

Ln1,m1

Φij
]

= ((n1 + k + 1)λi + (m1 + k + 1)λj)Lk+1,k+1
Φij

Ln1,m1

Φij

= ((n1 + n2)λi + (m1 +m2)λj)Lk+1,k+1
Φij

Ln1,m1

Φij

This completes the four inductive arguments needed to show

[F,Ln2
Φi
Lm2

Φj
Ln1

Φi
Lm1

Φj
] = ((n1 + n2)λi + (m1 +m2)λj)Ln2

Φi
Lm2

Φj
Ln1

Φi
Lm1

Φj

.

At this point it should be clear to see that that the arguments can be repeated to

show the claim holds. The proofs for the group and the discrete time case can also be
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carried by induction and again using the fact that

g∗[F(x),G(x)] = [g∗F(x), g∗G(x)] (4.50)

holds for F,G ∈ X(tM) and a diffeomorphism g :M→M.

Similar to theorem 2.4 we required the eigensections form an algebra for the above

results to hold. For this reason, smoothness was required because r-times differentiable

vector fields do not form a Lie algebra under the Lie bracket.

Algebraic Properties of Eigenforms

In order to discuss the algebraic properties for eigen k-forms one must consider an

eigen k-form as a member of the entire exterior algebra.

Definition 4.4.2. An algebra A is said to be a unital algebra if it contains an element

I such that Ia = a = aI for all a ∈ A. The element I is called the unit or identity.

Definition 4.4.3. Let A and B be two algebras and f : A → B be a mapping such that

f(a1a2) = f(a1)f(a2) for all a1, a2 ∈ A. The mapping f is said to be a homomorphism

of algebras. If a homomorphism of algebras is a bijection then it is said to be an

isomorphism of algebras.

Definition 4.4.4. A linear operation D : A → A on an algebra A is said to be a

derivation if

D(a1a2) = D(a1)a2 + a1D(a2) (4.51)

for all a1, a2 ∈ A.

Definition 4.4.5. An algebra A is said to be a differential algebra if it is equipped

with a derivation D.
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Definition 4.4.6. Let Ωk(T
∗M) denote the space of smooth differential k-forms for every

k. The exterior algebra of differential forms, denoted Ω(T ∗M), is the direct sum

Ω0(T ∗M)⊕ Ω1(T ∗M)⊕ Ω2(T ∗M)⊕ · · · ⊕ Ωn(T ∗M) (4.52)

together with the vector space structure of each Ωk(T
∗M), the exterior derivative d :

Ωk(T
∗M)→ Ωk+1(T ∗M) and the exterior product ∧ : Ω(T ∗M)× Ω(T ∗M)→ Ω(T ∗M).

It is a unital, graded and differential algebra. The derivation is provided by the exterior

derivative.

Theorem 4.4.1. For a continuous-time or discrete-time dynamical system. Denote by

AU the subset of eiegnforms that belong to the exterior algebra Ω(T ∗M). Then AU forms

an anticommutative monoid under pointwise exterior products and is also a differential

algebra.

Proof: Associativity and anticommutativity follow from properties of the wedge

product. The existence of an identity follows from the fact that the exterior algebra

Ω(T ∗M) is a unital algebra. The unit, being a member of the zero grade Ω0(T ∗M), is the

constant function equal to 1 everywhere; which is trivially a Koopman eigenfunction. The

only thing left to show is that the wedge product of two eigenforms is also an eigenform

and that eigenforms are closed under exterior differentiation.

In the continuous-time case, we make use of the following facts

LF(γ1(x) ∧ γ2(x)) = LFγ1(x) ∧ γ2(x) + γ1(x) ∧ LFγ2(x) (4.53)

and

LFdγ1(x) = dLFγ1(x) (4.54)

for a k-form γ1(x) and l-form γ2(x), see [AMR83] page 361 and 372. Thus, if αi(x) and
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βj(x) are eigenforms of LF, we have

LF(αi(x) ∧ βj(x)) = LFαi(x) ∧ βj(x) +αi(x) ∧ LFβj(x)

= λαiαi(x) ∧ βj(x) +αi(x) ∧ λβjβj(x)

= (λαi + λβj)αi(x) ∧ βj(x)

(4.55)

and

LFdαi(x) = dLFαi(x) = dλαiαi(x) = λαidαi(x) (4.56)

For the group we make use of the fact that the pull-back operation is a homomorphism

of differential algebras, see [AMR83] page 360. Thus, have

W t
F(αi(x) ∧ βj(x)) = St∗F ((αi(x) ∧ βj(x))

= St∗Fαi(x) ∧ St∗Fβj(x)

= eλ
α
i tαi(x) ∧ eλ

β
j tβj(x)

= e(λαi +λβj )t(αi(x) ∧ βj(x))

(4.57)

and

W t
Fdαj(x) = St∗F dαj(x) = dSt∗Fαj(x) = deλ

α
j tαj(x) = eλ

α
j tdαj(x) (4.58)

In the discrete time case we have that

WS(αi(x) ∧ βj(x)) = S∗((αi(x) ∧ βj(x))

= S∗αi(x) ∧ S∗βj(x)

= λαi αi(x) ∧ λβj βj(x)

= λαi λ
β
j (αi(x) ∧ βj(x))

(4.59)
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and

WSdαj(x) = S∗dαj(x) = dS∗αj(x) = dλαj αj(x) = λαj dαj(x) (4.60)

Corollary 4.4.1.1. For a continuous-time or discrete-time dynamical system let ωi(x)

be a set of linearly independent eigencosections.

1. In the continuous-time case, the differential k-form αi1,...,ik(x) = ωi1(x)
k

∧ · · · ∧ωik(x),

for i1, . . . , ik distinct, is an eigen k-form of LF at eigenvalue λi1,...,ik =
∑k

j=1 λij

equivalently, at eigenvalue eλi1,...,ik t for the group.

2. In the discrete-time case, the differential k-form αi1,...,ik(x) = ωi1(x)
k

∧ · · · ∧ ωik(x),

for i1, . . . , ik distinct, is an eigen k-form of WS at eigenvalue λi1,...,ik =
∏k

j=1 λij for

the group.

Proof: In both the discrete and continuous-time cases the claim that αi1,...,ik(x) is

an eigen k-form follows from theorem 4.4.1. The fact that αi1,...,ik(x) is a well-defined

eigen k-form follows from the fact that ωi1 , . . . ,ωik , for i1, . . . , ik distinct, are linearly

independent and this implies that ωi1
k

∧ · · · ∧ ωik 6= 0, see [GMM13] page 108.

We note, that the original case of pointwise products of Koopman eigenfunctions is

included in this description since the exterior product of two functions is simply their

pointwise product.

Notice that since d2 = 0 and by convention one would not consider the zero k-form

to be an eigen k-form, it could thus be said that by convention, the subalgebra of

eigen k-forms is not a differential algebra. These, of course, are simply consequences of

conventions. Interestingly, the fact that non-closed eigenforms can be lifted by one degree

via the exterior derivative can be seen as the opposite direction of Proposition 4.3.3 which

states that eigenforms can be brought down by one degree via the interior product. As a

particular case, we have the following corollary.
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Corollary 4.4.1.2. For a continuous or discrete-time dynamical system the the exterior

derivative dψi(x) of a differentiable eigenfunction ψi(x) of U t
F or Un

S , at eigenvalue eλ
ψ
i

or λψi , is an eigencosection at eigenvalue eλ
ψ
i or λψi .

The Module Structure of Eigensections and Eigenforms

As a final consideration, we note that the algebraic properties of Koopman eigenfunc-

tions make it possible to generate nonlinear eigenfunctions out of linear eigenfunctions.

For example the 1-dimensional dynamical system generated by the vector field F(x) = λx

has ψ(x) = x as a linear eigenfunction at eigenvalue λ. By utilizing the algebraic structure

we can then construct the nonlinear eigenfunctions ψn(x) = xn at eigenvalues λn. It is also

clear that the exterior products of linear eigenforms will generate nonlinear eigenforms

of a higher grade. However, this is not the situation for the eigensections. Namely,

the Lie bracket of two linear eigensections, or any sections for that matter, will never

generate a nonlinear eigensection. At first glance, this may seem to simply be a difference

between the algebraic properties of eigensections and eigenforms. However, upon further

investigation, we realized that this observation highlights how one should carefully note

the underlying algebra. Thus, while it is true that the spaces X(TM) and Ω(T ∗M) are

a Lie and exterior algebra, respectively, they are also modules over C(M,F). It is the

module structure that motivates the following result.

Proposition 4.4.4. For a continuous-time or discrete-time dynamical system, let ψi(x)

be an eigenfunction, Φj(x) be an eigensection and αk(x) be an eigen k-form. Then, in

the continuous-time case,

1. ψi(x)Φj(x) is also an eigensection of LF at eigenvalue λψi + λΦ
j equivalently, at

eigenvalue e(λψi +λΦ
j )t for V t

F.

2. ψi(x)αk(x) is also an eigen k-form of LF at eigenvalue λψi + λαk equivalently, at
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eigenvalue e(λψi +λωk )t for W t
F.

in the discrete-time case,

1. ψi(x)Φj(x) is also an eigensection of VS at eigenvalue λψi λΦ
j .

2. ψi(x)αk(x) is also an eigen k-form of WS at eigenvalue λψi λαk .

Proof: In the continuous-time case we have

LF(ψi(x)Φj(x)) = LF(ψi(x))Φj(x) + ψi(x)LFΦj(x)

= λψi ψi(x)Φj(x) + λΦ
j ψj(x)Φi(x)

= (λψi + λΦ
j )ψi(x)Φj(x)

(4.61)

and for the group we have

V t
Fψi(x)Φj(x) = ∇S−tF |StF(x)(ψi(x)Φj(x)) ◦ StF(x)

= ψi(S
t
F(x))∇S−tF |StF(x)Φj(S

t
F(x))

= St∗F ψ(x)St∗F Φj(x)

= eλ
ψ
i tψi(x)eλ

Φ
j tΦj(x)

= e(λψi +λΦ
j )tψi(x)Φj(x)

(4.62)

The second claim is a special case of theorem 4.4.1 since ψi(x)αk(x) = ψi(x) ∧αk(x).
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For the discrete-time case

VSψi(x)Φj(x) = ∇S−n(ψi(x)Φj(x)) ◦ SF(x)

= ψi(SF(x))∇SΦj(S(x))

= S∗ψ(x)S∗Φj(x)

= λψi ψi(x)λΦ
j Φj(x)

= λψi λ
Φ
j ψi(x)Φj(x)

(4.63)

4.4.2 Differential Topological Properties of Eigensections and Eigen-

forms

we summarize the behavior of eigensections and eigenforms in the presence of a

diffeomorphic conjugacy. Consider, again, two dynamical systems, one defined on the

spaceM generated by a vector field F(x) ∈ X(TM) or a mapping S(x) and another on

the space N generated by the vector field G(y) ∈ X(TN ) or a mapping T (y). Recall

definition 2.4.1 which states that two dynamical systems are said to be topologically

conjugate if there exists a homeomorphism h :M→N such that

h ◦ StF(x) = StG ◦ h(x)

h ◦ S(x) = T ◦ h(x)

(4.64)

If h is a diffeomorphism then it is said to be a diffeomorphic conjugacy. We saw in chapter

2 that if and ψ(y) is an eigenfunction of U t
G then ψ ◦ h(x) is an an eigenfunction of U t

F.

In other words, eigenfunctions pull back to eigenfunctions under a conjugacy. Thus, it

would seem natural to conjecture if the same is true for the spectrum of the other induced

operators.

Before stating the results, we remark that perhaps it may be more traditional to ask
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if eigensections onM push forward to eigensections on N given that one typically pushes

vectors and pulls forms. Of course, when h is a diffeomorphism, if one can push, then

one can also pull the spectral objects. Thus, while it may seem to be a matter of choice,

one could argue that it is preferable to have spectral objects pull-back to spectral objects.

The reason for this is that the notion of a conjugacy is typically used to transform a

complex dynamical system into a simpler, but equivalent, dynamical system [PAD16;

Har60; Gro59; Ste57]. If, for example, one can find a conjugacy of a nonlinear system to

a linear system then the spectral objects of the nonlinear systems can be determined by

pulling back the spectrum of the linear system. See sections 4.5 and 2.5 for computing

the spectrum of the induced operators of a linear dynamical system.

Theorem 4.4.2. Let h :M→N be diffeomorphic conjugacy between two, continuous-

time or discrete-time, dynamical systems. Also, let Φi(y) ∈ X(TN ) and αj(y) ∈ Ωk(T ∗N )

be an eigensection and eigen k-form at eigenvalues eλΦ
i t or λΦ

i and eλ
α
j t or λαj . Then

1. in the continuous-time case, Φi(y) pulls back to an eigensection h∗Φi(y) ∈ X(TM)

of V t
F at eigenvalue eλΦ

i t and αj(y) ∈ Ωk(T
∗M) pulls back to an eigen k-form

h∗αj(y) of W t
F at eigenvalue eλ

α
j t.

2. in the discrete-time case Φi(y) pulls back to an eigensection h∗Φi(y) ∈ X(TM) of

V n
S at eigenvalue λΦ

i and αj(y) pulls back to an eigen k-form h∗αj(y) ∈ Ωk(T
∗M)

of W n
S at eigenvalue λαjj .

Proof: We will prove the result for the continuous-time case and the proof can be

repeated for the discrete-time case.

To prove the claim for the eigensection, we note that the negative time conjugacy re-

lation h(S−tF (x)) = S−tG (h(x)) implies S−tF (x) = h−1(S−tG (h(x))) and by taking a derivative
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we arrive at the following formula

∇S−tF |x = ∇h−1|S−tG (h(x))∇S
−t
G |h(x)∇h|x (4.65)

We can then evaluate (4.65) at the point StF(x) and obtain

∇S−tF |StF(x) = ∇h−1|S−tG (h(StF(x)))∇S
−t
G |h(StF(x))∇h|StF(x)

= ∇h−1|S−tG (StG(h(x)))∇S
−t
G |StG(h(x))∇h|StF(x)

= ∇h−1|h(x)∇S−tG |StG(h(x))∇h|StF(x)

(4.66)

Equation (4.66) will be useful in the following computation.

V t
Fh
∗Φi(y) = V t

F∇h−1|h(x)Φi ◦ h(x)

= ∇S−tF |StF(x)∇h−1|h(StF(x))Φi ◦ h(StF(x))

= ∇h−1|h(x)∇S−tG |StG(h(x))∇h|StF(x)∇h−1|h(StF(x))Φi ◦ h(StF(x))

= ∇h−1|h(x)∇S−tG |StG(h(x))Φi ◦ StG(h(x))

= ∇h−1|h(x)V
t
GΦi(h(x))

= eλ
Φ
i t∇h−1|h(x)Φi ◦ h(x) = eλ

Φ
i th∗Φi(y)

(4.67)

To prove the claim for the eigen k-form we take a derivative of the conjugacy relation

to arrive at

∇h|StF(x)∇StF|x = ∇StG|h(x)∇h|x (4.68)

Now, let v1, . . . ,vk denote k tangent vectors at x. Equation (4.68) will be useful in the
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following computation.

W t
Fh
∗αj(y)(v1, . . . ,vk) = W t

Fαj ◦ h(x)(∇h|xv1, . . . ,∇h|xvk)

= αj ◦ h(StF(x))(∇h|StF(x)∇StF|xv1, . . . ,∇h|StF(x)∇StF|xvk)

= αj ◦ StG(h(x))(∇StG|h(x)∇h|xv1, . . . ,∇StG|h(x)∇h|xvk)

= W t
Gαj ◦ h(x)(∇h|xv1, . . . ,∇h|xvk)

= eλ
α
j tαj ◦ h(x)(∇h|xv1, . . . ,∇h|xvk) = eλ

α
j th∗αj

(4.69)

4.5 Linear Systems With Simple Spectrum

For this section we will consider a linear continuous-time dynamical system generated

by the vector field F(x) = Ax or a linear discrete-time dynamical system generated by

the transformation S(x) = Ax with A ∈ Rn×n. We will assume that the matrix A has

distinct eigenvalues λi and a full set of linearly independent right and left eigenvectors.

4.5.1 The Eigensections of A Linear Dynamical System

We begin by finding an explicit expression for the Lie derivative of a linear section

G(x) = Bx in the direction of F(x) = Ax. Since the flow of a linear dynamical system is

well known we utilize theorem 4.1.3.

LFG(x) =
d

dt

∣∣∣
t=0
St∗F G(x)

=
d

dt

∣∣∣
t=0
∇S−t|StF(x) ·G ◦ StF(x)

=
d

dt

∣∣∣
t=0
e−AtBeAtx

= (−Ae−AtBeAtx+ e−AtBAeAtx)
∣∣∣
t=0

= (BA−AB)x

(4.70)
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Equation (4.70) shows that the Lie derivative of two linear sections F(x) = Ax and

G(x) = Bx is again a linear section H(x) = (BA−AB)x.

For the induced Koopman operator on functions, the space of all constant functions are

trivially eigenfunctions of the operator. For the induced operator on sections, the situation

is different in that not every constant section is an eigensection but only those which are

invariant under the tangent flow ∇StF. From this, it is clear that the only the constant

eigensections are those which everywhere point in the direction of the eigenvectors of A.

Proposition 4.5.1. Let λi, vi denote the eigenvalues and right eigenvectors of the matrix

A, corresponding to the linear continuous-time or discrete time dynamical system. Then,

1. for the continuous-time case, the constant vector fields Φi(x) = vi are eigensections

of LF at eigenvalue −λi equivalently, at eigenvalue e−λit for V t
F.

2. for the discrete-time case, the constant vector fields Φi(x) = vi are eigensections of

VS at eigenvalue 1
λi

for λi 6= 0.

Proof: In the continuous-time case, we have

V t
FΦi(x) = V t

Avi

= ∇(e−Atx) · vi ◦ eAtx

= e−Atvi

= e−λitvi = e−λitΦi(x)

(4.71)

for the group. For the generator we apply theorem 4.1.2.

LFΦi(x) = ∇G(x) · F(x)−∇F(x) ·G(x)

= ∇(vi) ·Ax−∇(Ax) · vi

= −Avi = −λivi = −λiΦi(x)

(4.72)
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In the discrete-time case we have

VSΦi(x) = VAvi

= ∇(A−1x) · vi ◦Ax

= A−1vi

=
1

λi
vi =

1

λi
Φi(x)

(4.73)

Since a linear, non-constant, eigensection would have a corresponding matrix repre-

sentation we attempt to construct a matrix from the spectrum of A. The most natural

way to do so is to consider the outer product of eigenvectors of A.

Proposition 4.5.2. Let λi, vi, wᵀ
i denote the eigenvalues, right eigenvectors and left

eigenvectors of the matrix A, corresponding to the linear continuous-time dynamical

system or the discrete time system. Then,

1. for the continuous-time case, the linear vector fields Φij(x) = vi ⊗ wjx are linear

eigensections of LF at eigenvalues λij = λj − λi equivalently, at eigenvalues eλijt for

V t
F.

2. for the discrete-time case, the linear vector fields Φij(x) = vi ⊗ wjx are linear

eigensections of VS at eigenvalue λij =
λj
λi

for λi 6= 0.

Proof: In the continuous-time case, we have

V t
FΦij(x) = V t

Avi ⊗ wjx

= ∇(e−Atx) · viwᵀ
j ◦ eAtx

= e−Atviw
ᵀ
j e

Atx

= e−λitviw
ᵀ
j e
λjtx

= e(λj−λi)tviw
ᵀ
jx = eλijtΦij(x)

(4.74)

112



Pull-Back Operator Methods in Dynamical Systems Chapter 4

and for the generator we have

LFΦij(x) = (ΦijA−AΦij)(x)

= (viw
ᵀ
jA−Aviw

ᵀ
j )x

= (λjviw
ᵀ
j − λiviw

ᵀ
j )x

= (λj − λi)viwᵀ
jx = λijΦij(x)

(4.75)

In the discrete-time case we have,

VSΦij(x) = VAvi ⊗ wjx

= ∇(A−1x) · viwᵀ
jAx

= A−1viw
ᵀ
jAx

=
λj
λi
viw

ᵀ
jx = λijΦij(x)

(4.76)

we saw in section 2.5 that the linear Koopman eigenfunctions ψi(x) associated with

a linear dynamical system can be used to obtain a spectral expansion of an arbitrary,

vector-valued, linear function f(x) = Cx, for any C ∈ Rn×n. Moreover, the spectral

expansion can be utilized to provide a complete description of the time evolution of

the function f(x). In a similar manner we utilize the linear eigensections to derive the

corresponding spectral expansion of an arbitrary linear vector field G(x) = Bx. To do so

we will require the notion of an inner product on the space Fn×n of n by n matrices for

F = R or C. Specifically, we utilize the Frobenius inner product of two n by n matrices

C,D defined as 〈C,D〉F = Tr(CᵀD), where Tr is the trace of a matrix and if F = C then

(·)ᵀ is the Hermitian transpose.

Proposition 4.5.3. The time evolution of an arbitrary linear vector field G(x) = Bx,

B ∈ Rn×n under the dynamics of a continuous-time or discrete-time dynamical system, is

113



Pull-Back Operator Methods in Dynamical Systems Chapter 4

given by the following spectral expansion.

1. In the continuous-time case

V t
FG(x) =

n∑
ij=1

eλijtΦij(x)bij (4.77)

for the group and for the generator

LnFG(x) =
n∑

ij=1

λnijΦij(x)bij (4.78)

2. In the discrete-time case

V n
S G(x) =

n∑
ij=1

λnijΦij(x)bij (4.79)

Where bij is the projection of B, under the Frobenius inner product, onto the eigenspace

spanned by Φij(x).

Proof: By our assumption, A has a full set of right eigenvectors vi, left eigenvectors

wi and distinct eigenvalues λi. Now, since the right and left eigenvectors form a basis for

Fn then their tensor product also forms a basis for Fn ⊗ Fn ' Fn×n, see [AMR83] page

272. Hence we can expand B in the eigensection basis as B =
∑n

ij=1 bijΦij . From this we

can compute the time evolution of G(x) = Bx. In the continuous-time case we have

V t
FG(x) = V t

F

n∑
ij=1

bijΦij =
n∑

ij=1

bijV
t
FΦijx =

n∑
ij=1

bije
λijtΦijx (4.80)

for the group and for the generator we have

LnFG(x) = LnF
n∑

ij=1

bijΦij =
n∑

ij=1

bijLnFΦijx =
n∑

ij=1

bijλ
n
ijΦijx (4.81)
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For the discrete-time case

V n
S G(x) = V n

S

n∑
ij=1

bijΦij =
n∑

ij=1

bijV
n
S Φijx =

n∑
ij=1

bijλ
n
ijΦijx (4.82)

We note that if instead of the matrix B we had the matrix C = P−1BP then only the bij

coefficients in the expansion would change and the same is true if instead of B we had

C = DB or C = BD. Which indicates that the eigenvalues and eigensections (λij,Φij)

are intrinsic to the dynamics F(x) = Ax while the coefficients bij are not and depend on

the choice of B.

4.5.2 The Eigenforms of A Linear Dynamical System

A linear cosection

γ(x) =

[
(b11x1,+ · · ·+, b1nxn)dx1 · · · (bn1x1,+ · · ·+, bnnxn)dxn

]
(4.83)

viewed as a linear functional γ : TM→ F, has the following matrix representation

γ(x) =

[
x1 · · ·xn

]
b11 · · · b1n

... . . . ...

bn1 · · · bnn



dx1

. . .

dxn

 = xᵀBdx
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and the Lie derivative of the linear differential one-form γ(x) in the direction of F(x) = Ax

can be computed, again, by applying theorem 4.1.4.

LFγ(x) =
d

dt

∣∣∣
t=0
St∗F γ(x)

=
d

dt

∣∣∣
t=0
γ ◦ StF(x) · ∇StFdx

=
d

dt

∣∣∣
t=0

(eAtx)ᵀB · ∇(eAtx)dx

=
d

dt

∣∣∣
t=0
xᵀeAᵀtBeAtdx

= (xᵀAᵀeAᵀtBeAtdx+ xᵀeAᵀtBAeAtdx)|t=0

= xᵀ(AᵀB + BA)dx

(4.84)

We saw in section 2.5 that the linear eigenfunctions associated with a linear dynamical

system are given by ψi(x) = 〈x,wi〉 where wᵀ
i is a left eigenvector of the matrix A.

Furthermore, according to propositions 4.5.1-4.5.2 the eigensections for a linear system

were also built from the spectrum of A. One would expect a similar story to play out for

the eigenforms. As before, we first sort out the constant eigenforms.

Proposition 4.5.4. Let λi, wi denote the eigenvalues and left eigenvectors of the matrix

A, corresponding to a linear, continuous-time or discrete-time, dynamical system. Then,

1. for the continuous-time case, the constant differential 1-forms ωi(x) = widx are

eigencosections of LF with eigenvalues λi equivalently, at eigenvalue eλit for W t
F.

2. for the discrete-time case, the constant differential 1-forms ωi(x) = widx are

eigencosections of WS at eigenvalue λi.
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Proof: In the continuous-time case, we have

W t
Fωi(x) = W t

Awidx

= wi ◦ eAtx∇(eAtx)dx

= wie
Atdx

= eλitwidx = eλitωi(x)

(4.85)

and for the generator we apply definition 4.1.38

LFωi(x) = Fᵀ(x) · (∇ωᵀ
i (x))ᵀ + ωi(x) · ∇F(x)

= xᵀAᵀ · (∇(dxwᵀ
i ))

ᵀ + wi∇(Ax)dx

= wiAdx = λiwidx = λiωi(x)

(4.86)

In the discrete-time case we have

WSωi(x) = WAwidx

= wi ◦Ax · ∇(Ax)dx

= wiAdx

= λiwidx = λiω(x)

(4.87)

Similar to the linear eigensections, the linear eigencosections can be built out of tensor

products of the constant eigencosections.

Proposition 4.5.5. Let λi, wᵀ
i denote the eigenvalues and left eigenvectors of the matrix

A, corresponding to a linear, continuous-time or discrete-time, dynamical system. Then,

1. for the continuous-time case, the linear differential 1-forms ωij(x) = xᵀwi ⊗ wjdx

are linear eigencosections of LF at eigenvalue λij = λi+λj equivalently, at eigenvalue

eλijt for W t
F.
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2. for the discrete-time case, the linear differential 1-forms ωij(x) = xᵀwi ⊗ wjdx are

linear eigencosections of WS at eigenvalue λiλj.

Proof: In the continuous-time case, we have

W t
Fωij(x) = W t

Ax
ᵀwi ⊗ wjdx

= xᵀwiw
ᵀ
j ◦ eAt · ∇(eAtx)dx

= (eAtx)ᵀwiw
ᵀ
j e

Atdx

= xᵀeAᵀtwiw
ᵀ
j e

Atdx

= xᵀeλitwiw
ᵀ
j e
λjtdx

= e(λi+λj)txᵀwiw
ᵀ
jdx = eλijtωij(x)

(4.88)

for the group and for the generator we have

LFωij(x) = xᵀ(Aᵀωij + ωijA)dx

= xᵀ(Aᵀwiw
ᵀ
j + wiw

ᵀ
jA)dx

= xᵀ(λiwiw
ᵀ
j + λjwiw

ᵀ
j )dx

= (λi + λj)x
ᵀwiw

ᵀ
jdx = λijωi(x)

(4.89)

In the discrete-time case we have

WSωij(x) = WAx
ᵀwi ⊗ wjdx

= (Ax)ᵀwiw
ᵀ
j∇(Ax)dx

= xᵀAᵀwiw
ᵀ
jAdx

= λiλjx
ᵀwiw

ᵀ
jdx = λiλjωij(x)

(4.90)

We can now build the higher-order linear eigenforms out of the eigencosections we just

computed via the algebraic properties. However, as mentioned in section 4.4, the exterior
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product of two linear eigencosections will in general, produce nonlinear eigenforms. We

thus consider the constant eigenforms to create the higher degree linear eigenforms.

Proposition 4.5.6. Let λi, wi denote the eigenvalues, and left eigenvectors of the matrix

A, corresponding to the linear continuous-time or discrete-time dynamical system. Also,

let ωi(x) = widx be the constant eigencosection at eigenvalue eλit or λi. Then

1. for the continuous-time case, the differential k-form αi1,...,ik(x) = xᵀωi1
k

∧ · · · ∧ ωik ,

for i1, . . . , ik distinct, is an eigen k-form of LF at eigenvalue λi1,...,ik =
∑k

j=1 λij

equivalently, at eigenvalue eλi1,...,ik t for the group.

2. for the discrete-time case, the differential k-form αi1,...,ik(x) = xᵀωi1
k

∧ · · · ∧ωik , for

i1, . . . , ik distinct, is an eigen k-form of WS at eigenvalue λi1,...,ik =
∏k

j=1 λij for the

group.

Proof: In both the discrete and continuous-time cases the claim that αi1,...,ik(x) is

an eigen k-form follows from theorem 4.4.1 and corollary 4.4.1.1.

4.6 Properties of Closed and Exact Eigenforms

In this brief section, we attempt to characterize the closed and exact properties of an

eigenform. Now, every exact differential form is a closed differential form, the other way

around depends on the cohomology groups ofM. Assuming the kth cohomology group is

non-trivial, the pertinent question is whether it is possible to obtain a closed eigen k-form,

which is not exact. The following proposition demonstrates that this can not happen

Proposition 4.6.1. Consider a continuous-time dynamical system generated by F(x) ∈

X(TM). Then,

1. Every closed eigen k-form αi(x) with λi 6= 0 is exact.
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2. Every exact eigen k-form is the exterior derivative of a non-closed eigen (k−1)-form.

Proof: To prove the first claim let αi(x), be a closed eigen k-form of LF at eigenvalue

λαi . Cartan’s formula shows that

LFαi(x) = dιFαi(x) + ιFdαi(x) = dιFαi(x) = λiαi(x) (4.91)

which shows that αi(x) is the exterior derivative of 1
λi
ιFαi(x) and hence exact.

The second claim follows from theorem 4.4.1 and the convention that the zero k-form

is not a proper eigen k-form.

4.7 Integrability of Eigendistributions and Their Folia-

tions

4.7.1 The Vector fields Point of View

Loosely speaking, the fundamental theorem on flows [Lee12] tells us that we can

"integrate" a complete vector field F(x) and the resulting integral curves will be disjoint,

immersed 1-dimensional submanifolds ofM. Furthermore, the integral curves are every-

where tangent to F(x) and foliateM. One can then ask if it is possible to "integrate"

a collection of d linearly independent vector fields to obtain a d-dimensional immersed

submanifold whose tangent bundle is everywhere spanned by the d vector fields. To make

these statements more precise, we collect some necessary definitions and results.

Relevant Definitions

Definition 4.7.1. A d-dimensional distribution, denoted ∆, is a d-dimensional sub-

bundle of TM. If it is a smooth subbundle then it is called a smooth distribution.
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Definition 4.7.2. Let ∆ be a smooth distribution onM. A local section of ∆, defined

on an open subset ofM, is a smooth vector field H(x) such that H(x) ∈ ∆x at every x.

Definition 4.7.3. Let ∆ be a d-dimensional distribution. If every x ∈ M has a local

neighborhood U on which there are smooth vector fields G1(x), . . . ,Gd(x) such that at

every point y ∈ U , G1(y), . . . ,Gd(y) form a basis for ∆y then ∆ is said to be spanned

by the vector fields G1(x), . . . ,Gd(x).

Definition 4.7.4. A distribution ∆ is said to be involutive if it is closed under the Lie

bracket.

Definition 4.7.5. Let ∆ be a smooth distribution on M. An immersed submanifold

N ⊂M is called an integral manifold of ∆ if TxN = ∆x for every x ∈ N .

Definition 4.7.6. A distribution ∆ is said to be integrable if every x ∈M is contained

in an integral manifold of ∆.

Definition 4.7.7. Let F = {La}a∈A be a partition of M into disjoint connected sets

called leaves. F is called a p-dimensional, class Cr foliation if every point of M has

a neighborhood U with a local Cr coordinate chart x = (x1, . . . , nn) : U → Rn such

that for each leaf La the connected components (U ∩ La)
b of (U ∩ La) are given by

x((U ∩ La)
b) = (x1, . . . , xp, xp+1 = ca,b1 , . . . , xn = ca,bn−p), c

a,b
i are constants for every a ∈ A

and b.

Definition 4.7.8. Let {Φ1(x), . . . ,Φd(x)} be a collection of linearly independent eigen-

sections of a dynamical system. The distribution ∆Φ = span{Φ1(x), . . . ,Φd(x)} is said

to be an eigendistribution.

The Eigendistributions of A Hyperbolic Dynamical System

In the context of this work, we are interested in determining under what conditions

can an eigendistribution be integrable. If so, what are the resulting integral manifolds,
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and do they also foliateM? The answer to these questions will undoubtedly involve the

contents of the Frobenius theorem which has two (dual) formulations, one in terms of

vector fields and the other in terms of differential forms.

Proposition 4.7.1. Let F = {La}a∈A be a foliation ofM. The set {∪a∈A ∪x∈a TxLa} is

a subbundle of TM called the tangent bundle to the foliation and is denoted T (M,F)

Proof: See [AMR83] page 266.

Theorem 4.7.1 (Frobenius (Vector Field Formulation) ). Let ∆ be a d-dimensional

distribution onM. The following are equivalent

1. ∆ is involutive.

2. ∆ is integrable.

3. There exists a d-dimensional foliation F ofM such that ∆ = T (M,F).

The vector fields formulation of the Frobenius theorem shows that our previous

questions are equivalent to determining under what conditions is an eigendistribution

involutive. The following theorem shows that if the dynamical system is uniformly

hyperbolic and some dimensionality conditions are placed on the eigendistribution, one

can show the eigendistribution is guaranteed to be involutive. Recall that uniform

hyperbolicity for a discrete-time system guarantees a splitting of the tangent bundle into

the direct sum TM = TEs⊕TEu. For a continuous-time dynamical system the definition

is similar.

Definition 4.7.9. A continuous-time dynamical system (M, StF) is said to be hyperbolic

1. If F(x) 6= 0 for all x ∈M.
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2. If there exists two subbundles ES and Eu such that tangent bundle of M splits

as a continuous Whitney sum TM = Es ⊕ Eu ⊕ [F]. Where [F] denotes the

one-dimensional subbundle spanned by F(x).

3. For every positive t ∈ R and for some Riemannian metric g:

‖∇StFv‖g ≥ a · eλit‖v‖g, ‖∇S−tF v‖g ≤ b · e−λit‖v‖g, if v ∈ Eu

‖∇StFv‖g ≤ b · e−λit‖v‖g, ‖∇S−tF v‖g ≥ a · eλit‖v‖g, if v ∈ Es

(4.92)

The constants a, b, λ are positive and independent of t and v but a and b depend on the

metric g. The subbundle Eu is said to be the unstable subbundle and the subbundle

Es is said to be the stable subbundle.

Theorem 4.7.2. Consider a uniformly hyperbolic continuous-time or discrete-time dy-

namical system. Let ns, nu denote the dimensions of the stable Es and unstable Eu

subbundles and let {Φ1(x), . . . ,Φns+nu(x)} be a collection of smooth, linearly independent,

eigensections of V t
F or V n

S at eigenvalues {eλ1t, . . . , eλns+nu t} or {λ1, . . . , λns+nu}.

In the continuous-time case define the following distributions

1. ∆s
Φ = span{Φk|V t

FΦk = eλ
Φ
k t, <(λΦ

k ) > 0}, 1 < k < ns.

2. ∆u
Φ = span{Φl|V t

FΦl = eλ
Φ
l t, <(λΦ

l ) < 0}, 1 < l < nu.

and in the discrete-time case

1. ∆s
Φ = span{Φk|VSΦk = λΦ

k , |λΦ
k | > 0}, 1 < k < ns.

2. ∆u
Φ = span{Φl|VSΦl = λΦ

l , |λΦ
l | < 0}, 1 < l < nu.

called the stable and unstable eigendistributions, respectively. Then there exist two

foliations Fs, Fu of M such that ∆s
Φ, ∆u

Φ are the tangent bundles to the foliations Fs, Fu.
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Moreover, these are the the stable and unstable foliations of the dynamical system namely,

the foliations tangent to Es and Eu.

Proof: To prove the claim, we show that it holds for the stable eigendistribution,

under continuous-time dynamics and the proof can repeated and modifeid for teh other

cases.

First, recall that hyperbolicity of the dynamical system implies hyperbolicity of V t
F,

which implies that the stable and unstable eigendistributions defined above exist [Mat68;

CS81b; CS80]. Now we show that an eigensection in the stable eigendistribution is

necessarily in Es for every x ∈M. Recall the following formula that eigensections satisfy

and rearrange the terms.

V t
FΦi(x) = ∇S−tF |StF(x) ·Φi(x)◦StF(x) = eλitΦi(x) =⇒ e−λitΦi(x)◦StF(x) = ∇St|x ·Φi(x)

Now fix a metric g and take the induced norm of the above expression.

‖∇St|x ·Φi(x)‖g = ‖e−λitΦi(x) ◦ StF(x)‖g

= |e−λit|‖Φi(x) ◦ StF(x)‖g

= e−<(λi)t‖Φi(x) ◦ StF(x)‖g

≤ e−<(λi)tMg‖Φi(x)‖g

(4.93)

whereMg = ‖Φi‖ is the norm of Φi as an element of the Banach space X(M). Specifically,

‖Φi‖ = sup
x∈M
|Φi(x)| = sup

x∈M
g(Φi(x),Φi(x))

Thus, according to equation (4.93) and definition 4.7.9, since <(λk) > 0 for Φk ∈ ∆u
Φ

then

Φk ∈ ∆s
Φ =⇒ Φk ∈ Es
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for every k ∈ {1, · · · , ns}

We now proceed by showing that the stable eigendistribution ∆s
Φ is involutive and the

argument can be repeated for the unstable eigendistribution. Let G(x),H(x) be sections

of ∆s
Φ which means they can be expressed as

G(x) =
ns∑
i=1

gi(x)Φi(x) and H(x) =
ns∑
j=1

hj(x)Φj(x) (4.94)

for some differentiable functions gi(x), hj(x) ∈ C(M,F). A straightforward computation

yields the following:

LGH(x) =
ns∑
j=1

ĥj(x)Φj(x)−
ns∑
i=1

ĝi(x)Φi(x) +
ns∑
ij=1

gi(x)hj(x)[Φi(x),Φj(x)]. (4.95)

Where ĥj(x) =
∑nS

i=1 gi(x)Φi(x)(hj(x)) and ĝi(x) =
∑ns

j=1 hj(x)Φj(x)(gi(x)). The details

of the computation can be referenced in [Lee12] page 188.

Now, clearly the first two terms of the last line in (4.95) are in ∆s
Φ. By proposition 4.4.2

we are guaranteed that LF[Φi,Φj ] = (λΦ
i +λΦ

j )[Φi,Φj ] = λΦ
ij [Φi,Φj ]. Thus, [Φi,Φj ] is also

an eigensection with <(λΦ
ij) > 0. However, since ∆s

Φ is spanned by ns linearly independent

eigensections and dim(Es) = ns, then [Φi,Φj ] must be linearly dependent on the Φk ∈ ∆s
Φ.

Therefore, [G(x),H(x)] ∈ ∆s
Φ which makes ∆s

Φ an involutive distribution and by the

vector fields formulation of the Frobenius theorem ∆s
Φ is integrable. Furthermore, the

Frobenius theorem guarantees the existence of a foliation Fs such that ∆s
Φ is the tangent

bundle to Fs.

Theorem 4.7.2 demonstrates that the eigendistributions of a uniformly hyperbolic

system are tangent to the stable and unstable foliations of a dynamical system. The

existence of such foliations for a uniformly hyperbolic system is not a new result. Their

existence has already been guaranteed by the Arnold-Sinai theorem [AA68; AS62]. The
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contribution of theorem 4.7.2 is that the tangent distributions of the foliations are

contained in the spectrum of the induced operator on sections of the tangent bundle.

4.7.2 The Differential Forms Point of View

The Arnold-Sinai theorem guarantees the existence of the stable and unstable foliations

of a hyperbolic dynamical system. One could then ask how to go about determining those

foliations. One method lies in the well-known fact that the proof of the Frobenius theorem

is constructive [Lee12], in that it provides a technique for explicitly finding the integral

manifolds. Briefly, this involves using a coordinate transformation to find commuting

vector fields that span the same distribution and then composing the commuting vector

fields’ flows to construct a chart for the integral manifold. While this construction is

indeed useful and provides an explicit parameterization of the integral manifolds, it

requires calculating the flows.

Alternatively, one could seek an implicit description of the integral manifolds via the

level sets of a function. It is then reasonable to ask if such a function can be found

spectrally from certain Koopman operators. Before proceeding, we again collect some

necessary definitions and results.

Relevant Definitions

Definition 4.7.10. A differential k-form α(x) is said to annihilate a distribution

∆ if ∆ ⊂ ker{α(x)}. In other words, α(G1, . . . ,Gk) = 0 for any local sections

G1(x), . . . ,Gk(x) of ∆. The k-annihilator of ∆, denoted ∆⊥(k), is the collection

of all differential k-forms which annihilate ∆. We will denote the 1-annihilator by ∆⊥.

Definition 4.7.11. A subset I of an algebra A is said to be a left ideal if i1 + i2 ∈ I

and i1a ∈ I for any i1, i2 ∈ I and a ∈ A. It is said to be a right ideal if i1 + i2 ∈ I and
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ai1 ∈ I for any i1, i2 ∈ I and a ∈ A. If an ideal is both a left and right ideal it is said to

be a two sided ideal or simply an ideal. If A is also a differential algebra and DI ⊂ I

then the ideal I is said to be a differential ideal.

Definition 4.7.12. LetM be an n-dimensional manifold and I ⊂ Ω(T ∗M) be an ideal.

I is said to be locally generated by n− k independent one-forms, if every x ∈ M

has a neighborhood U and n− k pointwise linearly independent one-forms γ1, . . . ,γn−k

such that

1. If θ ∈ I, then θ|U =
∑n−k

i=1 θi ∧ γi for some θi ∈ Ω(T ∗M)

2. If θ ∈ Ω(T ∗M) andM is covered by open sets {Uk} such that for each Uk in the

cover,

θ|Uk =
n−k∑
i=1

θi ∧ γi (4.96)

for some θi ∈ Ω(T ∗M). Then θ ∈ I.

Note that the following direct sum of annihilators of a distribution ∆

I(∆) = ∆⊥(0)⊕∆⊥(1)⊕ · · · ⊕∆⊥(n) (4.97)

is an ideal in Ω(T ∗M), see [AMR83] page 374.

Definition 4.7.13. The ideal I(∆) corresponding to the direct sum of annihilators of a

distribution ∆ will be called the ideal generated by ∆.

The Foliations Tangent to an Eigendistribution

According to the definitions above, the direct sum of a distribution’s annihilators will

always be an ideal. Whether the ideal is also a differential ideal is the contents of the

differential forms formulation of the Frobenius Theorem.
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Theorem 4.7.3 (Frobenius (Differential Forms Formulation)). Let ∆ be d-dimensional

a distribution onM and I(∆) be the ideal generated by ∆. The following are equivalent

1. ∆ is involutive.

2. ∆ is integrable.

3. I(∆) is a differential ideal locally generated by n− d linearly independent one-forms

γ1, . . . ,γn−d.

4. For every x ∈M there exists an open set U and one-forms γi, . . . ,γn−d generating

I(∆) such that

dγi =
n−d∑
j=1

γij ∧ γj, for some γij ∈ Ω1(T ∗U) (4.98)

5. dγi ∧ γ1 ∧ · · · ∧ γn−d = 0

6. There exists a θ ∈ Ω(T ∗U) such that d(γ1 ∧ · · · ∧ γn−d) = θ ∧ γ1 ∧ · · · ∧ γn−d

Essentially the condition that the ideal generated by a distribution ∆ be a differential

ideal is equivalent to the integrability of ∆. A useful corollary is the following.

Corollary 4.7.3.1. A distribution ∆ is integrable if and only if for all open subsets U of

M

θ ∈ ∆⊥(1) =⇒ dθ ∈ ∆⊥(2) (4.99)

To motivate one of the results of this section, consider a collection of linearly indepen-

dent differential 1-forms γ1, . . . ,γn−d which span the annihilator ∆⊥Φ of an eigendistribution

∆Φ. By definition the 1-forms are such that

γj(x)(Φi(x)) = 0 (4.100)
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for all 1 ≤ i ≤ d and, 1 ≤ j ≤ n − d. Now if we further imposed that each of the

γj(x) are exact differential 1-forms, then each γj = dψj for some differentiable function

ψj ∈ C(M,F) (referred to as the potential function of γj). Then rewriting (4.100) for

these exact 1-forms results in the following

γj(x)(Φi(x)) = Φᵀ
i (x)∇ψᵀ

j (x) = 0 (4.101)

for all 1 ≤ i ≤ d and, 1 ≤ j ≤ n − d. It is by no accident that we chose to label

the potential functions as ψj(x). The choice was obviously motivated by the fact that

equation (4.101) shows that the potential functions ψj(x) are joint Koopman eigenfunctions

at eigenvalue λψj = 0 of the eigensections Φ1(x), . . . ,Φd(x). Lastly, viewing equation

(4.101) as a tangency condition between the eigenfunction level sets and the sections

of the distribution ∆Φ we would reasonably suspect that the d-dimensional integral

manifold could be prescribed implicitly as the level sets of the n− d linearly independent

eigenfunctions.

To motivate another result of this section, let us return to the situation in which the

integrability of a d-dimensional eigendistribution was yet to be determined. While in

the case of uniformly hyperbolic dynamics, this was possible to show, with mild effort,

for general dynamics, it may not be. It would seem reasonable to investigate whether

there are alternative conditions that can establish the integrability of an eigendistribution

corresponding to a, not necessarily hyperbolic, dynamical system. Perhaps the existence

(or lack of existence) of the n− d joint Koopman eigenfunctions of the eigendistributions,

previously discussed, can yield such conditions. We will make use of the following lemma.

Lemma 4.7.4. Let ∆ ⊂ TM be a d-dimensional distribution over an n-dimensional

manifoldM, spanned by the smooth vector fields F1(x), . . . ,Fd(x). The annihilator ∆⊥

is spanned by n− d linearly independent cosections γ1, . . . ,γn−d.
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Proof: Let ∆n = span{F1, . . . ,Fd,Fd+1, . . . ,Fn} be the completion of ∆ to a

complete basis for TM and let {γ1, . . . ,γn} be the dual basis to ∆n. We then have the

following facts:

1. Any θ ∈ Ω1(T ∗M) can be written in the basis as θ =
∑n

i=1 fiγi, for smooth functions

fi ∈ C(M,F) and since θ(Fi) = fiγi(Fi) = fi we can write θ =
∑n

i=1 θ(Fi)γi.

2. If G ∈ ∆ then we can write G =
∑d

i=1 giFi(x), for smooth functions gi ∈ C(M,F).

3. If i ∈ {d+ 1, . . . , n} and j ∈ {1, . . . , d} then we have that γi(Fj) = 0.

First suppose that G ∈ ∆ then γi(G) = 0 for all i ∈ {d+ 1, . . . , n} which implies that

span{γd+1, . . . ,γn} ⊂ ∆⊥.

Now suppose that θ ∈ ∆⊥ by definition θ(Fi) = 0 for i ∈ {1, . . . , d} then we can

write θ as θ =
∑n

i=d+1 θ(Fi)γi which means θ ∈ span{γd+1, . . . ,γn} and this implies that

∆⊥ ⊂ span{γd+1, . . . ,γn}.

Thus ∆⊥ = span{γd+1, . . . ,γn} and being basis vectors the γi’s are linearly indepen-

dent.

Theorem 4.7.5. Let ∆Φ be an eigendistribution spanned by d linearly independent

eigensections Φ1(x), . . . ,Φd(x) of a continuous-time or discrete-time dynamical system.

Suppose, there exists n − d joint, linearly independent, non-constant, eigenfunctions

ψ1(x), . . . , ψn−d(x) at eigenvalue 1 of the operators U t
Φi
. Then

1. the distribution ∆Φ is integrable.

2. the joint level sets of ψj(x), corresponding to joint regular values, implicitly define

the integral manifolds of ∆Φ.

Proof: Again, we can prove the result for continuous-time dynamics, and the proof

can be repeated for the discrete-time case.
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To prove the first claim we first note that by lemma 4.7.4 the annihilator ∆⊥Φ is

spanned by n− d linearly independent one-forms. Consider the eigencosections defined by

ωj(x) = dψj(x) which are linearly independent by the assumption that the eigenfunctions

ψj(x) are linearly independent. We have that

ωj(x)(Φi(x)) = dψj(x)(Φi(x)) = LΦi
ψj(x) = 0 (4.102)

for every 1 < i < d, 1 < j < n− d which implies that ∆⊥Φ = span{ω1(x), . . . ,ωn−d(x)}.

Moreover,

dωj(x)(Φi(x)) = 0 (4.103)

for every 1 < i < d, 1 < j < n − d and by the differential forms formulation of the

Frobenius theorem and corollary 4.7.3.1 this is equivalent to the integrability of ∆Φ and

the existence of a foliation which is tangent to ∆.

To prove the second claim we observe that under the conditions assumed on the ψj(x)

if c is a joint regular value of all the ψj(x) then c = [c, . . . , c]ᵀ ∈ Fn−d is also a regular value

of the vector valued function ψ(x) = [ψ1(x), . . . , ψn−d(x)]ᵀ ∈ C(M,Fn−d). Therefore,

the level sets Lc = {x | ψ(x) = c} are n − (n − d) = d dimensional submanifolds of

M [Spi99]. As such, the tangent space of Lc at every point is also d-dimensional and

∇ψᵀ(x) is everywhere normal to Lc. Now, since LΦi
ψ(x) = Φᵀ

i (x) · ∇ψᵀ(x) = 0 for

every 1 < j < d this implies that the eigensections are everywhere tangent to Lc and

being linearly independent implies that they span TLc. These, by definition 4.7.5, are

the conditions for Lc to be an integral manifold of ∆Φ.
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4.8 Examples and Applications

In this section, we provide some applications and examples of the results obtained

within this chapter.

4.8.1 Application to Differential Geometry

In this application, we set aside dynamical systems theory for the moment and simply

consider an n-dimensional manifoldM along with the space of smooth, complete vector

fields X(TM). We begin by recalling some definitions and two well-known theorems of

differential geometry.

Relevant Definitions & Results

Definition 4.8.1. Two vector fields F and G are said to commute if

[F(x),G(x)] := LFG(x) = 0 (4.104)

Definition 4.8.2. If StF is a smooth flow, a vector field G(x) is said to be invariant

under StF if

∇StF|x ·G(x) = G ◦ StF(x) (4.105)

for all t, x defined in the domain of StF.

Theorem 4.8.1. For two smooth vector fields F(x) and G(x), the following are equivalent,

1. F(x) and G(x) commute.

2. F(x) is invariant under StG(x).

3. G(x) is invariant under StF(x).
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Proof: See [Lee12] pages 231-232.

Definition 4.8.3. The two flows StF and StG are said to commute if for every x ∈M

and all s, t ∈ R we have that

StF ◦ SsG(x) = StG ◦ SsF(x) (4.106)

Theorem 4.8.2. Smooth vector fields commute if and only if their flows commute.

Proof: See [Lee12] page 233.

Lemma 4.8.3 (Rescaling Lemma). For any scalar a ∈ R the flow SatF is the flow of the

vector field a · F(x).

Proof: See [Lee12] page 208.

Commutability of Eigensections

In the context of this work definitions 4.8.1-4.8.3 and theorems 4.8.1-4.8.2 are very

specific statements regarding the eigenspace at λ = 0 of the infinitesimal generator

L. When λ 6= 0 then, [F(x),G(x)] = λG(x) means that the direction of G(x) is still

unchanged along the flow of F(x) but its magnitude, and hence the "speed" of the flow

StG, is scaled in some proportion prescribed by λ. Geometrically, this means that the

two sides of the parallelogram, generated by the composition of the flows of F(x) and

G(x), travel in the correct directions so that they should close but fail to do so due to

the scaling caused by λ.

We can leverage the facts mentioned above to show that the flows of two vector fields

F(x),G(x) commute, subject to an appropriate rescaling of the flow time, if and only if

one vector field is an eigensection of the other vector field; [F(x),G(x)] = λG(x) or vice

versa.
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Theorem 4.8.4. Let F,Φ ∈ X(M) and let StF(x), StΦ(x) denote their respective flows.

The following are equivalent.

1. [F(x),Φ(x)] = λΦ(x)

2. V t
FΦ(x) = St∗F Φ(x) = eλtΦ(x)

3. V t
ΦF(x) = St∗ΦF(x) = e−λtF(x)

4. S t̄Φ ◦ S s̄F(x) = S s̄F ◦ Se
(λs̄) t̄

Φ (x)

5. S t̄F ◦ S s̄Φ(x) = S s̄Φ ◦ Se
(−λs̄) t̄

F (x)

where t̄ and s̄ denote a specified flow time.

Proof:

(4) ⇐⇒ (2)

Assume (2) holds. Then we have that

∇S−tF |StF(x)(Φ ◦ StF(x)) = eλtΦ(x) ⇐⇒ e−λt(Φ ◦ StF(x)) = ∇StF|xΦ(x) (4.107)

Now consider the curve C(t) = S s̄F ◦ Se
(λs̄)t

Φ (x) and compute the velocity of the curve.
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d

dt
C(t) =

d

dt
(S s̄F ◦ Se

(λs̄)t
Φ (x))

= ∇S s̄F|Se(λs̄)tΦ (x)
· ( d
dt
Se

(λs̄)t
Φ (x))

= ∇S s̄F|Se(λs̄)tΦ (x)
· ( d
dt

(e(λs̄)t) · d
dt
Se

(λs̄)t
Φ (x))

= eλs̄∇S s̄F|Se(λs̄)tΦ (x)
· (Φ ◦ Se(λs̄)tΦ (x))

= eλs̄e−λs̄(Φ ◦ Se(λs̄)tΦ (x)) ◦ S s̄F(x)

= (Φ ◦ S s̄F ◦ Se
(λs̄)t

Φ (x))

= Φ(S s̄F ◦ Se
(λs̄)t

Φ (x)) = Φ(C(t))

Which implies that the curve C(t) is an integral curve of Φ(x) with initial condition

C(0) = SsF(x). However, the flow of the initial condition S s̄F(x) under the vector field

Φ(x) is given by StΦ(S s̄F(x)) and thus by uniqueness of the flow we have the following

C(t̄) = S s̄F ◦ Se
(λs̄) t̄

Φ (x) = S t̄Φ(S s̄F(x)) = S t̄Φ ◦ S s̄F(x)

Assume (4) holds and differentiate the left hand side w.r.t t to obtain

d

dt

∣∣∣
t=0

(StΦ ◦ S s̄F(x)) = Φ ◦ S s̄F(x) (4.108)

which is necessarily equal to the time derivative of the right hand side of of (4). Thus

Φ ◦ S s̄F(x) =
d

dt

∣∣∣
t=0

(S s̄F ◦ Se
(λs)t

Φ (x))

= (∇S s̄F|Se(λs)tΦ (x)
· d
dt
Se

(λs)t
Φ (x))

∣∣∣
t=0

= (∇S s̄F|Se(λs)tΦ (x)
· eλsΦ ◦ Se(λs)tΦ (x))

∣∣∣
t=0

= eλs∇S s̄F|x ·Φ(x)
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Now if we multiply both sides by ∇S−s̄F |Ss̄F(x) we obtain the desired result

S s̄∗F Φ(x) = ∇S−s̄F |Ss̄F(x)Φ ◦ S s̄F(x) = eλs̄Φ(x) (4.109)

(2) ⇐⇒ (1)

Assume (2) holds then

[F(x),Φ(x)] =
d

dt

∣∣∣
t=0
St∗F Φ(x) =

d

dt

∣∣∣
t=0
eλtΦ(x) = (λeλtΦ(x))

∣∣∣
t=0

= λΦ(x)

Assume (1) holds and compute

d

dt
(St∗F Φ(x)) =

d

ds

∣∣∣
s=0

(S
(t+s)∗
F Φ(x))

=
d

ds

∣∣∣
s=0

((StF ◦ SsF)∗Φ(x))

= St∗F
d

ds

∣∣∣
s=0

(Ss∗F Φ(x))

= St∗F ([F(x),Φ(x)]) = λSt∗F (Φ(x))

From the above computation we see that d
dt

(St∗F Φ(x)) = λSt∗F (Φ(x)) which is an ordinary

differential equation with initial condition Φ(x), since St∗F |t=0Φ(x) = Φ(x). The differential

equation just described has the well-known solution St∗F Φ(x) = eλtSt∗F |t=0Φ(x) = eλtΦ(x)

We have shown (4) ⇐⇒ (2) ⇐⇒ (1), the exact same arguments can be used to

show (5) ⇐⇒ (3) ⇐⇒ [Φ(x),F(x)] = −λΦ(x) and [Φ(x),F(x)] = −λΦ(x) ⇐⇒ (1)

is trivially true.

4.8.2 Arnold’s Cat Map

The next application will deal with a spectral study, from the perspective of the

induced group of operators on sections, of the hyperbolic toral automorphism known as
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Arnold’s cat map. Throughout this example the spaceM = T2 = R2/Z2 will be the torus.

The automorphism S(x) :M→M given by

S(x) =

2 1

1 1


x1

x2

 mod 1 (4.110)

is called the cat map. We consider the discrete-time dynamical system generated by the

cat map and note the following properties.

1. Since the determinant det∇S(x) = 1 the dynamical system generated by the cat

map is measure-preserving.

2. The dynamical system generated by the cat map has a countable Lebesgue spectrum

[AA68], which implies it is a mixing and ergodic dynamical system.

3. Property (2) also implies that the only eigenfunctions of US are the constant

functions.

4. The dynamical system generated by the cat map is a uniformly hyperbolic dynamical

system [AA68].

5. The matrix ∇S(x) has two eigenvalues λs, λu with |λu| > 1 and |λs| < 1

6. The Kolmogorov-Sinai entropy of the cat map is ln(|λu|). See [Sin59; AA68].

7. The Lyapunov exponents of the cat map are ln(|λs|) and ln(|λu|).

Due to the properties mentioned above, a spectral analysis of the cat map via US forces

one to consider the continuous spectrum of US. Unfortunately, studying the continuous

spectrum is often a complex task. A spectral analysis via US for the cat map has been

done in a few cases, but only numerically [Gov+19; KPM18].
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Denote by vs and vu the eigenvectors of ∇S(x) corresponding to λs, λu and consider

the two vector fields Φs(x) = vs and Φu(x) = vu. The vector fields are constant onM

and everywhere point in the direction of the stable and unstable eigenvectors of ∇S(x).

A straightforward calculation shows that these vector fields are eigensections of Vs.

VSΦs(x) = (∇S(x))−1 · vs ◦ s(x) = (∇S(x))−1 · vs =
1

λs
vs (4.111)

VSΦu(x) = (∇S(x))−1 · vu ◦ s(x) = (∇S(x))−1 · vu =
1

λu
vu (4.112)

We note that since log λu = | log( 1
λu

)|, the above calculation shows that the Lyapunov

exponents and the Kolmogorov-Sinai entropy, up to a minus sign, are in the spectrum of

VS. This is significant since the entropy was an invariant not captured by the induced

operator on functions.

Now since the cat map is a hyperbolic dynamical system there is a splitting of

the tangent bundle TM = Es ⊕ Eu and the contents of theorem 4.7.2 apply. Thus,

we consider the corresponding stable ∆s
Φ = span{Φs} and unstable ∆s

Φ = span{Φu}

eigendistributions. Furthermore, according to theorem 4.7.5 we can obtain the stable

Fs and unstable Fu foliations as the level sets of the eigenfunctions ψs(x) and ψu(x) at

eigenvalue 1 of U t
Φs

and U t
Φu

.

Now, let ws and wu be the left eigenvectors of ∇S(x) which are dual to vs and

vu, respectively. Set ψs(x) = 〈x,wu〉 and ψu(x) = 〈x,ws〉 and compute U t
Φs
ψs(x) and
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U t
Φu
ψu(x).

U t
Φs
ψs(x) = 〈x,wu〉 ◦ StΦs

= 〈x+ vst, wu〉

= 〈x,wu〉+ t〈vs, wu〉

= 〈x,wu〉 = ψs(x)

(4.113)

U t
Φu
ψu(x) = 〈x,ws〉 ◦ StΦu

= 〈x+ vut, ws〉

= 〈x,ws〉+ t〈vu, ws〉

= 〈x,ws〉 = ψu(x)

(4.114)

Thus, by theorem 4.7.5, Fs = {Lsc} and Fu = {Luc} where Luc{x|ψu(x) = c} and

Lsc{x|ψs(x) = c}. A plot of the level sets of said functions is shown below in figure

4.1. It can be seen that they are everywhere tangent (parallel) to the stable and unstable

eigendistributions, as a reference, we have also included a plot of the stable and unstable

eigenvectors of ∇S(x).

For completeness we also compute the spectrum of WS. Set ωs(x) = wsdx and

ωu(x) = wudx

WSωs(x) = ws ◦ s(x) · ∇S(x)dx = ws · ∇S(x)dx = λswsdx = λsωs(x) (4.115)

WSωu(x) = wu ◦ s(x) · ∇S(x)dx = wu · ∇S(x)dx = λuwudx = λuωu(x) (4.116)

Thus the operator WS contains the Lyapunov exponents and entropy exactly. Of course
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the minus sign appearing in the spectrum of VS is simply due to the fact that we are

working with the pull-back operator rather than the push-forward.

Figure 4.1: Obtained From the Spectrum of U t
Φs

and U t
Φu

.
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Figure 4.2:
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4.8.3 Spectral Expansion of a Linear System

Our final two examples are mostly for illustrative purposes. First we generate a

random 2× 2 matrix A, with integer entries, and consider the linear dynamical system

F(x) = Ax. The matrix generated is

A =

 1 16

−20 17


and the eigensections are plotted below.

Figure 4.3:

The next example will illustrate the spectral expansion derived in proposition 4.5.3

by randomly generating two 8× 8 matrices A and B and considering the time evolution

of the dynamical system G(x) = Bx under the dynamics of F(x) = Ax. The matrices
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generated are

A =



20 20 20 −17 −19 −9 −4 19

20 10 13 7 −14 −18 −3 18

20 −4 −11 −11 10 −17 9 −4

−10 11 5 −20 0 14 −2 7

−12 −15 −8 5 −11 −5 18 −3

4 −4 −19 19 2 −12 11 15

5 17 13 16 16 0 3 −2

12 12 −3 14 −3 −2 −20 15



B =



5 3 3 13 16 12 10 7

13 7 11 18 20 1 7 5

14 11 20 6 16 3 15 7

6 5 11 20 7 17 4 3

4 20 8 13 12 12 12 20

5 4 15 18 12 18 9 13

17 9 12 13 9 17 2 15

20 14 13 14 4 9 2 9


and the comparison between the expansion and V t

FG(x) is shown below. In every sub-

figure of figure 4.4 the matrix corresponding to V t
FG is plotted on the left and the matrix

corresponding to
∑

ij e
λijtΦijbij is plotted on the right.
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Figure 4.4: (a) Comparison at t = 0. (b) Comparison t = .01 (c) Comparison at
t = .02 (d) Comparison at t = .07
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Chapter 5

Conclusion

5.1 Discussion

5.1.1 Summary of Chapter 3

In chapter 3, we proposed a data-driven method, based on the Koopman operator’s

spectral properties, which provides a platform for identifying and analyzing spatiotemporal

traffic patterns. We were able to distinguish between the various types of patterns

previously proposed by Ahn, Laval, and others [Ahn05; AC07; SH07] (MLC, PLC, SGW,

"pumping effect"). We identify new patterns with standing wave node-like features, spatial

harmonic features, growing/decaying patterns, multi-lane MLC patterns, multi-lane PLC

patterns, multi-lane patterns with combined lateral and longitudinal (zig-zag) travel,

multi-lane patterns associated with the merging effects of on-ramps, and novel patterns

that exist within a network of highways. Specifically, a network mode analysis can reveal

the order of congestion, synchrony of congestion, and indicate which highways are occupied

the most. Every pattern we uncovered is global (across all detectors) and oscillates with

a single corresponding frequency, in contrast to Fourier transform methods that would
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detect different frequencies for different sensors.

Furthermore, via Koopman eigenvalue analysis, we provide objective means for ex-

tracting temporal characteristics of traffic patterns and further analyze the eigenvalues

to provide evidence for the works of Kim, Gartner, Dendrinos [TM04; NMR01; Den10;

Che+12; TBO12] and others. We have demonstrated intra-week (supplementary figures

14-15) and intra-day patterns within highway traffic in addition to the well-known daily

and weekly cycles. Lastly, we have shown how superimposing the modes can decompose

the data into the corresponding decaying, growing, and persisting sub-patterns.

We have also developed an accurate and efficient platform for the real-time forecasting

of highway traffic conditions. Our method demonstrates that the wave-like trends account

for most of the dynamics and yield accurate forecasts, despite the unpredictability involved

in a traffic system. As opposed to previous approaches, we have not filtered, smoothed,

or aggregated our data. We have not distinguished between weekday/weekend, or adverse

weather conditioned traffic, nor have we limited our analysis to single or few detectors.

Our method’s performance does not rely on extensive historical training nor parameter

tuning or selection. We showed the method’s capability to generalize to the challenging

scenario of multi-lane highways and multi-lane networks of highways, without any loss to

its performance or efficiency. The robustness, efficiency, and versatility of the algorithm

make it possible to implement with real-time monitoring systems to provide cost-efficient

forecasts. This is in strong contrast to many state-of-the-art benchmarks that depend

heavily on the proper pre-processing of data, tuning of parameters, and training over large

historical data only to produce case-specific (weekday/weekend/holiday), location-specific

and limited (single-lane, single highway) forecasts. The information uncovered by the

KMD can be relayed to autonomous vehicle control units and dynamic on-ramp metering

algorithms to mitigate traffic. Lastly, we emphasize that our methodology makes no

assumptions on the physical nature of the underlying system. We only assume to have
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time-ordered data arising from observations of a linear or nonlinear dynamical system.

The forecasting methodology we have developed is, in fact, quite general and can be

applied across different fields of study beyond highway traffic.

5.1.2 Summary of Chapter 4

In chapter 4 we saw how a dynamical system induces, in addition to the Koopman

group of operators U t, a group of operators on sections of the tangent bundle. Prior works

on such operators exist and have given rise to spectral invariants that were not reflected

in the spectrum of the induced Koopman operators. In this work, we demonstrated that

the induced operators on sections of the tangent bundle are a proper generalization of

the induced Koopman operators. We then provided the appropriate construction for the

induced operators on sections of arbitrary tensor bundles of the state space and proposed

their study.

In this dissertation, we have focused on studying the spectrum of the induced operator

V t on sections of the tangent and the operatorW t on sections of the kth cotangent bundles.

We sort out the spectral relations by demonstrating how knowledge of eigenfunctions,

eigensections, and eigenforms, or combinations of them, can be used to generate additional

spectral objects of a dynamical system. We can show that the eigenforms are preserved

under Lie differentiation in the direction of an eigensection. Specifically, for eigenfunctions,

the Lie derivative of an eigenfunction in the direction of an eigensection is again an

eigenfunction. This result provides a route for showing that in certain cases the Koopman

operators induced by the system and the Koopman operators induced by the eigensections

share a common eigenfunction. The result is analogous to the statement that commuting

matrices share at least one eigenvector. We then show that knowledge of an eigen k-form

and an eigensection can be combined to produce an eigen (k − 1)-form via their interior
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product. A corollary to this is that the interior product between an eigencosection and

an eigensection produces an eigenfunction.

We then work out the algebraic properties of eigensections and eigenforms by showing

that the spectrum of the induced operators on the space of smooth vector fields and

differential forms is a subalgebra of the Lie and exterior algebra, respectively. Also, the

the exterior derivative of a non-closed eigen k-form is an eigen k + 1-form. Now, since the

only closed function is the zero function, the exterior derivative of n-linearly independent,

differentiable, eigenfunctions will generate n linearly independent eigencosections. From

there, the exterior product of k-distinct eigencosections will allow one to generate
(
n
k

)
linearly independent eigen k-forms. The algebraic results we derive for eigenforms

coincides with the well-known algebraic properties of Koopman eigenfunctions. This result

is expected since functions are forms of zero grade.

We also show that eigensections and eigenforms pull back to eigensections and eigen-

forms in the presence of a diffeomorphic conjugacy between two dynamical systems. This is

in the same spirit of the well-known result that eigenfunctions pull back to eigenfunctions

under a conjugacy. The main difference is that eigenfunctions will pullback under an

arbitrary mapping, vector fields require a diffeomorphic conjugacy to pull back, and forms

require a differentiable homeomorphism.

We then investigated the eigensections and eigenforms of a linear dynamical system

with a simple spectrum. At first, this may seem unnecessary since the dynamics of a

linear dynamical system are well understood. However, the fact remains that there exists

conditions for which a nonlinear dynamical system can be shown to be conjugate to a

linear system, and these are the contents of the celebrated Hart-Grobman, Sternberg, and

Poincare linearization theorems. These facts, coupled with the conjugacy results, beckon

the characterization of the spectrum of the induced operators of a linear system. This

will provide a method for computing the spectrum of a nonlinear system conjugate to
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a linear system by pulling back the linear system’s induced spectrum. Additionally, we

have shown that the linear eigensections can be used to obtain a spectral expansion to

represent the time evolution of an arbitrary linear vector field.

Additionally, we have introduced the notion of an eigendistribution and studied

their integrability properties. For the class of uniformly hyperbolic dynamical systems,

we consider the stable and unstable eigendistributions corresponding to the span of

eigensections, which experience exponential growth or decay in time. The stable and

unstable eigendistributions are shown to be integrable so long as they altogether span

the stable and unstable subbundles. This result can be seen as a spectral counterpart

to the Arnold-Sinai theorem, which guarantees the existence of the stable and unstable

foliations.

The result is complemented by showing that the integral manifolds, and hence the

foliations, can be obtained via the joint level sets of n−dim(∆Φ) Koopman eigenfunctions

of the eigensections which span the eigendistribution. The result provides a constructive

method of determining the foliations from the induced operators’ spectrum on sections

and functions. Furthermore, for a not necessarily hyperbolic system, the existence of

n− dim(∆Φ) joint Koopman eigenfunctions of the spanning eigensections is used to show

that the corresponding eigendistribution is integrable.

Lastly, we demonstrated two applications of the results developed in this dissertation.

One application was to the field of differential geometry, where we prove a generalization

of the well-known theorem on the commutativity of the flows of commuting vector fields.

Specifically, we show that the flows of two vector fields F(x),G(x) commute, subject to

an appropriate rescaling of the flow time, if and only if one vector field is an eigensection

of the other vector field, [F(x),G(x)] = λG(x) or vice versa. The required time scaling

is, as one would expect, prescribed by the eigenvalue λ. Notably, when λ = 0, we recover

the original statement that the flows of commuting vector fields commute as a particular
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case of our result.

Our second application was the spectral analysis of the dynamical system known as the

cat map. We utilize the spectrum of the induced operators on the space of sections and

cosections to show that the linearization’s eigenvalues are contained in the spectrum of the

induced operators. This indicates that the Lyapunov exponents and entropy, which are

invariants of the system not captured by the spectrum of the induce Koopman operators,

are in these operators’ spectrum. Furthermore, we utilize our result and determine the

eigenfunctions of the stable and unstable eigensections to recover the stable and unstable

foliations. The main takeaway is that while the cat map itself had no eigenfunctions,

the eigensections of the cat map do have eigenfunctions. Moreover, the level sets of the

eigenfunctions of the eigensections provide the foliations of the cat map.

5.2 Future Works

There are several intended directions for our future works. Of course, there is a

desire to implement numerical algorithms that can compute the spectrum of the induced

operators on vector fields and forms. Such algorithms are currently in the works but are

yet to be finalized.

There is also an intention to address the induced operators’ spectrum for linear systems

with degenerate spectrum. The ideas should carry over with sufficient care. Additionally,

deriving a spectral expansion for the time evolution of a nonlinear vector field under

linear dynamics would be the next step. For the standard Koopman operator, this

involved the consideration of real-analytic observables. It seems reasonable to start with

a similar assumption for vector fields and proceed from there. Next would be a spectral

expansion for a nonlinear vector field under nonlinear dynamics. This will entail careful

consideration of which specific space of vector fields we are attempting to work in. For a
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measure-preserving system, the space of square-integrable vector fields and forms seems

to be a reasonable choice.

In terms of a specific class of dynamical systems, the non-uniformly hyperbolic systems

are our next interest. Specifically, we are reasonably confident that these operators’

spectrum contains the exponents of a non-uniformly hyperbolic system’s growth or decay.

However, in the non-uniform case, the exponents are, of course, state-dependent. This

motivates our desire to study the following type of relation.

LFΦ(x) = λ(x)Φ(x) (5.1)

where LFλ(x) = 0. The relation is similar to the generalized eigenfunctions that Von

Neumann and Halmos set forth. The difference is that the space of sections of a (tangent,

cotangent, tensor) bundle overM carries the additional structure of being a module over

functions. Loosely speaking, this is equivalent to saying that functions are to fields what

scalars are to functions. Our point is the following. Functions are an algebra over scalars

as such the eigenvalues for an operator on functions are typically defined to be complex

numbers. Analogously, the module structure of fields seems to justify, at least intuitively,

taking eigenvalues of the induced operators on sections from the ring of functions. We

would call the function λ(x) and eigenvalue function of LF.

Results on such types of expressions exist but not in the language of the spectrum of an

operator. In the context of differential geometry, such a function λ(x) would correspond

to the negative of what is called a normalizer and results showing the existence of integrals

of motion when [F,Φ] = λ(x)F + µ(x)Φ have been obtained by others.

We believe the eigenvalue functions capture the state dependence of the exponents of

a non uniformly hyperbolic system but this warrants further investigation. Furthermore,

if the conjecture is true, a result equivalent to Mather’s statement regarding the uniformly
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hyperbolic case is expected and should be within reach.

There is, of course, an intent to carry out the spectral study to higher-order tensors.

It is expected that understanding the spectrum on vector fields and forms will allow us to

build results for tensor fields via the tensor algebra. One example that comes to mind is

the notion of a Killing vector field that arises in physics. A Killing vector field satisfies

LFg = 0 (5.2)

where g is a Riemannian metric. In physics, one usually fixes a metric g and searches for

a field F. From our perspective, this is the inverse of the spectral problem and a precise

statement regarding the λ = 0 case. We propose the spectral problem of finding tensor

fields which satisfy

LFg = λ(x)g (5.3)

In physics, such vector fields F are called conformal Killing fields and have been studied.

Our proposition is related to those works but again we are interested in fixing the vector

field and finding the associated eigentensor.
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