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(Received 19 February 2018; accepted 1 July 2018; published online 20 July 2018)

Finding reduced models of spatially distributed chemical reaction networks requires an estimation
of which effective dynamics are relevant. We propose a machine learning approach to this coarse
graining problem, where a maximum entropy approximation is constructed that evolves slowly in time.
The dynamical model governing the approximation is expressed as a functional, allowing a general
treatment of spatial interactions. In contrast to typical machine learning approaches which estimate the
interaction parameters of a graphical model, we derive Boltzmann-machine like learning algorithms
to estimate directly the functionals dictating the time evolution of these parameters. By incorporating
analytic solutions from simple reaction motifs, an efficient simulation method is demonstrated for
systems ranging from toy problems to basic biologically relevant networks. The broadly applicable
nature of our approach to learning spatial dynamics suggests promising applications to multiscale
methods for spatial networks, as well as to further problems in machine learning. Published by AIP
Publishing. https://doi.org/10.1063/1.5026403

I. INTRODUCTION
A. Model reduction of statistical many-body systems

Master equations are broadly applicable to stochastic sys-
tems in biology. For reaction-diffusion systems, the solution
to the chemical master equation (CME) fully characterizes
the probability distribution over system states and all observ-
ables at all times.1 However, solving the CME for relevant
moments is challenging when the interactions of two or more
reagents lead to non-linear differential equation systems for the
moments and even more challenging when considering spa-
tially distributed systems. A wealth of analytical and numerical
approaches has been developed in pursuit of approximate solu-
tions, each of which is optimally suited for a distinct dynamical
regime.2 For example, at the low and spatially heterogeneous
concentrations of molecules present in dendritic spines in
synapses, particle-based methods may best describe the highly
stochastic signaling activity.3–5 In the larger volumes such as
the dendritic shaft, simpler geometries and higher concentra-
tions allow more efficient partial differential equation (PDE)
methods. It remains an open problem to develop a modeling
framework that is able to flexibly transition across different
dynamical regimes or to describe their coexistence in the same
spatial domain.

One key problem is that the number of states appear-
ing in the CME increases exponentially with the number of

a)Electronic mail: oernst@ucsd.edu.
b)Electronic mail: bartol@salk.edu.
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d)Electronic mail: emj@uci.edu.

underlying random variables describing the system. This sys-
tem state space explosion poses a computational challenge
for Monte Carlo algorithms such as the popular Gillespie
stochastic simulation algorithm (SSA),6 requiring the sam-
pling of a sufficiently large number of trajectories to estimate
observables.

The direct estimation of observables also poses a
challenge. Generally, many-body systems result in a
hierarchy of moments [analogous to a Bogoliubov–Born–
Green–Kirkwood–Yvon (BBGKY) hierarchy7–9], where the
differential equation for any given moment depends on the
current value of higher order ones. This requires the use of a
moment closure technique (see Ref. 10 for review), but a poor
choice here can unduly restrict modeling of the rich correlation
structures available.

Machine learning approaches present an opportune set-
ting for addressing these problems because a central goal
of these approaches is the estimation of the structures
underlying complex correlations. For example, machine
learning has recently been proposed to approximate quan-
tum systems.11 Previous applications to chemical sys-
tems include the predictions of molecular reactions12 and
synaptic activity.13 However, to our knowledge, no general
formulation for learning chemical dynamics exists that incor-
porates the complex spatial interactions central to many
problems in biology. In this work, we present such a frame-
work and derive algorithms for simulating reaction-diffusion
systems in continuous space. This has promising general
implications for both moment closure and model reduc-
tion of the CME and of other generally spatially distributed
systems.

0021-9606/2018/149(3)/034107/15/$30.00 149, 034107-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5026403
https://doi.org/10.1063/1.5026403
https://doi.org/10.1063/1.5026403
mailto:oernst@ucsd.edu
mailto:bartol@salk.edu
mailto:terry@salk.edu
mailto:emj@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5026403&domain=pdf&date_stamp=2018-07-20


034107-2 Ernst et al. J. Chem. Phys. 149, 034107 (2018)

B. Inferring Markov random fields
for reduced dynamics

Previous work has shown the applicability of machine
learning to model reduction. In particular, the “Graph Con-
strained Correlation Dynamics” (GCCD) framework10 uses
a Markov Random Field (MRF) of plausible state variables
and interactions as input, incorporating human expertise
into the model reduction process. The probability distribu-
tion associated with this MRF is written in a form that
separates the time evolution µ(t) from the graph structure
Vα(s),

p̃(s, t; {µ}) =
1

Z(µ(t))
exp


−

∑
α

µα(t)Vα(s)

. (1)

This time-evolving mean field model can be learned separately
at each time-point using the well-known Boltzmann Machine
(BM) learning algorithm14 and then approximated with its own
dynamics for µ(t). For a suitably chosen MRF, the resulting
temporal dynamics of µ(t) result in a large degree of model
reduction, as reported in Ref. 10.

In Sec. II, we formalize these ideas and extend to the
spatial domain a general variational problem for estimat-
ing the dynamical model dictating the time evolution of
a Boltzmann distribution. The importance of spatial net-
works has been widely studied,15,16 with continued inter-
est in mean-field methods, such as for evolving networks.17

Our formulation using functionals presents a flexible frame-
work for capturing the dynamics of any desired spatial cor-
relations in the system. This leads to algorithms closely
related to a BM, with a modified learning rule for directly
estimating the functionals dictating the time evolution of
the mean-field model. We anticipate that such an approach
is broadly applicable to other spatially organized networks
and will have further practical applications in machine
learning.

II. LEARNING ALGORITHMS FOR MODEL
REDUCTION

This section is organized as follows. Section II A reviews
recent developments that have enabled the derivation of
stochastic simulation algorithms for chemical kinetics in the
Doi-Peliti formalism and introduces further extensions for
describing spatial dynamics. Section II B introduces time-
evolving Boltzmann distributions as reduced models, and
Sec. II C sets up the associated variational problem for their
dynamics. For the case of well-mixed systems, this is solvable
by an algorithmic approach, as shown in Sec. II D. Section II E
treats some analytic solutions for simple systems used to guess
parameterizations needed to algorithmically solve the general
spatially heterogeneous case in Sec. II F.

A. Field theoretic approaches to deriving
stochastic simulation algorithms

An equivalent description parallel to the CME is
the quantum-field-theoretic Doi-Peliti18–20 operator algebra

formalism (see, e.g., Ref. 21 for review). Extensions to this for-
malism have developed it as a natural framework for deriving
stochastic simulation algorithms of chemical kinetics. These
extensions include:

1. The introduction of parameterized objects has general-
ized bare molecules to allow the description of macro-
molecular complexes such as phosphorylation states22,23

or other structures with size, type, and other internal
parameters that affect their dynamics.

2. Dynamically graph-linked collections of objects24 have
allowed collections of inter-related objects and extended
objects to associate and dissociate according to specified
rules and propensities.

3. Differential operators have been introduced that express
differential equations and stochastic differential equa-
tions,22,23 as in the Lie Series.25

These innovations naturally lead to the rederivation of
the popular Gillespie SSA from the CME and from there
to extensions to the parametric, graph-matching, and mixed-
dynamics cases.23 Here, we consider further extensions to this
formalism to develop model reduction techniques for spatial
reaction-diffusion systems.

The raising and lowering operators, â and a, create and
destroy identical particles of a single species. For states con-
sisting of a single species distributed on a discrete lattice
|{n}〉, where {n} describes the occupancy of each lattice site,
the action of these operators on the i-th lattice site (in some
ordering) is

âi |{n}〉 = |{. . . , ni−1, ni + 1, ni+1, . . . }〉,

ai |{n}〉 = ni |{. . . , ni−1, ni − 1, ni+1, . . . }〉.
(2)

Further, they satisfy the Heisenberg algebra commutation rela-
tionship [ai, âj] = δij, where δij is the Kronecker delta function.
We note that these are different from the ladder operators in
quantum mechanics in which ai is not conjugate to âi. How-
ever, in the present context, they are of key importance as they
capture mass action chemical kinetics.

These operators admit an equivalent generating function
representation

|{n}〉 →
∏

i

zni
i , (3)

where the product runs over all spatial lattice sites. Then the
operators may be represented as

âi → zi,

ai →
∂

∂zi
.

(4)

In the spatially continuous case, let the state of the system
be denoted by |n, α, x〉, consisting of n particles at loca-
tions x, consisting of n positions in 3D space, with species
labels α, also of length n. The equivalent generating function
representation is

|n, α, x〉 →
n∏

i=1

z(αi, xi). (5)
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The raising and lowering operators are now

â(α, x)→ z(α, x),

a(α, x)→
δ

δz(α, x)
,

(6)

where, switching from the discrete to the continuous case, par-
tial derivatives for the annihilation operator turn into functional
derivatives. Importantly, the CME

ṗ(n, α, x, t) =Wp(n, α, x, t) (7)

can still be written in an equivalent form where the time-
evolution operator W is a polynomial in the ladder opera-
tors, encoding the set of reactions and rates. We make use of
these extensions in Secs. III and IV where analytic forms for
differential equations of moments are required.

B. Reduced states in a dynamic Boltzmann distribution

Let |n, α, x, t〉 denote the true state of the system at time t.
In the spirit of a MRF, construct states in a coarse-scale model,

|{νk }
K
k=1, t〉 =

1

Z
[
{νk }

K
k=1

]
∞∑

n=0

∑
α

×

∫
dx exp


−

K∑
k=1

∑
〈i〉nk

νk(α〈i〉nk , x〈i〉nk , t)


|n, α, x, t〉,

(8)

where 〈i〉nk = {i1 < i2 < . . . < ik : i ∈ [1, n]}
denotes ordered subsets of k indexes each in {1, 2, . . ., n},
and νk(α〈i〉nk , x〈i〉nk , t) are k-particle interaction functions up

to a cutoff order K. We note that {. . . }Kk=1 is used to
denote an index-ordered set in this context. This expansion
of n-body interactions is a specific case of more general
dimension-wise decompositions, such as analysis of least vari-
ance (ANOVA).26 The probability of being in a state |n, α,
x, t〉 is given by a dynamic and instantaneous Boltzmann
distribution

p̃(n, α, x, t) = 〈n, α, x, t |{νk }
K
k=1, t〉

=
exp

[
−

∑K
k=1

∑
〈i〉nk

νk(α〈i〉nk , x〈i〉nk , t)
]

Z
[
{νk }

K
k=1

] . (9)

The true probability distribution p(n, α, x, t) evolves
according to the CME (7). To describe the time evolution of the
reduced model, introduce a set of functionals {Fk }

K
k=1, form-

ing a differential equation system for the interaction functions
{νk }

K
k=1,

d
dt
νk(α〈i〉nk , x〈i〉nk , t) = Fk[{ν(α, x, t)}], (10)

where

{ν(α, x, t)} =
{
νk′(α〈j〉nk′ , x〈j〉nk′ , t) ∀ 〈j〉nk′ : 1 ≤ k ′ ≤ K

}
(11)

denotes all possible ν functions evaluated at the given argu-
ments. Here, the right hand sideFk may be a global functional,
in the sense that the arguments {ν(α, x, t)} are not restricted
to the arguments appearing on the left hand side of (10). We

consider particular local parameterizations of this general form
in Sec. II F.

In addition to the connection to MRFs, we note several
advantages of the form of this reduced model (9) and (10):

1. Since the states |{νk }
K
k=1, t〉 define a grand canonical

ensemble (GCE), (9) exactly describes equilibrium sys-
tems and is expected to reasonably approximate systems
approaching equilibrium.

2. If the interactions between two groups of particles are
independent, their joint probability distribution equals
the product of their probabilities and their interaction
functions νk in (9) sum. The Boltzmann distribution thus
preserves the locality of interactions.

3. A further important result pertains to linearity, as stated
in the following proposition.

Proposition 1. Given a reaction network and a fixed col-
lection of K interaction functions {νk }

K
k=1, the linearity of

the CME in reaction operators ṗ =
∑

rW(r )p extends to the
functionals Fk =

∑
r F

(r)
k .

Proof. The dynamic Boltzmann distribution p̃(n, α, x, t)
is a maximum entropy (MaxEnt) distribution, where each
interaction function νk(α〈i〉nk , x〈i〉nk , t) controls a corresponding
moment µk(α〈i〉nk , x〈i〉nk , t) } given by

µk(α〈i〉nk , x〈i〉nk , t) =
∞∑

n′=0

∑
α′

∫
dx′ p(n′, α′, x′, t)

×
∑
〈j〉n
′

k

δ

(
x〈i〉nk − x′

〈j〉n
′

k

)
δ

(
α〈i〉nk − α′

〈j〉n
′

k

)
.

(12)

Here, δ(x) denotes a multi-dimensional Dirac delta function.
Note that there are L =

∑K
k=1

(
n
k

)
interaction terms and equally

many moments they control. Switching to vector notation, let
ν of length L denote the interaction functions and µ denote the
corresponding moments.

Relating the interaction functions to the moments consti-
tutes an inverse Ising problem. Let the solution to this problem
be

νl = φl(µ) (13)

for some functions φl for l = 1, . . ., L. This solution depends
only on the interaction functions and not on the reaction opera-
tors appearing in the CME. For a single reaction process, let the
differential equations for the moments be µ̇(r), resulting from
ṗ(r) = W(r )p(r ), where ẋ denotes a time derivative. Taking the
time derivatives of both sides of (13) gives

ν̇l
(r) =

L∑
l′=1

∂φl(µ)
∂µl′

µ̇(r)
l′ (14)

for the full network of reactions, then

ν̇l =

L∑
l′=1

∂φl(µ)
∂µl′

µ̇l′ =
∑

r

L∑
l′=1

∂φl(µ)
∂µl′

µ̇(r)
l′ =

∑
r

ν̇(r)
l (15)

gives the desired linearity property.
◽
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Due to Proposition 1, the functionals F will be referred to
as basis functionals. In Sec. III C, the utility of this property
is explored further in a machine learning context.

C. Formulation of general problem to determine
functionals governing spatial dynamics

We next formulate a general problem to determine the
functionals leading at all times to the MaxEnt Boltzmann
distribution. Define the action as the Kullback-Leibler (KL)
divergence between the true and reduced models (extending
Ref. 10),

S =
∫ ∞

0
dt DKL(p| |p̃),

DKL(p| |p̃) =
∞∑

n=0

∑
α

∫
dx p(n, α, x, t) ln

p(n, α, x, t)
p̃(n, α, x, t)

.

(16)

Next, we introduce a notation to define a higher-order vari-
ational problem. Since the interaction functions are defined
specifying by the set of functionals Fk[{ν(α, x, t)}] for all
k = 1, . . ., K, we use the notation νk[[{F}]] to denote that νk

is a higher-order generalization of a functional. The action is
a functional of the set of all interaction functions, which we
denote by S[{ν[[{F}]]}], where {x} = {xk }

K
k=1.

The higher-order variational problem for the basis func-
tionals is given by the chain rule

δ̂S[{ν[[{F}]]}]
δ̂Fk[{ν(α, x, t)}]

=

K∑
k′=1

∑
α′

∫
dx′

∫
dt ′

δS[{ν}]
δνk′(α′, x′, t ′)

×
δ̂νk′(α′, x′, t ′)

δ̂Fk[{ν(α, x, t)}]
= 0, (17)

where we use the notation δ̂ to denote that this is not an ordinary
variational problem, in the sense that a variation with respect
to a functional is implied. Equation (17) should therefore be
regarded as a purely notation solution, generalizing the well-
known chain rule for functionals where a variational derivative
is taken of a functional: δF[G[φ]]

δφ(y) = ∫ dx δF[G]
δG(x)

δG[φ]
δφ(y) . The first

term is a variational derivative analogous to that appearing in
the derivation of the BM learning algorithm,14 giving

δ̂S[{ν[[{F}]]}]
δ̂Fk[{ν(α, x, t)}]

=

K∑
k′=1

∑
α′

∫
dx′

∫ ∞
0

dt ′
(
µk′(α

′, x′, t ′)

− µ̃k′(α
′, x′, t ′)

) δ̂νk′(α′, x′, t ′)

δ̂Fk[{ν(α, x, t)}]
= 0,

(18)

where the moments µ are defined in (12), with µ̃ having p
replaced by p̃. Next, we consider well-mixed systems where
the de-escalation from functionals to ordinary functions Fk

makes this problem (18) well-defined. In Sec. II F, we parame-
terize the functional form of F to consider spatially distributed
systems.

D. Learning algorithm for reduced dynamics
of well-mixed systems in one species

In the case of well-mixed systems in one species, the
state of the system is entirely characterized by the number of

individuals |n, t〉. Dropping the species and position labels in
the dynamic Boltzmann distribution gives

p̃(n, t) =
1

Z({ν})
exp


−

K∑
k=1

(
n
k

)
νk(t)


, (19)

where we use the notation {ν} = {νk′ }
K
k′=1. The time evolution

is now described by basis functions forming the autonomous
differential equation system

d
dt
νk(t) = Fk({ν}),

with I.C.: νk(t = 0) = ηk ,
(20)

where Fk are now functions rather than functionals Fk . The
variational problem (18) for the basis functions becomes

δS[{ν[{F}]}]
δFk({ν})

=

K∑
k′=1

∫ ∞
0

dt ′*
,

〈(
n
k ′

)〉
p(t′)
−

〈(
n
k ′

)〉
p̃(t′)

+
-

δνk′(t ′)
δFk({ν})

= 0, (21)

where 〈X〉p(t ′) =
∑∞

n=0 Xp(n, t ′) and similarly for p̃.
The variational term on the RHS of (21) may be deter-

mined by a number of methods, including an ordinary differ-
ential equation (ODE) formulation derived in Appendix A 1,
a PDE formulation derived from applying the chain rule at the
initial condition, and using a Lie series approach (see the sup-
plementary material). The first of these and arguably the most
practical is

d
dt ′

(
δνk′(t ′)
δFk({ν})

)
=

K∑
l=1

∂Fk′({ν(t ′)})
∂νl(t ′)

δνl(t ′)
δFk({ν})

+ δk′,kδ({ν} − {ν(t ′)}),

with I.C.:
δνk′(t ′ = 0)
δFk({ν})

=0. (22)

An algorithmic solution to (21) is therefore possible in
the form of a PDE-constrained optimization problem: Solve
(21) and (22) subject to the PDE-constraint (20). An exam-
ple algorithm using a simple gradient descent is given by
Algorithm 1.

We note the implicit connection between this approach
and using Boltzmann machines, such as in GCCD, by the
algorithm’s objective function. Here, the whole trajectory of
moments from stochastic simulations is used to directly esti-
mate time evolution operators, rather than estimating the inter-
action parameters at each time step. We make this connection
explicit in Algorithm 2 in Sec. III C.

Further improvements to Algorithm 1 are possible, such as
to replace ordinary gradient descent by an accelerated version,
e.g., Nesterov accelerated gradient descent.27 Furthermore,
the wealth of methods available to solve PDE-constrained
optimization problems, e.g., adjoint methods,28 offers rich
possibilities for further development.

1. Example: Mean of the Galton-Watson
branching process

As a simple illustrative example, consider a reduced
model that captures the time-evolving mean of the Galton-
Watson branching process consisting of the birth process A→
A + A with rate kb and death A→ ∅ with rate kd .

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-007828
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-007828
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Algorithm 1. Gradient descent for learning basis functions governing well-
mixed dynamics.

1: Initialize
2: Grid of values {ν} to solve over.
3: Fk({ν}) for k = 1, . . ., K.
4: Max. integration time T.
5: A formula for the learning rate λ.
6: while not converged do
7: Initialize ∆Fk({ν}) = 0 for all k, {ν}.
8: Generate a sample of random initial conditions {η}.
9: for ηi ∈{η} do

10: .Generate trajectory in reduced space {ν}:
11: Solve the PDE constraint (20) with IC ηi

for 0 ≤ t ≤ T.
12: Solve (22) for variational term δνk′ (t)/δFk({ν }).
13: .Sampling step:

14: Evaluate moments
〈(

n
k′
)〉

p̃(t′)
of the Boltzmann

distribution by sampling or analytically.

15: Evaluate true moments
〈(

n
k′
)〉

p(t′)
by stochastic

simulation or analytic solution.
16: .Evaluate the objective function:
17: Update ∆Fk({ν}) as the cumulative moving

average of (21) over initial conditions {η}.
18: .Update to decrease objective function:
19: Update Fk({ν}) to decrease the objective function:

Fk({ν})→ Fk({ν}) � λ∆Fk({ν}).

In this case, there are only self-interactions (K = 1)
described by ν(t) with basis function F(ν(t)). The dynamic
Boltzmann distribution is

p̃(n, t) =
1
Z

exp[−nν(t)]. (23)

Using the fact that

〈n〉p̃ =
1

eν − 1
(24)

and from the CME,

Algorithm 2. Boltzmann machine-style learning of dynamics.

1: Initialize
2: Initial θ(r ) for all r.
3: Max. integration time T.
4: A formula for the learning rate λ.
5: Time-series of lattice spins {s}(t) from stochastic

simulations from some known IC h0, J0.
6: Fully visible MRF with NN connections and as many

units as lattice sites N.
7: while not converged do
8: .Generate trajectory in reduced space:
9: Solve the PDE constraint (52) with IC h0, J0

for 0 ≤ t ≤ T.
10: .Awake phase:
11: Evaluate true moments µ(t), ∆(t) from the

Stochastic simulation data {s}(t).
12: .Asleep phase:
13: Evaluate moments µ̃(t), ∆̃(t) of the Boltzmann

distribution by Gibbs sampling.
14: .Update to decrease objective function:

15: Solve (54) for derivative terms.
16: Update θ(s) to decrease the objective function

for all s by taking: θ(s) →θ(s)
� λ × (53).

FIG. 1. Learned basis function for the simple annihilation process A→∅ after
40 iterations from a uniform initial condition.

d〈n〉p
dt
= (kb − kd)〈n〉p (25)

gives the analytic solution for the basis functions

F(ν) = (kb − kd)(e−ν − 1). (26)

This solution is reproduced using Algorithm 1, as shown
in Fig. 1 for kd = 3kb/2. Here, the solution is constructed on
a grid of ν ∈ [0+, 3.0] with spacing ∆ν = 0.1, with maxi-
mum integration time T = 1 (arbitrary units). The learning
rate is decreased exponentially over iterations to improve
convergence. The convergence of the algorithm is shown in
Fig. 2.

Figure 3 shows the variational terms (22) evaluated at
a single point ν = 2 for several initial conditions η. These
resemble step functions, where the position in time of the
step corresponds to the time at which the solution trajectory
crosses ν = 2, with value δν(t)/ δF(ν = 2) ≈ 0 before this time,
and non-zero value afterwards. These terms assume different
characteristic shapes as the differential equation model (10) is
varied, another example of which is shown in Sec. II F 1.

2. Example: Two basis functions controlling
mean and variance

Consider again the process of Sec. II D 1, but with
K = 2 basis functions ν1(t) and ν2(t) controlling the mean and
variance in the number of particles. The dynamic Boltzmann
distribution is

FIG. 2. Left: The convergence of the action S as it is minimized over iterations
following Algorithm 1. Trajectories (gray) for individual η, normalized to
start at one and end at zero and their mean (black). Right: The minimization
of the variation in the action δS/δF(ν), as a function of the position to vary
ν. Trajectories (gray) at each ν and their mean (black).
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FIG. 3. Top: The variational term δν(t)/δF(ν = 2.0) for several initial con-
ditions η = 1.5, . . ., 1.9 as a function of time, obtained by solving (22)
numerically. Bottom: The solution trajectories ν(t) starting from these η.
Before the solution trajectory crosses ν = 2, the value of the variational terms
is approximately zero. After this crossing time, the value is non-zero and
approximately constant, resembling a step function.

p̃(n, t) =
1
Z

exp

[
−nν1(t) −

(
n
2

)
ν2(t)

]
. (27)

This may be interpreted as a Gaussian distribution in the
number of particles, provided we treat n as continuous and
extend its range to ±∞ or consider systems with means far
from n = 0. In this case, the mean µ and variance σ2 can be
related to the interaction functions as µ = 1/2 − ν1/ν2 and
σ2 = 1/ν2. The differential equations derived from the CME
for the moments of this system are

dµ
dt
= (kb − kd)µ,

dσ2

dt
= 2(kb − kd)σ2 + (kb + kd)µ,

(28)

which can be converted to analytic solutions for the basis
functions

F1(ν1, ν2) = ν1(kd − kb + (kb + kd)ν1)

−
ν2

2

(
kb − kd + (kb + kd)ν1

)
,

F2(ν1, ν2) = −
ν2

2

(
kd(−4 − 2ν1 + ν2) + kb(4 − 2ν1 + ν2)

)
.

(29)

These are shown in Fig. 4.
Figure 5 shows the variational terms δν1(t)/δF1(ν1,

ν2) and δν2(t)/δF1(ν1, ν2), resulting from Algorithm 1
and determined by (22). Interestingly, the self-varying term
δν1(t)/δF1(ν1, ν2) more closely resembles the multivari-
ate delta-function appearing in (22), while the cross term
δν2(t)/δF1(ν1, ν2) shows a greater temporal memory of the
solution trajectory.

E. Analytic MaxEnt solutions

We next consider special cases where analytic solutions
for the basis functionals are possible, to motivate a param-
eterization leading to a solvable version of the variational
problem (18).

1. Gaussian distributions

The well-mixed case (19) is the MaxEnt distribution con-
sistent with

〈(
n
k

)〉
p

for k = 1, . . ., K. If K = 2, then (19) may

be interpreted as a Gaussian distribution in continuous n, as
discussed in Sec. II D. Generalizing these results, the basis
functions are generally given by

F1(ν1, ν2) = −ν2
dµ
dt
− ν1ν2

dσ2

dt
,

F2(ν1, ν2) = −ν2
2

dσ2

dt
,

(30)

where dµ/dt, dσ2/dt are evaluated from the CME and
expressed in terms of ν1, ν2. Here, a moment closure approxi-
mation must be applied if the reactions have a total stoichiom-
etry greater than one on the starting (input) side. For example,
the higher order moments appearing in the CME may be
approximated by those of the reduced model p̃ and expressed in
terms of lower order µ, σ2 following the well-known property
of Gaussian distributions. This closure technique is described
further in Sec. III A.

FIG. 4. The true basis functions (29)
for the Galton-Watson system. Left:
F1(ν1,ν2). Right: F2(ν1,ν2). The reac-
tion rates used are kd = 3kb/2 = 1.5.
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FIG. 5. Two of the four varia-
tional terms for the Galton-Watson
system using two basis functions.
Left: δν1(t)/δF1(ν1, ν2). Right:
δν2(t)/δF1(ν1, ν2). The black dashed
line shows the solution trajectory.
The initial conditions are (η1, η2) =
(−2.5, 2.0), with reaction rates kd =
3kb/2 = 1.5. The effect of the mixing
term δν2(t)/δF1(ν1, ν2) is lower in
magnitude but persists longer over time.
Note that the absolute magnitude of the
spread is related to the approximation
chosen for the delta function in (22), a
normalized multivariate Gaussian with
a variance of 0.1 in both ν1, ν2.

2. Diffusion from point source

In the spatial case, consider a diffusion process of a fixed
number of particles n with diffusion constant D spreading out
from a point source at x0. The analytic solution to the CME
is

p(x, t) = (4πDt)−n/2 exp

−

n∑
i=1

(xi − x0)2

4Dt


, (31)

reflecting that only self-interactions (K = 1) are necessary to
describe the process. The reduced model (9) becomes

p̃(x, t) =
1
Z

exp

−

n∑
i=1

ν(xi, t)

. (32)

It is straightforward to verify that p(x, t) = p̃(x, t) if

ν(y, t) = ln

(
1 +

1
n

)
+

1
2

ln(4πDt) +
(y − x0)2

4Dt
. (33)

Consequentially, from ∂tν(y, t) , the basis functional is

F[ν(y, t)] = D∂2
y ν(y, t) − D

(
∂yν(y, t)

)2
. (34)

3. Unimolecular reaction-diffusion

For reaction networks that involve only diffusion and uni-
molecular reactions, two key properties hold for the CME
solution:

1. Separable spatial and particle number distributions
p(n, x) = p(n)p(x) where each distribution is normalized∑

np(n) = 1 and ∫ dx p(x) = 1.
2. Independence of spatial distribution p(x) = p(x1)p(x2)

. . .p(xn) where each ∫ dx p(x) = 1 is normalized. This
assumes that initial p(xi) are independent—otherwise,
a fixed mixture of independent components must be
considered.

Analogous to the purely diffusive process above, this
allows analytic solutions to the inverse Ising problem by
imposing these conditions upon the dynamic Boltzmann dis-
tribution p̃. Here, we exploit the fact that multiplication of

Boltzmann distributions results in addition of the energy
functions.

Introduce a single interaction function ν(x, t) to cap-
ture the diffusion process and the usual ν1(t), . . ., νK (t) to
describe the reactions (for brevity, omit further time argu-
ments in this section). Furthermore, impose the normalization
∫ dx exp[−ν(x)] = 1. The dynamic Boltzmann distribution
becomes

p̃(n, x) = p̃(n)p̃(x) = p̃(n)p̃(x1)p̃(x2) . . . p̃(xn),

p̃(n) =
1
Z

exp

−

K∑
k=1

(
n
k

)
νk


,

p̃(x) = exp[−ν(x)],

(35)

where the partition function is

Z =
∑

n

∫
dx p̃(n, x) =

∑
n

p̃(n). (36)

The distribution p̃(n, x) is the MaxEnt distribution consis-
tent with the moments 〈

(
n
k

)
〉 for all k = 1, . . ., K, as well as the

spatial moment〈 n∑
i=1

δ(y − xi)

〉
=

∑
n

∫
dx

n∑
i=1

δ(y − xi)p̃(n, x)

= exp[−ν(y)]〈n〉 (37)

such that the solution to the inverse Ising problem is

ν(y) = ln *.
,

〈n〉〈∑n
i=1 δ(y − xi)

〉+/
-
. (38)

The solution for the inverse Ising problem for 〈
(

n
k

)
〉 is

independent of this spatial moment and is analytically possible,
e.g., for K = 1 or 2, as demonstrated in Secs. II D 1 and II E 1
above.

Taking the time derivatives of these solutions ν̇ and ν̇k

and using the CME to derive differential equations for the
moments give the basis functionals. For unimolecular reac-
tions, the diffusion process does not affect the reactions such
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that the functional controlling ν is always that of diffusion
(34). For example, for a branching random walk consisting of
diffusion from a point source and the Galton-Watson process
with K = 2, the basis are the functional (34) and the functions
(29).

F. Parameterizations for spatially
heterogeneous systems

For reaction-diffusion systems that involve reactions
which have a total stoichiometry greater than one on the

starting (input) side, it generally becomes difficult to ana-
lytically solve the inverse Ising problem and identify basis
functionals. However, an algorithmic solution remains possi-
ble, where we guess a local parameterization of the functional
(10) based on the analytic solutions presented above.

Let β, y be of length k and use the notation

{ν(β, y, t)} =
{
νk′(β〈i〉kk′

, y
〈i〉kk′

, t) ∀ 〈i〉kk′ : 1 ≤ k ′ ≤ k
}
. (39)

Then choose the spatially local parameterization ofFk in (10),

d
dt
νk(β, y, t) = F(0)

k ({ν(β, y, t)}) +
k∑
λ=1

(
F(1,λ)

k ({ν(β, y, t)})
∑
〈i〉kλ

λ∑
m=1

(
∂mνλ(β

〈i〉kλ
, y
〈i〉kλ

, t)
)2

+ F(2,λ)
k ({ν(β, y, t)})

∑
〈i〉kλ

λ∑
m=1

∂2
mνλ(β

〈i〉kλ
, y
〈i〉kλ

, t)

)
,

with I.C.: νk(β, y, t = 0) = ηk(β, y), (40)

where ∂m denotes the derivative with respect to the m-th com-
ponent of y

〈i〉kλ
, and F(γ)

k ({ν(β, y, t)}) for (γ) = (0), (1, λ), (2, λ)
are local functions, i.e., functions of the arguments on the left
hand side of (40).

The variational problem (18) now becomes

δS[{ν[{F}]}]

δF(γ)
k ({ν(β, y)})

=

K∑
k′=1

∑
β′

∫
dy′

∫
dt ′

(
µk′(β

′, y′, t ′)

− µ̃k′(β
′, y′, t ′)

) δνk′(β′, y′, t ′)

δF(γ)
k ({ν(β, y)})

= 0

(41)

for (γ) = (0), (1, λ), (2, λ), where β′, y′ are of length k ′.
Analogously to the well-mixed case, it is possible

to derive a PDE system governing the variational term
δνk′(β′, y′, t ′)/δF(γ)

k ({ν(β, y)}). In Appendix A 2, an illustra-
tive example is derived for a diffusion process.

Equations (40) and (41) together form a PDE-constrained
optimization problem, which may be solved analogously to
Algorithm 1, with additional spatial axes.

1. Example: Branching random walk

Consider a branching random walk consisting of the
Galton-Watson process and diffusion from a point source with
rate D in one spatial dimension and one species. From the true
solutions for the basis functionals (34) and (29), use one spa-
tial interaction function ν(y, t) and two purely temporal ν1(t),
ν2(t) and further restrict the parameterization (40) of the basis
functionals to be

dν(y, t)
dt

= F[ν(y, t)] = F
(1)

(ν(y, t))
(
∂yν(y, t)

)2

+ F
(2)

(ν(y, t))∂2
y ν(y, t), (42)

dνk(t)
dt

=Fk[ν1(t), ν2(t)] = F(0)
k (ν1(t), ν2(t)) (43)

for k = 1, 2. The variational problem for γ = 1, 2 is

δS

δF
(γ)

(ν)
=

∫
dy′

∫
dt ′

(
µ1(y′, t ′) − µ̃1(y′, t ′)

) δν(y′, t ′)

δF
(γ)

(ν)

= 0, (44)

δS

δF(0)
k (ν1, ν2)

=

2∑
k′=1

∫
dt ′ *

,

〈(
n
k ′

)〉
p(t′)
−

〈(
n
k ′

)〉
p̃(t′)

+
-

×
δνk′(t ′)

δF(0)
k (ν1, ν2)

= 0. (45)

Differential equations governing the variational terms

δν(y′, t ′)/δF
(γ)

(ν) for γ = 1, 2 are derived in Appendix
A 2, given by (A15). Differential equations governing
δνk′(t ′)/δF(0)

k (ν1, ν2) are given by (22).
The optimization problems (44) and (45) subject to the

PDE-constraints (42) and (43) may be solved algorithmically

using Algorithm 1 in each Fk , F
(1)

, F
(2)

analogously to the
well-mixed case. We note that the true solutions are given by

(34) and (29), in particular: F
(1)
= D and F

(2)
= −D.

Figure 6 plots the spatial variational terms resulting from
the true basis functionals. Here, the reaction rates used are as
before kd = 3kb/2 = 1.5, with a diffusion constant of D = 1.
Contrary to the well-mixed case, these terms do not resem-
ble step functions but rather exhibit some extended temporal
dynamics.
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FIG. 6. The solution to Algorithm 1 for a branching random walk with

diffusion in 1D. Top: The variational term δν(y, t)/δF
(2)

(ν = 1.0) as a
function of time at several spatial locations y = 0.25, 0.5, 0.75, 1. Here,

F
(1)
= D, F

(2)
= −D are the true solutions. Middle: δν(y, t)/δF

(1)
(ν = 1.0).

Bottom: The solution trajectoriesν(y, t), starting from a point source. Contrary
to the well-mixed case, the variational terms do not resemble step functions
at ν = 1.0 but rather exhibit some extended temporal dynamics.

III. ESTIMATING EFFECTIVE REDUCED
DYNAMICS IN 1D

The PDE-constrained optimization problems given above
are the general solution for finding the basis functionals that
govern the time evolution of the reduced MaxEnt model. Here,
we present a more efficient machine learning approach for
learning the basis functions from the solutions of simple, ana-
lytically solvable models. In Sec. III A, we present a method for
finding such analytic solutions in the discrete lattice limit and
present examples for a variety of simple processes in Sec. III B.
In Sec. III C, we demonstrate the utility of using such ana-
lytic solutions in a Boltzmann machine-like learning algorithm
and further in Sec. III D to learn non-linear combinations of
solutions using artificial neural networks (ANNs).

A. Mapping to spin glass systems in 1D

At low particle densities, a feasible model of a reaction-
diffusion system in one spatial dimension and one species is
a 1D lattice in the single occupancy limit. Let the spin values
occupying each lattice site be si ∈ {0, 1}, i = 1, . . ., N, denoting
the absence or presence of a particle.

The reduced model (9) now becomes the discrete ana-
log. We note that this model is consistent with the continuous

version in some parameter regime where the separation
between molecules is large compared to the interaction radius.
By including only self-interactions described by an interaction
function h(t), and two particle nearest-neighbor interactions
J(t), we obtain the well-known Ising model, with partition
function

Z =
∑
{s}

exp

h(t)

N∑
i=1

si + J(t)
N−1∑
i=1

sisi+1


. (46)

This may be evaluated explicitly using the standard trans-
fer matrix method. In the thermodynamic limit, lnZ ≈ λN

+ is
analytically accessible, where λ+ is the largest eigenvalue of
the transfer matrix.

The inverse Ising problem has the solution

*..
,

〈∑N
i=1 si

〉
(t)〈∑N−1

i=1 sisi+1

〉
(t)

+//
-
= *

,

∂h lnZ
∂J lnZ

+
-
. (47)

Taking the derivatives of both sides of (47),

*..
,

d
dt

〈∑N
i=1 si

〉
d
dt

〈∑N−1
i=1 sisi+1

〉 +//
-
= *

,

∂2
h lnZ ∂h∂J lnZ
∂h∂J lnZ ∂2

J lnZ
+
-

*
,

dh
dt
dJ
dt

+
-
. (48)

The time derivatives of the moments on the left may be
obtained directly from the CME ṗ = Wp using the Doi-Peliti
formalism described in Sec. II A. If the system is linear,
these may be expressed further in terms of h, J using (47),
and the basis functions are given directly by inverting (48).
If the system is non-linear, the presence of a moment hier-
archy requires an approximation in the form of a moment
closure technique. Here, we choose to express the higher
order moments that appear through the CME in terms of h,
J, which is possible for any higher order moment since the
partition function (46) is analytically accessible. As a result of
inverting (48),

*
,

F̃h(h, J)

F̃J (h, J)
+
-
= *

,

∂2
h lnZ ∂h∂J lnZ

∂h∂J lnZ ∂2
J lnZ

+
-

−1*..
,

d
dt

〈∑N
i=1 si

〉
d
dt

〈∑N−1
i=1 sisi+1

〉 +//
-
,

(49)

where the RHS has been expressed in terms of h, J as described
above, and we use the notation F̃h, F̃J to indicate that these
are generally only approximations to the true basis functions
Fh, FJ and only exact for systems with closed moments.
Effectively, we have replaced the probability distribution p
in the CME ṗ = Wp by the dynamic Boltzmann distribu-
tion p̃ and evaluated the effect of the operator on the RHS
on this new distribution. The analytic solution to the 1D
inverse Ising problem therefore provides an elegant approach
to moment closure (see Refs. 10 and 29 for related Max-
Ent approaches to moment closure). Similar extensions to 2D
Ising models30 are likewise possible and possibly to 3D as
well.31

Furthermore, we note that analogous to the continuous
case proven in Proposition 1, the linearity of reaction operators
in the CME extends to the basis function approximations F̃
(regardless of whether Z is analytically accessible as in the
1D case). This requires that the inverse Ising problem has not
changed, as discussed further in Sec. III C.
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FIG. 7. Basis functions (49) for several simple reaction schemes in one
species. Horizontal, vertical axis: h, J ∈ [−4, 4]. The magnitudes have been
scaled to [−1, 1] from blue to manila since the reaction rate/diffusion constant
provides an arbitrary scaling factor.

B. Analytic approximations to basis functions
of simple reaction motifs

Figure 7 shows the basis function approximations cal-
culated using the 1D Ising model (49) for several sim-
ple unimolecular reaction processes. Note that the reaction
rates/diffusion constants provide an overall multiplicative fac-
tor to each process. Computer algebra systems can be used
to determine these analytic forms, which contain sums on the
order of ten to a hundred terms in length, depending on the
operator (see the supplementary material for the code used to
generate Figs. 7 and 8).

Generalizing these simple systems, we solve for the basis
function approximations of the trivalent reaction A + B → C
with its reverse process C→ A + B. This process is fundamen-
tally important as a generalization of many simple biochemical
processes and has been studied extensively.23,32 For example,
it is the building block of the broadly applicable substrate-
enzyme-product (SEP) motif S + E
 C→ P + E, where S, E,
P denote the substrate, enzyme, and product (see Sec. III D).

In the Ising model, the description of this process involves
9 time dependent interaction functions hA, hB, hC , JAA, JAB,
JAC , JBB, JBC , JCC ,

Z =
∑
{s}

∑
{α }

exp


N∑
i=1

hαi (t)si +
N−1∑
i=1

Jαi ,αi+1 (t)sisi+1


, (50)

where the species label αi ∈ {A, B, C}, and we implic-
itly note that the sum

∑
{α} runs only over occupied sites

FIG. 8. Basis function approximations F̃hA , F̃JAC corresponding to the for-
ward trivalent reaction A + B → C with rate k = 1. Each is a 9 dimensional
function, of which 2D slices are shown, holding all other parameters at zero.
The top row shows the basis function, while the bottom row shows the corre-
sponding moments controlled by these parameters hA, JAC . The chain length
used is N = 1000. The ranges for all horizontal and vertical axes are [−2, 2].

si = 1. Figure 8 shows several 2D slices of three of the
nine basis function approximations for the forward process
A + B→ C.

Due to the species labels, (49) leads to analytic expres-
sions containing on the order of hundreds of terms. Here, we
use a numerical strategy as described in Appendix B for eval-
uating the basis functions over the chosen domain. While a
computer algebra system may be employed as before, this
strategy is computationally faster.

C. Boltzmann machine-style learning algorithm
for dynamics

The basis function approximations derived above consti-
tute a space of possible reduced dynamics. Here, we consider
using these analytic insights to describe large spatially dis-
tributed reaction networks in 1D. This approach faces two key
problems:

1. For non-linear systems, p̃ obeying (49) will over the time
diverge from the MaxEnt distribution consistent with the
CME moments due the moment closure approximation
made. As a fundamental consequence of this moment
hierarchy, it is not possible to find exact basis functions
over the entire interaction parameter space (e.g., h, J).
Another way to see this is that trajectories of the CME
system will intersect in h, J space.
However, we postulate that it may be possible to
learn approximately well the basis functions for a
single trajectory (from a single initial condition) which
does not self-intersect over some domain. This model
may be used for extrapolation with a reasonable accuracy
close to the stochastic trajectory.

2. For large reaction networks, the basis functions are gen-
erally not linear in the basis functions of individual pro-
cesses because the collection of interaction functions
is not fixed, violating the assumption in Proposition 1.
For example, consider the process A → B → C. Here,
nine basis functions are required to capture all means
and nearest neighbor (NN) correlations such that (49) is
nine dimensional. Denote these by b = A−1m where b
denotes the basis functions, m denotes the time evolving
moments, and A denotes the matrix of partition function
derivatives.
Next, consider the separate processes A → B and
B→ C, described by five basis functions each. Let these
be denoted by b(r) = (A(r))−1m(r) for each of the two reac-
tions r. Clearly, not all nine basis functions in b are present
in each b(r ). Furthermore, for those that are present in
both, it is not necessarily true that the i-th basis function
is expressible as bi , b(1)

j + b(2)
k for appropriate j, k.

Generally, a reaction network involves more interaction
parameters than each of the individual processes such that
Proposition 1 does not apply. It is only for a subset of networks,
such as reaction networks in one species, where the linearity in
the CME extends exactly to the basis functions. Regardless, we
postulate that many networks may be described approximately
well by linear combinations of basis functions corresponding
to individual processes.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-007828
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In light of these observations, we return to the variational
problem (21) and its PDE-constraint. In the discrete lattice
case considered in Sec. III A, it becomes for each γ = h, J,∫ ∞

0
dt ′

(
µ̃(t ′) − µ(t ′)

) δh(t ′)
δFγ(h, J)

+
∫ ∞

0
dt ′

(
∆̃(t ′) − ∆(t ′)

) δJ(t ′)
δFγ(h, J)

= 0, (51)

where we have used the notation µ, ∆ to denote the aver-
age number of particles, nearest neighbors (NN) over p, and
similarly µ̃, ∆̃ to denote averages over p̃.

Here, we exploit the analytic results derived above to sim-
plify this problem and derive an efficient Boltzmann-machine
type learning algorithm for the dynamics. In particular, we
assume that the true basis functions are linear combinations of
the approximations derived in Sec. III B above, given by

dh
dt
= Fh(h, J) =

∑
r

θ(r)F̃(r)
h ,

dJ
dt
= FJ (h, J) =

∑
r

θ(r)F̃(r)
J .

(52)

Here, the reaction rates and diffusion constant are all set to
unity such that the coefficients θ indicate the rates. The varia-
tional problem now turns into a regular optimization problem
for the coefficients θ that will yield at all times the MaxEnt
distribution consistent with the CME moments. The resulting
optimization problem is: Subject to the PDE constraint (52),
solve: ∫ ∞

0
dt ′

(
µ̃(t ′) − µ(t ′)

) ∂h(t ′)

∂θ(s)

+
∫ ∞

0
dt ′

(
∆̃(t ′) − ∆(t ′)

) ∂J(t ′)

∂θ(s)
= 0, (53)

where the derivative terms are given by the solution to the
ordinary differential equation system

∂

∂t ′

(
∂h(t ′)

∂θ(s)

)
= F̃(s)

h +
∂h(t ′)

∂θ(s)

∑
r

θ(r)
∂F̃(r)

h

∂h

+
∂J(t ′)

∂θ(s)

∑
r

θ(r)
∂F̃(r)

h

∂J
,

∂

∂t ′

(
∂J(t ′)

∂θ(s)

)
= F̃(s)

J +
∂h(t ′)

∂θ(s)

∑
r

θ(r)
∂F̃(r)

J

∂h

+
∂J(t ′)

∂θ(s)

∑
r

θ(r)
∂F̃(r)

J

∂J
,

(54)

with initial condition ∂h(0)/∂θ(s) = ∂J(0)/∂θ(s) = 0.
Parameter estimation is greatly simpler to solve than

the function estimation (51). Furthermore, the variational
problem (54) is significantly simplified since F̃(r) and con-
sequentially its derivatives are analytically accessible. We
capitalize upon these practical qualities in Algorithm 2, which
solves this problem in a Boltzmann-machine learning style
approach.

As an illustrative example, we apply Algorithm 2 to a
branching and annihilating random walk (BARW) on a 1D
lattice, described by the following processes: A→ A + A with
rate kb, A + A→ 0 with reaction probability pa upon encoun-
ters, and diffusion. BARWs have been studied in the context
of universality classes, in particular, the directed percolation
universality class.33,34

Stochastic simulations are used to generate training data
for this system on a chain of length N = 100 for maximum time
of T = 1 with time step∆t = 0.01. Here, we follow the numerical
procedure described in Ref. 33, with particles attempting to
hop to neighboring lattice sites at every time step and reacting
with kb = 10 and pa = 0.1. The basis functions used in (52)
are those of the three processes present, as shown in Fig. 7.
The initial coefficients θ(s)

0 used are kb for branching, pa/∆t for
annihilation, and 10 for diffusion.

Figure 9 shows the moments of the BARW system. Due
to the moment closure problem, the system predicted by solv-
ing the constraint equations (52) diverges from the stochastic
simulations. After running 400 iterations of Algorithm 2, the
new coefficients lead to much closer agreement to the true
system.

Figure 10 shows the coefficients converge over the itera-
tions. In particular, the effective rates for bimolecular anni-
hilation and branching have decreased, while the effective
diffusion constant has increased. Since the final values are
sensitive to the initial θ(s)

0 chosen, an L2 regularization term is
included in the action. A further constraint in Algorithm 2 to
keep θ(s) positive enforces the connection to effective reaction
rates.

D. ANNs for learning non-linear combinations
of basis functions

As a more general approach than linear combinations, we
use ANNs (artificial neural networks) to describe non-linear
combinations of basis functions. Consider the SEP system
diffusing on a 1D lattice described by

S + E
k1
−−⇀↽−−
k−1

C
k2
−→ P + E. (55)

FIG. 9. The 1st and 2nd moments (mean and NN) of
the BARW system obtained from stochastic simulation
(dashed) and by integrating the PDE constraint (52) and
using Gibbs sampling in the asleep phase of Algorithm 2
(solid). Left: using initial θ(s)

0 reveals the limitations of
moment closure approximation. Right: after 400 itera-
tions, the coefficients have adjusted to more accurately
capture the true CME dynamics.
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FIG. 10. The coefficients in (52) converging over 400 iterations of Algo-
rithm 2 applied to the BARW system.

The full Ising model for this system consists of four external
fields and 10 NN coupling parameters.

Figure 11 shows several moments of this system evolving
in time from stochastic simulations. Here, the parameters used
are k−1 = 0.1, k2 = 0.5, bimolecular reaction probability p1 =
0.1, maximum time T = 2 with time step 0.01, and lattice length
N = 100. The system evolves from an initial lattice generated
by Gibbs sampling with parameters hS = 0.5, hE = 1, hC = −1,
hP = −1 and all NN terms set to zero.

The inputs to the ANN are the basis functions for the three
separate processes, each of which belongs to the trivalent reac-
tion motif of Fig. 8, thereby contributing 9 basis functions.
Additionally, the two basis functions for the diffusion of each
of the four species are included from Fig. 7 for a total of 35
inputs. The other layers in the ANN are two layers of 40 units,
and an output layer of 14 units, with tanh activation functions
between each layer. One third of the total length T of the time-
series is used for training. These are converted to trajectories in
interaction parameter space using Boltzmann machine learn-
ing and smoothed using a low-pass filter before being used to
evaluate the 35 input basis functions. The outputs to be learned
are the time derivatives of these 14 parameters also smoothed
by a low-pass filter.

The network learns the dynamics of these parameters
to high precision. We infer from the fast training times that
the usage of these analytic solutions as input greatly reduces
the difficulty of training the network from the interaction
parameters directly.

Figure 11(a) shows the extrapolated parameters and cor-
responding moments, compared to the remaining third of the
simulation time. These extrapolations are approximately lin-
ear in interaction space and may diverge quickly, such as hP.
However, the moments show considerable robustness to these
variations. In Fig. 11(b), we compare the symmetric relative
error of the interaction parameters and the moments. For each,
the error ε is calculated by comparing the extrapolated values
from the ANN and the remaining two thirds of the stochastic
simulation data, averaged over the K = 14 moments,

ε =
1
K

K∑
α=1

2|µ(ANN)
α − µ(stoch. sim.)

α |

|µ(ANN)
α | + |µ(stoch. sim.)

α |
(56)

and similarly for the interaction parameters. The error in the
moments grows considerably slower than in the parameters,
suggesting that using ANNs for extrapolation is possible for
practical applications.

We compare the learned model to a well-mixed model
described by mass action kinetics for (55). The reaction rates
appearing in the ODEs for this model are fit by non-linear
regression to the training data, obtaining k1 ≈ 0.09, k−1 ≈ 1.34,
k2 ≈ 0.66. These parameters are used to further extrapo-
late the model over the remaining 2/3 of the timeseries, as
shown in Fig. 11(a). The symmetric relative error shown in
Fig. 11(b) is at all times larger than for the ANN model. The
better performance of the ANN method results from it explic-
itly capturing spatial correlations, rather than implicitly as in
the well-mixed model. The tradeoff for this accuracy is the
computational cost of training the ANN. However, as typical
for ANNs, forward passes through the network are fast, and

FIG. 11. (a) Trajectories of the SEP system from stochastic simulations, and extrapolated values from the trained ANN, shown for hP , hS and corresponding
moments µP , µS . Also shown is a well-mixed model described by mass action kinetics, whose reaction rates are fit to the training data. (b) The symmetric
relative error ε between the extrapolated values from the ANN and the stochastic simulations grows faster for the parameters than for the moments, suggesting a
stability in the observable quantities of the model to small errors. Here, the error is averaged over all 14 interaction parameters or corresponding moments. The
error for the well-mixed model (averaged over the 4 means) grows faster than the error in the moments of the ANN model. The legend is shared with panel (a).
(c) FJSP learned by the ANN. A two dimensional slice is shown through this 14 dimensional function. The black line shows the trajectory of the training data,
while the dot indicates the evaluation point for this slice, chosen at the end of the training data [gray vertical line in (a)]. All other parameters other than hS , hP
are held fixed at this point.
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the cost of solving the resulting differential equations after
training is comparable between the two models. This ANN
approach is therefore ideal for stochastic spatial modeling
applications where the training time is not a bottleneck.

A further feature learned by the ANN is a closure approx-
imation for the dynamics of JSP and its corresponding NN
moment. This parameter is not included in any of the basis
functions or inputs to the ANN. The basis function learned,
FJSP , shown in Fig. 11(b), expresses the dynamics of this
moment in terms of the interactions made available as input to
the network. Similar extensions to higher order moments are
likewise possible.

IV. DISCUSSION AND CONCLUSIONS

This paper presents a new approach to model reduction of
spatial chemical systems. Slowly time-evolving MaxEnt mod-
els are employed to capture the key correlations in the system.
This approach is particularly useful for multiscale problems,
where different spatial and temporal correlations become more
or less relevant over time to accurately describe the system.
For example, in synaptic level neuroscience, the stochastic
influx of signaling molecules in the post-synaptic spine pro-
duces complex spatial correlations between ion channels and
downstream targets, but these are less relevant during quies-
cent periods. We anticipate that such problems stand to benefit
greatly from modeling approaches that are able to adjust which
correlations are included to optimize simulation efficiency and
accuracy.

A general model that is functional in nature is introduced
to describe dynamic Boltzmann distributions. This extends and
formalizes ideas originally developed in GCCD in Ref. 10—in
particular:

1. A general variational problem has been formulated to
determine the functions in the dynamical system con-
trolling the interaction parameters, taking the form of a
PDE-constrained optimization problem.

2. The reduced model has been extended to capture spa-
tial correlations, with particular relevance to biologi-
cal applications. By motivating parameterizations of the
functionals from analytically solvable cases, practical
optimization algorithms for learning spatial systems are
made possible.

3. ANNs have been employed to learn non-linear combina-
tions of basis functions, derived for individual reaction
processes using computer algebra systems.

Mapping the chemical system onto a spin lattice allows
a direct connection to the more traditional formulation of a
Boltzmann machine. Here, the connection to the new learning
algorithm is evident in (51), and we anticipate this will sug-
gest numerous further applications to diverse areas of machine
learning where estimating the dynamics of a time series is
required.

The learning rule for dynamic Boltzmann distributions
developed in Sec. II applies to systems of any spatial dimen-
sion, generally 3D. The results of Sec. III for chemical kinetics
on 1D lattices can be extended to treat 2D and 3D systems.
For example, for 2D systems with no external field, the basis
function approximations may be derived as before since exact

solutions for observables of the Ising model exist.30 In general,
the inverse Ising problem is not solvable. Instead, approxima-
tions such as mean-field theory may be used as an input to the
ANNs or as initialization for further learning.

Numerous strategies are possible for improving the effi-
ciency of the PDE-constrained optimization problem formu-
lated here, such as adjoint methods.28 In this work, we have
shown that the complexity of this problem can be greatly
reduced by instead learning linear and non-linear combina-
tions of analytically accessible approximations. Deconstruct-
ing the problem in this way can offer physical insight into a
complex reaction system, such as in Sec. III C, where effec-
tive reaction rates are learned. Future work in this direction
may further explore these principled methods for integrating
human intuition with machine inference in the model reduction
process.

SUPPLEMENTARY MATERIAL

See supplementary material for alternate derivations of
the differential equation system (22) and for the code used to
implement Algorithms 1 and 2.
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APPENDIX A: DERIVATION OF DIFFERENTIAL
EQUATION SYSTEM FOR VARIATIONAL TERM
1. Well-mixed case

Consider the differential equation system (20). Represent
the solution as a functional of the basis functions F using the
notation

νk′(t
′) = Jk′[{F}], (A1)

where {F} = {F l |l = 1, . . ., K}, and J results from solving
(20). Further, let {J[{F}]} = {J l[{F}] |l = 1, . . ., K}, then (20)
is

d
dt ′

Jk′[{F}] = Fk′({J[{F}]}). (A2)

To find the variational term δνk′(t ′)/δFk({ν}), let Fk → Fk

+ εη using the notation

{F ′} = {Fl + δl,kεη |l = 1, . . . , K }, (A3)

then,

d
dt ′

Jk′[{F
′}] = Fk′({J[{F ′}]}) + δk′,kεη({J[{F ′}]}). (A4)

Differentiating with respect to ε at ε = 0 gives

d
dt ′

(
dJk′[{F ′}]

dε

�����ε=0

)
=

K∑
l=1

∂Fk′({ν(t ′)})
∂νl(t ′)

(
dJl[{F ′}]

dε

�����ε=0

)
+ δk′,kη({ν(t ′)}). (A5)

Substitute the definition of the functional derivative

dJk′[{F ′}]
dε

�����ε=0

=

∫
dν1 . . .

∫
dνK

δνk′(t ′)
δFk({ν})

η({ν}) (A6)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-007828
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to obtain (22)

d
dt ′

(
δνk′(t ′)
δFk({ν})

)
=

K∑
l=1

∂Fk′({ν(t ′)})
∂νl(t ′)

δνl(t ′)
δFk({ν})

+ δk′,kδ({ν} − {ν(t ′)}). (A7)

2. Spatially heterogeneous example: Diffusion in 1D

Consider a diffusion process in 1D, described by a single
basis functional parameterized according to

d
dt ′

ν(y′, t ′) = F[ν(y′, t ′)]

= F(1)(ν(y′, t ′))
(
∂y′ν(y′, t ′)

)2

+ F(2)(ν(y′, t ′))
(
∂2

y′ν(y′, t ′)
)
. (A8)

Use the functional notation

ν(y′, t ′) = J[{F}], (A9)

where {F} = {F(1), F(2)} and J results from solving (40),
then,

d
dt

J[{F}] = F(1)(J[{F}])
(
∂y′J[{F}]

)2
+ F(2)(J[{F}])∂2

y′J[{F}].

(A10)

To find the variational term δν(y′, t ′)/δF(γ)(ω) for γ = 1,
2, let F(γ) → F(γ) + εη. Use the notation

{F ′} = {F(1) + δγ,1εη, F(2) + δγ,2εη}, (A11)

then

d
dt

J[{F ′}] = F(1)(J[{F ′}])
(
∂y′J[{F ′}]

)2
+ F(2)(J[{F ′}])

× ∂2
y′J[{F ′}] + δγ,1εη(J[{F ′}])

(
∂y′J[{F ′}]

)2

+ δγ,2εη(J[{F ′}])∂2
y′J[{F ′}]. (A12)

Take the derivative with respect to ε at ε = 0,

d
dt

(
dJ[{F ′}]

dε

�����ε=0

)
=

(
∂F(1)(ν)
∂ν

(
∂y′ν

)2
+
∂F(2)(ν)
∂ν

∂2
y′ν

) (
dJ[{F ′}]

dε

�����ε=0

)
+

(
δγ,1

(
∂y′ν

)2
+ δγ,2∂

2
y′ν

)
η(ν)

+ 2F(1)(ν)∂y′ν
∂

∂y′

(
dJ[{F ′}]

dε

�����ε=0

)
+ F(2)(ν)

∂2

∂y′2

(
dJ[{F ′}]

dε

�����ε=0

)
, (A13)

where ν = ν(y′, t ′) everywhere. Substituting the definition of
the functional derivative

dJ[{F ′}]
dε

�����ε=0

=

∫
dω

δν(y′, t ′)

δF(γ)(ω)
η(ω) (A14)

gives

d
dt

(
δν

δF(γ)(ω)

)
=

(
∂F(1)(ν)
∂ν

(
∂y′ν

)2
+
∂F(2)(ν)
∂ν

∂2
y′ν

)(
δν

δF(γ)(ω)

)
+

(
δγ,1

(
∂y′ν

)2
+ δγ,2∂

2
y′ν

)
δ(ν − ω)

+ 2F(1)(ν)∂y′ν
∂

∂y′

(
δν

δF(γ)(ω)

)
+ F(2)(ν)

∂2

∂y′2

(
δν

δF(γ)(ω)

)
. (A15)

APPENDIX B: EVALUATING BASIS
FUNCTIONS NUMERICALLY

To compute the basis functions numerically using (49),
an efficient method is possible if the eigenvalues of the trans-
fer matrix M are singular. Let the eigenvalues be λi with
corresponding eigenvectors ui. Define

pij(α) = uᵀi (∂αM)uᵀj (B1)

for α = h, J, where ∂αM denotes component-wise differenti-
ation of M. Also note that pij(α) = pji(α) is symmetric. Then
the derivatives of the eigenvalues are given by35

∂αλi = pii(α),

∂α∂βλi = uᵀi (∂α∂βM)ui + 2
∑
j,i

pij(α)pij(β)

λi − λj
, (B2)

for β = h, J. The principle advantage of this approach lies in
the fact that the analytic expressions for ∂αM and ∂α∂βM are
simpler to derive than differentiating the analytic expressions
for the eigenvalues λ.

It is now straightforward to numerically evaluate the
components ∂α∂β lnZ of (49) in the thermodynamic limit
lnZ ≈ N ln λ+, where λ+ is the largest eigenvalue of the
transfer matrix and N the length of the chain.
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