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Fluidity and supercriticality of the QCD matter

created in relativistic heavy ion collisions

Jinfeng Liao∗ and Volker Koch†

Nuclear Science Division, Lawrence Berkeley National Laboratory,

MS70R0319, 1 Cyclotron Road, Berkeley, CA 94720.

In this paper we discuss the fluidity of the hot and dense QCD matter created in ultrarelativistic
heavy ion collisions in comparison with various other fluids, and in particular suggest its possible
supercriticality. After examining the proper way to compare non-relativistic and relativistic fluids
from both thermodynamic and hydrodynamic perspectives, we propose a new fluidity measure
which shows certain universality for a remarkable diversity of critical fluids. We then demonstrate
that a fluid in its supercritical regime has its fluidity considerably enhanced. This may suggest a
possible relationship between the seemingly good fluidity of the QCD matter produced in heavy ion
collisions at center of mass energy of

√
s = 200AGeV and the supercriticality of this matter with

respect to the Critical-End-Point on the QCD phase diagram. Based on such observation, we predict
an even better fluidity of the matter to be created in heavy ion collisions at LHC energy and the loss
of good fluidity at certain lower beam energy. Finally based on our criteria, we analyze the suitabil-
ity of a hydrodynamic description for the fireball evolution in heavy ion collisions at various energies.

PACS numbers: 12.38.Mh, 25.75.-q, 47.75.+f

I. INTRODUCTION

The exploration of the QCD phase diagram as well as
the quantitative characterization of QCD matter is one
of the most interesting challenges and questions in strong
interaction physics. Hot and dense QCD matter can be
created in the laboratory by means of heavy ion collisions,
and experiments at the CERN Super Proton Synchrotron
(SPS) and at the Relativistic Heavy Ion Collider (RHIC)
have, over the years, revealed many intriguing and unex-
pected properties of this matter. For example the mea-
surement of an unexpectedly large elliptic anisotropy v2
[1] can be reproduced within the framework of hydro-
dynamics [2], at least for low transverse momenta (pt).
This observation has led to the conjecture, that the mat-
ter produced in these collisions is strongly interacting,
with nearly ideal fluidity [3]. Several microscopic expla-
nations for this behavior have been suggested [4][5][6], for
example the “magnetic scenario” which features the co-
existing electric and magnetic components of the plasma
with the magnetic one ultimately enforcing the QCD con-
finement transition.

Arguments for the nearly ideal fluidity at center of
mass energies of

√
s = 200AGeV, quantitatively rep-

resented by a rather small ratio of shear-viscosity over
entropy-density, η/s, have come from different directions.
Firstly, the v2 data measured at RHIC have provided
rather stringent constraints on viscous hydrodynamic cal-
culations: the current status based on this approach is
that an upper limit η/s ≤ 6/(4π) may be set [2]. (Some
caveats on interpretation of v2 data however should be
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kept in mind, such as hidden non-collective contributions
to v2 [7] or alternative mechanism of producing v2[8]).
Secondly, recent developments from the AdS/CFT cor-
respondence [9] have hinted at a universal lower bound
η/s ≥ 1/(4π). While in principle violating examples have
been found (see detailed discussions in e.g. [10]), for all
practical purposes this value serves as a useful bench-
mark for good fluidity of relativistic fluids. Finally, the
fluidity of the QCD fluid has been compared [11, 12] to
a few commonly known substances like Helium-4, water,
nitrogen etc, using the measure η/s: it has been con-
cluded that the QCD fluid has smaller η/s as compared
with all those normal substances.

In this paper we will revisit the concept of fluidity.
For a sensible discussion of fluidity one needs to clearly
distinguish the concept of fluidity from the concept of ap-
plicability and validity of hydrodynamics. The concept
of fluidity of a substance can only be meaningful if the
fluidity is defined exclusively in terms of properties of the
substance itself. The question of applicability of hydro-
dynamics, on the other hand, requires the effective mean
free path1 to be small compared to the size of the sys-
tem or rather the typical wavelengths of the excitations
which are supposed to be described within hydrodynam-
ics. Consequently, in this case we compare a property of
the system, the mean free path, with an external scale
characterizing the situation we want to describe within

1 To simplify the argument, in the rest of the introduction we will
use the familiar concepts of “mean free path” and particles, not-
ing that these are limited to a kinetic description of a sufficiently
dilute system. In section III we will derive a more general ex-
pression for the relevant length scale which will not require the
applicability of kinetic theory. In the kinetic limit it reduces to
the mean free path.

http://arxiv.org/abs/0909.3105v3
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hydrodynamics, for example a sound mode of a given
wavelength. And given a sufficiently large external scale,
hydrodynamics is always applicable. For example we ob-
serve sound propagation in both water and air, and yet
one would be inclined to assign a better fluidity to water
than to air. Therefore a meaningful definition of flu-
idity needs to measure the effective mean free path in
terms of a length scale inherent to the substance itself.
One obvious choice is the interparticle distance, or more
generally, the density-density correlation length. This al-
lows the comparison of substances with vastly different
inherent length scales, such as water vs. a Quark-Gluon
Plasma. Obviously, the minimum wavelength (in me-
ters) for sound propagation even in a weakly interacting
QGP is still considerably shorter than that of a strongly
interacting atomic or molecular substance. However, if
we ask the question “what is the minimal wavelength for
sound propagation measured in units of the interparticle
distance?” then a comparison between these substances
becomes meaningful, and the strongly interacting sub-
stance will likely exhibit a better fluidity.

Following these general considerations, in this paper
we discuss the fluidity of the hot and dense QCD mat-
ter created at RHIC by comparing it with normal non-
relativistic fluids and by applying valuable insights from
those fluids. While such a comparison is not new (see
e.g. [11][12]), we differ from all previous approaches in a
few distinct points. First of all, we carefully examine the
difference between the relativistic and non-relativistic flu-
ids. This includes their different inertia: the relativistic
inertia, i.e. the enthalpy, reduces to the mass density in
the non-relativistic regime. This also includes the choice
of reference scale, as discussed above: while the temper-
ature may serve as a reasonable estimator for the inter-
particle distance for relativistic fluids, it certainly does
not in the non-relativistic limit. Based on these consid-
erations, we propose a new measure of fluidity for com-
paring various fluids. Furthermore we emphasize, for the
first time, the possible relevance of the so-called super-
critical fluid for the matter produced at RHIC and discuss
important implications for the expected fluidity for the
matter produced in heavy ion collisions at different center
of mass energies. We will also elaborate on potential con-
sequences for the search of the QCD Critical-End-Point
via a beam energy scan.

As just discussed, a closely related, but different, ques-
tion is the applicability of hydrodynamics in heavy ion
collisions at various beam energy

√
s. For the descrip-

tion of the dynamical evolution of system within hydro-
dynamics to be valid the length scale characterizing the
variations of the system needs to be large compared to the
effective mean free path of the (quasi) particles within the
fluid [2][15]. Thus, good fluidity of the underlying matter
may not guarantee applicability of hydrodynamics, if the
typical gradients of the flow field are large, e.g. when the
system size is very small. Based on an analysis of sound
wave attenuation, we will provide quantitative criteria
for the applicability of hydrodynamics, and evaluate the

situations at SPS, RHIC, and LHC respectively.
This paper is organized as follows: In Section II we

will discuss the difference and relation between a non-
relativistic(NR) fluid and a relativistic(R) fluid. In
Section III we will then propose a new fluidity mea-
sure, which is applicable for both relativistic and non-
relativistic systems. Based on this new measure we will
compare various fluid systems and demonstrate the im-
provement of fluidity in a fluid’s supercritical regime. In
Section IV we will use Lattice QCD results to construct
equal-pressure lines on the QCD phase diagram. We then
discuss the relationship between fluidity and supercriti-
cality for heavy ion collisions, the evolution of fluidity
with beam energies, and its implications for the search of
the QCD Critical-End-Point(CEP). Finally in Section V
the applicability of hydrodynamics in heavy ion collisions
at various energies will be discussed.

II. RELATIVISTIC AND NON-RELATIVISTIC

FLUIDS

When comparing a relativistic (R) with a non-
relativistic (NR) fluid, one needs to carefully keep track of
the mass terms, which customarily are neglected in non-
relativistic thermodynamics. In non-relativistic thermo-
dynamics, the basic thermodynamic relation

ENR = TS − pV + µNR N (1)

does not take into account the mass of the particles. Here
ENR refers to the kinetic and interaction energy of the
particles. Similarly, the chemical potential, which repre-
sents the increase of energy by the addition of one extra
particle, does not account for the particle’s mass. The
relativistic version of the basic thermodynamic relation,

ER = TS − pV + µRN, (2)

on the other hand, takes into account the particle masses.
Its non-relativistic limit can be obtained by simply in-
cluding the mass terms in both the energy and the chem-
ical potential

ER = ENR +m (3)

µR = µNR +m. (4)

As we will discuss below (see also [17, 18]), the thermody-
namic quantity entering hydrodynamics is the enthalpy
density, w defined as

wR = ǫ+ p = Ts+ µR n (5)

where ǫ is the energy density, p the pressure, s the
entropy-density, and n is the particle-density. As we
will show, the non-relativistic limit of hydrodynamics in-
volves the non-relativistic limit of the enthalpy, wR, in-
cluding the mass term

w = Ts+ (µNR +m)n
T≪m→ mn ≡ ρ (6)
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and it is dominated by the mass density. In the ultra-
relativistic limit T ≫ µR, on the other hand, the enthalpy
density is given by

w
T≫µR→ Ts. (7)

The kinematic viscosity, which is defined as the ratio of
the shear viscosity over the enthalpy density

ν =
η

w
(8)

usually serves as a measure for dissipation [17]. While
the widely used ratio of shear-viscosity over entropy den-
sity, η/s is indeed related with the kinematic viscosity for
ultra-relativistic systems, it misses the dominant mass
term for a non-relativistic fluid.
In the following, we further demonstrate this point

both in thermodynamics and in hydrodynamics2.

A. Thermodynamics

We start with the example of a classical (Boltzmann),
relativistic free gas at temperature T and fixed (net-
)particle density n = nP − nP̄ . Following standard sta-
tistical mechanics in e.g. [16], the Helmholtz free energy
density is given by

f(T, n) = n (kBT )

{

−

√

1 +

(

2 I [βmc2]

nλ̃3

)2

+ln





nλ̃3

I[βmc2] +
√

( nλ̃3

I[βmc2] )
2 + 4

2





}

(9)

with β ≡ 1/(kBT ) and λ̃ = (2π2)1/3(β~c). Here we have
introduced the re-scaled momentum integral, p̃ = βp c ,

I[βmc2] ≡
∫ ∞

0

dp̃ p̃2 e−
√

p̃2+(βmc2)2 . (10)

Using the usual thermodynamic relations we obtain ex-
pressions for other quantities, such as the chemical po-
tential and the energy density:

µ =
∂f

∂n
= (kBT ) ln





nλ̃3

I[βmc2] +
√

( nλ̃3

I[βmc2] )
2 + 4

2



 (11)

ǫ = f − T
∂f

∂T

= n (kBT )

√

1 +

(

2 I

nλ̃3

)2 (

3− (βmc2) · I
′

I

)

(12)

2 To better keep track of the mass terms, in the following two
subsections we make explicit the dependence on the speed of
light c, the Boltzmann constant kB and the Planck constant ~,
while in the rest of the paper we use natural units with these
constants taken to be unity.

Next we examine the non-relativistic limit by taking
βmc2 → ∞ in function I[y], Eq.10, (and its derivative
I ′ ≡ dI[y]/dy):

f → NR : nmc2 + n(kBT )
[

ln(nλ3)− 1
]

µ → NR : mc2 + (kBT )ln(nλ
3)

ǫ → NR : nmc2 +
3

2
n(kBT ) (13)

with λ ≡ (2π~2/mkBT )
1/2. Obviously, in the non-

relativistic regime the energy associated with the rest
mass dominates the chemical potential, the free energy
density, the energy density, and the enthalpy density.
Contrary to that, neither entropy density s = (ǫ − f)/T
nor the pressure p = µn−f , have an explicit dependence
of the mass term, as intuitively expected.

B. Hydrodynamics

We now turn to the hydrodynamics in the relativis-
tic and non-relativistic regime. Since the non-relativistic
limit of relativistic hydrodynamics is discussed in text-
books [17, 18], we will be brief here and just remind
ourselves of the essential points, in particular how the
relativistic inertia i.e. the enthalpy density w is replaced
in the non-relativistic limit by the mass density ρc2. We
start with the non-relativistic Navier-Stokes (N-S) equa-
tion3:

[∂t + ~v · ~▽]~v = −
~▽ p

ρ
+

η

ρ
~▽jΣji (14)

with the non-relativistic shear tensor Σji = ∂jvi+∂ivj −
2
3δji

~▽ ·~v. The corresponding relativistic N-S equation is

given by4:

γ2[∂t + ~v · ~▽]~v = − 1

w/c2
[~▽ p+

~v

c
∂0p]

+
η

w/c2
~∂νΣνi (15)

with the relativistic shear tensor Σµν = c [∂µuν + ∂νuµ−
(u · ∂)uµuν + 2

3 (uµuν − gµν)(∂ · u)], γ = 1/
√

1− v2/c2,

uµ = γ(1, ~v/c), and ∂0 = 1
c∂t. In the non-relativistic

limit one has γ → 1, and w/c2 → ρ and thus in leading
order of v/c recovers the non-relativistic Navier-Stokes
equation [17].
To further elaborate the point, let us consider the prop-

agation and attenuation of a sound wave of frequency ω

3 In this discussion of N-S equation we neglect bulk viscosity and
assume constant shear viscosity across the fluid.

4 It is well-known that for relativistic hydrodynamics the derivative
expansion to only first order, i.e. the N-S form, has causality
problem and a consistent treatment requires higher orders in
derivative expansion, see e.g. [2].
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and wave vector k = 2π/λs (λs is the wavelength ) in
the presence of dissipation, characterized by the shear
viscosity η. The dispersion relation for the wave is given
by

ω = cs k − i

2
k2 ×

{ 4

3
η

w/c2 , R fluid
4

3
η

ρ , NR fluid

}

(16)

To take into account possible bulk viscosity ζ, one sim-
ply makes the replacement 4

3η → 4
3η + ζ. Furthermore

the speed of sound cs is given by

cs =







√

∂P
∂(ǫ/c2) , R fluid

√

∂P
∂ρ , NR fluid







(17)

As one can see, the same correspondence (w, ǫ)R →
(ρc2)NR appears again as in the thermodynamics
Eq.(13).

C. Discussion on η/s

We end this section by a discussion of the ratio of shear-
viscosity over entropy-density-ratio, η/s, which has at-
tracted a considerable interest in various fields of physics.
We first recall, from the perspective motivated by

studying the QGP via heavy ion collisions, why η/s
is a useful measure for the relativistic fluid, as was
first pointed out in the seminal paper [19]. Consider a
Bjorken-type longitudinal expansion of the quark-gluon
plasma (with low baryonic density) formed in heavy ion
collisions: its system size is limited by cτ at early time.
With the presence of shear viscosity η, there will be dis-
sipative effect (e.g. entropy generation) characterized by

the ratio η/w
τ (roughly the Knudsen number) which, by

thermodynamic relation Eq.(7) w ≃ Ts, leads to η
s

1
Tτ .

To ensure a controllable dissipative correction to the ideal
hydrodynamics, one requires firstly η/s is small enough
and, secondly, Tτ is of the order 1 or bigger. The former
shall be a property of the underlying QGP while the lat-
ter means the viscous effect is most severe at early time
and the hydrodynamic evolution may not be a good ap-
proximation at too early time. (Note in this discussion
we adopted natural relativistic units with c = 1). One
can draw two conclusions from this discussion: (a) η/s
can serve as a good measure of fluidity for a relativistic
fluid and the smaller it is the better the fluidity; (b) the
ability of η/s to serve such a role is actually inherited
from η/w.
The discussion above, however, leads to the observa-

tion that η/s for a non-relativistic fluid does NOT nec-
essarily provide a good measure for its fluidity, because
the role of the relativistic η/w corresponds to the non-
relativistic η/ρ. This is certainly not a new lesson: it has
been known from Navier and Stokes’s time that what
really matters for usual non-relativistic fluids’ fluidity is

not the dynamical viscosity η itself but rather the so-
called kinematic viscosity η/ρ (see e.g. [17]). Indeed by
looking at actual data for water in the liquid and vapor
phase at the same pressure one finds that liquid water
has about one order of magnitude bigger shear viscosity,
η, but nonetheless “wins the fluidity contest” since its
kinematic viscosity, η/ρ, is about two orders of magni-
tude smaller than that of the vapor phase. We note that,
the expression η/w for a relativistic fluid is a relativistic
version of the kinematic viscosity (see also related dis-
cussions in [3]). To conclude, we emphasize that for a
non-relativistic fluid η/ρ is different from η/s (as is evi-
dent from the thermodynamics discussion) and only η/ρ
serves as a good measure of fluidity (as is evident from
the hydrodynamics discussion). This also implies that
using η/s to compare the fluidity between a relativistic
fluid (like the QGP, the AdS/CFT plasma) and a non-
relativistic fluid (like Helium, water or cold Fermion gas
[20] ) may not be as informative as one would expect.

III. A NEW FLUIDITY MEASURE

In this section we propose a new fluidity measure that
is suitable for comparison between relativistic and non-
relativistic fluids. In the following we will analyze the
propagation of sound modes in the presence of dissipa-
tion (viscosity) and ask ourselves under what condition
the dissipative (viscous) terms in the equations prevent
sound from propagating. The advantage of this strategy
is that we stay entirely within the framework of viscous
hydrodynamics and do not need to make additional as-
sumptions, such as the applicability of kinetic theory. As
a consequence our fluidity measure will be expressed in
terms of well defined quantities such as the shear viscos-
ity, the speed of sound, etc.

We start with the sound dispersion relation in Eq.(16).
By requiring the imaginary part of the frequency, Imω,
to be small in magnitude as compared with its real part
Reω, we obtain:

|Imω

Reω
| << 1 →

λs =
2π

k
>>

4π

3
Lη (18)

Lη ≡
{ η

(w/c2) cs
, R fluid

η
ρ cs

, NR fluid

}

(19)

The above equation implies that if a sound wave has its
wavelength λs comparable (or even smaller) than Lη, it
will be quickly damped on (or shorter than) a time scale
of its period and spatially on a length scale about (or
shorter than) its wavelength, which essentially means it
can not propagate away in the medium. Therefore, the
physical meaning of the length Lη introduced above is
to provide a measure for the minimal wavelength of a



5

sound wave to propagate in such a viscous fluid5. A
more quantitative criteria will be discussed in Section V
and given in Eq.(27).
Furthermore the length Lη has the meaning of an effec-

tive mean-free-path (MFP) in terms of microscopic fluid
particle motion. This becomes transparent in a weakly
coupled gas: taking the non-relativistic gas as an exam-
ple, the shear viscosity according to kinetic transport is

η ∼ ρvT lMFP (20)

while the speed of sound is

cs =

√

∂P

∂ρ
∼

√

kBT

M
∼ vT (21)

with vT the thermal velocity. These lead to the combi-
nation

Lη =
η

ρcs
∼ lMFP (22)

Unlike the mean-free-path which is conceptually intuitive
but practically not easily computable or measurable (e.g.
for fluids), the length Lη is well-defined by macroscopic
properties of the fluid and thus of practical use.
We emphasize that involving the speed of sound in the

definition of length scale Lη is essential. This can be seen
already from a dimensional argument: η/ρ or η/(w/c2)
has the dimension of [Length]2 [Time]−1. To turn this
into a length scale one needs to divide it by a quantity
of the dimension [Length] [Time]−1 i.e. a velocity. The
natural choice here is the speed of sound as a charac-
teristic of the macroscopic matter. The speed of light,
c, on the other hand is not suitable here since it is nei-
ther a property of any specific substance nor should it be
of any relevance to non-relativistic fluids, such as water.
Since the speed of sound changes considerably close to a
phase-transition or a rapid crossover, its inclusion in the
fluidity measure F and in the effective mean free path
Lη is essential.
Next we need to introduce another meaningful length

scale to make a dimensionless ratio: this becomes a ne-
cessity when comparing fluids at vastly different scales.
In case of the well known dimensionless ratios like the
Knudsen and Reynolds numbers, an external length scale
characteristic of the fluid motion is introduced, like the

5 We note that other types of dissipative processes like ther-
mal conduction may also be present and thus introduce differ-
ent length scales. For example when the sound wave period
τs ∼ 1/(csk) becomes larger than the thermal relaxation time
scale τT ∼ 1/(DT k2) (with DT the thermal diffusivity) at wave-
length smaller than DT /cs , then heat transport becomes rather
efficient and the sound propagation becomes isothermal (see ex-
amples in e.g. [21]). Nevertheless additional sources for dissipa-
tion do not change the fact that the “good” sound modes shall
have their wavelengths (at least) larger that the Lη set by shear
viscosity only.

diameter of a pipe or the size of a moving object inside
the fluid, etc. In the context of relativistic fluids created
in heavy ion collisions, there have been scaling studies
of collective flow for lower energy collisions based on the
Reynolds number in [13] and more recently for higher en-
ergy collisions based on the Knudsen number in [14] (see
also related discussions in [15]). The external length scale
in those numbers, however, is not an intrinsic property of
the fluid that we would like to invoke for comparing flu-
ids across vastly different scales. Instead, a de-correlation
length of certain density-density spatial correlator gives
a natural scale of short-range order in the system. In
most cases this de-correlation length is simply set by the
inter-(quasi-)particle distance. For a non-relativistic fluid
“particles” and their number density n are well-defined,
and thus the inter-particle distance is also a well-defined
length scale:

Ln ≡ 1

n
1

3

(23)

For relativistic fluid it is less straightforward. For ex-
ample a QGP with µB = 0 and thus nB = 0 can still
have substantial numbers of quarks and gluons. For
such a relativistic fluid a simple estimate can be made
via the entropy density, i.e. n ∼ s

4kB

. Another way
is to calculate the de-correlation length of e.g. the cor-
relator < T00(~x, 0)T00(~0, 0) > as has been done in re-
cent lattice work [22] which finds a short range order
about 0.6/T for QGP in 1 − 2Tc, in reasonable agree-
ment with estimate from n ∼ s

4kB

. There could still
be academic examples where the entropy density can
be infinite while the short-range order does not van-
ish: AdS/CFT offers such an example in which the en-
tropy density goes as s ∝ N2

c T
3 → ∞ (in the large

Nc limit) implying 1/n1/3 → 0 while spatial correlators

like < Tµν(~x, 0)Tµν(~0, 0) > give a non-zero de-correlation
length ∼ 1/T . We will return to these issues in the Sub-
section III C.
Finally by taking a ratio of the two length scales, we

arrive at a fluidity measure

F ≡ Lη

Ln
. (24)

Below we will first show that the measure works well for
non-relativistic fluids and bears certain universality for
critical fluids. We will then show that the so-called su-
percritical fluids have even better fluidity. At the end we
present a comparison of various interesting fluids. Fol-
lowing [11, 12], we have extensively used the measured
data for various fluids from the NIST WebBook [23].

A. Critical Fluids

We first examine various fluids at fixed critical pressure
P = Pc. In Fig.1(left), the proposed fluidity measure
F = Lη/Ln is plotted for fifteen different substances at
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FIG. 1: (Color online) (left panel) Fluidity measure F = Lη/Ln versus T/Tc for fifteen different substances at fixed critical
pressure P = Pc, see text for more details. The sharp peaks centered at Tc are due to the actual divergence of the shear
viscosity at the critical point. (right panel) The minimum of the fluidity measure F for various substances (as obtained from
respective curves in the left panel) versus their molar masses, with the stars (from left to right) for H2,

4He, H2O, D2O, Ne,
N2, O2, Ar, CO2, Kr, Xe, and the diamonds(from left to right) for C4H10, C8H18, C12H26, C4F8.

their respective critical pressure Pc, including: Hydrogen
(H2), Helium-4 (4He), Water (H2O), Deuterium oxide
(D2O), Neon (Ne), Nitrogen (N2), Oxygen (O2), Ar-
gon (Ar), Carbon Dioxide (CO2), Krypton (Kr), Xenon
(Xe), Isobutane (C4H10), Octane (C8H18), Dodecane
(C12H26), Octafluorocyclobutane (C4F8). These sub-
stances cover a wide range of molar mass, chemical struc-
ture and complexity, with their respective critical tem-
perature Tc and pressure Pc differing by orders of magni-
tude. Despite such huge differences, their fluidity curves
resemble each other not only in shape but even quan-
titatively. In particular in their good liquid regime —
roughly the “valley” region at ∼ 0.7 − 1Tc — they
all show amazingly similar fluidity. To further expose
the similarity, in the right panel of Fig.1 we show the
value of the fluidity measure F at its minimum versus
the substances’ molecular molar masses. From this plot,
roughly two bands can be identified: the green stars
spread in a narrow band of F ∈ (0.3, 0.45) while span-
ning two-orders-of magnitude in molar mass which in-
clude all 11 non-organic substances; the red diamonds
with roughly twice bigger F , include 4 organic substances
with much more complicated molecular structures (e.g.
chains) which, not surprisingly, lead to more dissipation.
Even so, the splitting in fluidity between the two bands is
merely a Ô(1) factor rather than any order-of-magnitude
difference. Nevertheless as one can imagine, with increas-
ing chemical complexity and molecular mass, the fluidity
of more complex systems like e.g. engine oil may deviate
significantly from what are shown in the figure.

To conclude the study of critical fluids, there appears
to be certain universality of the newly proposed fluidity
measure F , indicating that “a good fluid is a good fluid”
despite many other details regarding the microscopic de-
grees of freedom.

B. Supercritical Fluids

While much attention has been paid to critical fluids,
the fluidity of a fluid with significantly larger pressure
P >> Pc has been little discussed in the context of heavy
ion collisions and QCD matter: so let us next explore
this region. In the literature, this region is often referred
to as the “supercritical fluid” region [21], defined on a
typical substance’s T − P phase diagram (with critical
point Tc, Pc) as:

supercritical : T > Tc & P > Pc (25)

In particular we want to explore the deeply supercritical
region with P >> Pc. Taking water as an example, in
Fig.2(left) we plot the fluidity measure F versus T/T c for
fifteen different fixed pressure values ranging from 5MPa
all the way to 1000MPa (note for water Pc = 22MPa).
The dashed (green) curve is for fixed critical pressure
P = Pc = 22MPa, while the four solid (red) curves
above it are for P < Pc, and the ten solid (blue) curves
below it are for P > Pc. As can be seen from the plot,
the curves change shape gradually and the fluidity be-
comes better and better with increasing P . The “valley”
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FIG. 2: (Color online) The dimensionless fluidity measure F (left panel) and the length scale, Lη (in units of Å) (right
panel) versus T/Tc for water at fifteen different fixed pressure values. In both panels, the dashed (green) curve is for
fixed critical pressure P = Pc = 22MPa, while the four solid (red) curves above it are for P < Pc, and the ten
solid (blue) curves below it are for P > Pc, with the respective pressure values for each curve (from top down) being
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FIG. 3: (Color online) The shear-viscosity-entropy-density-
ratio η/s (in unit ~/(4πkB)) versus T/Tc for water at fifteen
different fixed pressure values. The dashed (green) curve
is for fixed critical pressure P = Pc = 22MPa, while the
four solid (red) curves above it are for P < Pc, and the ten
solid (blue) curves below it are for P > Pc, with the respec-
tive pressure values for each curve (from top down) being P =
5, 10, 15, 20, 22, 25, 30, 40, 50, 100, 150, 200, 250, 500, 1000MPa.

where F remains small and relatively flat becomes much
wider and eventually flattens out substantially above Tc

for P >> Pc. To quantify the remarkable fluidity of
the supercritical fluid, we note that the minimum on the
P = Pc curve has a value for the fluidity Fmin(Pc) ≈ 0.33
while the minimum for the P = 1000MPa ≈ 45Pc curve
is at Fmin(45Pc) ≈ 0.11, getting smaller by a factor of
3 and remaining close to the minimum within a rather
broad temperature region!

It is also interesting to examine whether the length
scale Lη itself shows similar trends, as Lη is the essential
scale for discussing the applicability of hydrodynamics
where it is to be compared with the external scale char-
acterizing the variation of flow field. In the right panel of
Fig.2 we plot Lη itself for the same conditions and find
that, similar to the fluidity measure F , the scale Lη also
becomes considerably smaller in supercritical water.

It should be mentioned that the same observation is
also true for other fluids that we examined, like Helium-4,
Nitrogen, etc. Furthermore such behavior is not specific
to our fluidity measure. In Fig.3 we plot the widely used
ratio of shear viscosity over entropy-density, η/s, which
show the same qualitative behavior.

The main lessons, as we emphasize again, are (a) for
a given substance, the best fluidity is not necessarily
achieved close to the critical point and (b) when going
deeper into the supercritical regime its fluidity becomes
much better.
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C. Comparison of Various Fluids

Finally we attempt to compare various fluids of great
current interests in terms of the new fluidity measure F
we have proposed and studied above. The results are
shown in Fig.4. Below we give the details of how the
curves for QCD, Cold Fermi Atom, and AdS/CFT are
obtained.
For the QCD system, we have used a parametrization

of the viscosity η by Hirano and Gyulassy in [24]: one
uses η/T 3

c ≈ T/Tc for hadronic gas (H.G.) below Tc, and
η/T 3

c ≈ (T/Tc)
3[1+W(T )ln(T/Tc)]

2 for the quark-gluon
plasma(sQGP) in the temperature interval T/Tc ∈ [1−3]
with
[W(T )/(4π)] = (9β2

0) · [80π2KSBln(4π/g
2(T ))]−1

interpolating to pQCD results for T >> Tc, where the
parameters are given as β0 = 10, KSB = 12 and the
running coupling
[g2(T )]−1 = (9/8π2)ln(2πT/Λ) +
(4/9π2)ln(2ln(2πT/Λ)) (with Λ ≈ 190MeV ) ( see
[24][11] for more details). The enthalpy density
w = ǫ + p and speed of sound cs are taken from recent
lattice results by Karsch et al [25] for 2+1 flavor QCD
with mπ ≈ 220MeV . As we mentioned before, Ln is
estimated by 1/(s/4kB)

1/3 with the entropy density also
taken from [25].
For the strongly coupled AdS/CFT system, the shear

viscosity is well known to be η/s = 1/(4π) [9]. As we
also pointed out before, there is a short-range order at
the length scale Ln ∼ 1/T however the pre-factor is not

accurately determined. We simply use Ln = 1/T as an

estimate. This gives the fluidity F =
√
3/(4π) ≈ 0.138.

For the Cold Fermi Atom gas, its shear viscosity has
been measured near its Feshbach resonance by Thomas
et al in [26] for a certain range of system energy by an-
alyzing the damping of collective modes in the atomic
cloud (see also related work in [27]). As a benchmark,
we take the lowest viscosity found from the measurement
(see Fig.4 in [26]) which is η ≈ 0.214 ~n. The speed of
sound has also been measured by the same group in [28],
from which we take the value cs ≈ 0.3632 vF near the Fes-
hbach resonance. Since the Fermi velocity vF = ~kF /m,
the mass density ρ = mn, and the Fermi momentum
kF /n

1/3 = (3π2)1/3, we obtain for the fluidity measure
F ≈ 0.214/(0.3632 · (3π2)1/3) ≈ 0.191.
The question marks in Fig.4 indicate that the current

estimates presented above may carry sizable uncertain-
ties, and we expect the knowledge on these systems will
become more accurate with time.
We finally come to the comparison in Fig.4. As one

can see, the critical fluids (water and Helium-4 at Pc)
have a somewhat worse fluidity than the QCD, AdS/CFT
and Cold Fermi Atom systems. Supercritical water at
P = 11Pc, on the other hand, already has a fluidity
comparable to the QGP while at P = 45Pc the fluidity
of supercritical water appears to be better than that of
the recently discussed “nearly perfect fluids”.

IV. A SUPERCRITICAL QCD FLUID AT RHIC?

The fluidity study in the previous section, in particular
on the supercritical fluid, naturally leads to the follow-
ing interesting question: Are we observing a supercritical
QCD fluid at RHIC?
As is well known, what is usual referred to as Tc ≈

170 ∼ 190MeV in QCD is not a true second-order phase
transition temperature but rather the temperature for a
rapid crossover at µ = 0 [25]. There is, however, a (hypo-
thetical) Critical-End-Point(CEP) at (TCEP , µCEP ) on
the QCD phase diagram marking the end of a plausible
first-order phase transition at low T but high µ (see e.g.
[29] and references therein). Accurate determination of
the CEP from lattice QCD [30–34] and unambiguous ob-
servation of the CEP from heavy ion collisions [12, 35, 36]
are among the most interesting and exciting goals of QCD
research. While currently the position of the CEP is not
well constrained, it is expected to have lower temperature
than that of the QCD crossover transition at vanishing
baryon density, TCEP < Tc. Being very aware on the
present uncertainty of the actual location of the QCD
critical end point, let us, solely for demonstration pur-
poses and for the sake of the argument, assume that its
location is close to the estimate of ref. [32], which sug-
gests that TCEP ≈ 0.94Tc, µCEP ≈ 1.8TCEP . This loca-
tion is indicated in Fig.5 as the filled black circle along
with a question mark.
Next if we adopt the definition of supercriticality as in



9

æ æ æ æææææææææ

à à à àààààààààààààààààààààààààààààààààààààààà

ì ì ììì ììììììììììììììììììììììììììììììììììììììììììììììììììììììììì

ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ô ô ô ô ô ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô

ç ç ç ç ç çççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççç

á á ááááááááááááááááááááááááááááááááááááááááááááááááááááááááááááááááááááááááá

í í í í í í íííííííííííííííííííííííííííííííííííííííííííííííííí

ó ó ó ó ó ó óóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

í í í í íííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííííí

CEP?
SPS

RHIC

LHC

0 100 200 300 400
0

100

200

300

400

mq HMeVL

T
HM

eV
L

FIG. 5: (Color online) Schematic isobaric contours (i.e. with
constant pressure along each line) on the QCD T − µ phase
diagram with the filled black circle indicating a possible posi-
tion of the hypothetical Critical-End-Point (CEP); the dashed
blue horizontal short line stretching from the CEP to the right
is included to indicate the T = TCEP boundary (see text for
more details). The filled red, blue and green circles indicate
estimates of the initial (T, µ) reachable at SPS, RHIC and
LHC, respectively.

Eq.(25) for QCD, we need to know the constant-pressure
lines on the QCD phase diagram typically plotted in
terms of T−µ. To schematically construct these lines, we
make use of the Taylor expansion of the pressure P (T, µ)
with respect to µ:

P (T, µ) = T 4×
[

P0(T ) +
1

2
χB
2 (T )

(µ

T

)2

+
1

24
χB
4 (T )

(µ

T

)4

+ ...

]

(26)

with χB
2n ≡ ∂2n(P/T 4)

∂(µ/T )2n

∣

∣

µ=0
the baryonic susceptibilities

[32, 33, 37, 38, 40]. In order to construct the equal-
pressure lines shown in Fig.5 we have used the lattice
QCD results from Cheng et al for P0(T ) [25] and χB

2 , χ
B
4

[37].
The blue curve in Fig.5 going right through the indi-

cated CEP point indicates the constant-pressure line with
fixed critical pressure P = P (CEP ) which, together with
the T = TCEP line (dashed blue horizontal one stretch-
ing from the CEP to the right) form the boundary above
which there is the QCD supercritical region. We empha-
size that above the boundary the pressure P ∼ T 4 in-
creases very rapidly. As a result the QGP quickly enters
deeply into the supercritical regime where P ≫ P (CEP ).
To give an idea: the pressures of the lines in units of the

critical pressure P (CEP ) (value on the blue curve) are
(from bottom to top) 0.05, 0.08, 0.13, 0.23, 0.27, 0.35,
0.63, 1, 2.7, 10, 18, respectively. Of course with improved
lattice results for pressure, CEP and (higher order) sus-
ceptibilities a more accurate equal-pressure map for QCD
matter will become available.

We now discuss a few implications for heavy ion colli-
sions experiments. As a precaution, the following discus-
sions are by no means intended to provide quantitative
statements but rather qualitative yet interesting ideas.
(I) At current RHIC energy (

√
s = 200AGeV), Fig.5 in-

dicates that most of the QGP phase of the created mat-
ter is likely in the supercritical region. This may very
well be the reason why such good fluidity has been ob-
served. If a relationship between good fluidity and su-
percriticality is indeed true for the QCD matter just as
it is for water, then there will be a sensitive dependence
of the fluidity on the actual position of the CEP. For
example, the matter created at RHIC might have most
of its evolution being in the supercritical region in case
TCEP and PCEP are considerably lower than indicated
in the Fig.5. On the other hand, the matter created at
SPS (

√
s ≃ 20GeV) seems to have its initial pressure

and temperature already rather close to the critical one
which would result in poor fluidity. In principle these re-
gions (supercritical, near-CEP, below-CEP) of very dif-
ferent fluidity can be accessed experimentally by tuning
the center of mass energy

√
s which changes the initial

densities (see e.g. [41]) as well as the freeze-out points
(see e.g. [42][43]) in such collisions. To which extend
this difference in fluidity transforms into measurable ef-
fects, such as non-hydrodynamic behavior and thus less
elliptic flow, is a non-trivial question. As we will discuss
in the next section, besides the fluidity the actual size
of the system is essential for the applicability of hydro-
dynamics. Our estimates (see Fig.6) show that even for
the very good fluidity assumed for a strongly interacting
QGP, denoted as “sQGP” in Fig.4, a hydrodynamic de-
scription for the fireball expansion is a best marginal at
SPS energies. The reason is that, according to our esti-
mate, the system starts close to the phase transition and,
thus, reaches the hadronic phase while still comparatively
small in size. Consequently, it may be difficult to tell if
the system enters a regime of reduced fluidity from flow
studies alone. Of course if our estimates are wrong and
one finds evidence that the initial entropy density reached
is considerably larger, a change in the fluidity may show
up in the systematics of elliptic flow measurements, such
as its dependence on beam energy and system size.
(II) Based on the possibility of a mostly supercritical
QCD matter to be created in experiments at the Large
Hadron Collider (LHC) (see Fig.5), one is led to pre-
dict an even better fluidity to be observed at LHC than
at RHIC. And since for the same fluidity the conditions
for hydrodynamics are more favorable for LHC energies
than for RHIC, we would expect nearly ideal hydrody-
namic evolution at LHC.
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V. APPLICABILITY OF HYDRODYNAMICS IN

HEAVY ION COLLISIONS

In this section we turn to a discussion of applicability
of hydrodynamics in heavy ion collisions, particularly for
SPS, RHIC and LHC. As already discussed in the intro-
duction, the fluidity of the underlying matter is not the
only determining factor: the “best” (in terms of fluidity)
fluid may cease to flow if put into a sufficiently narrow
pipe. In other words, the applicability of hydrodynamics
depends equally on both the internal properties of the
substance, i.e. its fluidity F or Lη, and the external set-
tings, i.e the typical length scale Ls of the variation of the
flow field in the system under consideration 6 : one useful
criteria, equivalent to the famous Knudsen number, is a
ratio of the two Lη/Ls.

In order to derive a quantitative criterion, we again
use the example of sound dispersion discussed before. By
requiring that a propagating sound wave has to complete
at least one full period before its amplitude damps by
a factor e−1 due to the imaginary part, we arrive at a

minimal wave length λmin = 8π2

3 Lη. For a sound wave
the length scale characterizing the flow field variations
simply the wavelength, Ls ≈ λ. Thus we arrive at the
following criterion for the applicability of hydrodynamics:

Lη

Ls
<

3

8π2
≈ 0.038 (27)

The length Lη(T ) for QCD (at µ = 0), shown in
Fig.6(left), is determined as described section III C. It
relies on a parametrization for η(T ) from the Hirano-
Gyulassy [24], and we note that the actual shear viscosity
of QCD matter, once it is known, may be quite different.
The temperature dependence of Lη shown in the plot
features a steep drop from the hadronic phase to about
T ≃ 1.1Tc, followed by a rather constant value for tem-
peratures above, T & 1.1Tc. One may expect Lη becomes
large again at very high temperatures T >> Tc where a
weakly coupled QGP describable by pQCD takes over. In
principle Lη also depends on the baryon-number chemi-
cal potential, µB, and this dependence shall be taken into
account when discussing collisions at low energy (such as
SPS) where µB could be sizable. However currently very
little is known about such dependence, and we here use
the zero µ result also for SPS.
We next give a rough estimate for the typical length

scale Ls of flow field variance for heavy ion collisions at
different

√
s 7. At early times, right after the collision,

6 We re-emphasize that the length scale Lη is a well defined quan-
tity depending only on macroscopic variables that are measurable
and/or calculable. Furthermore unlike the mean-free-path which
depends on quasi-particle picture (see e.g. discussions in [15]),
the length scale Lη remains a useful and meaningful scale even
for strongly coupled systems.

7 In this discussion we focus only on central collisions which make

the system size is limited mainly by its longitudinal ex-
tent and the scale governing the variation in the fluid can
be estimated to be about 2τ . At late time when τ be-
comes larger than the nuclear radius ∼ RA the limiting
scale is set by the transverse size of the fireball which is
slightly larger than RA and slowly grows. For the purpose
of our rough estimate, we adopt a simple prescription:
Ls ≈ 2τ for τ < R and Ls ≈ 2R for τ ≥ R with R = 8 fm
for AuAu and PbPb collisions. For the collision dynam-
ics which determines the temperature evolution s(τ) (or
inversely τ(s)), we simply use the Bjorken flow relation
s(τ) = s0(τ0) · τ0/τ , which up to τ ∼ R is a reasonable
approximation. For the initial condition we follow esti-
mates used in hydrodynamic modelling (see e.g. [41]) and
assume equilibration at τ0 = 1 fm, with fireball center en-
tropy densities (in central collisions) to be s0 = 24 fm−3

at SPS, s0 = 70 fm−3 at RHIC, and s0 = 154 fm−3 at
LHC.

Finally we turn to the discussion of the applicability
of hydrodynamics given the criteria of Eq.27. The ratio
Lη/Ls in units of 3/(8π2) is plotted in Fig.6(right) for
SPS(red diamonds), RHIC(blue stars), and LHC(green
boxes). The thick dashed horizontal line indicates the
equality of the condition expressed by Eq.27: If the sys-
tem is considerably below this line a hydrodynamic de-
scription should be a reasonable approximation. If it
finds itself considerably above corrections to hydrody-
namics from higher orders in derivatives or an even non-
hydrodynamic description are called for. To quantify the
previous statement, if the system finds itself at a value
of (Lη/Ls)/(3/8π

2) = 2, such as the points for SPS
energies on Fig.6(left), then the amplitude of a sound
mode after propagating the distance of one wavelength
will be reduced by a factor of e2 ≃ 7, and for a value of
(Lη/Ls)/(3/8π

2) = 5 the reduction would be e5 ≃ 150!
Given our estimate and the assumptions which it is based
on, a hydrodynamic description is not a good approxi-
mation for SPS, whereas for RHIC and even more so for
LHC energies, it seems to be more or less justified8. Such
differences from SPS to RHIC and LHC lie in the differ-
ent time evolution due to the different initial densities:
when cooling down into the region where Lη starts ris-
ing abruptly near and below Tc, the SPS fireball still has
a rather small size (longitudinally) while the RHIC and
LHC fireballs already becomes large with a size about 2R
and hence have their hydrodynamic evolution extended
much longer. While our estimates contain uncertainties
and should by no means considered to be precise, we have

the estimation easier. Generally speaking when going from cen-
tral to peripheral collisions one expects hydrodynamics to be less
and less applicable.

8 We note that even for RHIC and LHC the first fm or so of the
evolution is above the “criteria line” due to the rather small sys-
tem size. Whether this has a profound effect (such as in entropy
generation) or not is unclear at this time (see a very interesting
discussion in [44]).
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FIG. 6: (Color online) (left panel) The length scale Lη = η
(w/c2)cs

(in unit fm) versus T/Tc for QCD at µ = 0, with η from

parametrization in [24] and w, cs from lattice data [25]. The dashed horizontal lines at 0.1 fm and 0.5 fm are included to guide
the eyes. (right panel) The criteria (27) for applicability of hydrodynamics versus T/Tc at SPS(red diamonds), RHIC(blue
stars), and LHC(green boxes), with the thick dashed horizontal line indicating the borderline below which hydrodynamics may
be a good description according the criteria (see text for more details). A line for CuCu(orange triangles) collisions at RHIC
energy (200AGeV) is also presented.

provided a semi-quantitative picture for evaluating the
applicability of hydrodynamics with varying

√
s, which

implies at LHC the fireball expansion shall be even better
described by hydrodynamics as compared to RHIC.
Besides the beam energy

√
s, a change of the system

size should also affect the conditions for the applicability
of hydrodynamics. For example, RHIC has done exper-
iments with both AuAu collisions and CuCu collisions,
both at full energy, and it would be interesting to examine
and compare the applicability of hydrodynamics for these
two different systems. In Fig.6 (right) we have included
a calculation of the same applicability measure for CuCu
(orange triangle) collisions at 200AGeV, with a initial
center entropy density s0 = 45 fm−3 and a transverse
size parameter R = 5 fm. The curve indicates that hy-
drodynamics is marginally applicable for such collisions,
as both the initial density and the transverse size of the
matter formed in CuCu collisions are smaller that those
in AuAu collisions at the same energy.

VI. SUMMARY

In summary, we have discussed the fluidity of the hot
and dense QCD matter as produced in ultrarelativistic
heavy ion collisions in comparison with various other,
well known fluids. In particular we have suggested its
possible supercriticality based on insights gained from
studying more conventional fluids like water. We have
discussed several aspects relevant for a proper compari-
son of non-relativistic and relativistic fluids, both from

thermodynamics and hydrodynamics perspectives. A
new fluidity measure F = Lη/Ln is then proposed, which
shows certain universality in the good fluid regime for a
remarkable diverse set of critical fluids. We have further
demonstrated that the fluidity is enhanced in the super-
critical fluid regime on a fluid’s phase diagram. These
studies inspired us to conjecture that the seemingly good
fluidity of the QCD matter at RHIC may actually be re-
lated to its supercriticality with respect to the Critical-
End-Point on the QCD phase diagram. This observation,
if true, has far-reaching consequences for heavy ion col-
lisions experiments: (a) the loss of such good fluidity at
certain lower beam energy which is sensitively related to
the position of the long sought CEP; (b) an even better
fluidity may be expected at higher beam energy, which
will soon be tested by the LHC heavy ion program. Fi-
nally we have analyzed the applicability of hydrodynam-
ics for the fireball evolution in heavy ion collisions at
various energies. Our analysis was based on a model
parametrization for the shear-viscosity and a rough esti-
mate of the relevant length scales governing the fireball
expansion. Given these assumptions we find that hydro-
dynamics should be applicable for collisions at RHIC and
LHC energies but not for SPS energies.
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