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ABSTRACT OF THE DISSERTATION

Computational and Image Analysis Techniques for Quantitative Evaluation of Striated
Muscle Tissue Architecture

By

Tessa Altair Morris

Doctor of Philosophy in Mathematical, Computational, and Systems Biology

University of California, Irvine, 2021

Associate Professor Anna Grosberg, Chair

Quantitative evaluation of cellular morphology is crucial to understanding development and

pathology of striated muscle tissues, including skeletal and cardiac myocytes. Striated my-

ocytes are composed of parallel myofibrils, which are spanned by repeating sarcomere units

that produce a contractile force parallel to the thick myosin filaments as they slide past the

thin actin filaments. As sarcomeres produce the force necessary for contraction, assessment

of sarcomere order is paramount in characterization of cardiac and skeletal myocytes. The

uniaxial force produced by sarcomeres is ideally perpendicular to their z-lines, which couple

parallel myofibrils and give cardiac and skeletal myocytes their distinct striated appearance.

Accordingly, sarcomere structure is often evaluated by staining for z-line proteins such as

α-actinin and titin, as well as actin. Despite their importance, challenges such as isolating

z-lines from regions of off-target staining that occur along immature stress fibers and cell

boundaries, a lack of metrics that summarize important and relevant aspects of sarcom-

eric architecture, and quantitatively studying striated myocytes in the presence of other cell

types, have gone largely unaddressed. While an expert can qualitatively appraise tissues,

these challenges leave researchers without robust, repeatable tools to assess striated myocyte

morphology and behavior across different labs and experiments. Furthermore, the criteria

used by experts to evaluate sarcomeric architecture have not been well-defined. We address

xii



these challenges by developing image processing pipelines to isolate structures of interest

and providing metrics that summarize distinct aspects of cellular architecture in multiple

different striated muscle tissues, imaged with various modalities. Characterization of stri-

ated myocyte morphology using the metrics discussed and implemented in this work can

quantitatively evaluate striated muscle tissues and contribute to a robust understanding of

the development and mechanics of striated muscles.
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CHAPTER 1

Introduction

Quantification of cellular morphology and structure from images is fundamental to the study

of tissues, especially striated muscles. It has been used to characterize the developmental

stage2–4, engineered tissues5–9, effects of disease10–13 or injury14–17, and treatment with phar-

macological agents18 as well as to predict reduction in contractile function19–21. This is in

large part due to the unique link between structure and function in striated myocytes, as

their ability to contract is dependent on the nearly crystalline order of its cytoskeletal compo-

nents22,23. While many of the hypotheses about the aspects of striated myocytes morphology

that impact function may come from qualitative assessment of images, it is essential to use

quantitative techniques to ensure reproducibility and reliability across labs. In this chapter,

we present an overview of different metrics and software for quantitative assessment of stri-

ated myocytes from images and their impact in order to facilitate future striated myocyte

biology research.

1.1 Striated Myocyte Cellular Morphology

Muscle tissue function is reliant on organization that spans multiple spatial-scales23, and

connecting and choosing which scale to focus on presents its own challenges. In evaluating

pathology of the heart or efficacy of stem-cell derived cells, it can be useful to measure as-

pects of gross cell geometry such as area, volume, and aspect ratio24–27. For example, in the

ventricular myocardium, cellular aspect ratio is tightly regulated (approximately 7:1)28–30,

but increases29,30 or decreases31,32 in some types of heart disease. Additionally, in cell culture

experiments, Kuo et al. 27 established both a correlation between contractility and cardiomy-

1



CHAPTER 1. INTRODUCTION

ocyte aspect ratio, as well as between cardiomyocyte aspect ratio and changes to cytoskeletal

architecture. However, evaluating only cell or tissue scale architecture is insufficient to fully

characterize striated muscle tissues.

1.2 Striated Myocyte Cytoskeleton Architecture

Organization of the striated myocyte cytoskeleton is integral to the efficiency of force pro-

duction20,33,34. Striated myocytes are composed of parallel myofibrils, which are spanned

by repeating sarcomere units that produce a contractile force parallel to the thick myosin

filaments as they slide past the thin actin filaments35,36. The uniaxial force generated by

muscle tissues is maximized when all sarcomeres within a cell are aligned and all cells in a

tissue are aligned23. Consequently, myofilament disorganization has been shown to have a

critical role in contractile impairment37,38. Furthermore, the organization of myofibrils and

their sarcomeres may guide the position, shape, or organization of other organelles, in partic-

ular the mitochondria and nuclei39–41. Organizational guidance and changes to morphology

caused by the cytoskeleton may impact gene expression and have other downstream func-

tional consequences42–45. In order to address the need to evaluate cytoskeletal architecture,

many metrics and image processing tools have been developed.

1.2.1 Metrics to Evaluate Cytoskeleton Architecture: Organiza-

tion

Quantifying organization of cytoskeletal proteins such as actin and sarcomeric α-actinin is an

extremely useful tool for characterization of striated muscle. One popular metric for measur-

ing global construct organization is the orientational order parameter (OOP)19,20,46–51. Using

the OOP to summarize both the sarcomeric α-actinin and actin organization has shown a

2
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positive and predictive relationship between cytoskeletal alignment and contractile stresses

in engineered cardiac tissues19,20. The OOP of sarcomeric α-actinin has also been used to

phenotype stem cell derived cardiomyocytes, and compare them with primary cardiomy-

ocytes4,7. Local organization has been measured by quantifying the OOP of a construct

at shorter length scales9, the correlation between the orientation of cellular constructs rela-

tive to other components6, and by the Sarcomere Organization Score developed by Sutcliffe

et al. 24 . Both experimentally and theoretically, cytoskeletal organization has been shown to

impact contraction19,20, underscoring the importance of quantifying this property of striated

myocyte architecture. One important caveat to these metrics is that they require accurate

segmentation of the construct of interest in order to accurately capture the organization of

that construct.

1.2.2 Metrics to Evaluate Cytoskeleton Architecture: Sarcomere

Length

Another important characteristic of striated myocytes is the sarcomere length52,53, which

increases during myofibril development54. Accordingly, it has been commonly used to char-

acterize the immaturity of stem-cell derived cardiomyocytes, which have shorter sarcomere

lengths than that of primary cardiomyocytes4. Because measuring the sarcomere length can-

not be done efficiently by hand, multiple pieces of software have been developed to measures

sarcomere length in images, many of which use it to characterize contractile function1,4,17,55.

Due to the morphological changes of striated myocytes during development, the sarcomere

length is an essential metric that should be included in analysis pipelines. However, depend-

ing on the pathology or maturity of the tissue, it may be necessary to measure more subtle

changes in sarcomere architecture.
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1.2.3 Metrics to Evaluate Cytoskeleton Architecture: Sarcomere

Registration and Continuity

A metric that may capture more subtle differences between striated myocytes is that lateral

alignment of sarcomeric z-lines in neighboring myofibrils (i.e. z-line registration) has also

been considered an important metric to assess striated myocytes21,27,38,56–61. When the sar-

comere are well organized with the same sarcomere length, it has been hypothesized that

sarcomeric z-line registration influences contractile function and is an important characteris-

tic of well-formed myofibrils21,27,56–61. This hypothesis has been supported by the observation

of a disruption in z-line registration between adjacent myofibrils in the ventricles of failing

hearts38. The significance of z-line registration has been investigated using both theoretical

and experimental approaches21,27,56–60,62, which often required measuring z-line registration

in images of striated muscle. Using an experimentally observable metric - the length over

which z-lines of neighboring myofibrils are registered - to approximate z-line registration, a

correlation between high z-line registration and coherent, strong contractions was demon-

strated in single cells27,58–60. However, further investigation into z-line registration has been

hindered by the reliance on experts to manually or semi-manually measure the registration

length in images.

1.3 Nuclear Morphology

The striated myocyte nucleus is mechanically connected to the cell membrane through the

cytoskeleton, which has been shown to influence nuclear morphology42–45. Because changes

in nuclear morphology are often accompanied by altered function, fully understanding the

functional and genomic consequences of striated myocytes in pathology, aging, or in response

to stimuli, requires recognizing changes to nuclear morphology42,45,63,64. As the characteriza-
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tion of nuclear morphology is important part of many biological fields, there is an abundance

of software designed to segment nuclei in images using a large variety of image processing

and deep learning approaches65,65,66,66–70,70–82. Once nuclei have been segmented, there is

also a need for robust, quantitative metrics to compare and classify their morphology as

normal or containing defects69,79. One important challenge is that segmentation tools in

biology generally yield nontrivial amounts of segmentation error due to assumptions in the

computational design and variability in biological phenotypes66. Another important chal-

lenge is selecting the correct metrics to characterize the nuclei, including geometry as well

as relative location both of which are important to tissue function. Mouse models of muscle

laminopathies showed nuclear migration during skeletal muscle maturation that correlated

with disease severity83. Regarding the nuclear geometry, there is evidence of changes in size

and eccentricity, as well as the presence of nuclear blebs or invaginations in pathological

conditions such as cardiomyopathies and laminopathies84–89. However, defining which ge-

ometric properties should be used to characterize striated myocyte nuclei, requires further

investigation into the mechanisms by which their morphology impacts their function, as well

as understanding these mechanisms in the context of changes to the cytoskeleton42,90,91.

1.4 Muscle Tissue with Multiple Cell-Types

Studying interactions between morphologically or phenotypically distinct cells is a vital as-

pect of understanding biological processes92, such as the role of smooth and skeletal muscle

in esophageal function93, the cardiac remodeling response of cardiomyocytes and cardiac

fibroblasts94–96, and the variability in the cell types and functionality produced from car-

diac differentiation from induced pluripotent stem cells7,24,97. Therefore, in order to study

interactions or differences between morphologically distinct cells, it is necessary to accu-

rately and reliably separate them in images, which can be extremely challenging to do by

hand in a high-throughput manner, particularly in confluent tissues. To combat this issue,
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image-based cell profiling commonly makes use of machine learning classifiers and feature

extraction, as well as deep learning approaches75,77,92,98–105. Once the cell type or cell state

segmentation has been achieved it can be combined with other analysis to unlock even more

biological information, including studying interactions between different cells26. However, it

is extremely difficult to create a classifier that can correctly account for the large spread of

biological and experimental variability, especially while considering the unique morphology

of striated myocytes.

1.5 Conclusion

In this chapter, we presented an overview of image processing and analysis techniques for

assessment of striated myocytes. The unique nature of these cells necessitates the use of ad-

vanced image analysis techniques. While there have been many advances in computer vision

and biological image analysis106, many tools are not suitable to use on striated myocytes

without further modification. The specialized pipelines designed for striated myocytes have

yielded great insight into the structure-function relationship and changes during pathology.

As this chapter demonstrates, widespread adaptation and additional development of these

computational techniques will enable further advances in the field of striated myocyte mor-

phology.

1.6 Thesis Introduction

In this dissertation, we present our contribution to quantitative evaluation of striated muscle,

through establishing image processing pipelines to segment structures in striated myocytes

and developing metrics to summarize aspects of their architecture and morphology. In Chap-

ter 2 (Morris et al. 107), we discuss development of novel metrics to characterize the z-lines of
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striated myocytes, the z-line fraction and the z-line length. We present extensions of these

and other metrics to skeletal myofibers in Chapter 3 and to immature, multilayer cardiac

tissues in Chapter 4. Additionally, in Chapter 5 we provide a framework for quantifying the

organization of distinct cardiac cell types that are present in the same images.
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CHAPTER 2

Striated myocyte structural integrity: Automated

analysis of sarcomeric z-discs1

2.1 Abstract

As sarcomeres produce the force necessary for contraction, assessment of sarcomere order is

paramount in evaluation of cardiac and skeletal myocytes. The uniaxial force produced by

sarcomeres is ideally perpendicular to their z-lines, which couple parallel myofibrils and give

cardiac and skeletal myocytes their distinct striated appearance. Accordingly, sarcomere

structure is often evaluated by staining for z-line proteins such as α-actinin. However, due

to limitations of current analysis methods, which require manual or semi-manual handling of

images, the mechanism by which sarcomere and by extension z-line architecture can impact

contraction and which characteristics of z-line architecture should be used to assess striated

myocytes has not been fully explored. Challenges such as isolating z-lines from regions of

off-target staining that occur along immature stress fibers and cell boundaries and choosing

metrics to summarize overall z-line architecture have gone largely unaddressed in previous

work. While an expert can qualitatively appraise tissues, these challenges leave researchers

without robust, repeatable tools to assess z-line architecture across different labs and exper-

iments. Additionally, the criteria used by experts to evaluate sarcomeric architecture have

not been well-defined. We address these challenges by providing metrics that summarize dif-

ferent aspects of z-line architecture that correspond to expert tissue quality assessment and

demonstrate their efficacy through an examination of engineered tissues and single cells. In

1Morris, Tessa Altair, et al. (2020) PLoS Computational Biology
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doing so, we have elucidated a mechanism by which highly elongated cardiomyocytes become

inefficient at producing force. Unlike previous manual or semi-manual methods, characteri-

zation of z-line architecture using the metrics discussed and implemented in this work can

quantitatively evaluate engineered tissues and contribute to a robust understanding of the

development and mechanics of striated muscles.

2.2 Author summary

Structural evaluation of sarcomeres is fundamental to the study of striated muscle. However,

due to limitations of current analysis methods, the mechanisms by which sarcomere order

can impact contraction and the characteristics of sarcomere architecture that should be used

to assess striated myocytes have not been fully explored. Furthermore, it is not clear what

aspects of sarcomere architecture are considered by the experts when qualitatively evaluating

striated muscle tissues. Therefore, we developed a computational structural assay in MAT-

LAB, ZlineDetection, to evaluate sarcomere architecture by both extracting sarcomeric

z-lines from images and providing metrics that encapsulate different aspects of z-line archi-

tecture that an expert would evaluate when judging the quality of the tissue. The sarcomere

structure of both patient-specific skeletal muscle and rat cardiomyocytes were evaluated with

differences among engineered cells and tissues quantified using novel and established metrics.

As a result, a mechanism by which highly elongated cardiomyocytes become inefficient at

producing force was elucidated. ZlineDetection identifies and quantifies the characteristics

used by experts for evaluation and thus it will lead to more rigorous differentiation methods

and tissue comparison across labs and contribute a robust understanding of how structure

affects mechanical function.
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2.3 Introduction

Assessment of cellular morphology and structure is fundamental to the study of striated

muscles. It has been used to characterize the developmental stage2–4, engineered tissues5–9,

effects of disease10–13 or injury14–17, and treatment with pharmacological agents18 as well

as used to predict function19–21. Indeed, the ability of striated muscle cells to contract is

dependent on the nearly crystalline order of its cytoskeletal components22,23, which makes

evaluation of structure paramount. Skeletal and cardiac myocytes are composed of parallel

myofibrils, which are spanned by repeating sarcomere units that produce a contractile force

parallel to the thick myosin filaments as they slide past the thin actin filaments35,36. Con-

sequently, myofilament disorganization has been shown to have a critical role in contractile

impairment37,38. The uniaxial force produced by sarcomeres is ideally perpendicular to their

z-lines, which couple parallel myofibrils and give cardiac and skeletal myocytes their distinct

striated appearance108. Accordingly, sarcomere structure is often evaluated by staining for

z-line proteins such as α-actinin2,6–9,19–21,27,35,36,46,54,59,60,109–111. A disruption in alignment

or registration of z-lines across neighboring myofibrils has been observed in the ventricles

of failing hearts38. However, the mechanism by which sarcomere and by extension z-line

architecture can impact contraction and which characteristics of z-line architecture should

be used to assess striated myocytes has not been fully explored.

Certain aspects of z-line architecture quantifiable from flourescently stained images have

been used to evaluate engineered tissues and to predict function. In particular, because

the uniaxial force of sarcomeres is maximized when they are all oriented in the same di-

rection, the orientational order of the z-line protein α-actinin has been used extensively as

a metric4,7,19,46,112. Similarly, the correlation between the orientational order of z-lines and

actin fibrils is also an important metric because the relative orientation of these structures

transitions from parallel to perpendicular during development6,9,113,114. The relative location
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and lateral alignment of z-lines in neighboring myofibrils is also hypothesized to influence

contractile function and to be an important metric to assess myofibril formation21,27,56–61.

In particular, theoretical models have been established to explain why z-lines of neighboring

myofibrils tend to register during development57 and the impact of z-line registration on

contractile function21,56. While theoretical models and experiments have provided insight

into which facets of z-line architecture are important to characterize striated myocytes, re-

search has been hindered due to limitations of current analysis methods to quantify z-line

architecture, which require manual or semi-manual handling of images4,6,7,9,19–21,27,36,46,58–60.

Quantification of z-line architecture involves accurately extracting z-lines from an image.

Although researchers experienced with striated myocytes have the skill to manually trace and

extract z-lines, it is a low throughput method and highly susceptible to variability between

observers. Previous work has utilized techniques from the field of image analysis such as

topology-preserving thinning and edge detection to extract features, such as z-lines, from an

image115–117. However, these methods have not been optimized for striated myocytes because

they include regions of off-target staining, which would be ignored by an expert tracing the z-

lines. Once the z-lines have been automatically or manually identified in an image, there is an

additional challenge of choosing metrics to summarize overall z-line architecture4,6. Although

experts can qualitatively score tissue quality, it is ambiguous which aspects of sarcomere

architecture are being considered and why those elements are important. Auxiliary hurdles

include biological variability, as well as variability in staining and image quality. These

challenges have gone largely unaddressed in previous work, which leave researchers without

robust, repeatable tools to assess z-line architecture.

In this work, we investigated which aspects of sarcomere architecture experts use to evaluate

the quality of striated tissue, including those implicated in existing theoretical models of

muscle fiber contraction. To do this, we developed ZlineDetection in MATLAB, the first

fully automatic computational protocol to both isolate z-lines and characterize z-line archi-
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tecture. Isolating z-lines involved constructing a biologically motivated approach to segment

(i.e. remove) off-target staining without the need for user input. Along with reporting ex-

isting metrics such as z-line orientational order, ZlineDetection was used to calculate the

fraction of α-actinin staining that composes well-formed z-lines and find the location and

length of z-lines of neighboring myofibrils that are both registered and continuous. Addi-

tionally, analysis of isolated cardiomyocytes with variable aspect ratios were compared with

published results27. Finally, ZlineDetection was used to differentiate among tissues engi-

neered to be anisotropically or isotropically organized, but well-formed, and those engineered

to be malformed. By building on previous image analysis methods and establishing new met-

rics, ZlineDetection automatically and quantitatively assesses sarcomere architecture, and

can be used by researchers imaging z-lines with fluorescent staining.

2.4 Materials and methods

2.4.1 Ethics Statement

All animals were treated according to the Institutional Animal Care and Use Committee

of UCI guidelines (IACUC Protocol No. 2013-3093). It also followed recommendations of

the NIH Guide for the Care and Use of Laboratory Animals and was in accordance with

existing federal (9 CFR Parts 1, 2, & 3), state, and city laws and regulations governing the

use of animals in research and teaching. The adult Sprague-Dawley rat was euthanized by

CO2 inhalation followed by cervical dislocation at a ULAR facility. Dam’s euthanasia was

done prior to pup sacrifice in order to minimize the stress the dams experience when their

pups are taken. The rat pups were then immediately taken to our core lab where each 2 day

old neonatal rat pup was euthanized by decapitation. This euthanasia method adheres to

the current most humane standards, which maintain scientific validity of the cell cultures as

stated in the “AVMA Guidelines for the Euthanasia of Animals: 2013 Edition” (published
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by the American Veterinary Medical Association).

2.4.2 Substrate Preparation and Extracellular Matrix Patterning

Substrates were fabricated for structural studies as described previously6,9,20,36,69. Briefly,

large cover glass (Brain Research Laboratories, Newton, MA) was cleaned by sonicating, then

spin coated with 10:1 Polydimethylsiloxane (PDMS; Ellsworth Adhesives, Germantown, WI).

The PDMS coated cover glass was then placed in a 60°C oven to cure overnight (12 h). The

cover glass was then cut into smaller individual coverslips to fit in a 12 well plate. Fibronectin

(FN; Fischer Scientific Company, Hanover Park, IL) was patterned onto the coverslips in lines

20 µm wide with 5 µm gaps or islands of various aspect ratios using microcontact printing118.

The PDMS stamps were then sonicated in ethanol and coated with 0.1 mg/mL drops of FN.

After being incubated for 1 h and dried using compressed nitrogen, FN was printed onto

the PDMS coated coverslips that were previously exposed to UV light (Jelight Company,

Irvine, CA) for 8 min. Finally, the stamped coverslips were submerged in a solution of 5 g

Pluronics F-127 (Sigma Aldrich, St. Louis, MO) dissolved in 0.5 L sterile water for 5 min

and then rinsed three times with room temperature phosphate-buffered saline (PBS; Life

Technologies, Carlsbad, CA). Isotropic tissue samples were made by coating coverslips with

a uniform layer of FN6.

2.4.3 Cardiomyocyte Culture

Ventricular myocardium was extracted from two day old neonatal Sprague Dawly rats

(Charles River Laboratories Wilmington, MA) under sterile conditions and in accordance

with the guidelines of the Institutional Animal Care and Use Committee of University of

California, Irvine (Protocol No. 2013-3093). Cardiomyocytes were then isolated from the

ventricular myocardium as described previously6,9,20,36. Briefly, after rinsing the ventricular
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tissue in Hanks’ balanced salt solution buffer (HBSS; Life Technologies, Carlsbad, CA), the

tissues were incubated overnight (12 h) at 4°C in a 1 mg/mL trypsin solution (Sigma Aldrich,

Inc., Saint Louis, MO) dissolved in HBSS. After neutralizing the trypsin in warmed 10% fe-

tal bovine serum (FBS; ThermoFisher, Grand Island, NY ) M199 culture media (Invitrogen,

Carlsbad, CA), the tissue was washed four times with 1 mg/mL collagenase (Worthington

Biochemical Corporation, Lakewood, NJ) dissolved in HBSS. Isolated cells were centrifuged

at 1200 rpm for 10 min and re-suspended in chilled HBSS, before being centrifuged again

at 1200 rpm for 10 min. The cells were then re-suspended in warm 10% FBS M199 culture

media and purified through three consecutive preplates. Cells were then counted and seeded

onto FN coated coverslips. The seeding density used to produce confluent monolayers was

1400 cells/mm2, the density for sparse tissue was 350 cells/mm2, and the density for isolated

cardiomyocytes was 200 cells/mm2. At 24 h post-seeding, dead cells were washed away with

PBS and the remaining cells were incubated in 10% FBS M199 media. After 24 h, the 10%

FBS media was replaced with 2% FBS M199 media. As described previously109, for cells

treated with 2,3-butanedione 2-monoxime (BDM; Sigma Aldrich, Inc., St. Louis, MO), the

culture media containing 10 mM BDM was prepared by adding 1/500 volume 5 mol/L BDM

dissolved in dimethylsulfoxide (DMSO; Sigma Aldrich, Inc., St. Louis, MO) and stored at

-20°C. BDM was left to interact with cells for two days before fixing.

2.4.4 Skeletal Muscle Preparation

Human primary cultured healthy control myoblasts were immortalized using hTERT with

p16INK4a-resistant R24C mutant CDK4 and cyclin D1 as previously described119. After

immortalization, CD56-positive cells were selected by magnetic-activated cell sorting conju-

gated with anti-CD56 antibody (130-050-401, Miltenyi Biotec). Myoblast differentiation was

induced as previously described120. Briefly, CD56-positive cells were plated onto coverslips

at a seeding density of ~2.5 x 105 cells/mL in 2 mL of growth medium (high glucose DMEM

14



CHAPTER 2. STRIATED MYOCYTE STRUCTURAL INTEGRITY: AUTOMATED
ANALYSIS OF SARCOMERIC Z-DISCS

(11965, Gibco) supplemented with 20% FBS (FB-02, Omega Scientific, Inc.), 1% Pen-Strep

(15140122, Gibco) and 2% Ultrasor G (67042, Crescent Chemical Co.)) in each well of a

12-well dish. Approximately 12-16 h later, differentiation was induced using high glucose

DMEM medium supplemented with 2% FBS and ITS supplement (insulin 0.1%, 0.000067%

sodium selenite, 0.055% transferrin, 51300044 Invitrogen). Fresh differentiation media was

changed every day.

2.4.5 Fixing, Immunostaining, and Imaging

After 72 h (cardiomyocytes) or 14 days (skeletal muscle) in culture, cells were fixed in warm

4% paraformaldehyde (Fisher Scientific, Hanover Park, IL) supplemented with 0.001% Triton

X-100 (Sigma-Aldrich, Inc., St. Louis, MO) in PBS for 10 min. Cells were rinsed three times

in room temperature PBS for 5 min and then stained for actin (Alex Fluor 488 Phalloidin;

Life Technologies, Carlsbad, CA), sarcomeric α-actinin (Mouse Monoclonal Anti-α-actinin;

Sigma Aldrich, Inc., St. Louis, MO), nuclei (4’,6’-diaminodino-2-phenlyinodol (DAPI; Life

Technologies, Carlsbad, CA), and FN (polyclonal rabbit anti-human fibronectin; Sigma

Aldrich, Inc., St. Louis, MO). Secondary staining was applied using tetramethylrhodamine-

conjugated goat anti-mouse IgG antibodies (Alexa Fluor 633 Goat anti-mouse or Alexa Fluor

750 Goat anti-mouse; Life Technologies, Carlsbad, CA) and goat anti-rabbit IgG antibodies

(Alexa Fluor 750 goat anti-rabbit or Alexa Fluor 633 Goat anti-rabbit; Life Technologies,

Carlsbad, CA) for a 1-2 h incubation. The coverslips containing the immunostained cells

were then mounted onto a microscope slide preserved with prolong gold antifade reagent

(Life Technologies, Carlsbad, CA). The images were collected using an IX-83 inverted mo-

torized microscope (Olympus America, Center Valley, PA) with an UPLFLN 40x oil immer-

sion objective (Olympus America, Center Valley, PA) and a digital CCD camera ORCA-R2

C10600-10B (Hamamatsu Photonics, Shizuoka Prefecture, Japan). The resolution of the

images taken with the 40x oil objective was ~6 pixels/µm. Ten to fifteen fields of view were
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randomly acquired for every sample. Raw images and other data have been deposited in the

Dryad repository: https://doi.org/10.7280/D12Q2X121.

2.4.6 Statistical Analysis

To determine statistical significance, one-way analysis of variance (ANOVA) with Tukey’s

Test was performed in R version 3.5.2 using RStudio Version 1.1.463. A p-value less than

0.05 was considered significant. Sample size calculations were also performed using R with

a power of 0.95.

2.4.7 Image Processing

We developed the following analysis procedure, we named ZlineDetection, which we made

available on Github (https://github.com/Cardiovascular-Modeling-Laboratory/

zlineDetection). ZlineDetection was implemented in MATLAB version 9.5.0.1033004

(R2018b) (MathWorks, Natick, MA). Parameters are listed and described in Table A.1 and

the user guide can be found in the Github repository for ZlineDetection.

Extraction of α-actinin Skeleton and Orientation

The z-line architecture was analyzed after extracting the binary skeleton and orientation

vectors of the z-lines in images of α-actinin stained cardiac tissue. The process of extracting

the α-actinin binary skeleton (Fig A.1) was adapted from an image analysis protocol estab-

lished for fibrillar materials in MATLAB122. Briefly, gray-scale images were smoothed using

coherence enhancing anisotropic diffusion filtering, which calculates the eigenvectors of the

image Hessian to direct diffusion and uses a finite difference scheme to perform the diffu-

sion, repeating until diffusion time was reached123–125. The diffusion time and smoothing
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parameters were selected by choosing parameters that resulted in skeletons with the highest

similarity126 to manually traced sections of cardiac tissue (Fig A.2). The parameters selected

minimized the following equation:

Ep =
1

n

n∑
i

(Si,p − Si,max)
2 . (2.1)

In Eq 2.1, the error (Ep) for parameter set p is the squared difference between the similarity

of image i for the current parameter set (Si,p) and the maximum similarity for image i

(Si,max), divided by the number of images (n). After contrast enhancement using top hat

filtering127, the background was removed using a surface interpolation128 and then binarized

by adaptive thresholding. Finally, the binarized images were thinned to one pixel width and

trimmed in order to obtain the α-actinin skeleton. Local orientation was estimated from the

diffusion filtered image using a least mean square orientation estimation algorithm129,130.

Actin Orientation Detection

The orientation of actin at each pixel was calculated as described previously19,46. Briefly,

images were filtered with a Gaussian kernel and then normalized to have zero mean and

unit standard deviation130. The orientation was then estimated using a least mean square

orientation estimation algorithm129,130.

Actin Guided Segmentation

In order to obtain the z-line skeleton, off-target α-actinin staining was segmented by using

the local orientation of actin. Local orientation of actin was computed by breaking images

into grids and computing the structural tensor for the orientation vectors ~r(x, y) in each

grid. Local orientation was defined as the director in each grid, which is the eigenvector
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corresponding to the maximum eigenvalue of tensor T:

T =

〈
2

ri,xri,x ri,xri,y

ri,xri,y ri,yri,y

−
1 0

0 1

〉. (2.2)

The α-actinin orientation vectors were compared to the local orientation of actin by taking

the dot product:

γ = ~pactin · ~qα-actinin. (2.3)

An α-actinin pixel was considered off-target staining when γ in Eq 2.3 was greater than a

threshold, indicating ~pactin and ~qα-actinin were too close to parallel.

Orientational Order Parameter

As described previously36,131, the orientational order of constructs in an image was quantified

by the maximum eigenvalue of the structural tensor T (Eq 2.2), termed the Orientational

Order Parameter (OOP).

2.4.8 Continuous Z-line Detection

The continuous z-lines were detected in images of α-actinin stained cardiac tissue after

generation of the z-line binary skeleton and corresponding orientation vectors. We created

and implemented the following method in MATLAB to group z-line orientation vectors based

on their location and direction. Briefly, each orientation vector (~vi), with the exception of

those located at the edges of the image, have eight neighboring pixels that surround it. Six

“candidate neighbors” were chosen by excluding the neighboring pixels that were positioned
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in the directions perpendicular to the angle (±θ0) corresponding to ~vi. These “candidate

neighbors” were then narrowed down to two by selecting one neighbor in each direction that

had the highest dot product value, meaning that the orientation vector at that position

is the most parallel to ~vi. These sets of orientation vectors and their neighbors were then

iteratively grouped into continuous z-lines.

2.4.9 Nuclei Counting

The nuclei per area was computed by summing the number of nuclei across all fields of view

of a coverslip and then dividing by the total area in square millimeters.

2.5 Results

2.5.1 Automating Isolation of Z-lines

Accurately extracting z-lines from images of striated myocytes, including primary cardiomy-

ocytes (Fig 2.1Ai) and patient-specific skeletal muscles (Fig 2.1Aii), is essential to evaluating

their z-line architecture. In images of striated muscle cells stained for α-actinin, a pro-

tein within the sarcomeric z-lines (Fig 2.1A), α-actinin appears as striations approximately

perpendicular to actin fibrils (Fig 2.1A, green). However, in addition to the sarcomeric

z-lines (Fig 2.1Ai, red vertical striations in region outlined in yellow), α-actinin tends to

be present at the cell boundaries and along immature stress fibers that do not have fully

developed z-lines3 (Fig 2.1Ai, white outline). In contrast to z-lines, regions of off-target α-

actinin staining are often oriented along the direction of actin (Fig 2.1A, green), rather than

perpendicular6,113. Consequently, when α-actinin images are condensed into their binary

skeletons122,129,130 (Fig 2.1B), off-target α-actinin staining appears as long line segments ori-
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ented perpendicular to the z-lines and parallel to the orientation of actin fibrils, represented

by green arrows (Fig 2.1B). Including regions of off-target α-actinin staining in quantita-

tive evaluation of z-line architecture, in particular assessment of orientational order, causes

results to be less accurate.

Figure 2.1: Actin orientation guided segmentation of the α-actinin skeleton. A,
Images of cardiac (Ai) and skeletal muscle (Aii) stained for actin fibrils (green), α-actinin
(red), and nuclei (blue). In Ai, off-target α-actinin stain is outlined in white and the region
containing z-lines is outlined with a yellow dashed-dotted line. B, The orientation of the
actin fibrils in (A), represented by green arrows, plotted on top of the α-actinin skeleton.
C, Actin orientation vectors (green) overlaid on α-actinin stained cardiac tissue (Ai) where
each pixel in the α-actinin binary skeleton (Bi) is colored according to its orientation relative
to local actin orientation from parallel (dark blue) to perpendicular (red) as indicated by
the colorbar. D, Skeletal muscle shown in Aii with off-target α-actinin staining (blue) and
z-lines (red). Scale bars: 15 µm.
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While image processing procedures such as anisotropic diffusion filtering provided a solution

to remove imaging noise122,123, it was not capable of excluding off-target α-actinin staining.

However, it is possible to classify α-actinin positive pixels as either off-target staining or

z-lines according to their orientation relative to their local actin fibrils. Therefore, the

orientation of each pixel in the α-actinin skeleton was compared to the local orientation of

actin (Eq 2.3), where local actin orientation was defined as the director in a region that fits

the z-lines of two sarcomeres in cardiomyocytes (~5µm x 5µm). Using this method, pixels

in the z-line skeleton that had an orientation more parallel to the local direction of actin

(γ ≥ 0.7, Eq 2.3), were classified as off-target α-actinin staining and eliminated from the z-

line binary skeleton (Fig 2.1C, dark blue), and pixels with an orientation more perpendicular

to actin were classified as z-lines (Fig 2.1C, red). The orientation of actin fibrils can then be

used to remove off-target staining from the α-actinin binary skeleton (Fig 2.1D).

2.5.2 Metrics to Quantify Z-line Architecture

With the z-lines automatically isolated from α-actinin stained images, it was possible to

explore how to summarize other facets of z-line architecture. The sarcomere orientational

order parameter (OOP) has been used to indirectly evaluate z-line architecture4,7,9,19,46,112.

However, because the sarcomere OOP included regions of off-target staining, the OOP would

be lower in tissues with more off-target staining regardless of the z-line organization. There-

fore, the OOP of the isolated z-lines more accurately captures the sarcomere organization.

Mathematically, the OOP is calculated the same way regardless of the construct (Eq 2.2),

thus the OOP will better represent z-line orientational order when it is calculated from only

the z-lines (Figs 2.1C and 2.1D).

In addition to more accurately extracting z-lines, actin guided segmentation provides a metric

for how much off-target staining is present in images of striated muscles. The amount of

21



CHAPTER 2. STRIATED MYOCYTE STRUCTURAL INTEGRITY: AUTOMATED
ANALYSIS OF SARCOMERIC Z-DISCS

the original α-actinin skeleton that remains after actin orientation guided segmentation

(Fig 2.1D, red), or the z-line fraction quantifies the amount of off-target staining in an

image:

z-line fraction =
Nz

Nα

. (2.4)

In Eq 2.4, Nα is the number of pixels in the α-actinin skeleton, and Nz is the number of pixels

in the α-actinin skeleton after actin orientation guided segmentation, also referred to as the

z-line skeleton. When every pixel in the α-actinin skeleton is approximately perpendicular

to its local actin fibrils, the z-line fraction will be 1, and if no pixel in the skeleton is

approximately perpendicular, the z-line fraction will be 0.

Another metric of interest was the distribution of continuous z-line lengths. We developed

an algorithm to detect and measure the lengths of continuous z-lines, which was validated

using synthetic data created to simulate perfectly (Fig 2.2A) and variably continuous z-

lines (Fig 2.2B). Each segment consisted of 7 pixels, where a shift of one pixel between

segments was considered continuous (Fig 2.2Ai) and a shift of two or more was not considered

continuous (Fig 2.2Bi). As z-lines are not always oriented perpendicular to the image, the

synthetic data included segments with variable orientations (Figs 2.2Ai and 2.2Bi, right).

Continuous lines were measured (in pixels) and represented by distinct colors plotted on top

of the synthetic data (Figs 2.2Aii and 2.2Bii), with the corresponding lengths color-coded

in Fig 2.2C. Measurement of the continuous lines was sensitive to rotation and variation

between segments, as indicated by the difference in lengths (Fig 2.2C) between the red, dark

blue, and yellow lines in Fig 2.2Aii. The automated protocol accurately reported the position

and length of synthetic data that was generated to mimic the appearance of perfectly and

non-continuous z-lines in images of α-actinin stained cardiac tissues (Fig 2.2).
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Figure 2.2: Automatic detection of continuous z-line lengths. Perfectly (A) and vari-
ably (B) continuous synthetic data. Ai and Bi, Synthetic data composed of four registered
and continuous segments that were each seven pixels long. Segments that were shifted over
by one pixel were treated as continuous. Aii and Bii, Continuous lines plotted as distinct
colors on top of the synthetic data. C, The length of each continuous line detected in Aii
and Bii, with the colors corresponding to those in Aii and Bii. The dashed lines indicate
the number of pixels that composed continuous segments.

2.5.3 Evaluation of Single Cells with Variable Aspect Ratios

In evaluating the automated method to isolate z-lines from α-actinin stains and measuring

continuous z-lines, it is useful to understand how the results relate to other aspects of z-line

architecture that can be quantified. For example, in investigating the relationship between

maximal traction force and cardiomyocyte aspect ratio, Kuo et al. measured the median

z-line registration length in order to summarize lateral registration27. Cellular aspect ratio

is tightly regulated (~7:1) in healthy ventricles28–30, but increases29,30 or decreases31,32 in

some types of heart disease. While related to continuous z-line length, the z-line registra-

tion length will invariably be longer, as z-lines that are not continuous can be registered.

However, because Kuo et al. found that both lateral registration of z-lines and maximal

traction force varied with cellular aspect ratio, it was interesting to evaluate if aspect ra-

tio impacts other facets of z-line architecture accessible with ZlineDetection. Thus, the

analysis was completed for cardiomyocytes with constant area (2500 µm2) and variable as-
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pect ratios (Fig 2.3A), which were created previously6. Because there was variability in the

spread of the cells and the maturity of myofibrils within cardiomyocytes of the same area and

aspect ratio, prior to running the analysis, we manually classified cells as having good z-line

architecture (Figs 2.3A and 2.3Bi), good z-line architecture with bad spread (Fig 2.3Bii),

intermediate z-line architecture (Fig 2.3Biii), or immature, underdeveloped (bad) z-line ar-

chitecture (Fig 2.3Biv). In manual analysis, cells that are not well spread or fully mature

are usually eliminated, however our automated analysis made it possible to analyze these

cells in addition to cells with good z-line architecture and cell spread. Indeed, the z-line

fraction was significantly different between cells with z-line architecture that was good and

those classified as intermediate or bad (Fig 2.3C), indicating, unsurprisingly, cells with good

z-line architecture contain less off-target α-actinin staining. Thus, the z-line fraction can be

used to filter out single cells with unsatisfactory sarcomeric architecture.

For each of the classifications, cardiomyocytes exhibited a skewed distribution of continuous

z-line lengths, with shorter continuous z-lines dominating the distribution (Fig A.3), simi-

lar to the distribution of z-line registration lengths reported by Kuo et al.27. Therefore, the

median continuous z-line length was selected as the metric to compare conditions, which cap-

tured the differences between cells with good z-line architecture and cells with intermediate

or bad z-line architecture (Fig 2.3D). When comparing continuous z-line lengths between cells

of different aspect ratios, as expected, the median continuous z-line length was lower than

the median z-line registration length reported by Kuo et al. (Fig A.3). ZlineDetection can

also output the total z-line pixels identified, which can be especially useful when comparing

cells of the same area (Fig 2.3E).

In order to compare our results with the maximal traction forces measured by Kuo et al., we

estimated the expected stress generated along the major axis of a cell based on sarcomere

architecture20. Each z-line orientation vector was represented by its angle (θi). Because

sarcomeres produce a force approximately perpendicular to their z-lines, we assumed that at
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Figure 2.3: Analysis of cardiomyocytes with variable aspect ratios. A, (top) Images
of single cells with area 2500 µm2, but variable aspect ratios ((Ai) 1:1, (Aii) 3:1 (Aiii) 6:1
(Aiv) 11:1) stained for actin (green) and α-actinin (red) and their corresponding continuous
z-lines (bottom). B, Representative α-actinin stained cardiomyocytes (extracellular matrix
(ECM) island ~6:1 aspect ratio) for each z-line architecture classification: (Bi) good z-line
architecture, (Bii) good z-line architecture with bad spread in ECM island, (Biii) inter-
mediate z-line architecture, and (Biv) immature, underdeveloped (bad) z-line architecture.
C, Average z-line fraction for cells. D, Average median continuous z-line length for cells
(n = 101) within each classification of z-line architecture as described in C. E, Mean and
standard deviation of the number of z-line pixels for the good cells of each aspect ratio. F,
Mean and standard deviation of the estimated force for the good cells of each aspect ratio.
Groups were compared using ANOVA with Tukey’s test p <0.05 (black bars in C, E, and
F). Scale bar: 15 µm.

each z-line pixel, the force produced by a sarcomere was proportional to the vector perpen-

dicular (θi + π
2
) to the z-line orientation pseudo-vector (θi). Thus the stress generated along
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the major axis of cells with the same area was proportional to the sum of the x-component

of the force produced by a sarcomere at each z-line pixel divided by the total number of

pixels in the cell area (Eq 2.5):

Tx ∝ σ̃x =

Nz∑
i=1

√(
cos
(
θi + π

2

))2
NT

. (2.5)

In Eq 2.5, the normalized stress, σ̃x, is proportional to the maximal traction force (Tx) along

the major axis of the cell, Nz is the number of z-line pixels, NT is the total number of pixels

in the cell area, and θi is the orientation of the ith z-line orientation vector. Consistent with

published results27, the theoretical model captures the lower stresses produced by square

cells (1:1), which have low z-line orientational order (Fig 2.3Ai and Fig A.3 D). Additionally,

consonant with experimental measurements, highly elongated cells (14:1) were predicted to

produce a weaker force (Fig 2.3F). Although every cell was engineered to have the same

area, highly elongated cells contained fewer z-lines (Fig 2.3E), indicating disrupted myofibril

formation at this aspect ratio. However, this force estimate does not capture the strong peak

stress that occurs in cells with an aspect ratio of ~7:1 (6:1 or 8:1), which could be due to the

large biological variability between cells within each aspect ratio. However, it is also likely

the assumption that each z-line pixel is independent, meaning that σ̃x does not account for

either continuity or registration, could account for the lack of a maximum at the ~7:1 aspect

ratio.
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2.5.4 Z-line Architecture in Engineered Tissues

A motivation for developing this automated analysis protocol was to quantify and compare

z-line architecture in tissues using unbiased, quantitative metrics. Previously, characteriz-

ing z-line architecture in tissues required manual removal of off-target staining4,6,9,19,27,46,

however, with ZlineDetection it is now possible to quantify changes to z-line architecture

without the need for user input. The contractile force of engineered tissues is influenced by

ECM pattern, where cardiomyocytes seeded on a substrate coated with a uniform layer of

FN (Fig 2.4A) produce a weaker contractile force than those seeded on FN lines 20 µm wide

with 5 µm gaps between lines (Fig 2.4B)20. In addition to FN pattern, there are other exper-

imental conditions that can impact the quality of tissue architecture. For example, seeding

cardiomyocytes at a low density (Fig 2.4C) produces sparse tissues that have less developed

myofibrils132. Similarly, BDM, which inhibits myosin ATPase, disrupting the actin-myosin

interaction, has been qualitatively noted to disrupt z-line registration in cardiac and skeletal

muscle cells109,110 and shown to cause a decrease in contractile force133. Therefore, the z-

line architecture was compared between isotropic (Fig 2.4A), anisotropic (Fig 2.4B), sparse

anisotropic (Fig 2.4C), and BDM treated anisotropic (Fig 2.4D) tissues.

As expected, the orientational order of the z-lines was significantly different between isotropic

and anisotropic tissues (Fig 2.4E). While the sparse anisotropic and BDM treated anisotropic

tissues tended to follow the orientation of the FN pattern and had higher orientational order

than isotropic tissues (Fig 2.4E), the tissues contained malformed myofibrils and therefore

had a lower orientational order than anisotropic tissues. However, the value of the orien-

tational order parameter by itself does not indicate the degree of malformation of tissues

or the impact on z-line continuity. In contrast, the z-line fraction was significantly lower

in the sparse anisotropic and BDM treated anisotropic tissues than in the isotropic and

anisotropic tissues (Fig 2.4F), which was expected because of off-target α-actinin staining
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Figure 2.4: Comparison of cardiac tissues. A-D, Cardiac tissue stained for actin (green),
α-actinin (red), and nuclei (blue) on a uniform layer of FN (A), FN in lines (B), FN in
lines with sparsely seeded cardiomyocytes (C), and FN in lines with cardiomyocytes treated
with BDM (D). E, Z-line OOP. F, Z-line fractions. G, Median continuous z-line lengths.
H, Nuclei per area. In E-H Each dot represents a coverslip. In E-H, each dot represents a
single coverslip, colored bars represent the mean, and colored boxes represent the standard
deviation. Groups were compared using ANOVA with Tukey’s test p <0.05 (black bars in
E, F, G and H). Number of coverslips (cs) for each condition: isotropic cs = 12, anisotropic
cs = 11, sparse anisotropic cs = 6, BDM treated cs = 5. Scale bars: (A-Di) 50 µm; (A-D
ii) 15 µm.

along immature stress fibers and cell boundaries3 (Figs 2.4Ciii and 2.4Dii). The z-line

fraction was sensitive enough to be able distinguish between anisotropic tissues and either

sparse anisotropic or BDM treated anisotropic tissues with as few as 2-3 coverslips of each

tissue. Additionally, the median continuous z-line length was significantly lower in both the

sparse anisotropic and BDM treated anisotropic tissues than the isotropic and anisotropic

(Fig 2.4G, Fig A.4). While the z-line architecture of the single cells was expertly classified

as good, intermediate, or bad, it was impractical to classify individual cells within whole

tissues. Therefore, the z-line fraction of the anisotropic and isotropic tissues falling between
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the z-line fraction of good and intermediate single cells (Fig 2.3C) indicated that these tis-

sues contain cells with both good and intermediate z-line architecture. Similarly, the median

continuous z-line length for the anisotropic and isotropic tissues was lower than the median

continuous z-line length for single cells with good z-line architecture and closer to that of

cells with intermediate z-line architecture (Fig 2.3D).

Both sparse seeding and treatment with BDM produced tissues with poor z-line architecture,

which was quantified by the z-line fraction and median continuous z-line length. However,

sparse anisotropic tissue contained regions that appeared more developed (Fig 2.4Cii) and

looked similar to well-formed anisotropic tissues (Fig 2.4Bii), as well as regions with z-line

architecture that appeared similar to tissues treated with BDM (Figs 2.4Ciii and 2.4Dii).

Although the sparse anisotropic and BDM treated anisotropic tissues contained a similar

number of cells in a given field of view, as indicated by the number of nuclei (Fig 2.4H), both

the z-line fraction and median continuous z-line length were significantly higher in the sparse

anisotropic than the BDM treated anisotropic (Figs 2.4F and 2.4G). These results indicate

that treating tissues with BDM produced tissue with more disrupted z-line architecture than

was produced by seeding at a low density.

2.6 Discussion

In this work, we developed ZlineDetection, an image analysis protocol to characterize

z-line architecture in α-actinin stained striated muscle tissues. Using improved z-line ex-

traction and a biologically motivated approach to segmenting off-target staining, we were

able to automatically and accurately isolate z-lines. We also designed and implemented an

algorithm to measure the length of continuous z-lines, which is physically related to z-line reg-

istration27,58,59,134,135. Improved z-line extraction coupled with a variety of metrics allowed

ZlineDetection to capture differences in z-line architecture among standard engineered
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cardiac tissues (Fig 2.4).

A major achievement of this work was automating z-line isolation, making analysis of z-line

architecture in single cells, engineered tissues, and tissue sections111 possible without the

need for experts to trace z-lines27 or manually segment off-target staining6,9,19,46,111. Seg-

mentation guided by local actin orientation eliminates pixels that correspond to off-target

staining, where in manual segmentation it is only possible to eliminate large regions of off-

target staining. Consequently, subsequent analysis of the orientational order of z-lines in

anisotropic tissues (Fig 2.4E) resulted in a higher OOP than previously reported when seg-

mentation was done manually19. This quantitatively demonstrates the advantages of the

ZlineDetection algorithm even if only the previously explored metrics are used. Although

there are many different approaches to segmentation of biological images75,77, in addition to

not requiring user training, the actin guided segmentation also provides additional informa-

tion about the amount of off-target staining, which occurs along immature stress fibers and

cell boundaries3. Accordingly, the z-line fraction captured differences in the architecture

quality between expertly classified single cells (Fig 2.3C). Furthermore, the z-line fraction

was able to successfully distinguish between malformed and well-formed tissues, as we showed

that malformed tissues contained more off-target staining than well-formed anisotropic and

isotropic tissues (Fig 2.4G). Without the use of actin guided segmentation, the orientational

order parameter of α-actinin combined organization of z-lines and the amount of off-target

staining, while the z-line fraction and z-line OOP quantified both aspects of architecture

separately. Decoupling these two metrics is essential, as although an expert would consider

both the isotropic (Fig 2.4A) and anisotropic (Fig 2.4B) tissues to be well-formed, the α-

actinin OOP alone would indicate that the isotropic tissues were both disorganized and low

quality, rather than only disorganized.

In the absence of the actin co-stain, α-actinin pixels can no longer be classified as z-lines

or off-target staining, and ZlineDetection can no longer decouple these two metrics and
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instead reports the simple α-actinin OOP that has been used previously6,19,27,46. Existing

algorithms that quantify sarcomere architecture from only a z-line stain, isolate z-lines from

off-target staining by using signal processing to identify double wavelets in an image1, quan-

tify local, micron-scale organization24, or manually remove off-target staining6,19,27,46. These

previous works have used a range of metrics to then classify tissue or cell architecture, many

of which describe similar properties to those provided by ZlineDetection. For example, the

local sarcomere organization algorithm developed by Sutcliffe et al.24 scored isolated cells

without actin co-staining (Figs 4 and 6d in Sutcliffe et al.24) with a sarcomere organization

index, which ranges from 0-2. The sarcomere organization index24 was ~0.1 for a primary

cell they qualitatively classified as “disorganized”, but ~0.4 for both a “well-organized”

primary cell and a reprogrammed cardiomyocyte, even though the latter had disorganized

myofibrils and some α-actinin punctate patterns indicative of premyofibrils. By contrast, the

α-actinin OOP, which measures organization globally, was 0.2, 0.52, 0.17 for the three cell

types, respectively. As such, the cell-tissue scale OOP and the sarcomere scale organization

index24 provide qualitatively different measurements, but the key difference is in the scale

at which the measurement is happening. Because tissue level organization influences the

strength of tissue contraction20, we believe a global metric is essential. Nevertheless, the

main advantage of using the actin co-stain to isolate z-lines is the ability to quantify the

amount of off-target staining based on the additional biological information. This can be

especially useful in analyzing noisy stem cell derived cardiomyocytes. For example, a square

stem cell derived cardiomyocyte shown in a previous publication136 was easily analyzed with

ZlineDetection (z-line OOP = 0.17, z-line fraction = 0.48, median continuous z-line length

= 0.87 µm). While not an interesting metric in primary cardiomyocytes, ZlineDetection

also reports the distance between z-lines (i.e. sarcomere length), which is often used to

quantify cardiomyocyte maturity52,137 and disease state138.

In addition to the orientational order, the relative spatial location of z-lines in neighbor-

ing myofibrils (e.g. continuity or registration of z-lines) has been used to evaluate striated
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myocytes58,59,134,135. In this work, we created and automated an algorithm to measure con-

tinuous z-lines by grouping z-line pixels based on relative orientation and location. Con-

sistent with the observation that BDM disrupts the formation of z-lines109,110, the median

continuous z-line length was significantly lower in BDM treated anisotropic tissues than the

malformed tissues that were created by seeding cardiomyocytes at a lower density (Fig 2.4G).

This demonstrates one of the utilities of ZlineDetection is its ability to evaluate the qual-

ity of cardiac tissues or other striated muscle without introducing user bias. The median

continuous z-line length was not significantly different between isotropic and anisotropic tis-

sues, which suggests that z-line continuity is not impacted by FN pattern. However, because

isotropic tissues are weaker than expected based on OOP alone20, it is worth investigating

if differences in z-line registration21,56,57,61 rather than continuity could be accounting for

the difference in contractile strength. Further, although the orientational order and num-

ber of z-lines accounts for the low stresses produced by single cells at aspect ratio 1:1 and

14:127(Fig 2.3F), z-line registration might account for the peak in contractile strength at the

aspect ratio ~7:1 compared to other aspect ratios which have similar orientational order and

number of z-lines. The suggestion that z-line registration influences contractile strength only

in the presence of high orientational order aligns with the liquid crystal view that smectic

order (i.e. registration) has no meaning in the absence of high nematic order (i.e. high

orientational order).

While ZlineDetection is a significant step forward in automating sarcomere architecture,

as with any analysis method, it is not without limitations. Although using local actin ori-

entation to classify α-actinin staining as off-target effectively captured differences between

well-formed and malformed tissues as well as more accurately isolated z-lines, actin guided

segmentation falters in cases where tissues are not organized in a pure myocyte monolayer as

fibroblasts can sit on top of or under myocytes (Fig 2.1D). Therefore, future work involves

adapting our analysis protocol to confocal z-stacks and eliminating the actin of non-myocytes.

Additionally, the image analysis pipeline and corresponding parameters were optimized for
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a resolution ~6 pixels/µm. However, if the images are of particularly bad quality (i.e. domi-

nated by background fluorescence) the suggested parameters might need to be adjusted, but

we caution users against using images of poor quality (Fig A.5) as information is invariably

lost. Another consideration in choosing parameters is that the continuous z-line lengths in

particular are sensitive to the amount and duration of smoothing in the anisotropic diffusion

filtering step. Although there has been work on calculating the parameters for anisotropic

diffusion filtering based on the statistics of the images139–141, there is not an emphasis on

preserving edges and continuity of line segments, which is how we selected our parameters

(Fig A.2). Therefore, we made ZlineDetection open source and adaptable to improve-

ments and advancements in image analysis and quantitative parameter selection. It is worth

noting that ZlineDetetion can be used with other stains or methods of visualizing cardiac

striations. For example, it is possible to analyze videos previously published by Sharma et

al.142 of unfixed cells that express florescent proteins. Such an analysis in the absence of a

co-stain would result in OOP of the expressed protein labeled structures and the striation

lengths as a function of time (Fig A.6). While the median is a useful metric to summarize

a skewed distribution and the median continuous z-line length was significantly different

between malformed and well-formed tissues (Fig 2.4G), it is possible that the relative lo-

cation and distribution of continuous z-lines are important predictors of stress generation.

Therefore, future work includes creating a method to measure registration and examining its

relationship with z-line continuity and contractile function. Further, the ability to measure

and quantify registration could be impactful in other fields, because registration of cellular

structures may be important in different cell types57,61.

2.6.1 Conclusion

Our image analysis protocol and implementation can be used as a tool to quantitatively

compare z-line architecture in single cells and tissues under different conditions and between
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labs. This would increase the scientific rigor in the field by eliminating qualitative and/or

manual analysis that introduces lab/user specific bias. Indeed, one of the key achievements

of ZlineDetection is the ability to segment off-target staining automatically. An additional

advantage of the biologically motivated segmentation approach was that the amount of off-

target staining can be used to compare quality of tissue formation. A second key achievement

was identifying experts’ criteria for evaluating the quality of striated tissues, as the z-line

orientational order, intact z-line fraction, and the relative spatial alignment of z-lines. A third

key achievement of this capability was elucidating the mechanism by which cardiomyocytes

with an elongated aspect ratio become inefficient at producing force. Having the ability to

measure continuous z-lines can pave the way to predicting force measurements as it relates

to z-line architecture in cardiac tissues through the use of experimental and mathematical

modeling approaches. Finally, in the future these computational methods can be used as

a quality control to analyze z-line architecture in stem cell derived myocytes, engineered

tissues, diseased tissues, and tissues subjected to injury and treatment with pharmacological

agents.
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CHAPTER 3

A Computational Framework for Profiling Myofibrillar

Deformations in Skeletal Muscle

3.1 Introduction

In skeletal muscle, muscle fiber defects and myofibrillar malformations have been linked to

decreased force production and increased injury susceptibility in both aging and disease, such

as Duchenne muscular dystrophy143–147. While these deformations may be an important pre-

dictor of altered function, injury susceptibility, and disease progression, their occurrence has

not been quantitatively characterized. Furthermore, qualitative evidence that myofibrillar

changes progress with disease severity suggests that they may underlay loss of function in

disease and aging skeletal muscle146. In order to test this hypothesis and to also determine

if the frequency and severity of myofibrillar malformation increase with age, it is necessary

to profile myofibrillar malformations.

Because the sarcomere is the contractile unit of striated muscle, evaluation of myofibril

structure often involves characterizing the architecture of sarcomere striations, such as z-lines

or m-lines1,24,107. One important aspect of sarcomere architecture is its orientational order,

as the uniaxial force generated by sarcomeres is maximized when they are all oriented in the

same direction4,7,19,46,107,112. In addition to the orientational order of sarcomeres, the lateral

alignment of sarcomeres from neighboring myofibrils has been hypothesized to influence

striated myocyte function and has therefore been incorporated into theoretical models of

contractile function as well as used to evaluate damage to striated myocytes21,27,56–61,107.

Quantifying characteristics of sarcomere order requires imaging striated myocytes that have
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been labeled for sarcomere structures, processing the images to segment the structures of

interest, and then incorporating or developing intuitive metrics.

In this Chapter, we will illustrate how the striation continuity metric established in Chapter 2

can be adapted and applied to z-stacks of skeletal muscle labeled with actin in collaboration

with Anicca Harriot and Christopher Ward, Ph.D. at the University of Maryland.

3.2 Methods

3.2.1 Experimental Data

All experimental data was generated by Anicca Harriot in the laboratory of Christopher

Ward, Ph.D. at the University of Maryland.

3.2.2 Myofiber Detection

The myofiber was segmented by smoothing either the maximum intensity projection of a

z-stack (Figure 3.1A) or the 2D image, with a Gaussian filter and then the smoothed image

was binarized using Otsu’s method148. The binary image (Figure 3.1B) was evaluated by

determining the area of the image taken up by the myofiber, as well as the number of objects

in the binary image. If there were multiple binary objects in the image, only the largest bi-

nary object was included in analysis. The orientation of the myofiber was calculated using

a least mean square orientation estimation algorithm (Figure 3.2K)129,130. The minor axis

of the myofiber was calculated by first finding the boundary (i.e. outline) of the myofiber

from the binary image (Figure 3.1C,D, magenta). The width of myofiber was determined

by calculating the distance from the longest continuous boundary line to the closest per-

pendicular boundary (Figure 3.1C, purple). The longest continuous line along the myofiber
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boundary (Figure 3.1C, blue) was determined using the continuous line detected described

in Chapter 2 and Morris et al. 107 . The width of the myofiber was calculated for boundary

points spaced 20 pixels apart (Figure 3.1C, purple). The minor axis length was set to the

median myofiber width (Figure 3.1D, cyan).

Figure 3.1: Myofiber Analysis. A. All z-slices in the z-stack. B. Binarized z-slices shown
in A. C. Z-slices selected to be analyzed. D. Maximum intensity projection. E. Binarized
maximum intensity projection shown in D. F. The boundary (magenta), longest axis (blue),
and minor axes (purple) plotted on top of the binarized maximum intensity projection shown
in E. G. The boundary (magenta) and the median minor axis length (cyan).

3.2.3 Z-Slice Selection

To determine which z-slices in a z-stack contained a complete section of the myofiber and

should therefore be included in the myofiber striation analysis, each z-slice (Figure 3.1E) was

binarized (Figure 3.1F) and then compared with the binarized maximum intensity projection

(MIP) (Figure 3.1B). In order to compare these binary images, the number of true pixels in

the binary image generated from the current z-slice (BWzi) was compared with the number
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of true pixels in the binarized maximum intensity projection (BWmip):

Nzi =
Number of true pixels in BWzi

Number of true pixels in BWmip

. (3.1)

If there was a sufficient amount of the myofiber in the z-slice, i.e. if Nzi from Equation 3.1

was greater than the threshold, nthresh, the current z-slice (zi) was included in analysis,

otherwise zi was not analyzed. If the minimum number of z-slices in the z-stack did not

meet the condition Nzi > nthresh, the threshold, nthresh, was reduced by ∆thresh until at least

the minimum number of z-slices was included in analysis. The parameter values used were

nthresh = 0.6, ∆thresh = 0.025, and minimum number of z-slices = 1.

3.2.4 Striation Detection

The process of creating a binary skeleton of the actin sarcomere striations was adapted from

the image analysis protocol ZlineDetection, developed for α-actinin striations. Briefly,

gray-scale images (Figure 3.2A,B) were smoothed using coherence enhancing anisotropic dif-

fusion filtering (Figure 3.2C), which calculates the eigenvectors of the image Hessian to direct

diffusion and uses a finite difference scheme to perform the diffusion, repeating until diffusion

time is reached122–125. The diffusion time and smoothing parameters were set according to

Morris et al. 107 . After contrast enhancement using top hat filtering127 (Figure 3.2D), bot-

tom hat filtering was used to remove the striations present in between m-lines, at the z-lines

(Figure 3.2E,F). Finally, the images were binarized by global thresholding (Figure 3.2G)

and then thinned to one pixel width and trimmed in order to obtain the striation skeleton

(Figure 3.2H). Local orientation was estimated from the diffusion filtered image using a least

mean square orientation estimation algorithm129,130 (Figure 3.2J).
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3.2.5 Striation Continuity

After generation of the binary skeleton and corresponding orientation vectors, the continuous

striations were detected using the method developed and implemented by Morris et al. 107

in ZlineDetection. In order to quantify the striation continuity, the striation lengths were

then divided by the minor axis length of the myofiber (Figure 3.2I)

striation continuity fraction =
striation length

minor axis length
. (3.2)

Figure 3.2: Image Processing. A. Example z-slices with the section shown in B-K plotted
in white. B. Zoom in section of the myofiber. C. Anisotropic diffusion filtered image.
D. Top-hat filtered image. E. Bottom-hat filtered image. F. Top-hat minus bottom hat-
filtered image. G. Binarized image. H. Skeletonized image. I. Continuous striations plotted
based on the striation continuity fraction. J. Striation orientation vectors (θq). K. Myofiber
orientation vectors (θp).
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3.2.6 Striation Organization: Co-orientational Order Parameter

The co-orientational order parameter (COOP) developed by Drew et al. 6 was used to quan-

tify the orientational order (i.e. organization) of the striations. The COOP was designed to

evaluate the correlation of the orientation of coupled constructs, in this case, the striations

(Figure 3.2J) and the myofiber (Figure 3.2K). Briefly, the COOP is defined as the maximum

eigenvalue of the structure tensor TPQ:

TPQ =

〈
2

fi,xfi,x fi,xfi,y

fi,xfi,y fi,yfi,y

− I

〉
. (3.3)

The field F is defined as a set of pseudo vectors
−→
fi :

fi,x = −→pi · −→qi = pi,xqi,x + pi,yqi,y = cos(θ) , (3.4)

fi,y =
∣∣−→pi ×−→qi ∣∣ = pi,xqi,y − pi,yqi,x = sin(θ), (3.5)

and it represents the angle (θ) between the two biological constructs, −→pi and −→qi . In this case,

P is defined as a set of pseudo vectors −→pi corresponding to the myofiber (Figure 3.2K), and

Q as a set of pseudo vectors −→qi corresponding to the striations (Figure 3.2J). The COOP

ranges from zero to one, where a value of zero indicates no correlation and one indicates

perfect correlation between the orientations of the striations and the myofiber.

3.3 Results

In order to quantify the occurrence and severity of myofibrillar deformations in striated

muscle, we first developed an image processing program to isolate sarcomeric striations. The

pipeline was adapted from the work done in Morris et al. 107 and described in Chapter 2. In
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the data discussed in this chapter, the sarcomere striations are reliably distinguishable in

actin labeled images, which was not the case for the majority of striated myocytes presented

in Chapters 2,4, and 5. Therefore the computational protocol established for α-actinin z-lines

could be applied to these actin labeled images, with an important biological and therefore

computational distinction. In these actin stained images, it is the m-line, not the z-line that

appears as a bright striation. The z-line, which does not contain any actin, is occasionally

also visible, but appears as a thin line in between m-lines. Thus the image processing protocol

was adapted to isolate only the bright m-line striation and ignore the dark z-line striation

(Fig 3.2).

Once the sarcomere striations were extracted from the images, aspects of their architecture

could be quantified and used to profile myofibrillar deformations in skeletal muscle. As the

orientation of the myofibrils was qualitatively described as “chaotic” in aged or diseased

myofibers, as opposed to organized in healthy, young myofibers, the orientational order of

sarcomeres was quantified. In order to ignore changes in sarcomere orientation that were

purely due to changes in the gross myofiber orientation, the Co-Orientational Order Pa-

rameter (COOP) was used to describe sarcomere organization with respect to the myofiber

direction6. However, the COOP did not capture more subtle alterations in myofibrillar ar-

chitecture (Fig 3.3A). Therefore, an alternative metric, the continuity of sarcomere striations

among neighboring myofibrils was utilized. In previous work (Chapter 2, Morris et al. 107),

the distribution and median continuous z-line length was used to evaluate engineered tissues.

However, it lacked some interpretability, as there was not an unbiased, objective “ideal” or

standard continuity length for muscle tissues. This issue was circumvented in the images of

skeletal muscle by quantifying the continuity fraction (Equation 3.2), which we define as the

striation length divided by the width of the myofiber (i.e. minor axis length) (Fig 3.1). Using

this metric, a striation that spanned the entire width of the myofiber would have a value of

1. Furthermore, if a myofiber has sarcomere striations that all span the entire width of the

myofiber, the striation continuity fraction would be 1 for each of the striations. The median
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continuity fraction was chosen as a metric to describe the distribution of continuity fractions

(Fig 3.3B). Preliminary results suggest that the median continuity fraction can distinguish

among myofibers from young, aged, and diseased mice (Fig 3.3C).

Figure 3.3: Preliminary Results of Analyzing Skeletal Myofibers. A. COOP of
representative images, colored by the expert classification. B. Median continuity fraction of
representative images, colored by the expert classification.C. Box plots showing the median
continuity fraction for z-stacks of different experimental conditions and expert classifications.
Each point represents the median continuity fraction of an individual z-stack.

3.4 Discussion and Conclusion

In this work, we developed a framework for characterizing myofibrillar deformations in skele-

tal muscle. Automated myofiber and striation segmentation and customized metrics provides

a comprehensive tool for evaluating skeletal myofibers in an unbiased manner. Previous

approaches for profiling myofibrillar deformations in skeletal muscle relied on qualitative

expert classification. The computational approach discussed in this chapter quantitatively

summarizes morphological alterations and can be used for further study into how aging and

pathology impacts morphology and how morphology influences function.

While this image analysis pipeline is being used to characterize differences among aged, dis-
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eased, and healthy myofibers, it is not without its limitations. The first is how to summarize

the differences between myofibril formation at different depths of the myofiber (i.e. differ-

ences between z-slices) in a biologically meaningful manner. The analysis would also benefit

from incorporating other labeled constructs, such as nuclei, and reporting how the presence

or absence of these constructs influences the striation continuity. This collaborative effort

between experimental and computational groups will result in a deeper understanding of

myofibrillar architecture and its correlation with aging and disease.
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CHAPTER 4

Characterization of Cellular Architecture in Immature,

Multi-Layer Cardiac Tissues

4.1 Introduction

Induced pluripotent stem cells (iPSCs)149,150 provide a powerful platform for basic research,

disease modeling, drug development, and regenerative medicine because they can be differen-

tiated into otherwise inaccessible patient-specific cell types, such as cardiomyocytes97,151–153.

For example, in Mehrabi et al., Submitted 2021, patient specific iPSC-derived cardiomyocytes

were used to investigate the pathological effects of mutations in the Lamin A/C (LMNA)

gene, which causes inherited heart disease in patients85. While iPSC-derived cardiomy-

ocytes have been used to model many diseases13,154–158, the heterogeneity and variability

of the resulting cellular populations make it difficult to interpret the results of any single

experiment97. Much of the heterogeneity in iPSC-derived cardiomyocytes is attributed to

their immaturity, which influences fundamental cardiomyocyte properties including cell mor-

phology, gene expression, contractility, electrophysiology, calcium handling, metabolism, and

proliferation97,159,160. An additional challenge is that when iPSC-derived cardiomyocytes are

used in engineered tissues, they often appear in multiple layers, rather than in 2D laminar

sheets as observed in primary cardiac tissue. With these challenges in mind, we developed an

approach to quantitatively evaluate the architecture of immature, multi-layer cardiac tissues

in each serial optical section (z-slice).
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4.2 Methods

4.2.1 Experimental Data

All experimental data was generated by Mehrsa Mehrabi, Ph.D., while in the laboratory of

Anna Grosberg, Ph.D. at University of California, Irvine.

4.2.2 Actin Orientation Detection

Each actin stained z-slice was enhanced using contrast-limited adaptive histogram equaliza-

tion161. After enhancing the contrast of each actin stained z-slice, the orientation of actin

at each pixel was calculated as described previously19,46. Briefly, each image was filtered

with a Gaussian kernel and then normalized to have zero mean and unit standard devia-

tion130. The orientation was estimated using a least mean square orientation estimation

algorithm129,130. The orientation vectors for each z-slice were concatenated for the entire

z-stack (field of view), and the orientation vectors of each field of view were concatenated

for the entire coverslip. Therefore, the total number of actin orientation vectors for a cover-

slip was calculated by summing the number of orientation vectors contained in each field of

view. The orientational order of the actin contained in a coverslip was quantified by the the

Orientational Order Parameter (OOP), which has been described previously36,131.

4.2.3 Sarcomere Length & Orientation

After the contrast of each α-actinin stained z-slice was enhanced161, the entire z-stack was

median filtered162. The sarcomeres in each z-slice were detected by first using the “Sarc-

Track” algorithm which identifies double wavelets in an image1. The angle of each detected

45



CHAPTER 4. CHARACTERIZATION OF CELLULAR ARCHITECTURE IN
IMMATURE, MULTI-LAYER CARDIAC TISSUES

double-wavelet was then compared to the local orientation of actin to remove false sarcom-

eres, as described in “ZlineDetection”107. The average sarcomere length, sarcomere OOP,

and total number of sarcomeres for each coverslip was calculated after combining all of the

z-stacks for that coverslip, as described for actin.

4.2.4 Nuclei Detection & Evaluation

Nuclei in DAPI stained z-stacks were detected by first segmenting each z-slice and then

grouping nuclei that appeared in multiple z-slices. The two-dimensional segmentation was

done by first binarizing each z-slice using the “CARE” algorithm68. After removing small

objects, the watershed transform was performed on the distance transform, which had been

modified to filter out tiny local minima163–166. Individual nuclei that appeared in multiple

z-slices were grouped by comparing the segmentation results for each neighboring z-slice.

Finally, the maximum projection of each individual nucleus was saved after being approved

by the user. The maximum projection of each nucleus was then evaluated by calculating the

area, perimeter, eccentricity, maximum negative curvature, mean negative curvature, and

relative concavity, as well as classified as normal or dysmorphic, as described previously69.

4.3 Results

4.3.1 Characterization of Sarcomere Architecture

In order to better interpret patient-specific experiments using iPSC-derived cardiac tissue

and compare iPSC-derived with primary cardiac tissue, it is necessary to fully evaluate

their sarcomere architecture. Characterizing sarcomere architecture in iPSC-derived cardiac

tissue and other multi-layer tissues requires the development of a platform that quantifies
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sarcomere or z-line architecture in images that capture the 3D structure, such as serial optical

sections (z-stacks). Therefore, we developed a computational method to evaluate sarcomere

architecture in z-stacks of striated tissues by using the information contained in each serial

optical section (z-slice). Although taking the maximum intensity projection of a z-stack

is a common way to present and process the images, in multiple layer tissues, constructs

belonging to different cells will often overlap in the z-axis making it impossible to detect and

distinguish between them (Fig 4.1C). Further, in order to properly visualize multiple layer

cardiac tissues, the spacing between each z-slice is usually small enough such that myofibrils

will appear in multiple z-slices. Thus, a z-line will be visible in multiple z-slices, but will have

diminished or irregular fluorescence intensity in a single z-slice, making it difficult for the 2D

approach presented in Chapter 2 to accurately segment the z-lines of immature iPSC-derived

cardiomyocytes. However a pipeline developed by Toepfer et al. 1 , SarcTrack, was able to

detect the majority of sarcomeres in a z-slice of iPSC-derived cardiac tissue. SarcTrack1

identifies sarcomeres in a 2D image of a tissue with fluorescent z-lines by convolving an image

with a bank of “double-wavelets” (Fig 4.1C). As part of this work, we improved SarcTrack1

by comparing the angle of each detected double-wavelet to the local orientation of actin

to remove false sarcomeres, as established in Chapter 2.4.7107. The combination of these

two techniques allowed for considerably better detection of sarcomeres than either technique

by itself. Using this combination approach made it possible to report and compare the

sarcomere lengths and sarcomere OOP36,131 of iPSC-derived cardiomyocytes from patients

with mutations in the LMNA gene (Mehrabi et al., Submitted 2021 ).
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Figure 4.1: Sarcomere analysis in z-stacks of iPSC-derived cardiac tissue. A,
Maximum projection of iPSC-derived cardiac tissue stained for actin fibrils (green), α-actinin
(red), and nuclei (blue). B, Maximum projection of α-actinin. C, Double wavelets1 that
are convolved with each image to detect sarcomeres. D, (i) Maximum projection and (ii-
ix) individual z-slices (top) with sarcomere detection results (bottom) of the red outlined
section in B. The color in ii-ix, bottom indicates the length of the sarcomere. Scale bars:
15 µm.

4.3.2 Nuclear Segmentation

Although there is an abundance of software designed to segment nuclei in DAPI stained im-

ages65,68–77, segmentation tools in biology generally yield nontrivial amounts of segmentation

error due to assumptions in the computational design and variability in biological pheno-
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types66. One assumption that is widespread in nuclear segmentation software, even those

designed for z-stacks, is that the nuclei will appear in a monolayer, or will not overlap in the

z-projection. This assumption does not hold and is particularly detrimental in the evalua-

tion of iPSC-derived cardiomyocytes. Therefore, we developed a computational technique to

isolate nuclei that overlap in the maximum projection of a z-stack by first segmenting each

z-slice and then grouping nuclei that appeared in multiple z-slices (Fig 4.2). The distin-

guishing aspect of this analysis was that individual nuclei that appeared in multiple z-slices

were grouped by comparing the segmentation results for each neighboring z-slice. Finally,

the maximum projection of each individual nucleus (Fig 4.2B, bottom) was saved after being

approved by the user. The user was required to approve the segmentation results because

it was difficult for even an expert to distinguish between highly dysmorphic, heart-shaped

nuclei and nuclei that were extremely close in the x,y, and z planes. This approach was used

by Mehrabi et al., Submitted 2021 to evaluate the nuclei of patient specific iPSC-derived

cardiomyocytes with LMNA mutations.

A B

Figure 4.2: Detection of nuclei in z-stacks of iPSC-derived cardiomyocytes. A,
Maximum intensity projection of a z-stack stained for actin fibrils (green), α-actinin (red),
and nuclei (blue). B, Maximum projection of nuclei (DAPI) showing multiple overlaid nuclei
(top) with segmentation results (bottom). Scale bars: 20 µm.
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4.4 Discussion and Conclusion

In this work, we designed analysis techniques to evaluate z-stacks of immature, multi-layer

striated muscle tissues. Developing this analysis required overcoming two major challenges.

The first was accounting for the morphology of the immature tissues, in particular, their un-

derdeveloped sarcomeres. The occurrence of immature stress fiber and undeveloped sarcom-

eres was overwhelming compared to the amount of well-formed sarcomeres, which resulted

in a high degree of inaccuracy in the metrics described in Chapter 1, such as sarcomere

length and organization. To solve this problem we used the orientation of the actin fibrils

to remove “off-target” staining, as was done in Chapter 2. The second challenge was design-

ing a segmentation approach for multi-layer tissues, which often had overlapping cells and

consequently, nuclei. Previous approaches for segmenting nuclei in stem-cell derived car-

diomyocytes and other cell types was not designed for multi-layer tissues. Properly utilizing

the 2.5/3D information provided by the z-slices allowed for more comprehensive segmenta-

tion results, in which nuclei that overlapped in the z-, but not x- and y- planes could be

segmented. Through a combination of approaches, we were able to successfully measure

sarcomere organization and the number of sarcomeres, as well as segment a majority of

nuclei.

Undoubtedly, this computational approach yielded more quantitative data than was previ-

ously accessible, however there are several limitations of this analysis method, which should

be addressed. First, the modified SarcTrack1 results cannot be used to evaluate aspects

of z-line architecture, such as registration, continuity, or amount of well-formed z-lines107.

Another important limitation, is that each sarcomere is detected in a variable number of

z-slices because each z-slice is analyzed independently (Fig 4.1D). To address these limita-

tions, further aspects of SarcTrack1 and ZlineDetection107 could be combined in order

to summarize both z-line and sarcomere architecture. Additionally, each sarcomere in the
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z-stack could be reconstructed so that each sarcomere is only detected once, rather than a

variable number of times.

While the nuclei segmentation circumvented the issue described for sarcomeric z-lines, and

each nuclei was only detected once, the nuclear characterization is highly limited by the

requirement of the user to approve or reject each grouped nucleus. However, circumventing

the user-dependence will require determining how to reliably distinguish between highly

dysmorphic, heart-shaped nuclei and nuclei that were extremely close in the x,y, and z

planes. This could be made possible by co-staining for nuclear lamina proteins, such as

lamin B167. In addition to removing the user dependence of the 3D nuclear segmentation,

it may also be useful to expand upon the characterization of nuclear morphology developed

by Core et al. 69 by adding additional shape descriptors168. Despite these limitations, the

analysis described in this chapter is a significant step forward in quantitatively summarizing

properties of cellular architecture in immature, multi-layer striated muscle tissues.
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CHAPTER 5

Quantitative Evaluation of Cardiac Cell Interactions

and Responses to Cyclic Strain 2

5.1 Introduction

The ventricular myocardium is primarily composed of highly aligned cardiomyocytes, which

generate the contractile force necessary for heart function23,169. The other predominant cell

type in the myocardium is the cardiac fibroblast, which occupies space between layers of

the myocardium and between cardiomyocytes, orienting along the prevailing direction of

the cardiomyocytes (i.e. along the direction of contraction)170. In the event of myocardial

infarction or cardiac diseases, there is increased migration of fibroblasts into the regions of

damaged tissue as well as changes in the morphology and viability of the myocytes171–176. The

alterations in cellular composition and structure results in disorganization and loss of efficient

heart function177–179. In order to create accurate in vitro models of infarcted or diseased

hearts, propose new pathways for treatment, and improve tissue engineering approaches such

as cardiac patches, it is imperative to investigate the mechanisms responsible for organization

in the heart, specifically the mechanisms that drive the organization of cardiomyocytes and

fibroblasts and how they influence each other, which are not fully understood.

Image-based assays are a powerful experimental tool to study interactions or behavioral dif-

ferences between distinct cardiac cell types77,92,98,99,101,102,104,105,180,181. These assays often

require the development of new image processing pipelines to extract information from the

images that is relevant to answering the research question181. Studying confluent tissues

2This work is part of a co-first author manuscript in preparation with Richard Tran.
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with multiple cell types, requires analysis that accurately and reliably distinguish between

the different cell types in the same image. Thus it is necessary to generate semantic segmen-

tations of images, where each pixel or region in an image is associated with a classification

corresponding to the cell type98. Many existing cell classification pipelines separate regions

in an image based on differences in intensity and commonly make use of machine learn-

ing classifiers77,92,98,99,101,105. However, many of the existing classifiers do not include image

features that could be used to identify striated myocytes in images. Therefore, existing com-

putational techniques for cellular classification often cannot reliably classify which cells are

striated myocyte or which image regions belong to striated myocytes.

In this chapter, we present a computational framework to automatically identify and distin-

guish between the two predominant cardiac cell types in images of cardiac tissues by taking

advantage of the unique morphology of striated myocytes. Additionally, we demonstrate

how the integration of this classifier with previously developed image-based structural as-

says can be used to quantify cell type specific structure to yield insights into the mechanisms

underlying cellular organization in the heart.

5.2 Methods

5.2.1 Experimental Data

All experimental data was generated by Richard Tran, while in the laboratory of Anna

Grosberg, Ph.D. at the University of California, Irvine.
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5.2.2 Foreground/Background Segmentation

In order to distinguish between the background and foreground, manually labeled α-actinin

images were entropy filtered (Fig 5.2B), standard deviation filtered (Fig 5.2C), range filtered

(Fig 5.2D), and Gaussian filtered with σ = 5 (Fig 5.2E). The filtered and labels were subsam-

pled, such that each class (i.e. “Background” and “Foreground”) were equally represented

in the training data, and approximately 2.5% of each image was included in training. The

MATLAB function, fitctree, with the hyperparameters automatically optimized was used

to create the classifier that had an accuracy of 95.87% for the training data.

5.2.3 Striated Myocyte Identification

Each α-actinin image was broken up into 200 “super pixels,” which are groups of pixels

with similar values, determined using a simple linear iterative clustering algorithm182. The

orientation of the foreground objects was then computed after smoothing the images with

a Gaussian kernel with σ = 5. Striations in the images were identified by top hat filtering

the anisotropic diffusion filtered images as in Morris et al. 107 122–125. The top hat filtered

image was then binarized using adaptive thresholding. In order to isolate sarcomeric z-line

striations, the orientation of the striations was compared with the object orientation, using

an approach similar to that described in Morris et al. 107 . The orientation of the striations

was compared with the principal orientation of the object at each super pixel by taking the

dot product, and identifying striations that had a dot product value less than 0.8. Super

pixel regions that were at least 10% covered in perpendicular striations were considered

candidate striated myocyte regions. Additionally, to remove super pixel regions that did not

contain enough striations, the top hat filtered image was binarized using global thresholding,

and super pixels that consisted of less than 5% positive pixels were not considered striated

myocyte regions.
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5.2.4 Nuclei Segmentation and Cell Type Classification

Nuclei in DAPI stained images were segmented using the ImageJ/FIJI plugin for “StarDist”183.

The segmented nuclei images were loaded into MATLAB and compared with the classifica-

tion labels generated for the α-actinin images. The α-actinin classification label associated

with each individual nucleus was determined based on most common (i.e. mode) classifica-

tion label that occurred within the boundary of the individual nucleus. If the most common

classification label did not account for at least a threshold proportion of the nuclear bound-

ary, the nucleus was not considered associated with a classification label. In this analysis,

the threshold proportion was set to 0.6.

5.2.5 Cell Type Orientation Analysis

The orientation of actin at each pixel was calculated as described previously19,46. Briefly,

images were filtered with a Gaussian kernel and then standardized to have zero mean and

unit standard deviation130. The orientation was then estimated using a least mean square

orientation estimation algorithm129,130. Once the orientation vectors were computed for each

pixel, the results of the classifier were used to separate the actin belonging to cardiomyocytes

and fibroblasts. As described previously36,107,131, the Orientational Order Parameter (OOP)

and principal direction (director)184,185 of the orientation vectors, ~r(x, y), were quantified

from the structure tensor T,

T̂i =

ri,xri,x ri,xri,y

ri,xri,y ri,yri,y

 . (5.1)

The OOP is the maximum eigenvalue of T and the director is the eigenvector corresponding

to the maximum eigenvalue of tensor T. The angle (θ) between two unit vectors, ~p and ~q,
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(e.g. the stretch direction and the director of either the cardiomyocye actin or the fibroblast

actin) was computed by taking the inverse cosine of the dot product between the two unit

vectors

θ = cos−1 (~p · ~q) . (5.2)

5.3 Results

The ability to quantify cell type specific structural properties required developing an image

processing pipeline that accurately and reliably distinguishes between cell types that exist

in the same image. The objective of this work was to separate the two dominant cell types

in the ventricular myocardium, striated myocytes (Fig 5.1A-C, red outline) and fibroblasts

(Fig 5.1D-F, green outline). The tissues analyzed were labeled with actin (Fig 5.1C,F), which

appears in both cell types, as well as α-actinin, which only occurs in striated myocytes

(Fig 5.1B,E). However, identifying mature or well-formed striated myocytes required not

only recognizing the presence of a striated myocyte-specific stain (e.g. α-actinin), but also

examining the structures (i.e. sarcomeres) visualized by that stain (Fig 5.1A-C, red outline).

This was further complicated by qualitative observations of cells that were positive for the

sarcomeric protein, α-actinin, but did not have any sarcomere striations (Fig 5.1A-C, cyan

outline). As the phenotype of the cells with α-actinin, but no sarcomeric striations could not

be clearly identified as fibroblasts or striated myocytes, we designated three semantic classes,

“Fibroblast”, “Striated Myocyte”, and “Other” (Table 5.1), in addition to the background.

Table 5.1: Description of semantic classes.

Class α-actinin Description Actin Description
Fibroblast no α-actinin actin fibrils
Striated Myocyte α-actinin sarcomere striations actin fibrils
Other α-actinin, but no sarcomere striations actin fibrils
Background no α-actinin no actin fibrils
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Figure 5.1: Distinct Cardiac Cell Types. A, Image stained for actin fibrils (green),
α-actinin (red), and nuclei (blue) with the “Striated Myocyte” outlined in red and “Other”
outlined in cyan. B, Grayscale α-actinin image as in A with “Striated Myocyte” outlined in
red and “Other” outlined in cyan. C, Grayscale actin image as in A with “Striated Myocyte”
outlined in red and “Other” outlined in cyan. D, Image stained for actin fibrils (green),
α-actinin (red), and nuclei (blue) with the “Fibroblast” outlined in green. E, Grayscale
α-actinin image as in D with the “Fibroblast” outlined in green. F, Grayscale actin image
as in D with the “Fibroblast” outlined in green. Scale bars: 20 µm.

The first step of the image classification was distinguishing objects from the background,

which was challenging due to the amount imaging artifacts visible in the background. Thus,

we segmented cells from the background in α-actinin labeled images (Fig 5.2A) by classifying

each pixel as “background” or “foreground” based on their entropy filtered (Fig 5.2B), stan-

dard deviation filtered (Fig 5.2C), range filtered (Fig 5.2D), and Gaussian filtered (Fig 5.2E)

features using a trained classification decision tree. The result of the foreground / back-

ground segmentation (Fig 5.2F) served two purposes. Because fibroblasts do not contain

any α-actinin (Fig 5.1E), only actin that was classified as “background” in the α-actinin

image classification could be attributed to fibroblasts. Subsequently, the regions that were

classified as “foreground” needed to be classified as either “Striated Myocyte” or “Other”
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(Table 5.1).

Figure 5.2: Foreground / Background Segmentation. A, Image stained for α-actinin.
Entropy filtered (B), standard deviation filtered (C), range filtered (D), and Gaussian filtered
(E) α-actinin image as in A. F, Segmented cells plotted in yellow on top of the image stained
for α-actinin Scale bar: 20 µm.

One facet of distinguishing between ‘Striated Myocytes” and “Other” is the spatial or statis-

tical distribution of their intensity (i.e. image texture)100, as striated myocytes are charac-

terized by distinct striations, where the “Other” cells had more uniform intensity. However,

this was not always the case, as many of the “Other” cells appeared to be composed entirely

of stress fibers, and thus also had bright continuous, linear structures (Fig 5.1B, cyan). The

key difference between α-actinin sarcomeric striations and the α-actinin structures belonging

to stress fibers, is their length and orientation relative to the orientation of the cell, or more

accurately, the orientation relative to the stress or myofibrils of the cells. Thus, attempts

at using only the image texture to distinguish between “Striated Myocytes” and “Other”

using both supervised and unsupervised77,181 classification, yielded a non-trivial amount of

misclassification.

Classification of foreground image regions as either “Striated Myocyte” or “Other” was
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Figure 5.3: Identification of Cardiomyocyte Regions. A, Image stained for α-actinin overlaid
with the super pixel regions in purple. B, Anisotropic diffusion and top hat filtered α-actinin
images, with perpendicular striations shaded in red. C, Number of perpendicular striations
divided by the total number of pixels in each super pixel region A,. Super pixels are outlined
in white, D, Regions in C that are above a threshold are colored red and considered “Striated
Myocytes.” Cyan regions do not meet this threshold and are considered “Other.” E, Re-
clustered super pixel regions are overlayed in white on top of the α-actinin image. F, The
final “Striated Myocyte” (red) and “Other” (cyan) classification.

achieved through a combination of multiple image processing approaches. First, the images

were broken up into “super pixels”, which are groups of pixels that have similar values182

(Fig 5.3A). Using this approach reduced the complexity of the classification problem, as 200

“super pixels” rather than over one million pixels needed to be correctly classified. In order

to correctly classify image regions, we defined the aspects of cellular morphology that experts

use to identify striated myocytes. One of the most important considerations in this context,

is that striated myocytes in α-actinin stained images will have sarcomeric z-lines that are

oriented parallel to at least one other z-line approximately 2 µm away, as well as oriented

perpendicular to the direction of the myofibril54. Additionally at the imaging resolution

of this data, regions belonging to striated myocytes will have bright striations that are

approximately 1-3 pixels wide and surrounded by other bright striations that are orientated
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along the same direction. These biological and experimental features were incorporated into

a processing pipeline that first enhances and detects edges using anisotropic diffusion and

top hat filtering (Fig 5.3B) as was done in Chapters 2, 3. The direction of the myofibril

or stress fibrils was approximate by the principal direction of the cell, which was calculated

once the images were convolved with a Gaussian kernel that sufficiently blurred 1-3 pixel

wide striations. Subsequently, the edges (i.e. bright striations) that were approximately

perpendicular to the principal direction of the cell in a super pixel region were identified

(Fig 5.3B, red). In order to account for the striated myocyte attribute that a sarcomeric

z-line should be parallel to at least one other z-line, the total number of perpendicular edges

in each super pixel region were counted and those below a threshold were not considered

“Striated Myocyte” (Fig 5.3C). This approach successfully captured many of the image

regions that contained sarcomeric z-lines (Fig 5.3D). In order to avoid isolated regions of

classification, the images were re-clustered with a smaller number of super pixels, and the

class of each super pixel was set to the most common label in that region (Fig 5.3E,F).

To demonstrate the utility of this work, the classified α-actinin images (Fig 5.4A) are being

used in ongoing research to distinguish actin belonging to fibroblasts from that belonging

to cardiomyocytes in order to measure their individual responses to induced mechanical

stimulation. Once the actin orientation vectors are grouped according to their classification

(Fig 5.4F), the principal direction (i.e. director) and the spread in the distribution of the

orientation vectors, also known as the orientational order parameter (OOP), were quantified

(See Methods Section 5.2.5 for more information). Thus, with the cell type specific director

and the OOP, the predominant orientation of each cell type and the alignment between

different cell types can be quantified (Table 5.2).
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Figure 5.4: Co-culture of cardiomyocytes and fibroblasts labeled with (A) α-actinin, (B)
actin, and (C) α-actinin (red), actin (green), and DAPI (blue). D, Cells classified as mature
cardiomyocytes are shaded red in the α-actinin labeled image shown in A. E, The orientation
of actin at each pixel is plotted as a purple arrow on top of the actin labeled image shown in
B. F, The orientation of actin at each pixel as shown in B, but colored red for cardiomyocytes
and green for fibroblasts. Scale bars: 20 µm.

Table 5.2: Cell type specific actin organization for the image in Fig 5.4.

Actin Label Director OOP
All Actin 24 ° 0.20

Cardiomyocyte Only 72 ° 0.27
Fibroblast Only 12 ° 0.34

5.4 Discussion and Conclusion

In this work, we developed a computational approach to classify image regions according

to their cell type. A significant challenge in this work was determining how to identify and

classify regions that contained a sarcomere specific protein, α-actinin, but did not have any

sarcomeric striations. We approached this problem by performing image processing that

emphasized the differences between sarcomeric and non-sarcomeric regions, such as the rel-

ative occurrence and orientation of the striations. Through amalgamating the classification
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with existing analysis pipelines, it is now possible to compare structural properties among

different cell types. One important application is the quantification of cell type organization,

which has provided insight into the mechanisms underlying cellular organization in the heart.

While this analysis protocol can be used to quantify cell type specific morphology in tissues

comprised of multiple cell types, there are several limitations and opportunities for improve-

ment. A significant limitation is the simplification of the semantic classes for the α-actinin

images (i.e. “Striated Myocyte” or “Other”). One hypothesis is that the cells with α-actinin,

but no identifiable sarcomeric striations may be myocytes in an earlier stage of myofibrilloge-

nesis. Therefore, it would be interesting to integrate cellular morphological information and

gene expression data to more fully characterize the developmental stage or state of the cells

as was done by Gerbin et al. 186 in stem cell derived cardiomyocytes. A separate limitation

is that in regions where cells overlap, it is not possible to accurately distinguish between

them. Appropriately rectifying overlapping cells would require imaging using a 3D imaging

modality, such as acquiring serial optical sections. Similarly, without the use of membrane

stains, it is not possible to isolate individual cells. Therefore, image regions were classified

rather than segmenting individual cells and then classifying them. A potential drawback

of this approach is that the classifier is prone to partitioning what appears to be the same

cell into regions with different labels. While possible that these are misclassifications caused

by imaging noise or the simplistic nature of the classifier, in many cases it is also possible

that the classifier is correctly identifying variability in the sarcomere formation within the

same cell. Through the use of additional stains, such as a cell membrane stain, it may be

possible to segment individual cells and assign each cell with a semantic class. However,

it is vital to balance accounting for true biological variability within a cell as well as noise

and variability in image quality. Lastly, the image classification could be improved by using

a more sophisticated classification approach, such as incorporating additional experimental

information and deep learning. Notwithstanding these limitations, this approach to cardiac

cell type classification will bolster work that involves cardiac tissues with multiple cell types.
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Future Directions and Conclusion

This dissertation was devoted to discussing and addressing some of the unique challenges

and importance of characterizing the morphology of striated myocytes. A computational

image analysis approach was utilized to overcome these challenges, while prioritizing the

specific biological and physiological considerations of striated myocytes. While multiple

novel computational tools and metrics that more fully characterize striated myocytes were

developed as a part of this work, there are a variety of ways in which the work can be

expanded upon and improved.

6.1 Additional Metrics

6.1.1 Z-line Registration

While the computational methods we developed in Chapter 2 to measure continuous sarcom-

ere striation lengths successfully characterized skeletal myofibers from mice in Chapter 3, the

applicability of striation continuity as a metric in engineered tissue is limited (Chapter 2). A

difference in striation continuity length could not account for functional differences between

engineered isotropic and anisotropic tissues or single cells with constant area, but variable

aspect ratios107. In order to more successfully predicted contractile stresses in engineered

tissues, it may be necessary to incorporate a metric that captures the degree of z-line registra-

tion, rather than z-line continuity, into existing models of contractile function21. Adaptation

of the smectic order parameter from liquid crystals21 or measuring the decay of the Haralick

Correlation as a function of offset distance24,187 could be used to quantify z-line registration,
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which may be crucial in producing more accurate predictions of engineered tissue contractile

function.

6.1.2 Nuclear Shape Descriptors and Cell Type

A significant contribution of the work discussed in Chapter 4 was the development of a nuclear

segmentation approach that utilized multiple z-slices. The nuclear segmentation was a means

to investigate the pathological effects of mutations in the Lamin A/C (LMNA) gene in

patient-specific iPSC-derived cardiomyocytes. Mehrabi et al., Submitted 2021 demonstrated

that it may be important to not only identify nuclear defects as was done by Core et al. 69 , but

also determine the severity of the deformation. Expanding nuclear morphology assessment to

better characterize malformations through the use of additional shape descriptors79–81,188,189

could yield more insight into the morphological changes in cardiomyocytes from patients

with LMNA mutations. Additionally, to more fully characterize nuclear morphology, it may

be beneficial to evaluate the cytoskeletal architecture surrounding each nuclei and determine

the cell type or cell state to which a nucleus belongs by adapting the classifier discussed in

Chapter 5 to nuclei and z-stacks.

6.1.3 3D Actin Orientational Order Parameter

In Chapter 4, the orientational order of actin in z-stacks was calculated by pooling the

2D actin orientation vectors in each z-slice and calculating the OOP of the pooled data.

However, because the actin cytoskeleton ensures the structural and mechanical integrity of

cells190 and is essential to the mechanosensitivity and mechanical response of adhering cells

to their environment191–194, it may be important to characterize 3D actin organization. Actin

organization in 3D could be measured by computing a 3D orientation vector for each pixel,

and then using the 3D nematic order parameter (3D OOP) to quantify the organization.
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6.2 Improved Segmentation

A crucial component of the work described in Chapters 2, 3, and 4 was segmentation of

cellular constructs, such as sarcomeric striations and nuclei. The image processing pipelines

utilized biological information about the constructs in order to overcome limitations in image

resolution and quality as well as the availability or specificity of fluorescent stains. For

example, in Chapter 2, the α-actinin belonging to z-lines was isolated from that belonging

to immature stress fibers by comparing the orientation of α-actinin relative to actin. In this

example, the segmentation falters when cells are not organized in a mono-layer and actin

from different cells overlaps. Therefore, to improve segmentation, it is necessary to image

multi-layer tissues using 3D imaging modalities as was done in Chapter 4.

A significant challenge in the analysis of z-stacks, is reconciling constructs that appear in

multiple slices, especially when the constructs have immature or irregular morphology. Seg-

mentation of the extremely dysmorphic and overlapping nuclei described in Chapter 4, could

be greatly improved through staining for and comparing multiple different structures, such as

DAPI and lamin b. Similarly, in addition to incorporating different image processing tech-

niques or deep learning, segmentation of sarcomeric z-lines in z-stacks could be improved

by comparing co-localization of multiple sarcomeric proteins, such as titin and α-actinin or

α-actinin and myosin. Incorporating of additional biological information could also be used

to improve the cell type classifier described in Chapter 5.

6.3 Increased Accessibility

A final improvement would be increased accessibility of this work. One of the issues plaguing

bio-image analysis is the lack of code maintenance, public accessibility, and ease of use to

new users106,195. While much of the software described in this work is publicly available on a
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software hosting website, Github, it was developed in MATLAB, which is a paid software and

thus not accessible to everyone. Additionally, it is not currently compatible with popular bio-

image analysis software, such as ImageJ196–198 and CellProfiler75,76,199, which many research

groups have incorporated into their analysis routines. While we dedicated a lot of energy

into writing comprehensive documentation and making the software user-friendly through

graphical user interfaces, these limitations hinder widespread adaption of the metrics and

image processing pipelines presented in this work.

6.4 Conclusion

The totality of this dissertation is a suite of metrics and image processing pipelines that

have and will contribute to a deeper understanding of the biology of striated myocytes. In

Chapter 2, we were able to determine that highly elongated striated myocytes have less

sarcomeric z-lines, which may account for the diminished contractile function at this aspect

ratio. The approaches described in Chapters 3 and 4, are actively being used to investigate

pathological and developmental differences in mouse skeletal myofibers and patient-specific

stem-cell derived cardiomyocytes, respectively. Additionally, the classifier in Chapter 5 is

currently being used to quantify the interactions and responses of different cardiac cell types

to mechanical stimulation. We believe that these and future insights into striated myocyte

biology made possible through the use of computational techniques, will positively impact

our ability to build better engineered tissues, as well as models of aging and disease.
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los Fresneda-Roldán, Kataŕına Andelová, Javier Fañanás-Mastral, Manuel Vázquez-
Sancho, Marta Matamala-Adell, Fernando Sorribas-Berjón, Carlos Ballester-Cuenca,
et al. Automatic quantification of cardiomyocyte dimensions and connexin 43 lateral-
ization in fluorescence images. Biomolecules, 10(9):1334, 2020.

[27] Po-Ling Kuo, Hyungsuk Lee, Mark-Anthony Bray, Nicholas A Geisse, Yen-Tsung
Huang, William J Adams, Sean P Sheehy, and Kevin K Parker. Myocyte shape
regulates lateral registry of sarcomeres and contractility. The American journal of
pathology, 181(6):2030–2037, 2012.

[28] A Martin Gerdes. Cardiac myocyte remodeling in hypertrophy and progression to
failure. Journal of cardiac failure, 8(6):S264–S268, 2002.

[29] A Martin Gerdes and Joseph M Capasso. Structural remodeling and mechanical dys-
function of cardiac myocytes in heart failure. Journal of molecular and cellular cardi-
ology, 27(3):849–856, 1995.

[30] A Martin Gerdes, Scott E Kellerman, Jo Ann Moore, Karl E Muffly, Linda C Clark,
Phyllis Y Reaves, Krystyna B Malec, Peter P McKeown, and Douglas D Schocken.
Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy.
Circulation, 86(2):426–430, 1992.

[31] Zoe Anne McCrossan, Rudolf Billeter, and Ed White. Transmural changes in size, con-
tractile and electrical properties of SHR left ventricular myocytes during compensated
hypertrophy. Cardiovascular research, 63(2):283–292, 2004.

[32] Ken-ichi Sawada and Keishiro Kawamura. Architecture of myocardial cells in human
cardiac ventricles with concentric and eccentric hypertrophy as demonstrated by quan-
titative scanning electron microscopy. Heart and vessels, 6(3):129–142, 1991.

[33] J Robbins. Diseases of the cytoskeleton: The desminopathies. Cardioskeletal My-
opathies in Children and Young Adults, pages 173–192, 2017.

[34] MH Stromer. The cytoskeleton in skeletal, cardiac and smooth muscle cells. 1998.

69



BIBLIOGRAPHY

[35] Joseph W Sanger, Jushuo Wang, Yingli Fan, Jennifer White, and Jean M Sanger.
Assembly and dynamics of myofibrils. BioMed Research International, 2010, 2010.

[36] Anna Grosberg, Po-Ling Kuo, Chin-Lin Guo, Nicholas A Geisse, Mark-Anthony Bray,
William J Adams, Sean P Sheehy, and Kevin Kit Parker. Self-organization of muscle
cell structure and function. PLoS computational biology, 7(2):e1001088, 2011.
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and Véronique Maupoil. Sarcoptim for imagej: high-frequency online sarcomere length
computing on stimulated cardiomyocytes. American Journal of Physiology-Cell Phys-
iology, 311(2):C277–C283, 2016.

[56] Kenneth S Campbell. Interactions between connected half-sarcomeres produce emer-
gent mechanical behavior in a mathematical model of muscle. PLoS computational
biology, 5(11):e1000560, 2009.

[57] Benjamin M Friedrich, Amnon Buxboim, Dennis E Discher, and Samuel A Safran. Stri-
ated acto-myosin fibers can reorganize and register in response to elastic interactions
with the matrix. Biophysical journal, 100(11):2706–2715, 2011.

[58] Anthony G Rodriguez, Sangyoon J Han, Michael Regnier, and Nathan J Sniadecki.
Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation
with changes in myofibril structure and intracellular calcium. Biophysical journal, 101
(10):2455–2464, 2011.

[59] Stephanie Majkut, Timon Idema, Joe Swift, Christine Krieger, Andrea Liu, and Den-
nis E Discher. Heart-specific stiffening in early embryos parallels matrix and myosin
expression to optimize beating. Current Biology, 23(23):2434–2439, 2013.

71



BIBLIOGRAPHY

[60] Nils Hersch, Benjamin Wolters, Georg Dreissen, Ronald Springer, Norbert Kirchgeßner,
Rudolf Merkel, and Bernd Hoffmann. The constant beat: cardiomyocytes adapt
their forces by equal contraction upon environmental stiffening. Biology open, page
BIO20133830, 2013.

[61] Kinjal Dasbiswas, Shiqiong Hu, Frank Schnorrer, Samuel A Safran, and Alexander D
Bershadsky. Ordering of myosin II filaments driven by mechanical forces: experiments
and theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 373
(1747):20170114, 2018.

[62] Michel Sam, Sameer Shah, Jan Fridén, Derek J Milner, Yassemi Capetanaki, and
Richard L Lieber. Desmin knockout muscles generate lower stress and are less vulner-
able to injury compared with wild-type muscles. American Journal of Physiology-Cell
Physiology, 279(4):C1116–C1122, 2000.

[63] Kazuaki Tokunaga, Noriko Saitoh, Ilya G Goldberg, Chiyomi Sakamoto, Yoko Yasuda,
Yoshinori Yoshida, Shinya Yamanaka, and Mitsuyoshi Nakao. Computational image
analysis of colony and nuclear morphology to evaluate human induced pluripotent stem
cells. Scientific reports, 4:6996, 2014.

[64] Paola Scaffidi and Tom Misteli. Lamin a-dependent nuclear defects in human aging.
Science, 312(5776):1059–1063, 2006.

[65] Fuyong Xing and Lin Yang. Robust nucleus/cell detection and segmentation in digital
pathology and microscopy images: a comprehensive review. IEEE reviews in biomedical
engineering, 9:234–263, 2016.

[66] Juan C Caicedo, Jonathan Roth, Allen Goodman, Tim Becker, Kyle W Karhohs,
Matthieu Broisin, Csaba Molnar, Claire McQuin, Shantanu Singh, Fabian J Theis,
et al. Evaluation of deep learning strategies for nucleus segmentation in fluorescence
images. Cytometry Part A, 95(9):952–965, 2019.

[67] Juan C Caicedo, Allen Goodman, Kyle W Karhohs, Beth A Cimini, Jeanelle Ackerman,
Marzieh Haghighi, CherKeng Heng, Tim Becker, Minh Doan, Claire McQuin, et al.
Nucleus segmentation across imaging experiments: the 2018 data science bowl. Nature
methods, 16(12):1247–1253, 2019.

[68] Massimo Salvi, Umberto Morbiducci, Francesco Amadeo, Rosaria Santoro, Francesco
Angelini, Isotta Chimenti, Diana Massai, Elisa Messina, Alessandro Giacomello, Mau-
rizio Pesce, et al. Automated segmentation of fluorescence microscopy images for 3d
cell detection in human-derived cardiospheres. Scientific reports, 9(1):1–11, 2019.

[69] Jason Q Core, Mehrsa Mehrabi, Zachery R Robinson, Alexander R Ochs, Linda A
McCarthy, Michael V Zaragoza, and Anna Grosberg. Age of heart disease presentation
and dysmorphic nuclei in patients with LMNA mutations. PloS one, 12(11):e0188256,
2017.

72



BIBLIOGRAPHY

[70] Oranit Boonsiri, Kiyotada Washiya, Kota Aoki, and Hiroshi Nagahashi. 3d gray level
co-occurrence matrix based classification of favor benign and borderline types in fol-
licular neoplasm images. Journal of Biosciences and Medicines, 4(03):51, 2016.

[71] Arkadiusz Gertych, Zhaoxuan Ma, Jian Tajbakhsh, Adriana Velásquez-Vacca, and
Beatrice S. Knudsen. Rapid 3-d delineation of cell nuclei for high-content screening
platforms. Computers in Biology and Medicine, 69:328 – 338, 2016. ISSN 0010-4825.
doi: 10.1016/j.compbiomed.2015.04.025. URL http://www.sciencedirect.com/sc

ience/article/pii/S0010482515001432.

[72] Gang Lin, Umesh Adiga, Kathy Olson, John F Guzowski, Carol A Barnes, and Badri-
nath Roysam. A hybrid 3d watershed algorithm incorporating gradient cues and object
models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part
A: the journal of the International Society for Analytical Cytology, 56(1):23–36, 2003.

[73] Gang Li, Tianming Liu, Ashley Tarokh, Jingxin Nie, Lei Guo, Andrew Mara, Scott
Holley, and Stephen TC Wong. 3d cell nuclei segmentation based on gradient flow
tracking. BMC cell biology, 8(1):40, 2007.

[74] Benjamin Kesler, Guoliang Li, Alexander Thiemicke, Rohit Venkat, and Gregor
Neuert. Automated cell boundary and 3d nuclear segmentation of cells in suspen-
sion. Scientific reports, 9(1):1–9, 2019.

[75] Anne E Carpenter, Thouis R Jones, Michael R Lamprecht, Colin Clarke, In Han Kang,
Ola Friman, David A Guertin, Joo Han Chang, Robert A Lindquist, Jason Moffat, et al.
Cellprofiler: image analysis software for identifying and quantifying cell phenotypes.
Genome biology, 7(10):R100, 2006.

[76] Claire McQuin, Allen Goodman, Vasiliy Chernyshev, Lee Kamentsky, Beth A Cimini,
Kyle W Karhohs, Minh Doan, Liya Ding, Susanne M Rafelski, Derek Thirstrup, et al.
Cellprofiler 3.0: Next-generation image processing for biology. PLoS biology, 16(7),
2018.

[77] Christoph Sommer, Christoph N Straehle, Ullrich Koethe, Fred A Hamprecht, et al.
Ilastik: Interactive learning and segmentation toolkit. In ISBI, volume 2, page 8, 2011.

[78] Yu Toyoshima, Terumasa Tokunaga, Osamu Hirose, Manami Kanamori, Takayuki Ter-
amoto, Moon Sun Jang, Sayuri Kuge, Takeshi Ishihara, Ryo Yoshida, and Yuichi Iino.
Accurate automatic detection of densely distributed cell nuclei in 3d space. PLoS
computational biology, 12(6):e1004970, 2016.

[79] Marlies Verschuuren, Jonas De Vylder, Hannes Catrysse, Joke Robijns, Wilfried
Philips, and Winnok H De Vos. Accurate detection of dysmorphic nuclei using dynamic
programming and supervised classification. PLoS One, 12(1):e0170688, 2017.

[80] Pin Wang, Xianling Hu, Yongming Li, Qianqian Liu, and Xinjian Zhu. Automatic cell
nuclei segmentation and classification of breast cancer histopathology images. Signal
Processing, 122:1–13, 2016.

73

http://www.sciencedirect.com/science/article/pii/S0010482515001432
http://www.sciencedirect.com/science/article/pii/S0010482515001432


BIBLIOGRAPHY

[81] Siwon Choi, Wei Wang, Alexandrew JS Ribeiro, Agnieszka Kalinowski, Siobhan Q
Gregg, Patricia L Opresko, Laura J Niedernhofer, Gustavo K Rohde, and Kris Noel
Dahl. Computational image analysis of nuclear morphology associated with various
nuclear-specific aging disorders. Nucleus, 2(6):570–579, 2011.

[82] Reka Hollandi, Abel Szkalisity, Timea Toth, Ervin Tasnadi, Csaba Molnar, Botond
Mathe, Istvan Grexa, Jozsef Molnar, Arpad Balind, Mate Gorbe, et al. nucleaizer:
a parameter-free deep learning framework for nucleus segmentation using image style
transfer. Cell Systems, 10(5):453–458, 2020.

[83] Ashley J Earle, Tyler J Kirby, Gregory R Fedorchak, Philipp Isermann, Jineet Patel,
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Figure A.1: Image analysis workflow. Squared boxed text indicates an image analysis
step in ZlineDetection. Rounded boxed text indicates an image or matrix, where binary
skeletons are shaded gray, matrices containing information about α-actinin stained images
are shaded red, and matrices containing information about actin stained images are shaded
green. Purple circles indicate matrix multiplication. On a computer with 32 GB of RAM,
ZlineDetection took ~30 s to analyze a 1024 x 1344 image.
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Table A.1: Description of parameters used by ZlineDetection. Column 1 is
the stage of analysis at which a parameter is used, followed by its description in
column 2. The third column is the value of the parameters used for analysis of the
images, which had the resolution ~6 pixels/µm.

Analysis Stage Description Value

Initialization Pixel to micron conversion 6.22 pixels/µm
Diffusion Filtering Diffusion time step 0.15 s
Diffusion Filtering Standard deviation of Gaussian

smoothing before calculation of the
image Hessian

1 pixel

Diffusion Filtering Standard deviation of Gaussian
smoothing of the image Hessian

1.4 pixels

Diffusion Filtering Total diffusion time; Sets number of it-
erations

1.5 s (11 itera-
tions)

Top Hat Filtering Radius of the flat disk-shaped structur-
ing element used for the top hat filter

3 pixels (~0.5 µm)

Background Removal Size of blocks to break image into 15 pixels (~2.5
µm)

Background Removal Size of blocks considered noise in the
condensed image

8 pixels (~25 µm)

Background Removal Standard deviation of Gaussian
smoothing to perform on image

1 pixel

Binarization Size of small objects to be removed in
the binarized image

8 pixels2 (0.2
µm2)

Skeletonization Minimum branch size to be included in
analysis

4 pixels

Actin Orientation Calculation Sigma of the Gaussian weighting used
to sum the gradient moments

3 pixels

Actin Orientation Calculation Sigma of the derivative of Gaussian
used to compute image gradients

1 pixel

Actin Orientation Calculation Size of Gaussian filter kernel to perform
on actin image

25 pixels

Actin Orientation Calculation Sigma of the Gaussian used to smooth
the final orientation vector field

3 pixels

Actin Orientation Calculation Minimum reliability of actin orienta-
tion vectors

0.5

Actin Orientation Calculation Standard deviation of Gaussian
smoothing to perform on actin image

3 pixels

Actin Guided Segmentation Minimum angle between α-actinin and
local actin orientation for pixels to be
considered perpendicular

0.7 (>~45°)

Actin Guided Segmentation Size of local actin orientation 30 pixels (~5 µm)
Continuous Z-line Length Maximum angle between pixels to be

considered parallel and therefore con-
tinuous

0.9 (<~25°)
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Figure A.2: Selection of diffusion filter parameters. A, Sections of anisotropic,
isotropic, and sparse anisotropic tissues with manually traced z-lines, which was done
three times. B, Similarity between the three different manual traces of z-lines. C,
Average similarity for each set of diffusion filtering parameters. D, Average similarity
for a more refined range of diffusion filtering parameters. E, Error for refined range
of diffusion filtering parameters (Eq 2.1).
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APPENDIX A. SUPPORTING INFORMATION FOR STRIATED MYOCYTE
STRUCTURAL INTEGRITY: AUTOMATED ANALYSIS OF SARCOMERIC Z-DISCS
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Figure A.3: Z-line tissue metrics by aspect ratio. For the good cells of each aspect
ratio, the mean and standard deviation are shown for the median continuous z-line length
(A), mean continuous z-line length (B), total continuous z-line length (C), z-line OOP (D),
and the estimated force along the axis perpendicular to principle axis (E). F, Normalized
distribution of continuous z-line lengths for the representative cells in Fig 2.3. Groups were
compared using ANOVA with Tukey’s test p <0.05 (black horizontal bars above data).
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A-i B-i

ii
ii ii

ii D-iC-i

iv iiiii

Figure A.4: Continuous z-lines plotted on tissue segments. Sections of cardiac tissue
shown in Fig 2.4A-D stained for actin (green) and α-actinin (red) on a uniform layer of
FN (Ai), FN in lines (Bi), FN in lines with sparsely seeded cardiomyocytes (Ci), and FN
in lines with cardiomyocytes treated with BDM (Di) and their corresponding continuous
z-lines (A-Dii). Scale bar: 15 µm
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Figure A.5: Examples of good and poor imaging. A, α-actinin stained image of poor
imaging quality. B, Example of good imaging quality. For both A and B, the background
(i), foreground (ii), and distribution of intensities (iii) are shown. Scale bars: (A-B i) 20
µm; (A-B ii-iii) 10 µm.
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Figure A.6: Analysis of beating cardiomyocyte. Results of analyzing titin-GFP sar-
comere reporter human induced pluripotent stem cell-derived cardiomyocyte published by
Sharma et al.142. (A) Orientational order parameter and (B) median continuous z-line
length in pixels as a function of frame number. As expected, the OOP was relatively con-
stant throughout the contraction, while the median continuous z-line length varied due to
non-synchronous contractions of neighboring myofibrils.
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