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ABSTRACT

The Type Ia supernova progenitor problem is one of the most perplexing and exciting problems in

astrophysics, requiring detailed numerical modeling to complement observations of these explosions.

One possible progenitor that has merited recent theoretical attention is the white dwarf merger sce-
nario, which has the potential to naturally explain many of the observed characteristics of Type Ia

supernovae. To date there have been relatively few self-consistent simulations of merging white dwarf

systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of

these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe
our numerical methodology and discuss our implementation in the compressible hydrodynamics code

CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the

gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation

and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for

our problem, but recent advances in the literature allow progress and we discuss our implementation
here. We present a set of test problems demonstrating the extent to which our software sufficiently

models a system where large amounts of mass are advected on the computational domain over long

timescales. Future papers in this series will describe our treatment of the initial conditions of these

systems and will examine the early phases of the merger to determine its viability for triggering a
thermonuclear detonation.
Keywords: hydrodynamics - methods: numerical - supernovae: general - white dwarfs

1. INTRODUCTION

Type Ia supernovae (SNe Ia) are among the most ex-
citing events to study in astrophysics. These bright, brief

pulses of light in the distant universe have led to a num-

ber of important discoveries in recent years, including

the discovery of the accelerated expansion of the uni-

verse (Perlmutter et al. 1999; Riess et al. 1998). Their
origin, though, is shrouded in mystery. It has long been

expected that these events arise from the thermonuclear

explosions of white dwarfs (Hoyle & Fowler 1960), but

the cause of these explosions is uncertain. In partic-
ular, it is not clear what process causes the tempera-

tures in these white dwarfs (WDs) to become hot enough

for explosive burning of their constituent nuclei. The

model favored initially by the community was the single-

degenerate (SD) model (Whelan & Iben 1973). Accre-
tion of material from a companion star such as a red gi-

ant would cause the star to approach the Chandrasekhar

mass, and in doing so the temperature and density in

the center would become sufficient for thermonuclear fu-
sion to proceed. In recent years the focus has shifted

to a number of alternative progenitor models. A lead-
ing candidate for explaining at least some of these ex-

plosions is the double-degenerate (DD) model, in which

two white dwarfs merge and the merged object reaches

the conditions necessary for a thermonuclear ignition

(Iben & Tutukov 1984; Webbink 1984). Another is the
double detonation scenario, where accretion of material

onto a sub-Chandrasekhar mass white dwarf leads to a

detonation inside the accreted envelope, sending a com-

pressional wave into the core of the star that triggers a
secondary detonation. A recent review of the progenitor

models can be found in Hillebrandt et al. (2013).

There are several observational reasons why double-

degenerate systems are a promising progenitor model for

at least a substantial fraction of normal SNe Ia. No con-
clusive evidence exists for a surviving companion star of

a SN Ia; this is naturally explained by the DD model be-

cause both WDs are likely to be destroyed in the merger

process. Similarly, pre-explosion images of the SN Ia
systems have never clearly turned up a companion star,

and in some cases a large fraction of the parameter space

http://arxiv.org/abs/1512.06099v2
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for the nature of the companion star is excluded. Addi-

tionally, not enough progenitor systems are seen for the

SD case to match the observed local SN Ia rate, whereas

the number of white dwarf binaries may be sufficient to
account for this rate. Finally, the DD model can nat-

urally explain the fact that many SNe Ia are observed

to occur at very long delay times after the stars were

formed, since the progenitor systems only become active

once both stars have evolved off the main sequence. A
thorough review of the observational evidence about SNe

Ia and further discussion of these ideas can be found in

Maoz et al. (2014).

The first attempts to model the results of the merger
process came in the 1980s. Nomoto & Iben (1985)

demonstrated that off-center carbon ignition would oc-

cur in the more massive white dwarf as it accreted

mass near the Eddington rate from the less massive

white dwarf overflowing its Roche lobe. Saio & Nomoto
(1985) tracked the evolution of the flame and found

that it propagated quiescently into the center, convert-

ing the carbon-oxygen white dwarf into an oxygen-neon-

magnesium white dwarf. This would then be followed by
collapse into a neutron star—a result with significantly

different observational properties compared to a SN Ia.

This scenario, termed accretion-induced collapse, would

be avoided only if the accretion rate were well below

the Eddington rate (see, e.g., Fryer et al. (1999) for a
discussion of the possible implications of the accretion-

induced collapse scenario). Tutukov & Yungelson (1979)

observed that the collapse could be avoided if the mass

loss from the secondary was higher than the Eddington
rate and thus the accreted material formed an accretion

disc, which might rain down on the primary more slowly.

The main finding was that double degenerate systems

would not obviously lead to Type Ia supernovae.

Three-dimensional simulations of merging double
degenerate systems were first performed by Benz et al.

(1990), who used the smoothed particle hydrodynamics

(SPH) method to simulate the merger process. This was

followed later by a number of authors (Rasio & Shapiro
1995; Segretain et al. 1997; Guerrero et al. 2004;

Yoon et al. 2007; Lorén-Aguilar et al. 2009; Raskin et al.

2012). The main finding of these early 3D SPH sim-

ulations was that if the lower-mass star (generally

called the “secondary”) was close enough to the more
massive star (the “primary”) to begin mass transfer

on a dynamical time scale, the secondary completely

disrupted and formed a hot envelope around the pri-

mary, with a centrifugally-supported accretion disk
surrounding the core and envelope. Carbon fusion might

commence in the disk, but not at a high enough rate

to generate a nuclear detonation. Mochkovitch & Livio

(1990) and Livio (2000) also observed that turbulent

viscosity in this disk would be sufficiently large for

angular momentum to be removed from the disk at a

rate high enough to generate the troublesome accretion

timescales discussed by Tutukov & Yungelson (1979)

and mentioned above. Based on this evidence, the
review of Hillebrandt & Niemeyer (2000) argued that

the model was only viable if the accretion-induced

collapse problem could be avoided. Later work by

Shen et al. (2012) and Schwab et al. (2012) used a

more detailed treatment of the viscous transport in the
outer regions of the remnant and found that viscous

dissipation in the centrifugally supported envelope

would substantially heat up the envelope on a viscous

timescale, but their simulations still led to off-center
carbon burning. van Kerkwijk et al. (2010) argued that

equal-mass mergers would lead to the conditions neces-

sary for carbon detonation in the center of the merged

object, but Shen et al. (2012) also questioned this for

reasons related to how viscous transport would convert
rotational motion into pressure support. Zhu et al.

(2013) followed this with an expanded parameter space

study and argued that many of their carbon-oxygen

systems had the potential to detonate. The study of the
long-term evolution of the remnants is thus still an open

subject of research.

A recent shift in perspective on this problem started

around 2010. Pakmor et al. (2010) used the SPHmethod

to study the merger of equal-mass (0.9 M⊙) carbon-
oxygen white dwarfs and found that a hotspot was gen-

erated near the surface of the primary white dwarf.

They argued that this region had a temperature and

density sufficient to trigger a thermonuclear detonation.
They inserted a detonation which propagated through-

out the system. They found that the result would ob-

servationally appear as a subluminous Type Ia super-

nova. This was the first time a DD simulation suc-

cessfully reproduced at least some characteristics of a
SN Ia. Pakmor et al. (2011) tried a few different mass

combinations and found empirically that this would hold

as long as the secondary was at least 80% as massive

as the primary. These events, where the merger pro-
cess resulted in the detonation of the system during the

merger coalescence—avoiding the much longer time-scale

evolution—were termed “violent” mergers.

Around the same time, however, Guillochon et al.

(2010) and Dan et al. (2011) pointed out that the pre-
viously mentioned simulations generally shared a sig-

nificant drawback, which was that their initial condi-

tions were not carefully constructed. Motl et al. (2002),

D’Souza et al. (2006), and Motl et al. (2007) (the first
three-dimensional mesh-based simulations of mass trans-

fer in binary white dwarf systems) pioneered the study of

the long-term dynamical evolution of binary white dwarf

systems after constructing equilibrium initial conditions.

Earlier work placed the stars too close together and ig-
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nored the effects of tidal forces that change the shape

of the secondary, leading to the merger happening ar-

tificially too quickly (Fryer & Diehl 2008). When the

initial conditions are constructed in equilibrium, the sys-
tem can be stable for tens of orbital periods, substan-

tially changing the character of the mass transfer phase.

One limitation of this series of studies is that the au-

thors used a polytropic equation of state and thus could

not consider nuclear reactions. Guillochon et al. (2010)
and Dan et al. (2011) improved on this using a realis-

tic equation of state, a nuclear reaction network, and

a similar approach to the equilibrium initial conditions,

and found substantial agreement with the idea that mass
transfer occurs in a stable manner over tens of orbital

periods. They also found that, assuming the material

accreted onto the surface of the primary was primarily

helium, explosive surface detonations would occur as a

result of accretion stream instabilities during the mass
transfer phase prior to the full merger. This could trig-

ger a double-detonation explosion and thus perhaps a SN

Ia.

The latest violent merger developments have resulted
in some possible areas of convergence. Pakmor et al.

(2012b) performed a merger scenario with a 1.1 M⊙

and 0.9 M⊙ setup, with better treatment of the ini-

tial conditions, and indeed found that the merger pro-

cess happened over more than ten orbits. Nevertheless,
they still determined that a carbon-oxygen detonation

would occur, in line with their earlier results. Moll et al.

(2014) and Kashyap et al. (2015) were also able to find

a detonation in similarly massive systems. Notably, the
detonation occurred self-consistently and did not need

to be intentionally triggered using an external source

term. Dan et al. (2012) and Dan et al. (2014) performed

a large sweep of the parameter space for merger pairs and

found that pure carbon-oxygen systems would generally
not lead to detonations (and thus be violent mergers) ex-

cept for the most massive systems. They did find that for

systems with WDs containing helium, many would det-

onate and potentially lead to SNe Ia, either through the
aforementioned instabilities in the accretion stream, or

during the contact phase, similar to the violent carbon-

oxygen WD mergers. Sato et al. (2015) also examined

the parameter space and came to a similar conclusion for

massive carbon-oxygen WD systems (and also looked at
the possibility of detonations after the coalescence had

completed), while Tanikawa et al. (2015) discussed the

plausibility of helium detonations in the massive binary

case. Pakmor et al. (2013) added a thin helium shell on
their primary white dwarf, and found that this robustly

led to a detonation of the white dwarf. For now there is

preliminary support for the hypothesis that systems with

helium shells (or helium WDs), and very massive carbon-

oxygen binaries, could robustly lead to events resembling

SNe Ia.

Given the considerable research into the double degen-

erate problem described above, why is another approach

using a different simulation code warranted? First and
foremost, reproducibility of the results across simulation

codes and algorithms is important for gauging confidence

in this result. Most of the existing results that study the

viability of double degenerate systems as progenitors for

Type Ia supernovae (that is, including a realistic equa-
tion of state and nuclear reactions) have used the SPH

method. SPH codes have a number of features which do

aid them in the study of these systems, such as conser-

vation of angular momentum to machine precision when
there are no source terms such as gravity (and conserva-

tion proportional to the level of tolerance of error in the

gravity solver when gravity is used). A drawback relates

to the fact that whether a prompt detonation in a merger

happens depends in detail on the nature of the gas at the
interface between the two stars, which is at much lower

density than the rest of the stellar material. The SPH

codes for these simulations generally all use uniform mass

particles, so their effective resolution is lowest at the stel-
lar surface. In contrast, a code with adaptive mesh re-

finement can zoom in on the regions where hotspots will

develop, while also maintaining high enough resolution in

the high-density regions to adequately capture the large-

scale mass transfer dynamics. There are also outstanding
questions of convergence in SPH (e.g. Zhu et al. 2014)

and whether the method correctly captures fluid insta-

bilities. This is an important question for white dwarf

mergers because of the likely importance small-scale in-
stabilities will have on the evolution of the low-density

gas at the primary’s surface. The pioneering work of

Agertz et al. (2007) compared grid and SPH codes and

found some important differences. Most relevant for this

discussion is that the SPH codes could not adequately
handle mixing from the Kelvin-Helmholtz instability in

the test they propose. As pointed out by Price (2008),

this is not a result of SPH being inherently unable to

model this instability, but instead it is attributed to the
fact that the standard SPH evolution equations do not

have a mechanism for capturing discontinuities in inter-

nal energy. Price showed that the addition of an artificial

thermal conductivity can dramatically improve the abil-

ity of the SPH codes to exhibit this instability. There
have since been a number of other papers discussing this

issue, but to our knowledge none of these improvements

have yet been incorporated into an SPH model of a WD

merger. Another reason for caution is that other than
the most recent results of Kashyap et al. (2015), no white

dwarf merger simulation has self-consistently resulted in

a thermonuclear detonation. Reproducibility of the deto-

nation through numerical simulation is critical for build-

ing confidence in this progenitor model.
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This paper is the first in a series designed to ad-

dress these outstanding theoretical issues for white dwarf

mergers. This work discusses the verification of our hy-

drodynamics code for simulating these events. Later ef-
forts will look at the initial conditions of the system, the

robustness with which a hotspot is found from which a

detonation could occur, and the importance of the ini-

tial white dwarf models, which should be more sophisti-

cated than simple carbon-oxygen mixtures and in princi-
ple should use results from modern stellar evolution cal-

culations. Section 2 describes our code and why it can

provide useful results compared to other methodologies

used for this problem. Section 3 describes the method
we use for setting up a binary white dwarf simulation.

Section 4 discusses a few test problems that we use to

verify that our code accurately solves the equations of

fluid dynamics. Section 5 demonstrates that the soft-

ware scales well for supercomputer applications. Finally,
Section 6 recaps what we have shown and highlights some

of the future work we plan to do.

2. NUMERICAL METHODOLOGY

To study the white dwarf merger problem, we

use the mesh-based hydrodynamics code CASTRO1

(Almgren et al. 2010). CASTRO solves the Euler equa-
tions, along with the inclusion of optional modules for

gravity, nuclear reactions and thermodynamics. CASTRO

is based on the BoxLib2 adaptive-mesh refinement

(AMR) framework (Rendleman et al. 2000), which rep-

resents fluid data on a hierarchical mesh where regions of
interest have higher spatial resolution. CASTRO is highly

parallel and is designed for large-scale use on modern

supercomputers; see Section 5 for information on how

CASTRO performs for our problem. The next few subsec-
tions describe our approach to each of the physics com-

ponents used in this work. We direct the reader to the

original code paper for a full description of CASTRO’s ap-

proach to solving the equations of hydrodynamics. In

this work, we report mainly on the changes we have made
to the code since its original release, for the purpose of

approaching this problem.

2.1. Hydrodynamics

1 CASTRO can be obtained at
https://github.com/BoxLib-Codes/Castro.

2 BoxLib can be obtained at
https://github.com/BoxLib-Codes/BoxLib.

The Euler equations for hydrodynamics (in the absence

of source terms) in conservative form are:

∂ρ

∂t
= −∇ · (ρu) (1)

∂ρu

∂t
= −∇ · (ρuu)−∇p (2)

∂ρE

∂t
= −∇ · (ρuE + pu). (3)

Here ρ is the mass density, u = (u, v, w) is the fluid

velocity vector, p is the pressure, and E = u2/2 + e is

the total specific energy, where e is the internal (thermal)
specific energy (energy per unit mass).

We use the unsplit piecewise-parabolic method (PPM)

solver in CASTRO to advance the hydrodynamics system in

time (Miller & Colella 2002). A number of changes were
made to the solver, which are detailed in Appendix A.

These changes bring the algorithm more in line with that

of Colella & Woodward (1984). CASTRO as originally re-

leased featured a slightly modified version of the higher

resolution limiters of Colella & Sekora (2008), which can
be used in the code by setting castro.ppm type = 2 in

the inputs file (the inputs file is a set of code parameters

accessed at runtime to determine the algorithms used in

the simulation). The advantage of this limiter is that
it preserves physical extrema rather than clipping them

off as in the original approach of Colella & Woodward

(1984). Despite the advantages of this limiter we have

found it to be unsatisfactory for our problem. There

are many regions in our problem with large density gra-
dients (such as the interface between the star’s atmo-

sphere and the ambient gas outside of it) and in these

regions the algorithm can yield negative densities. This

often results from the limiters interpreting these gradi-
ents as being true minima. As a result, we use the orig-

inal limiter, which is strictly monotonicity preserving in

the parabolic profiles it generates; this is activated with

castro.ppm type = 1 in the inputs file.

A related issue that required a code improvement is
that in cases of large density gradients such as the edge

of a star, it is possible to generate negative densities in

zones even with the more strongly limited PPM. This

can occur if a region of large density is moving away
from an ambient zone at relatively large speeds; then

the net density flux in the ambient zones can be large

enough to unphysically drag the density below zero. In

practice, this occurs at the trailing edge of a star that is

moving across a grid. In such a situation, there are two
main approaches one could take: either explicitly intro-

duce a positivity-guaranteeing diffusive flux, or reset the

properties of the affected zone. We choose the latter ap-

proach. Even though it is non-conservative, it preserves
a characteristic we value, which is to keep the edge of

the stars relatively sharp, as they physically should be.

https://github.com/BoxLib-Codes/Castro
https://github.com/BoxLib-Codes/BoxLib
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Since the mass of the affected zones is typically already

fairly low, this should not seriously affect the dynamics

or the energy conservation properties of our simulation.

Our strategy for a reset is as follows: when the density
of a zone is below a pre-determined density floor (which

is typically 10−5 g cm−3 for our stellar simulations), we

look at all adjacent zones and find the zone with the high-

est density. If it is above the density floor, then we set

the field values (density, momentum, energy, and temper-
ature) of the reset zone to be equal to the field values of

this adjacent zone. If no adjacent zone reaches the den-

sity floor, then the zone is set to the density floor, and

given a temperature equal to the temperature floor for
our simulations (which is typically 105 K for our stellar

simulations). We then recompute the thermodynamics

to be consistent with these values. The velocity of the

zone is set to zero. This latter approach only occurs in

very rare situations, and is there as a last resort.
CASTRO’s approach to adaptive mesh refinement, based

on its underlying BoxLib framework, is to refine zones

based on certain user-specified criteria that tag regions

of interest for higher spatial resolution. Data is repre-
sented on one of a number of AMR levels, where each

level corresponds to a set of zones at the same resolu-

tion, which covers a subset of the domain covered by the

level immediately below it. We typically call the level 0

grid the coarse grid, which has the lowest spatial resolu-
tion. Each finer, higher-level grid has a higher resolution

than the grid below it by some integer factor N , which

is restricted to be N = 2 or 4 in CASTRO. The zones are

strictly contained within the rectangular extent of the
underlying coarser zones (at present, in 3D the code is

restricted to representing only Cartesian geometries with

uniform spacing in each dimension). For the time evolu-

tion of the AMR system we use subcycling, where each

AMR level is advanced at a different timestep and a cor-
rection step is applied at the end to synchronize the var-

ious levels. The number of subcycled timesteps is equal

to the jump in refinement between levels, so for example

on a grid with three levels and two jumps of four in re-
finement, the level 2 zones have 16 times higher spatial

resolution than the coarse grid and there are 16 level 2

timesteps per level 0 timestep.

The boundary conditions on the hyperbolic system are

simply zero-gradient zones that allow material to flow
directly out of the domain. Using AMR, we make the

coarse grid large enough that the boundaries are rela-

tively far from the region of interest. This ensures that

any boundary effects do not pollute the inner region
where the stars will eventually make contact. We fur-

ther make the restriction that refined grids cannot reach

the domain boundary.

2.2. Microphysics

The equation of state (EOS) for our simulations is the

Helmholtz EOS (Timmes & Swesty 2000). This models

an electron-positron gas of arbitrary relativity and de-

generacy over a wide range of temperatures and densi-
ties. Thermodynamic quantities are calculated as deriva-

tives of the Helmholtz free energy, and the values are

interpolated from a table. The natural variables of the

Helmholtz free energy are temperature and density, and

calling the EOS is simplest in this form. In hydrody-
namics we often have the density and internal energy as

independent variables, and we want to obtain the tem-

perature, pressure, and other quantities. To do this, we

employ a Newton-Raphson iteration over the tempera-
ture (given some sufficient starting guess) until we find

the temperature that corresponds to the desired internal

energy. Sometimes this process fails to converge and the

iterative value approaches zero. In these cases we em-

ploy a “floor” that limits how low the temperature can
go (typically 105 K). There is a choice here how to pro-

ceed: we can either assign this floor value to the tempera-

ture and let that zone be thermodynamically inconsistent

(the original behavior in CASTRO), or we can adjust the
internal energy to be thermodynamically consistent with

the temperature, at the cost of violating energy conser-

vation. We have found in some test problems of strong

one-dimensional shocks that reach the temperature floor

that the latter yields more accurate results. However,
allowing the equation of state call to update the internal

energy can actually result in significant changes to the

total energy of the system over long periods of time, due

not just to resets in low-density zones but also to small
inconsistencies between the energy given to the EOS and

the energy that is consistent with the returned temper-

ature. These inconsistencies are dependent on the toler-

ance of the Newton-Raphson iterative solve. While this

error tolerance is typically very small in an individual
zone (a relative difference of 10−8 by default in CASTRO),

over time and given a large number of zones, this can re-

sult in a significant energy drift. This is a serious enough

problem that we opt for the energy conserving approach
for our simulations.

CASTRO has the ability to model both nuclear reactions

and radiative transport (in the flux-limited diffusion ap-

proximation). For all simulations in this paper we do not

enable either, and we delay discussion of these modules
until later papers in this series.

2.3. Gravity

We solve the Poisson equation for self-gravity for our

problem,

∇2Φ(x) = 4πGρ(x), (4)
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where Φ is the gravitational potential, G is the gravita-

tional constant, and ρ is the mass density.3 The solution

of this equation in CASTRO is described in Almgren et al.

(2010), and consists of both level and composite solves,
and (optionally) a final synchronization at the end. We

do not enable this final synchronization for the merger

simulations, because the grid boundaries never lie in re-

gions of high density, so the change in the potential due

to the correction at coarse–fine interface is always negli-
gible.

2.3.1. Coupling to Hydrodynamics

The effect of gravity on the hydrodynamical evolution

is typically incorporated by the use of a source term for

the momentum and energy equations. In a finite volume

methodology, the momentum source term often appears

in integral form as

∂(ρu)

∂t

∣∣∣∣
grav

=
1

∆V

∫
ρg dV (5)

and for the energy source term it is

∂(ρE)

∂t

∣∣∣∣
grav

=
1

∆V

∫
ρu · g dV. (6)

Here ∆V is the cell’s volume. In most hydrodynamics
codes these are discretized as ρg and ρu ·g, respectively,
where ρ, u, and g are evaluated at the zone center.

There are two ways that these source terms enter the

system evolution. First, during the hydrodynamics up-

date, we alter the edge states that enter into the determi-
nation of the fluxes. (This only applies for the momen-

tum source term; the gravitational force does not directly

do work on the internal energy, which is used to infer the

pressure.) To second order in space and time, this can
be done using the cell-centered source term evaluated

at time-level n. We choose a more accurate approach,

which is also second order, of characteristic tracing un-

der the source term; the details of this are described in

Appendix A. Second, after the hydrodynamics step, we
add the time-centered source terms to the state. First

we describe how we do this for the momentum, and then

we describe our approach for the energy. This discussion

is somewhat detailed. We believe that the attention is
necessary because of the importance of accuracy in the

gravitational source terms for our problem. The stability

of the white dwarf binary system is dependent in large

part upon accurate coupling of the hydrodynamics and

gravity; an error in this approach could lead to, for ex-
ample, a spurious mass transfer episode that might lead

us to very different conclusions about the long term sta-

bility of such a system. Such considerations are generally

3 In the CASTRO code, the right-hand side is negated and therefore
Φ is positive. We use the sign convention that is typical for astro-
physics in this paper. When Φ appears in the code it is negated to
compensate for this.

unimportant for spherically-symmetric single star calcu-

lations, but are of the utmost importance in a simulation

where the global gravitational field can change quite sig-

nificantly over the course of the simulation.
In a system with self-gravity, total momentum is con-

served if the spatial domain includes all of the mass of

the system. This must be the case because each mass

element exerts an equal and opposite gravitational force

on every other mass element. However, the standard ap-
proach does not necessarily guarantee that momentum

is conserved numerically. We cannot represent a vacuum

state in our code, so there is a small but non-zero density

on the edge of the grid. This allows momentum to leak
out of the domain even if the gravitational source term

is written in an explicitly conservative manner. To see

this, one can use the Poisson equation to write the den-

sity in terms of the potential and then consider its spatial

discretization. For simplicity, we consider one spatial di-
mension and a uniform discretization. Analogous results

may be readily obtained for the non-uniform case.

−ρi
dΦi

dx
= − 1

4πG

d2Φi

dx2

dΦi

dx

= − 1

4πG

[
Φi−1 − 2Φi +Φi+1

∆x2

] [
Φi+1 − Φi−1

2∆x

]

= − 1

8πG∆x3

[
Φ2

i+1 − Φ2
i−1 − 2Φi (Φi+1 − Φi−1)

]

(7)

It is easy to verify that adding the source terms for the

current zone and the two zones to the left and right re-
sults in complete cancellation of the source terms. The

catch is that if the potential if non-zero outside of the do-

main, then there will be momentum lost or gained from

the grid, which will be encapsulated in the ghost cells

just outside the domain. In addition, when we replace
the Laplacian above by the full three-dimensional sten-

cil including the y and z derivatives, depending on the

discretization these may not be cancelled at all. This lat-

ter problem can be resolved by writing the momentum
update in an explicitly conservative way.

Shu (1992, Chapter 4) observes that it is possible to

describe the source term for the momentum equation by

taking the divergence of a gravitational stress tensor,

Gij = − 1

4πG

(
gigj −

1

2
|g|2δij

)
. (8)

The momentum equations are then written explicitly in

conservative form. The flux at any zone boundary is
added to one cell and subtracted from another, so that

the total momentum in the domain interior stays con-

stant to within numerical roundoff error. This result can

be derived by analytically recasting Equation 7. In the
continuum limit, the two momentum formulations are

identical. Thus the latter has been advocated by, for
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example, Jiang et al. (2013) for the ATHENA code. A

significant limitation to this approach is that in a finite

discretization the divergence of the gravitational acceler-

ation is no longer guaranteed to equal the zone density.
In particular, we find that the mixing of the gravitational

accleration components means that the truncation error

in the gravitational field can lead to large errors that

imply a density much different than the zone’s actual

density. This is especially problematic in a simulation
with a low-density ambient medium, where even a small

error in the momentum update can lead to large changes

in a zone’s momentum. By continuing to explicitly use

the cell density in the momentum update, we can avoid
this possibility: the size of the update will always be

suitably small if the zone’s density is small. Thus for our

simulations we continue to use the standard source term

for the momentum.

Time centering of this source term is done in CASTRO

using a predictor-corrector approach. At the start of a

coarse grid timestep, we solve the gravitational potential

for the density ρn. We then add to the momenta a predic-

tion of the source term that is first-order accurate in time,
∆t ρn gn. After the hydrodynamics update, we recalcu-

late the gravitational potential based on the new density,

ρn+1, and then add −(∆t/2)ρngn + (∆t/2)ρn+1gn+1 to

the momenta.

For the energy equation, the central challenge is to
write down a form of the discretized energy equation that

explicitly conserves total energy when coupled to gravity.

When gravity is included, the conserved total energy over

the entire domain is
∫

ρEtot dV =

∫
dV

(
ρE +

1

2
ρΦ

)
, (9)

where ρE is the total gas energy from the pure hydrody-

namics equation. The factor of 1/2 in the gravitational

energy is necessary for simulations with self-gravity to

prevent double-counting of interactions (since in dynam-

ical evolution the relevant gravitational potential energy
is ρΦ and the gravitational force is ρg). Historically

many simulation codes with gravity have not used a con-

servative formulation of the energy equation, but it is

straightforward to do so. Our approach, and the discus-
sion that follows, is based on that of Springel (2010).

Conservation of total energy requires that a change in

gravitational energy is compensated for by a change in

gas energy, and that energy changes due to mass trans-

fer are explicitly and exactly tracked. Suppose that we
have some fluid mass ∆Mi+1/2 = ∆ρi+1/2∆V leave the

zone with index i and enter the zone with index i + 1.

The subscript indicates that the mass change is occur-

ring at the interface between the two zones, at index
i+1/2. The work done by the gravitational force on the

gas is ∆(ρE) = W =
∫
Fdx = (∆Mi+1/2 gi+1/2)(∆x/2),

where gi+1/2 is the gravitational acceleration at the inter-

face. The second term in parentheses is just the distance

from the zone center to the zone edge: once the mass

leaves the zone edge, it no longer needs to be tracked.
To second order, gi+1/2 = −(Φi+1 − Φi)/∆x, and also

to second order the potential at the interface is given by

Φi+1/2 = (Φi+1 +Φi)/2, so we can equivalently view the

work done as W = −∆Mi+1/2(Φi+1/2 − Φi). Physically,

this is just the negative of the gravitational potential en-
ergy change as the fluid is pushed from the cell center

potential to the cell edge potential, exactly as the work-

energy theorem implies.

Now, in a hydrodynamics code, mass changes cor-
respond to hydrodynamic fluxes. In particular, the

continuity equation tells us that the mass flux Fρ =

ρ
n+1/2
i+1/2 v

n+1/2
i+1/2 yields an integrated mass motion through

the interface i+ 1/2 over a timestep ∆t of:

∆ρi+1/2 =
∆t

∆V

(
ρ
n+1/2
i+1/2 v

n+1/2
i+1/2 dA

)
. (10)

Note that here vi+1/2 is the component of the velocity

perpendicular to the zone face, whose area is dA.
Finally, then, we write the update in a zone for the

total energy that conserves (ρEtot) as:

∆(ρE) = −1

2

∑

f

∆ρf (Φf+1/2 − Φf−1/2), (11)

where the sum is over the cell faces with indices f and

the indices f +1/2 and f − 1/2 refer to the zone centers

immediately to the left and right in the direction perpen-
dicular to the face. As long as we record the hydrody-

namical fluxes through the zone faces after coming out

of the hydrodynamics step, this algorithm is able to con-

serve the total energy completely (except for any energy
loss or gain through physical domain boundaries). In or-

der for the method to be second-order accurate in time,

we need to use a time-centered Φ (which can be com-

puted by averaging the time-level n and n+1 potentials;

we already have the latter because CASTRO re-computes
the potential at the new time after the hydrodynamics

step, and we can apply this energy at the end of the

timestep). Note that of course the hydrodynamical flux

is already second-order accurate in time. We observe
also that in practice we will not obtain conservation of

energy to machine precision even in the absence of open

domain boundaries. The method itself is conservative

if it is time-centered and correctly evaluates the energy

change on cell faces. This was demonstrated empirically
by Jiang et al. (2013) and is obvious in the case of a fixed

external potential; it is not as obvious in the case of the

gravitational self-potential, which changes in response to

changes in the mass distribution, so we give a short proof
of this in Appendix B. However, in practice there is a

non-zero numerical tolerance associated with the Poisson
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gravity solver (in our case, the multigrid method) that

results in a non-zero error in the calculation of the gravi-

tational potential. This results in a very small deviation

from perfect conservation. It is not usually larger than
the other effects which result in energy non-conservation

for our simulations, such as resetting the state of zones

that acquire a negative internal energy, and in principle if

desired it can be made smaller by using stricter tolerance

levels on the gravity solve.
In passing, we hope to clear up a spot of potential con-

fusion, that we feel is unclear in other papers on this

subject: the factor of 1/2 that appears in Equation 11

has nothing to do with the factor of 1/2 that appears in
the statement of conservation of total energy, Equation 9.

The former comes simply from the fact that the energy

change is evaluated using the mass motion through a dis-

tance of half of the zone width. The latter is needed to

ensure that these local changes in energy are not double-
counted when doing a global integral, since the gravi-

tational potential is self-generated. Equation 11 applies

to any conservative potential Φ, and we use this to our

advantage for the rotation forces in Section 2.4.
As observed by Springel (2010), this method is more

accurate than the more common (non-conservative) ap-

proach of evaluating the change in gas energy using the

work done (v · ρg) by the gravitational force at the cell

center. Analytically this form expresses the same core
idea as Equation 11 via the work-energy theorem, but a

major flaw is that it evaluates the energy change at the

cell center when in fact the mass transfer is happening at

the cell edges. This can result in a significant leaking of
energy throughout the course of the evolution, dramati-

cally affecting the course of the evolution. The standard

approach is therefore unacceptable in the case of a prob-

lem like white dwarf mergers, and the fix to this energy

leaking—evaluating the energy transfer at the six zone
faces instead of the single zone center—adds only a very

minor cost in terms of code complexity and computa-

tional time.

Another approach to conserving total energy recently
taken in the literature is to evolve an equation for the

total energy (ρEtot); see Jiang et al. (2013) (see also

Springel (2010), Section 5.3). That is, one can replace

the gas energy equation with a total energy equation,

and then the energy flux includes a term correspond-
ing to the flux of gravitational potential energy. We

avoid this approach for our problem because there are

regions on the computational domain where the total

energy is dominated by potential energy (especially the
low-density regions near the edge of the white dwarfs),

and the gas energy can only be retrieved by first subtract-

ing −ρΦ/2 from the total energy. Like Springel (2010),

we find that this can result in some serious errors due

to numerical discretization, yielding unphysical energies

or temperatures. We observe also that the implementa-

tion of Jiang et al. (2013) has terms in the gravitational

flux that are not proportional to ρ, and so can lead to

the same troubles that plague the tensor-based formal-
ism for the momentum equation, where small errors in

the discretization of the gravitational potential can lead

to very large changes in the energy of the gas.

2.3.2. Boundary Conditions

Analytical solutions to the Poisson equation customar-

ily assume that the potential vanishes at large distances

from the region of non-zero density. On a finite com-

putational domain, however, it is usually not possible to
have the edges of the domain be far enough away that the

potential can be taken to be zero there. Solving the Pois-

son equation therefore requires knowledge of the values of

the potential on the edges of the computational domain.
In principle, the boundary values can be computed by

doing a direct sum over the mass distribution inside the

domain, where the mass in each zone is treated as a point

source:

Φlmn = −
∑

i,j,k

Gρijk
|xlmn − xijk |

∆Vijk . (12)

Here (i, j, k) are the indices of cells inside the domain,

and (l,m, n) are the indices of ghost zones outside the

domain where the boundary values for the potential is

specified4. ∆V is the volume of the zone. If there are N
zones per spatial dimension, then there are 6N2 bound-

ary zones, and each boundary zone requires a sum over

N3 zones, so the direct computation of the boundary

conditions scales as O(N5). This method is expensive
enough that it is not used for hydrodynamics simulations

(though it is useful for comparison to approximate solu-

tions, so we have implemented it as an option in CASTRO).

In a typical simulation we place the boundaries of the

domain far enough away from the region containing most
of the mass that some method of approximation to this

direct summation is justified. Many approaches exist

in the literature. The original release of CASTRO fea-

tured the crudest possible approximation: a monopole
prescription, where the boundary values were computed

by summing up all the mass on the domain and treat-

ing it as a point source at the domain center. This is

correct only for a spherically symmetric mass distribu-

tion, and therefore is best suited for problems like single-
star Type Ia supernova simulations (e.g. Malone et al.

(2014)) that employ self-gravity. For a problem like that

of a binary star system with significant departures from

spherical symmetry, this assumption fails to produce ac-
curate boundary values, which we find in Section 4.4 re-

4 In CASTRO we actually specify the potential on cell edges, not
on cell centers, but the idea is the same, and we use the location of
the cell edge in computing the distance to each zone in the domain.
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sults in a significant drift of the center of the mass of the

system over time.

The most natural extension of the monopole prescrip-

tion is to include higher-order multipole moments. If
the entire mass distribution is enclosed, then the poten-

tial can be expanded in a series of spherical harmonics

Ylm(θ, φ) (where θ ∈ [0, π] is the usual polar angle with

respect to the z axis and φ ∈ [0, 2π) is the usual az-

imuthal angle with respect to the positive x axis):

Φ(x) = −
∞∑

l=0

l∑

m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1
, (13)

where qlm are the so-called multipole moments. The ori-

gin of the coordinate system is taken to be the center
of the computational domain, and r is the distance to

the origin. The multipole moments can be calculated by

expanding the Green’s function for the Poisson equation

as a series of spherical harmonics. After some algebraic
simplification of Equation 13, the potential outside of the

mass distribution can be written as:

Φ(x) = −
∞∑

l=0

{
Q

(0)
l

Pl(cos θ)

rl+1

+

l∑

m=1

[
Q

(C)
lm cos(mφ) +Q

(S)
lm sin(mφ)

] Pm
l (cos θ)

rl+1

}
.

(14)

Pl(x) are the Legendre polynomials and Pm
l (x) are the

associated Legendre polynomials. Q
(0)
l and Q

(C,S)
lm are

variants of the multipole moments that involve integrals

of Pl and Pm
l , respectively, over the computational do-

main; their definition is given in Appendix C.

This approach becomes computationally feasible when
we cut off the outer summation in Equation 14 at some

finite value of lmax. If it is of sufficiently high order, we

will accurately capture the distribution of mass on the

grid. In practice we first evaluate the discretized analog

of the modified multipole moments for 0 ≤ l ≤ lmax

and 1 ≤ m ≤ l, an operation that scales as N3. We

then directly compute the value of the potential on all of

the 6N2 boundary zones. Since the multipole moments

only need to be calculated once per Poisson solve, the
full operation scales only as N3. The amount of time

required to calculate the boundary conditions is directly

related to the chosen value of lmax, so there is a trade-

off between computational expense and accuracy of the

result.
As a demonstration of the method’s accuracy, we con-

sider the case of two white dwarfs of mass ratio 2/3, using

the initialization procedure described below in Section 3.

We terminated the simulation just after initialization, so
that we perform only an initial Poisson solve for this den-

sity distribution. We did this for values of lmax ranging

from 0 to 20, and we also did this using the numerically

exact solution provided by Equation 12. Defining the L2

norm of a field f as

‖f‖2 =


∑

i,j,k

∆x∆y∆z f2
ijk




1/2

, (15)

we computed the L2 error of Φ on the entire domain for

multipole boundary conditions, which we call Φl, relative
to Φ obtained using the exact boundary conditions:

Errorl =
‖Φl − Φexact‖2

‖Φexact‖2
. (16)

The result is shown in Figure 1. At lmax = 6, the er-

ror is already well below 10−4 and we adopt this as our
default choice for all simulations with Poisson gravity.

In Section 4.4 we show that there are no gains to be

had by increasing the accuracy further. At very high or-

ders (l & 18) the approximation breaks down, as seen
in Figure 1. This is a result of the ambient material on

the grid. At each boundary point we assume that all of

the mass on the grid is contained within a sphere whose

radius is the distance from that boundary point to the

center of the domain. This does not hold for boundary
points in the centers of domain faces, because of the ma-

terial in the domain corners. This can be fixed by using

multiple mass shells at diferent radii, but the error is

negligible in practice for the values of lmax that we use.
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Figure 1. Error of Φ on the computational domain for
a binary white dwarf simulation whose boundary condi-

tions were computed using various values of the maxi-

mum multipole order, relative to the exact solution de-

termined by a brute force sum on the boundaries. Circles

represent the error at integer values, and they have been
connected by a smooth line to guide the eye.
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2.3.3. Convergence Testing

Since the results of a merger simulation depend

strongly on gravity, it is important to check whether
proper numerical convergence is achieved for the Poisson

solver. To do so, we created a simple test that initializes

a sphere of radius R and uniform mass density ρ onto

our grid, and used CASTRO to calculate the gravitational

potential Φ of this setup. We ensure that R is an integer
multiple of the grid spacing, and the center of the sphere

is at the origin. The problem domain for our simula-

tions is [−1.6 cm, 1.6 cm]3, and we take R = 1.0 cm and

ρ = 103 g cm−3. The zones with r > R are filled with an
ambient material of very low density (10−8 g cm−3). We

run this problem at multiple resolutions corresponding to

jumps by a factor of two. For comparison, at each grid

point we evaluate the analytical potential of a uniform

sphere, which can be easily determined using Gauss’ law:

Φsphere(r) = −GM

r
×




(3R2 − r2)/(2r2) r ≤ R

1 r > R
, (17)

where M = 4πR3/3 is the mass of the sphere. We mea-

sure the numerical error by calculating the L2 norm of

the error and normalizing it by the L2 norm of the ana-
lytical solution:

Error =
‖Φ− Φsphere‖2
‖Φsphere‖2

. (18)

We define the order of convergence p between two simu-

lations with a jump in resolution of integer factor m > 1

as

p = logm

(
Errorlow
Errorhigh

)
. (19)

Here Errorlow is the L2 error at the lower resolution and
Errorhigh is the L2 error at the higher resolution. We ex-

pect the error to converge at p = 2 given the discretiza-

tion we choose. For all simulations in this section and

for all our main science simulations, we choose a relative

error tolerance of 10−10 to be satisfied in the multigrid
solve. The results of this test are plotted in Figure 2.

We find that at low resolution convergence is actually

substantially better than second-order. The explanation

for this is that we are attempting to model a spherical
object on a rectangular grid. This results in two sources

of error. First, at very low resolution, the object does not

look very spherical due to the rectangular grid represen-

tation, so the potential it produces is not quite that of

a sphere. As the resolution is increased, the distribution
of the mass on the grid will change. Second, the total

amount of mass on the grid will change as the sphere fills

out. So we are combining the true accuracy bonus from

increased resolution with the artificial accuracy bonus
from getting closer to solving the problem we are sup-

posed to be solving. At high resolution this effect levels
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Second order convergence

Figure 2. Comparison of the CASTRO gravitational po-

tential to the analytical solution for: a sphere of uniform
density; the same sphere, but with the potential normal-

ized using the actual amount of mass on the grid instead

of the mass of a perfect sphere; and, a cube of uniform

density. Plotted also is a notional curve whose slope rep-
resents perfect second order convergence.

off, though, as the representation of the sphere is not sig-

nificantly different in our two highest resolutions shown.

For example, at 128 zones per dimension the amount of

mass on the grid happens to be slightly closer to the true
spherical mass than at 256 zones per dimension. We can

eliminate the second source of error by changing the den-

sity on the grid so that the total mass M is actually what

we intend it to be. The resolution study for this case (the

“normalized sphere”) is also plotted in Figure 2. At low
resolution we still obtain convergence slightly better than

second-order, indicating that we have not eliminated the

geometrical problem of the mass distribution changing.

The only way to fully eliminate this effect is to use a
test problem that does not change with resolution. The

obvious companion problem is a cube of uniform density

ρ, where now R is half of the side length of the cube.

At each resolution we use the same R as for the sphere,

which ensures that the cube always fills exactly the same
fraction of the domain and thus has the same mass, so the

only improvement comes from better sampling at higher

resolution. The gravitational potential for this object has

been worked out analytically by Waldvogel (1976) (see
also a similar result by Hummer (1996), and an earlier

calculation by MacMillan (1958)). The potential is given
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in Equation 15 of that paper5:

Φcube(x, y, z) = −Gρ

1∑

i,j,k=0

[
xiyj tanh

−1

(
zk
rijk

)

+ yjzk tanh
−1

(
xi

rijk

)
+ zkxi tanh

−1

(
yj
rijk

)

−x2
i

2
tan−1

(
yjzk
xirijk

)
−

y2j
2

tan−1

(
zkxi

yjrijk

)

− z2k
2

tan−1

(
xiyj
zkrijk

)]
(20)

where x0 = R + x, x1 = R − x, y0 = R+ y, y1 = R− y,

z0 = R + z, z1 = R − z, and rijk =
√
x2
i + y2j + z2k.

We note that if implemented in Fortran or C/C++, the

inverse hyperbolic tangent used here is atanh and the

inverse tangent is atan (not atan2). This formula is

valid both inside and outside the cube. The normalized

L2 error for this problem is also shown in Figure 2, and
only for this problem do we obtain perfect second-order

scaling at all resolutions.

The main lesson here is that in a convergence study, it

is important to ensure that the physical problem does not
change with resolution. Since in the case of spherical ob-

jects on rectangular grids the effect may be to artificially

boost convergence with resolution, in a simulation with

spherical objects like stars one can envision a scenario

of being fooled into believing apparently good conver-
gence results that are simply a convolution of artificially

high gravitational convergence and poor convergence in

the hydrodynamics. A convergence study in this case is

only fully valid if there is reason to be confident that this
effect is negligible compared to other factors.

2.4. Rotation

For the evolution of binary systems, it is most natural
to evolve the two stars in a frame that is co-rotating at

the same period as the orbital period. Since the publi-

cation of the original code paper, CASTRO now has the

ability to evolve systems in a rotating reference frame.
Source terms corresponding to the Coriolis and centrifu-

gal force terms are added to the momentum and energy

equations. In this frame, the stars essentially remain sta-

tionary in their original positions due to the centrifugal

force supporting against the gravitational attraction, and
will remain this way as long as significant mass trans-

fer does not occur. Swesty et al. (2000) demonstrated

(in the context of neutron star mergers) that conserva-

tion of angular momentum is much easier to obtain in
the rotating reference frame than in an inertial frame

5 The last term in that equation is missing a factor of 1/2, which
destroys the symmetry. We have inserted this missing factor and
performed a simple coordinate transformation so that the center
of the cube is at the origin.

in which stars advect large amounts of material around

the domain. We wish to emphasize that although it is

commonly stated in the literature that fixed-mesh codes

poorly conserve angular momentum, it is only generally
true that mesh-based codes do not exactly conserve an-

gular momentum when the equations are written in con-

servative form for linear momentum. Indeed, Motl et al.

(2002) and Byerly et al. (2014) have evolved binary sys-

tems using the hydrodynamics equations written in a
form that explicitly conserves angular momentum, and

it is straightforward to convert an existing grid-based

code to solve the system of equations that Byerly et al.

present. Additionally, the extent to which angular mo-
mentum conservation is violated in our code is a function

of the resolution. When the resolution is sufficiently high,

excellent conservation properties can result. At reason-

able resolution for a binary orbit our code conserves an-

gular momentum well enough to keep the stars stable for
a large number of orbits; however, at moderate resolution

in an inertial frame, there is a secular loss of angular mo-

mentum that eventually will result in a spurious merger.

We note that as the stars begin to coalesce, the rotating
reference frame will no longer provide a good approxima-

tion to the spatial motion of the stars and then they will

begin to significantly move around the domain. This is

not necessarily problematic because the most important

feature of the rotating frame is that it helps ensure that
the initial coalescence is not the result of spurious numer-

ical loss of angular momentum. When significant mass

transfer sets in and evolution proceeds on a dynamical

timescale, the conservation properties may be slightly
worse but angular momentum conservation is also less

important.

In a rotating reference frame with angular frequency

vector ω, the non-inertial contribution to the momentum

equation is:

∂(ρu)

∂t

∣∣∣∣
rot

= −2ω × (ρu)− ρω × (ω × r) . (21)

Here r is the position vector with respect to the origin.

Typically we choose ω = (0, 0, 2π/T )T , with the rotation

axis coincident with the z axis at x = y = 0. T is

the rotation period, which is the most natural quantity
to specify for a rotating stellar system. As described

in Appendix A, we include this source term in the edge

state prediction in a way that is analogous to the gravity

source. We evaluate all quantities at cell centers. We use

the same predictor-corrector approach that we use for
the gravity source terms to the momentum equations. A

slight difference is that the Coriolis force for each velocity

component is coupled to other velocity components. If

the rotation is about the z-axis, then the discrete update
to un+1 depends on the value of vn+1, and vice versa. If

we fix the value of the time-level n + 1 quantities after
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coming out of the hydrodynamics update, there would be

a slight inconsistency between the x and y components

of the velocity.

We propose a more accurate coupling that directly
solves this implicit system of coupled equations. We de-

note by (ρ̃u) the value of the momentum after updating

it with the centrifugal force, and the time-level n Corio-

lis force. The remaining update for the time-level n+ 1

Coriolis force then appears as:

(ρu)n+1 = (ρ̃u) +
∆t

2

(
−2ω × (ρu)n+1

)
(22)

To proceed further, we assume that the rotation is about
the z axis with frequency ω. Then there is no update to

the z-momentum, and the other equations are:

(ρu)n+1 = (ρ̃u) + ω∆t(ρv)n+1 (23)

(ρv)n+1 = (ρ̃v)− ω∆t(ρu)n+1 (24)

We can directly solve this coupled system:

(ρu)n+1 =
(ρ̃u) + ω∆t(ρ̃v)

1 + ω2∆t2
(25)

(ρv)n+1 =
(ρ̃v)− ω∆t(ρ̃u)

1 + ω2∆t2
(26)

We use this form of the momentum update in CASTRO.

This improvement is small but increases the accuracy of

our rotating white dwarf systems over long time-scales.

The update to the energy equation can be determined

by taking the dot product of the velocity with the mo-
mentum source terms. The Coriolis term vanishes identi-

cally, and so the Coriolis term does no work on the fluid.

The update from the centrifugal force becomes

∂(ρE)

∂t

∣∣∣∣
rot

=
1

∆V

∫
ρu · fR dV, (27)

with fR ≡ −ω × (ω × r). This expression is identical
in form to the gravity source under the interchange of g

with fR. As observed by Marcello & Tohline (2012), we

can similarly write down a rotational potential,

ΦR =
1

2
|ω × r|2 . (28)

In the presence of rotation the conserved total energy

becomes:
∫

dV (ρEtot) =

∫
dV

(
ρE +

1

2
ρΦ+ ρΦR

)
. (29)

Given that we can write down a potential energy for

the rotation field, then we can use the machinery of

Section 2.3.1. We again continue to evolve explicitly an
equation for the gas energy, and allow it to change in

response to work done by or on the rotational potential.

∆(ρE)|rot = −1

2

∑

f

∆ρf (Φ
R
f+1/2 − ΦR

f−1/2) (30)

We apply the rotational forces after the gravitational

forces, but there is some freedom in the order in which to

apply the gravitational and rotational terms. This order

may matter because the Coriolis force depends on the
fluid velocity, and in the predictor-corrector approach,

we use the velocities both at time-level n and time-level

n + 1. If we update the latter with the gravitational

force, then the Coriolis force sees a different velocity than

the one obtained through the pure hydrodynamics step.
(The energy equation does not face the same issue in our

new formulation, because the velocities used are always

the time-level n + 1/2 values coming from the Riemann

solver.) In practice, this does not matter significantly
for our simulations in this work because the centrifugal

force plays the dominant role in maintaining stability

of non-contact binary systems, and the centrifugal force

does not depend on the fluid velocity. This issue may be

worth exploring in future work in situations where the
Coriolis term is non-negligible in determining the system

evolution.

In all simulations performed in a rotating reference

frame, we transform all relevant quantities back to the
inertial reference frame when reporting them in analysis

routines and visualization (though the data is saved to

plotfiles while still in the rotating frame). In particular,

for every zone we adjust the position, momentum, and

energy to account for rotation. If the position is x in
the inertial frame and x′ in the rotating frame, and the

rotation vector is ω, the transformation rules are:

x(t) = Rx′(t) (31)

v(t) = v′(t) + ω × (Rx′(t)) (32)

The rotation matrix R is:

R = Rz(θ3)Ry(θ2)Rx(θ1) (33)

where Rx, Ry, and Rz are the standard rotation matri-

ces about the x, y, and z axes, and θ = ωt.

3. PROBLEM DESCRIPTION AND SOFTWARE
IMPLEMENTATION

In this section we describe our white dwarf merger

software, and focus in particular on the initial white

dwarf models (Section 3.1), the initial problem setup

(Section 3.2), and analysis (Section 3.3) components.
The software used to generate the test problems in this

paper (as well as the manuscript itself), wdmerger6, is

freely available at an online repository hosting service.

Version control in both the parent software (BoxLib,

CASTRO) and in wdmerger permits us to reference the
state of the code at the time a simulation was per-

formed. In all plot files and diagnostic output generated

6 wdmerger can be obtained at
https://github.com/BoxLib-Codes/wdmerger.

https://github.com/BoxLib-Codes/wdmerger
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by CASTRO, and figure files generated by wdmerger, we

store the active git commit hashes of BoxLib, CASTRO,

and wdmerger. Line plots are generated using the

matplotlib library for Python (Hunter 2007), while slice
plots and other multi-dimensional visualizations are gen-

erated using the yt code (Turk et al. 2011).

3.1. White Dwarf Models

At the start of any full simulation, we generate ini-

tial model white dwarfs by integrating the equation of

hydrostatic equilibrium, taking the temperature to be
constant, and using the stellar equation of state. This

results in a single non-linear equation to find the density

in a zone given the conditions in the zone beneath it:

pi+1 − pi
∆x

=
1

2
(ρi + ρi+1)gi+1/2. (34)

This equation is a function of ρi+1 only since the pres-

sure is uniquely determined by the density in this case.

Here, ρi and pi are known, and gi+1/2 is the gravitational

acceleration at the interface between zones i and i + 1,
found by simply adding up all the mass from zones 1

to i to get the enclosed mass, Mi+1/2, and then setting

gi+1/2 = −GMi+1/2/r
2
i+1/2. We solve this equation for

ρi+1 using a Newton-Raphson iteration.
We desire to specify the mass of the white dwarf, as

well as its temperature and composition. To start the

integration off, we therefore need to guess at a central

density. We then do a secant iteration over the entire

integration procedure to find the central density needed
to yield the desired total mass. The grid spacing is ∆x =

6.25 km. We chose this value because no simulation we

perform is likely to exceed this grid resolution inside the

stars themselves; for our normal domain size (see below),
this corresponds to three jumps in refinement by a factor

of four. We find that for low resolution runs, this is a

better choice than selecting the 1D grid spacing to be

comparable to the 3D grid spacing.

The white dwarf composition is determined by the
chosen mass. For this paper we adopt the scheme

of Dan et al. (2012). Low-mass WDs are pure he-

lium; low-to-intermediate-mass WDs are an even carbon-

oxygen core with a relatively large helium envelope;
intermediate-mass WDs are a carbon-oxygen core with

slightly more oxygen than carbon; and, high-mass WDs

are composed of oxygen, neon, and magnesium. This

choice of composition distribution broadly resembles the

results of stellar evolution calculations in the respective
mass ranges, though it does not match the calculations

in detail.

We map the 1D model onto the 3D Cartesian grid by

taking density, temperature, and composition as the in-
dependent variables, interpolating these to the cell cen-

ters, and then calling the equation of state to initialize

the remaining terms. It is possible to interpolate instead

by using pressure instead of temperature, as pressure is

more closely related to hydrostatic balance, but the EOS

we use is so insensitive to temperature that this map-
ping can result in large deviations from the isothermal

assumption we started with. The interpolation process

divides each zone into nsub sub-zones of equal volume for

the purpose of sampling the 1D model, and the sub-zones

are added together to obtain the full zone’s state. This
sub-grid-scale interpolation is useful especially near the

edge of the star, where the density falls off rapidly with

radius. Typically we take nsub = 4.

3.2. Initial State

For a single star simulation, the star is simply placed

at the center of the computational domain, which we

take to be the origin. For a binary star simulation, we
take as parameters the mass of the two white dwarfs and

the initial orbital period T . Using Kepler’s third law

and assuming a circular orbit, we can then work out the

orbital separation a:

a =

(
GMT 2

4π2

)1/3

. (35)

Here M = MP + MS is the total mass of the system,
where MP is the specified primary mass and MS is the

specified secondary mass. The primaryWD always starts

on the left side of the computational domain for our sim-

ulations, and is more massive than the secondary. This

reflects the usual terminology in the literature where the
primary WD is the accretor and the secondary is the

donor. The center of mass is located at the center of

the computational domain, and by default the stars lie

along the x axis, so that the primary’s center of mass is
located at x = −(MS/M) a and the secondary’s center of

mass is located at x = (MP /M) a. The user may choose

to initialize the stars along a different axis, and can also

choose a non-zero orbital phase and/or eccentricity.

The initial velocity is taken to be zero in if we are in
the reference frame that rotates with the WDs, and if

we are in the inertial frame the velocity in every zone is

set equal to the rigid rotation rate corresponding to the

distance of that zone from the rotation axis, given the
specified period T . Thus the inertial frame and rotating

frame simulations are starting off with the same initial

conditions: two white dwarfs locked in synchronous ro-

tation. This is the simplest assumption to make, but in

the future we may explore relaxing this requirement.
In the current paper we do not attempt to enforce equi-

librium with an additional relaxation step. This will be

an important part of future work in this series, as numer-

ous groups working on binary evolution (Swesty et al.
2000; Motl et al. 2002; Rosswog et al. 2004; Dan et al.

2011; Pakmor et al. 2012a) have commented on the im-
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portance of equilibrium initial conditions in determining

the evolution of the system. As a consequence of start-

ing in a non-equilibrium setting, there are large density

and pressure gradients near the white dwarf surfaces that
result in significant amounts of mass flowing out of the

white dwarfs. This can result in spurious non-physical

consequences such as the total density or energy going

negative in a zone. To compensate for this, we start the

simulation with a timestep that is a few orders of mag-
nitude smaller than that required by the CFL criterion,

and allow the timestep to increase by 1% each timestep

so that the timestep reaches its maximum allowed by

the velocities on the grid over a span of approximately
1000 timesteps. This allows the gas at the surface of the

white dwarf to come closer to equilibrium without hav-

ing discontinuous jumps in the density or energy. For all

simulations, the maximum timestep is set to be equal to

one-half of the CFL limit.
The computational domain has a total size of 1.024×

1010 cm in each spatial dimension, and is centered at the

origin. Our coarse grid has 2563 zones, corresponding to

a spatial resolution of 400 km. For the present study,
we choose a simple refinement strategy: on the coarse

grid, all zones within twice the Roche radius of each star

are tagged for refinement, using the formula provided by

Eggleton (1983) for the effective Roche radius rL of a

star in a binary,

rL
a

=
0.49q2/3

0.62/3 + ln(1 + q1/3)
. (36)

In this formula we can use q = MS/MP for obtaining

the Roche radius of the secondary, and use the inverse

value of q to obtain the Roche radius of the primary.

The extra buffer from doubling the Roche radius ensures
that the sharp density gradients near the edge of the star

are within the zone of refinement. On higher levels, we

tag all zones above a given density threshold (taken to

be 1 g cm−3 in this paper) that corresponds to the stars

themselves. We also ensure that the outer part of the
domain is never tagged for refinement. In future work we

will add criteria that tag for refinement the gas between

the stars, which is expected to feature nuclear burning.

Outside of the stars we fill the rest of the domain with
a very low density ambient gas because our hydrodynam-

ics model requires the density to be non-zero everywhere.

This ambient material can create difficulties for the sim-

ulation. In addition to the negative densities or energies

at the stellar surfaces mentioned earlier, in the rotating
reference frame we observe that standing instabilities can

create very large velocities in the ambient fluid that drag

down the global timestep by up to an order of magnitude.

To deal with this we employ a “sponge” similar to that
described by Almgren et al. (2008) for the outer regions

of the computational domain. After the hydrodynam-
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Figure 3. Radial profile of the hydrodynamical sponge

we apply (Equation 38). We subtract fS from unity; the
value of 1 − fS indicates what happens to the sponged

function after the sponge is applied. The sponge has no

effect in the inner part of the domain, and is fully applied

at the outer edge.

ics update, we apply a damping force to the momentum

equation as follows:

(ρu)n+1 → (ρu)n+1

1 + (∆t/∆tS)fS
, (37)

where ∆tS is a timescale for the sponge to operate on,
and fS is the damping factor. We choose it so that that

the sponge is non-operational inside a radius rS from the

origin, and fully applied at a radius r′S ≡ rS +∆rS . We

then smooth the sponge out between rS and r′S :

fS =





0 r < rS

1

2

(
1− cos

[
π

(
r − rS
∆rS

)])
rS ≤ r < r′S

1 r ≥ r′S .

(38)

For the simulations in this paper we set rS to be 75% of
the distance from the origin to the domain boundaries,

and ∆rS so that the sponge smoothing region extends

another 10% of that distance. The resulting profile is

displayed in Figure 3. We set ∆tS = 0.01 s, which is of

the same order as the CFL timestep for typical problem
setups. While the sponge is applied we should avoid

imputing any physical meaning to what is happening in

the low-density gas far from the stars.

3.3. Analysis

We track a number of diagnostic quantities at the end

of coarse grid timesteps. For all simulations, we record

the total energy (including the breakdown into its com-

ponents: kinetic, internal, gravitational potential, and
rotation; we note that for the diagnostics we actually

use (ρE) for calculation of the total energy, rather than
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explicitly calculating the sum of kinetic and internal, as

this is the quantity that should be explicitly conserved),

the total angular momentum, and the center of mass of

the system. We also separately record diagnostic infor-
mation about the stars. Our strategy for tracking their

locations is as follows: at the beginning of the calcula-

tion, we store the physical center of mass xc of the stars

as determined by Kepler’s third law. We also store the

velocity vc of the stars. Then, at each new time step we
make a preliminary guess for their location by updating

the location using the old velocity, xc → xc + vc∆t. We

then refine our guess for the location and velocity of each

star by computing a location-weighted sum of the mass
and velocity over the computational domain. To do this,

we need a cutoff for determining what counts as part of

the primary and what counts as part of the secondary.

We use a simple criterion: the star that a zone “belongs”

to is the one that exerts a larger magnitude gravitational
force on that zone (as computed using the tentative data

for that star’s mass and radius). From this we obtain

the corrected mass of each star as well as its location

and velocity. Once we have the new centers of mass, we
compute the effective radius of each star at various den-

sity cutoffs. This involves computing the volume V of

all zones that belong to the star (in the sense described

above) whose density is greater than the cutoff. We then

compute reff = (3V/4π)1/3.
When we do simulations with adaptive-mesh refine-

ment, there are multiple levels of refinement that con-

tribute to a global integral. To deal with this we employ

a “mask” which zeros out the data in a zone on a given
level if there is a refined region overlying that zone.

3.3.1. Gravitational Waves

A final diagnostic quantity we consider is the gravita-

tional wave emission by the binary system. White dwarfs

are not strongly affected by general relativistic effects;

the orbital motions are much slower than the speed of

light, and the relativity parameter GM/c2R, which mea-
sures the ratio of the Schwarzschild radius of a massM to

the actual radius R of the object, is much less than unity

for a white dwarf. Thus at any given time the relativistic

effects are negligible compared to the Newtonian gravity
and so we do not directly include relativistic effects in

computing the dynamical evolution of the system. A

white dwarf binary system does emit gravitational waves

during its evolution; this energy loss is what drives the

initial inspiral over very long timescales. Eventually it
will drive the system to become dynamically unstable

due to the Newtonian tidal forces alone, though once

that period begins, the gravitational energy loss is in-

consequential in affecting the dynamical evolution of the
system. The frequency of the gravitational waves emit-

ted by the white dwarf binary is similar to the frequency

of the orbital motion, which is in the range 10-100 mHz

for our problem. This is well outside the range of cur-

rently existing gravitational wave detectors but is very

well suited for proposed space-based detectors such as
eLISA (Amaro-Seoane et al. 2013).

We follow the prescription of Blanchet et al. (1990) for

computing a gravitational wave signal for our simulation.

At distances far from the gravitational wave source, we

can consider the leading term in the gravitational wave
signal:

hTT
ij (t,x) =

2G

c4r
Pijkl(n)Q̈kl(t− r/c). (39)

h is the perturbation to the spacetime metric and is com-

monly called the strain; for laser interferometers, it mea-
sures the relative change in the distance between mir-

rors. The “TT” superscript indicates that we work in the

commonly used tranverse-traceless gauge. This strain is

measured at time t and position x relative to the binary

system. r ≡ |x| is the distance from the observer to the
binary system. The unit vector n ≡ x/r then measures

the direction of the outgoing wave with respect to the ob-

server, and Pijkl(n) is an operator that projects a tensor

onto the direction orthogonal to n:

Pijkl(n) = (δik − nink) (δjl − njnl)

− 1

2
(δij − ninj) (δkl − nknl) . (40)

Qkl is the quadrupole moment tensor:

Qkl =

∫
dV ρ

(
xkxl −

1

3
δklx

2

)
. (41)

The argument (t − r/c) indicates that to get the strain

at time t we evaluate the second derivative of the

quadrupole moment at the retarded time t − r/c. In

practice the retarded time is simply the simulation time
and the observer would see the gravitational waves after

a time delay of order r/c.

Therefore the primary component of the calculation is

the evaluation of the second time derivative of Qkl. Ex-
plicitly constructing a discretized form of this derivative,

using the current state and the state at previous times, is

undesirable because of the inherent imprecision (its ac-

curacy depends on the size of the timestep), in addition

to the logistical challenges that may be implied by sav-
ing and using previous simulation states. Blanchet et al.

(1990) provide a prescription for this time derivative

purely in terms of the state at a given time:

Q̈kl = STF

{
2

∫
dV ρ(vkvl + xkgl)

}
. (42)

The symmetric trace-free (STF) operator is defined as:

STF {Aij} =
1

2
Aij +

1

2
Aji −

1

3
δij

∑

k

Akk. (43)
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The strategy is then as follows. At the end of the coarse

timestep, we first calculate Q̈kl using an integral over the

domain. This quantity is independent of the observer. If

we are using a rotating reference frame, we first convert
velocities and positions back to the inertial frame before

evaluating the integral. Then, we pick an observing lo-

cation x relative to the domain, evaluate the projection

operator, and then perform the relevant tensor contrac-

tion to determine the strain tensor. We can repeat this
process for any number of observing locations at min-

imal cost, since the quadruple tensor only needs to be

calculated once. Gravitational waves only excite modes

orthogonal to their direction of travel. These are the
“plus” and “cross” modes, h+ and h×, named after the

types of spatial distortions they exhibit. We calculate the

signal at a distance r along the x, y and z axes. For the

latter, as an example, h+ = h11 = −h22 ∝ (Q̈11−Q̈22)/2

and h× = h12 = h21 ∝ Q̈12. All other entries van-
ish. By default we take r = 10 kpc; as shown by

Lorén-Aguilar et al. (2005), this is a typical distance

scale over which an experiment such as LISA could de-

tect a coalescing binary white dwarf system. The strain
at any other distance is easily calculated and goes as the

inverse of the distance.

4. NUMERICAL TEST PROBLEMS

White dwarf merger simulations face a number of

numerical difficulties that are not present in single-

degenerate Type Ia and core-collapse supernova simula-
tions. In Section 2.3, we discussed how the lack of spher-

ical symmetry necessitates a careful look at the grav-

ity solver. There are also hydrodynamical issues: the

merger process will result in substantial motion of stel-
lar material across the grid. This bulk motion presents

an opportunity for advection errors to build up, and is

only partially mitigated by evolving the white dwarfs

in a co-rotating frame. It is therefore important to

be aware of the behavior of the code in such circum-
stances. The behavior of CASTRO for many standard

hydrodynamics test problems was detailed in the orig-

inal code paper (Almgren et al. 2010), and in the in-

terest of brevity we do not repeat them all here. In-
stead, we focus on a subset of problems that highlight

the special difficulties introduced in merger simulations.

These problems couple the hydrodynamics, gravity and

equation of state modules. We observe that while in

most non-trivial three-dimensional problems this creates
a complexity that makes it impossible to determine exact

analytical solutions, it is straightforward to devise prob-

lems for which certain global properties should obey sim-

ple, expected behaviors. Where possible, these should be
quantified and a convergence study performed, and that

is be the focus of the current section.
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Figure 4. Time evolution of the effective radius of a

0.9M⊙ white dwarf, seeded onto the grid using a one-
dimensional hydrostatic model and evolved without fur-

ther relaxation. The lines represent different number of

zones per spatial dimension; when this number is greater

than 256, it represents an effective resolution obtained
using AMR levels that cover the star. The radius is de-

termined using the volume of the grid that has a density

greater than 103 g cm−3.

4.1. Maintaining Hydrostatic Equilibrium

In Section 3.1 we describe the process by which we gen-

erate initial stellar models. While the 1D models are in
hydrostatic equilibrium to within a small error, interpo-

lation onto the 3D Cartesian grid will introduce pertur-

bations into the solution (Zingale et al. 2002). Although

we ensure that the initial models are generated with the
same equation of state and are at least as well resolved

as our finest grid, there is still be a hydrodynamical error

associated with the fact that the rectangular grid cannot

faithfully represent a spherical star. Additionally, the

gravitational potential obtained by the multigrid solver
will differ slightly from the one assumed by the initial

model, and the operator splitting between the gravity

and hydrodynamics should also result in small errors.

As a result, we expect that the star will oscillate slightly
about an equilibrium point, but that the amplitude of

this oscillation should decrease with increasing resolu-

tion.

This problem was studied in the first CASTRO paper,

but is worth revisiting here. A single star explosion
simulation may only last a couple of seconds, and the

CASTRO paper studied the behavior of the star after one

second of evolution. However, the dynamical timescale

of a typical carbon-oxygen white dwarf is on the order
of 1–10 seconds. Additionally, a binary orbit is typically

on the order of 10–100 seconds when a merger simulation
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starts, and with equilibrium initial conditions the system

may survive for tens of orbits before the secondary is dis-

rupted. When this does happen, we want to be confident

that it was because of the dynamics of the merger pro-
cess and not because of an instability in an individual

star. Our goal here is thus to install a single star onto

our three-dimensional coordinate grid and evolve it for a

period of time long enough to assess whether the star is

truly stable, and to probe how the size of deviation from
equilibrium is affected by grid resolution.

We loaded a single star of mass 0.9 M⊙ onto the grid at

the origin, and evolved it for 200 seconds. Our diagnostic

of choice is the effective radius of the star, determined by
the volume of the grid that has a density greater than

103 g cm−3 (see Section 3 for details on this measure).

This choice of density is intended to mark a reasonable

outer edge to the star that is not immediately susceptible

to the numerical errors prevalent near the physical edge
of the star. Figure 4 shows our results at various resolu-

tions. As expected, the star quickly approaches an equi-

librium size that is different (and in this case larger) than

the one-dimensional model, though the magnitude of this
change becomes smaller with resolution. The star is only

approximately in equilibrium by this measure when the

coarse grid of 2563 zones has a level of refinement that

jumps by a factor of four. Even then there is a slight

uptick in the size toward the end, implying that the nu-
merical stability is not guaranteed for arbitrarily long

timescales. For another view, we consider the kinetic

energy on the grid, in Figure 5. This is a more holis-

tic measure that weights the contribution by the density.
At the end of the simulation the kinetic energy is not

lower at the highest resolution than at the lower reso-

lutions. This result suggests that when constructing the

equilibrium initial models that will form the basis of later

calculations, we should carefully monitor the evolution of
the stars when applying any artificial damping to cause

the merger, to ensure that the merger is due to this ap-

plied force and not the intrinsic numerical instability of

the stars.

4.2. Gravitational Free Fall

A simple dynamical test to verify the coupling between
the gravity and hydrodynamics in CASTRO is the case of

gravitational free fall. We place two stars on the grid in

the manner of Section 3. The distance a between them

corresponds to a chosen orbital period T , consistent with

the total system mass M , but we disable the rotational
source terms so that the stars start at rest in an iner-

tial reference frame. Thus the stars will simply begin

moving toward each other. As long as the stars remain

approximately spherical, the stars can be treated as point
masses (this approximation only seriously breaks down

after the stars have come into contact). In dimensionless
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Figure 5. Time evolution of the kinetic energy of a

0.9M⊙ white dwarf. The lines have the same meaning
as in Figure 4.

units where r → r/a and t → 2
√
2πt/T , the simple free

fall equation of motion governing the distance r between

their centers of mass takes the form:

r̈(t) = − 1

2r2
. (44)

It is possible to derive a closed-form solution for the evo-

lution time as a function of separation by starting with
the integral formulation,

t(r) =

∫ r

1

dr

v(r)
. (45)

The velocity v (in dimensionless units) can be found by

noting that r̈ = v dv/dr and then separating and inte-

grating the equation of motion. This yields

v(r) =

√(
1

r
− 1

)
. (46)

For our problem 0 < r ≤ 1, so this is always valid. Inte-

grating, we find

t(r) = arccos
(√

r
)
+
√
r (1− r). (47)

so that the point of contact would occur at t = 1. We
actually stop the simulation at t = 0.9, which is when

the effects from the extended sizes of the stars starts to

become important. The results of our simulation for our

default 2563 zone uniform grid are shown in Figure 6.
They show excellent agreement between the analytical

solution and the simulation results.

4.3. Galilean Invariance

It is often stated in the literature that Eulerian meth-
ods for hydrodynamics with grids fixed in space do not

obey the Galilean invariance of the underlying Euler
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Figure 6. Time evolution of two initially stationary white

dwarfs, mutually attracted to each other by the gravita-
tional force. The horizontal axis gives the separation of

the white dwarfs, scaled to the initial separation, and

the vertical axis gives the elapsed time of the simula-

tion, scaled to the time it would take two point masses
to collide. The solid curve shows the analytical result,

calculated from Newtonian mechanics, and the circles

show the samples from the time evolution with CASTRO.

For visual clarity, we show only a small fraction of the

timesteps.

equations, so that simulations moving at a uniform bulk
velocity appear different than an equivalent stationary

simulation (e.g. Springel (2010)). If true, we need to

understand the importance of this effect when deciding

whether to trust the output of a code like CASTRO when
applied for merger problems. Recently, concern for the

issue of Galilean invariance has come up in two ways

which are of note for us in the present study. We explain

these situations and display the results of tests we have

run to determine whether this actually is a significant
concern for our study.

Springel (2010) (hereafter, S10) performed a Kelvin-

Helmholtz instability test and showed that (at low resolu-

tion) a fixed-grid code failed to develop the expected fluid
instability when the whole fluid was moving at a strongly

supersonic uniform velocity. (See also Wadsley et al.

(2008), who used the FLASH code to simulate a hot

bubble subject to mixing by the Kelvin-Helmholtz in-

stability, and also found that the mixing was affected by
a uniform bulk velocity.) This contrasted with the re-

sults of the moving-mesh code AREPO being presented

in that study, which demonstrated Galilean invariance

even at large bulk velocities. Inability to correctly model
the Kelvin-Helmholtz instability would have important

consequences for how much we can trust the ability

of CASTRO to test the violent merger progenitor model,

where a detonation arises in the low-density material at

the stellar surface. Shearing between the material flow-

ing out of the secondary and material near the surface
of the primary may trigger fluid instabilities that play

an important role in the evolution of that gas, which is

the site of the initial detonation in the prompt explosion

model. Guillochon et al. (2010) showed for their simu-

lation that Kelvin-Helmholtz instabilities produced this
way may raise the temperature of the accreting material

enough to ignite a detonation. Therefore if we are not

correctly reproducing the characteristics of the Kelvin-

Helmholtz instability in the case where there is signifi-
cant mass motion on the grid, we cannot be confident

that a detonation (or lack thereof) is not numerically

seeded.

Robertson et al. (2010) (hereafter, R10) observe that

violation of Galilean invariance of simulation results for
the Euler equations occurs because of truncation error

in the discretization of the fluid equations. This takes

the form of a numerical diffusion term which is depen-

dent on velocity (and also resolution). The advantage of
a moving-mesh code is that the mesh everywhere moves

with the local flow velocity, which substantially reduces

the numerical diffusion. R10 argue that the differences

seen between the moving-mesh and fixed-grid code are

caused by the interaction of this numerical diffusion with
small-scale instabilities (that may be physical or numeri-

cal) which couple with and fundamentally alter the large-

scale modes. Small-scale instabilities are seeded by the

choice of a sharp initial discontinuity between the flu-
ids in the problem posed by S10. Crucially though, R10

point out that this problem does not converge with reso-

lution (because the initial perturbation is too sharp and

seeds numerical noise at the grid resolution level) and

so it is not possible to know the correct behavior of
this problem. As such, we do not know whether the

small-scale modes found in AREPO are real, and the

problem is not useful in formally discriminating between

methodologies. They instead propose an alternate test
with a smoother initial contact. This converges to the

same solution qualitatively in both the stationary and

bulk velocity cases, indicating that the code does gener-

ally maintain Galilean invariance (to some specified error

that depends on resolution and the uniform flow speed).
We will see whether we can reproduce this result.

A related question is whether our code reliably sim-

ulates the bulk motion of the stars across the grid, and

whether such bulk motion affects the stability of the star.
This concern is prompted by the study of Tasker et al.

(2008), who studied the effect of uniform translation

on the stability of a spherically symmetric model for a

galaxy cluster. They compared the radial profile of the

cluster at initialization and after a period of time evolu-
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Figure 7. 2D Kelvin-Helmholtz instability test at t = 2.0 for the initial conditions given by Equation 52 and

Equation 54. The rows each represent a different bulk fluid velocity v and the columns each represent a grid res-

olution n (the number of zones per spatial dimension). The highest velocity simulation, v = 100, corresponds to
approximately Mach 70. Compare to Robertson et al. (2010), Figure 7.

tion. Using FLASH and ENZO, they found that a static

cluster retains its shape at high enough resolution, while
uniform translation of the cluster causes mixing of the

core material due to numerical diffusion which results

in an underestimation of the core’s true density. The

SPH codes they used did a better job maintaining the
core density. We will perform a variant of this test using

white dwarf models.

4.3.1. Kelvin-Helmholtz Instability

Following Robertson et al. (2010), we set up a Kelvin-
Helmholtz test in the following way. The problem do-

main runs from 0 to 1 in both the x and y directions.

This is a two-dimensional test, so we run CASTRO in 2D

mainly to avoid extra computational expense; in 3D, it
would merely involve replicating the problem in the z

direction. The problem involves a fluid slab of density

ρ2 = 2.0 traveling rightward in the x-direction at veloc-

ity v2 = 0.5, sandwiched by a fluid of density ρ1 = 1.0
traveling leftward at velocity v1 = −0.5. The density

gradient is in the y direction, so this creates a velocity

shear along the interface between the fluids. The density

and velocity distribution on the computational domain

are given by:
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ρ = ρ1 +R(y) [ρ2 − ρ1] (48)

vx = v1 +R(y) [v2 − v1] (49)

vy = vbulk + v′ (50)

Here R(y) is a ramp function that describes the tran-

sition between the two fluids, while vbulk is the bulk mo-
tion of the fluid in the y direction and v′ is the velocity

perturbation that seeds the instability. The problem is

established for two sets of initial conditions (ICs), which

we follow R10 in calling ICs A and B. They differ in their
ramp function (RA and RB respectively), as well as the

initial perturbation (v′A and v′B respectively), and the

frequency of the perturbation (nA = 4 and nB = 2):

RA =




0 |y − 0.5| > 0.25

1 |y − 0.5| < 0.25
(51)

RB =
{[

1 + e−2(y−0.25)/∆y
] [

1 + e2(y−0.75)/∆y
]}−1

(52)

v′A = w0 sin (nA π x)
{
e−(y−0.25)2/2σ2

+ e−(y−0.75)2/2σ2
}

(53)

v′B = w0 sin (nB π x) . (54)

Here w0 = 0.1 is the scale of the velocity perturbation,

σ = 0.05/
√
2 controls the width of the Gaussian for IC

A, and ∆y = 0.05 is the transition distance scale for the

smooth ramp of IC B. The pressure everywhere is set to
p = 2.5, and we run this with a gamma-law equation of

state set to γ = 5/3. Plotfiles are generated every 0.05

seconds, and the problem is run until t = 2.

We run the problem for vbulk = [0, 1, 3, 10, 30, 100], and
for each set of initial conditions run the problem at res-

olutions of 642, 1282, 2562, 5122. For context, in these

units the sound speed is c ≈ 0.7. In addition, for each

initial condition we run simulations at the higher resolu-

tions of 10242, 20482, and 40962 for the stationary prob-
lem only. These serve as a reference solution to gauge the

extent to which the bulk flow affects the development of

the fluid instability, and to determine if the problem is

numerically converged.
We find the same result as R10 for IC A, which is

equivalent to the test proposed by S10: at low resolutions

and high bulk velocity, the Kelvin-Helmholtz instability

completely fails to develop. Furthermore the problem

does not converge even qualitatively at the highest res-
olutions we used. Our results are very similar to Figure

3 of R10 so we do not show them here. For IC B, our

results can be seen for the normal resolutions and all ve-

locities in Figure 7. At low resolutions and very large
bulk velocities, the fluid does get significantly disrupted

by numerical error. This effect quickly converges away

with resolution and qualitatively at 5122 resolution the

solution is nearly identical to the stationary v = 0 prob-

lem. We agree with R10 that this problem does converge

with resolution and is not subject to numerically-seeded
secondary instabilities at the stopping time. This is ev-

ident even at low resolutions by examining the first row

of Figure 7.

McNally et al. (2012) published another Kelvin-

Helmholtz problem that is well-posed in the sense that
it converges with resolution and is not subject to uncon-

trollable numerical instabilities. Though they were not

explicitly interested in the question of Galilean invari-

ance, we visit that issue here to see what can be learned.
The initial conditions for this problem are:

ρ =





ρ1 − ρme(y−0.25)/∆y 0.25 > y ≥ 0

ρ2 + ρme(0.25−y)/∆y 0.5 > y ≥ 0.25

ρ2 + ρme(y−0.75)/∆y 0.75 > y ≥ 0.5

ρ1 − ρme(0.75−y)/∆y 1 > y ≥ 0.75

(55)

vx =





v1 − vme(y−0.25)/∆y 0.25 > y ≥ 0

v2 + vme(0.25−y)/∆y 0.5 > y ≥ 0.25

v2 + vme(y−0.75)/∆y 0.75 > y ≥ 0.5

v1 − vme(0.75−y)/∆y 1 > y ≥ 0.75

(56)

vy = w0 sin (4πx) . (57)

Here ∆y = 0.025, w0 = 0.01, vm = (v1 − v2)/2,

ρm = (ρ1 − ρ2)/2, and the other symbols have the same
meaning as above (this means the flow direction is re-

versed compared to the original paper, so as to achieve

consistency with the other simulations presented here).

We run this problem at all the same resolutions and
bulk velocities as the previous two problems. The re-

sults for the normal resolutions at t = 2.0 are displayed

in Figure 8. We see a similar pattern as for the test pro-

posed by R10: as we get to higher flow speeds we need

to have higher spatial resolution to compensate for the
increased numerical diffusion. The qualitative accuracy

is much lower for the highest bulk velocities for this prob-

lem than for the previous problems. This is because the

amplitude of the instability overall is smaller than for the
previous problems, at least by t = 2.0, so it is easier for

numerical diffusion at the shearing layer, caused by the

high bulk velocities, to completely wipe out the instabil-

ity. Like Robertson et al. (2010) found for their problem,

we find for this problem that the convergence properties
are not substantially affected by altering the perturba-

tion frequency – the results show the same qualitative

pattern even if we halve this frequency.

Hopkins (2015) performed this test as part of the test-
ing of their code GIZMO. They showed the late-time evo-

lution of this system, when non-linear effects have taken
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Figure 8. 2D Kelvin-Helmholtz instability test at t = 2.0 for the initial conditions given by Equation 55 through

Equation 57, which come from McNally et al. (2012). The meaning of the rows and columns is the same as in

Figure 7.

over and significantly disrupted the initial flow. At low

resolution the tested grid algorithm had failed to disrupt

both for v = 0 and v = 10. We too ran this problem

until t = 10, and confirm that the Kelvin-Helmholtz in-
stability damps out at low resolution but goes strongly

non-linear and disrupts the flow at high resolution. We

strongly emphasize the point that this does not objec-

tively demonstrate a deficiency in fixed-grid codes for this

problem. We can only determine the validity of a method
when we have a trustworthy, converged solution to com-

pare to, and this is lacking for this problem at late times.

As observed by McNally et al., this lack of a solution is

because the secondary instabilities form for this problem

when the whorls of the Kelvin-Helmholtz tendrils stretch

out and create gradients that approach the grid resolu-

tion. This is prime breeding ground for numerical noise.

But because the nature of this noise depends on the res-
olution, it is very different for simulations at different

resolutions. If these instabilities are seeded because of

this resolution-dependent noise and are not seeded in-

stead in a controlled manner such that they appear at

the same time and location, then we simply cannot draw
any conclusions that bear on the question of verification

from this test at late times. Figure 9 provides a sense of

this by examining the crucial time at which the transition

from the linear to the non-linear regime is occurring. At
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Figure 9. Time series of the Kelvin-Helmholtz problem proposed by McNally et al. (2012) as the simulation is just

starting to go non-linear. The rows represent resolution, where n is the number of grid cells per spatial dimension,

and the columns are different snapshots in time.

all of these very high resolutions the secondary instabil-

ities develop, but they occur at different times and have

different spatial scales for each resolution.

We conclude that large bulk motions of fluid can have
very significant effects on numerical calculations of shear

mixing in fixed-grid codes, but that this effect dimin-

ishes with increasing resolution. As a result, we must

be confident that we are sufficiently resolving the major

mixing regions on the white dwarf surfaces, specifically
that the density gradients occur over spatial scales much

larger than the grid resolution. If we find instead that

this mixing occurs near the grid resolution scale, this will

imply that we need to ramp up the resolution in these
regions using AMR. If this becomes too expensive, we

would need to be skeptical of any conclusions that could

be drawn about the effect of the mixing on the nuclear

burning.

4.3.2. Moving Star

To analyze the effects of velocity-dependent results for

a stellar simulation, we repeated the test of Section 4.1

with a bulk velocity on the grid. We chose a velocity of
2.56×108 cm s−1. For context, this is comparable to the

orbital velocities of the stars in Section 4.4, and the Mach

number is of order unity in the stellar core at this speed.

This test was inspired by Tasker et al. (2008), who con-

sidered a moving galaxy cluster and who obtained a long

timescale evolution by using periodic boundary condi-
tions, so that the cluster would cross the domain mul-

tiple times throughout the evolution. We believe that

periodic boundary conditions are unrealistic for our type

of simulation, so we prefer to do one continuous simula-

tion where the star does not cross the boundaries. Since
our normal grid was not large enough to allow the motion

to continue for very long, we expanded the domain size

by a factor of four, and then included an extra refined

level around the star to keep the effective resolution the
same. We started the star off in the lower left corner of

the domain, and pointed its velocity towards the upper

right corner. This allowed us to evolve the star for the

same length of time as for the original test. We note that

getting the gravity boundary conditions right required us
to move the origin of the problem at the bulk velocity, so

that the multipole moments were always computed with

respect to the current location of the stellar center.

In Figure 10, we take the results of Section 4.1 (the
“static” case), and plot on top of it the results of this

new simulation (the “motion” case). We see immediately
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Figure 10. A variation on Figure 4 where we now com-

pare the “static” case to “motion” simulations where the
star moves across the grid at a fixed linear speed. The

lines represent the effective number of zones per dimen-

sion inside the stellar material; due to the expanded size

of the grid in the “motion” case, the physical resolution
is the same in each column in the legend.

that this bulk velocity causes the star to be much worse

at maintaining hydrostatic equilibrium. Not only is the
absolute size of the star significantly larger (nearly a fac-

tor of two at the lowest feasible resolution we consider),

but also there is a clear upward trend in the size that

has not terminated at any resolution by the end of the

simulation. This again emphasizes the results mentioned
earlier, that we must be careful not to trust any simula-

tion with significant mass transfer if we are not confident

that the mass transfer is seeded in a controllable manner

and free from numerical noise.

4.4. Keplerian Orbit

We now consider the phase of the binary system where

the stars are orbiting each other at distances great
enough that the initial orbits should be approximately

Keplerian. There are a number of effects worth looking

into here. For simplicity, we choose two cases to demon-

strate the simulation behavior: an equal mass case of
two 0.9 M⊙ white dwarfs, and an unequal mass case of

0.9 M⊙ and 0.75 M⊙ white dwarfs. In both systems, the

secondary should be stable against mass loss. In each

case, the initial orbital period is 100 seconds.

For some of the algorithms described earlier in this
work, a single orbit of these systems is enough to exam-

ine their effects. In Section 2.3.2, we discussed the re-

placement of a monopole boundary condition solver for

the gravitational potential with a more general multipole
solver for the boundaries. To test the relevance of this

effect, we considered a single orbit of the unequal mass

0 2 4 6 8 10 12 14 16

Maximum Multipole Moment

10-4

10-3

10-2

10-1

D
is
ta
n
ce

 C
h
a
n
g
e

Inertial Frame
Rotating Frame

Figure 11. Absolute magnitude of the relative change in

the distance of two unequal mass white dwarfs after one
orbital period. The stars were evolved in an inertial ref-

erence frame. The horizontal axis is the number of terms

or multipole moments captured in the series expansion

for the potential at the domain boundary.

system and measured the distance between the two white
dwarf centers of mass at the beginning of the simulation

and after the full orbital period. This distance should not

change significantly over that timescale. We performed

this test for maximum multipole moments ranging from

0 (the monopole term) to 16. The results are shown in
Figure 11. Terms in the boundary potential that vary

faster than r−5 are effectively negligible in determining

the outcome of the orbit, justifying our typical choice of

maintaining terms up to r−7.
Another diagnostic that we consider is the energy con-

servation of the system. Recalling Section 2.3.1, there

are several different methods of applying the gravita-

tional source term to the hydrodynamics equations. In

CASTRO we presently have four options, controlled by the
parameter castro.grav source type, which we shorten

to gs for the present discussion. gs = 1 and gs = 2 are

variations on the standard cell-centered source term for

gravity. The difference between them is that gs = 2 de-
termines the value of the energy source term after the

momentum source term has been applied, while gs = 1

uses the uncorrected momenta in calculating ρug. We

have found gs = 2 to be more accurate. gs = 3 is en-

tirely different: after calculating the new momenta, we
reset the total energy to be equal to the internal energy

plus the kinetic energy. This approach has the virtue

of ensuring that there is no conflict due to discretiza-

tion between the momentum and energy equations, and
also correctly ensuring that the gravitational force does

not directly change the internal energy—and thus the
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temperature—of the fluid. However, it explicitly sacri-

fices total energy conservation. gs = 4 is the new con-

servative method of evaluating the energy source terms

at cell faces. The results for the change in energy after
a single orbit are seen in the first column of Table 4.4.

The first two versions give reasonable and similar levels of

energy conservation. The third has total energy changes

on the order of 100%, but this itself does not have a se-

vere effect on the dynamics because in this scheme the
total energy variable is effectively a placeholder value of

the kinetic energy plus internal energy, rather than being

evolved directly. The last scheme is nearly two orders of

magnitude better in energy conservation, justifying the
effort in varying the scheme.

In Table 4.4 we show also the effects on energy con-

servation of using the inertial reference frame. We use

rs for the CASTRO parameter castro.rot source type.

Each option for rs is implemented in the same way as for
the gravitational source term, simply swapping out the

gravitational acceleration for the rotational acceleration

(except for the improvement to the momentum update

for rs = 4 described in Section 2.4). The rs = 0 col-
umn means that rotation is turned off and we are in the

inertial frame. We see that the choice of rotational cou-

pling is much less important than the choice of gravity

coupling. The “conservative” rs = 4 is slightly better

in energy conservation than the non-conservative, cell-
centered rs = 2 algorithm, but it is a small effect.

We are most interested in the stability of these systems

over long timescales. To this end, we consider the same

systems as above, but evolve them for 25 orbital peri-
ods. In Figure 12 we illustrate the evolution of these sys-

tems by plotting the center of mass locations of the white

dwarfs on the orbital (xy) plane. For the equal mass case

in the inertial reference frame, the curves fall nearly on

top of each other for most of the run, indicating that the
stars are indeed orbiting at the initial distance, at least

for a while. Towards the end of the run, however, the

orbit starts to decay significantly, and the center-of-mass

distance of the two stars has decreased by about 10%
after 25 orbits. We attribute this to non-conservation

of angular momentum, which occurs because our code

only explicitly conserves linear momentum. This orbital

decay resembles the effect seen by Swesty et al. (2000)

for the case of neutron stars. In the unequal mass case,
the magnitude of the orbital decay is smaller but at the

end of the run the secular decline in distance is also vis-

ible. In both cases the stars would likely merge due to

numerical error after a long enough timescale.
The co-rotating frame is different. For clarity of visu-

alization, we rotate these results back into the inertial

frame before displaying their orbits. In both the equal

and unequal mass cases, the centrifugal force pushes the

stars outward toward a new equilibrium distance that is

a few percent larger than its initial distance. At the end

of the run, the system is relatively stable, with oscilla-

tions about the new equilibrium distance. In fact these

oscillations occur too in the inertial frame, but they are
much more pronounced here. In the unequal mass case

this is coupled with severe precession of the orbit, which

results in chatoic-looking orbits when viewed from the

rotating reference frame. These result from the explicit

numerical consideration of the Coriolis and centrifugal
terms, which do not appear in the inertial frame. So

while the rotating frame is clearly more stable against

mass transfer than the inertial frame, the cost is that

the specific dynamics may be more suspect.
Turning to the conservation properties of the system,

we examine as fairly typical cases the equal mass system

in the inertial frame for energy conservation (Figure 13),

and the unequal mass system in the rotating frame

for angular momentum conservation (Figure 14). For
the former system angular momentum is conserved to

within 10 percent over the 25 orbits, while energy con-

servation is about an order of magnitude better. We

note that while this is already a fairly good level of
energy conservation, it is not nearly as good as the

results of Marcello & Tohline (2012). This is because

we reset the internal energy to a level corresponding

to our temperature floor when it goes negative, while

Marcello & Tohline do not reset and instead ignore the
internal energy if it is negative. The resets impose an

artificial floor on our ability to conserve energy, but they

only happen in low-density regions and do not much af-

fect the large-scale dynamics. Meanwhile, relative an-
gular momentum conservation is not quite as good as

relative energy conservation. This is linked to the de-

cline (or increase) in the size of the orbit. This implies

that we ought to be careful in concluding that at these

moderate resolutions we can safely evolve systems for
many dozens of orbits; this needs to be verified to ensure

that an observed inspiral and merger is physically (not

numerically) motivated.

As a simple verification test to ensure our gravitational
wave calculations are correct, we plot the gravitational

wave strain along the rotation axis for the first two pe-

riods of an unequal mass system. At this early time the

orbit is circular and so to a good approximation we ex-

pect that the gravitational wave signal should be that of
two point masses, whose positions are:

rP (t) = −aP cos(ωt)x̂− aP sin(ωt)ŷ (58)

rS(t) = aS cos(ωt)x̂+ aS sin(ωt)ŷ. (59)

Then the mass distribution is ρ(r) = MP δ3(r − rP ) +

MS δ3(r−rS). From this it is straightforward to calculate
the quadruopole tensor, take its second time derivative,

and then apply the projection operator to get the gravi-
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Table 1. Change in energy after a single orbit, i.e. |∆E/E|. “rs” is

shorthand for the code parameter castro.rot source type and “gs”

is shorthand for the code parameter castro.grav source type. The

parameter meanings are explained in the main text.

rs = 0 rs = 1 rs = 2 rs = 3 rs = 4

gs = 1 4.8× 10−2 4.6× 10−2 4.6× 10−2 4.6× 10−2 5.7× 10−2

gs = 2 4.9× 10−2 4.6× 10−2 4.6× 10−2 4.6× 10−2 5.7× 10−2

gs = 3 1.1× 100 2.8× 100 2.8× 100 2.8× 100 2.8× 100

gs = 4 4.4× 10−4 1.3× 10−3 1.3× 10−3 3.1× 10−4 1.0× 10−3
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Figure 12. Positions of the white dwarfs in the orbital plane for four cases evolved over 25 orbital periods. The x

and y axes are normalized to the size of the domain, so that x = −0.5 is the left edge and x = 0.5 is the right
edge. The dashed blue curve is the position of the primary white dwarf, and the solid red curve is the position of the

secondary. In plot (a) we have the equal mass system evolved in the inertial reference frame, and in plot (c) we have

the same system evolved in a rotating frame, where the positions have been transformed back to the inertial frame for

comparison. Plots (b) and (d) are analogous but for the unequal mass system.

tational wave polarizations along the rotation axis:

h+ = −4
Gµ

c4r
[GMtotω]

2/3
cos(2ωt) (60)

h× = −4
Gµ

c4r
[GMtotω]

2/3
sin(2ωt). (61)

µ is the reduced mass, while Mtot is the total mass. From

this we see that the gravitational wave frequency is twice

the orbital frequency, and that the two polarizations are
out of phase by 90◦ in time. We compare this analytical

expectation to the numerical results in Figure 15. We

find very good agreement in this case, and this level of

agreement holds in the rotating frame as well.

Finally we consider whether the dynamical behavior
of the system converges with resolution. In Figure 16

we plot the first full orbit for the unequal mass system,

at three different resolutions in the inertial frame: our

default resolution of 2563 zones, as well as a single level

of refinement with a jump by a factor of two (effective
resolution 5123) or a jump by a factor of four (effective

resolution 10243). It is clear that at the latter resolu-



26

0 5 10 15 20 25

Time / Rotational Period

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
R
e
la
ti
v
e
 C
h
a
n
g
e
 i
n
 E
n
e
rg
y

Figure 13. Absolute magnitude of the relative change

in energy of two equal mass white dwarfs through 25
orbital periods, evolved in an inertial reference frame.

The decline and recovery is a change in sign of the energy

difference.
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Figure 14. Absolute magnitude of the relative change
in angular momentum of two unequal mass white dwarfs

after 25 orbital periods, evolved in a co-rotating reference

frame. We consider only the component of the angular

moment along the rotational axis.

tion (corresponding to physical resolution of 100 km),

we have achieved convergent behavior. In the rotating

frame, the results also show convergent behavior but the
convergence is not as fast with resolution as in the in-

ertial frame; see Figure 17. At the two higher resolu-

tions the white dwarf distance is qualitatively similar,

and both are qualitatively different from the lower res-
olution. However, quantitatively the two higher resolu-

tion runs are not as similar to each other as the analogous
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Figure 15. Gravitational wave strain polarizations for

the first two orbital periods of an unequal mass system.
The curves with markers are the numerical data, while

the curves without markers are the analytical results for

two point masses.

runs in the inertial frame. Convergence with resolution is

slightly slower in the rotating reference frame because in

the rotating reference frame a stable, unchanging circu-

lar orbit requires balance between two forces with oppo-
site sign (the gravitational and centrifugal forces), and

slight perturbations from the circular orbit are ampli-

fied by the effect of the Corolis force. In the inertial

frame, these numerical instabilities vanish, but the cost

is that there is no centrifugal force to actively maintain
the white dwarf distance, which is why it is much more

likely for the orbit to prematurely decay. In either case,

these results suggest at least a minimum resolution of

200 km for getting the dynamics qualitatively right. To
put that into context, consider that the parameter study

of Dan et al. (2014) used 40,000 SPH particles per simu-

lation, or (for an equal mass binary) 20,000 particles per

white dwarf. For, say, a 0.9 M⊙ + 0.9 M⊙ white dwarf

binary on a 2563 zone simulation grid, there are 20,000
zones that fit within a white dwarf. We do not intend

here to directly compare results between the two simula-

tion methods. We limit ourselves to the observation that

at least for grid-based codes, a parameter study such as
the ones performed by Dan et al. (2012) and Dan et al.

(2014) would likely not yield qualitatively convergent re-

sults if it were to use the same effective mass resolution.

Instead the number of zones inside each star should at

least be doubled.

5. PARALLEL STRATEGY AND PERFORMANCE

CASTRO is designed to be deployed on high-performance
computing systems using many thousands of processors

simultaneously. It is worth briefly examining our strat-
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Figure 16. Distance between the two white dwarfs in the

unequal mass system, for the first orbit. The distance is
scaled by the initial orbital distance. We plot at three

different resolutions, corresponding to the number of ef-

fective zones per dimension in the refined regions.

0.0 0.2 0.4 0.6 0.8 1.0

Time / Rotational Period

0.998

0.999

1.000

1.001

1.002

1.003

1.004

W
D
 D
is
ta
n
ce

 /
 I
n
it
ia
l 
D
is
ta
n
ce

n = 256
n = 512
n = 1024

Figure 17. Distance between the two white dwarfs in the
unequal mass system, for the first orbit. The distance is

scaled by the initial orbital distance. We plot at three

different resolutions, corresponding to the number of ef-

fective zones per dimension in the refined regions.

egy for parallelizing the problem over many computa-

tional nodes and our performance in situations similar

to production science simulations. This is especially true
because some aspects of our approach to parallelism have

changed since the first CASTRO paper (Almgren et al.

2010), and we have obtained improved performance in

certain settings.
The BoxLib framework that CASTRO is based on do-

main decomposes each AMR level into a number of boxes

that collectively span the level. These boxes are dis-

tributed to processors through MPI parallelism; each

MPI task in general holds multiple boxes and an up-

date includes a loop over all the boxes an MPI task
owns. The distribution obeys a load-balancing algorithm

that attempts to equalize the amount of work done by

each processor. BoxLib contains a number of strategies

for distributing work in this way, and by default uses a

space-filling curve approach with a Morton ordering (e.g.
Sasidharan & Snir (2015); Beichl & Sullivan (1998)). By

experiment we have found that the most efficient load-

balancing strategy for our problem is actually a simple

knapsack algorithm. In this approach, the amount of
work owned by a processor is proportional to the num-

ber of grid cells associated with that processor, and the

algorithm attempts to ensure that all processors have a

similar number of total grid cells. We demand an ef-

ficiency of 0.9, meaning that the average workload per
processor should be no smaller than 90% of the maxi-

mum workload found on any processor. We find that

in practice the performance is largely insensitive to this

choice.
The size and shape of grid boxes is an important con-

sideration for efficiency. Boxes that are very small suffer

from a host of problems, including the larger amount of

communication required between hydrodynamics solves.

Additionally, the multigrid solver is less efficient if the
boxes are small because there are fewer available lev-

els for coarsening and performing V-cycles. Conversely,

boxes that are too large mean that there isn’t enough

work to go around when we have a large number of pro-
cessors. Good performance is the result of a careful bal-

ance between these two effects. On the lower end, we

require that all boxes be a multiple of 16 zones in each

dimension; multigrid efficiency sharply decreases if this

factor is any lower. On the upper end, we select the
maximum grid size based on the number of processors

we use and the total number of cells in the simulation.

This size will therefore in general vary on different AMR

levels. Generally we select a value in between 32 and 64
zones per dimension.

We use OpenMP to accelerate the work associated with

the boxes owned by each MPI task. Originally CASTRO

used OpenMP to accelerate individual loops in the hy-

drodynamics routines, such as the piecewise-parabolic
edge state reconstruction and the conservative flux up-

date. However, there is a significant amount of over-

head associated with generating a new OpenMP region

at each of the many different loops in a hydrodynamics
algorithm. This makes such a strategy sub-optimal for

use on many-core processors and GPUs. We have re-

cently switched to a tiling approach where an OpenMP

region is generated at the start of the hydrodynamics

routine and the individual threads separately work on
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Figure 18. CASTRO weak scaling test, performed on Blue

Waters at NCSA. Each processor had a fixed amount of
work, and we increased the number of simulation zones

in concert with the number of processors. The solid

curve represents perfect weak scaling, while the blue cir-

cles show CASTRO’s performance at each processor count.
The vertical axis measures the median time per timestep,

normalized to this value for the smallest processor count.

different partitions of each box (Zhang et al. 2015). This
results in much less overhead for the threading. In gen-

eral we obtain more efficient simulations than could be

obtained using MPI only, because there are fewer boxes

and thus less communication for a given number of pro-

cessor cores. We are currently developing an approach to
evaluating the hydrodynamics and microphysics modules

on GPUs, which will allow us to take advantage of the

significant computational resources embedded in GPUs

on certain systems.
To examine the parallel performance of CASTRO, we

performed both strong scaling and weak scaling tests on

the Blue Waters machine at the National Center for Su-

percomputing Applications. For the weak scaling test,

whose results are shown in Figure 18, we ran a uniform
grid binary white dwarf simulation for resolutions of 1283

zones through 20483 zones. The number of processors

was scaled with the number of zones so that each pro-

cessor had the same amount of work; the smallest test
used 8 processors and the largest used 32,768 (note that

the number of processor cores on a Blue Waters node is

twice the number of floating point units on that node).

The test was run for 10 timesteps, with each timestep in-

cluding two Poisson solves and a hydrodynamics update
(though for a uniform grid calculation we generally do

not need to perform any multigrid iterations for the first

Poisson solve in a timestep, since the density distribution

has not changed since the end of the last timestep). We
disabled plotfile and checkpoint writing, as well as calcu-

lation of diagnostic information (the latter can contribute
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Figure 19. CASTRO strong scaling test performed on the

Blue Waters machine at NCSA. The vertical axis mea-
sures the median time per timestep, and the horizontal

axis measures the number of processors in the simula-

tion. Data points are normalized to the time per timestep

for the smallest number of processors. The green circles
show the data for a simulation with one AMR level (a

single uniform grid), the blue diamonds show the data for

a simulation with two AMR levels (one coarse and one

fine), while the red circles show the data for a test with

three AMR levels (one coarse and two fine). The fine lev-
els increase the resolution only in the regions around the

stars. For each case we draw a solid curve representing

perfect strong scaling.

to a significant fraction of the run time at large processor

counts if computed every timestep). We computed the

median wall time required per time step for each simu-

lation, and then normalized this to the median time per
timestep for the smallest simulation. We find excellent

weak scaling through 4,096 processors. At the largest

run, the simulation time required is slightly less than 1.5

times the amount required for the smallest simulation.

This is due entirely to the increased cost of the multi-
grid Poisson solve in each timestep and this cannot be

mitigated except by improving communication or com-

putation efficiency in the multigrid solver. We observe

that this weak scaling behavior with Poisson gravity is a
significant improvement over the results presented in the

first CASTRO paper.

The strong scaling test we perform uses a grid setup

similar to what we use for well-resolved binary simula-

tions. With only a uniform coarse grid, there are ap-
proximately 2 × 107 zones. With a single refined level,

we have approximately 2 × 108 zones, typically spread

over ∼ 2000 grids. On a second refined level, there are a

similar number of zones and grids (the volume covered by
this level is smaller, which offsets the greater resolution).

We run a scaling test for all three cases, with the highest
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processor count in each case chosen so that the number

of MPI tasks is similar to the number of grids. There are

no gains to be achieved from further parallelism. The

results are found in Figure 19. We find excellent scaling
for low to moderate numbers of processors. Parallel effi-

ciency is well maintained when there are at least 2 grids

per processor. The scaling behavior worsens at the high-

est processor counts, but this is an expected consequence

of processors becoming work-starved. At the highest pro-
cessor count in this test, there is approximately only one

grid per processor. In general we find very good strong

scaling behavior in the regime we are presently interested

in, simulating the early phases of a simulation at moder-
ate resolution. The strong scaling behavior is acceptable,

though not perfect, at very large processor counts when

self-gravity is considered.

6. CONCLUSIONS AND DISCUSSION

In this paper we have described the major components

of a framework for simulating mergers of white dwarfs.

While there is much evidence for the hypothesis that
mergers (or collisions) of white dwarfs are significant con-

tributors to the rate of Type Ia supernovae and related

astronomical transients, the theoretical view of these sys-

tems is far from complete. Studying these systems over
the long timescales relevant to dynamical mass transfer

requires careful attention to the numerical methods used,

to ensure that numerical instabilities or other errors do

not unduly influence the system. Here we have described

a number of common problems that may occur, including
violation of the conservation of energy, a lack of hydro-

static equilibrium (at low resolution) of the stars even

when not acted on by external gravitational forces, and

large velocities that can be generated near the edges of
stars due to the numerically sharp gradients. Some of the

issues are simply unresolvable at the resolutions achiev-

able on modern supercomputing systems; for example, it

is very difficult to adequately resolve the stellar surface

of a white dwarf on a three-dimensional grid, and there
is justifiable room for suspicion regarding what happens

there. But others are avoidable with care: energy non-

conservation can be substantially mollified by using a

form of the gravitational work that is explicitly conser-
vative, and we have observed that this can be done for

rotation source terms too.

We presented a set of numerical tests that show where

we can and cannot trust these techniques. We spent

much time considering the role of bulk motions on the
grid and we conclude that there are real issues with sub-

stantial bulk velocities on static grids, that can diminish

the quality of the resulting solutions to the fluid equa-

tions, but that these effects diminish with increasing res-
olution. We therefore make no explicit claims about the

usefulness of Langrangian versus Eulerian methods and

instead simply observe that whenever a simulation is per-

formed, it is important to have a measure of numerical

accuracy and a sense of whether we are witnessing prop-

erties that converge with increasing resolution. These
problems do suggest that, where possible, we should seek

to minimize bulk motions on static grids. A compari-

son of orbit simulations in both rotating and inertial ref-

erence frames demonstrates that in practice this is not

so simple, and that a rotating reference frame has its
own numerical issues for the type of simulation we de-

sire to perform here. While decay of the stellar orbit is

a commonplace feature in the inertial frame but easier

to avoid in the rotating frame, the rotation forces can
result in likely unphysical oscillations of the stars. It is

not easy to predict the correct behavior of such systems,

and therefore determine which frame is closer to being

correct, though one recourse for assessing confidence in

a model from a verification standpoint is to see whether
the observed behavior converges with resolution. It is not

clear whether at practical resolutions the results in the

rotating and inertial frames will converge to each other.

Future work on this project will focus on how to
build reliable equilibrium initial models of the stars and

an examination of how the mass transfer episode de-

pends on these initial conditions, and then to enable

the nuclear reaction network and determine whether self-

consistent thermonuclear detonations are ignited and re-
sult in events that appear similar to Type Ia supernovae.

Other areas ripe for future study include: the effect of

radiation on the merger process; the extent to which the

result depends on the initial composition of the stars (for
example, by studying the dependence of the results on

the size of helium surface layers on carbon-oxygen white

dwarfs, or by using white dwarf models generated by

modern stellar evolution codes); and, collisions of white

dwarfs. All of these are possible under the framework we
have established.
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APPENDIX

A. CASTRO HYDRODYNAMICS CHANGES

The basic PPM algorithm in CASTRO has undergone a number of changes since the original code paper (Almgren et al.

2010). A discussion of the pure hydrodynamics changes along with verification of CASTRO when using the stellar

equation of state was given in Zingale & Katz (2015). Here we discuss the changes that affect multispecies flow and

source terms.

A.1. Reference States

For all the runs, the PPM reconstruction is done using the original limiters for the parabolic profiles
(Colella & Woodward 1984); see Section 2.1 for a brief discussion about the limiters. The prediction of the inter-

face states appears as:

q
n+1/2
i+1/2,L = q̃L −

∑

ν;λ
(ν)
i

≥0

l
(ν)
i ·

[
q̃L − I(ν)

+ (qi)
]
r
(ν)
i (A1)

where q is the vector of primitive variables, l
(ν)
i and r

(ν)
i are the left and right eigenvectors with eigenvalue λ

(ν)
i , with

ν the index of the characteristic wave of the system. The sum is over all the waves that result from the characteristic

structure of the problem, but designed such that only waves moving toward the interface contribute to the interface

value, q
n+1/2
i+1/2,L. The reference state, q̃L is chosen to minimize the work of the characteristic projection. Finally, I(ν)

+ (q)

is the average under the parabolic profile of quantity q of all the information that can reach the right interface of the
zone i as carried by the wave ν. The reader is referred to Miller & Colella (2002) for further details.

Since the original CASTRO paper, the reference state implementation has been switched to:

q̃L =

{
I(+)
+ (qi) if u+ c > 0

qi otherwise
(A2)

where the (+) superscript here means the fastest wave moving to the right (the u+ c eigenvalue). This is simply the

average under the largest portion of the parabolic profile that could possible reach the interface over the timestep.
This is in agreement with Miller & Colella (2002) (eq. 90). The flattening in the original CASTRO paper has also been

updated as discussed in Zingale & Katz (2015).

We comment on the choice of reference state for passively-advected quantities (like Xk or the transverse velocity),

which is not typically discussed. First, consider one of the variables present in one-dimensional flow (density, velocity

in the normal direction, and pressure), and let our reference state be as in Equation A2. Ignoring flattening, if there
are no waves moving toward our interface, then Equation A1 reduces to:

q
n+1/2
i+1/2,L = q̃L = qi (A3)

If instead only the fastest wave is moving toward the interface, then only the term corresponding to the fastest wave

in the sum will be added in Equation A1, but our choice of reference state makes that term zero by design, and our
interface state is:

q
n+1/2
i+1/2,L = q̃L = I+

+ (qi) (A4)

This is the desired behavior for each of these cases.

However, now consider the same approach applied to passively advected quantities. If we use the same idea of the

reference state as in Equation A2, and consider a quantity ξ which should only jump across the contact, then our
interface state becomes:

ξ
n+1/2
i+1/2,L = ξ̃L − l

(◦)
i ·

[
ξ̃L − I(◦)

+ (ξi)
]
r
(◦)
i

︸ ︷︷ ︸
only if u ≥ 0

(A5)

Again, ignoring flattening, if u ≥ 0, then we have

ξ
n+1/2
i+1/2,L = ξ̃L −

(
ξ̃L − I(◦)

+ (ξi)
)
= I(◦)

+ (ξi) (A6)

(where we used the fact that the eigenvectors are normalized to unity and don’t mix in any other states when dealing

with passive terms). This is the expected behavior—we see a state that is traced only by the contact wave. If u < 0
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but u+ c ≥ 0, then we instead get:

ξ
n+1/2
i+1/2,L = ξ̃L = I(+)

+ (ξi) (A7)

Here we used the same definition of the reference state and see that our interface state sees the profile traced under

the fastest wave, not the contact. This is not the correct behavior for a passively-advected quantity.

The fix for passively-advected quantities is to simply ignore the idea of a reference state and just test on the speed

of the contact itself, setting:

ξ
n+1/2
i+1/2,L =

{
I(◦)
+ (ξi) if u > 0

ξi otherwise
(A8)

A.2. Source Term Predictor for the Hydrodynamics

In the original release of CASTRO we used the time-level n value of the gravitational and rotation source terms in
constructing the edge-states for the hydrodynamics update. While this is formally second-order accurate, there is a

better choice one can make. We have information about the trend of these source terms from previous timesteps, so we

can use a predictor method to guess at a more accurate value of the gravitational and rotational fields at the n+ 1/2

time-level the hydro is evaluated at. Our method uses a lagged linear extrapolation. Going into the hydro update, we
have both the time-level n and time-level n− 1 data for g (as well as the acceleration due to rotation). From this one

can construct a simple linear estimator of (say) the gravitational acceleration using a backward difference scheme at

time-level n:

gn+1/2 ≈ gn +
∆tn
2

dgn

dt
≈ gn +

∆tn
2

(
gn − gn−1

∆tn−1

)
. (A9)

While both this method and the original method have second-order convergence properties, we have seen from testing

that this new method is slightly more accurate in absolute terms. Finally, we note that this predictor is not applied

in cases where we do not have a suitable time-level n − 1 value of the source term, such as in the first timestep of a

simulation.
We note also that we have changed slightly how we use source terms in CASTRO’s hydrodynamics. In the original

release we would explicitly handle gravity, rotation, and user-defined external source terms separately in constructing

the edge states. At present, we sum all of these source terms prior to starting the hydrodynamics update, and use a

single source array with data for all components of the state. Consequently, we actually do the source-term predictor

shown here on this source term array, rather than individually on each component of the forcing.

A.3. Source Term Tracing

We note a few additional differences between the original PPM implementation of Colella & Woodward (1984) and

CASTRO. In the original PPM implementation, the gravitational acceleration was reconstructed as a parabola, and this

was traced under to find the forcing that affects the interface for each wave. CASTRO originally followed Miller & Colella
(2002) which instead adds (∆t/2)g to the interface states for velocity at the end of the reconstruction. In the current

implementation, we return to the original parabolic reconstruction and characteristic tracing. In fact, as described in

Section A.2, since we send to the hydro a single source term array that holds the sum of all the source terms (including

gravity and rotation), we do the parabolic reconstruction on the full source term data. This can be controlled in

CASTRO with the parameter castro.ppm trace sources.
For the following explanation of how the tracing works, we consider only gravity. Our system with the source appears

as:

qt +A(q)qx = G (A10)

where G = (0, g, 0)T—i.e. the gravitational source only affects u, not ρ or p. Note that in the PPM paper, they put

G on the left-hand side of the primitive variable equation, so our signs are opposite. Our projections are now:
∑

ν;λ(ν)≥0

l(ν) · (q̃ − I(ν)
+ (q)− ∆t

2 G)r(ν) (A11)

for the left state, and ∑

ν;λ(ν)≤0

l(ν) · (q̃ − I(ν)
− (q)− ∆t

2 G)r(ν) (A12)

for the right state. Since G is only non-zero for velocity, only the velocity changes. Writing out the sum (and performing



WD Mergers I. Methodology 33

the vector products), we get:

u
n+1/2
i+1/2,L = ũ+− 1

2

[(
ũ+ − I(−)

+ (u)− ∆t

2
I(−)
+ (g)

)
− p̃+ − I(−)

+ (p)

C

]

− 1

2

[(
ũ+ − I(+)

+ (u)− ∆t

2
I(+)
+ (g)

)
+

p̃+ − I(+)
+ (p)

C

]
(A13)

(The expression in the PPM paper contains ∆tG, not (∆t/2)G, but we believe that the factor of 1/2 is correct. To

see this, notice that if both waves are moving toward the interface, then the source term that is added to the interface
state is (∆t/4)(I(−)

+ (g) + I(+)
+ (g)) for the left state, which reduces to (∆t/2)g for constant g—this matches the result

from Taylor expanding to the interface at the half-time (as in Miller & Colella 2002).)

There is one additional effect of this change—now the gravitational source is seen by all Riemann solves (including

the transverse solves) whereas previously it was only added to the final unsplit interface states. Both methods are
second-order accurate.

B. PROOF OF ENERGY CONSERVATION IN SIMULATIONS USING SELF-GRAVITY

In Section 2.3.1, we described our approach to updating the gas energy in response to motions of fluid through the

self-generated gravitational potential using Equation 11. While it is straightforward to observe that this approach

should be conservative for an arbitrary fixed external potential Φ, it is not as obvious that this should be so for a

self-generated potential which changes in response to mass motions on the domain. To see that this still holds for the

self-generated gravitational potential Φ, let us start with Equation 11 in a slightly revised form:

∆(ρE)i = −1

2

∑

j

∆ρij(Φi − Φj) (B1)

where by ∆ρij we mean the density transferred from zone j to zone i, so that ∆ρij = −∆ρji, and the sum is over all

zone indices j that are adjacent to zone i. Let us define Φij = Φji = (Φi+Φj)/2 as the potential on the zone interface
between zones i and j. Then we have:

∆(ρE)i = −
∑

j

∆ρij(Φi − Φij). (B2)

We can evalute the sum for all of the terms proportional to Φi by observing that the change in density from time-level

n to time-level n+ 1 is the sum of the density fluxes from all adjacent zones.

∆(ρE)i = −(ρn+1
i − ρni )Φi +

∑

j

∆ρij Φij

Now let us sum this over all zones i in the domain, and ignore the domain boundaries, or assume that they are far

enough away from the region of compact support for ρ that Φ is negligible there. As the second term on the right-hand

side is antisymmetric in i and j, it cancels when summing adjacent zones, and we have:

∑

i

(ρE)n+1
i −

∑

i

(ρE)ni = −1

2

∑

i

(Φn+1
i +Φn

i )(ρ
n+1
i − ρni )

Note that, as explained the text, we are using a time-centered Φ to correspond to the mass fluxes at time-level n+1/2.

Finally we re-write this in a form where the difference in total energy between time-levels n and n+1 is on the left-hand

side and any sources causing this to be non-zero are on the right-hand side:

∑

i

(
ρE +

1

2
ρΦ

)n+1

i

−
∑

i

(
ρE +

1

2
ρΦ

)n

i

=
1

2

∑

i

(
Φn+1

i ρni − Φn
i ρ

n+1
i

)

=
1

8πG

∑

i

(
Φn+1

i ∇2Φn
i − Φn

i ∇2Φn+1
i

)
(B3)

Equation B3 expresses total energy conversation if and only if the right-hand side vanishes. We observe that the
right-hand side has the form of a variant of the divergence theorem often called Green’s second identity:

∫
(Φn∇2Φn+1 − Φn+1∇2Φn)dV =

∫ (
Φn∇Φn+1 − Φn+1∇Φn

)
· dS, (B4)
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where dS is the area element with vector component parallel to the outward normal. The analogous result holds for

the discretized form in Equation B3. With the assumptions used above, the right-hand side of Equation B4 will vanish

as the surface integral is evaluated at infinity, where the potential tends to zero. This concludes the proof that the

method is conservative when the potential used at the zone interfaces is time-centered, even in light of the change of
the potential over the timestep due to the mass motion that is causing the change in the energy.

From the above discussion it is straightforward to see exactly why the method is not fully conservative to machine

precision in practice. First, we cannot simulate the domain out to infinity, so Green’s second identity does not hold

exactly and there is some loss or addition of energy at domain boundaries. Second, Equation B3 holds in the continuum

limit by using the Poisson equation, but in practice it is not exactly true that ρi = 4πG∇2Φi due to small errors in
the potential at the level of the tolerances used in the Poisson solver.

C. FORMULATION OF THE MULTIPOLE EXPANSION FOR THE GRAVITATIONAL POTENTIAL

The integral formulation of the gravitational potential, using a series expansion in spherical harmonics, is:

Φ(x) = −G

∞∑

l=0

l∑

m=−l

4π

2l+ 1

∫
ρ(x′)Ylm(θ, φ)Y ∗

lm(θ′, φ′)
rl<

rl+1
>

dV ′, (C1)

where θ is the polar angle and φ is the azimuthal angle, r ≡ |x| is the radial distance, and at any point in the domain

r< is the smaller of r and r′, and r> is the larger of the two. This immediately suggests writing the potential at any

location as the sum of two series:

Φ(x) = −G
∞∑

l=0

l∑

m=−l

4π

2l+ 1

[
qLlm(x) r−l−1 + qUlm(x) r−l−1

]
Ylm(θ, φ),

where we have defined two multipole moments as integrals over the domain:

qLlm(x) =

∫
dV ′ ρ(x′)Y ∗(θ′, φ′)Θ(r − r′) r′

l
(C2)

qUlm(x) =

∫
dV ′ ρ(x′)Y ∗(θ′, φ′)Θ(r′ − r) r′

−l−1
. (C3)

Θ(r) is the standard step function, equal to one if the argument is positive and zero if the argument is negative.

Geometrically, qL(x) is an integral containing only mass interior to |x|, and qU (x) is an integral containing only mass

exterior to |x|. Provided that one has computed these two integrals for a point x, one can use the series expansion to
calculate the potential at that point in principle to arbitrary accuracy by including higher order terms.

We prefer to work with solely real-valued quantities, and so we make use of the addition theorem for spherical

harmonics (Jackson 1998, Section 3.6):

4π

2l + 1

l∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ) = Pl(cos θ)Pl(cos θ

′)

+ 2

l∑

m=1

(l −m)!

(l +m)!
Pm
l (cos θ)Pm

l (cos θ′) [cos(mφ) cos(mφ′) + sin(mφ) sin(mφ′)] . (C4)

The Pl(x) are the Legendre polynomials and the Pm
l (x) are the associated Legendre polynomials. We construct them

using a stable recurrence relation given known values for l = 0 and l = 1. We can then formulate the expansion in a

different way:

Φ(x) = −G

∞∑

l=0

{
Q

(L,0)
l (x)Pl(cos θ) r

−l−1 +Q
(U,0)
l (x)Pl(cos θ) r

l

+

l∑

m=1

[
Q

(L,C)
lm (x) cos(mφ) +Q

(L,S)
lm (x) sin(mφ)

]
Pm
l (cos θ) r−l−1

+

l∑

m=1

[
Q

(U,C)
lm (x) cos(mφ) +Q

(U,S)
lm (x) sin(mφ)

]
Pm
l (cos θ) rl

}
(C5)
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The multipole moments now take the form:

Q
(L,0)
l (x) =

∫
Pl(cos θ

′)Θ(r − r′) r′
l
ρ(x′) d3x′ (C6)

Q
(U,0)
l (x) =

∫
Pl(cos θ

′)Θ(r′ − r) r′
l
ρ(x′) d3x′ (C7)

Q
(L,C)
lm = 2

(l−m)!

(l+m)!

∫
Pm
l (cos θ′) cos(mφ′)Θ(r − r′) r′

l
ρ(x′) d3x′ (C8)

Q
(U,C)
lm = 2

(l−m)!

(l+m)!

∫
Pm
l (cos θ′) cos(mφ′)Θ(r′ − r) r′

−l−1
ρ(x′) d3x′ (C9)

Q
(L,S)
lm = 2

(l−m)!

(l+m)!

∫
Pm
l (cos θ′) sin(mφ′)Θ(r − r′) r′

l
ρ(x′) d3x′ (C10)

Q
(U,S)
lm = 2

(l−m)!

(l+m)!

∫
Pm
l (cos θ′) sin(mφ′)Θ(r′ − r) r′

−l−1
ρ(x′) d3x′. (C11)

In practice, of course, we select some maximum value lmax at which we terminate the summation, determined either

by computational efficiency requirements or by the fact that there is little information at high orders for sufficiently

smooth mass distributions. In CASTRO we have the capability to compute any of the above multipole moments, though

in this paper we are only using the multipole expansion to calculate the boundary conditions on the potential, and so
we neglect calculation of the moments with a U subscript as we are assuming that all of the mass is interior to the

boundary. Equation 14 is directly recovered under these conditions.
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Guerrero, J., Garćıa-Berro, E., & Isern, J. 2004, 413, 257 1

Guillochon, J., Dan, M., Ramirez-Ruiz, E., & Rosswog, S. 2010,

ApJL, 709, L64 1, 4.3
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Pakmor, R., Kromer, M., Röpke, F. K., et al. 2010, Nature, 463,

61 1
Pakmor, R., Kromer, M., Taubenberger, S., et al. 2012b, ApJL,

747, L10 1
Pakmor, R., Kromer, M., Taubenberger, S., & Springel, V. 2013,

ApJL, 770, L8 1
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ,

517, 565 1
Price, D. J. 2008, Journal of Computational Physics, 227, 10040 1

Rasio, F. A., & Shapiro, S. L. 1995, ApJ, 438, 887 1
Raskin, C., Scannapieco, E., Fryer, C., Rockefeller, G., &

Timmes, F. X. 2012, ApJ, 746, 62 1
Rendleman, C. A., Beckner, V. E., Lijewski, M., Crutchfield, W.,

& Bell, J. B. 2000, Computing and Visualization in Science, 3,
147 2

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, 116, 1009
1

Robertson, B. E., Kravtsov, A. V., Gnedin, N. Y., Abel, T., &
Rudd, D. H. 2010, MNRAS, 401, 2463 4.3, 4.3.1, 4.3.1

Rosswog, S., Speith, R., & Wynn, G. A. 2004, MNRAS, 351, 1121
3.2

Saio, H., & Nomoto, K. 1985, 150, L21 1
Sasidharan, A., & Snir, M. 2015 5
Sato, Y., Nakasato, N., Tanikawa, A., et al. 2015, ApJ, 807, 105 1
Schwab, J., Shen, K. J., Quataert, E., Dan, M., & Rosswog, S.

2012, MNRAS, 427, 190 1
Segretain, L., Chabrier, G., & Mochkovitch, R. 1997, ApJ, 481,

355 1
Shen, K. J., Bildsten, L., Kasen, D., & Quataert, E. 2012, ApJ,

748, 35 1
Shu, F. H. 1992, The physics of astrophysics. Volume II: Gas

dynamics. 2.3.1
Springel, V. 2010, MNRAS, 401, 791 2.3.1, 2.3.1, 4.3
Swesty, F. D., Wang, E. Y. M., & Calder, A. C. 2000, ApJ, 541,

937 2.4, 3.2, 4.4
Tanikawa, A., Nakasato, N., Sato, Y., et al. 2015, ApJ, 807, 40 1
Tasker, E. J., Brunino, R., Mitchell, N. L., et al. 2008, MNRAS,

390, 1267 4.3, 4.3.2
Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501 2.2
Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9

3, 6

Tutukov, A. V., & Yungelson, L. R. 1979, Acta Astron., 29, 665 1
van Kerkwijk, M. H., Chang, P., & Justham, S. 2010, ApJL, 722,

L157 1
Wadsley, J. W., Veeravalli, G., & Couchman, H. M. P. 2008,

MNRAS, 387, 427 4.3
Waldvogel, J. 1976, Zeitschrift fr angewandte Mathematik und

Physik ZAMP, 27, 867 2.3.3
Webbink, R. F. 1984, ApJ, 277, 355 1
Whelan, J., & Iben, Jr., I. 1973, ApJ, 186, 1007 1
Yoon, S., Podsiadlowski, P., & Rosswog, S. 2007, MNRAS, 380,

933 1



WD Mergers I. Methodology 37

Zhang, W., Almgren, A., Day, M., et al. 2015, SIAM Journal on
Scientific Computing, submitted 5

Zhu, C., Chang, P., van Kerkwijk, M. H., & Wadsley, J. 2013,
ApJ, 767, 164 1

Zhu, Q., Hernquist, L., & Li, Y. 2014, ArXiv e-prints,
arXiv:arXiv:1410.4222 1

Zingale, M., & Katz, M. P. 2015, ApJS, 216, 31 A, A.1

Zingale, M., Dursi, L. J., ZuHone, J., et al. 2002, ApJS, 143, 539
4.1

http://arxiv.org/abs/1410.4222



