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ABSTRACT OF THE DISSERTATION

A Finite Presentation of Knotted Trivalent Graphs

by

Jana Comstock

Doctor of Philosophy in Mathematics

University of California San Diego, 2008

Professor Justin Roberts, Chair

Professor Peter Teichner, Co-Chair

While knot theory has been studied since the 19th century (and arguably for

thousands of years prior to Gauss), knotted trivalent graphs are objects of relatively

recent interest. We will extend the methods used by Thurston to find generators

of KTGs in 2002, and use them to determine a finitely generated list of relations,

thereby acquiring a finite presentation of knotted trivalent graphs.

We will first define a set of knotted trivalent graph diagrams, and reiterate

Thurston’s result that they are generated by the diagrams for the tetrahedron

and the twisted tetrahedron. We will then use a version of the same algorithm

to establish that the relations on knotted trivalent graph diagrams are finitely

generated by the four relations corresponding to the operations: disjoint union

with a tetrahedron, disjoint union with a twisted tetrahedron, connect sum, and

unzip.

Finally we will extend these results to knotted trivalent graphs themselves by

equipping KTGs with a thickening of each edge and considering an extended list of

Reidemeister moves for knotted trivalent graphs. By adding generators to account

for twisting of thickened edges and relations corresponding to each of these five

Reidemeister moves we will complete the finite presentation.

x



Chapter 1

Introduction

With the advent of the Kontsevich integral and its vast potential in the field of

knot and link theory, knot theorists have begun to widen the scope of their research

to include not only knots and the bordisms between them in their calculations, but

also knotted trivalent graphs and the singular surfaces known as webs or foams

which act as bordisms between knotted trivalent graphs. Reshetikhin and Turaev

[7], Watanabe [10], and Bar-Natan et al [3] have defined manifold invariants with

values in the space of these graphs. Further, if it can be shown that the relations on

knotted trivalent graphs are contained in the quotient of the Kontsevich integral, it

might significantly simplify the task of calculating these integrals. To this end the

work presented here will not only provide a list of generators for knotted trivalent

graphs, which has previously been accomplished in [8], but also a finite list of

generators of relations.

In this paper we complete the details of finitely presenting knotted trivalent

graphs, or KTGs. Previous work by Bar-Natan and Thurston [8] has determined

generators for the algebra of KTGs and an algorithm for producing any KTG from

these generators; we will adapt the algorithm slightly so as to more easily classify

the relations on KTGs. KTGs will be described in greater detail in Chapter 4; for

now, we will simply note that they are trivalent graphs which have been embedded

into R3 (and thus knotted).

In Chapter 3 we will present a finite presentation for knotted trivalent graph

diagrams rather than knotted trivalent graphs themselves. Our first step will be

1
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to define knotted trivalent graph diagrams and a set of knotted trivalent diagram

blueprints, and a host of other miscellany. The basic operations disjoint union,

connect sum, and unzip will be defined not only for KTGDs but for blueprint

versions as well. A number of convenient if not always critical operations will

also be explained. The maximal tree which is the defining characteristic of these

blueprints will act as a guide for applying the slightly altered version of Thurston’s

generating algorithm; this algorithm will yield the following theorem:

Theorem 1. (Thurston, Bar-Natan): KTGD is generated by the tetrahedron

and the twisted tetrahedron under the operations disjoint union, connect sum, and

unzip.

Next we will establish relations corresponding to each of our basic operations.

When disjoint union is considered as a unary operation, there will be two versions

of it on our basic list: disjoint union with a tetrahedron, and disjoint union with

a twisted tetrahedron. This is equivalent to stating that KTGD is generated by

those two diagrams. Along with the relations for connect sum and unzip, we will

have the building blocks necessary to construct all possible relations on KTGD,

yielding the next theorem:

Theorem 2. Any relation between two sequences of operations is a composition of

the four basic relations corresponding to disjoint union with a tetrahedron, disjoint

union with a twisted tetrahedron, connect sum, and unzip.

Together these results give a finite presentation for knotted trivalent graphs dia-

grams, but not for knotted trivalent graphs themselves. In Chapter 4 we will equip

knotted trivalent graphs with thickened edges which contain twisting information;

this allows the basic operations to be extended to knotted trivalent graphs as well

as diagrams. These thickenings also make for a larger possible set of knotted triva-

lent graphs diagrams, and two more generators (or two more versions of disjoint

union, if you prefer) must be added to our list of generators (and operations).

Additionally, the relations for knotted trivalent graph diagrams fail to account

for those sequences of operations which yield two distinct knotted trivalent graph

diagrams nonetheless corresponding to the same knotted trivalent graph. These
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diagrams differ by a sequence of extended Reidemeister moves [4, 11], so adding

a relation for each of the five moves in the extended Reidemeister list for knotted

trivalent graphs give all possible relations on knotted trivalent graphs.

Theorem 3. (Kauffman): Ambient isotopy of knotted trivalent graphs is generated

by the moves shown in section 2.1. That is, any two diagrams of isotopic knotted

trivalent graphs are related by a finite sequence of these moves.

Corollary. All Reidemeister moves on KTGD map to the identity on KTG, and

the relations thus generated are the only ones required to extend our list of relations

to KTG.

Combining these statements, we have the main result: that knotted trivalent

graphs are finitely presented.



Chapter 2

Background

2.1 Reidemeister moves

In 1926, Reidemeister (as well as Alexander and Briggs) [6, 1] proved that the

familiar list of three moves generates isotopy of knots using an essentially combi-

natorial method. Kauffman [4] has extended this list to a set of five Reidemeister

moves which are sufficient to generate isotopy between graphs. In addition to the

usual three moves:

• Reidemeister 1

• Reidemeister 2

4
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• Reidemeister 3

Kauffman [4] includes another two moves for graphs, pulling a strand under (or

over) a vertex, and twisting a vertex:

• Reidemeister 4

• Reidemeister 5

The moves shown here are for trivalent graphs; Kauffman [4] and Yamada [11]

give lists for more general sets of graphs.

2.2 The Kontsevich Integral

The Kontsevich integral, whose merit as the “universal finite type invariant” is

the ability to yield any finite type knot invariant by applying some weight system,

has been thoroughly discussed in many fine papers [5, 2]; rather than attempting

to reproduce their achievements we will relate a slightly different interpretation
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pioneered by Dylan Thurston in his undergraduate thesis and expounded to me via

Dror Bar-Natan and Scott Morrison. This “Stonehenge” idea (so called because

of the “stellar coincidences” counted therein) is that the Gauss integral can be

generalized to the Kontsevich integral.

The Gauss integral calculates the linking number, which can be thought of as

counting configurations of certain additions to the embedded link; the (oriented)

number of vertical intervals one can draw connecting one component of a link to

the other.

Thurston’s Stonehenge formula gives a linear combination of chinese characters.

A chinese character is a unitrivalent graph with its univalent vertices lying on a

distinguished circle. While we remember a cyclic order at each vertex, and we

remember the orientation of the distinguished circle, this chinese character is not

considered to be embedded in the plane, and any tetravalent vertices are simply

introduced by the necessity of drawing the diagram in the plane. The coefficients of

the chinese character diagrams turn out to be exactly the number of configurations

of each if the direction of each segment in the diagram is determined by placing a

star on the sphere at infinity, at which the segment must point.

2.3 TG Algebras

A TG algebra has as its spaces trivalent graphs and as its morphisms the opera-

tion connect sum, which acts on two arcs of disjoint components, and the operation

unzip, which acts on an arc. Delete is often listed as an operation as well, although

it can be obtained via a sequence of connect sums and unzips, as will be shown

in Chapter 1. If we allow the set of objects associated with each trivalent graph

to be its embeddings into R3, knotted trivalent graphs are an obvious example of

a TG algebra, and perhaps the most natural/motivating/primeval one. The finite

presentation of KTGs now yields a short list of relations which one must check

are in the quotient of the Kontsevich integral in order to extend the Kontsevich

integral to a TG morphism. This motivates the result presented in this paper.
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2.4 The Århus Integral and KTG manifold in-

variants

Just as the Kontsevich integral is the universal finite type invariant for knots,

the Århus integral is the universal finite type invariant for manifolds[3]. It com-

putes the Le-Murakami-Ohtsuki invariant, the manifold theoretical version of the

Vassiliev invariant, which takes values in the space of trivalent graphs. As the

analogue of the Kontsevich integral, the information computed by the Århus in-

tegral encompasses that which is provided by 3-manifold invariants such as the

Turaev-Viro invariant [9].



Chapter 3

Knotted trivalent graph diagrams

Most of the work of determining generators and relations will be executed in

this chapter, but with respect to knotted trivalent graph diagrams rather than

knotted trivalent graphs themselves. In Chapter 3 these results will be translated

to knotted trivalent graphs. In this chapter we will use an adaptation of the

algorithm employed by Thurston [8] to prove that knotted trivalent graphs are

finitely generated, where the slight adaptations provide a basis for proving that

the relations on knotted trivalent graph diagrams are also finitely generated, with

generators of relations corresponding to the generators of knotted trivalent graphs

themselves.

3.1 Sets

First we must define the several slightly different types of objects under con-

sideration, including knotted trivalent graphs, knotted trivalent graph diagrams,

diagrams with a preferred edge, blueprint diagrams, and blueprints with a preferred

edge.

Definition 1. A knotted trivalent graph or KTG is a set of vertices connected

by edges such that there are three edges at each vertex, along with an embedding

into R3. For our purposes we will not consider these objects to be oriented; we will

eventually equip them with a framing but will initially ignore framing. We will

8
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often refer to the set of all such possible objects, up to isotopy, as KTGs or KTG.

Notice that some of the usual requirements for graphs do not apply; loops and

multiple edges are allowed. It is also worth remarking that this definition is slightly

awkward, as examples cannot be illustrated without first being projected into R2.

Therefore we will begin by working with diagrams of KTGs and will extend our

results to KTGs in Chapter 3.

Definition 2. A knotted trivalent graph diagram or KTGD is a projection of a

KTG into S2 up to isotopy; as with diagrams of knots, this projection consists of

an immersion where the over/under crossing information is retained at the double

points by drawing the strand which passes under as broken. The occurrence of these

double points renders the KTGD a 3-, 4-valent graph, and edges are considered

to be the arcs between vertices and/or crossings. The edges of this KTGD are

classified as either inner or outer edges, where outer edges are those bounding the

exterior component of the complement. These objects are referred to collectively

as KTGDs or KTGD.

Figure 3.1: Two KTGDs which represent different KTGs in 3-space

In order to define the operations on knotted trivalent graph diagrams carefully,

it will be necessary to refer to yet another set of objects:

Definition 3. The set of KTGDs with a preferred edge selected will be referred

to as KTGE.
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Figure 3.2: Two KTGEs which represent the same KTGD with preferred edge
indicated in green

After defining operations and finding a list of generators for KTGD, we will

still need to give the set of the blueprints used in the generating algorithm a name

so we can consider the relations on KTGD:

Definition 4. A knotted trivalent diagram blueprint or K̃TGD is a KTGD along

with the choice of a maximal tree on the underlying 3-, 4-valent knotted trivalent

graph diagram. We will call the set of such objects K̃TGD.

Figure 3.3: Two K̃TGDs which represent the same KTGD with maximal tree
indicated in red

Finally, we have an analogue for KTGDs with a preferred edge as well:
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Definition 5. The set of K̃TGDs with a preferred edge selected will be referred

to as K̃TGE.

The relationships between these sets is illustrated in the diagram below.

Figure 3.4: Maps between sets

3.2 Operations

Now we can introduce the operations on KTGDs. There are three basic oper-

ations:

• Connect sum is a binary operation # : KTGE × KTGE −→ KTGD

where the selected KTGEs must be separate components and the selected

edges must be exterior edges. Both arcs are cut and the ends are reattached

to the ends from the other arc as indicated by the planar embedding. This

operation is illustrated in Figure 3, where any portion of the KTGDs which

lies outside the dotted circle is unchanged. Note that the input arcs must be

from two disjoint KTGDs, or else the choice of how to splice them together

is not well defined.
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Figure 3.5: Connect sum

• Unzip is a unary operation u: KTGE −→ KTGD which splits an edge

connecting two distinct vertices. Unzip removes an entire edge and its end-

points by connecting the other edges at those vertices to one another, again

as indicated by the planar embedding. Unzip is illustrated in figure 4, with

areas outside the dotted circles remaining unchanged.

Figure 3.6: Unzip
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• Disjoint union is a binary operation t : KTGD × KTGD −→ KTGD

which simply places two KTGDs adjacent to one another in the plane.

There is also a variant of connect sum used by Bar-Natan; one advantage of this

formulation is that it makes apparent the necessity of choosing disjoint components

in order for connect sum to be well defined:

• An alternate connect sum adds one vertex to each chosen edge and creates a

new edge to connect them; this move can be accomplished with our original

definition of connect sum by connect summing a pair of spectacles between

the two KTGs:

Figure 3.7: Alternate connect sum

Our operations on K̃TGD will include three switch tree operations as well as

the familiar KTGD operations:

• The “switch leaf” operations for 3- and 4-valent vertices changes which edge

attached to a particular vertex is included in the maximal tree. Since all

vertices outside the dotted circle must be included in this maximal tree, any

choice of an edge coming into this vertex connects it to the tree and creates

a valid maximal tree.
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Figure 3.8: Switch leaf for a trivalent vertex

Notice this can only be applied to vertices which do not connect to both ends of

the same edge, or there would necessarily be two new edges replacing the old one.

This will never be a problem, as the switch leaf operation will only be used to

move from one choice of maximal tree to another.

• The “switch branch” operation changes which edge connecting two subtrees

of the maximal tree is used to connect them:

Figure 3.9: Switch branch

In this case the area inside the dotted circles remains unchanged. The placement

of the circles is altered to emphasize the fact that since these are possible branches
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of a maximal tree they connect two otherwise disjoint components, labeled here as

component A and component B.

These two “switching” operations add an interesting feature to our diagram of

KTG relations:

Figure 3.10: Maps between sets

Since we are forgetting the maximal tree when we go from K̃TGD or K̃TGE to

KTGD or KTGE, the switch leaf/branch operations map to the identity.

• The operation disjoint sum twiddle t̃ : K̃TGD x K̃TGD −→ K̃TGD is

identical to t except that it acts on objects in K̃TGD instead of KTGD.

• The operation connect sum twiddle #̃ : K̃TGE x K̃TGE −→ K̃TGD acts

on two K̃TGEs where the preferred edges are both exterior, from disjoint

components, and not part of the maximal tree; one of the two new edges

created is added to the maximal tree of the K̃TGD thus created. Alterna-

tively ˜connectsum may act on two edges from separate components exactly

one of which is included in a maximal tree; in this case both output strands

are included in the maximal tree for the output.
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Figure 3.11: ˜Connectsum

• The operation unzip ũ : K̃TGE −→ K̃TGD acts on a K̃TGE where the

selected edge is not only in the complement of the maximal tree, but the

trivalent vertex at each end of the selected edge has only one edge in the

maximal tree; in this case neither of the output strands are included in the

resulting maximal tree. Alternatively, the selected edge may be part of the

maximal tree and the upper two( or lower two) attached edges may be on

the maximal tree; in this case the upper (or lower) output strand is included

in the resulting maximal tree:

Figure 3.12: An example of ũnzip

As we may change the chosen maximal tree at will using the switch leaf and switch

branch operations, it is always possible to rearrange the tree so the selected edge
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satisfies these criteria as long as the unzip doesn’t split the K̃TGE into two disjoint

KTGD components with vertices in each. Fortunately such a split is obtainable

through other means. The simplest explanation for the defensibility of excluding

this particular type of unzip is that any KTGD can be generated without it, as

will be shown.

There are several additional operations on KTGD which, while extraneous in

the sense that each may be obtained as a composition of the operations listed above,

are often convenient. If disjoint union is considered as many unary operations, with

one for each possible KTGD, rather than a single binary operation then it will be

shown that the only two which properly belong in the list of basic operations above

are disjoint union with a tetrahedron and disjoint union with a twisted tetrahedron,

and all the other disjoint unions fall into the additional category, to which we will

now add a few more operations:

• Kill removes a component with no vertices (an unknot). Notice that if there

are any other components this is equivalent to connect summing with them.

Figure 3.13: Kill

• Bubble, which appears on Thurston’s list [8] of operations along with the

observation that this operation can be accomplished by connect summing

with a theta, splits an edge apart in the middle, adding two vertices:
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Figure 3.14: Bubble

• Vertex connect sum is a binary map from the space of KTGDs with a selected

vertex to KTGD, again acting on vertices from two disjoint components. It

is equivalent to a connect sum either between the two edges above the vertex

or the two below it, followed by an unzip on the resulting edge:

Figure 3.15: Vertex connect sum

Vertex connect sum will be used in the generating algorithm for KTGDs. Extend-

ing this composition of a connect sum and subsequent unzips to a larger subgraph

than just one vertex, we have:

• Tree connect sum is a binary map from the space of KTGDs with a selected

tree (both selected trees must be identical) to KTGD, where the chosen
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trees must be from disjoint components. It is equivalent to a connect sum on

any edge of the first tree and the corresponding edge from the second tree,

followed by all possible unzips.

Figure 3.16: Tree connect sum

There are inverses for disjoint union, connect sum, and tree connect sum (which

is to say a connect sum followed by unzips may still be inverted), but only a

partial inverse for unzip. Disjoint union, when considered as a unary operation,

is invertible simply by performing as many unzips as are possible and killing the

resulting circles:

Figure 3.17: The disjoint union in the top line is undone by the sequence of unzips
and kills below.
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Connect summing a second KTG onto any KTG is also invertible simply by un-

zipping all edges which were contributed by the second KTG and then performing

a disjoint union with that KTG, and a tree connect sum is invertible by connect

summing with the mirror image of the second KTG, performing as many unzips

on the two added KTGs as possible (in other words performing a tree connect sum

with as large a chosen tree as posisble), and then reconstructing the second KTG

as a disjoint component. An example is given in Figure 2.18.

Figure 3.18: The connect sum in the top line is undone by the connect sum,
sequence of unzips, and disjoint union below.

Unzip is only invertible when the unzip splits the KTGD into two separate com-

ponents; in this case one can reconnect them by connect summing a theta between

them, as shown in Figure 2.19. This procedure cannot be followed if the unzip

does not split the KTGD into two components, as the second connect sum would

not be performed on distinct components and would therefore not be well defined.

The invertibility of unzips which split a KTGD into two separate components,

unlike other unzips, allows us, if we prefer, to consider them as not properly unzips

at all, as we do in the ũnzip case. The invertibility reflects the fact that there is an

alternate method of effecting this result and that we need not include the possibility
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of a ”splitting” unzip.

Figure 3.19: Inverting an appropriate unzip

3.3 Generators

We now have the necessary machinery to devise an algorithm for constructing

any KTGD by applying connect sum and unzip to the tetrahedra and twisted

tetrahedra which, as we will show, generate KTGD. The algorithm we will present

here is an adaptation of the algorithm described by Thurston in [8]. In addition

to using the operations disjoint union, connect sum, and unzip described above,

we will also refer to the following KTGDs, which the algorithm will show are

generators for KTGD:

• tetrahedron

• twisted tetrahedron
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Using these tetrahedra and twisted tetrahedra as generators, we may now con-

struct any desired KTGD by applying vertex connect sums and unzips to tetrahe-

dra and twisted tetrahedra as dictated by the following algorithm:

• Step 0: Select a K̃TGD which maps to the desired KTGD. In other words,

recalling that a KTGD is actually a 3-, 4-valent graph with 4-valent vertices

the crossings, choose any maximal tree on this 3-, 4-valent graph. We will

often call this object a blueprint, since it is only a reference as to how to

apply the following steps; it is not one of the objects we will operate on in

order to generate the KTGD in question.

Figure 3.20: A possible blueprint (step 0) for

• Step 1: Beginning with the empty set and using the blueprint K̃TGD as a

guide, perform a disjoint union with a tetrahedron for each 3-valent vertex
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and a disjoint union with a twisted tetrahedron for each 4-valent vertex

(crossing) in your blueprint.

Figure 3.21: The completion of step 1 for

• Step 2: Perform a vertex connect sum along each edge in the maximal tree

of the blueprint. Before each vertex connect sum on an edge the edge in

question does not exist in the KTGD we are building, but after the vertex

connect sum it does exist. Notice that we have performed the maximum

possible number of connect sums, as there are no more disjoint components.

. . .

Figure 3.22: Step 2
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• Step 3: Perform an unzip corresponding to each edge in the complement of

the blueprint’s maximal tree. Again, these edges are created in the KTGD

by each unzip.

Figure 3.23: Step 3

• Step 4: Kill the extraneous boundary component.

Notice in particular that we never use a “splitting” unzip until the very last

step when we split off the final boundary component, an unknot.

Every 3-valent vertex is created in step 1a, with some boundary component, and

every 4-valent vertex is created in step 1b, with some boundary component. Every

edge in the maximal tree is created in step 2, while the many boundary components

are simultaneously reduced to one component (and the object becomes connected).

In step 3, every other edge is created and the boundary component is separated

from the desired KTGD, and step 4 removes the extraneous boundary component.

We may now state with confidence the following theorem, published by Thurston

[8] but jointly conceived by Thurston and Bar-Natan:

Theorem 1. (Thurston, Bar-Natan): KTGD is generated by the tetrahedron

and the twisted tetrahedron under the operations disjoint union, connect sum, and

unzip.

This follows directly from the algorithm.
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Corollary. Any two choices of maximal tree for a K̃TGD will yield the same

KTGD when the algorithm is applied.

3.4 Relations

We will now use this algorithmic procedure for generating a KTGD as a stan-

dard of comparison between all other possible methods of generating the same

KTGD, giving us all possible relations. As a starting point, we define relations

corresponding to the generators and operations used in our algorithm.

Lemma 1. The relation between disjoint union with a tetrahedron and the standard

algorithmic method of constructing a tetrahedron can be represented by the following

commutative diagram:

Figure 3.24: Tetrahedron relation

The objects in the top row of Figure 2.23 are K̃TGDs, and the objects in the

bottom row are KTGDs. This is consistent with the notion that the algorithm

starts with a blueprint and results in a KTGD. While the forgetful map from
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K̃TGD to KTGD would yield the same output, the more complicated sequence

of steps used in the algorithm is necessary here, and the disjoint union in the

bottom row is only compared to steps 1 through 4 of the algorithm shown in the

right hand column. In other words, if the area outside the dotted circles is the

empty set, we are comparing two sequences of operations which begin with the

empty set and end with the tetrahedron.

This diagram is actually only an example, as the tetrahedron relation encom-

passes not only this choice of maximal tree but any other choice as well, so there

are fifteen different top rows we could draw corresponding to the fifteen choices of

maximal tree. We will bear this in mind as we examine the next three relations,

and afterwards introduce a commutative diagram for the switch tree operation to

circumvent this complication.

Lemma 2. The relation between disjoint union with a twisted tetrahedron and

the algorithmic construction of the twisted tetrahedron can be represented by the

following commutative diagram:

Figure 3.25: Twisted tetrahedron relation
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Lemma 3. Applying the algorithm to two blueprints and then connect summing

them is equivalent to performing a ˜connectsum on the same two blueprints and

then applying the algorithm to the result; in other words, the following diagram is

commutative:

Figure 3.26: Connect sum relation

Lemma 4. Applying the algorithm to a blueprint and then unzipping an edge is

equivalent to performing a ũnzip on the same blueprint and then applying the

algorithm to the result; in other words, the following diagram is commutative:

As previously mentioned, each of the above four relations is actually only an

example, and encompasses a number of different possibilities depending on the

choice of maximal tree in the top row. If we are not comfortable considering the

relation to generally represent any of these choices, we can distinguish one canonical

choice as the relation and acquire all other versions by adding a commutative

triangle for the switch leaf operation and one for the switch branch operation,

allowing us to alter the maximal tree in the top row as necessary. The commutative

triangle for the switch leaf operation is shown in Figure 2.27.
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Figure 3.27: Unzip relation

Figure 3.28: A commutative triangle reconciling different formulations of the unzip
relation

Any composition of these four basic relations yields a new relation between the

composition of operations represented in the bottom row and the algorithm which

yields the same KTGD. An example is shown in Figure 2.29.
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Figure 3.29: A composition of relations

Theorem 2. Any relation between two sequences of operations is a composition of

these four basic relations.

We can show this by relating any sequence of operations which results in a

particular KTGD to the algorithmic sequence which yields this KTGD. Given any

sequence of operations, we simply compose the relations corresponding to these

relations. The resulting chain of commuting squares is a relation between the

sequence (which is explicitly shown in the bottom row of the diagram) and the

standard algorithm.

Since we may then compare any equivalent series of moves to the algorithm,

and this sense of equivalence is transitive, the algorithm provides a bridge be-

tween any two series of operations which result in the same KTGD. Therefore, the

compositions of these relations constitute all the relations on KTGD.

As an example, the following figures show how to construct a relation between

two different methods of constructing .



30

Figure 3.30: A relation showing that the algorithm on

is equivalent to two tetrahedron disjoint unions followed by a

connect sum
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Figure 3.31: The composition of relations corresponding to a sequence of operations
which generates
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Figure 3.32: The composition of relations corresponding to another sequence of
operations which generates
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Figure 3.33: The relation obtained by noticing that both sequences above are
equivalent to the algorithm



Chapter 4

Knotted trivalent graphs

We now begin the work of translating all this machinery to KTGs themselves.

First, we must describe the behavior of the various operations on an object em-

bedded in R3. KTGs must be equipped with thickened edges to allow the basic

operations to function on KTG, and we must define a set of KTGs with preferred

edges. Additionally, there are many different KTGDs immersed in S2 which cor-

respond to the same KTG embedded in R3; we must define Reidemeister moves

between two different diagrams of a trivalent graph and add more relations which

correspond to these moves . In this case there will be (ive relevant moves rather

than the three for knots [Kauffmaninvariants, Yamada].

4.1 Sets

The definition of knotted trivalent graphs given in Chapter 2 requires a small

tweak before we can define their operations; specifically, since the previous defini-

tions relied heavily on the planarity of the KTGD, we must provide thickenings

for each edge which will indicate how twisted each edge is in order to have enough

information to define our operation. We can think of each edge in this way as a rib-

bon rather than a strand. KTGs are certainly considered without such thickenings

in the literature[] but our operations will require them.

The KTGDs we have been working with correspond to KTGs which are im-

mersed in S2 so that the ribbons are all planar. However, this is not always possible

34
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for all KTGs, so we will depict twists on edges of KTGDs when necessary.

We will also need one more set:

Definition 6. The set of knotted trivalent graphs with thickened edges containing

twist information and one preferred edge will be referred to as KTGe, and elements

of this set as KTGes.

The extended list of Reidemeister moves for KTGs determined by Kaufmann

[4] is provided in Chapter 1. Since we know that all these moves map to the

identity on KTGDs we can make the following addition to our diagram of maps

between sets:

Figure 4.1: Maps between sets

4.2 Operations

We will now also consider Reidemeister moves which can operate on both

KTGD and K̃TGD in the usual way. The only subtlety is that now that our

objects are equipped with thickenings, we must be careful with twisting during

moves 1 and 4.
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Figure 4.2: Reidemeister move 4 on a K̃TGD

As with KTGDs, there are three basic operations on KTGs:

• Connect sum is a binary operation # : KTGe ×KTGe −→ KTG where

the selected KTGEs must be separate components and the selected edges

must be exterior edges. Both arcs are cut and and the ends are reattached to

the ends from the other arc as indicated by the thickening. This operation is

illustrated in Figure 3.2, where any portion of the KTGs which lies outside

the dotted circle is unchanged. Note that the input arcs must be from two

disjoint KTGs, or else the choice of how to splice them together is not well

defined.

Figure 4.3: Connect sum

• Unzip is a unary operation u: KTGe −→ KTG which splits an edge con-
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necting two distinct vertices. Unzip removes an entire edge and its endpoints

by connecting the other edges at those vertices to one another, again as indi-

cated by the thickening. Unzip is illustrated in Figure 3.3, with areas outside

the dotted circles remaining unchanged.

Figure 4.4: Unzip from two different views in R3

• Disjoint union is a binary operation t : KTG × KTG −→ KTG which

simply places two KTGs adjacent to one another in R3.

4.3 Generators

Since KTGs with thickened edges may not be immersible in S2 with all the

ribbons planar, we will need two more generators to account for the twisting which

some KTGDs will exhibit.
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• Mobius strips

Figure 4.5: Two more generators needed for nonplanar KTGDs

The generating algorithm will follow exactly the same procedure for steps 0

through 4, and all twists in edges can be added in a final additional step.

4.4 Relations

In Chapter 3 we proved that the four basic relations outlined sufficed to gen-

erate all relations on KTGD; that is, for any two sequences of operations which

result in identical KTGDs, a relation can be constructed by composing the tetra-

hedron, twisted tetrahedron, connect sum, and unzip relations. However, there

are many different KTGDs which represent the same KTG, all related by our ex-

tended Reidemeister moves. As a result there will be more relations on KTG

corresponding to these Reidemeister moves.

The following commutative diagrams illustrate the sequences of operations

which yield equivalent KTGs; the two pictures in the K̃TGD row represent dif-

ferent K̃TGD, and the two in the KTGD row do also, but since they correspond

to the same KTG, following the arrows down the left side of the diagram or down

the right yield identical results in the final KTG row.
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Figure 4.6: The relation corresponding to the Reidemeister 1 move

Theorem 3. (Kauffman): Ambient isotopy of knotted trivalent graphs is generated

by the moves shown in Figure (1.3). That is, any two diagrams of isotopic knotted

trivalent graphs are related by a finite sequence of these moves.

The proof of Theorem 3 employs the elementary combinatorial isotopies used

by Reidemeister to prove the sufficiency of these extended Reidemeister moves to

generate isotopy of knots. Details are given in [Kauffman, Yamada].

Corollary. All Reidemeister moves on KTGD map to the identity on KTG, and
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Figure 4.7: The relation corresponding to the Reidemeister 2 move

the relations thus generated are the only ones required to extend our list of relations

to KTG

For the compositions of these basic KTG relations which make up the pentagon

relation, see the Appendix.
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Figure 4.8: The relation corresponding to the Reidemeister 3 move
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Figure 4.9: The relation corresponding to the Reidemeister 4 move
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Figure 4.10: The relation corresponding to the Reidemeister 5 move



Appendix A

The pentagon relation

Figure A.1: The pentagon relation, with the formulation given in Thurston [8]
above and a version which highlights its similarity to the tetrahedron relation
below

44
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Figure A.2: The composition of relations for one half of the pentagon relation
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