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a b s t r a c t

Echo state networks (ESNs) are randomly connected recurrent neural networks (RNNs) that can be
used as a temporal kernel for modeling time series data, and have been successfully applied on time
series prediction tasks. Recently, ESNs have been applied to time series classification (TSC) tasks.
However, previous ESN-based classifiers involve either training the model by predicting the next item
of a sequence, or predicting the class label at each time step. The former is essentially a predictive
model adapted from time series prediction work, rather than a model designed specifically for the
classification task. The latter approach only considers local patterns at each time step and then averages
over the classifications. Hence, rather than selecting the most discriminating sections of the time
series, this approach will incorporate non-discriminative information into the classification, reducing
accuracy. In this paper, we propose a novel end-to-end framework called the Echo Memory Network
(EMN) in which the time series dynamics and multi-scale discriminative features are efficiently learned
from an unrolled echo memory using multi-scale convolution and max-over-time pooling. First, the
time series data are projected into the high dimensional nonlinear space of the reservoir and the
echo states are collected into the echo memory matrix, followed by a single multi-scale convolutional
layer to extract multi-scale features from the echo memory matrix. Max-over-time pooling is used to
maintain temporal invariance and select the most important local patterns. Finally, a fully-connected
hidden layer feeds into a softmax layer for classification. This architecture is applied to both time series
classification and human action recognition datasets. For the human action recognition datasets, we
divide the action data into five different components of the human body, and propose two spatial
information fusion strategies to integrate the spatial information over them. With one training-free
recurrent layer and only one layer of convolution, the EMN is a very efficient end-to-end model, and
ranks first in overall classification ability on 55 TSC benchmark datasets and four 3D skeleton-based
human action recognition tasks.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Echo state networks (ESNs) are a popular approach for train-
ing recurrent neural networks (RNNs) efficiently. An ESN typi-
cally consists of three components: an input layer, a large RNN
hidden layer (called the reservoir) and a linear output layer.
The input-to-hidden and hidden-to-hidden (recurrent) weights
are randomly initialized and fixed during the learning stage.
By learning the state dynamics generated from the untrained
recurrent hidden layer, ESNs can avoid the laborious process
of gradient-descent RNN training, yet achieve excellent perfor-
mance in time series prediction (Chatzis & Demiris, 2011; Jaeger
& Haas, 2004; Li, Han, & Wang, 2012; Lukoševičius & Jaeger, 2009;
Qiao, Li, Han, & Li, 2017; Shi & Han, 2007), speech recognition
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(Skowronski & Harris, 2007; Triefenbach, Jalalvand, Demuynck, &
Martens, 2013) and signal processing (Xia, Jelfs, Hulle, Principe, &
Mandic, 2011).

The most distinctive feature of ESNs is that the weights of
the reservoir are randomly initialized and fixed during training.
The reservoir can be regarded as a high-dimensional (usually
100–1000D) nonlinear temporal kernel, and automatically pro-
vides abundant echo state representations (ESRs) of the input
time series. Moreover, due to the sparse connectivity of neurons
in the reservoir, many loosely coupled oscillators are generated,
and the information persists in one part of the reservoir without
being propagated to other parts too quickly, which contributes
to the short-term memory property of ESNs (Jaeger & Haas,
2004). Therefore, ESNs have been successfully applied to time
series prediction tasks due to their high dimensional non-linear
mapping capability and short-term memory.

Although ESNs have achieved great success in time series
prediction tasks, the use of them in time series classifications
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(TSC) tasks has not been fully explored. In recent years, some
researchers have applied ESNs to TSC tasks. In Skowronski and
Harris (2007), the authors proposed a predictive ESN classifier
and applied it to speech classification of ten digits. The predictive
classifier trains different predictors for diverse classes and the
test sample is classified into the category corresponding to the
predictor that predicts it the best (Lukoševičius & Jaeger, 2009).
In Chen, Tang, Tino, Cohn, and Yao (2015), the authors proposed
the model-metric co-learning (MMCL) methodology for TSC tasks,
which trains the output weights for each time series through a
one-step prediction task, and then uses the output weights as a
new feature representation for classification. These attempts at
using ESNs to handle TSC tasks are essentially predictive mod-
els rather than classifiers, since these models are trained by
predicting the next item of a sequence.

There is another kind of ESN-based classifier that directly
classifies the input time series at each time step. In Lukoše-
vičius (2012), Lukoševičius and Jaeger (2009) and Verstraeten,
Schrauwen, dHaene, and Stroobandt (2007), the authors train the
models to generate a class label at each time step and then use
the average prediction as the final class probabilities. However,
although using current echo state is adequate to predict the next
item of a time series, using the echo state at a single time step
is inadequate to obtain the final class label since the echo states
at all time steps need to be considered in TSC tasks. More impor-
tantly, different classes of time series can often be distinguished
by some important discriminative local patterns (Ye & Keogh,
2009). Although the echo state at each time step contains local
temporal information due to the short-term memory property of
ESNs, conducting classification at each time step will interfere
with the performance of classifiers since some unimportant pat-
terns (i.e., some local patterns exist in each class) are forced to
determine the category. For example, waving an arm and drawing
a circle both include the local pattern of raising a hand, but
these insignificant local patterns cannot be used to determine the
category label.

In recent years, deep learning architectures have been applied
to a wide variety of tasks and achieved great success. Among
them, Sukhbaatar, Weston, Fergus, et al. proposed a novel model
called the end-to-end memory network, which projects the fea-
ture representation of each word of a sentence into a new feature
space, and used the weighted sum of all the new word rep-
resentations as the output memory representations (Sukhbaatar
et al., 2015). The weighted sum process can be seen as choosing
some important information from the representation at all time
steps. Therefore, it is natural to expect that we can use an ESN
as a memory encoder to obtain temporal features of time series
over time steps, and then use a decoder to extract the discrim-
inative features. Here, we use Convolutional Neural Networks
(CNNs) (Lecun, Bottou, Bengio, & Haffner, 1998) as the decoder
to replace the original linear regression, since CNNs can learn
discriminative features from ESRs using back-propagation, and
they are also efficiently computed due to weight tying and the
convolution operation (Goodfellow, Bengio, Courville, & Bengio,
2016). More importantly, multi-scale temporal information natu-
rally exists in time series (Cui, Chen, & Chen, 2016), which plays
a pivotal role in dealing with TSC tasks. The original approach of
linear regression cannot learn multi-scale discriminative features
from the ESRs of all time steps, while multi-scale convolutional
kernels (Simonyan & Zisserman, 2014) can. We also use max-
over-time pooling to select the most discriminative local patterns
that have the greatest impact on classification.

In this paper, we combine the advantages of echo state net-
works and convolutional neural networks, to propose a novel
neural network model called the Echo Memory Network (EMN).
An EMN consists of two phases: an encoding and a decoding

Fig. 1. General architecture of an Echo State Network.

phase. In the encoding phase, the raw input data are projected
into a high dimensional nonlinear space to obtain the Echo-State
representations (ESRs). In the decoding phase, the echo states are
decoded using a multi-scale convolution layer and a max-over-
time pooling layer, and then the probability distribution for each
label is computed by a fully-connected hidden layer followed by
a softmax. In contrast to traditional ESNs, EMN collects the ESRs
of all time steps and stores them in a matrix we call the echo
memory matrix, and the convolution and pooling operations are
conducted on the entire echo memory matrix. The echo mem-
ory matrix contains abundant contextual information extracted
by the reservoir. Multi-scale convolution over time can learn
temporal features from the memory matrix and select the most
discriminative patterns using max-over-time pooling. Since the
weights of the reservoir are fixed, and only one convolutional
layer is used, EMN is a very efficient end-to-end model. Our
contributions can be summarized as follows.

1. We propose an efficient end-to-end model, which is able to
extract discriminative temporal features from the reservoir
representations.

2. By integrating the efficiency of ESNs in representing time
series and the effectiveness of CNNs for multi-scale fea-
ture extraction into a unified framework, EMN provides an
alternative to both the reservoir computing and the deep
learning paradigms.

3. EMN is a universal TSC framework, which can be easily
generalized to deal with other tasks such as 3D skeleton-
based action recognition tasks. Our state-of-the-art perfor-
mance on both the UCR time series classification
benchmarks (Chen et al., 2015) and four 3D-skeleton-based
action recognition tasks prove its effectiveness, and the
visualization results demonstrate interpretability.

The remainder of the paper is organized as follows. Section 2
gives a brief introduction to ESNs. Section 3 reviews related
work. Section 4 introduces the proposed EMN model in detail. In
Section 5, experiments are conducted on TSC and human action
recognition benchmarks and the results are analyzed. Section 6
concludes the paper.

2. Echo state networks

An ESN without output feedback consists of three basic com-
ponents: an input layer, a large recurrent hidden layer (called
the reservoir) and an output layer. The input layer is randomly
connected to the reservoir. The reservoir contains sparse ran-
dom connections. The only adaptable parameters are the output
weights, which usually can be obtained by linear regression. The
general architecture of an ESN is illustrated in Fig. 1.
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Given a K -dimensional input u(t) ∈ RK at time step t and
N-dimensional reservoir state x(t − 1) ∈ RN at time step t − 1,
the update equations of entire system are as follows:

x(t) = f (Wresx(t − 1) + Winu(t)) (1)

y(t) = f out (Woutx(t)) (2)

where y(t) ∈ RL is the L-dimensional output at time step t . Win,
Wres, Wout denote the connection weights from the input layer to
the reservoir layer, the reservoir to itself and the reservoir to the
output layer, respectively. Win, Wres are initialized randomly and
fixed. Only Wout is adaptable. f is the activation function in the
reservoir (usually tanh(·)) and f out is the activation function of the
output layer (usually identity(·)).

There are three hyperparameters used for ESN initialization:
IS (Input Scaling), SR (Spectral Radius) and α (Sparsity).

(1) IS is used for the initialization of the matrix Win: the
elements of Win are drawn from the uniform distribution in
[−IS, IS].

(2) SR is the spectral radius of Wres, given by

Wres
= SR ·

W
λmax(W)

(3)

where λmax(W) is the largest eigenvalue of matrix W and ele-
ments of W are generated randomly in [−0.5, 0.5].

(3) α is the proportion of the non-zero elements in Wres.
An ESN has two core properties for dynamical system identi-

fication.
(1) Temporal Kernel: Input time series drive the large reservoir

and produce echo states in a high-dimensional state space, which
enables reservoir to play a similar role as the kernel in kernel-
based methods. That is, a reservoir can be regarded as a tempo-
ral kernel and the echo states are non-linear high-dimensional
representations of the input time series.

(2) Echo-State Property (ESP) (Jaeger, 2001): The ESP means
that inputs with similar short-term histories will evoke similar
echo states, which ensures the dynamical stability of reservoir.
The sufficient conditions for the ESP of standard sigmoid ESNs and
leaky integrator ESNs are discussed in Yildiz, Jaeger, and Kiebel
(2012). For standard sigmoid ESNs, the ESP is satisfied if recurrent
weight matrix Wres is diagonally Schur stable. The ESP also pro-
vides ESNs with an important capability called ‘‘fading memory’’
or ‘‘short-termmemory’’. With this short-termmemory, the effect
of the input and the previous reservoir state on future reservoir
states should vanish gradually as time passes.

3. Related work

3.1. Improvement of ESN’s output layer

ESNs have been successfully applied to many dynamic tasks,
since they are able to model temporal dependencies, and the
training of ESNs is efficient. However, the most common readout
from the reservoir is a simple linear readout, which limits the de-
coding capability of ESNs (Boccato, Lopes, Attux, & Zuben, 2012;
Boccato, Soriano, Attux, & Zuben, 2012; Lukoševičius, 2007). In
the past decade, a large amount of research has focused on
improving the output mapping of ESNs.

One approach is to improve the decoding capability by replac-
ing the linear output layer with a multi-layer perceptron trained
by backpropagation (Babinec & Pospíchal, 2006; Lukoševičius,
2007). Another approach is to use a random, non-linear projection
of the input to the output layer, followed by a single-layer per-
ceptron, an application of the idea originally proposed by Rosen-
blatt (Rosenblatt, 1958). This random projection idea has been
followed up by later authors (Bin Huang, Yu Zhu, & Kheong Siew,

2004), and is now called Extreme Learning Machines (ELMs).
This is the feed-forward analog of the ESN. One such model
is the ϕ-ESN (Gallicchio & Micheli, 2011), which adds a fixed,
random feed-forward layer (with tanh activations) after reservoir,
followed by linear regression on the nonlinear projections. Hence
this approach also provides a way to create a nonlinear decoder of
the reservoir state, and therefore improves the non-linear sepa-
ration capabilities of an ESN. In Butcher, Verstraeten, Schrauwen,
Day, and Haycock (2010), a similar model named R2SP was pro-
posed by adding a fixed feedforward nonlinear projection layer
after both the input layer and the reservoir.

In addition to the methods using ELM, Boccato et al. proposed
replacing the output layer with a Volterra filter structure (Boccato
et al., 2012, 2012). The Volterra filter not only enables better
exploitation of the higher-order statistics of the input signals, but
also preserves the simplicity of the training process.

The approaches mentioned above enhance the decoding ca-
pability of ESNs. Although these methods perform quite well on
time series prediction tasks, they cannot be directly applied to
time series classification tasks since they still cannot use the
echo states of all time steps to determine the category. In con-
trast, EMN uses multi-scale convolution operations to decode the
echo states at all time steps and max-over-time pooling to se-
lect the most discriminative features. Our state-of-the-art results
demonstrate the effectiveness of the EMN.

3.2. ESN-based classifiers

Although ESNs have achieved excellent performance on time
series prediction tasks thanks to the powerful temporal modeling
capacity of reservoir, the problem of how to use the advantages
of ESNs to deal with time series prediction tasks still needs
exploration. In recent years, there has been some work that tries
to employ an ESN in time series classification tasks. This work can
be roughly divided into two categories. The first approach builds
predictive models of each category, and classifies the data based
on which model fits the data best. The second approach simply
tries to categorize the data at each time step, and then averages
the predictions over the time series.

Skowronski and Harris proposed a predictive ESN classifier
and applied it to classification of spoken digits (Skowronski &
Harris, 2007). A predictive ESN classifier is created for each digit
and is trained to predict the input at next time step, and thus
the test samples are classified as the model producing the lowest
prediction error. Chen et al. proposed a model-metric co-learning
(MMCL) methodology for time series classification tasks (Chen
et al., 2015), which used a simplified ESN architecture with just
three parameters, which were actually trained using Real-Time
Recurrent Learning (Williams & Zipser, 1989). MMCL used sepa-
rate output weight vectors for each sequence, trained as a pre-
dictor. The metric part of MMCL applied to these output weights,
such that sequences from the same category were trained to have
similar weights under a distance metric. In this way, classification
uses nearest neighbor on the output weight vectors, after a new
sequence is trained from the reservoir using ridge regression.
However, these ESN-based methods are still predictive models
rather than direct classifiers that can project temporal signals into
discrete class labels, since they train the model by predicting the
next item of a sequence.

In Verstraeten et al. (2007), the authors classify speech sig-
nals for 10 digits by constructing 10 one-vs-all classifiers. Each
classifier is trained to output the correct class label at each
time step and the final result at testing phase is obtained by
taking the temporal mean of the output of every classifier. Sim-
ilarly, Lukoševičius and Jaeger suggest a continuous readout of
the category outputs, but weighting the end of the sequence
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Fig. 2. General architecture of the Echo Memory Network. Here we assume a 1-dimensional input time series and 3 output categories. The red dashed box represents
a convolution of scale 2 and the blue dashed box represents a convolution of scale 5 . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

more heavily, as enough information has reached the classifier.
However, it is unclear that this is optimal — local variation in
the signal may fit better with a different category. Our approach,
in contrast, takes into account the information of the entire
sequence, applying multi-scale convolutions on the unrolled echo
state over time (which we call the echo memory matrix) to
extract multi-scale discriminative temporal features, and using
max-over-time pooling to select the most discriminative local
patterns for classification.

4. Proposed approach

Combining the merits of ESNs (temporal kernel, ESP) and
CNNs (multi-scale feature learning, temporal shift-invariance),
we propose an end-to-end architecture called the Echo Memory
Network (EMN) to deal with the time series classification task.
The general structure is illustrated in Fig. 2. This architecture can
be extended to deal with 3D skeleton-based action recognition
tasks by using a multi-channel spatial information fusion strategy
(described below).

4.1. Echo memory network

The EMN framework consists of two stages: an encoding and
a decoding stage. In the encoding stage, each frame of the input
time series is mapped into a high-dimensional reservoir state
space and the echo state representations (ESRs) are extracted.
The ESRs of all time steps are stored in a memory matrix. In
the decoding stage, multi-scale convolutions and max-over-time
pooling are used to decode the memory matrix. Then the pooled
features are passed through a fully connected layer and the con-
ditional probability distribution of the category is calculated by a
softmax layer. We detail these parts below.

4.1.1. Echo memory encoder
The echo state is initialized to the zero vector. Assume a

K -dimensional time series u (an example with K=1 is shown in
Fig. 2) is presented to the model:

u = (u(0),u(1), . . . ,u(T − 1))T (4)

At each time step, the echo state, x(t) is computed according
to Eq. (1), and added to the Echo Memory Matrix (EMM) X,
resulting in:

X =

⎛⎜⎜⎝
x1(0) x2(0) . . . xN (0)
x1(1) x2(1) . . . xN (1)

...
...

...
...

x1(T − 1) x2(T − 1) . . . xN (T − 1)

⎞⎟⎟⎠ (5)

at the end of the sequence. We use x(t) ∈ RN to denote the
tth row of X, the echo state at tth time step, t ∈ 0, . . . , T − 1,
and xj to denote the jth column of X, the jth dimension of the
echo states, j ∈ 1, . . . ,N . By collecting the echo states into the
echo memory matrix, we have a complete representation of the
sequence, and can then determine the category label by using a
decoder to extract discriminative features from it.

4.1.2. Multi-scale convolutional decoder
After the extraction and collection of echo states into the

EMM, a multi-scale convolution is used to extract local temporal
information from it. We applied the convolution operations to the
matrix along the direction of time and use multiple filters for each
time scale.

As shown in Fig. 2, the convolutions are over the rows of X,
e.g., x(t), x(t + 1), . . . x(t + k − 1), and so the convolution filters
are of dimension k×N . Fig. 2 shows two examples with k = 2 (red
dashed lines) and k = 4 (blue dashed lines). Hence we consider k
to be the time scale of the convolution. Each filter includes a bias
term, and we use the standard ReLU activation function.

We use max-over-time pooling operation proposed in
Collobert et al. (2011) to compute the maximum of each feature
map. That is to say, we pool over the entire sequence and each
filter results in one output, so the feature maps are reduced to
one scalar each. Hence the pooling operation reduces the size of
feature maps as well as the number of parameters for the next
layer, which helps avoid overfitting and improves computational
efficiency.

The max-over-time pooling operation introduces multi-scale
temporal invariance. More importantly, it can be seen as a se-
lection of the most important local patterns, no matter which
time step the important patterns appear in. After the pooling
procedure, all the pooled features are concatenated into a single
vector and then fed into a fully connected layer followed by a
softmax layer.

4.2. EMN with Spatial Information Fusion Strategy

When applying the proposed model to time series with spa-
tial information such as 3D skeleton sequences, there are some
details of the model that differ from dealing with general time
series. For general multidimensional time series, there may be
no spatial association between different dimensions. However,
there is a spatial relationship between skeleton joints of different
parts of the body. For example, there is a strong spatial relation
between two legs when the human is running. Generally speak-
ing, the relationship between the two arms and the relationship
between two legs are highly correlated. Hence, the skeleton data
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Fig. 3. Illustration of 3D skeleton joints being divided into 5 parts.

Fig. 4. Multi-part multi-scale convolutional process. Here is an example with 5
EMMs, 4 filters and 2 time scales.

of the two legs and the two arms should be combined before com-
bining information from all the skeleton joints. In this subsection,
we will introduce the EMN with two spatial information fusion
strategies for dealing with 3D skeleton sequences.

4.2.1. Multi-part echo memory matrix representation
First, the human skeleton data is divided into five parts: left

arm (LA), right arm (RA), left leg (LL), right leg (RL) and center
trunk (CT). An example of 3D skeleton sequence being divided
into five parts is shown in Fig. 3. Then the joint trajectories of
the five parts are input into five separate reservoirs, obtaining five
EMMs as described in the previous subsection. The echo memory
matrix of each part is denoted as Xi, where Xi is the ith channel
of ESRs and i ∈ 1, 2, . . . , 5.

4.2.2. Multi-part multi-scale convolution
In the convolution layer, multi-scale convolutions are used to

extract multi-scale temporal features from the EMMs.
In order to fuse the information from different parts, the

multi-part multi-scale convolution operations are applied to mul-
tiple EMMs. The multi-part multi-scale convolutions are illus-
trated in Fig. 4. Specifically, this is an example with 5 EMMs,
4 filters and 2 time scales. Depending on the strategies in next
Section 4.2.3 for fusing the information from the five EMMs,
the convolutions may be applied to just one of the EMMs, or
may span both arms or both legs. The max-over-time pooling
operation mentioned above is then used to select the important
patterns.

4.2.3. Spatial information fusion strategy
In order to deal with the multivariate time series with spatial

information, two strategies are used to capture the spatial corre-
lation of the five skeleton parts, which we call spatial information
fusion strategies. Specifically, we first fuse the features of two
arms and two legs respectively and then we fuse all the features.
These two strategies are introduced below.

The first strategy is the model called EMN with Late Spatial
Information Fusion (EMN-LSIF). As shown in Fig. 5(a), five sepa-
rate convolution layers and pooling layers are applied to the EMM

Fig. 5. Two different multi-step fusion strategies of EMN.

of the five reservoirs respectively. After that, two fully-connected
hidden layers are used, one for the concatenated features of the
two arms, one for the two legs. These are integrated with the
trunk output in a final hidden layer as in Fig. 5(a), followed by
the softmax.

The second strategy is Early Spatial Information Fusion
(EMN-ESIF). As shown in Fig. 5(b), the convolutions are over
the two EMNs for the arms, and the two EMNs for the legs,
resulting in convolutions of dimensions k × N × 2, as mentioned
above. Hence the information from the arms and legs are fused
first via the convolutions over both limbs. There are then only
three convolutions, one over the arms, one over the legs, and a
third over the trunk. The pooled features are then combined in a
fully connected hidden layer and fed into the softmax to get the
predicted conditional distribution.

In summary, the basic EMN architecture can be used for gen-
eral time series classification tasks. When EMN is applied to a
time series with spatial information, such as the action recogni-
tion task, we use the spatial information fusion strategies.

4.3. Training

The ADAM (Kingma & Ba, 2014) optimizer is used with learn-
ing rate of 0.001 to minimize the categorical cross-entropy loss:

L = −

n∑
i=1

C∑
c=1

yi,c log ŷi,c (6)

where yi,c is the target label of the ith sample of the cth category,
and ŷi,c is the model output. C is the number of categories and n
denotes the size of training set. To prevent overfitting, early stop-
ping is used when the training loss flattens out. We again empha-
size that the parameters of reservoir do not need to be learned.

5. Experiments

To evaluate the performance of the proposed model, experi-
ments are performed on the UCR time series classification archive
(Chen et al., 2015) to compare EMN with other methods. In
addition, EMN is extended to deal with 3D skeleton-based action
recognition benchmarks, as described above. We also gain more
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Table 1
Description of 55 UCR time series classification datasets..
Dataset #Classes #Train #Test Length Type

Adiac 37 390 391 176 Image Outline
Chlorine 3 467 3840 166 Simulated
Computers 2 250 250 720 Electric Device
CricketX 12 390 390 300 Motion Capture
CricketY 12 390 390 300 Motion Capture
CricketZ 12 390 390 300 Motion Capture
DistPhxAgeGp 3 139 400 80 Image Outline
DistPhxCorr 2 276 600 80 Image Outline
DistPhxTW 6 139 400 80 Image Outline
Earthquakes 2 139 322 512 Sensor Reading
ECG200 2 100 100 96 ECG
ECG5000 5 500 4500 140 ECG
ElectricDevices 7 8926 7711 96 Electric Device
FaceAll 14 560 1690 131 Image Outline
FacesUCR 14 200 2050 131 Image Outline
FiftyWords 50 450 455 270 Image Outline
Fish 7 175 175 463 Image Outline
FordA 2 1320 3601 500 Sensor Reading
FordB 2 810 3636 500 Sensor Reading
Ham 2 109 105 431 Spectrograph
HandOutlines 2 370 1000 2709 Image Outline
Haptics 5 155 308 1092 Motion Capture
InlineSkate 7 100 550 1882 Motion Capture
InsWngSnd 11 220 1980 256 Sensor Reading
LrgKitApp 3 375 375 720 Electric Device
MedicalImages 10 381 760 99 Image Outline
MidPhxAgeGp 3 154 400 80 Image Outline
MidPhxCorr 2 291 600 80 Image Outline
MidPhxTW 6 154 399 80 Image Outline
NonInv_Thor1 42 1800 1965 750 ECG
NonInv_Thor2 42 1800 1965 750 ECG
OSULeaf 6 200 242 427 Image Outline
PhalCorr 2 1800 858 80 Image Outline
Phoneme 39 214 1896 1024 Sensor Reading
Plane 7 105 105 144 Sensor Reading
ProxPhxAgeGp 3 400 205 80 Image Outline
ProxPhxCorr 2 600 291 80 Image Outline
ProxPhxTW 6 205 400 80 Image Outline
RefDev 3 375 375 720 Electric Device
ScreenType 3 375 375 720 Electric Device
ShapesAll 60 600 600 512 Image Outline
SmlKitApp 3 375 375 720 Electric Device
StarlightCurves 3 1000 8236 1024 Sensor Reading
Strawberry 2 370 613 235 Spectrograph
SwedishLeaf 15 500 625 128 Image Outline
Synth_Cntr 6 300 300 60 Simulated
Trace 4 100 100 275 Sensor Reading
TwoPatterns 4 1000 4000 128 Simulated
UWavGest_X 8 896 3582 315 Motion Capture
UWavGest_Y 8 896 3582 315 Motion Capture
UWavGest_Z 8 896 3582 315 Motion Capture
UWavGestAll 8 896 3582 945 Motion Capture
Wafer 2 1000 6174 152 Sensor Reading
WordSynonyms 25 267 638 270 Image Outline
Yoga 2 300 3000 426 Image Outline

insight into how the system works through visualization anal-
ysis and investigate the model’s sensitivity to hyperparameter
selection. These experiments are run on an Intel Core i7-6850K,
3.60-GHz CPU, 64-GB RAM and a GeForce GTX 1080-Ti 11G GPU.

5.1. UCR time series classification

5.1.1. Dataset introduction
The UCR time series classification archive (Chen et al., 2015)

contains 85 publicly available time series datasets which vary by
the number of classes, dataset types, number of samples, and
length of time series. They are therefore useful for testing the
general ability of a classifier over a variety of settings, however,
we do not expect that one algorithm will be best on all of
them. Each dataset was split into training and testing set by the
provider. We chose 55 datasets with training set sizes of 100 or
greater. Their characteristics are described in Table 1.

5.1.2. Evaluation metric
We evaluate the models based on their accuracy on each

dataset, in addition, we obtain an overall error rate using the
Mean Per-Class Error (MPCE), as proposed by Wang et al. (Wang,
Yan, & Oates, 2017). MPCE is the expected error rate per class
across all datasets, so it controls for the number of classes. Let ck
denote the number of classes in the kth dataset and ek denote the
error rate on the kth dataset, then the MPCE score of the model
can be calculated as follows:

PCEk =
ek
ck

(7)

MPCE =
1
K

∑
k

PCEk (8)

where K denotes the number of datasets. By normalizing by the
number of classes across datasets, an overall per-category error
rate can be obtained.

5.1.3. Implementation details
In these experiments, the reservoir size N is fixed to 32 and

SR to 0.9. The IS is chosen from IS ∈ {0.1, 1}, and the sparsity
of reservoir is chosen from α ∈ {0.3, 0.7}. For the multi-scale
convolutional layer, two different time scales (i.e., the length
of the temporal sliding window) are selected for each specific
task according to the length of the time series. Specifically, for
a T -length time series, we chose 2 neighboring time scales from
{(0.1T , 0.2T ), (0.2T , 0.3T ), . . . , (0.7T , 0.8T )}. If we find that even
(0.1T , 0.2T ) leads to overfitting, we halve the time scales until
we obtain a good result. The number of filters is chosen from
{30, 60, 90, 120, 150}. The size of the fully connected layers is 64
or 128, and we do not use the fully connected layer for some
datasets to mitigate overfitting. Dropout is applied to the input
to softmax layer for some datasets to improve the generalization
capability and the dropout rate is 0.25.

The hyper-parameter optimization process is divided into two
stages to reduce the parameter space. First, the time scale is fixed
at (0.1T , 0.2T ) and other parameters are estimated. Then other
parameters are fixed and the time scale is tuned. For both stages,
the hyper-parameters are estimated by a grid search via cross
validation. More fine-grained parameter tuning for each dataset
could potentially achieve better accuracy, but will result in a
search over a very large parameter space. However, our results
demonstrate that EMN achieves good performance even with
this coarse tuning approach to our hyper-parameters. The hyper-
parameters of EMN on each dataset are shown in detail in the
supplementary material.

5.1.4. Comparison methods
For making a comprehensive evaluation, our model is first

compared with traditional machine learning methods that have
achieved good results on time series classification tasks. Then the
proposed model is compared with several deep learning models.

For traditional machine learning methods, two classical yet
powerful baseline methods are selected, 1-Nearest Neighbor with
Euclidean distance (ED) and 1-Nearest Neighbor with Dynamic
Time Warping (DTW) (Berndt & Clifford, 1994). We also com-
pare with ten state-of-the-art methods published within the last
five years. These methods can be roughly divided into three
categories: distance-based methods, feature-based methods and
ensemble-based methods. For fair comparison, we do not im-
plement these methods but adopt the experimental results col-
lected by Bagnall, Lines, Bostrom, Large, and Keogh (2017). These
methods are briefly introduced below.
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• Distance-based Methods: These methods measure the sim-
ilarity of two given time series through predefined similarity
measures, and then the classification can be done by using
k-nearest neighbors (kNN). For the distance-based methods,
in addition to the two classical methods, derivative DTW
(DDDTW ) (Górecki & Łuczak, 2013) and derivative transform
distance (DTDC ) (Górecki & Łuczak, 2014) are also selected.
DDDTW is an approach using a weighted combination of the
DTW distance between two time series and one between
their corresponding first-order difference series. Based on
DDDTW , DTDC further considers the DTW distance between
the sequences transformed by the sin, cosine and Hilbert
transform.

• Feature-based Methods: These methods extract represen-
tative features from the raw time series to represent local
or global patterns, and then classifies them based on these.
EMN is compared with five feature-based methods. Learned
shapelets (LS) (Grabocka, Schilling, Wistuba, & Schmidt-
Thieme, 2014) is a classifier based on the shapelet trans-
formation, and adopts a heuristic gradient-descent-based
shapelet search procedure rather than enumeration. Bag
of SFA symbols (BOSS) (Schäfer, 2015) uses windows to
form ‘‘words’’ over the series and uses a truncated Dis-
crete Fourier Transform on each window to obtain the
features. Time series forest (TSF) (Deng, Runger, Tuv, &
Vladimir, 2013) divides the time series into different in-
tervals and calculates the mean, standard deviation and
slope as the interval features, and then the intervals are
randomly selected to train a forest of trees. Time series bag
of features (TSBF) (Baydogan, Runger, & Tuv, 2013) selects
multiple random length subsequences from random loca-
tions, and then partitions these subsequences into shorter
intervals to capture local information. Learned pattern sim-
ilarity (LPS) (Baydogan & Runger, 2016) is also based on
intervals, but the main difference is that the subsequences
themselves are used as attributes rather than the extracted
interval features.

• Ensemble-based Methods: These methods combine dif-
ferent classifiers to achieve high performance. The perfor-
mance of EMN is compared with three ensemble-based
methods: Shapelet transform (ST) (Hills, Lines, Baranauskas,
Mapp, & Bagnall, 2014), Elastic ensemble (EE) (Lines &
Bagnall, 2015) and collection of transformation ensembles
(COTE) (Bagnall, Lines, Hills, & Bostrom, 2015). ST uses the
shapelet transformation to get the new representation of
raw time series and construct a classifier from this represen-
tation using a weighted ensemble of 8 different classifiers.
EE is the combination of 1-NN classifiers based on 11 elastic
distance measures and uses a voting scheme to combine
them. COTE uses weighted votes over 35 different classifiers,
where the weights are proportional to their cross-validation
accuracy on the training data.

For deep learning methods, effective methods have been pro-
posed in recent years and applied to time series classification
tasks. In Wang et al. (2017), Wang et al. applied three differ-
ent deep neural network models to the UCR datasets, and good
results were obtained. In order to make a comprehensive as-
sessment of our model, EMN is also compared with these three
models. These three methods are introduced below.

• Multilayer Perceptrons (MLP): The MLP model consists of
three fully connected layers with 500 units per layer, and
uses a softmax layer to get the final result. This model uses
dropout and ReLU activation.

• Fully Convolutional Networks (FCN): The FCN model stacks
three 1-D convolution blocks with 128, 256, and 128 filters
in each block, with kernels of size 3, 5, and 8. After the
convolution blocks, the features are fed into a global average
pooling layer and a softmax layer to get the final result.
The FCN model uses ReLU activation function and batch
normalization.

• Residual Network (ResNet): Here, Wang, et al. stack three
residual blocks comprised of three convolutional blocks
each. The number of filters in the three residual blocks is
64, 128, and 128, respectively. This model also uses global
average pooling layer and softmax layer.

Moreover, we also construct a baseline method named Con-
vLSTM to verify the effectiveness of our model, where an LSTM
network replaces the ESN in our EMN. The number of hidden
units is set to 32 to match the reservoir size of EMN and the same
convolutional layer parameters as EMN are used in ConvLSTM.

5.2. UCR Time series classification results

In this subsection, the accuracy of EMN is first compared with
the methods described above. Then the computational efficiency
of EMN is compared to that of ConvLSTM. Finally, the results of
ablation studies are presented to evaluate the contribution of the
components of the model.

Comparison with Traditional Methods: The classification ac-
curacies of EMN and other 12 strong time series classifiers on
55 UCR datasets are shown in Table 2. The average rank of each
method as well as the number of datasets on which each model
gets the best results are also summarized in Table 2.

As shown in Table 2, EMN achieves the best results on 19 of
the 55 datasets amongst all the methods. EMN also achieves the
highest average arithmetic rank of 2.955. Moreover, the MPCE
value of EMN is 0.0403, the best of all models. However, there
is no free lunch, and EMN is not the best on all datasets. For
example, on TwoPatterns, even the simple 1NN-DTW classifier
performs with higher accuracy. The simpler methods tend to
perform well on datasets that nearly every method finds easy,
i.e., with 100% performance. All in all, EMN performs well on a
wide variety of datasets.

The next best performers are two ensemble-based methods,
COTE, which combines the results from 35 different classifiers,
and ST, the method based on the shapelet transform. These two
methods are next best in all three metrics: the number of datasets
they are best on, their average rank, and their MPCE.

To make a rigorous comparison, a non-parametric statistical
test, the Nemenyi test (Demšar, 2006) is conducted on the av-
erage ranks of the classifiers. As shown in Fig. 6, the critical
difference is 2.460, which means that two classifiers are not
significantly different at the p < 0.05 level when their rank dif-
ference is less than 2.460. In this analysis, despite the numerical
superiority of EMN, its performance was not significantly differ-
ent from COTE and ST. However, these two methods are both
ensemble-based. It is noteworthy that although ensemble-based
methods achieve a higher accuracy than most single algorithm
methods, they suffer from high computational complexity due
to the sheer number of models included in their ensemble. In
contrast, EMN is highly computationally efficient by using an
untrained recurrent layer and only one convolutional layer. EMN
is compared with these ensemble-models to show that the sin-
gle EMN model can achieve equivalent performance even when
compared to ensemble-based models.

Comparison with other Deep Learning Models: The accu-
racies of EMN and ConvLSTM as well as three deep learning
models are shown in Table 3. EMN is better on 27 of the 55
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Table 2
Accuracy of EMN and 12 strong time series classifiers on 55 UCR time series classification datasets..
Dataset ED DTW DDDTW DTDC LS BOSS TSF TSBF LPS ST(8)* EE(11)* COTE(35)* EMN

Adiac 0.611 0.604 0.701 0.701 0.522 0.765 0.731 0.770 0.770 0.783 0.665 0.790 0.829
Chlorine 0.650 0.648 0.708 0.713 0.592 0.661 0.720 0.692 0.608 0.700 0.656 0.727 0.845
Computers 0.576 0.700 0.716 0.716 0.584 0.756 0.720 0.756 0.680 0.736 0.708 0.740 0.716
CricketX 0.577 0.754 0.754 0.754 0.741 0.736 0.664 0.705 0.697 0.772 0.813 0.808 0.782
CricketY 0.567 0.744 0.777 0.774 0.718 0.754 0.672 0.736 0.767 0.779 0.805 0.826 0.787
CricketZ 0.587 0.754 0.774 0.774 0.741 0.746 0.672 0.715 0.754 0.787 0.782 0.815 0.808
DistPhxAgeGp 0.626 0.770 0.705 0.662 0.719 0.748 0.748 0.712 0.669 0.770 0.691 0.748 0.843
DistPhxCorr 0.717 0.717 0.732 0.725 0.779 0.728 0.772 0.783 0.721 0.775 0.728 0.761 0.822
DistPhxTW 0.633 0.590 0.612 0.576 0.626 0.676 0.669 0.676 0.568 0.662 0.647 0.698 0.795
Earthquakes 0.712 0.719 0.705 0.705 0.741 0.748 0.748 0.748 0.640 0.741 0.741 0.748 0.811
ECG200 0.880 0.770 0.830 0.840 0.880 0.870 0.870 0.840 0.860 0.830 0.880 0.880 0.920
ECG5000 0.925 0.924 0.924 0.924 0.932 0.941 0.939 0.940 0.917 0.944 0.939 0.946 0.944
ElectricDevices 0.552 0.602 0.592 0.594 0.587 0.799 0.693 0.703 0.681 0.747 0.663 0.713 0.716
FaceAll 0.714 0.808 0.902 0.899 0.749 0.782 0.751 0.744 0.767 0.779 0.849 0.918 0.903
FacesUCR 0.769 0.905 0.904 0.908 0.939 0.957 0.883 0.867 0.926 0.906 0.945 0.942 0.947
FiftyWords 0.631 0.690 0.754 0.754 0.730 0.705 0.741 0.758 0.818 0.705 0.820 0.798 0.758
Fish 0.783 0.823 0.943 0.926 0.960 0.989 0.794 0.834 0.943 0.989 0.966 0.983 0.960
FordA 0.665 0.555 0.723 0.765 0.957 0.930 0.815 0.850 0.873 0.971 0.738 0.957 0.932
FordB 0.606 0.620 0.667 0.653 0.917 0.711 0.688 0.599 0.711 0.807 0.662 0.804 0.908
Ham 0.600 0.467 0.476 0.552 0.667 0.667 0.743 0.762 0.562 0.686 0.571 0.648 0.781
HandOutlines 0.862 0.881 0.868 0.865 0.481 0.903 0.919 0.854 0.881 0.932 0.889 0.919 0.891
Haptics 0.370 0.377 0.399 0.399 0.468 0.461 0.445 0.490 0.432 0.523 0.393 0.523 0.519
InlineSkate 0.342 0.384 0.562 0.509 0.438 0.516 0.376 0.385 0.500 0.373 0.460 0.495 0.460
InsWngSnd 0.562 0.355 0.355 0.473 0.606 0.523 0.633 0.625 0.551 0.627 0.595 0.653 0.641
LrgKitApp 0.493 0.795 0.795 0.795 0.701 0.765 0.571 0.528 0.717 0.859 0.811 0.845 0.901
MedicalImages 0.684 0.737 0.737 0.745 0.664 0.718 0.755 0.705 0.746 0.670 0.742 0.758 0.775
MidPhxAgeGp 0.519 0.500 0.539 0.500 0.571 0.545 0.578 0.578 0.487 0.643 0.558 0.636 0.800
MidPhxCorr 0.766 0.698 0.732 0.742 0.780 0.780 0.828 0.814 0.773 0.794 0.784 0.804 0.815
MidPhxTW 0.513 0.506 0.487 0.500 0.506 0.545 0.565 0.597 0.526 0.519 0.513 0.571 0.639
NonInv_Thor1 0.829 0.790 0.806 0.841 0.259 0.838 0.876 0.842 0.812 0.950 0.846 0.931 0.933
NonInv_Thor2 0.880 0.865 0.893 0.890 0.770 0.901 0.910 0.862 0.841 0.951 0.913 0.946 0.939
OSULeaf 0.521 0.591 0.880 0.884 0.777 0.955 0.583 0.760 0.740 0.967 0.806 0.967 0.897
PhalCorr 0.761 0.728 0.739 0.761 0.765 0.772 0.803 0.830 0.756 0.763 0.773 0.770 0.832
Phoneme 0.109 0.228 0.269 0.268 0.218 0.265 0.212 0.276 0.237 0.321 0.305 0.349 0.239
Plane 0.962 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ProxPhxAgeGp 0.785 0.805 0.800 0.795 0.834 0.834 0.849 0.849 0.795 0.844 0.805 0.854 0.854
ProxPhxCorr 0.808 0.784 0.794 0.794 0.849 0.849 0.828 0.873 0.842 0.883 0.808 0.869 0.890
ProxPhxTW 0.707 0.761 0.766 0.771 0.776 0.800 0.815 0.810 0.732 0.805 0.766 0.780 0.830
RefDev 0.395 0.464 0.445 0.445 0.515 0.499 0.589 0.472 0.459 0.581 0.437 0.547 0.560
ScreenType 0.360 0.397 0.429 0.437 0.429 0.464 0.456 0.509 0.416 0.520 0.445 0.547 0.555
ShapesAll 0.752 0.768 0.850 0.838 0.768 0.908 0.792 0.185 0.873 0.842 0.867 0.892 0.873
SmlKitApp 0.344 0.643 0.640 0.648 0.664 0.725 0.811 0.672 0.712 0.792 0.696 0.776 0.699
StarlightCurves 0.849 0.907 0.962 0.962 0.947 0.978 0.969 0.977 0.963 0.979 0.926 0.980 0.978
Strawberry 0.946 0.941 0.954 0.957 0.911 0.976 0.965 0.954 0.962 0.962 0.946 0.951 0.971
SwedishLeaf 0.789 0.792 0.901 0.896 0.907 0.922 0.914 0.915 0.920 0.928 0.915 0.955 0.941
Synth_Cntr 0.880 0.993 0.993 0.997 0.997 0.967 0.987 0.993 0.980 0.983 0.990 1.000 0.997
Trace 0.760 1.000 1.000 0.990 1.000 1.000 0.990 0.980 0.980 1.000 0.990 1.000 1.000
TwoPatterns 0.907 1.000 1.000 1.000 0.993 0.993 0.991 0.976 0.982 0.955 1.000 1.000 0.999
UWavGest_X 0.739 0.728 0.779 0.775 0.791 0.762 0.804 0.831 0.829 0.803 0.805 0.822 0.813
UWavGest_Y 0.662 0.634 0.716 0.698 0.703 0.685 0.727 0.736 0.761 0.730 0.726 0.759 0.736
UWavGest_Z 0.650 0.658 0.696 0.679 0.747 0.695 0.743 0.772 0.768 0.748 0.724 0.750 0.755
UWavGestAll 0.948 0.892 0.935 0.938 0.953 0.939 0.957 0.926 0.966 0.942 0.968 0.964 0.958
Wafer 0.995 0.980 0.980 0.993 0.996 0.995 0.996 0.995 0.997 1.000 0.997 1.000 0.998
WordSynonyms 0.618 0.649 0.730 0.730 0.607 0.638 0.647 0.688 0.755 0.571 0.779 0.757 0.663
Yoga 0.830 0.837 0.856 0.856 0.834 0.918 0.859 0.819 0.869 0.818 0.879 0.877 0.866

Best 0 3 4 2 3 9 4 4 2 9 6 16 19
AVG rank 11.400 10.091 8.409 8.409 8.191 6.009 6.491 6.809 7.809 5.000 6.418 3.009 2.955
MPCE 0.0755 0.0690 0.0626 0.0620 0.0603 0.0525 0.0548 0.0566 0.0611 0.0486 0.0589 0.0469 0.0403

*ST is an ensemble of 8 classifiers, EE consists of 11 1-NN classifiers and COTE is an ensemble model with 35 different base models. EMN is compared with these
ensemble-based methods to show that as a single model, EMN can achieve better performance even compared with ensembles.

datasets among all the methods for comparison, and achieves
the highest average rank of 1.964 and the lowest MPCE value
of 0.0403. We also conduct the Nemenyi test on the average
ranks of the classifiers here. As shown in Fig. 7, the critical
difference is 0.822 and EMN is significantly better than all the
comparison methods except FCN. Although FCN also achieves a
comparable result, it is worth noting that deep neural networks
use multiple hidden layers while EMN uses only one untrained
recurrent layer, a convolutional layer, and occasionally a hidden
layer (see supplememntary materials). So the EMN has higher
training efficiency and fewer training parameters.

The results in Table 3 also show that EMN obtains higher
classification accuracy than ConvLSTM for the vast majority of
datasets. More importantly, the training of ConvLSTM is time-
consuming, especially for long time series.

Computational Efficiency: The training parameters and train-
ing time per epoch of EMN are compared with ConvLSTM on 18
UCR datasets. The results and the speed-up rates of our model
are shown in Table 4. As can be seen from the Table, the training
time of EMN is an order of magnitude faster than ConvLSTM, with
a minimum speed-up rate of over 21 times. This result shows
that EMN achieves excellent performance in TSC tasks while
maintaining training efficiency. The automatic production of ESRs
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Table 3
Accuracy of EMN and 4 deep learning models on 55 UCR datasets..
Dataset MLP FCN Res_Net ConvLSTM EMN

Adiac 0.752 0.857 0.826 0.737 0.829
Chlorine 0.872 0.843 0.828 0.798 0.845
Computers 0.540 0.848 0.824 0.736 0.716
CricketX 0.569 0.815 0.821 0.705 0.782
CricketY 0.595 0.792 0.805 0.733 0.787
CricketZ 0.592 0.813 0.813 0.772 0.808
DistPhxAgeGp 0.827 0.835 0.798 0.838 0.843
DistPhxCorr 0.810 0.812 0.820 0.798 0.822
DistPhxTW 0.747 0.790 0.740 0.763 0.795
Earthquakes 0.792 0.801 0.786 0.832 0.811
ECG200 0.920 0.900 0.870 0.890 0.920
ECG5000 0.935 0.941 0.931 0.943 0.944
ElectricDevices 0.580 0.723 0.728 0.765 0.716
FaceAll 0.885 0.929 0.834 0.726 0.903
FacesUCR 0.815 0.948 0.958 0.920 0.947
FiftyWords 0.712 0.679 0.727 0.688 0.758
Fish 0.874 0.971 0.989 0.943 0.960
FordA 0.769 0.906 0.928 0.924 0.932
FordB 0.629 0.883 0.900 0.895 0.908
Ham 0.714 0.762 0.781 0.790 0.781
HandOutlines 0.807 0.776 0.861 0.865 0.891
Haptics 0.461 0.551 0.506 0.510 0.519
InlineSkate 0.351 0.411 0.365 0.420 0.460
InsWngSnd 0.631 0.402 0.531 0.635 0.641
LrgKitApp 0.480 0.896 0.893 0.867 0.901
MedicalImages 0.729 0.792 0.772 0.746 0.775
MidPhxAgeGp 0.735 0.768 0.760 0.805 0.800
MidPhxCorr 0.760 0.795 0.793 0.742 0.815
MidPhxTW 0.609 0.612 0.607 0.632 0.639
NonInv_Thor1 0.942 0.961 0.948 0.894 0.933
NonInv_Thor2 0.943 0.955 0.951 0.909 0.939
OSULeaf 0.570 0.988 0.979 0.690 0.897
PhalCorr 0.830 0.826 0.825 0.809 0.832
Phoneme 0.098 0.345 0.324 0.228 0.239
Plane 0.981 1.000 1.000 0.933 1.000
ProxPhxAgeGp 0.824 0.849 0.849 0.849 0.854
ProxPhxCorr 0.887 0.900 0.918 0.887 0.890
ProxPhxTW 0.797 0.810 0.807 0.818 0.830
RefDev 0.371 0.533 0.528 0.501 0.560
ScreenType 0.408 0.667 0.707 0.496 0.555
ShapesAll 0.775 0.898 0.912 0.770 0.873
SmlKitApp 0.389 0.803 0.797 0.691 0.699
StarlightCurves 0.957 0.967 0.975 0.966 0.978
Strawberry 0.967 0.969 0.958 0.967 0.971
SwedishLeaf 0.893 0.966 0.958 0.877 0.941
Synth_Cntr 0.950 0.990 1.000 0.983 0.997
Trace 0.820 1.000 1.000 1.000 1.000
TwoPatterns 0.886 0.897 1.000 1.000 0.999
UWavGest_X 0.768 0.754 0.787 0.787 0.813
UWavGest_Y 0.703 0.725 0.668 0.730 0.736
UWavGest_Z 0.705 0.729 0.755 0.756 0.755
UWavGestAll 0.954 0.826 0.868 0.934 0.958
Wafer 0.996 0.997 0.997 0.999 0.998
WordSynonyms 0.594 0.580 0.632 0.618 0.663
Yoga 0.855 0.845 0.858 0.822 0.866
Best 2 15 12 8 27
AVG rank 4.227 2.664 2.791 3.355 1.964
MPCE 0.0612 0.0419 0.0411 0.0452 0.0403

without training is effective in modeling temporal dependencies.
The training via back-propagation through time of the LSTM
network is clearly very time-consuming.

Ablation Studies: To demonstrate the effectiveness of the
echo memory encoding and multi-scale convolutional decoding,
EMN is compared with ablations of itself: (1) a multi-scale CNN
with max-over-time pooling; (2) an ESN using mean-pooling echo
state alone with fully connected layer and softmax layer (here we
denote it as mean-ESN); and (3) an ESN-based classifier (Lukoše-
vičius & Jaeger, 2009) that predicts the class label at each time
step and conducts temporal mean pooling to obtain the final
class probabilities (here we denote it as pred-ESN). For multi-
scale CNN, the same time scales and number of filters as EMN

Fig. 6. Critical difference diagram over the average arithmetic rank of EMN and
12 strong time series classifiers. The methods connected in one group are not
significantly different at 0.05 significance level.

Fig. 7. Critical difference diagram over the average arithmetic rank of EMN and
4 deep learning models.

are used. For mean-ESN and pred-ESN, the same reservoir size
as EMN is used, and linear regression is used to train pred-
ESN. The classification accuracy comparison between EMN and
its ablations are shown in Fig. 8.

In Fig. 8, EMN obtains higher accuracy in the vast majority
of datasets compared with the multi-scale CNN since the echo
memory matrix (EMM) contains abundant temporal features of
the raw time series. On the other hand, the comparison with
pred-ESN and mean-ESN shows that the multi-scale convolution
and max-over-time poling is a powerful decoder for the EMM.

5.3. 3D Skeleton-based action recognition

Human action recognition is an active research branch in
machine learning, with a wide range of applications. 3D skeleton
joint data are the 3D coordinate trajectories of the joints in the
skeleton, which can be used to identify human actions. Fig. 9
shows an example of a 3D skeleton sequence. In our experiments,
the 3D skeleton sequences are regarded as a multivariate time
series and the EMN model is used for the 3D skeleton-based
action recognition task as described previously.

5.3.1. Dataset introduction
EMN is evaluated on four 3D skeleton-based action recogni-

tion benchmarks. The characteristics of these four datasets are
described below.

MSR-Action 3D (MSRA3D) (Li, Zhang, & Liu, 2010): This
dataset provides skeleton (20 joints) 3D coordinates data for 20
actions performed 2–3 times by 10 subjects, and gives a total
of 567 sequences with 23,797 frames. In Zhang, Wang, Gou,
Sznaier, and Camps (2016), 10 sequences with excessive noise
were removed. However, we use the complete original datasets
in order to evaluate the anti-noise capacity of our model.

HDM05 (Müller et al., 2007): An optical marker-based motion
captures dataset sampled at 120 Hz. It contains 3D coordinates of
31 joints for 130 actions performed by 5 non-professional actors.
Following the same protocol in Cho and Chen (2014), we classify
some similar actions into the same category and obtain 65 action
categories.

Florence3D-Action (Seidenari, Varano, Berretti, Bimbo, & Pala,
2013): This dataset contains 3D locations of 15 joints captured
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Table 4
The comparison of training time (seconds) between EMN and ConvLSTM on 18 UCR datasets..

Dataset Parameters Training time Speed-up
rateConvLSTM EMN ConvLSTM EMN

Computers 3.05E+04 2.61E+04 2.03E+01 2.53E−01 80.34×
Earthquakes 2.93E+05 2.89E+05 1.04E+01 2.45E−01 42.41×
ElectricDevices 5.94E+04 5.50E+04 2.97E+01 1.14E+00 26.08×
Fish 9.04E+05 8.99E+05 6.52E+00 2.48E−01 26.26×
Ham 6.42E+04 5.99E+04 5.85E+00 1.49E−01 39.33×
HandOutlines 1.30E+06 1.30E+06 1.22E+02 4.84E+00 25.25×
LrgKitApp 4.51E+05 4.46E+05 2.42E+01 6.63E−01 36.45×
MedicalImages 7.89E+04 7.45E+04 5.06E+00 2.31E−01 21.93×
NonInv_Thor1 6.60E+05 6.56E+05 5.52E+01 1.89E+00 29.18×
NonInv_Thor2 6.60E+05 6.56E+05 5.21E+01 1.92E+00 27.07×
OSULeaf 2.48E+05 2.44E+05 6.52E+00 2.13E−01 30.56×
PhalCorr 1.20E+05 1.16E+05 8.13E+00 3.06E−01 26.55×
Phoneme 1.18E+05 1.14E+05 5.34E+01 1.63E+00 32.76×
RefDev 1.06E+05 1.02E+05 2.33E+01 6.63E−01 35.09×
ScreenType 8.57E+04 8.14E+04 3.77E+01 8.78E−01 42.87×
SmlKitApp 3.03E+05 2.98E+05 3.36E+01 1.16E+00 29.05×
Trace 2.39E+05 2.34E+05 5.67E+00 1.51E−01 37.52×
WordSynonyms 7.36E+05 7.32E+05 3.42E+01 1.56E+00 21.88×

Fig. 8. Pairwise accuracy plots on 55 UCR datasets between EMN and (a) multi-scale CNN (b) mean-ESN that uses mean-pooling echo state alone with fully connected
layer and softmax layer (c) pred-ESN that predicts the class label at each time step and conducts temporal mean pooling to obtain the final class label.

with a Kinect, for 9 actions performed 2–3 times by 10 different
subjects, giving a total of 215 sequences. Its challenge is the high
intra-class variations (left-hand actors and right-hand ones) and
the presence of similar actions such as drinking from a bottle and
answering the phone.

UTKinect-Action (UTKA) (Xia, Chen, & Aggarwal, 2012): This
dataset provides 20-joint skeleton coordinates for 10 actions per-
formed 2 times by 10 subjects, captured at 15FPS. There are 195
sequences. The frame length ranges from 5 to 170 with an average
value of 30.5 ± 20. The challenge of this dataset is the intra-class
variations and the multiple views.

5.3.2. Implementation details
In these experiments, the IS is set to 0.1, the sparsity α is 0.01,

the SR is 0.99 and the reservoir sizes range from 100 to 300. For
the multi-scale convolutional layer, we chose the length of the
sliding windows to be 2, 3, & 4 and the number of filters for each
length ranges from 16 to 128. The size of the final fusion layer is
set as 144. These parameters are selected in a manner similar to
the previous experiments. And the parameters on each datasets
are shown in supplemental material in detail.

The skeleton joint sequences are preprocessed before training,
since the raw skeleton joints are not in a unified coordinate
system, and different joint trajectories have different levels of
smoothness. The coordinate system is normalized by setting the
origin to the average of the hip center, left, and right joints. Then
the popular Savitzky–Golay smoothing filter (Steinier, Termonia,
& Deltour, 1972) is applied to smooth the trajectories. To reduce
computational cost on the HDM05 dataset, we down-sample ev-
ery 4 frames. We do not down-sample the other datasets. Finally,

Fig. 9. An example of 3D skeleton sequence.

the variable length trajectories are padded with zeros up to a
given max-length value.

5.3.3. Comparison methods
EMN is compared with some of the 3D skeleton-based action

recognition methods proposed in recent years. These methods
can be roughly divided into 3 categories: feature-based methods,
dynamics-based methods and deep learning methods.

Feature-based methods extract discriminative pose represen-
tations and then perform action recognition. For the feature-
based methods, our model is compared with eight methods:
Covariance (Hussein et al., 2013), Skeletons Lie group (Vemula-
palli et al., 2014), Gram matrices Representations (Zhang et al.,
2016), Random Forest+depth (Zhu et al., 2013), SGWT+SVM
(Kerola et al., 2014), DMMs+Fisher vectors (Chen et al., 2016),
Multi-Part Bag-of-Poses (Seidenari et al., 2013) and DP+KNN (De-
vanne et al., 2013).

Dynamics-based methods treat skeleton data as 3D trajecto-
ries of joints, and human action recognition can be seen as a mul-
tivariate time series classification task. For the dynamics-based
methods, EMN is compared with four methods: HOD (Gowayyed



Q. Ma, W. Zhuang, L. Shen et al. / Neural Networks 117 (2019) 225–239 235

Table 5
Recognition accuracy (%) on MSR-Action 3D dataset (Cross-subject Test).
Methods Accuracy(%)

Covariance (Hussein, Torki, Gowayyed, & El-Saban, 2013) 88.10
HOD (Gowayyed, Torki, Hussein, & El-Saban, 2013) 91.26
Skeletons Lie group (Vemulapalli, Arrate, & Chellappa, 2014) 92.46
DHMM+SL (Lo Presti, La Cascia, Sclaroff, & Camps, 2015) 92.91
Random Forest+depth (Zhu, Chen, & Guo, 2013) 94.30
Hierarchical LSTM (Du, Wang, & Wang, 2015) 94.49
SGWT+SVM (Kerola, Inoue, & Shinoda, 2014) 94.77
DMMs+Fisher vectors (Chen et al., 2016) 95.97
Gram matrices Representations (Zhang et al., 2016) 96.97

EMN-LSIF 97.56
EMN-ESIF 97.88

Table 6
Recognition accuracy on HDM05 dataset (10-fold cross validation).
Methods Accuracy(%)

DNN (Cho & Chen, 2014) 95.59
Hierarchical LSTM (Du et al., 2015) 96.92
Deep LSTM (Zhu et al., 2016) 97.25
EMN-LSIF 97.08
EMN-ESIF 97.25

Table 7
Recognition accuracy on Florence3D-Action dataset (10-fold cross validation).
Methods Accuracy(%)

Multi-Part Bag-of-Poses (Seidenari et al., 2013) 82.00
Skeletons Lie group (Vemulapalli et al., 2014) 90.88

EMN-LSIF 91.17
EMN-ESIF 91.72

Table 8
Recognition accuracy on UTKinect Action dataset (10-fold cross validation).
Methods Accuracy(%)

Random Forest+depth (Zhu et al., 2013) 87.90
LTBSVM (Slama, Wannous, Daoudi, & Srivastava, 2015) 88.50
HOJ3D+HMM (Xia et al., 2012) 90.92
DP+KNN (Devanne et al., 2013) 91.50
Skeletons Lie group (Vemulapalli et al., 2014) 97.08
Gram matrices Representations (Zhang et al., 2016) 100.00
EMN-LSIF 100.00
EMN-ESIF 100.00

et al., 2013), DHMM+SL (Lo Presti et al., 2015), LTBSVM (Slama
et al., 2015), HOJ3D+HMM (Xia et al., 2012).

Deep learning methods use deep neural networks to deal with
the 3D skeleton-based action recognition task. For deep learning
methods, EMN is compared with three deep learning models:
DNN (Cho & Chen, 2014), Hierarchical LSTM (Du et al., 2015) and
Deep LSTM (Zhu et al., 2016).

5.4. Action recognition results

The experimental results on four 3D skeleton joint datasets
will be illustrated below.

MSR-Action 3D: We use a standard validation protocol used
by Li et al. (2010) on the MSR-Action 3D dataset. In this protocol,
the whole dataset is split into three overlapping subsets (AS1,
AS2, AS3) of 8 classes for each one. Within each set, we adopt
cross-subject validation: the subjects 1, 3, 5, 7, 9 are used for
training and 2, 4, 6, 8, 10 are used for testing. The results (average
accuracy of AS1, AS2 and AS3) are reported in Table 5.

As seen from Table 5, EMN-ESIF achieves the best average
accuracy with 97.88%, while EMN-LSIF also performs well with
97.56%. Without removing the 10 excessively noisy sequences,

Fig. 10. Accuracies(%) of EMN and its ablation models on (a) MSR-Action 3D
and (b) HDM05.

they both outperform the existing approaches listed in Table 5.
The best of the other methods is the work of Zhang et al. (Zhang
et al., 2016) with 96.97%, where 10 noisy sequences were re-
moved.

HDM05: Following the protocol used in Du et al. (2015),
10-fold cross validation is performed on this dataset. As shown
in Table 6, EMN-ESIF and Deep LSTM (Zhu et al., 2016) achieve
the best average accuracy with 97.25%.

Florence3D-Action: As shown in Table 7, EMN-LSIF and
EMN-ESIF both outperform the approaches listed in Table 7.

UTKinect-Action: Table 8 shows that our models achieve the
best performance of 100%, which is also reached by Zhang et al.
(2016).

It can be seen from the above experimental results on four
3D skeleton sequence datasets that EMN-ESIF model always per-
forms better than EMN-LSIF (except when both achieve 100%
accuracy). In a late fusion strategy, the features are extracted
along independent pathways rather than jointly, which reduces
the information that can be shared. Therefore, the early fusion
strategy works better here.

Ablation Studies: Similar to the previous experiments, EMN is
compared with its ablation models: (1) pred-ESN and (2) mean-
ESN as introduced in last subsection; (3) multi-scale CNN alone
with LSIF; (4) multi-scale CNN alone with ESIF, to demonstrate
the importance of the different components.

Fig. 10 shows that both EMN-LSIF and EMN-ESIF achieve
higher accuracy than the multi-scale CNN baselines without an
action echo memory (CNN-LSIF and CNN-ESIF). Aside from that,
the ESN baselines without convolution decoder are poor classi-
fiers compared to EMN. Clearly, using a CNN gives a big boost over
the ESN-alone-based methods. Otherwise, the full EMN model is
superior to all of its ablations, demonstrating the effectiveness of
ESN’s temporal feature encoding capability and CNN’s multi-scale
feature decoding capability. Since the sequences of the HDM05
dataset are much longer than the sequences of the MSRA3D
dataset, and pred-ESN judges the action label at each time step,
pred-ESN is comparable to mean-ESN on the shorter-sequence
MSRA3D dataset but performs poorly on the HDM05 dataset.

5.5. Visualization analysis

In order to explore the interpretability of the EMN model,
the echo memory matrix (EMM) of 3D skeleton sequences on
the MSR-Action 3D dataset is visualized and their characteris-
tics are analyzed. There are two illustrative examples given in
Fig. 11 showing the human action and the corresponding EMM.
Fig. 11(a) shows the skeleton joint trajectories of a person waving
both hands and the heat map of the left arm echo memory.
It can be seen that the pose at the 15th frame and the pose
at the 35th frame are very similar, but the corresponding echo
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Fig. 11. The skeleton joint trajectories of a person (a) waving his hands and
(b) kicking forward, and the heat map of corresponding echo states. The echo
state representation of the same pose differs depending on the context.

Fig. 12. The skeleton joint trajectories of a person (a) waving his hands and
(b) kicking forward, and the important local patterns that are kept after
max-over-time pooling.

states are quite different. The same phenomenon can also be
found in Fig. 11(b), where similar poses with different preceding
pose sequences (kicking forward and swinging back) have totally
different echo states.

Fig. 11 can be analyzed from two perspectives. First, in the
horizontal direction (time), the effect of contextual information
can be seen in the representation of similar sub-actions with
different histories, which makes it possible to classify different
actions that ‘‘pass through’’ similar poses. Second, due to the
high-dimensional projection and highly sparse connectivity of
neurons in the reservoir, it can be seen in the vertical direction
that the ESRs are varied and thus helpful in distinguishing actions.

Fig. 12 shows the skeleton joint trajectories and the important
local patterns that are kept after pooling. Here we use 64 filters
with a window length of 4 to convolve the EMM (we convolve the
echo memory of two arms in Fig. 12(a) and the echo memory of
two legs in Fig. 12(b)), and then record the position corresponding
to the maximum value of each feature map. The position recorded

by more than two filters is considered as an important local
pattern. We use red dotted boxes with a length of 4 to mark
these important local patterns and use a box with a length larger
than 4 if multiple local patterns have overlapping parts. It can be
seen from Fig. 12(a) that for recognizing the action of waving two
hands, the important sub-actions are raising the hands, waving
and putting the hands down. In Fig. 12(b), for recognizing the
actions of kicking forward, the important sub-actions are lifting
the foot backward and kicking the foot forward.

EMN achieves better performance on time series classification
tasks since it can capture a large variety of temporal information
from the input time series by using a reservoir as a temporal
kernel, convolutions to extract temporal features and max-over-
time pooling to select the most discriminative local patterns. In
contrast, mean-ESN predicts the category label at each time step
and some unimportant patterns (e.g., the static standing posture
at the beginning of the forward kicking action in Fig. 12(b)) will
interfere with the classification performance.

5.6. Sensitivity to hyperparameters

The hyperparameters affect the capability of reservoir and
thus influence the performance of EMN. These include the reser-
voir size N , the Input Scale IS, the Spectral Radius SR and the
Sparsity α of the reservoir. We conducted experiments on four
UCR datasets to illustrate the effects of these hyperparameters
on EMN. We first consider the effect of the reservoir size N and
evaluate the performance of EMN with different values of N . Then
we evaluate the performance of EMN with different values of α

while changing the IS and SR. The hyperparameters of EMN when
applied to these four datasets are described below.

ECG200: The number of filters is set to 120 and the time
scale is 0.6T & 0.7T . For the experiments exploring the effects of
reservoir size, the IS is set to 0.1, SR is 0.9 and α is 0.7.

Synth_Cntr: The filter number is 150 and the time scale is
0.05T & 0.1T . For the experiments exploring the effects of reser-
voir size, the IS is set to 0.1, SR is set to 0.9 and α is 0.7.

Ham: The filter number is 60 and the time scale is 0.025T &
0.05T . For the experiments exploring the effects of reservoir size,
the IS is set to 0.1, SR is set to 0.9 and α is 0.3.

LrgKitApp: The number of filters is set to 120 and the time
scale is 0.05T & 0.1T . For the experiments exploring the effects
of reservoir size, the IS is set to 1, SR is set to 0.9 and α is 0.3.

The classification accuracies of EMN when increasing the value
of N are shown in Fig. 13. For the ECG200 dataset and the
Ham dataset, increasing the values of N gradually improves the
accuracy. For the Synth_Cntr dataset, the accuracy is relatively
stable when increasing the value of N . For the LrgKitApp dataset,
the accuracy improves when the size of reservoir is less than
64, drops when N exceeds 64, and finally stabilizes. EMN always
achieves a better result than the multi-scale CNN baseline. As
shown in Fig. 13, setting reservoir size to 32 is enough to deal
with the UCR univariate time series. Therefore, N is set to 32 in all
the UCR time series datasets to make a trade-off between model
accuracy and the number of model parameters.

The effects of other hyperparameters are shown in Fig. 14. The
reservoir size is fixed at 32 for these experiments. In these figures,
the value of sparsity α is varied from left to right, and within each
panel, IS is chosen from IS ∈ {0.001, 0.01, 0.1, 0.5, 1}, while SR is
chosen from SR ∈ {0.1, 0.5, 1, 1.5, 2}. As can be seen from Fig. 14,
EMN always achieves quite good results when the value of IS is
in the interval [0.1, 1]. And the accuracy decreases sharply when
SR exceeds 1. Decreasing the value of α can slightly improve the
accuracy and thus shows that a reservoir with sparse connections
can enhance the capability of the reservoir to extract abundant
temporal features.
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Fig. 13. The classification accuracies of EMN and multi-scale CNN on 4 UCR
datasets when increasing the size of reservoir.

6. Conclusion

In this paper, we propose a novel end-to-end model called
EMN for time series classification tasks. The model can be ex-
tended to deal with 3D skeleton-based human action recognition
by regarding skeleton joint sequences as multivariate time series.
The core idea of EMN is to use a reservoir to encode the raw
time series as an echo memory matrix, and then use multi-scale
convolution and max-over-time pooling as a powerful decoder to
extract the discriminative features.

The merits of using ESNs over other RNN/LSTM networks are
twofold. First, the weights of the reservoir are randomly initial-
ized and fixed; no training is required. The recurrent layer can
be regarded as a high-dimensional (usually 100–1000D) nonlin-
ear temporal kernel, and automatically provides abundant rep-
resentations of the input time series. Second, due to the sparse
connectivity of neurons in the reservoir, many loosely coupled
oscillators are created, and information persists in one part of the
reservoir without being propagated to other parts too quickly.
This contributes to the short-term memory property of ESNs.
Therefore, ESRs are very suitable and efficient in representing
and capturing the temporal dynamics in time series. However,
previous work that applied ESNs to TSC tasks did not achieve
satisfactory results since they involved either training the model
by predicting the next item of a sequence, or predicting the class
label at each time step. The former is essentially a predictive

Fig. 14. The classification accuracies of the EMN with different α when changing the IS and SR. (The value of α increases from left to right.)
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model, while the latter suffers from low classification accuracy
since using the echo state at a single time step to determine
the class label is difficult and inaccurate. In contrast to previous
ESN-based classifiers, EMN collects the echo states at each time
step into an echo memory matrix and uses multi-scale convo-
lution to learn discriminative features from the echo memory.
Hence, EMN determines the category label by considering the
echo states at all time steps, which improves the classification
accuracy.

By combining the merits of ESNs and CNNs, EMN is an efficient
yet powerful framework, and provides an excellent choice for the
combination of reservoir computing and the convolutional net-
work paradigm. EMN achieves state-of-the-art results on both the
UCR time series classification datasets and four 3D skeleton-based
action recognition benchmarks, demonstrating the effectiveness
of the proposed model.
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