
UNIVERSITY OF CALIFORNIA SAN DIEGO

Robust Inference and Learning of Multivariate Statistical Models

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Mathematics

by

Linbo Liu

Committee in charge:

Professor Danna Zhang, Chair
Professor Ery Arias-Castro
Professor Dimitris N. Politis
Professor Yixiao Sun
Professor Wenxin Zhou

2022



Copyright

Linbo Liu, 2022

All rights reserved.



The Dissertation of Linbo Liu is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2022

iii



DEDICATION

To my loving parents.

iv



EPIGRAPH

Life is a math equation.
In order to gain the most,

you have to know how to convert negatives into positives.

Anonymous

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 A Bernstein-type Inequality for High Dimensional Linear Processes . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bernstein-type Inequality for High Dimensional Linear Processes . . . . . . . . 4
1.3 Robust Estimation of Time Series Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Estimating Time Series Regression with Correlated Errors . . . . . . . . 11
1.3.2 Estimating Transition Matrix in VAR Models . . . . . . . . . . . . . . . . . . 15

1.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Proofs of Results in Section 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Proofs of Results in Section 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7.1 Proofs of Results in Section 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7.2 Proofs of Results in Section 1.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 2 Simultaneous Inference of
High-dimensional non-Gaussian Vector Autoregressive Models . . . . . . 44

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Vector autoregressive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.2 De-biased estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.3 Estimation of the precision matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.4 Simultaneous inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Estimation Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4 Gaussian Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Proofs of Results in Section 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



2.7 Proofs of Results in Section 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.8 Proofs of Result in Section 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 3 Robust Multivariate Time-Series Forecasting: Adversarial Attacks and
Defense Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3 Adversarial Attack Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.1 Framework on Sparse and Indirect Adversarial Attack . . . . . . . . . . . 90
3.3.2 Deterministic Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.3 Probabilistic Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Defense Mechanisms against Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . 95
3.4.1 Randomized Smoothing Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.2 Mini-max Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.1 Experiment Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.3 Non-transferrablity between Univariate and Multivariate Cases . . . 101

3.6 Probabilistic Attack Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.7 Details on the experiment setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.7.2 Hyper-parameter choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.7.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.7.4 More results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8 Detailed proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.9 Non-transferrability of attacks between univariate and multivariate forecasters 110
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 4 Promoting Robustness of Randomized Smoothing: Two Cost-Effective
Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 Related works and backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Our proposed main methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.1 Approach 1: AdvMacer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.2 Approach 2: EsbRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5 Full Algorithm of AdvMacer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.6 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.7 Details of mixed ensemble component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.8 Certified accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.9 Optimal weighted ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.10 More SVHN experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.11 Certification with more or fewer samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.12 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vii



4.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 5 Robust Estimation in Linear Regression with both Heavy-tailed Data
and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.1 Proof of theorem 5.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.2 Proof of theorem 5.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

viii



LIST OF FIGURES

Figure 1.1. The graph of ∥Ak∥ for B = 3, 4 and p = 20, 25, 30. . . . . . . . . . . . . . . . . 7

Figure 2.1. The qq-plot of banded design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 2.2. The qq-plot of block diagonal design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 3.1. Illustration figure of sparse indirect attack. . . . . . . . . . . . . . . . . . . . . . . 88

Figure 3.2. Plots of average wQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 3.3. Plots of original time series and the ones under attacks. . . . . . . . . . . . 102

Figure 4.1. Illustration of the idea behind AdvMacer . . . . . . . . . . . . . . . . . . . . . . 118

Figure 4.2. Plot of ACR against different number of component models. . . . . . . . 127

ix



LIST OF TABLES
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Table 1.2. The average of ∥Â−A∥F based on 1000 repetitions for different methods
when n = 50 and p = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Model robustness has become increasingly popular in recent decades. We study

multiple aspects of robustness (in the setting of time series, image classification and linear

regression) in this dissertation work. First three chapters concerns the time series setting.

Specifically, Chapter 1 establishes a novel Bernstein-type inequality for high dimensional

linear processes. We then apply it to investigate two high dimensional robust estimation

problems: (1) time series regression with fat-tailed and correlated covariates and errors,

(2) fat-tailed vector autoregression. As a natural requirement of consistency, the dimension

can be allowed to increase exponentially with the sample size under very mild moment

and dependence conditions. In Chapter 2, we develop Gaussian approximation theory for
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VAR model to derive the asymptotic distribution of the de-biased estimator and propose a

multiplier bootstrap-assisted procedure to obtain critical values under very mild moment

conditions on the innovations. Chapter 3 studies the threats of adversarial attack on

multivariate probabilistic forecasting models and viable defense mechanisms. Our studies

discover a new attack pattern that negatively impact the forecasting of a target time series

via making strategic, sparse (imperceptible) modifications to the past observations of a

small number of other time series. To mitigate the impact of such attack, we also develop

two defense strategies. First, we extend a previously developed randomized smoothing

technique in classification to multivariate forecasting scenarios. Second, we develop an

adversarial training algorithm that learns to create adversarial examples and at the same

time optimizes the forecasting model to improve its robustness against such adversarial

simulation. In Chapter 4, we improve the robustness of image classifier by enhancing the

randomized smoothing technique and model ensemble. Chapter 5 considers the robust

estimation of linear regression coefficients under heavy-tailed noise and covariates using a

clipping idea.
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Chapter 1

A Bernstein-type Inequality for High
Dimensional Linear Processes

1.1 Introduction

High dimensional data analysis is increasingly important in the information era

with the rapid explosion of massive data sets. High-dimensional linear regression has

acquired significant relevance and attention. Consider the linear regression models

Yi = X⊤
i β + ξi, i = 1, . . . , n

where Yi, Xi and ξi are respectively the response, covariate and error variables. Various

regularization methods have been widely used for estimating the p-dimensional regression

parameter vector, including [130, 160, 39, 15, 96, 153] and many others; see [19] for a

comprehensive overview. In most investigations, covariates Xi (if it is a random design)

and errors ξi are assumed to be i.i.d. Gaussian or sub-Gaussian random variables, which

turns out to be too restrictive in many applications.

On the one hand, serial correlation might occur when the data are collected over

time. Linear regression with time series regressors and autoregressive errors are often

considered ([55, 131, 120]). On the other hand, many applications involving time series

data are concerned with high dimensional objects and fat-tailed distributions, including
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quantitative finance ([31]), portfolio allocation ([69]), risk management([72]), brain network

([41]) and geophysical dynamic studies ([71]).

Some progress has been made on linear regression with correlated errors. Lasso

estimator was studied for linear regression with autoregressive errors by [136] and [150],

weakly dependent errors by [50] and long memory errors by [67]. They mainly dealt with

the cases where the dimension p is smaller than the sample size n or imposed the Gaussian

assumption on the error process. Using the framework of functional dependence measures,

[143] and [28] accounted for both dependent covariates and errors in linear regression.

As a natural requirement of consistency, p is allowed to increase with n at a polynomial

rate; a narrow range is still restricted for the dimension in the presence of non-Gaussian

and dependent errors. In contrast, an ultra high dimension can be allowed with i.i.d.

well-behaved covariates and fat-tailed errors based on a penalized Huber M -estimator;

see, for example, [75, 38, 86, 88] among many others. Other methods for robust linear

regression in high dimensions include sparse least trimmed squares ([2]), MM-Lasso ([123]),

ESL-Lasso ([137]) and so on. Robust estimation of high dimensional time series regression

with fat-tailed and correlated covariates and errors has been rarely considered.

As another closely related topic, vector autoregression is a popular linear model to

describe the evolution of a set of variables over time. The past two decades have witnessed

a large progress in estimating high-dimensional vector autoregressive models. Inspired

from the development in high-dimensional linear regression, [58, 100, 9] considered the

Lasso estimator using ℓ1 penalty. [70] established oracle inequalities for high-dimensional

vector autoregressive models. [52] adopted a Dantzig-type penalization. [49] proposed a

Bayesian information criterion based on residual sums of least squares estimator to estimate

high dimensional banded autoregression. Most work required the Gaussian assumption

or the existence of finite exponential moment. In econometric analysis, [122] raised the

concern that fat tails in vector autoregressive models can affect the validity of statistical

inference and it may result to low degrees of freedom due to the estimation of possibly
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extremely many parameters. To this end, we shall also investigate robust estimation of

high dimensional fat-tailed autoregressive models.

Overall, we will combine all aspects and investigate the linear regression or autore-

gression with (i) time series covariates, (i) possibly correlated errors, (iii) fat tail and (iv)

ultra high dimension. It makes many traditional statistical analysis tools for independent

data infeasible and poses great challenge on the developing new tools for high dimensional

time series. As one important contribution, we establish a new Bernstein type inequality

for the sum of a bounded transformation of high dimensional linear processes. With the

help of the newly developed inequality, we can obtain consistency in many estimation

problems under the very mild condition of the type log p = o(nc) for some c > 0.

The rest of the chapter is organized as follows. In Section 2, we introduce the

framework of high dimensional linear processes and the useful quantities that can depict

the temporal and cross-sectional dependence, then present a new Bernstein type inequality

for high dimensional linear processes. In Section 3, we investigate two robust estimation

problems: time series linear regression with correlated and fat-tailed covariates and errors,

and autoregressive models with fat-tailed errors. Some simulation results are displayed in

Section 4 to assess the empirical performance of robust estimators and all of the proofs

are relegated to Section 1.6 and Section 1.7.

We introduce some notation. For a vector β = (β1, . . . , βp)
⊤, let |β|1 =

∑
i |βi|,

|β|2 = (
∑

i β
2
i )

1/2, |β|0 = |{i : βi ̸= 0}| and |β|∞ = maxi |βi|. Let Supp(β) be the

support of β. For a matrix A = (aij)1≤i,j≤p ∈ Rp×p, let λi, i = 1, . . . , p, be its eigenvalues

and λmax(A) = maxi |λi| be the spectral radius, λmin(A) = mini |λi|. Let κ(A) denote

the condition number of A. Denote |A|1 =
∑

i,j |aij|, ∥A∥1 = maxj
∑

i |aij|, ∥A∥∞ =

maxi
∑

j |aij|, spectral norm ∥A∥ = ∥A∥2 = sup|x|2 ̸=0 |Ax|2/|x|2 and Frobenius norm

∥A∥F = (
∑

i,j a
2
ij)

1/2. Moreover, let tr(A) be the trace of A, ∥A∥max = maxi,j |aij| be

the entry-wise maximum norm, |A| be a matrix after taking absolute value of A, i.e.

|A| = (|aij|)i,j. For a random variable X and q > 0, define ∥X∥q = (E[|X|q])1/q. For two
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real numbers x, y, set x ∨ y = max(x, y). For two sequences of positive numbers {an}

and {bn}, we write an ≲ bn if there exists some constant C > 0, such that an/bn ≤ C as

n→∞, and also write an ≍ bn if an ≲ bn and bn ≲ an. We use c0, c1, . . . and C0, C1, . . .

to denote some universal positive constants whose values may vary in different context.

Throughout the chapter, we consider the high dimensional regime, allowing the dimension

p to grow with the sample size n, that is, we assume p = pn →∞ as n→∞.

1.2 Bernstein-type Inequality for High Dimensional

Linear Processes

We consider a general framework of p-dimensional stationary linear process

Xi = (Xi1, . . . , Xip)
⊤ = µ+

∞∑
k=0

Akεi−k (1.2.1)

where µ ∈ Rp is the mean vector, A0 = Ip, Ak, k ≥ 1, are p× p coefficient matrices with

real entries such that
∑∞

k=0 tr(A
⊤
k Ak) <∞, εi = (εi1, . . . , εip)

⊤, and εij, i ∈ Z, 1 ≤ j ≤ p,

are i.i.d. random variables with zero mean and finite variance. Then by Kolmogorov’s

three-series theorem, the linear process (1.2.1) is well defined. Many researchers have

worked on this model recently; see for example, [11, 12, 64, 84, 25] among others. A special

case of (1.2.1) is the stationary Gaussian process. If Ak = 0 for k > d, it becomes a vector

moving average process of order d ([112, 91, 17]). Another important class covered by

(1.2.1) is the vector autoregressive (VAR) model, which has been widely used in economics

and finance (e.g., [122, 124, 132, 37] etc.).

The linear process (1.2.1) is a flexible multivariate model for correlated data in that

the coefficient matrices Ak capture both temporal and cross-sectional (spatial) dependence.

We first impose the condition on the decay rate of Ak, which is associated with the

dependence strength of the underlying process. We assume that there exist 0 < ρp < 1
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and 1 ≤ γp <∞ such that

∥Ak∥ = sup
|x|2 ̸=0

|Akx|2
|x|2

≤ γp · ρkp (1.2.2)

for all k ≥ 0. The condition (1.2.2) implies short-range dependence in the sense that the

autocovariance matrices Cov(X0, Xj) =
∑∞

k=0AkA
⊤
k+j are absolutely summable. Here ρp

is used to depict the strength of temporal dependence: smaller ρp implies faster decay rate

and thus weaker temporal dependence. And the magnitude of γp naturally quantifies the

spatial dependence. As an interesting feature, both quantities γp and ρp may depend on p

in the high dimensional regime. For instance, when p is large, ρp may be a large rate close

to 1 and it suggests a relatively slow decay speed. In fact, we can always find a proper

absolute constant free of p and strictly smaller than 1 so that (1.2.2) can be rephrased as

∥Ak∥ ≤ γp · ρk/τp0 for some τp ≥ 1. (1.2.3)

Particularly, we set τp ≡ 1 if there exists ρ0 such that ρp ≤ ρ0 < 1, and τp = log ρ0/ log ρp

for ρ0 satisfying 0 < ρ0 ≤ ρp if ρp is large and increase with p. In the latter case, it

could happen that τ := τp is an unbounded function in terms of the dimension p. The

high dimensional vector autoregressive model in Example 1.2.1 illustrates this feature.

Thereafter, for notational simplicity, we omit the dimension subscript in γp, τp, and refer

them as γ, τ . And we assume τ ≤ n; otherwise there may exist very strong temporal

dependence in the sense that ∥Ak∥ is decaying at a rate no faster than ρ
1/n
0 .

Example 1.2.1 (High Dimensional Vector Autoregressive Models). Consider the VAR(1)

model

Xi = AXi−1 + εi, (1.2.4)

where A ∈ Rp×p is the transition matrix, and εi, i ∈ Z, are i.i.d. error vectors with mean 0

and covariance matrix Ip. Equivalently it can be represented by the moving average model:
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Xi =
∑∞

k=0A
kεi−k, a special case of (1.2.1) with Ak = Ak. The process is stable (and

hence stationary) if and only if the spectral radius λmax(A) < 1 ([91]). If A is symmetric,

as λmax(A) = ∥A∥, condition (1.2.2) can be easily verified with ρp = λmax(A) and γ = 1.

For asymmetric A, it has a better interpretation when we look into condition (1.2.3), and it

could happen that τ may increase with the dimension p. Consider the design A = (aij)
p
i,j=1

with aij = λj−i+11{0 ≤ j− i ≤ B− 1} for some 0 < λ < 1 and 1 ≤ B ≤ p. Here B depicts

how many variables at most in Xi−1 that have spatial effect on Xij. Figure 1.1 delivers

the plot of ∥Ak∥ under the numerical setup λ = 0.55, B = 3, 4 and p = 20, 25, 30. As

can be seen, ∥Ak∥ decays truly after a certain lag that is moving forward as p is getting

larger. This lag can be defined as τ in condition (1.2.3), so τ increases with p in this

design. Additionally the geometric decay (its existence is to be shown later) occurs at a

slow speed, viewed as another evidence of large ρp (or large τ equivalently). For example,

when B = 3, p = 30, ∥Ak∥ roughly drops from 1.35 to 0.1 over a broad lag range from 30

to 60. The peak of ∥Ak∥ before decay is defined as γ, indicating the strength of spatial

dependence; we can tell stronger spatial dependence with a larger B results to larger γ by

comparing the two plots.

Concentration inequalities play an important role in the study of sums of random

variables. A number of inequalities have been derived for independent random variables;

see [19] for a review. Bernstein’s inequality ([10]) is one of the powerful tools when

analyzing the concentration behavior by providing an exponential inequality for sums of

independent random variables which are uniformly bounded. To fix the idea, let Y1, . . . , Yn

be i.i.d. random variables such that EYi = 0, Var(Yi) = σ2 < ∞, and |Yi| ≤ M for all i.

Then for any x > 0, one has

P
( n∑

i=1

Yi ≥ x
)
≤ exp

{
− x2

2nσ2 + 2Mx/3

}
, (1.2.5)

which suggests two types of bound for tail probability: sub-Gaussian tail exp{−x2/(Cnσ2)}
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Figure 1.1. The graph of ∥Ak∥ for B = 3, 4 and p = 20, 25, 30.

in terms of the variance of
∑n

i=1 Yi and sub-exponential tail exp{−x/(CM)} in terms

of the uniform bound M . Bernstein type inequalities have been developed for Markov

chains or temporally dependent processes with an additional order (log n in some constant

powers) in the sub-exponential-type tail; see, for example, [1], [97], [53] and [155]. The

problem of generalizing to high dimensional time series is quite challenging and very few

results have been obtained. Our first goal is to establish a new Bernstein type inequality

for the sum of a bounded transformation of the high dimensional linear processes in (1.2.1).

Theorem 1.2.1. Let Xi be the linear process generated from (1.2.1) with Eεij = 0,

Eε2ij = σ2 < ∞ and condition (1.2.3) be satisfied. Let G : Rp → R be a function with

|G(u)| ≤M for all u ∈ Rp. Suppose there exists a vector g = (g1, . . . , gp)
⊤ with gi ≥ 0 and∑p

i=1 gi = 1 such that the following Lipschitz condition holds: for all u = (u1, . . . , up)
⊤

and v = (v1, . . . , vp)
⊤,

|G(u)−G(v)| ≤
p∑

i=1

gi|ui − vi|. (1.2.6)
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Then for any x > 0, we have

P
( n∑

i=1

G(Xi)− EG(Xi) ≥ x
)
≤ 2 exp

{
− x2

C1nσ2τ 2γ2 + C2τMx

}
, (1.2.7)

where the constants C1 and C2 are given by

C1 =
16e2√

2πρ40[log(1/ρ0)]
3
, C2 =

8e

log(1/ρ0)
.

Remark 1.2.2. In the special case of one dimensional processes Xi ∈ R, as τ = 1 and

γ is also of a constant order, our probability inequality in Theorem 1.2.1 is as sharp as

the classical Bernstein’s inequality (1.2.5) in view of Var(Xi) ≍ σ2γ2. [97] established

an exponential-type concentration with an additional (log n)2 in the denominator of the

exponential inequality:

P
( n∑

i=1

Xi ≥ x
)
≤ exp

{
− Cx2

nv2 +M2 +M(log n)2x

}
, (1.2.8)

where (Xi) is a strong mixing process of mean 0 and upper bounded by M in magnitude,

and v2 is the asymptotic variance of
∑n

i=1Xi/
√
n; and [155] also derived a similar bound

with the dependence adjusted measure in place of v2. Compared with (1.2.8), our result is

strictly sharper by removing the additional factor (log n)2, even if the mild order ν2 = O(1)

is assumed in the last two displays.

The result (1.2.7) can deal with high dimensional dependent processes concerning

both temporal dependence and cross-sectional dependence, characterized by τ and γ

respectively. We now discuss the conditions of the theorem. The Lipschitz condition

(1.2.6) is an essential requirement. It covers the class of linear transforms; particularly,

for G(Xi) =
∑p

j=1 ajhj(Xij), where
∑n

j=1 |aj| = 1, hj : R → R are univariate functions

satisfying |hj(x)| ≤ M and |hj(x) − hj(y)| ≤ 1 for any x, y ∈ R, condition (1.2.6) is
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satisfied with gj = |aj|. As a special case, when G(Xi) = hj(Xij), for a fixed 1 ≤ j ≤ p,

the result then provides a concentration inequality for sums of each component process

(Xij)i∈Z after the transformation hj; see the application of estimating the mean vector

of high dimensional linear processes in a robust way at the end of this section. The

requirement |g|1 =
∑p

i=1 gi = 1 is not very restrictive, as one can always apply the theorem

to the function G/|g|1 to make it satisfied. Condition (1.2.3) requires ∥Ak∥ geometrically

decayed up to the quantity γ and the decay speed is controlled by τ . [25] worked on

the same linear model under a weaker condition allowing polynomial decay, namely,

∥Ak∥ = O((1 ∨ k)−α) for some α > 1, under which, it is noteworthy that an exponential

type probability inequality does not hold in general even if it is one dimensional process

with a uniform bound. That is to say, if we relax the condition (1.2.2) to a polynomial

decay, the concentration inequality delivers an exact rate with algebraic decay for one

dimensional linear process; see Theorem 14 in [24].

In Corollary 1.2.2 below, we also provide a tail probability inequality if G satisfies

a different Lipschitz condition from (1.2.6). There is an additional (log p)2 term in the

sub-Gaussian-type tail and an additional log p in the sub-exponential-type tail. In the next

section, different formats of G are to be considered in estimating time series regression.

Corollary 1.2.2. Consider the same setting of the model as in Theorem 1.2.1. Let

G : Rp → R be a function with |G(u)| ≤M for all u ∈ Rp. Assume that

|G(u)−G(v)| ≤ |u− v|2, for all u, v ∈ Rp.

Assume that log p > 1 and τ log p ≤ n. Then for any x > 0, we have

P
( n∑

i=1

G(Xi)− EG(Xi) ≥ x
)

≤ 2 exp

{
− x2

C3n(σ2γ2 +M2)τ 2(log p)2 + C4τM(log p)x

}
, (1.2.9)
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where the constants C3 and C4 depend on ρ0 only.

In Theorem 1.2.1, the existence of a finite variance of εij is assumed. If it is relaxed

to the existence of finite exponential moment, a similar bound can be achieved with G not

necessarily bounded; see Theorem 1.2.3 below.

Theorem 1.2.3. In the model (1.2.1), assume that Eεij = 0, E exp(c0|εij|) = θ <∞ for

some constant c0 > 0 and condition (1.2.3) is met. Then for G satisfying (1.2.6), it holds

that

P
( n∑

i=1

G(Xi)− EG(Xi) ≥ x
)
≤ 2 exp

{
− x2

C5nθ2τ 2γ2 + C6γτx

}
, (1.2.10)

where the constants C5 and C6 depend on ρ0 and c0.

One immediate application of Theorem 1.2.1 is to estimate the mean vector for

high dimensional fat-tailed linear processes. From an M -estimation viewpoint, we apply

Huber’s estimator ([60]) of the mean vector, denoted by µ̂ = (µ̂1, . . . , µ̂p)
⊤, with µ̂j as the

solution of a to the equation
n∑

i=1

ϕν(Xij − a) = 0,

where ϕν(x) = (x ∧ ν) ∨ (−ν) is the Huber function with the robustification parameter

ν > 0.

Theorem 1.2.4. Let Xi be generated from model (1.2.1) with Eεij = 0, Var(εij) = 1,

µ = EXi and max1≤j≤p Var(Xij) = µ2
2 <∞. Choose ν ≍ µ2

√
n/log p. With probability at

least 1− 4p−c for some c > 0, it holds that

|µ̂− µ|∞ ≤ C(γ + µ2)τ

√
log p

n
(1.2.11)

under the scaling condition (γ + µ2)τ
√

log p/n → 0, where C is a positive constant

depending on c and the constants C1, C2 in Theorem 1.2.1.
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Remark 1.2.3. Theorem 1.2.4 delivers the rate of ℓ∞ norm convergence for the robust

mean estimator µ̂ and it involves a delicate interplay with the cross-sectional dependence,

temporal dependence and the variance of the process. If γ, µ2 and τ are all of a constant

order, it follows that

|µ̂− µ|∞ = OP(
√

log p/n), (1.2.12)

under the scaling condition log p/n → 0. We shall remark that (1.2.12) is as sharp as

the optimal rate provided in Theorem 5 of [38] concerning the concentration of the mean

estimation for the i.i.d. case. And it is strictly sharper than the results using existing

Bernstein type inequalities for time series such as the ones in [97], [53] and [155].

1.3 Robust Estimation of Time Series Regression

In this section, we shall investigate robust estimation of high dimensional time

series linear regression and autoregression with fat-tailed covariates and errors. It is

expected that our framework of high dimensional linear processes and these Bernstein type

inequalities will be useful in other high-dimensional estimation and inference problems

that involve dependent and non-sub-Gaussian random variables.

1.3.1 Estimating Time Series Regression with Correlated
Errors

We work on linear regression models with random design that involve time dependent

covariates and errors:

Yi = X⊤
i β

∗ + ξi, (1.3.1)

with more justification provided as follows.

Assumptions.
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(A1) Xi is generated from the p-dimensional linear process (1.2.1) with E(εij) = 0 and

Var(εij) = σ2
ε <∞.

Condition (1.2.3) is satisfied with γ and τ , which may depend on p.

(A2) ξi =
∑∞

k=0 bkηi−k is the error process, where ηi are i.i.d. random variables with

E(ηi) = 0 and Var(ηi) = σ2
η < ∞, and bk ≤ Cρk for universal constants 0 < ρ < 1

and C <∞.

(A3) Xi is strictly exogenous in the sense that (εi)i are independent of (ηi)i.

The framework (1.3.1) is quite general as the linear process includes a wide range of

commonly used time series models. For linear regression models with dependent errors,

earlier work mainly dealt with fixed design or i.i.d. covariates. [136] and [150] considered

the case where ξi follows an autoregressive process, one type of linear processes. [50]

concerned weakly dependent ξi introduced by [36] and specifically discussed the AR(1)

and ARMA cases. [2] adopted the same format of moving average errors but assumed

long memory dependence. More generally, [143] and [28] considered the nonlinear Wold

representation with Xi = g(. . . , εi−1, εi) and ξi = h(. . . , ηi−1, ηi).

We form a modified ℓ1-regularized Huber estimator of β, given by

β̂ = arg minβ∈Rp

1

n

n∑
i=1

Φν((Yi −X⊤
i β)w(Xi)) + λ|β|1,

where Φν is Huber loss function ([60])

Φν(x) =


x2/2, if |x| ≤ ν,

ν|x| − ν2/2, if |x| > ν,

defined with respect to the robustification parameter ν > 0. More properties of Huber
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regression are referred to [59], [148], [93], [125], [38], to name just a few. Motivated by

[88], w(x) : Rp → R is a weight function defined by

w(x) = min
{
1,

b

|Bx|2

}

where b ∈ R is a fixed constant and B ∈ Rp×p is a provided positive definite matrix. With

such a choice of w(x), it always holds that |w(x)x|2 ≤ b/λmin(B) =: b0. Different from the

regular Huber regression concerning well-behaved Xi (e.g., Gaussian or sub-Gaussian),

an additional weight function is incorporated on the covariate process to account for the

fat tails of Xi. As a popular convention, β∗ is assumed to be sparse in the sense that

|β∗|0 = s. Denote the condition number of B as κ(B) = λmax(B)/λmin(B). Theorem 1.3.1

below concerns the estimation consistency of β̂.

Theorem 1.3.1. Let Assumptions (A1) (A2) (A3) be satisfied. Assume

b0(b0 + κ(B)γσε)τ
√
s
√
(log p)3/n→ 0. (1.3.2)

Choose ν ≍ ση(n/ log p)
1/2 and λ ≍ b0ση(log p/n)

1/2. With probability at least 1− 8p−c for

some c > 0, it holds that that

|β̂ − β|2 ≤ C
b0ση

λmin(E[w
2(Xi)
2

XiX⊤
i ])

√
s log p

n
. (1.3.3)

The scaling condition (1.3.2) to ensure consistency indicates a subtle interplay

with the dimensionality parameters (s, p, n), internal parameters (τ, γ, σε), and the known

values b0 and κ(B) associated with the weight function w(x). The convergence rate (1.3.3)

scales inversely with the quantity λmin(E[w
2(Xi)
2

XiX
⊤
i ]) and it suggests that we can not

shrink the covariates too aggressively. If Xi is well-behaved with the existence of finite

exponential moment, one may eliminate the weight function and replace the factor by the
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larger quantity λmin(E[XiX
⊤
i ]).

In the extensively studied regression setting with i.i.d. covariates, [38] delivered

an optimal convergence rate of |β̂ − β|2 for weakly sparse model under the fat tails (the

same as the minimax rate in [110]). In the special exact sparse case, their convergence

rate is
√
s(log p)/n and it relies on the sub-Gaussian tail assumption for the covariates

Xi. [88] allowed broader classes of distributions for Xi by inserting a weight function to

control the Euclidean norm of Xi, but required the errors drawn i.i.d. from a symmetric

distribution and thus selected ν at a fixed constant order (cf. Theorem 1), while [38]

waived the symmetry requirement by allowing ν to diverge in order to reduce the bias

induced by the Huber loss when the distribution of ξi is asymmetric. We borrow the ideas

from both and further account for time dependent covariates and errors. Compared to [88]

with i.i.d. covariates and i.i.d. errors, our result requires a stronger scaling condition (1.3.2)

in terms of the dependence quantities γ, τ and a larger power of log p, by concerning both

dependent covariates and errors.

Applying ℓ1 regularization in time series regression, [143] (cf. Theorem 5) dealt

with correlated covariates and errors and allowed a wider class of stationary processes in a

causal form. The linear error process in our consideration falls in the weaker dependence

range within their framework. If γ, τ, ση = O(1), p = o(nq−1) is required for their regular

estimator without accounting for robustness, where q > 2 is the order of finite moments

for ξi. [28] considered the Lasso estimator for a system of time series regression equations

with one regression equation as a special case, for which the allowed dimension is still of a

polynomial rate to ensure consistency by looking into the performance bound with respect

to the prediction norm (cf. Corollary 5.4). In comparison with the above two work, we

can allow a much wider range for the dimension p under mild conditions.

The tuning parameter ν plays a key role by adapting to errors with fat tails. In

practical applications, the optimal values of the tuning parameters ν and λ can be chosen

by a two-dimensional grid search using cross-validation or information-based criterion such
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as AIC or BIC. We leave theoretical investigation on selecting the tuning parameters as

important future work.

1.3.2 Estimating Transition Matrix in VAR Models

To study the evolution of a set of endogenous variables over time, a popular choice

is vector autoregression. Interpretations of large vector autoregressive models have been

developed in various applications such as policy analysis ([121]), financial systemic risk

analysis ([48]), portfolio selection ([77]), functional genomics ([119]) and brain networks

([117]).

As a general VAR model of order d can be reformulated as a VAR(1) model by

appropriately redefining the random vectors, much work ([52], [49]) considered the model

with lag 1 as given in (2.2.2). Among the work concerning high dimensional vector

autoregressive models, most investigations require the Gaussian assumption ([70], [9], [52])

or some structure assumption stronger than the minimal requirement λmax(A) < 1; for

example, [52] imposed ∥A∥ < 1, and [49] considered banded A with some decay condition

on ∥Ak∥ free of p. For many VAR designs (Example 1.2.1 is one such), it could happen that

∥A∥ ≥ 1 and the dimension p, as the size of A, can play a role in measuring the temporal

and cross-sectional dependence. [9] proposed stability measures to capture temporal and

cross-sectional dependence. From a different viewpoint, we try to fill in the gap between

the spectral radius of a matrix and its spectral norm. Intuition can be gained from the

proposition below. It provides a sufficient and necessary condition for λmax(A) < 1 by

relating to the spectral norm.

Proposition 1.3.2. For any matrix A, it holds that λmax(A) < 1 if and only if there exists

some finite integer k such that ∥Ak∥ ≤ ρ0 given any universal constant 0 < ρ0 < 1.

Letting τ = min{k ∈ Z+ : ∥Ak∥ ≤ ρ0} and γ = ρ−1
0 max0≤k≤τ−1 ∥Ak∥, condition

(1.2.3) holds for the model (2.2.2) without extra requirement. We now introduce the
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notation. Let a⊤
j· be the j-th row of A and sj be the cardinality of the support set of

aj·, i.e., sj = |supp(aj·)| = |{i : aij ̸= 0}|. Denote s = max1≤j≤p sj and S =
∑p

i=j sj. For

robustness, we first truncate the data by obtaining X̃i = ϕν(Xi), where ν is the truncation

parameter and is to be determined later. For notational convenience, we assume X0 is also

observed. Based on the truncated sample X̃i and tuning parameter λ > 0, we propose to

estimate A by solving the following Lasso problem:

Â = arg minB∈Rp×p

1

n

n∑
i=1

|X̃i −BX̃i−1|22 + λ|B|1, (1.3.4)

which is equivalent to solving the p sub-problems:

âj· = arg minb∈Rp

1

n

n∑
i=1

(X̃ij − b⊤X̃i−1)
2 + λ|b|1. (1.3.5)

Before proceeding, we state the key assumptions on the process (2.2.2) and some scaling

conditions to guarantee consistency of the robust estimator Â.

Assumptions.

(B1) Eεij = 0; Eε2ij = 1; max1≤j≤p ∥Xij∥q = µq <∞ for some q > 2.

(B2) λmin(Σ0) ≥ κ for some constant κ > 0, where Σ0 = E(XiX
⊤
i ).

(B3) µqγτs
2[(log p)/n](q−2)/(2q−2) → 0.

(B3’) µqγτS2[(log p)/n](q−2)/(2q−2) → 0.

Assumption (B1) imposes polynomial moment conditions for the underlying VAR

process. Assumption (B2) requires that the covariance matrix of Xi is well-conditioned.

Assumption (B3) (or (B3’)) assumes a vanishing scaling property. If µq, τ and γ are of a

constant order, (B3) is reduced to the scaling condition that involves s (or S), n and p

only.

Theorem 1.3.3. Let Assumptions (B1), (B2) and (B3) be satisfied. Choose the truncation

parameter ν ≍ µq(n/ log p)
1/(2q−2). Let Â be the solution of (1.3.4) with λ ≍ µqγτ (∥A∥∞ +
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1)[(log p)/n](q−2)/(2q−2). It holds that

∥Â− A∥∞ ≤ Cµqγτ(∥A∥∞ + 1)s

(
log p

n

) 1
2
− 1

2q−2

(1.3.6)

with probability at least 1− 8p−c for some constant c > 0. If Assumption (B3’) is further

satisfied, it also holds that

∥Â− A∥F ≤ C ′µqγτ(∥A∥∞ + 1)
√
S
(
log p

n

) 1
2
− 1

2q−2

(1.3.7)

with probability at least 1− 8p−c for some constant c > 0.

The obtained rates of convergence are governed by two sets of parameters: (i)

dimensionality parameters: the dimension p, sparseness parameter s (or S), and the

sample size n; (ii) internal parameters: the moment µq, dependence quantities τ , γ, and

the maximum absolute row sum ∥A∥∞. If the internal parameters are assumed to be of a

constant order, we can get

∥Â− A∥F = OP

(√
S
( log p
n

) 1
2
− 1

2q−2

)
.

To ensure consistency, the dimension p can be allowed to increase exponentially with n

in view of the mild scaling condition. Compared to [49] with the same constant order

of internal parameters, they can only allow the narrower range p = o(nc) for some

0 < c < (q − 4)/8 (cf. Condition 4(i)). For Gaussian autoregressive models, proposition

4.1 of [9] suggests the order in terms of dimension parameters as

∥Â− A∥F = OP

(√
S
√

log p

n

)
.

In the presence of fat tails with the existence of finite q-th moment, our result yields a

slightly slower convergence rate characterized by the moment order q and it is closer to
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their bound when q gets larger.

As an alternative method, the idea of Dantzig-type estimation ([23], [22], [52]) can

be modified in the robust way. Let Σk denote the autocovariance matrix of the process (Xi)

at lag k. The celebrated Yule-Walker equation A = Σ−1
0 Σ1 suggests that a good estimate

Â should have a small error in terms of ∥Σ0Â − Σ1∥max. Without direct access to the

autocovariance matrices Σ0 and Σ1, a natural approach is to find nice estimators for them.

[52] used sample autocovariance matrices and enjoyed a nice performance bound under

Gaussianity. For fat-tailed cases, we consider the robust estimators of the autocovariance

matrices based on the truncated sample:

Σ̂k =
1

n

n∑
i=1

X̃i−kX̃
⊤
i , for k = 0, 1.

The Dantzig- type estimator is then modified to solving the following convex programming:

Â = arg minB∈Rp×p |B|1 s.t. ∥Σ̂0B − Σ̂1∥max ≤ λ, (1.3.8)

where λ > 0 is a tuning parameter. Observe that problem (1.3.8) can be solved in parallel,

namely, (1.3.8) is equivalent to p subproblems:

â·j = arg minb∈Rp |b|1 s.t. |Σ̂0b− Σ̂1uj|∞ ≤ λ, j = 1, . . . , p (1.3.9)

for any unit vector uj. Let a·1,a·2, . . . ,a·p be columns of A and denote

s∗ = max
1≤j≤p

|supp(a·j)|.

We can obtain Â by simply concatenating all the columns â·j, i.e. Â = (â·1, â·2, . . . , â·p).

The next theorem delivers an upper bound on the statistical accuracy.

Theorem 1.3.4. Let Assumption (B1) be satisfied. Let Â be the solution of (1.3.8) with
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ν ≍ µq(n/ log p)
1/(2q−2) and λ ≍ µqγτ(∥A∥1 + 1)[(log p)/n](q−2)/(2q−2). With probability at

least 1− 8p−c′ for some constant c′ > 0, it holds that

∥Â− A∥max ≤ Cµqγτ∥Σ−1
0 ∥1(∥A∥1 + 1)

(
log p

n

) 1
2
− 1

2q−2

, (1.3.10)

∥Â− A∥1 ≤ C ′µqγτ∥Σ−1
0 ∥1(∥A∥1 + 1)s∗

(
log p

n

) 1
2
− 1

2q−2

. (1.3.11)

It is interesting to see that the convergence rate of the modified Dantzig-type

estimator has a similar form to that of the robust Lasso estimator developed in Theorem

1.3.3, if the included internal parameters for the process are of a constant order. Both

methods involve p parallel programming problems with the lasso-based one concerning

row-by-row estimation while the Dantzig method concerning column-by-column instead.

The situation ∥A∥ < 1 studied by [52] is the special case where γ = 1 and τ = 1 in our

framework. In their paper, a more flexible sparse condition was imposed: the transition

matrix A belongs to a class of weakly sparse matrices defined in terms of strong ℓr-ball

(0 ≤ r < 1), which was also considered by [14], [113], [22], [21] in estimating covariance

and precision matrices. For r = 0, it is the exact sparse case and Theorem 1 in [52] implies

the dimension parameter order

∥Â− A∥1 = OP

(
s∗
√

log p

n

)
,

a bit sharper than our result (1.3.11). There is additional cost for fat-tailed processes with

robustness absorbed. We shall remark that we can also derive the bound of ∥Â − A∥1

accordingly for weakly sparse A based on the result (1.3.10) without any technical difficulty.

1.4 Simulation Study

In this section, we evaluate the finite sample performance of both robust Lasso and

Dantzig estimators that are proposed in Section 1.3.2 and compare with the traditional
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Lasso and Dantzig methods. Simulation on time series linear regression can be conducted

similarly. We consider the model (2.2.2), where εij’s are i.i.d. standardized Student’s

t-distributions with df = 5 and 10 respectively. Let s = ⌊log p⌋. For the true transition

matrix A = (aij), we consider the following designs.

(1) Banded: A = (λ|i−j|1{|i− j| ≤ s}) and λ = 0.5.

(2) Block diagonal: A = diag{Ai}, where each Ai ∈ Rs×s follows the structure in

Example 1.2.1 with λi ∼ Unif(−0.8, 0.8).

(3) Toeplitz: A = (ρ|i−j|) and ρ = 0.5.

(4) Random Sparse: aii ∼ Unif(−0.8, 0.8) and aij ∼ N(0, 1) for (i, j) ∈ C ⊂ {(i, j) :

i ̸= j} where C is randomly selected and |C| = s2.

The designs in (1), (3) and (4) are further scaled by 2λmax(A) to ensure that the spectral

radius of the transition matrix is smaller than 1. Thus we have a symmetric sparse and

weakly sparse matrix in (1) and (3) respectively, while (2) and (4) generate asymmetric

matrices. We take the numerical setup of n = 50 and p = 10, 30, 100.

In each repetition, we generate a process of length 2n. We run the estimation

procedure in (1.3.4) or (1.3.8) based on {X1, . . . , Xn} by a two-dimensional grid search for

the tuning parameters ν and λ. For each (ν, λ) in the grid, denote the estimator by Â(ν, λ).

Then (ν, λ) is chosen such that n−1
∑2n

t=n+1 |Xt − Â(ν, λ)Xt−1|22, the average prediction

error on {Xn+1, . . . , X2n}, is minimized. The following tables (Table 1.1, Table 1.2 and

Table 1.3) reports the average ∥Â − A∥F (estimation error in Frobenius norm) based

on 1000 repetitions. As comparisons, we obtain the results for robust methods and the

traditional versions (Lasso estimator in [130] and Dantzig-based estimator in [52]) in

different designs.

From statistical perspective, the tables indicate that both of our robust estimation

methods outperform the regular Lasso and Dantzig, when the innovation vectors have
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Table 1.1. The average of ∥Â − A∥F based on 1000 repetitions for different methods
when n = 50 and p = 10.

n = 50, p = 10 Method Banded Block Toeplitz Random

εij ∼ t5

Lasso 0.764 0.716 0.701 0.752
Robust-Lasso 0.716 0.644 0.669 0.601

Dantzig 0.809 0.951 0.725 0.662
Robust-Dantzig 0.718 0.845 0.685 0.620

εij ∼ t10

Lasso 0.748 0.703 0.691 0.746
Robust-Lasso 0.724 0.632 0.665 0.652

Dantzig 0.768 0.930 0.720 1.414
Robust-Dantzig 0.709 0.881 0.687 1.368

Table 1.2. The average of ∥Â − A∥F based on 1000 repetitions for different methods
when n = 50 and p = 30.

n = 50, p = 30 Method Banded Block Toeplitz Random

εij ∼ t5

Lasso 1.340 1.804 1.182 1.617
Robust-Lasso 1.052 1.334 1.074 1.382

Dantzig 1.276 2.337 1.186 2.175
Robust-Dantzig 1.265 2.109 1.170 2.034

εij ∼ t10

Lasso 1.262 1.705 1.176 1.564
Robust-Lasso 1.050 1.635 1.172 1.383

Dantzig 2.279 2.100 1.178 2.150
Robust-Dantzig 2.264 2.049 1.172 2.019
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Table 1.3. The average of ∥Â − A∥F based on 1000 repetitions for different methods
when n = 50 and p = 100.

n = 50, p = 100 Method Banded Block Toeplitz Random

εij ∼ t5

Lasso 2.138 3.964 2.145 3.113
Robust-Lasso 1.993 3.260 2.113 2.901

Dantzig 2.239 4.409 2.149 3.960
Robust-Dantzig 2.051 3.988 2.014 3.852

εij ∼ t10

Lasso 2.235 3.881 2.146 3.047
Robust-Lasso 2.236 3.342 2.144 2.802

Dantzig 2.238 4.224 2.148 3.975
Robust-Dantzig 2.139 4.021 2.143 3.971

fat tail and the transition matrix enjoys a sparsity pattern. The differences became less

significant if the tail of the innovation distribution becomes lighter. In a nutshell, our

robust methods is more advantageous in tackling non-Gaussian time series.

1.5 Concluding Remarks

Time series regression arises in a wide range of disciplines. Conventional tools are

inadequate when it involves high dimensional temporal dependent and fat-tailed data. In

this chapter, we develop a novel Bernstein inequality for high dimensional linear processes,

with the help of which, we have made contributions towards the robust estimation theory

of high dimensional time series regression in the presence of fat tails. The convergence rate

depends on the strength of temporal and cross-sectional dependence, the moment condition,

the dimension and the sample size. We allow the dimension to increase exponentially with

the sample size as a natural requirement of consistency. To perform statistical inference

of the estimates such as hypothesis testing and construction of confidence intervals, one

needs to develop the deeper result in terms of asymptotic distributional theory. The latter

is more challenging and we leave it as future work.
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1.6 Proofs of Results in Section 1.2

In this section, we provide the proofs of the results presented in Section 1.2.

Proof of Theorem 1.2.1. We first define a filtration {Fi} with σ-field Fi = σ(εi, εi−1, . . . ),

and the projection operator Pj(·) = E(·|Fj)− E(·|Fj−1). Conventionally, it follows that

Pj(G(Xi)) = 0 for j ≥ i+ 1. We can write

n∑
i=1

G(Xi)− EG(Xi) =
n∑

j=−∞

( n∑
i=1

Pj(G(Xi))
)
=:

n∑
j=−∞

Lj,

where Lj =
∑n

i=1 Pj(G(Xi)). By the Markov inequality, for any λ > 0,

P
( n∑

i=1

G(Xi)− EG(Xi) ≥ 2x

)
≤ P

( 0∑
j=−∞

Lj ≥ x

)
+ P

( n∑
j=1

Lj ≥ x

)
≤ e−λxE

[
exp

{
λ

0∑
j=−∞

Lj

}]
+ e−λxE

[
exp

{
λ

n∑
j=1

Lj

}]
. (1.6.1)

We shall bound the right-hand side of (1.6.1) with a suitable choice of λ > 0. Observing

that {Lj}j≤n is a sequence of martingale differences with respect to {Fj}, we firstly seek

an upper bound on E[eλLj
∣∣Fj−1]. By the Lipschitz condition (1.2.6) and the boundedness

of G, it follows that

|Lj| ≤
n∑

i=1∨j

min
{∣∣E [G(Xi)

∣∣Fj

]
− E [G(Xi)|Fj−1]

∣∣ , 2M}
≤

n∑
i=1∨j

min
{
g⊤|Ai−j|E

[
|εj − ε′j|

∣∣Fj

]
, 2M

}
, (1.6.2)

where ε′j is an i.i.d. copy of εj. For notational convenience, we denote b⊤i = g⊤|Ai| and
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ηj = E(|εj − ε′j|
∣∣Fj). Then we have

|Lj| ≤ 2M
n∑

i=1∨j

I(b⊤i−jηj ≥ 2M) +
n∑

i=1∨j

b⊤i−jηjI(b⊤i−jηj ≤ 2M) =: Ij + IIj.

For j ≤ 0 and k ≥ 2, by the triangle inequality, it holds that

E[|Lj|k
∣∣Fj−1] ≤

[(
E[|Ij|k

∣∣Fj−1]
)1/k

+
(
E[|IIj|k

∣∣Fj−1]
)1/k]k

≤ (∥Ij∥k + ∥IIj∥k)k . (1.6.3)

Moreover,

∥Ij∥k ≤ 2M
∞∑

i=−j

∥∥I(b⊤i ηj ≥ 2M)
∥∥
k
≤ 2M

∞∑
i=−j

[
P
(
(b⊤i ηj)

2 ≥ (2M)2
)]1/k

. (1.6.4)

Recall the definitions of γ and τ . We have |bi|1 ≤ γρ
i/τ
0 , which implies

E[(b⊤i ηj)2] ≤ 2σ2|bi|21 ≤ 2γ2σ2ρ
2i/τ
0 , for all j.

By the Markov inequality, we obtain from (1.6.4) that for k ≥ 2,

∥Ij∥k ≤ 2M

(
γσ√
2M

)2/k
ρ
−2j/kτ
0

1− ρ2/kτ0

. (1.6.5)

In view of the fact 1 − x ≥ −x log x for x ∈ (0, 1), we can further relax the bound in

(1.6.5). Applying the Stirling formula, for k ≥ 2, we can obtain

∥Ij∥kk ≤ kkτ kρ
−2/τ
0

(
M

log(1/ρ0)

)k (
γσ√
2M

)2

ρ
−2j/τ
0

≤ 1

2
√
2π

(
γσ

ρ0M

)2

k!τ k
(

eM

log(1/ρ0)

)k

ρ
−2j/τ
0 .
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Define the constants

C1 =
1

2
√
2π
ρ−2
0 , and C2 =

e

log(1/ρ0)
.

Then we can simply write

∥Ij∥kk ≤ C1k!τ
kCk

2M
k−2γ2σ2ρ

−2j/τ
0 . (1.6.6)

Analogously, for k ≥ 2, we can also get

∥IIj∥kk ≤
[ ∞∑
i=−j

{
E
[
(b⊤i ηj)

2 (2M)k−2 ]}1/k]k ≤ C1k!τ
kCk

2M
k−2γ2σ2ρ

−2j/τ
0 . (1.6.7)

By (1.6.3), (1.6.6) and (1.6.7), we have

E[|Lj|k
∣∣Fj−1] ≤ C1k!τ

k(C ′
2)

kMk−2γ2σ2ρ
−2j/τ
0 , (1.6.8)

where C ′
2 = 2C2 = 2e/ log(1/ρ0). Now we are ready to derive an upper bound for

E[eλLj
∣∣Fj−1]. By the Taylor expansion, we have

E[eλLj |Fj−1] = 1 + E[λLj|Fj−1] +
∞∑
k=2

1

k!
E[λkLk

j |Fj−1].

Notice that E[Lj

∣∣Fj−1] = 0. For 0 < λ < (C ′
2Mτ)−1, we have

E[eλLj
∣∣Fj−1] ≤ 1 + C1M

−2γ2σ2ρ
−2j/τ
0

∞∑
k=2

(
C ′

2Mτλ
)k

≤ exp

{
C ′

1γ
2σ2τ 2ρ

−2j/τ
0 λ2

1− C ′
2Mτλ

}
,

where the constant

C ′
1 = C1(C

′
2)

2 =
1

2
√
2π

(
2e

ρ0 log(1/ρ0)

)2

,
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Thus, recursively conditioning on F0,F−1, . . . , we have for 0 < λ < (C ′
2τ)

−1,

P
( 0∑

j=−∞

Lj ≥ x

)
≤ e−λxE

[
exp

{
λ

0∑
j=−∞

Lj

}]
≤ e−λx exp

{
C ′

1γ
2σ2τ 2(1− ρ2/τ0 )−1λ2

1− C ′
2Mτλ

}
.

Specifically, choosing λ = x[C ′
2Mτx+ 2C ′

1γ
2σ2τ 2(1− ρ2/τ0 )−1]−1 yields

P
( 0∑

j=−∞

Lj ≥ x

)
≤ exp

{
− x2

4C ′
1γ

2σ2τ 2(1− ρ2/τ0 )−1 + 2C ′
2Mτx

}

≤ exp

{
− x2

2C ′
1γ

2σ2ρ−2
0 (log(1/ρ0))−1τ 3 + 2C ′

2Mτx

}
= exp

{
− x2

C ′′
1 τ

3γ2σ2 + 2C ′
2Mτx

}
, (1.6.9)

where C ′′
1 = 2C ′

1ρ
−2
0 (log(1/ρ0))

−1. We can deal with Lj for j ≥ 1 by similar arguments

and obtain

E[eλLj
∣∣Fj−1] ≤ exp

{
C ′

1γ
2σ2τ 2λ2

1− C ′
2Mτλ

}
for j ≥ 1.

In a similar way as deriving (1.6.9), it follows that

P

(
n∑

j=1

Lj ≥ x

)
≤ exp

{
− x2

C ′′
1γ

2σ2τ 2n+ 2C ′
2Mτx

}
. (1.6.10)

Combining (1.6.1), (1.6.9) and (1.6.10), we have

P
( n∑

i=1

G(Xi)− E[G(Xi)] ≥ x
)
≤ 2 exp

{
− x2

4C ′′
1 τ

2(τ ∨ n) + 4C ′
2Mτx

}
,

which implies (1.2.7) for τ ≤ n.

Proof of Theorem 1.2.3. We follow the starting steps when proving Theorem 1.2.1. With-
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out assuming G bounded, we have

|Lj| ≤
n∑

i=1∨j

g⊤|Ai−j|E
[
|εj − ε′j|

∣∣Fj

]
=

n∑
i=1∨j

b⊤i−jηj =: d⊤j ηj.

For j ≤ −τ , we have

|dj|1 ≤
n∑

i=1

|bi−j|1 ≤ γ
ρ
1/τ
0

1− ρ1/τ0

· ρ−j/τ
0 ≤ (log(1/ρ0))

−1γτρ
−j/τ
0 . (1.6.11)

Note that

E[eλ|Lj ||Fj−1] ≤ E[eλd⊤j ηj |Fj−1] = E[eλd⊤j ηj ] ≤ E[eλd⊤j (|εj |+|ε′j |)]. (1.6.12)

Let λ∗ = c0(log(1/ρ0))(γτ)
−1 and Yj = λ∗d⊤j (|εj|+ |ε′j|)ρ

j/τ
0 . By (1.6.11) and (1.6.12), it

follows that for any j ≤ −τ , EeYj ≤ θ2 and

E[eλ∗|Lj | − 1|Fj−1] ≤ EeYjρ
−j/τ
0 − 1 =

∫ ∞

0

ρ
−j/τ
0 exρ

−j/τ
0 P(Yj ≥ x)dx

≤
∫ ∞

0

ρ
−j/τ
0 exρ

−j/τ
0 e−xθ2dx

≤ ρ
−j/τ
0 θ2

1− ρ−j/τ
0

≤ ρ
−j/τ
0 θ2

1− ρ0
.

Since E[Lj|Fj] = 0, for any 0 < λ ≤ λ∗,

E[eλLj − 1|Fj−1] = E[eλLj − λLj − 1|Fj−1]

≤ E[eλ|Lj | − λ|Lj| − 1|Fj−1]

≤ E[eλ∗|Lj | − λ∗|Lj| − 1|Fj−1] · λ2/(λ∗)2

≤ E[eλ∗|Lj | − 1|Fj−1] · λ2/(λ∗)2,

in view of ex − x ≤ e|x| − |x| for any x and when x > 0, (eλx − λx− 1)/λ2 is increasing
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with λ ∈ (0,∞). Using 1 + x ≤ ex, we have

E[eλLj |Fj−1] ≤ 1 + E[eλ∗|Lj | − 1|Fj−1] · λ2/(λ∗)2

≤ 1 + C1ρ
−j/τ
0 γ2τ 2θ2λ2 ≤ exp

{
C1ρ

−j/τ
0 γ2τ 2θ2λ2

}
.

where C = c−2
0 (log(1/ρ0))

−2/(1− ρ), which implies that

P
( −τ∑

j=−∞

Lj ≥ x

)
≤ e−λxE

[
exp

{
λ

−1∑
j=−∞

Lj

}]
≤ e−λx exp

{
C1γ

2τ 3θ2λ2
}
.

with C1 = C(log(1/ρ0))
−1(ρ0)

−2. For the cases when j > −τ , we use the bound |dj|1 ≤

(ρ0 log(1/ρ0))
−1γτ and obtain E[eλLj |Fj−1] ≤ 1 + C2γ

2τ 2θ2λ2 for C2 = C/ρ20 and

P
( n∑

j=−τ+1

Lj ≥ x

)
≤ exp

{
−λx+ C2(n+ τ)γ2τ 2θ2λ2

}
. (1.6.13)

Therefore (1.2.10) follows by choosing

λ = min

{
λ∗,

x

2C1γ2τ 3θ2
,

x

2C2(n+ τ)γ2τ 2θ2
,

}
.

By a slight modification of the Lipschitz condition (2.7.2), we can develop some

ancillary results in Corollar 1.6.1 and Corollary 1.2.2, that can be useful in estimating time

series regression models. The proof follows similarly from that of Theorem 1.2.1 without

extra technical difficulty.

Corollary 1.6.1. Consider the same setting of the model as in Theorem 1.2.1. Let

G : R2p → R be a function with |G(u)| ≤M for all u ∈ R2p. Suppose there exists a vector
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g = (g1, . . . , g2p)
⊤ with gi ≥ 0 for 1 ≤ i ≤ 2p and

∑2p
i=1 gi = 1 such that

|G(u)−G(v)| ≤
2p∑
i=1

gi|ui − vi|, for all u, v ∈ R2p.

Then for any x > 0, we have

P
( n∑

i=1

G(Xi, Xi−1)− EG(Xi, Xi−1) ≥ x
)
≤ 2 exp

{
− x2

C ′
1nσ

2γ2τ 2 + C ′
2τMx

}
. (1.6.14)

Proof of Corollary 1.6.1. It follows from the fact that the (2p)-dimensional process

(X⊤
i , X

⊤
i−1)

⊤ is also linear and satisfies the condition (1.2.3) with γ multiplied by a constant

depending on ρ0 only.

Proof of Corollary 1.2.2. With a different Lipschitz condition on G, the step (2.7.2) be-

comes

|Lj| ≤
n∑

i=1∨j

min{|Ai−jηj|2, 2M} ≤
n∑

i=1∨j

min{γρ(i−j)/τ
0 |ηj|2, 2M}.

Note that E|ηj|22 ≤ 2pσ2. For j ≤ −n0 where n0 = ⌈τ log p/ log(1/ρ0)⌉, by similar

arguments in deriving (1.6.9), it can be obtained that

P
( −n0∑

j=−∞

Lj ≥ x

)
≤ exp

{
− x2

C1τ 3 + C2Mτx

}
. (1.6.15)

For j > −n0, we have

|Lj| ≤ 2n0M +
∞∑

i=j+n0

min{γρ(i−j)/τ
0 |ηj|2, 2M}.

Similarly as (1.6.8), we can get

E[|Lj|k|Fj−1] ≤ 2k[(2n0M)k + C ′
1k!τ

k(C ′
2)

kMk−2γ2σ2]

≤ C3(C4n0M)kk!(1 +M−2γ2σ2),
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which further implies

E
[
exp

{
λ

n∑
j=−s+1

Lj

}]
≤ exp

{
C3C

2
4(M

2 + γ2σ2)n2
0(n0 + n)λ2

1− C4n0Mλ

}
,

and

P

(
n∑

j=−n0+1

Lj ≥ x

)
≤ exp

{
− x2

C ′
3(M

2 + γ2σ2)n2
0(n0 + n) + C ′

4Mτ(log p)x

}
.

Then (1.2.9) follows in view of n0 ≤ Cρ0n.

Proof of Theorem 1.2.11. Let µ̂j be the Huber estimator of µj. Following similar argu-

ments of proving Theorem 3.1 in [155], for

Rnj(a) =
n∑

i=1

[ϕν(Xij − a)− Eϕν(Xij − a)],

it can be obtained that for any δ > 0 with ν−1δ ≤ 1/2,

P(µ̂j − µj ≥ δ) ≤ P(Rnj(µj + δ) ≥ n(δ − 4ν−1µ2
2)).

By the Lipschitz continuity of the function ϕν and the uniform bound |ϕν(x)| ≤ ν, applying

Theorem 1.2.1 to Rnj(µj + δ), it follows that

P(Rnj(µj + δ) ≥ y) ≤ 2 exp

{
− y2

2C1nτ 2γ2 + C2τνy

}
.

Then it follows that

P(µ̂j − µj ≥ δ) ≤ 2x

by letting n(δ − 4ν−1µ2
2) = y = τγ

√
2C1n log(1/x) + C2τν log(1/x) for 0 < x < 1/e. The

requirement ν−1δ ≤ 1/2 is met if we choose ν = 2µ∗
√
C2

√
n

log(1/x)
for any µ∗ ≥ µ2 and impose
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the condition

(
√

2C1C2γ/µ2 + 4C2)τ log(1/x) ≤ n.

For δ ≤ δn = (
√
2C1γ + 4

√
C2µ

∗)τ
√

log(1/x)
n

, we have P(µ̂j − µj ≥ δn) ≤ 2x. It can also be

obtained that P(µ̂j − µj ≤ −δn) ≤ 2x similarly. By letting x = p−c−1, for some c > 0, it

follows that

P
(
max
1≤j≤p

|µ̂j − µj| ≥
√
c+ 1(

√
2C1γ + 4

√
C2µ

∗)τ

√
log p

n

)
≤ 4p−c.

which further implies (1.2.11).

1.7 Proofs of Results in Section 1.3

This section includes all the proofs for the results on robust estimation of time

series regressions presented in Section 1.3

1.7.1 Proofs of Results in Section 1.3.1

Denote Ln(β) = 1
n

∑n
i=1Φν((Yi − X⊤

i β)w(Xi)) and ϕν(·) = Φ′
ν(·). Recall b0 =

b/λmin(B) and κ(B) = λmax(B)/λmin(B).

Lemma 1.7.1 (Deviation bound). Let Assumptions (A1) (A2) (A3) in Section 1.3.1 be

satisfied. Let ν = cση(n/ log p)
1/2 and λ = Cb0ση(log p/n)

1/2 for a sufficiently large C,

with probability at least 1− 4p−c1 for some c1 > 0, it holds that |∇Ln(β
∗)|∞ ≤ λ.

Proof. Consider the first component ∇Ln1(β
∗) of ∇Ln(β

∗). We have

∇Ln1(β
∗) =

1

n

n∑
i=1

ϕν(ξiw(Xi))Xi1w(Xi).

Note that |ϕν(x) − ϕν(y)| ≤ |x − y| and |ϕν(ξiw(Xi))Xi1w(Xi)| ≤ νb0. Conditioned on
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{Xi}ni=1, by Theorem 1.2.1, we have

P
(
|∇Ln1(β

∗)− E[∇Ln1(β
∗)]| ≥ C ′b0x |(Xi)i

)
≤ 4p−c,

for x = ση
√

log p/n+ ν log p/n and some constant c > 1. Hence by a union bound, with

probability at least 1− 4p−c1 for c1 > 0, it holds that

|∇Ln(β
∗)− E[∇Ln(β

∗)]|∞ ≤ C ′b0x.

As E|ϕν(ξiw(Xi))| = E[|ξiw(Xi)|1(|ξiw(Xi)| > ν)] ≤ Cρσ
2
ην

−1, we have

|E[∇Ln1(β
∗)]| ≤ E|∇Ln1(β

∗)| ≤ Cρb0σ
2
ην

−1. (1.7.1)

Therefore, choosing ν = cση(n/ log p)
1/2 and λ = Cb0ση

√
log p/n ensures that

|∇Ln(β
∗)|∞ ≤ λ with high probability.

Lemma 1.7.2 (RSC condition). Let Assumptions (A1) (A2) (A3) be satisfied. Assume

b0(b0 + κ(B)γσε)τ
√
s
√
(log p)3/n→ 0.

We have the following holds uniformly for all β, such that |∆|2 ≤ ν/(2b0) and |∆Sc|1 ≤

3|∆S|1 with probability no less than 1− 4p−c2 that

Ln(β)− Ln(β
∗)−∇Ln(β

∗)⊤(β − β∗) ≥ 1

2
λmin(E[

w2(Xi)

2
XiX

⊤
i ])|β − β∗|22. (1.7.2)

Proof. Denote S = supp(β∗). We will show that with high probability, (1.7.2) holds
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uniformly over the set

C := {β : |β − β∗| ≤ ν

2b0
, |βSc − β∗

Sc|1 ≤ 3|βS − β∗
S|1},

Let T (β, β∗) = Ln(β)− Ln(β
∗)−∇Ln(β

∗)⊤(β − β∗), then it follows the same argument

as Appendix B.3 in [88] that

T (β, β∗) ≥ 1

n

n∑
i=1

1

2
(w(Xi)X

⊤
i (β − β∗))21Ai

,

where Ai = {ξi ≤ ν/2}. Denote Γ = 1
n

∑n
i=1

w(Xi)
2

2
XiX

⊤
i 1Ai

. For any u such that |u|2 ≤ 1,

we have

u⊤Γu =
1

n

n∑
i=1

1

2
(u⊤Xiw(Xi))

21Ai
.

Notice that 1
2
|(u⊤xw(x))2 − (u⊤yw(y))2| ≤ b0(κ(B) + 1)|x − y|2 and |(u⊤xw(x))2| ≤ b20.

Conditioned on ξi, by Corollary 1.2.2 we have

P(|u⊤Γu− E[u⊤Γu]| ≥ t|(ξi)i) ≤ 4 exp{−c3s log p},

where t = Cb0(b0 + κ(B)γσε)τ
√
s
√

(log p)3/n for a sufficiently large C such that c3 > 4.

Note that t→ 0 by assumption. Following the same spirit of the ε-net argument in lemma

15 of [89], we can obtain that

∣∣v⊤(Γ− EΓ
)
v
∣∣ ≤ t, ∀ v ∈ Rp, |v|0 ≤ 2s, |v|2 ≤ 1,

holds with probability at least

1− 4 exp
{
2s log 9 + 2s log p− c3s log p

}
≥ 1− 4p−c2 ,

provided that p→∞ and a sufficiently large c3. By Lemma 12 in [89], it further implies
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that

|v⊤(Γ− EΓ)v| ≤ 27t

(
|v|22 +

|v|21
s

)
, ∀v ∈ Rp. (1.7.3)

Denote ∆ = β − β∗, then we have

T (β, β∗) ≥ ∆⊤Γ∆ ≥ E[∆⊤Γ∆]− 27t(|∆|22 +
|∆|21
s

). (1.7.4)

Moreover, as E|ξi|2 ≤ Cρσ
2
η and ν →∞,

E[∆⊤Γ∆] = E[
w2(Xi)

2
(∆⊤Xi)

2] · P(|ξi| ≤
ν

2
)

≥ λmin(E[
w2(Xi)

2
XiX

⊤
i ])|∆|22 ·

(
1− 4E|ξi|2

ν2

)
≥ 3

4
λmin(E[

w2(Xi)

2
XiX

⊤
i ])|∆|22,

Also, for β ∈ C, |∆|22 +
|∆|21
s
≤ 17|∆|22. By (1.7.4), we conclude that

T (β, β∗) ≥
(3
4
λmin(E[

w2(Xi)

2
XiX

⊤
i ])− 459t

)
|∆|22

≥ 1

2
λmin(E[

w2(Xi)

2
XiX

⊤
i ])|∆|22

Proof of Theorem 1.3.1. With Lemma 1.7.1 and Lemma 1.7.2, the proof follows the same

spirit as Appendix B.1 of [88] without extra technical difficulty.

1.7.2 Proofs of Results in Section 1.3.2

We shall first prove Proposition 1.3.2.

Proof of Proposition 1.3.2. If λmax(A) < 1, for any ϵ > 0, the matrix B = A/[λmax(A)+ ϵ]

has spectral radius strictly less than 1. By Theorem 5.6.12 of [44], B is convergent

in the sense that lim
k→∞

Bk = 0. Thus, ∥Bk∥ → 0 as k → ∞ and there exists some
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N = N(ε, A) such that ∥Bk∥ < 1 for all k ≥ N , which implies ∥Ak∥ ≤ [λmax(A) + ϵ]k for

all k ≥ N . Therefore, given the constant 0 < ρ0 < 1 and with an arbitrarily small ϵ with

λmax(A) + ϵ < 1, there must exist some finite k such that ∥Ak∥ ≤ ρ0. The proof of the

converse is easier by the fact that [λmax(A)]
k = λmax(A

k) ≤ ∥Ak∥ for any k.

To prove Theorem 1.3.3, we introduce some preparatory lemmas. Define L̃j(b) =

n−1
∑n

i=1(X̃ij − b⊤X̃i−1)
2 for 1 ≤ j ≤ p.

Lemma 1.7.3. Let Assumption (B1) be satisfied. For ν ≍ µq(n/ log p)
1/2(q−1) and

λ ≍ τγµq(∥A∥∞ + 1)[(log p)/n]1/2−1/2(q−1),

with probability at least 1− 4p−c1 for some c1 > 0, it holds that

∣∣L̃j(aj·)
∣∣
∞ ≤ λ, for all 1 ≤ j ≤ p. (1.7.5)

Proof of Lemma 1.7.3. We consider the first component of∇L̃j(aj·), denoted by∇L̃j1(aj·).

Other components can be manipulated analogously. Let

G(Xi, Xi−1) = 2(X̃i1 − X̃⊤
i−1aj·)X̃(i−1)1.

Then we can write

∇L̃j1(aj·) =
1

n

n∑
i=1

G(Xi, Xi−1).

Notice that |G| ≤ 2(∥A∥∞+1)ν2 and |G(u)−G(v)| ≤ g⊤|u−v|, where |g|1 ≤ 4(∥A∥∞+1)ν.

By Corollary 1.6.1, for x = c′γτ
√

(log p)/n, we have

P
(∣∣∣∇L̃j1(aj·)− E

[
∇L̃j1(aj·)

]∣∣∣ ≥ 4ν(∥A∥∞ + 1)x

)
≤ 4 exp

{
− (c′)2 log p

2C1

}
. (1.7.6)
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In view of E[∇Ln(aj·)] = 0, the triangle inequality and |X̃ij| ≤ |Xij|,

∣∣E[∇L̃j1(aj·)
]∣∣ =

∣∣E[∇L̃j1(aj·)
]
− E

[
∇Lj1(aj·)

]∣∣
= 2E

[∣∣(X̃ij − a⊤
j·X̃i−1)X̃(i−1)1 − (Xij − a⊤

j·Xi−1)X(i−1)1

∣∣]
≲ E

[∣∣X(i−1)1(X̃ij −Xij)
∣∣]+ E

[∣∣Xij(X(i−1)1 − X̃(i−1)1)
∣∣]

+|aj·|⊤E
[∣∣X(i−1)1(X̃i−1 −Xi−1)

∣∣]
+|aj·|⊤E

[∣∣Xi−1(X̃(i−1)1 −X(i−1)1)
∣∣]. (1.7.7)

Since |X̃ij −Xij| ≤ |Xij|1{|Xij| ≥ ν}, by Hölder’s inequality, we have

E
[∣∣X(i−1)1(Xij − X̃ij)

∣∣] ≤ ∥X̃(i−1)1∥q · ∥X̃ij −Xij∥q/(q−1)

≤ µq∥X̃ij −Xij∥q/(q−1),

where

∥X̃ij −Xij∥q/(q−1)
q/(q−1) ≤ E|Xij|q/(q−1)1{|Xij| ≥ ν} ≤ µq

qν
−q(q−2)/(q−1).

It then follows that E
[∣∣X(i−1)1(Xij − X̃ij)

∣∣] ≤ µq
qν

2−q. Other terms in (1.7.7) can be dealt

with similarly. With the choice of ν, we can get
∣∣E[∇L̃j1(aj·)

]∣∣ ≤ cν(∥A∥∞ + 1)x. Letting

λ = Cν(∥A∥∞ + 1)x for a sufficiently large C and c′ > 2
√
C1, it follows from (1.7.6) that

P
(∣∣∣∇L̃j1(aj·)

∣∣∣ ≥ λ

)
≤ 4 exp

{
− (c′)2 log p

2C1

}
.

By the Bonferroni inequality, we have

P
(∣∣∣∇L̃j(aj·)

∣∣∣
∞
≥ λ, for all 1 ≤ j ≤ p

)
≤ 4p−c1

where c1 = 2−1C−1
1 (c′)2 − 2 > 0.

Define a cone C(S) = {∆ ∈ Rp : |∆Sc|1 ≤ 3|∆S|1} for a subset S ⊆ {1, 2, . . . , p}.
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We shall verify a restricted eigenvalue (RE) condition on the set C(S) in the lemma below.

Lemma 1.7.4. Let Assumptions (B1), (B2) and (B3) be satisfied. Choose

ν ≍ µq(n/ log p)
1/(2q−2).

Then for all ∆ ∈ C(S),

∆⊤∇2L̃j(aj·)∆ ≥
κ

2
|∆|22 (1.7.8)

holds with probability at least 1− 4p−c2 for some constant c2 > 0.

Proof of Lemma 1.7.4. Denote X̃ = (X̃0, X̃1, . . . , X̃n−1)
⊤. Then ∇2L̃j(aj·) = 2X̃⊤X̃/n =:

Γ. We shall first show that with probability at least 1− 4p−c2 for some positive constant

c2, it holds that

∣∣v⊤(Γ− EΓ
)
v
∣∣ ≤ t, ∀ v ∈ Rp, |v|0 ≤ 2s, |v|2 ≤ 1, (1.7.9)

where t = c1µqγτs
2(log p/n)1/2−1/2(q−1). For any u ∈ Rp such that |u|2 ≤ 1 and |u|0 ≤ s

hence |u|1 ≤
√
s, write

u⊤(Γ− EΓ)u = 2n−1

n−1∑
i=0

(u⊤X̃i)
2 − E(u⊤X̃i)

2 =: n−1

n−1∑
i=0

G(Xi)− E[G(Xi)].

Thus, for G(Xi) = (u⊤X̃i)
2, we have

|G(x)−G(y)| ≤ 2|u⊤(x+ y) · u⊤(x− y)| ≤ 4sνg⊤|x− y|,

where |g|1 ≤ 1. Apply Theorem 1.2.1 to function G(Xi)/(4sν) and we have for any fixed
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u such that |u|2 ≤ 1 and |u|0 ≤ s,

P
(∣∣u⊤(Γ− EΓ

)
u
∣∣ ≥ t

)
≤ 4 exp

{
− c3s2 log p

}
.

Following the same spirit of the ε-net argument in lemma 15 of [89], we can obtain that

(1.7.9) holds with probability at least

1− 4 exp
{
2s log 9 + 2s log p− c3s2 log p

}
≥ 1− 4p−c2 ,

provided that p→∞ and a sufficiently large c3 (or equivalently c1). By Lemma 12 in [89]

and (1.7.9), it further implies that with probability greater than 1− 4p−c2 ,

|v⊤(Γ− EΓ)v| ≤ 27t

(
|v|22 +

|v|21
s

)
, ∀v ∈ Rp. (1.7.10)

Note that when ∆ ∈ C(S),

|∆|1 = |∆S|1 + |∆Sc |1 ≤ 4|∆S|1 ≤ 4
√
s|∆S|2 ≤ 4

√
s|∆|2. (1.7.11)

Furthermore, some algebra delivers that

∆⊤E
[
Γ
]
∆ = 2E[(X̃⊤

1 ∆)2] ≥ 2
(
∆⊤E[X1X

⊤
1 ]∆−∆⊤E[X1X

⊤
1 − X̃1X̃

⊤
1 ]∆

)
≥ 2κ|∆|22 − 2|∆|21

∣∣E[X1X
⊤
1 − X̃1X̃

⊤
1 ]
∣∣
∞. (1.7.12)

For any 1 ≤ j, k ≤ p, by the triangle and Hölder’s inequality,

|EX̃ijX̃ik − EXijXik| ≤ |E(X̃ij −Xij)X̃ik)|+ |E(X̃ik −Xik)Xij)|.
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We have

|E(X̃ij −Xij)X̃ik)| ≤ ∥X̃ik∥q · ∥X̃ij −Xij∥q/(q−1)

≤ µq∥X̃ij −Xij∥q/(q−1),

where

∥X̃ij −Xij∥q/(q−1)
q/(q−1) ≤ E|Xij|q/(q−1)1{|Xij| ≥ ν} ≤ µq

qν
−q(q−2)/(q−1).

It then follows that |E(X̃ij −Xij)X̃ik| ≤ µq
qν

2−q. We can also deal with |E(X̃ik−Xik)Xij)|

similarly. As a result, we have the bias

|E[X̃ijX̃ik −XijXik]| ≤ 2µq
qν

2−q ≤ Cµ2
q

( log p
n

) 1
2
− 1

2q−2 . (1.7.13)

By (1.7.11), (1.7.12) and (1.7.13), it follows that

∆⊤E
[
Γ
]
∆ ≥ 2κ|∆|22 − 16Csµ2

q

( log p
n

) 1
2
− 1

2q−2 |∆|22 ≥ κ|∆|22. (1.7.14)

Recall that t = c1µqγτs
2(log p/n)1/2−1/q → 0 by Assumption (B3). Combining (1.7.10)

and (1.7.14), we can establish the following RE condition

∇2Lj(aj·) ≥ κ|∆|22 − 27t(|∆|22 + |∆|21/s) ≥ κ|∆|22 − 459t|∆|22 ≥
κ

2
|∆|22,

for all ∆ ∈ C(S) with probability no less than 1− 4p−c2 .

Proof of Theorem 1.3.3. Let ∆̂j = âj· − aj· for j = 1, . . . , p. As the solution of (1.3.5),

âj· satisfies

L̃j(âj·) + λ|âj·|1 ≤ L̃j(aj·) + λ|aj·|1,
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which together with convexity implies,

0 ≤ L̃j(âj·)− L̃j(aj·)− ⟨∇L̃j(aj·), ∆̂j⟩ ≤ λ(|aj·|1 − |âj·|1) +
∣∣∇L̃j(aj·)

∣∣
∞|∆̂j|1. (1.7.15)

Denote by A and B the events in Lemma 1.7.3 and Lemma 1.7.4 respectively. Then

P(A ∩ B) = 1− P(Ac ∪ Bc) ≥ 1− 8p−c for c = min{c1, c2}. Conditioned on the event A,

(1.7.15) implies

0 ≤ |aj·,S|1 − |âj·,S|1 − |âj·,Sc |1 +
1

2
|∆̂j|1

≤ |∆̂j,S|1 − |∆̂j,Sc |1 +
1

2
|∆̂j|1 =

3

2
|∆̂j,S|1 −

1

2
|∆̂j,Sc|1,

which further implies ∆̂j ∈ C(S) for all 1 ≤ j ≤ p. Conditioned on the event B, by (1.7.5)

and the second inequality in (1.7.15), we have

κ

2
|∆̂j|22 ≤

(
λ+

∣∣∇Ln(aj·)
∣∣
∞

)
|∆̂j|1 ≤ 6

√
sλ|∆̂j|2. (1.7.16)

This immediately shows for all 1 ≤ j ≤ p

|∆̂j|2 ≤
12
√
sλ

κ
≍ µqγτ(∥A∥∞ + 1)

√
s

(
log p

n

) 1
2
− 1

2q−2

(1.7.17)

as well as

|∆̂j|1 ≲ µqγτs(∥A∥∞ + 1)

(
log p

n

) 1
2
− 1

2q−2

.

Hence, (1.3.6) follows in view of ∥Â − A∥∞ = maxj |∆̂j|1. Moreover, if we consider the

estimation of Vec(A) = (a⊤
1·,a

⊤
2·, . . . ,a

⊤
p·)

⊤ ∈ Rp2 with the sparsity parameter S =
∑p

i=j sj ,

by Assumption (B3’) and similar arguments of verifying the RE condition in Lemma 1.7.4,
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(1.7.8) becomes

2∆⊤
[
Ip ⊗

(
X̃⊤X̃

n

)]
∆ ≥ κ

2
|∆|22, for all ∆ ∈ Rp2 .

Thus, similarly as (1.7.17), (1.3.7) follows.

Next we shall concern the robust Dantzig-type estimator.

Lemma 1.7.5. Let Assumption (B1) be satisfied. Choose the truncation parameter

ν ≍ µq(n/ log p)
1/(2q−2).

Let λ ≍ µqγτ(∥A∥1 + 1)[(log p)/n](q−2)/(2q−2). Then with probability at least 1− 8p−c′ for

some constant c′ > 0, it holds that

∥Σ̂0 − Σ0∥max ≤ λ0 and ∥Σ̂1 − Σ1∥max ≤ λ0.

Proof of Lemma 1.7.5. Let λ0 = Cµqτγ[(log p)/n]
(q−2)/(2q−2) for a sufficiently large con-

stant C. Applying Theorem 1.2.1 to the (m, l)-th entry of Σ̂0, we have

P
( 1
n

∣∣∣ n∑
i=1

X̃imX̃il − EX̃imX̃il

∣∣∣ ≥ λ0

)
≤ 4 exp

{
− c2 log p

2C1

}
= 4p−c2/(2C1).

By (1.7.13) in the proof of Lemma 1.7.4, we see that

∣∣∣EX̃imX̃il − EXimXil

∣∣∣ ≤ cµ2
q

( log p
n

) 1
2
− 1

2q−2 ≤ λ0.

Therefore,

P
( 1
n

∣∣∣ n∑
i=1

X̃imX̃il − E[XimXil]
∣∣∣ ≥ λ0

)
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≤ P
( 1
n

∣∣∣ n∑
i=1

X̃imX̃il − E[X̃imX̃il]
∣∣∣ ≥ C2λ0

)
≤ 4p−C3

for some C3 > 1. Taking a union bound yields

P(∥Σ̂0 − Σ0∥max ≥ λ0) ≤ 4p−c′ ,

where c′ = C3 − 1 > 0. By Corollary 1.6.1, similar arguments apply to Σ̂1, which delivers

∥Σ̂1−Σ1∥max ≤ λ0 with probability at least 1−4p−c′ . In conclusion, it holds simultaneously

that ∥Σ̂0 − Σ0∥max ≤ λ0 and ∥Σ̂1 − Σ1∥max ≤ λ0 with probability at least 1− 8p−c′ .

Proof of Theorem 1.3.4. We first show that A is feasible to the convex programming (1.3.8)

for λ = (∥A∥1 + 1)λ0 with high probability. By the Yule-Walker equation and Lemma

1.7.5, we have

∥Σ̂0A− Σ̂1∥max ≤ ∥Σ̂0A− Σ1∥max + ∥Σ1 − Σ̂1∥max

≤ ∥Σ̂0 − Σ0∥max∥A∥1 + ∥Σ1 − Σ̂1∥max ≤ λ,

with probability no less than 1− 8p−c′ . Therefore, conditioned on the event in Lemma

1.7.5, we conclude that |â·j|1 ≤ |a·j|1 for all j = 1, . . . , p and hence ∥Â∥1 ≤ ∥A∥1. Then

we have

∥Â− A∥max = ∥Σ−1
0 (Σ0Â− Σ̂1 + Σ̂1 − Σ1)∥max

≤ ∥Σ−1
0 (Σ0Â− Σ̂0Â+ Σ̂0Â− Σ̂1)∥max + ∥Σ−1

0 (Σ̂1 − Σ1)∥max

≤ ∥Σ−1
0 ∥1∥Σ0 − Σ̂0∥max∥Â∥1 + ∥Σ−1

0 ∥1∥Σ̂0Â− Σ̂1∥max

+∥Σ−1
0 ∥1∥Σ̂1 − Σ1∥max.
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By Lemma 1.7.5 and the feasibility of Â, we have

∥Â− A∥max ≤ ∥Σ−1
0 ∥1(λ0∥A1∥+ λ+ λ0) = 2∥Σ−1

0 ∥1λ.

Now we shall bound ∥Â−A∥1 from above. Denote by Sj the support of a·j for j = 1, . . . , p.

Then for any 1 ≤ j ≤ p, we have

|â·j − a·j|1 =
∣∣â·j,Sj

− a·j,Sj

∣∣
1
+
∣∣â·j
∣∣
1
−
∣∣â·j,Sj

∣∣
1

≤
∣∣â·j,Sj

− a·j,Sj

∣∣
1
+
∣∣a·j
∣∣
1
−
∣∣â·j,Sj

∣∣
1

≤ 2
∣∣â·j,Sj

− a·j,Sj

∣∣
1
≤ 4s∗∥Σ−1

0 ∥1λ. (1.7.18)

Since (1.7.18) holds for all 1 ≤ j ≤ p, we conclude that

∥Â− A∥1 ≤ 4s∗∥Σ−1
0 ∥1λ ≲ µqs

∗γτ∥Σ−1
0 ∥1(∥A∥1 + 1)

(
log p

n

) 1
2
− 1

2q−2

.

Chapter 1, in part, is a reprint of the material in the paper ”A Bernstein-type

Inequality for High Dimensional Linear Processes with Applications to Robust Estimation

of Time Series Regressions”, Liu, Linbo and Zhang, Danna. This paper is currently under

minor revision at Statistica Sinica. The dissertation author was the primary investigator

and author of this paper.
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Chapter 2

Simultaneous Inference of
High-dimensional non-Gaussian Vec-
tor Autoregressive Models

2.1 Introduction

High-dimensional statistics become increasingly important due to the rapid devel-

opment of information technology in the past decade. In this chapter, we are primarily

interested in conducting simultaneous inference via de-biasedM -estimator on the transition

matrices in a high-dimensional vector autoregressive model with non-Gaussian innovations.

An extensive body of work has been proposed on estimation and inference on the coefficient

vector in linear regression setting and we refer readers to [19] for an overview of recent

development in high-dimensional statistical techniques. M -estimator is one of the most

popular tools among them, which has been proved a success in signal estimation ([102]),

support recovery ([90]), variable selection ([159]) and robust estimation with heavy-tailed

noises using nonconvex loss functions ([86]). As a penalized M -estimator, Lasso ([130])

also plays an important role in estimating transition coefficients in high-dimensional VAR

models beyond linear regression; see for example [58], [100], [9] among others. Another

line of work is to achieve such estimation tasks by Dantzig selector ([23]). [52] proposed a

new approach to estimating the transition matrix via Dantzig-type estimator and solved a
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linear programming problem. They remarked that this estimation procedure enjoys many

advantages including computational efficiency and weaker assumptions on the transition

matrix. However, the aforementioned literature mainly discussed the scenario where

Gaussian or sub-Gaussian noises are in presence.

To deal with the heavy-tailed errors, regularized robust methods have been widely

studied. For instance, [81] proposed an ℓ1-regularized quantile regression method in low

dimensional setting and devised an algorithm to efficiently solve the proposed optimization

problem. [145] studied penalized quantile regression from the perspective of variable

selection. However, quantile regression and least absolute deviation regression can be

significantly different from the mean function, especially when the distribution of noise

is asymmetric. To overcome this issue, [38] developed robust approximation Lasso (RA-

Lasso) estimator based on penalized Huber loss and proved the feasibility of RA-Lasso in

estimation of high-dimensional mean regression. Apart from linear regression setting, [155]

also used Huber loss to obtain a consistent estimate of mean vector and covariance matrix

for high-dimensional time series. Also, robust estimation of the transition coefficients was

studied in [85] via two types of approaches: Lasso-based and Dantzig-based estimator.

Besides estimation, recent research effort also turned to high-dimensional statistical

inference, such as performing multiple hypothesis testing and constructing simultaneous

confidence intervals, both for regression coefficients and mean vectors of random processes.

To tackle the high dimensionality, the idea of low dimensional projection was exploited

by numerous popular literature. For instance, [61], [133], [154] constructed de-sparsifying

Lasso by inverting the Karush-Kuhn-Tucker (KKT) condition and derived asymptotic

distribution for the projection of high-dimensional parameters onto fixed-dimensional

space. As an extension of the previous techniques, [87] proposed the asymptotic theory of

one-step estimator, allowing the presence of non-Gaussian noises. Employing Gaussian

approximation theory ([27]), [157] proposed a bootstrap-assisted procedure to conduct

simultaneous statistical inference, which allowed the number of testing to greatly surpass
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the number of observations as a significant improvement. Although a huge body of work has

been completed for the inference of regression coefficients, there have been limited research

on the generalization of these theoretical properties to time series, perhaps due to the

technical difficulty when generalizing Gaussian approximation results to dependent random

variables. [156] adopted the framework of functional dependence measures ([142]) to

account for temporal dependency and provided Gaussian approximation results for general

time series. They also showed, as an application, how to construct simultaneous confidence

intervals for mean vectors of high-dimensional random processes with asymptotically

correct coverage probabilities.

In this chapter, we consider simultaneous inference of transition coefficients in

possibly non-Gaussian vector autoregressive (VAR) models with lag d:

Xi = A1Xi−1 + A2Xi−2 + · · ·+ AdXi−d + εi, i = 1, . . . , n,

where Xi ∈ Rp is the time series, Ai ∈ Rp×p, i = 1, . . . , d are the transition matrices,

and εi ∈ Rp are the innovation vectors. We allow the dimension p to exceed the number

of observations n, or even log p = o(nb) for some b > 0, as is commonly assumed in

high-dimensional regime. Different from many other work, we do not impose Gaussianity

or sub-Gaussianity assumptions on the noise terms εi.

We are particularly interested in the following simultaneous testing problem:

H0 : Ai = A0
i , for all i = 1, . . . , d

versus the alternative hypothesis

H1 : Ai ̸= A0
i , for some i = 1, . . . , d.

It’s worth mentioning that the above problems still have p2 null hypotheses to verify even
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if the lag d = 1. We propose to build a de-biased estimator β̌ from some consistent pilot

estimator β̂ (for example, the one provided in [85]). There are a few challenges when

we prove the feasibility of de-biased estimator as well as its theoretical guarantees: (i)

VAR models display temporal dependency across observations, which makes the majority

of probabilistic tools such as classic Bernstein inequality and Gaussian approximation

inapplicable. (ii) Fat-tailed innovations εi imply fat-tailed xi in VAR model, while robust

methods regarding linear regression can assume εi to have heavy-tail but xi remains

sub-Gaussian ([38] and [157]). (iii) We hope our simultaneous inference procedure to work

in ultra-high dimensional regime, where p can grow exponentially fast in n. As a result,

these challenges inspire us to establish a new Bernstein-type inequality (section 2.3) and

Gaussian approximation results (section 2.4) under the framework of VAR model. Also,

we will adopt the definition of spectral decay index to capture the dependency among

time series data, as in [85].

This chapter is organized as follows. In section 2.2, we first present more details and

some preparatory definitions of VAR models and propose the test statistics for simultaneous

inference via de-biased estimator, which is constructed through a robust loss function and

a weight function on xi. The main result delivering critical values for such test statistics

by multiplier bootstrap is given in section 2.2.4. In section 2.3, we complete the estimation

of multiple statistics by establishing a Bernstein inequality. A thorough discussion of

Gaussian approximation and its derivation under VAR model are presented in section

2.4. Some numerical experiments are conducted in section 2.5 to assess the empirical

performance of the multiplier bootstrap procedure.

Finally, we introduce some notation. For a vector β = (β1, . . . , βp)
⊤, let |β|1 =∑

i |βi|, |β|2 = (
∑

i β
2
i )

1/2 and |β|∞ = maxi |βi| be its ℓ1, ℓ2, ℓ∞ norm respectively. For a

matrix A = (aij)1≤i,j≤p, let λi, i = 1, . . . , p, be its eigenvalues and λmax(A), λmin(A) be

its maximum and minimum eigenvalues respectively. Also let ρ(A) = maxi |λi| be the

spectral radius. Denote ∥A∥1 = maxj
∑

i |aij|, ∥A∥∞ = maxi
∑

j |aij|, and spectral norm
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∥A∥ = ∥A∥2 = sup|x|2 ̸=0 |Ax|2/|x|2. Moreover, let ∥A∥max = maxi,j |aij| be the entry-wise

maximum norm. For a random variable X and q > 0, define ∥X∥q = (E[Xq])1/q. For two

real numbers x, y, set x ∨ y = max(x, y). For two sequences of positive numbers {an}

and {bn}, we write an ≲ bn if there exists some constant C > 0, such that an/bn ≤ C as

n→∞, and also write an ≍ bn if an ≲ bn and bn ≲ an. We use c0, c1, . . . and C0, C1, . . .

to denote some universal positive constants whose values may vary in different context.

Throughout the chapter, we consider the high-dimensional regime, allowing the dimension

p to grow with the sample size n, that is, we assume p = pn →∞ as n→∞.

2.2 Main Results

2.2.1 Vector autoregressive model

Consider a VAR(d) model:

Xi = A1Xi−1 + A2Xi−2 + · · ·+ AdXi−d + εi, i = 1, . . . , n, (2.2.1)

where Xi = (Xi1, Xi2, . . . , Xip) ∈ Rp is the random process of interests, Ai ∈ Rp×p,

i = 1, . . . , d, are the transition matrices and εi, i ∈ Z, are i.i.d. innovation vectors with

zero mean and symmetric distribution, i.e. εi = −εi in distribution, for all i ∈ Z. By a

rearrangement of variables, VAR(d) models can be formulated as VAR(1) models (see

[85]). Therefore, without loss of generality, we shall work with VAR(1) models:

Xi = AXi−1 + εi, i = 1, . . . , n. (2.2.2)

This type of random process has a wide range of application, such as finance development

([118]), economy ([65]) and exchange rate dynamics ([144]).

To ensure model stationarity, we assume that the spectral radius ρ(A) < 1 through-

out the chapter, which is also the sufficient and necessary condition for a VAR(1) model

48



to be stationary. However, a more restrictive condition that ∥A∥ < 1 is always assumed

in most of the earlier work. See for example, [52], [89] and [101]. For a non-symmetric

matrix A, it could happen that ∥A∥ ≥ 1 while ρ(A) < 1. To fill the gap between ρ(A) and

∥A∥, [9] proposed stability measures for high-dimensional time series to capture temporal

and cross-section dependence via the spectral density function. In a more recent work,

[85] defined spectral decay index to connect ρ(A) with ∥A∥ from a different point of view.

In this chapter, we will adopt the framework of spectral decay index in [85].

Definition 2.2.1. For any matrix A ∈ Rp×p such that ρ(A) < 1, define the spectral decay

index as

τ = min{t ∈ Z+ : ∥At∥∞ < ρ} (2.2.3)

for some constant 0 < ρ < 1.

Remark 2.2.2. Note that in (2.2.3), we use L∞ norm, while spectral norm is considered in

[85]. However, the spectral decay index shares many properties even if defined in different

matrix norms. Some of them are summarized as follows. For any matrix A with ρ(A) < 1,

finite spectral decay index τ exists. In general, τ may not be of constant order when the

dimension p increases. Technically speaking, we need to explicitly write τ = τp to capture

the dependence on p. However, in the rest of the chapter, we simply write τ for ease of

notation. For more analysis of spectral decay index, see section 2 of [85].

Next, we are interested in building some estimators of A for which we could establish

asymptotic distribution theory. This allows one to conduct statistical inference, such

as finding simultaneous confidence interval. There have been some work on the robust

estimation only. [85] provides both a Lasso-type estimator and a Dantzig-type estimator

to consistently estimate the transition coefficient A given {Xi}, under very mild moment

condition on Xi and ϵi. It turns out that both Lasso-type and Dantzig-type estimators are

not unbiased for estimating the transition matrix, thus insufficient for tasks like statistical

inference. Therefore, one needs to develop more refined method to establish results in
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terms of asymptotic distributional theory. In the following sections, we will construct a

de-biased estimator based on the existing one and derive the limiting distribution for the

de-biased estimator.

Unlike many other existing work ([52], [9], etc.), we do not require εi to be Gaussian

or sub-Gaussian. Instead, it could happen that the innovations εi only have some finite

moments, which makes the standard techniques for estimation and inference invalid.

2.2.2 De-biased estimator

In this section, we construct a de-biased estimator using the techniques introduced in

[13]. To fix the idea, let a⊤j be the j-th row of A and β∗ = Vec(A) = (a⊤1 , a
⊤
2 , . . . , a

⊤
p )

⊤ ∈ Rp2 .

Suppose we are given a consistent, possibly biased, estimator β̂ of β∗, i.e. |β̂ − β∗| = o(1)

(for example, Lasso-type or Dantzig-type estimators in [85]). Define a loss function

L : Rp2 → R as

Ln(β) =
1

n

n∑
i=1

p∑
k=1

ℓ(Xik −X⊤
i−1βk)w(Xi−1), (2.2.4)

where β = (β⊤
1 , . . . , β

⊤
p )

⊤ with βk ∈ Rp for 1 ≤ k ≤ p, the weight function

w(x) = min

{
1,

T 3

|x|3∞

}

for some threshold T > 0 to be determined later, and the robust loss function ℓ(x) satisfies:

(i) ℓ(x) is a thrice differentiable convex and even function.

(ii) For some constant C > 0, |ℓ′|, |ℓ′′|, |ℓ(3)| ≤ C.

We give two examples of such loss functions from [105] that satisfy the above conditions.

Examples 2.2.3 (Smoothed huber loss I).

ℓ(x) =


x2/2− |x|3/6 if |x| ≤ 1,

|x|/2− 1/6 if |x| > 1.
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Examples 2.2.4 (Smoothed huber loss II).

ℓ(x) =


x2/2− x4/24, if |x| ≤

√
2,(

2
√
2/3
)
|x| − 1/2, if |x| >

√
2.

Direct calculation shows that everywhere twice differentiable and almost everywhere

thrice differentiable. Also, the derivative of first three orders are bounded in magnitude. We

mention that generalization to other loss functions that does not satisfy the differentiability

conditions (for example, huber loss) may be derived under more refined arguments, but

will be omitted in this chapter.

Denote by ψ(x) = ℓ′(x) the derivative of ℓ(x), then ψ(x) is twice differentiable by

condition (i) and |ψ(x)| ≤ C for all x ∈ R by condition (ii). Let µ = (µ1, . . . , µp)
⊤ ∈ Rp

with µk = E[ψ′(εik)] and µ
−1 = (µ−1

1 , . . . , µ−1
p )⊤. Let µ̂ = (µ̂1, . . . , µ̂p) be the estimate of

µ with µ̂k =
1
n

∑n
i=1 ψ

′(ε̂ik), where ε̂ik = Xik −X⊤
i−1β̂k. Let Σx = E[XiX

⊤
i w(Xi)] ∈ Rp×p

be the weighted covariance matrix and Ωx = Σ−1
x ∈ Rp×p be the weighted precision matrix.

Denote by Σ̂x = n−1
∑n

i=1Xi−1X
⊤
i−1w(Xi−1) the weighted sample covariance. Furthermore,

suppose that Ω̂x is a suitable approximation of the weighted precision matrix Ωx (e.g.,

CLIME estimator introduced by [22]), as will be discussed in section 2.3. To ensure the

validity of such estimator, the sparsity of each row of Ωx is always assumed due to high

dimensionality. Now we introduce a few more notations:

Σ = diag(µ)⊗ Σx =



µ1Σx 0 0 . . . 0

0 µ2Σx 0 . . . 0

...
...

. . . . . . 0

0 0 0 0 µpΣx


∈ Rp2×p2 , (2.2.5)
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and analogously,

Ω = Σ−1 = diag(µ−1)⊗ Ωx;

Σ̂ = diag(µ̂)⊗ Σ̂x, Ω̂ = diag(µ̂−1)⊗ Ω̂x. (2.2.6)

Following the one-step estimator in [13], we de-bias β̂ by adding an additional term

involving the gradient of the loss function L:

β̌ = β̂ + Ω̂∇Ln(β̂). (2.2.7)

To briefly explain the presence of Ω̂, consider Taylor expansion of ∇Ln(β̂) around ∇Ln(β
∗).

Write

√
n(β̌ − β∗) =

√
n(β̂ − β∗) +

√
n Ω̂∇Ln(β

∗)−
√
n Ω̂(∇Ln(β̂)−∇Ln(β

∗))

=
√
n Ω̂∇Ln(β

∗) +
√
n
[
(β̂ − β∗)− Ω̂∇2Ln(β

∗)(β̂ − β∗) +R
]

=
√
n Ω̂∇Ln(β

∗)︸ ︷︷ ︸
A

+
√
n
[(
Ip2 − Ω̂∇2Ln(β

∗)(β̂ − β∗)
]

︸ ︷︷ ︸
∆

+
√
nR, (2.2.8)

where the remainder term
√
nR = o(1) under certain conditions. Moreover, we also hope

∆ to be negligible. As will be shown in the following sections,

∆ ≤
√
n
(
∥Ω− Ω̂∥1∥Σ∥max + ∥∇2Ln(β

∗)− Σ∥max∥Ω̂∥1
)
|β̂ − β∗|1, (2.2.9)

To this end, Ω̂ needs to be a good approximation of the precision matrix Ω, which

inspires the construction of such Ω̂. More rigorous arguments will be presented in the

subsequent sections.

Note that the estimator β̌ is closely related to the de-sparsifying Lasso estimator

([133] and [154]), which is employed to conduct simultaneous inference for linear regression
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models in [157]. β̌ will reduce to de-sparsifying Lasso estimator if the loss ℓ(x) in (2.2.4)

is squared error loss and the weight w(x) ≡ 1. Moreover, [87] uses this one-step estimator

to build the limiting distribution of high-dimensional vector restricted to a fixed number

of coordinates, and delivers a result that agrees with [13] for low-dimensional robust

M-estimators. Different from that, we will derive such conclusions simultaneously for all p2

coordinates of β∗. In the subsequent sections, we aim at obtaining a limiting distribution

for β̌.

2.2.3 Estimation of the precision matrix

In this section, we mainly discuss the validity of having Ω̂ as an approximation

of Ω. By the structure of Ω, we need to first find a suitable estimator of the weighted

precision Ωx.

The estimation of the sparse inverse covariance matrix based on a collection of

observations {Xi} plays a crucial role in establishing the asymptotic distribution. In

high-dimensional regime, one cannot obtain a suitable estimator for the precision matrix

by simply inverting the sample covariance, as the sample covariance is not invertible when

the number of features exceeds the number of observations. Depending on the purposes,

various methodology have been proposed to solve problem of estimating the precision.

See for example, graphical Lasso ([151] and [40]) and nodewise regression ([95]). From

a different perspective, [22] proposed a CLIME approach to sparse precision estimation,

which shall be applied in this chapter. For completeness, we reproduce the CLIME

estimator in the following.

Suppose that the sparsity of each row of Ωx is at most s, i.e., s = max1≤i≤p |{j :

Ωx,ij ̸= 0}|. We first obtain Θ̂ by solving

Θ̂ = argminΘ

∑
i,j

∣∣Θij

∣∣ subject to: ∥Σ̂xΘ− Ip∥max ≤ λn,
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for some regularization parameter λn > 0. Note that the solution Θ may not symmetric.

To account for symmetry, the CLIME estimator Ω̂x is defined as

Ω̂x = (ω̂ij), where ω̂ij = ω̂ji = Θ̂ijI{|Θ̂ij| ≤ |Θ̂ji|}+ Θ̂jiI{|Θ̂ij| > |Θ̂ji|}. (2.2.10)

For more analysis of CLIME estimator, see [22]. Next, we present the convergence theorem

for CLIME estimator.

Theorem 2.2.1. Let τ be defined in definition 2.2.1 and γ = maxt=0,1...,τ−1 ∥At∥. Choose

λn ≍ ∥Ωx∥1γτ 2T 2(log p)3/2n−1/2, then with probability at least 1− 4p−c0 for some constant

c0 > 0,

∥Ω̂x − Ωx∥max ≲ ∥Ωx∥1λn and ∥Ω̂x − Ωx∥1 ≲ ∥Ωx∥1sλn.

Remark 2.2.5. Theorem 2.2.1 is a direct application of Theorem 6 of [22]. Note that if we as-

sume the eigenvalue condition on Σx that 0 ≤ c ≤ λmin(Σx) ≤ λmax(Σx) ≤ C, then ∥Ωx∥2 ≤

1/λmin(Σx) = O(1). Therefore, by the sparsity condition on Ωx, we immediately have that

∥Ωx∥1 = O(
√
s). Suppose the scaling condition holds that sγτ 2T 2(log p)3/2n−1/2 = o(1),

then the CLIME estimator Ω̂x defined in (2.2.10) is consistent in estimating the weighted

precision matrix of the VAR(1) model (2.2.2).

The following theorem shows that ∥Ω− Ω̂∥ enjoys the same convergence rate as in

the previous theorem.

Theorem 2.2.2. Let Ω̂x be the CLIME estimator defined above. Assume that µk > c1 > 0

for all 1 ≤ k ≤ p, then with probability at least 1− 6p−c,

∥Ω− Ω̂∥max ≲ ∥Ωx∥1λn and ∥Ω− Ω̂∥1 ≲ ∥Ωx∥1sλn.

The above theorem is built upon two facts: Ω̂x approximates Ωx and µ̂ approximates

µ. The result regarding the latter approximation will be given in Lemma 2.3.5.
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2.2.4 Simultaneous inference

In this section, consider the following hypothesis testing problem:

H0 : Aij = A0
ij, for all i, j = 1, . . . , p

versus the alternative hypothesis H1 : Aij ̸= A0
ij for some i, j = 1, . . . , p. Equivalently,

we can also test for β∗
j = β0

j , for all j = 1, . . . , p. Instead of projecting the explanatory

variables onto a subspace of fixed dimension ([61], [154], [133] and [87]), we allow the

number of testings to grow as fast as an exponential order of the sample size n. [157]

presented a more related work, where it’s also allowed that the testing size to grow as

a function of p. However, they conducted such simultaneous inference procedure under

linear regression setting with independent random variables.

Employing the de-biased estimator β̌ defined in (2.2.7), we propose to use the test

statistics
√
n|β̌ − β0|∞, (2.2.11)

where β̌ is defined in (2.2.7). In the next several theorems, we elaborate a multiplier

bootstrap method to obtain the critical value of the test statistics, which requires a few

scaling and moment assumptions. Recall definition 2.2.1 for τ and theorem 2.2.1 for the

definition of γ. Also recall that s = max1≤i≤p |{j : Ωx,ij ̸= 0}|.

Assumptions

(A1)
√
nT 3|β̂ − β∗|21 = o(1).

(A2) ∥Ωx∥21sγ2τ 4T 4(log p)3/
√
n = o(1).

(A3) sγτ 2T 2(log p)3/2|β̂ − β∗|1 = o(1).

(A4) sT 2(log(pn))7/n ≲ n−c.
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(A5) (log p)3/2(log n)1/2T
√
sτγ/n1/4 = o(1).

Additionally, throughout the chapter we assume that for some constant C > 0, E[X2
ik] ≤ C

and E[ε2ik] ≤ C for all 1 ≤ k ≤ p. We also suppose that ∥Σx∥max = O(1) and 0 < c ≤

λmin(Σx) ≤ λmax(Σx) ≤ C. Thus, ∥Ωx∥2 ≤ 1/λmin(Σx) = O(1) and ∥Ωx∥1 = O(
√
s), where

the row sparsity s = max1≤i≤p |{j : Ωx,ij ̸= 0}|.

Theorem 2.2.3. Suppose assumptions (A1) – (A3) hold. Define

ζ1 = γτ 2T 2(log p)3/2|β̂ − β∗|1 +
√
nT 3|β̂ − β∗|21 + sγ2τ 4T 4(log p)3/

√
n.

Further assume that ζ1
√
1 ∨ log(p/ζ1) = o(1). Then we have

P
(
|
√
n(β̌ − β∗)−

√
nΩ∇Ln(β

∗)|∞ > ζ1

)
< ζ2,

where ζ1
√

1 ∨ log(p/ζ1) = o(1) and ζ2 = o(1).

Theorem 2.2.3 rigorously verifies that
√
nR = o(1) and ∆ = o(1) in (2.2.8) by the

proposed construction of Ω̂ and suggests us to perform further analysis on
√
nΩ∇Ln(β

∗).

To derive the limiting distribution, we shall use Gaussian approximation technique, since

the classic central limit theorem fails in high-dimensional setting.

Gaussian approximation was initially invented for high-dimensional independent

random variables in [27] and further generalized to high-dimensional time series in [156].

[157] and [87] applied the GA technique in [27] to the derivation of asymptotic distribution

in linear regression setting. However, data generated from VAR model suffers temporal

dependence, which makes the aforementioned techniques unavailable. Although [156]

established such GA results for general time series using dependence adjusted norm, direct

application of their theorems does not yield desirable conclusion in ultra-high dimensional

setting. This leads us to derive a new GA theorem with better convergence rate, which is

achievable thanks to the structure of VAR model.
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The next theorem establishes a Gaussian approximation(GA) result for the term

√
nΩ∇Ln(β

∗).

For a more detailed description of Gaussian approximation procedure, see Section 2.4.

Theorem 2.2.4. Denote D = (Djk)1≤j,k≤p ∈ Rp2×p2 with

Djk =
ΩxE[ψ(εij)ψ(εik)]E[XiX

⊤
i w

2(Xi)]Ω
⊤
x

µjµk

∈ Rp×p.

Under Assumption (A4) and (A5), we have the following Gaussian Approximation result

that

sup
t∈R

∣∣∣∣P(|√nΩ∇Ln(β
∗)|∞ ≤ t

)
− P

(∣∣ n∑
i=1

zi/
√
n
∣∣
∞ ≤ t

)∣∣∣∣ = o(1),

where zi = (zi1, . . . , zip2)
⊤ is a sequence of mean zero independent Gaussian vectors with

each Eziz⊤i = D.

Remark 2.2.6. The above GA results allows the ultra-high dimensional regime, wehere p

grows as fast as O(en
b
) for some 0 < b < 1.

Since the covariance matrix D of the Gaussian analogue zi is not accessible from

the observation {Xi}, we need to give a suitable estimation of D before further performing

multiplier bootstrap. The next theorem delivers a consistent estimator for our purpose.

Theorem 2.2.5.

D̂jk =
Ω̂x

(
1
n

∑n
i=1 ψ(ε̂ij)ψ(ε̂ik)

)(
1
n

∑n
i=1XiX

⊤
i w

2(Xi)
)
Ω̂⊤

x

µ̂jµ̂k

∈ Rp×p, (2.2.12)

where Ω̂x is the CLIME estimator of Ωx. Under assumptions (A1)–(A5) and additionally

assume that ∥Ωx∥1 = O(
√
s) and that for all 1 ≤ k ≤ p, µk > C > 0 for some constant C,
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we have with probability at least 1− 12p−c, we have

∥D̂ −D∥max ≲ sγτ 2T 2(log p)3/2n−1/2 + |β̂ − β∗|1.

Indeed, under the scaling assumptions, ∥D̂−D∥max = o(1). With these preparatory

results, we are ready to present the main theorem of this chapter, which describes a

procedure to find the critical value of
√
n|β̌ − β∗|∞ using bootstrap.

Theorem 2.2.6. Denote

W = |D̂1/2η|∞,

where η ∼ N(0, Ip2) is independent of (Xi)
n
i=1 and D̂ is defined in (2.2.12). Let the bootstrap

critical value be given by c(α) = inf{t ∈ R : P(W ≤ t|X) ≥ 1− α}. Let assumptions (A1)

— (A5) and the assumptions in theorem 2.2.3 hold. Denote v = c(sγτ 2T 2(log p)3/2/
√
n+

|β̂ − β∗|1) for some constant c. Assume that π(v) = Cv1/3(1 ∨ log(p/v))2/3 = o(1), then

we have

sup
α∈(0,1)

∣∣∣∣P(√n|β̌ − β∗|∞ > c(α)
)
− α

∣∣∣∣ = o(1).

This result suggests a way to not only find the asymptotic distribution, but also

to provide an accurate critical value c(α) using multiplier bootstrap. Under the null

hypothesis H0, we have
√
n|β̌ − β0|∞ =

√
n|β̌ − β∗|. This verifies the validity of having

(2.2.11) as a test statistics for simultaneous inference.

2.3 Estimation Consistency

Many estimation tasks are needed as preparatory results for proving Theorem 2.2.6.

For instance, Theorem 2.2.6 requires an estimation of the theoretical covariance matrix

D of the Gaussian analogue Z, as stated in Theorem 2.2.5. Besides, the convergence of

CLIME estimator (section 2.3) depends on the convergence of corresponding covariance

matrix. Therefore, these problems requires us to develop a new estimation theory that
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delivers the convergence even in ultra-high dimensional regime.

The success of high-dimensional estimation relies heavily on the application of

probability concentration inequality, among which Bernstein-type inequality is especially

important. The celebrated Bernstein’s inequality ([10]) provides an exponential concentra-

tion inequality for sums of independent random variables which are uniformly bounded.

Later works relaxed the uniform boundedness condition and extended the validity of

Bernstein inequality to independent random variables that have finite exponential moment;

see for example, [94] and [134].

Despite the extensive body of work on concentration inequalities for independent

random variables, literature remains quiet when it comes to establishing exponential-

type tail concentration results for random process. Some related existing work includes

Bernstein inequality for sums of strong mixing processes ([97]), Bernstein inequality under

functional dependence measures ([155]), etc. In a more recent work, [85] established a

sharp Bernstein inequality for VAR model using the definition of spectral decay index,

which improved the current rate by a factor of (log n)2. In this chapter, we will derive

another Bernstein inequality for VAR model under slightly different condition from [85].

Before presenting the main results, recall the definition of τ in definition 2.2.1.

Lemma 2.3.1. Let {Xi}ni=0 be generated by a VAR(1) model. Suppose G : Rp → R

satisfies that

|G(X)−G(Y )| ≤ |X − Y |∞, (2.3.1)

and that |G(x)| ≤ B for all x ∈ R. Assume that E[|εij|2] ≤ σ2 for all j = 1, . . . , p. Then

there exists some constants C1, C2, C3, C4 > 0 only depending on ρ and σ, such that

P
(∣∣∣ 1
n

n∑
i=1

G(Xi−1)− E[G(Xi−1)]
∣∣∣ ≥ x

)
≤ 2 exp

{
− nx2

C3n−1γ2τ 3 + C4τBx

}
+2 exp

{
− nx2

(1 + C1B−2)γ2τ 4B2(log p)2(n−1τ log p+ 1) + C2τ 2B(log p)x

}
.
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Specifically, under assumption (A2), we see that τ(log p)/n→ 0. So for sufficiently large

B > 0, we have

P
(∣∣∣ 1
n

n∑
i=1

G(Xi−1)− E[G(Xi−1)]
∣∣∣ ≥ x

)
≤ 4 exp

{
− nx2

C ′
1γ

2τ 4B2(log p)2 + C ′
2τ

2B(log p)x

}
, (2.3.2)

for some positive constants C ′
1, C

′
2 depending only on ρ and σ.

Remark 2.3.1. Note that the Lipschitz condition (2.3.1) is slightly different from that in

[85], where instead, they assumed that

|G(x)−G(y)| ≤ g⊤|x− y|, (2.3.3)

for some vector g ∈ Rp. Since condition (2.3.1) is weaker than (2.3.3), the additional (log p)

appears in the denominator of right-hand side in (2.3.2). For more detailed comparison

of different versions of Bernstein inequalities, we refer readers to [85] and the references

therein.

With a minor modification of the proof of Lemma 2.3.1, we have the following

version of Bernstein inequality which includes a bounded function of the latest innovation

εi as a multiple.

Corollary 2.3.2. Let {Xi}ni=0 be generated by a VAR(1) model. Suppose |h(x)| ≤ 1 and

G : Rp → R satisfies that

|G(X)−G(Y )| ≤ |X − Y |∞,

and that |G(x)| ≤ B for all x ∈ R. Assume that E[|εij|2] ≤ σ2 for all j = 1, . . . , p. Then
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there exists some constants C1, C2, C3, C4 > 0 only depending on ρ and σ, such that

P
(∣∣∣ 1
n

n∑
i=1

h(εi)G(Xi−1)− E[h(εi)G(Xi−1)]
∣∣∣ ≥ x

)
≤ 2 exp

{
− nx2

C3n−1γ2τ 3 + C4τBx

}
+ 2 exp

{
− nx2

(1 + C1B−2)γ2τ 4B2(log p)2(n−1τ log p+ 1) + C2τ 2B(log p)x

}
.

Specifically, under assumption (A2), we see that τ(log p)/n→ 0. So for sufficiently large

B > 0, we have

P
(∣∣∣ 1
n

n∑
i=1

h(εi)G(Xi−1)− E[h(εi)G(Xi−1)]
∣∣∣ ≥ x

)
≤ 4 exp

{
− nx2

C ′
1γ

2τ 4B2(log p)2 + C ′
2τ

2B(log p)x

}
,

for some positive constants C ′
1, C

′
2 depending only on ρ and σ.

Remark 2.3.2. Since the additional term h(εi) is independent of G(Xi−1), the proof of

Lemma 2.3.1 directly applies without any extra technical difficulty.

Equipped with our new Bernstein inequalities, several estimation results follow

immediately. The next theorem regarding the estimation of Σx is essential when we prove

the convergence rate of CLIME estimator in section 2.3.

Theorem 2.3.3 (Estimation of Σx). Let Σ̂x = n−1
∑n

i=1Xi−1X
⊤
i−1w(Xi−1) and Σx =

E[XiX
⊤
i w(Xi)]. Then with probability at least 1− 4p−c0 for some constant c0 > 0, it holds

that

∥Σ̂x − Σx∥max ≲ γτ 2T 2n−1/2(log p)3/2.

We see that the convergence rate of CLIME estimator in Theorem 2.2.1 essentially

inherits from the convergence rate in Theorem 2.3.3, with an additional term ∥Ωx∥1. The

following theorem plays an important role in verifying that the ∆ defined in (2.2.9) is

indeed negligible.
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Theorem 2.3.4 (Estimation of Σ by∇2Ln(β
∗)). Assume that E[ε2ik] ≤ σ2 for all 1 ≤ k ≤ p.

Then for some constant c1 > 0, with probability at least 1− 4p−c1, it holds that

∥∇2Ln(β
∗)− Σ∥max ≲ γτ 2T 2n−1/2(log p)3/2.

While the last two theorems make use of Lemma 2.3.1 in this chapter, the next

estimation for µ directly applies the concentration inequality in [85] thanks to the stronger

assumption that µ̂ satisfies.

Lemma 2.3.5. Suppose that β∗
k lies in a bounded ℓ1 normed ball for all 1 ≤ k ≤ p and

that E[X2
ij] ≤ C for some constant C > 0 and for all 1 ≤ j ≤ p. Then we have

P
(
|µ̂− µ|∞ ≥ γτ 2

√
log p

n
+ |β̂ − β∗|1

)
≤ 2p−c,

for some positive constant c.

2.4 Gaussian Approximation

Conducting simultaneous inference for high-dimensional data is always considered

to be a hard task, since central limit theorem fails when the dimension of random vectors

can grow as a function of the number of observation n, or even exceeds n. As an alternative

to central limit theorem, [27] proposed Gaussian approximation theorem, which states

that under certain conditions, the distribution of the maximum of a sum of independent

high-dimensional random vectors can be approximated by that of the maximum of a sum

of the Gaussian random vectors with the same covariance matrices as the original vectors.

Their Gaussian approximation results allow the ultra-high dimensional cases, where the

dimension p grows exponentially in n. In the meantime, they also proved that Gaussian

multiplier bootstrap method yields a high quality approximation of the distribution of the

original maximum and showcased a wide range of application, such as high-dimensional
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estimation, multiple hypothesis testing, and adaptive specification testing. It is worth

noticing that the results from [27] are only applicable when the sequence of random vectors

is independent.

[156] generalized Gaussian approximation results to general high-dimensional sta-

tionary time series, using the framework of functional dependence measure ([142]). We

specifically mention that a direct application of Gaussian approximation from [156] cannot

deliver a desired conclusion in ultra-high dimensional regime, due to coarser capture of

dependence measure for VAR model. In what follows, we will use refined argument to

establish a new Gaussian approximation result for VAR model.

By Theorem 2.2.3,
√
n|β̌ − β∗|∞ can be approximated by

√
n|Ω∇Ln(β

∗)|∞. Hence,

we shall build a GA result for
√
nΩ∇Ln(β

∗). Observe that
√
nΩ∇Ln(β

∗) ∈ Rp2 can be

written as

(
1√
n

n∑
i=1

Ωx

µ1

ψα(εi1)X
⊤
i−1w(Xi−1), . . . ,

1√
n

n∑
i=1

Ωx

µp

ψα(εip)X
⊤
i−1w(Xi−1),

)⊤

,

so it’s sufficient to establish GA result for one sub-vector

1√
n

n∑
i=1

Ωx

µk

ψα(εik)X
⊤
i−1w(Xi−1), k = 1, . . . , p.

Fix 1 ≤ k ≤ p and denote Θk = Ωxµ
−1
k . Let Xi,m =

∑m
l=0A

lεi−l be the m-

approximation of Xi with m to be determined later. Let Yi = ψα(εik)ΘkXi−1w(Xi−1)

be the quantity that we will establish Gaussian approximation for and denote TY =∑n
i=1 Yi. Analogously, let Yi,m = ψα(εik)ΘkXi−1,mw(Xi−1,m) be the m-approximation of

Yi and write TY,m =
∑n

i=1 Yi,m. For simplicity, assume n = (m +M)w, where M → ∞,

m → ∞ , w → ∞ and m/M → 0. Divide the interval [1, n] into alternating large

blocks Lb = [(b − 1)(M + m) + 1, bM + (b − 1)m] with M points and small blocks
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Sb = [bM + (b− 1)m+ 1, b(M +m)] with m points, for 1 ≤ b ≤ w. Denote

ξb =
∑
i∈Lb

Yi,m/
√
M, TY,S =

w∑
b=1

∑
i∈Sb

Yi,m, TY,L =
w∑

b=1

∑
i∈Lb

Yi,m,

Z ∼ N(0, µ−2
k E[ψ2(εik)]ΩxE[XiX

⊤
i w

2(Xi)]Ω
⊤
x )

Note that the Yi,m from different large blocks Lb are independent, i.e.
∑

i∈Lb
Yi,m is

independent in b = 1 . . . , w. The main result of this section is presented as follow.

Theorem 2.4.1. Suppose E[ε2ik] ≤ σ2 for all 1 ≤ k ≤ p and the odd function ψ(·)

satisfies that |ψ(·)| ≤ C and |ψ′(·)| ≤ C. Suppose the scaling condition holds that

sT 2(log(pn))7/n ≤ c1n
−c2. Then for any η > 0, the Gaussian Approximation holds that

H : = sup
t∈R

∣∣∣∣P(|TY /√n|∞ ≤ t
)
− P

(
|Z|∞ ≤ t

)∣∣∣∣
≲ f1(η/2,m) + f2(η/2,m) + η

√
log p+ η

√
log(1/η) + cn−c′ , (2.4.1)

for some c, c′ > 0.

This theorem gives an upper bound on the supremum of the difference between the

distribution of the maximum of sum of Yi and that of the maximum of a Gaussian vector

Z with the same covariance. Now, we present the outline of the proof of the previous

theorem, while we leave the complete proof in the appendix.

First, we show that the sum of Yi,m in the small blocks are negligible, so TY,m ≈ TY,L.

Next, we prove that the sum of Yi can be approximated by its m-approximation, that is,

TY ≈ TY,m ≈ TY,L. Since TY,L is a sum of independent random vector {
∑

i∈Lb
Yi,m}wb=1, the

GA theorem from [27] can be applied.
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2.5 Numerical Experiments

In this section, we evaluate the performance of the proposed bootstrap-assist

procedure in simultaneous inference. We consider the model (2.2.2), where εij’s are

i.i.d. Student’s t-distributions with df = 5 or 10. Let s = ⌊log p⌋. We pick n = 30 and

p = 10 in the numerical setup. For the true transition matrix A = (aij), we consider the

following designs.

(1) Banded: A = (λ|i−j|1{|i− j| ≤ s}) and λ = 0.5.

(2) Block diagonal: A = diag{Ai}, where each Ai ∈ Rs×s has λi on the diagonal and λ2i

on the superdiagonal with λi ∼ Unif(−0.8, 0.8).

The design in (1) is further scaled by 2ρ(A) to ensure that ρ(A) < 1. Hence sparse

symmetric matrices are generated in (1) and sparse asymmetric matrices are constructed

in (2). We draw the qq-plots of the data quantile of
√
n|β̌ − β∗|∞ versus the data quantile

of W defined in Theorem 2.2.6 from m = 100 duplicates. The qq-plots are shown in figure

2.1 and figure 2.2 for banded and block diagonal designs respectively.

2.6 Proofs of Results in Section 2.2

Before proceeding with the proofs, we state a helpful lemma that is repeatedly used

throughout the chapter and present its proof. This simple lemma is an application of the

triangle inequality to the product of two matrices.

Lemma 2.6.1. Let A,B and Â, B̂ be p × p symmetric matrices and ∥A − Â∥1 = o(1).

Suppose ∥A∥1 = O(1) and ∥B∥1 = O(1). Then ∥AB−ÂB̂∥max ≲ ∥A−Â∥max+∥B−B̂∥max.

Proof of Lemma 2.6.1. Since ∥A∥1 = O(1) and ∥A − Â∥1 = o(1), ∥Â∥1 ≤ ∥A − Â∥1 +

65



Figure 2.1. The qq-plot of banded design.

Figure 2.2. The qq-plot of block diagonal design.
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∥A∥1 = O(1). Hence, by triangular inequality,

∥AB − ÂB̂∥max ≤ ∥(A− Â)B∥max + ∥Â(B − B̂)∥max

≤ ∥B∥1∥A− Â∥max + ∥Â∥1∥B − B̂∥max

≲ ∥A− Â∥max + ∥B − B̂∥max

Proof of Theorem 2.2.1. By Theorem 2.3.3, with probability at least 1− 4p−c0 ,

∥Σ̂x − Σx∥max ≤ λn.

By Theorem 6 of [22], we have the desired result.

Proof of Theorem 2.2.2. Recall that

Ω = Ωx ⊗ diag(µ−1) =



µ−1
1 Ωx 0 0 . . . 0

0 µ−1
2 Ωx 0 . . . 0

...
...

. . . . . . 0

0 0 0 0 µ−1
p Ωx


(2.6.1)

and

Ω̂ = Ω̂x ⊗ diag(µ̂−1) =



µ̂−1
1 Ω̂x 0 0 . . . 0

0 µ̂−1
2 Ω̂x 0 . . . 0

...
...

. . . . . . 0

0 0 0 0 µ̂−1
p Ω̂x


. (2.6.2)
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For 1 ≤ k ≤ p, consider

∥Ω̂xµ̂
−1
k − Ωxµ

−1
k ∥max ≤ ∥Ω̂x − Ωx∥max|µ̂−1

k |+ ∥Ωx∥max|µ̂−1
k − µ

−1
k |

≲ ∥Ωx∥1λn + ∥Ωx∥max
|µk − µ̂k|
µkµ̂k

≲ ∥Ωx∥1λn,

with probability no less than 1− 6p−c′ by theorem 2.2.1 and lemma 2.3.4. Taking a union

bound for all k yields

∥Ω− Ω̂∥max = max
1≤k≤p

∥µ−1
k Ωx − µ̂−1

k Ω̂x∥max ≲ ∥Ωx∥1λn,

with probability at least 1− 6p−(c′−1). Replacing max-norm by L1-norm delivers

∥Ω− Ω̂∥1 ≲ ∥Ωx∥1sλn.

The next lemma provides a high probability bound on |∇Ln(β
∗)|∞, which will be

used in the proof of Theorem 2.2.3.

Lemma 2.6.2. Suppose that E[ε2ij] ≤ C for all 1 ≤ j ≤ p. Then it holds that

P(|∇Ln(β
∗)|∞ ≳ γτ 2T (log p)3/2/

√
n) ≤ 4p−c,

for some constant c > 0.

Proof of Lemma 2.6.2. We shall apply Corollary 2.3.2. Consider the first coordinate

∇Ln1(β
∗) of ∇Ln(β

∗). In Corollary 2.3.2, let h(εi) = ψ(εi1) and G(Xi) = Xi1w(Xi).

68



Observe E[∇Ln(β
∗)] = 0. By Corollary 2.3.2,

P(|∇Ln1(β
∗)| ≥ x) = P(|∇Ln1(β

∗)− E[∇Ln1(β
∗)]|∞ ≥ x)

= P
(∣∣∣ 1
n

n∑
i=1

h(εi)G(Xi−1)− E[h(εi)G(Xi−1)]
∣∣∣ ≥ x

)
≤ 4 exp

{
− nx2

C1γ2τ 4T 2(log p)2 + C2τ 2T (log p)x

}
.

Choose x = c′γτ 2T (log p)3/2/
√
n and we get

P(|∇Ln1(β
∗)| ≥ c′γτ 2T (log p)3/2/

√
n) ≤ 4p−c,

for some constant c > 0. Take sufficiently large c′ such that c > 1, so by a union bound

we obtain

P(|∇Ln(β
∗)|∞ ≥ c′γτ 2T (log p)3/2/

√
n) ≤ 4p−c′′ ,

where c′′ = c− 1 > 0.

Proof of Theorem 2.2.3. By Taylor expansion, we write

√
n(β̌ − β∗) =

√
n(β̂ − β∗) +

√
n Ω̂∇Ln(β

∗)−
√
n Ω̂(∇Ln(β̂)−∇Ln(β

∗))

=
√
n Ω̂∇Ln(β

∗) +
√
n
[
(β̂ − β∗)− Ω̂∇2Ln(β

∗)(β̂ − β∗) +R
]

=
√
n Ω̂∇Ln(β

∗)︸ ︷︷ ︸
A

+
√
n
[(
Ip2 − Ω̂∇2Ln(β

∗)(β̂ − β∗)
]

︸ ︷︷ ︸
∆

+
√
nR.

where zik = Xi −X⊤
i−1β̃ for some β̃ lying between β∗ and β̂. The remainder is denoted by

R =
1

2
·

n∑
i=1

(
ψ′′(zi1)

(
X⊤

i−1(β̂1 − β∗
1)
)2
X⊤

i−1w(Xi−1), . . . , ψ
′′(zip)

(
X⊤

i−1(β̂p − β∗
p)
)2
X⊤

i−1w(Xi−1)
)⊤
.
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Now we analyze the above terms A,∆ and R respectively. First we see that

√
n|R|∞ = OP(

√
nT 3|β̂ − β∗|21) = o(1) by assumption (A1). To analyze ∆, denote

H = ∇2Ln(β
∗). Then we write

∆ =
√
n
(
Ip2 − Ω̂H

)
(β̂ − β∗) =

√
n
(
ΩΣ− Ω̂H

)
(β̂ − β∗).

Thus, by theorem 2.3.4 and theorem 2.2.2, with probability tending to 1,

|∆|∞ ≤
√
n∥ΩΣ− Ω̂H∥max|β̂ − β∗|1

≤
√
n
(
∥Ω− Ω̂∥1∥Σ∥max + ∥H − Σ∥max∥Ω̂∥1

)
|β̂ − β∗|1

≲
√
n∥Ωx∥1λn|β̂ − β∗|1 ≍ sγτ 2T 2(log p)3/2|β̂ − β∗|1 = o(1)

by assumption (A3). Finally, by Lemma 2.6.2 and Theorem 2.2.2, with probability tending

to 1, it holds that

|A−
√
nΩ∇Ln(β

∗)|∞ ≤ ∥Ω̂− Ω∥1|
√
n∇Ln(β

∗)|∞ ≤ ∥Ωx∥21sγ2τ 4T 4(log p)3/
√
n

≍ s2γ2τ 4T 4(log p)3/
√
n.

Therefore,

|
√
n(β̌ − β∗)−

√
nΩ∇Ln(β

∗)|∞ ≤ |
√
n(β̌ − β∗)− A|∞ + |A−

√
nΩ∇Ln(β

∗)|∞ ≤ ζ1,

where

ζ1 = sγτ 2T 2(log p)3/2|β̂ − β∗|1 +
√
nT 3|β̂ − β∗|21 + s2γ2τ 4T 4(log p)3/

√
n.
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Proof of Theorem 2.2.4. The proof of Theorem 2.4.1 can be easily generalized to p2 di-

mensional space, thus it still holds for |
√
nΩ∇Ln(β

∗)|∞. By Theorem 2.4.1, we have for

any η > 0,

sup
t∈R

∣∣∣∣P(|√nΩ∇Ln(β
∗)|∞ ≤ t

)
− P

(
|Z|∞ ≤ t

)∣∣∣∣
≲ f1(η/2,m) + f2(η/2,m) + η

√
log p+ η

√
log(1/η) + cn−c′ , (2.6.3)

where

f1(x,m) =
c1sp

3γ2ρm/τ

x2
, f2(x) = 2p exp

{
− nx2

2
√
sTM

√
nx+ 4mwsT 2σ2

}
. (2.6.4)

Now choose η ≍ (log p)T
√
sτγ/n1/4 = o(1), ω ≍ n1/2,M ≍ n1/2,m = cτ log p in (2.6.3) for

some constant c > 0. For sufficiently large c, basic algebra shows that

f1(η/2,m) ≲
sγ2

pc−3η2
≍ n1/2

pc−3T 2τ(log p)2
= o(1), (2.6.5)

since the order of pc−3 dominates the order of n1/2. Moreover,

f2(η/2,m) ≤ 2p exp

{
− c1γ

2 log p

c2γ + c3

}
≤ 2p exp{−c4 log p} = o(1), (2.6.6)

by a proper choice of constant c1, c2, c3. Also, by assumption (A5), η
√
log p = o(1) and

η
√
log(1/η) ≲

T
√
sτγ log p

n1/4

√
log n = o(1).

Thus the proof is completed.

Proof of Theorem 2.2.5. First, we collect several useful results.

(i) With probability at least 1− 4p−c1 , ∥Ωx − Ω̂x∥1 ≤ ∥Ωx∥21sγτ 2T 2(log p)3/2n−1/2 and
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∥Ωx − Ω̂x∥max ≤ ∥Ωx∥21γτ 2T 2(log p)3/2n−1/2 by Theorem 2.2.1. Therefore, ∥Ωx −

Ω̂x∥1 = o(1) and ∥Ωx − Ω̂x∥max = o(1) by assumption (A2).

(ii) With probability at least 1− 2p−c2 , |µ− µ̂|∞ ≲ γτ 2
√

log p
n

+ |β̂ − β∗|1 = o(1) Lemma

2.3.5 and the order comes from assumptions (A1) and (A2).

(iii) Similar to the proof of Lemma 2.3.5, we have with probability at least 1− 2p−c3 ,

∣∣∣ 1
n

n∑
i=1

ψ(ε̂ij)ψ(ε̂ik)− E[ψ(εij)ψ(εik)]
∣∣∣
∞

≲ γτ 2
√

log p

n
+ |β̂ − β∗|1 = o(1).

(iv) Similar to the proof of Lemma 2.3.3, we have with probability at least 1− 4p−c4 ,

∥∥∥ 1
n

n∑
i=1

XiX
⊤
i w

2(Xi)− E[XiX
⊤
i w

2(Xi)]
∥∥∥
max

≲ γτ 2T 2(log p)3/2n−1/2 = o(1).

Repeatedly using Lemma 2.6.1, we get

∥D̂ −D∥max ≲ max
1≤j,k≤p

∣∣∣ 1

µjµk

− 1

µ̂jµ̂k

∣∣∣+ ∣∣∣ 1
n

n∑
i=1

ψ(ε̂ij)ψ(ε̂ik)− E[ψ(εij)ψ(εik)]
∣∣∣
∞

+ 2∥Ωx − Ω̂x∥max +
∥∥∥ 1
n

n∑
i=1

XiX
⊤
i w

2(Xi)− E[XiX
⊤
i w

2(Xi)]
∥∥∥
max

≲ γτ 2
√

log p

n
+ |β̂ − β∗|1 + γτ 2T 2(log p)3/2n−1/2

≲ γτ 2T 2(log p)3/2n−1/2 + |β̂ − β∗|1

with probability at least 1− 12p−c, where c = min1≤i≤4 ci.

Proof of Theorem 2.2.6. By theorem 2.2.3, we see that

P
(
|
√
n(β̌ − β∗)−

√
nΩ∇Ln(β

∗)|∞ > ζ1

)
< ζ2,

where ζ1
√
1 ∨ log(p/ζ1) = o(1) and ζ2 = o(1). Define π(v) = Cv1/3(1 ∨ log(p/v))2/3 with
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C2 > 0 and

Γ = ∥D̂ −D∥max.

Let cz(α) = inf{t ∈ R : P(|
∑n

i=1 zi/
√
n|∞ ≤ t) ≥ 1 − α}, where the sequence {zi} is

defined in theorem 2.2.4. From the proof of Lemma 3.2 in [27], we have

P
(
c(α) ≤ cz(α + π(v))

)
≥ 1− P(Γ > v) (2.6.7)

P
(
cz(α) ≤ c(α + π(v))

)
≥ 1− P(Γ > v) (2.6.8)

Therefore, by theorem 2.2.4, (2.6.7) and (2.6.8), we have for every v > 0,

sup
α∈(0,1)

∣∣∣∣P(√nΩ∇Ln(β
∗) > c(α)

)
− α

∣∣∣∣
≲ sup

α∈(0,1)

∣∣∣∣P(| n∑
i=1

zi/
√
n|∞ > c(α)

)
− α

∣∣∣∣+ o(1)

≲ π(v) + P(Γ > v) + o(1)

Furthermore, following the same spirit as the proof of Theorem 3.2 in [27], we see that

sup
α∈(0,1)

∣∣∣∣P(√n|β̌ − β∗|∞ > c(α)
)
− α

∣∣∣∣
≲ π(v) + P(Γ > v) + ζ1

√
1 ∨ log(p/ζ1) + ζ2 + o(1).

Now that ζ1
√

1 ∨ log(p/ζ1) = o(1) and ζ2 = o(1) from Theorem 2.2.3, we only need to

choose v > 0, such that π(v) = o(1) and P(Γ > v) = o(1). Let v ≍ sγτ 2T 2(log p)3/2n−1/2 +

|β̂ − β∗|1. Then we see that the conditions that P(Γ > v) = o(1) and π(v) = o(1) are

satisfied by Theorem 2.2.5 and the scaling hypothesis.
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2.7 Proofs of Results in Section 2.3

Proof of Lemma 2.3.1. Define the filtration {Fi} with Fi = σ(εi, εi−1, . . . ), and let Pj(·) =

E(·|Fj) − E(·|Fj−1) be a projection. Conventionally it follows that Pj(G(Xi)) = 0 for

j ≥ i+ 1. We can write

n∑
i=1

G(Xi)− EG(Xi) =
n∑

j=−∞

(
n∑

i=1

Pj(G(Xi))

)
=:

n∑
j=−∞

Lj,

where Lj =
∑n

i=1 Pj(G(Xi)). By the Markov inequality, for λ > 0, we have

P
( n∑

i=1

G(Xi)− EG(Xi) ≥ 2x

)
≤ P

( −s∑
j=−∞

Lj ≥ x

)
+ P

( n∑
j=−s+1

Lj ≥ x

)

≤ e−λxE
[
exp

{
λ

−s∑
j=−∞

Lj

}]
+ e−λxE

[
exp

{
λ

n∑
j=−s+1

Lj

}]
, (2.7.1)

for some s > 0 to be determined later. We shall bound the right-hand side of (2.7.1) with

a suitable choice of λ > 0. Observing that {Lj}j≤n is a sequence of martingale differences

with respect to {Fj}, we then seek an upper bound on E[eλLj
∣∣Fj−1]. It follows that

|Lj| ≤
n∑

i=1∨j

min
{∣∣E [G(Xi)

∣∣Fj

]
− E [G(Xi)|Fj−1]

∣∣ , 2B}
≤

n∑
i=1∨j

min
{
∥Ai−j∥∞E

[
|εj − ε′j|∞

∣∣Fj

]
, 2B

}
≤

n∑
i=1∨j

min
{
pρ−1γρ(i−j)/τηj, 2B

}
, (2.7.2)

where ε′j is an i.i.d. copy of εj and ηj = E
[
|εj1 − ε′j1|

∣∣Fj

]
.

Denote s = ⌊τ log p/ log(1/ρ)⌋ + 1. Note that s > 0 is a positive integer. For
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−s < j ≤ 0, we have

|Lj| ≤
∞∑
i=0

min
{
pρ−1γρ(i−j)/τηj, 2B

}
≤

s−1∑
i=0

min
{
pρ−1γρ(i−j)/τηj, 2B

}
+

∞∑
i=s

min
{
pρ−1γρ(i−j)/τηj, 2B

}
≤ 2sB +

∞∑
i=0

min
{
ρ−1γρi/τηj, 2B

}
For 0 < j ≤ n, we also have

|Lj| ≤
∞∑
i=j

min
{
pρ−1γρ(i−j)/τηj, 2B

}
≤ −2sB +

∞∑
i=0

min
{
ρ−1γρi/τηj, 2B

}
Basic algebra shows that

E[|Lj|k|Fj−1]
(1)

≤ E
[(

2sB +
∞∑
i=0

min
{
ρ−1γρi/τηj, 2B

})k]
≤ E

[
2k
(
(2sB)k +

( ∞∑
i=0

min
{
ρ−1γρi/τηj, 2B

})k)]
≤ 2k

[
(2sB)k +

( ∞∑
i=0

∥∥∥min
{
ρ−1γρi/τηj, 2B

}∥∥∥
k

)k]
, (2.7.3)

where (1) comes from the independence of ηj and Fj−1. To analyze (2.7.3), we further

compute

∥∥∥min
{
ρ−1γρi/τηj, 2B

}∥∥∥
k
=
∥∥∥2BI

(γ
ρ
ρi/τηj ≥ 2B

)
+
γ

ρ
ρi/τηjI

(γ
ρ
ρi/τηj ≤ 2B

)∥∥∥
k

≤ 2B

(
P
(γ
ρ
ρi/τηj ≥ 2B

))1/k

+ E
[(γ
ρ
ρi/τηj

)2
(2B)k−2

]1/k
≤
(
4σ2γ

2

ρ2

)1/k
ρ2i/τk(2B)1−2/k (2.7.4)
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Plugging (2.7.4) into (2.7.3) yields, for some constant C1, C2 > 0, that

E[|Lj|k|Fj−1] ≤ 2k
[
(2sB)k + 4σ2γ

2

ρ2
(2B)k−2

( 1

1− ρ2/τk
)k]

(1)

≤ 2k
[
(2sB)k + 4σ2γ

2

ρ2
(2B)k−2

(τk
2

)k
ρ−2/τ

(
log(1/ρ)

)k]
(2)

≤ 2k
[
(2sB)k + C1γ

2B−2Ck
2B

kτ kk!

]
≤ γ2(Bsτ)kk![4 + C1B

−2(2C2)
k]

≤ γ2(Bsτ)kk!(1 + C1B
−2)(4 + 2C2)

k, (2.7.5)

where (1) uses the inequality that 1 − x ≥ −x log x for x ∈ (0, 1) and (2) uses Stirling

formula and the fact that ρ−2/τ ≤ ρ−2. Let C̃1 = 1 + C1B
−2 and C̃2 = 4 + 2C2. Then we

obtain

E
[
eλLj |Fj−1

]
≤ 1 +

∞∑
k=2

[
C̃1γ

2(C̃2Bsτλ)
k
]
= 1 +

C̃1γ
2C̃2

2(Bsτ)
2λ2

1− C̃2Bsτλ

≤ exp

{
C̃1γ

2C̃2
2(Bsτ)

2λ2

1− C̃2Bsτλ

}
. (2.7.6)

Furthermore,

E
[
exp

{
λ

n∑
j=s

Lj

}]
≤ exp

{
C̃1γ

2C̃2
2(Bsτ)

2(s+ n)λ2

1− C̃2Bsτλ

}
. (2.7.7)

Take λ = x(C̃2Bsτx+ 2C̃1γ
2C̃2

2(Bsτ)
2(s+ n))−1 and by (2.7.1) we have

P
( n∑
j=−s+1

Lj ≥ x
)

≤ exp

{
− x2

(1 + C1B−2)γ2B2τ 4(log p)2(τ log p+ n) + C4τ 2B(log p)x

}
.
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Similarly, for j ≤ −s, since p ≤ ρ−s/τ ,

|Lj| ≤
∞∑
i=0

min
{
ρ−1γρ(i−j−s)/τηj, 2B

}
.

By the same argument, we immediate have

P
( −s∑

j=−∞

Lj ≥ x

)
≤ exp

{
− x2

C3γ2τ 3 + C4τBx

}
, (2.7.8)

where C3 = 32e2σ2(2π)−1/2[ρ2 log(1/ρ)]−3 and C4 = 8e[log(1/ρ)]−1. By (2.7.8), (2.7.8) and

symmetrization argument, we complete the proof.

Proof of Corollary 2.3.2. It follows from the proof of lemma 2.3.1 without any extra

technical difficulty.

Proof of Theorem 2.3.3. Let Gjk : Rp → R be defined as

Gjk(x) =
(
xx⊤w(x)

)
jk

= xjxkw(x) for j, k = 1, . . . , p,

and hence |G(x)| ≤ T . Let u(x) = w1/3(x). Observe that

|Gjk(x)−Gjk(y)|

≤ |xju(x)xku(x)− yju(y) yku(y)|u(x) + |yju(y) yku(y)||u(x)− u(y)|

≤ |xiu(x)− yiu(y)||xju(x)|+ |xju(x)− yju(y)||yiu(y)|+ T 2|u(x)− u(y)|

≤ 3T |x− y|∞.

By lemma 2.3.1 and taking x = cγτ 2Tn−1/2(log p)3/2, we have

P
(
|Σ̂x,jk − Σx,jk| ≥ cTx

)
= P

(∣∣∣ 1
n

n∑
i=1

Gjk(Xi−1)−
1

n

n∑
i=1

EGjk(Xi−1)
∣∣∣ ≥ cTx

)
≤ 4p−c1 .
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A union bound yields

P
(
∥Σ̂x − Σx∥max ≥ cTx

)
≤ 4p−c0 ,

where c0 = c1 − 1 > 0.

Proof of Theorem 2.3.4. Denote H = ∇2Ln(β
∗). We write ∥H − Σ∥max as

max
1≤k≤p

∥∥∥ 1
n

n∑
i=1

ψ′(εik)Xi−1X
⊤
i−1w(Xi−1)− E[ψ′(εik)Xi−1X

⊤
i−1w(Xi−1)]

∥∥∥
max

.

Using Corollary 2.3.2, it follows from the same argument of the proof of Theoremt 2.3.3

that for some constant c1 > 1, with probability at least 1− 4p−c1 ,

∥H − Σ∥max ≲ γτ 2T 2n−1/2(log p)3/2.

Finally, a union bound over 1 ≤ k ≤ p yields the conclusion.

Proof of Lemma 2.3.5. The strategy is to consider each component of µ̂ and take a union

bound. Observe that

|µ̂k − µk| ≤
∣∣∣∣ 1n

n∑
i=1

ψ′(ε̂ik)− E[ψ′(ε̂ik)]

∣∣∣∣+ |Eψ′(ε̂ik)− Eψ′(εik)|, k = 1, 2, . . . , p.

Since |ψ′′| is bounded, by the mean value theorem, we have that for some ξ between x

and y,

|ψ′(x)− ψ′(y)| = |ψ′′(ξ)(x− y)| ≲ |x− y|.

So it can be verified that ψ′(Xik −X⊤
i−1β̂k) satisfies the conditions in Corollary 2.5 of [85].

By Corollary 2.5 of [85], it holds that

∣∣∣∣ 1n
n∑

i=1

ψ′(ε̂ik)− E[ψ′(ε̂ik)]

∣∣∣∣ ≲ γτ 2
√

log p

n
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with probability at least 1− 2p−c for some positive constant c. Moreover,

max
1≤k≤p

|Eε̂ik − Eεik| ≲ max
1≤k≤p

E
[
|X⊤

i−1(β̂k − β∗)|
]
≲ |β̂ − β∗|1,

where the last inequality comes from the fact that Xi−1 has bounded second moment.

2.8 Proofs of Result in Section 2.4

Before proving Theorem 2.4.1, we will first state and prove the corresponding

lemmas in the outline listed at the end of section 2.4.

Lemma 2.8.1. Suppose E[ε2ik] ≤ σ2 for all 1 ≤ k ≤ p and the odd function ψ(·) satisfies

that |ψ(·)| ≤ C and |ψ′(·)| ≤ C, then we have

P
(∣∣(TY − TY,m)/√n∣∣∞ ≥ x

)
≤ c1sp

3γ2ρm/τ

x2
=: f1(x,m),

for some constants C1, C2 > 0.

Proof of Lemma 2.8.1. Let Di = Yi − Yi,m. For any λ > 0, by Markov inequality we have

P
( n∑

i=1

Dij/
√
n ≥ x

)
≤

E
[(∑n

i=1Dij/
√
n
)2]

x2
. (2.8.1)

Notice that the martingale difference {Dij}ni=1 satisfies

|Dij| ≲
√
s|Xi −Xi,m|∞.

Thus,

∥Dij∥2 ≤ ∥|Xi −Xi,m|∞∥2 ≤
∞∑

l=m+1

∥Al∥∞∥|εi−l|∞∥2 ≲
√
spγρm/τ .
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By Burkholder inequality ([20]), we have

E
[( n∑

i=1

Dij/
√
n

)2]
≲ E[|Dij|2] ≲ sp2γ2ρ2m/τ (2.8.2)

Hence, by (2.8.1),

P
( n∑

i=1

Dij/
√
n ≥ x

)
≤ c′1sp

2γ2ρm/τ

x2

Finally, symmetrization and a union bound give the desired result.

Lemma 2.8.2. Under the assumptions in Lemma 2.8.1, it holds that

P
(
|TY,S|∞/

√
n ≥ x

)
≤ 2p exp

{
− nx2

C1

√
sT
√
nx+ C2mwsT 2σ2

}
=: f2(x,m).

Proof of Lemma 2.8.2. By the property of ψ(·) and the mean value theorem, we have

|ψ(x)| ≤ C|x|. Consider the first coordinate (TY,S)1 of TY,S. We can write (TY,S)1 =∑jr
i=j1

Yi,m,1, where r = mω. Observe that {Yi,m,1} is a martingale difference adapted to

the filtration {Fi = σ(εi, εi−1, . . . )} and that |Yi,m,1| ≤ ψ(εik)
√
sT ≤ C

√
sT . We shall

establish a Bernstein-type inequality for the sum of martingale differences (TY,S)1:

P((TY,S)1 ≥ x) ≤ e−λxEeλ
∑jr

i=j1
Yi,m,1 , for any λ > 0. (2.8.3)

We now bound Eeλ
∑jr

i=j1
Yi,m,1 from above. By the tower property,

E exp
{
λ

jr∑
i=j1

Yi,m,1

}
= E

[
E
[
exp

{
λ

jr∑
i=j1

Yi,m,1

}∣∣∣Fr−1

]]

= E
[
exp

{
λ

jr−1∑
i=j1

Yi,m,1

}
E[eλYjr,m,1|Fjr−1]

]
(2.8.4)
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Now, consider

E[eλYjr,m,1|Fjr−1] = 1 + E
[ ∞∑

t=2

(λYjr,m,1)
t

t!

∣∣∣Fjr−1

]
≤ 1 + E

[
λ2T 2sψ2(εjrk)

∞∑
t=0

(λT
√
sC)t

]
(1)

≤ 1 +
Cλ2T 2sσ2

1− CλT
√
s
≤ exp

{
Cλ2T 2sσ2

1− CλT
√
s

}
(2.8.5)

where the inequality (1) makes use of the fact that ψ2(εjr,k) ≤ ε2jr,k. Plug (2.8.5) into

(2.8.4) and we obtain

E exp
{
λ

jr∑
i=j1

Yi,m,1

}
≤ exp

{
Cλ2T 2sσ2

1− CλT
√
s

}
E
[
exp

{
λ

jr−1∑
i=j1

Yi,m,1

}]
(2.8.6)

Iterating this procedure yields

E exp
{
λ

jr∑
i=j1

Yi,m,1

}
≤ exp

{
Cmωλ2T 2sσ2

1− CλT
√
s

}
(2.8.7)

Choose λ = x(CT
√
s+ 2CmwT 2sσ2)−1 and by (2.8.3) we have

P((TY,S)1 ≥ x) ≤ exp

{
− x2

C1T
√
sx+ C2mωT 2sσ2

}
.

The symmetrization argument and a union bound deliver the desired result.

Lemma 2.8.3. Suppose the scaling condition holds that sT 2(log(pn))7/n ≤ c3n
−c4. Assume

that E[Xik] ≤ C ′ for all 1 ≤ k ≤ p. Then we have the following Gaussian Approximation

result that

U := sup
t∈R

∣∣∣∣P(|TY,L/√n|∞ ≤ t
)
− P

(
|Z|∞ ≤ t

)∣∣∣∣ ≤ cn−c′

for some constants c, c′ > 0.
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Proof of Lemma 2.8.3. Recall that ξb =
∑

i∈Lb
Yi,m/

√
M , thus

U = sup
t∈R

∣∣∣∣P(| 1√
w

w∑
b=1

ξb|∞ ≤ t
)
− P

(
|Z|∞ ≤ t

)∣∣∣∣.
Observe that ξ1, ξ2, . . . , ξw are independent random variables. We shall apply Corollary

2.1 of [27] by verifying the condition (E.1) therein. For completeness, the conditions are

stated below.

(i) c1 ≤ E[ξ2bj] ≤ c2 for all 1 ≤ j ≤ p.

(ii) maxk=1,2 E[|ξbj|2+k/Bk
n] + E[exp(|ξbj/Bn|)] ≤ 4, for some Bn > 0 and all 1 ≤ j ≤ p.

(iii) B2
n(log(pn))

7/n ≤ c3n
−c4 .

To verify condition (i), we see that

E[ξ2bj] ≤ c σ2E[E[Ω⊤
x,jXiw(Xi)|εi−m, . . . , εi]

2]

≤ cE[(Ω⊤
x,jXiw(Xi))

2] ≤ cΩ⊤
x,jΣxΩx,j ≤ cΩx,jj

where Ωx,j is the j-th row of Ωx and Ωx,jj is the j-th diagonal entry of Ωx. Now we check

condition (ii). By Theorem 3.2 of [20], we have for k ≥ 2,

E[|ξbj|k] ≤ 18kkE
[∣∣Yij,m∣∣k] ≲ k!ekE

[∣∣Yij,m∣∣2](√sT )k−2 ≲ k!ek(
√
sT )k−2.

Therefore, take Bn = C
√
sT for sufficiently large C > 0 and we have

E[exp(|ξbj/Bn|)] ≤ 1 + C1

∞∑
k=1

(e/C)k < 2.

Moreover, for a suitable choice of C > 0,

max
k=1,2

E[|ξbj|2+k/Bk
n] < 2.
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Hence, condition (ii) is satisfied. Condition (iii) is guaranteed by the scaling assumption.

Now, we are ready to give the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. By triangle inequality,

H ≤ sup
t∈R

∣∣∣∣P(|TY /√n|∞ ≤ t
)
− P

(
|TY,L/

√
n|∞ ≤ t

)∣∣∣∣
+sup

t∈R

∣∣∣∣P(|TY,L/√n|∞ ≤ t
)
− P

(
|Z|∞ ≤ t

)∣∣∣∣ =: I + II. (2.8.8)

For any η > 0, elementary calculation shows that

I ≤ P
(∣∣(TY − TY,L)/√n∣∣∞ > η

)
+ sup

t∈R
P
(∣∣∣∣∣∣TY,L/√n∣∣∞ − t∣∣∣∣ ≤ η

)
≤ P

(∣∣(TY − TY,m)/√n∣∣∞ >
η

2

)
+ P

(∣∣TY,S/√n∣∣∞ >
η

2

)
+sup

t∈R
P
(∣∣∣∣∣∣TY,L/√n∣∣∞ − t∣∣∣∣ ≤ η

)

By lemma 2.8.2 and 2.8.1,

P
(∣∣(TY − TY,m)/√n∣∣∞ >

η

2

)
≤ f1(η/2,m), (2.8.9)

P
(∣∣TY,S/√n∣∣∞ >

η

2

)
≤ f2(η/2). (2.8.10)

By lemma 2.8.3 and theorem 3 of [26], we obtain that

sup
t∈R

P
(∣∣∣∣∣∣TY,L/√n∣∣∞ − t∣∣∣∣ ≤ η

)
≤ sup

t∈R
P
(∣∣∣∣∣∣Z∣∣∞ − t∣∣∣∣ ≤ η

)
+ U

≲ η
√

log p+ η
√

log(1/η) + cn−c′ , (2.8.11)

and that

II = U ≤ cn−c′ . (2.8.12)
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By (2.8.8), (2.8.9), (2.8.10), (2.8.11) and (2.8.12), we obtain the inequality stated in the

theorem.

Chapter 2, in full, is currently being prepared for submission of the material

”High-dimensional Simultaneous Inference on non-Gaussian VAR Model via De-biased

Estimator”, Liu, Linbo and Zhang, Danna. The dissertation author was the primary

investigator and author of this paper.
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Chapter 3

Robust Multivariate Time-Series
Forecasting: Adversarial Attacks
and Defense Mechanisms

3.1 Introduction

Understanding the robustness for time-series models has been a long-standing

issue with applications across many disciplines such as climate change [99], financial

market analysis [4, 51], down-stream decision systems in retail [16], resource planning

for cloud computing [107, 108], and optimal control of vehicles [68]. In particular, the

notion of robustness defines how sensitive the model output is when authentic data is

(potentially) perturbed with noises. In practice, as observation data are often corrupted

by measurement noises, it is important to develop statistical forecasting models that are

less sensitive to such noises [18, 17, 129] or more stable against outliers that might arise

from such corruption [30, 43, 85, 135]. However, these approaches have not considered

the possibility of adversarial noises which are strategically created to mislead the model

rather than being sampled from a known distribution.

As a matter of fact, vulnerabilities against such adversarial noises have been

previously pointed out [127, 47] in classification. In practice, it has been shown that

human-imperceptible adversarial perturbation can alter classification outcomes of a deep
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learning (DL) model, revealing a severe threat to many safety-critical systems . As such a

risk is associated with the high capacity to fit complex data pattern of DL, we postulate

that similar threats might also occur in forecasting where modern DL-based forecasting

models [109, 115, 82, 138, 106] have become the dominant approach. For example, to

mislead the forecasting of a particular stock, the adversaries might attempt to alter some

features external to the stock’s financial valuation to maximize the gap between predictions

of its values on authentic and altered features. The feasibility of such an adversarial

attack has been recently demonstrated with tweet messages [146] on a text-based stock

forecasting.

Motivated by these real scenarios, we propose to investigate such adversarial threats

on more practical forecasting models whose predictions are based on more precise features,

e.g. valuations of other stock indices. Intuitively, rather than releasing adverse information

to alter the sentiment about the target stock on social media, the adversaries can instead

invest hence change the valuation adversely for a selected subset of stock indices (not

including the target stock) which is arguably harder to detect. Interestingly, despite

being seemingly plausible given the vast literature on adversarial attack for classification

models, formulating such imperceptible attack under a multivariate forecasting setup is not

straightforward. This is due to several differences between forecasting and classification,

particularly in terms of unique characteristic of time series, e.g., multi-step predictions,

correlation over multiple time series, and probabilistic predictions.

These differences open up the question of how adversarial perturbations and

robustness should be defined more properly in time series setting. Although there have

been a few recent studies in this direction based on randomized smoothing [149], these

approaches are all restricted to univariate forecasting where the attack has to make adverse

alterations directly to the target time series. Thus, under the less studied scenario of

multivariate time-series forecasting setup, it remains unclear whether the attack to a

target time series can be made instead via perturbing the other correlated time series;
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and whether it is defensible against such adversarial threats. In particular, as illustrated

above in the stock forecasting example, there are new regimes of sparse and indirect cross

time series attack under multivariate time-series scenarios, which are more effective and

realistic than the direct attack in univariate cases.

In order to understand whether such new regimes of attack exists and can be defended

against, we raise three questions:

1. Indirect Attack. Can we mislead the prediction of some target time series via

perturbations on the other time series?

2. Sparse Attack. Can such perturbations be sparse and non-deterministic to be less

perceptible?

3. Robust Defense. Can we defend against those indirect and imperceptible attacks?

Here we summarize our technical contributions by answering the questions above:

Regarding indirect attack, we provide general framework of adversarial attack in

multivariate time series (see Section 3.3.1). Then, we devise a deterministic attack (see

Section 3.3.2) to the state-of-the-art probabilistic multivariate forecasting model. The

attack changes the model’s prediction on the target time series via adversely perturbing a

subset of other time series. This is achieved via formulating the perturbation as solution

of an optimization task with packing constraints.

Regarding sparse attack, we develop a non-deterministic attack (see Section 3.3.3)

that adversely perturbs a stochastic subset of time series related to the target time

series, which makes the attack less perceptible. This is achieved via a stochastic and

continuous relaxation of the above packing constraint which are shown (see Section 3.5)

to be more effective than the deterministic attack in certain cases. Moreover, unlike

deterministic attack, its differentiability makes it suitable to be directly integrated as part

of a differentiable defense mechanism that can be optimized via gradient descent in an

end-to-end fashion, as discussed later in Section 3.4.2.
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Figure 3.1. Illustration figure: an attacker misleads prediction of time series (TS) 1 at
time 288 by indirectly attacking TS 5. Left plot of is authentic (orange) and perturbed
(blue) versions of TS 5; right plot is no-attack (orange) and under-attack (blue) predictions
for TS 1. Ground truth (green) is also plotted for comparison. No alteration is made to
TS 1 but the prediction of TS 1 at the attack time step (t = 288) is adversely altered in
the under-attack (blue) setting, which can set the prediction of TS 1 significantly away
from the ground truth.

Regarding robust defense, we propose two defense mechanisms. First, we adapt

randomized smoothing to the new multivariate forecasting setup with robust certificate.

Second, we devise a defense mechanism (see Section 3.4.2) via solving a mini-max opti-

mization task which minimizes the maximum expected damage caused by the probabilistic

attack that continually updates the generation of its adverse perturbations in response to

the model updates. Their effectiveness are demonstrated across extensive experiments in

Section 3.5.

Furthermore, our experiments in Section 3.5.3 demonstrate that attacks designed

for univariate cases cannot be reused as an effective attack to multivariate forecasting

models, which highlights the importance and novelty of our studies.
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3.2 Related Work

Deep Forecasting Models. The recent decades have witnessed a tremendous progress

in DNN-based forecasting models. Given the temporal dependency of time series data,

RNN and CNN-based architectures have been proved a success for time series forecasting

tasks, see [109, 82, 138, 115] and [104, 8] respectively. To model the uncertainty, various

probabilistic models have been proposed from distributional outputs [115, 35, 109] to

distribution-free quantile-based outputs [106, 42, 66]. In multivariate cases, [114] general-

ized DeepAR [115] to multivariate cases and adopted low-rank Gaussian copula process to

tackle the high-dimensionality challenge.

Adversarial Attack. Despite its success in various tasks, deep neural network is especially

vulnerable to adversarial attacks [127] in the sense that even imperceptible adversarial

noise can lead to completely different prediction. In computer vision, many adversarial

attack schemes have been proposed. See [47, 92] for attacking image classifiers and [33] for

attacking graph structured data. In the field of time series, there is much less literature

and even so, most existing studies on adversarial robustness of MTS models [98, 54]

are restricted to regression and classification settings. Alternatively, [149] studied both

adversarial attacks to probabilistic forecasting models, which is only restricted to univariate

settings.

Adversarial Robustness and Certification. Against adversarial attacks, an extensive

body of work has been devoted to quantifying model robustness and defense mechanisms.

For instance, Fast-Lin/Fast-Lip [141] recursively computes local Lipschitz constant of a

neural network; PROVEN [140] certifies robustness in a probabilistic approach. Recently,

randomized smoothing has gained increasing popularity as to enhance model robustness,

which was proposed by [29, 79] as a defense approach with certification guarantee. To the

time series setting, [149] adopted randomized smoothing technique to univariate forecasting

models and developed theory therein. However, we are not aware of any prior works on
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randomized smoothing for multivariate probabilistic models.

3.3 Adversarial Attack Strategies

We provide a generic framework of sparse and indirect adversarial attack under a

multivariate setting in Section 3.3.1. Then, a deterministic one to this task is introduced

next in Section 3.3.2, followed by a stochastic attack derived in Section 3.3.3.

Notations. Denote d-dimensional multivariate time series xt ∈ Rd at time t

with its observation of i-th time series xi,t = [xt]i. We denote x = {xt}Tt=1 ∈ Rd×T and

z = {xT+t}τt=1 ∈ Rd×τ as recent T historical observations and next τ -step of the future

values respectively. Then, probabilistic forecaster pθ with parameterzation θ takes history

x to predict z, i.e., z ∼ pθ(· | x). We denote the set [d] = {1, . . . , d} and i-th time series

as δi = ([δt]i)
T
t=1.

3.3.1 Framework on Sparse and Indirect Adversarial Attack

Given an adversarial prediction target tadv and historical input x to the forecaster

pθ(z|x), we design a perturbation matrix δ such that the perturbed input x+ δ disturbs

a statistic χ(z) as close as possible to tadv. That is, we find δ such that the distance

between Ez|x+δ[χ(z)] and tadv is minimized. Here, χ(z) and tadv are any arbitrary function

of interest or adversarial target values with the same dimension. We focus on scenarios

where the perturbed prediction is far way from original prediction by properly choosing

χ(·) and tadv.

Thus, suppose the adversaries want to mislead the forecasting of time series in a

subset I ⊂ [d], denoted as zI . Let χ be a statistic function of interest that concerns only

time series in I, i.e. χ(z) = χ(zI). To make the attack less perceptible, we impose the

following sparse and indirect constraints: First, perturbation δ cannot be direct to target

time series in I and can be indirectly applied to a small subset of Ic = [d] \ I. In other

words, we restrict δI = 0 and s(δ) = |{i ∈ Ic : δi ≠ 0}| ≤ κ with sparsity level κ ≤ d.
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Lastly, to avoid outlier detection, we also cap the energy of the attack such that the value

of the perturbation at any coordinates is no more than a pre-defined threshold η. To sum

up, the sparse and indirect attack δ can be found via solving

minimize
δ∈RT×d

{
F (δ) ≜

∥∥∥Epθ(z|x+δ)

[
χ(z)

]
− tadv

∥∥∥2
2

}
(3.3.1)

subject to ∥δ∥max ≤ η, s(δ) ≤ κ, δI = 0,

where ∥δ∥max = maxt,i |[δt]i| is the element-wise maximum norm. As such, small values of

κ and η imply a less perceptible attack. However, solving this is intractable due to the

discrete cardinality constraint on s(δ). To sidestep this, we develop two approximations

in the subsequent sections which correspond to our deterministic and non-deterministic

attack strategies.

3.3.2 Deterministic Attack

Here we present an approximated solution. We first get an intermediate solution δ̂

through projected gradient descent (PGD) until it converges,

δ̂ ←
∏

B∞(0,η)

(
δ̂ − α∇δF

(
δ̂
))

, (3.3.2)

where α ≥ 0 is a step size and
∏

B∞(0,η) is the projection onto the ℓ∞-norm ball with radius

η, allowing a simple element-wise clipping:
∏

B∞(0,η)([δ̂t]i) = sign([δ̂t]i) η if |[δ̂t]i| > η else

[δ̂t]i. With this intermediate non-sparse δ̂, we retrieve for final sparse perturbation δ via

solving

minimize
δ∈RT×d

∥δ − δ̂∥F subject to s(δ) ≤ κ, δI = 0. (3.3.3)

It turns out (3.3.3) can be solved analytically. Given δ̂, we compute the absolute perturba-

tion added to each row i, pi =
∑T

t=1 |[δ̂t]i| for i ∈ [d] \ I and sort them in descending order
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π: pπ1 ≥ · · · ≥ pπd
. Finally, we construct the solution as δ with δπi = δ̂πi if i ≤ κ else 0.

Remark. ∇δF (δ) involves the computation of the gradient of an expectation, which

doesn’t have a closed-form solution. To overcome this intractability, we adopt the re-

parameterized sampling approach used in [34] and [149].

Algorithm 1. Deterministic Adversarial Attack

input: pre-trained model pθ(z | x), observation x and other parameters:

• statistic χ(·), adversarial target tadv, target set I ⊂ [d]

• attack energy η, sparse constraint κ, PGD iterations n and step size α ≥ 0

output: perturbation matrix δ ∈ RT×d s.t. ∥δ∥max ≤ η, s(δ) ≤ κ, δI = 0
1. initialize δ = 0
for iteration 1, 2, . . . , n do

2. compute the expected loss F (δ) using Eq. (3.3.1)
3. update δ via PGD in Eq. (3.3.2)

end for
4. for i /∈ I, compute pi =

∑T
t=1 |[δt]i|

5. sort pi in a descending order π = (π1, . . . , πd): pπ1 ≥ pπ2 ≥ · · · ≥ pπd
.

6. set δπκ+1 = δπκ+2 = · · · = δπd = 0 and δI = 0. Return δ.

3.3.3 Probabilistic Attack

To make the attack even less perceptible, we further show in this section an

alternative approximation that results in a probabilistic sparse attack, which makes

adverse alterations to a non-deterministic set of coordinates (i.e., time series and time

steps). As shown in our experiment, this non-determinism appears to make the attack

stronger and harder to detect.

To achieve this, we view the sparse attack vector as a random vector drawn from a

distribution with differentiable parameterization. The core challenge is how to configure

such a distribution whose support is guaranteed to be within the space of sparse vectors.

To achieve this, we propose sparse layer, a distributional output, of a normal standard

and a Dirac density combination. The output of this layer satisfied relaxed sparse support

condition (see Theorem 2).
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Sparse Layer. A sparse layer is defined as a distributional output q(δ|x; β, γ) such

that its sample (probablistic attack) δ ∼ q(δ|x; β, γ) =
∏

i qi(δ
i|x; β, γ) satisfies sparse

condition E[s(δ)] ≤ κ and δI = 0. With δi denoted as the i-th row (time series) of δ and

sparsity level κ, each factor distribution qi(δ
i|x; β, γ) parameterized by β and γ is defined

as

qi

(
δi | x; β, γ

)
≜ ri (γ) · q′i

(
δi | x; β

)
+
(
1− ri(γ)

)
·D
(
δi
)
, (3.3.4)

where ri(γ) ≜ κγ
1
2
i ·(
∑d

i=1 γi)
− 1

2/
√
d, D(δi) = I(δi = 0) is the Dirac density, and q′i(δ

i | x; β)

is a Gaussian N(µ(x; β), σ2(x; β)).

The combination weight ri(γ) denotes the probability mass of the event δi = 0,

which is parameterized by γ. Intuitively, this means the choice of {ri(γ)}di=1 controls the

row sparsity of the random matrix δ, which can be calibrated to enforce that E[s(δ)] ≤ κ.

We will show in Theorem 1 how samples can be drawn from the combined density in

(4.3.7).

Theorem 1. Let δi′ ∼ q′i(· | x; β, γ) and ui ∼ N(0, 1) for i = 1, . . . , d. Define δi =

δi′ · I(ui ≤ Φ−1(ri(γ))). Then, δ
i ∼ qi(δ

i | x; β, γ).

Here, qi(·|x; β, γ) is given in (4.3.7) and Φ−1 is the inverse cumulative of the standard

normal distribution. We provide the proof in the appendix.

For implementation, we let q′i(· | x; β) be a distribution over dense vectors, for

example N(µ(β), σ2(β)I), and ui ∼ N(0, 1) for i ∈ [d]. We can construct a binary mask

mi = I(ui ≤ Φ−1(ri(γ))), i ∈ [d], where ri(γ) is defined above. Next, for each i ∈ [d], we

draw δi′ from q′i(· | x; β) and obtain δi by δi = δi′ ·mi where · denotes the element-wise

multiplication. Finally, we set δI = 0.

Theorem 2 proves that δ sampled from (4.3.7) would meet the constraint E[s(δ)] ≤ κ.

Put together, Theorem 1 and Theorem 2 enable differentiable optimization of a sparse

attack as desired.

93



Theorem 2. Let δ ∼ q(· | x; β, γ). Then, E[s(δ)] ≤ κ.

Remark. Note that we can also obtain a direct sparse constraint on s(δ) by applying

Theorem 2 to a smaller quantity cκ for c ∈ (0, 1). Then, by the Markov inequality, with

probability at least 1− c, we have s(δ) ≤ E[s(δ)]/c = cκ/c = κ. We provide the proof of

Theorem 2 in Appendix 3.8.

Optimizing Sparse Layer. The differentiable parameterization of the above sparse

layer can therefore be optimized for maximum attack impact via minimizing the expected

distance between the attacked statistic and adversarial target:

min
β,γ

H(β, γ) ≜ Eδ∼q(.|x;β,γ)

∥∥∥Ez∼pθ(z|x+δ)

[
χ(z)

]
− tadv

∥∥∥2
2
. (3.3.5)

This attack is probabilistic in two ways. First, the magnitude of the perturbation δ is a

random variable from distribution q(· | x). Second, the non-zero components of the mask

depend on the random Gaussian samples, which brings another degree of non-determinism

into the design, making the attack less perceptible and harder to detect. See Algorithm 4

in Section 3.6 for the implementation.

Remark. There are three important advantages of the above probabilistic sparse attack.

First, by viewing the attack vector as random variable drawn from a learnable distribution

instead of fixed parameter to be optimized, we are able to avoid solving the NP-hard

problem (3.3.1) as usually approached in previous literature [32]. Second, our approach

introduces multiple degree of non-determinism to the attack vector, apparently making it

more stealth and powerful (see Section 3.5). Last, unlike the deterministic attack which has

two separate, decoupled approximation stages that cannot be optimized end-to-end due to

the non-convex and non-differentiable constraint in (3.3.1), the probabilistic attack model

is entirely differentiable. Therefore, it can be directly integrated as part of a differentiable

defense mechanism that can be optimized via gradient descent in an end-to-end fashion –

see Section 3.4.2 for more details.
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3.4 Defense Mechanisms against Adversarial At-

tacks

The adversarial attack on probabilistic forecasting models was investigated under

the univariate time series setting [34, 149]. Beyond basic data augmentation [139], we

develop more effective defense mechanism to enhance model robustness via randomized

smoothing (in Section 3.4.1) and mini-max defense using sparse layer (in Section 3.4.2).

3.4.1 Randomized Smoothing Defense

Randomized smoothing (RS) [29] is a post-training defense technique. Having

never been considered to multivariate setting to the best of our knowledge, we apply RS

to our multivariate forecasters z(x) ∼ pθ(z | x) which maps x to a random vector z(x)

distributed by pθ(z | x). Let Pz(z(x) ⪯ r) denote the CDF of such random outcome vector

where ⪯ denotes the element-wise inequality, the RS version

gσ(x) = Eϵ

[
z(x+ ϵ)

]
(3.4.1)

of z(x) with noise level σ > 0 and ϵ ∼ N(0, σ2I) is a random vector whose CDF is defined

as

Pgσ

(
gσ(x) ⪯ r

)
≜ Eϵ∼N(0,σ2I)

[
Pz

(
z(x+ ϵ) ⪯ r

)]
(3.4.2)

where we abuse the notation ϵ ∼ N(0, σ2I) to indicate the (scalar) entries of the matrix

ϵ are independently and identically distributed by N(0, σ2). Computing the output of

the smoothed forecaster gσ(x) is intractable in general since the integration of z(x+ ϵ)

with N(0, σ2I) cannot be done analytically. However, it can still be approximated with

arbitrarily high accuracy via MC sampling with a sufficiently large number of samples.

Check Algorithm 2 for a detailed implementation.
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Algorithm 2. Randomized Smoothing

input: pre-trained τ -step forecasting model pθ(z | x), observation x and other
parameters

• number of samples n

• noise level σ

output: n sample paths [x̂T+1:T+τ ]
(j)
i for i = 1, . . . , d and j = 1, . . . , n

for j = 1, 2, . . . , n do
1. Sample ξi,t ∼ N(0, σ2) i.i.d. and compute x̃i,t ← xi,t + ξi,t
2. Sample [x̂T+1:T+τ ]

(j)
i ∼ pθ(z | x̃)

end for

Algorithm 3. Minimax Defense

input: dataset D of (x, z) pairs and other parameters:

• sparse constraint κ for q in Eq. (3.4.6)

• number of optimization iterations n

output: robust forecasting model pθ(z | x).
for 1, 2, . . . , n do

3. Fix θ, minimize −
∑

(x,z)∼D ℓg(ϕ;x, z, θ) with respect to ϕ – see Eq. (3.4.5)

4. Fix ϕ, maximize
∑

(x,z)∼D ℓp(θ;x, z, ϕ) with respect to θ – see Eq. (3.4.6)
end for
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For the randomized smoothing version gσ of the base forecaster z(x) ∼ pθ(z|x), we

establish a robustness guarantee or certificate in the following theorem.

Theorem 3 (Robust Certificate). Given an input x, let gσ(x) be defined in Eq. (3.4.1). Let

G(r) = Pgσ(gσ(x) ⪯ r) and Gδ(r) = Pgσ(gσ(x+ δ) ⪯ r). For any δ, we have

sup
r∈Rd

∣∣∣G(r)−Gδ(r)
∣∣∣ ≤ √

d

σ
·
∥∥∥δ∥∥∥

F
. (3.4.3)

This shows that the difference between the CDFs of the smoothed forecaster on

authentic and perturbed input, i.e. gσ(x) and gσ(x+ δ), is guaranteed to be no more than

O(∥δ∥F). We defer the formal proof to Appendix 3.8.

Remark. Different from Theorem 1 in [149] that only applies to univariate cases, our

Theorem 3 provides a more general robustness guarantee as it’s available for multivariate

setting. Also, Theorem 1 in [149] only holds for δ → 0, but our Theorem 3 holds for any δ.

3.4.2 Mini-max Defense

As discussed in Section 3.3.3, the sparse layer is differentiable, which is suitable to

be directly integrated as part of a differentiable defense mechanism that can be optimized

via gradient descent in an end-to-end fashion. To fix the idea, with a sparse layer

q(· | x;ϕ) having parameters ϕ = (β, γ) in Eq. (3.3.4), we propose to train the forecaster

by minimizing the worst-case loss caused by q(· | x;ϕ):

min
ϕ

max
θ

∑
(x,z)∼D

[
ℓp(θ;x, z, ϕ)− ℓg(ϕ;x, z, θ)

]
. (3.4.4)
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Here ℓg(ϕ;x, z, θ) is a function of ϕ conditioned on (x, z, θ) while ℓp(θ;x, z, ϕ) is a function

of θ conditioned on (x, z, ϕ) as follows

ℓg(ϕ;x, z, θ) ≜ Eq(δ|x;ϕ)

[
Epθ(z′|x+δ)

∥∥∥z′ − z
∥∥∥2] (3.4.5)

ℓp(θ;x, z, ϕ) ≜ Eq(δ|x;ϕ)

[
log pθ

(
z | x+ δ

)]
(3.4.6)

where the expectation is taken over δ ∼ q(δ|x;ϕ) with q given by Eq. (4.3.7), each pair

(x, z) represents a training data point in our dataset with x = {xt}Tt=1 and z = {xT+t}τt=1.

Solving Eq. (3.4.4) therefore means finding a stable state where the model parameter

is conditioned to perform best in the worst situation where the adversarial noises are also

conditioned to generate the most impact even in the most benign scenario. This can be

achieved by alternating between (1) minimizing −ℓg in Eq. (3.4.5) with respect to (β, γ)

and (2) maximizing ℓp in Eq. (3.4.6) with respect to θ. We call this defense mechanism

a mini-max defense. We note that similar ideas have been previously exploited in deep

generative models, such as GAN [46] and WGAN [5]. See Algorithm 3 for a detailed

description.

Remark. Unlike the sparse layer used in attack, the sparse layer used to simulate

mock attack in our defense strategy does not have access to the actual attack sparsity

parameter κ or the set of target time series I. Hence, we need to set the sparsity κ as

a tuning parameter and skip the last step of the sparse layer described in Section 3.3.3

where we set δI = 0.

3.5 Experiments

We conduct numerical experiments to demonstrate the effectiveness of our proposed

indirect sparse attack on a multivariate probabilistic forecasting models and compare

various defense mechanisms.

98



(a) (b)

Figure 3.2. Plots of (a) averaged wQL under sparse indirect attack against the sparsity
level on electricity dataset. The underlying model is a clean DeepVAR without defense.
Target time series I = {1} and attacked time stamp H = {τ}; and (b) & (c) averaged wQL
under different defense mechanisms on electricity dataset for deterministic & probabilistic
attack respectively.

3.5.1 Experiment Setups

Dataset. We include Electricity [6], Traffic [6], Taxi [128], Wiki [74]. See Sec-

tion 3.7.1 for more information.

Multivariate Forecaster. We consider DeepVAR [115] which is state-of-the-art

multivariate probabilistic models with implementation available pytorch-ts [111] with

target dimension 10. For more details on the model parameters, see Section 3.7.2.

Data Augmentation (DA) and Randomized Smoothing (RS). Following the

convention in [34, 149], we use relative noises in both data augmentation and randomized

smoothing. That is, given a sequence of observation x = ([xt]i)i,t ∈ Rd×T , we draw i.i.d.

noise samples [ϵt]i ∼ N(0, σ2) and produce noisy input as [x̃t]i ← [xt]i(1 + [xt]i). In data

augmentation, we train model with noisy input [x̃t]i. In RS, the base model is still trained

on noisy input [x̃t]i with noise level σ. The noise level σ remains the same across DA and

RS.

Metrics. We adopt weighted quantile loss (wQL) to measure the performance.
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(See Section 3.7.3.)

3.5.2 Experiment Results

Electricity, Traffic, and More Datasets. Averaged wQL loss is reported in

Table 3.1 and Table 3.2 for Electricity and Traffic dataset respectively. The attacks include

both deterministic and probabilistic ones for both single and multiple target time series

and time horizons. Besides, we plot wQL under both attacks against sparsity level to

better visualize the effect of different types of attack. See Figure 3.2. More experiment

results with error bars on additional datasets can be found in Section 3.7.4.

Message 1: Sparse, Indirect Attack is effective, and becomes more

effective as κ increases. In the experiment, we can verify the effectiveness of sparse

indirect attack, that is, one can attack the prediction of one time series without directly

attacking the history of this time series. For example in Table 3.1, under deterministic

attack, the average wQL is increased by 20% by only attacking one out of nine remaining

time series (there are totally 10 but the target time series is excluded).

Moreover, attacking half of the time series can increase average wQL by 102%!

This observation is even more noticeable under probabilistic attack: average wQL can

be increased by 215% with 50% of the time series attacked. Besides, wQL loss increases

as attack sparsity κ increases, which is also an evidence that sparse indirect attack is

effective.

Message 2: Probabilistic Attack is more effective than Deterministic

Attack, especially at low sparsity levels. In general, average wQL increases as sparsity

level increases and probabilistic attack appears to be more effective than deterministic one,

see Figure 3.2a and Table 3.1. For example, under no defense when κ = 7, probabilistic

attack causes 50% larger wQL loss than deterministic one.

Message 3: Randomized Smoothing (RS) and Mini-Max are more robust

than Data Augmentation (DA). As can be seen in Figure 3.2b, Table 3.1 and Table 3.2,
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all three defense methods can bring robustness to the forecasting model. Data augmentation

and randomized smoothing works well under small sparsity and mini-max defense achieves

comparable performance as data augmentation and randomized smoothing under small

sparsity and outperforms them under large sparsity.

Table 3.1. Average wQL on Electricity dataset under deterministic and probabilistic
attack. Target time series I = {1} and attacked time stamp H = {τ}. Smaller is better.

deterministic attack probabilistic attack

sparsity (κ) no defense DA RS mini-max no defense DA RS mini-max

no attack 0.2853 0.2288 0.2176 0.2154 0.2909 0.2374 0.2237 0.2342
1 0.3410 0.2949 0.2826 0.2990 0.4364 0.5923 0.5940 0.4935
3 0.4559 0.3655 0.3757 0.3775 0.7245 0.5738 0.4581 0.8079
5 0.5770 0.5554 0.5560 0.5273 0.9143 0.8422 0.9276 0.5265
7 0.6687 0.7076 0.7072 0.6506 0.9991 0.8267 1.0100 0.6161
9 0.8282 0.8412 0.8327 0.7503 1.0317 0.8139 0.8919 0.6466

Table 3.2. Average wQL on Traffic dataset under deterministic and probabilistic
attack. Target time series I = {1, 5} and attacked time stamp H = {τ − 1, τ}. Smaller is
better.

deterministic attack probabilistic attack

sparsity (κ) no defense DA RS mini-max no defense DA RS mini-max

no attack 0.2283 0.1573 0.1529 0.1837 0.2283 0.1573 0.1529 0.1837
1 0.2190 0.1543 0.1529 0.1701 0.2428 0.1807 0.1796 0.1904
3 0.2150 0.1884 0.1890 0.1687 0.2219 0.2564 0.2467 0.1714
5 0.2772 0.2729 0.2648 0.1688 0.2719 0.3026 0.3003 0.1883
7 0.3620 0.3597 0.3535 0.1779 0.3529 0.2893 0.2824 0.1846
9 0.4635 0.4058 0.4240 0.1970 0.4075 0.3544 0.3376 0.1911

3.5.3 Non-transferrablity between Univariate and Multivari-
ate Cases

From the above Section 3.5.2, we verify the effectiveness of sparse indirect attack of

multivariate forecasting models. In this subsection, we investigate the transferrability from

univariate attack to multivariate attack. To be specific, we study the question whether the
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(a) Value of TS 5 (b) Value of TS 1

Figure 3.3. Plots of (a) authentic (orange), DeepAR-attacked (blue) and DeepVAR-
attacked (green) versions of time-series (TS) 5; and (b) ground-truth (orange), no-attack
(blue), under-DeepAR-attack (red) and under-DeepVAR-attack (green) predictions for TS
1. Shaded area is attacker’s target range. Compared to clean prediction, the value of TS
1 at the attack time step (t = 288) were adversely altered by DeepVAR-attack (green)
but only slightly altered by DeepAR-attack (red). The wQL loss under no attack: 0.288,
under DeepAR attack: 0.322, under DeepVAR attack: 0.390.

adversarial perturbation generated by univariate models can be transferred to multivariate

models as an indirect attack.

In empirical experiments, we choose sparsity level κ = 1 and other parameters

are the same as what are described in Section 3.5.1. It turns out TS 5 is selected by

Algorithm 1 to harm the prediction of TS 1 when κ = 1. Thus, we use the technique in

[34, 149] to generate univariate attack on TS 5 from DeepAR. Note that only the history

of TS 5 has been adversely altered. The attacked time series 5 is further fed into DeepVAR

model.

Experiment Result. The averaged wQL loss is reported in Table 3.11 in Sec-

tion 3.9. For a better visualization, the history of TS 5 and prediction of TS 1 are plotted

in Figure 3.3a and Figure 3.3b respectively. From the experiment results in Table 3.11, we

observe that multivariate attack is 3x more effective than univariate attack, which is also

a reason why multivariate attack worth investigation.
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3.6 Probabilistic Attack Algorithm

Algorithm 4. Probabilistic Adversarial Attack

input: pre-trained model pθ(z | x), observation x and other parameters:

• statistic χ(·), adversarial target tadv, target set I ⊂ [d]

• attack energy η, sparse constraint κ, number of iterations n

output: perturbation matrix δ ∈ RT×d s.t. ∥δ∥max ≤ η, E[s(δ)] ≤ κ, δI = 0
1. randomly initialize a sparse layer q(·|x; β, γ)
for iteration 1, 2, . . . , n do

2. compute the expected loss H(β, γ) using Eq. (3.3.5)
3. update β, γ via first-order optimization method

end for
4. draw δ ∼ q(·|x; β, γ) and return

3.7 Details on the experiment setting

3.7.1 Datasets

• Electricity: consists of hourly electricity consumption time series from 370 customers.

• Taxi: traffic time series of New York taxi rides taken at 1214 locations for every 30

minutes from January 2015 to January 2016 and considered to be heterogeneous.

We use the taxi-30min dataset provided by GluonTS.

• Traffic: hourly occupancy rate, between 0 and 1, of 963 San Francisco car lanes.

• Wiki: daily page views of 2000 Wikipedia pages used in [42].

3.7.2 Hyper-parameter choice

Electricity & Taxi.

We target at the prediction of the first time series at the last prediction time step,

i.e. target time series I = {1} and time horizon to attack H = {τ}, so χ(z) = x1,T+τ .

We choose prediction length τ = 24 and context length T = 4τ = 96, and sparsity level

κ = 1, 3, 5, 7, 9.
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Table 3.3. Summary of statistics of the datasets used, including prediction length τ ,
domain, frequency, dimension, and time steps.

dataset prediction length τ domain frequency dimension time steps
Electricity 24 R+ H 370 5790
Traffic 24 R+ H 963 10413
Taxi 24 N 30-min 1214 1488
Wiki 30 N D 2000 792

Traffic.

We target at the prediction of χ(z) = (x1,T+τ−1, x1,T+τ , x5,T+τ−1, x5,T+τ ). We choose

prediction length τ = 24 and context length T = 4τ = 96, and sparsity level κ = 1, 3, 5, 7, 9.

Wiki.

We target at the prediction of χ(z) = x1,T+τ . We choose prediction length τ = 30

and context length T = 4τ = 120, and sparsity level k = 1, 3, 5, 7, 9.

For all experiments, we train a DeepVAR with rank 5. The attack energy η =

c1max |x|, is proportional to the largest element of the past observation in magnitude,

where c1 is set to 0.5. For the adversarial target tadv, we first draw a prediction x̂ from

un-attacked model pθ(·|x) and choose tadv = c2x̂ for constants c2 = 0.5 and 2.0. We

report the largest error produced by these choices of constants. Unless otherwise stated,

the number of sample paths drawn from the prediction distribution n = 100 to quantify

quantiles q
(α)
i,t . In mini-max defense, the sparsity level of the sparse layer is set to 5 for

all cases. For the noise level σ in DA and RS, we select them via a validation set and it

turns out no σ is uniformly better than the others across different sparsity level. Thus,

σ = 0.1 is chosen in the empirical evaluation. For an ablation study on the effect of σ, see

Table 3.6 in Section 3.7.4.
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3.7.3 Metrics

We measure the performance of model under attacks by the popular metric especially

for probabilistic forecasting models: weighted quantile loss (wQL), which is defined as

wQL(α) = 2 ·
∑

i,t[αmax(xi,t − q(α)i,t , 0) + (1− α)max(q
(α)
i,t − xi,t, 0)]∑

i,t |xi,t|

where α ∈ (0, 1) is a quantile level. In practical application, under-prediction and over-

prediction may cost differently, suggesting wQL should be one’s main consideration

especially for probabilistic forecasting models. In the subsequent sections, we calculate

average wQL over a range of α = [0.1, 0.2, . . . , 0.9] and evaluate the performance in terms

of averaged wQL.

3.7.4 More results

To measure the performance of a forecasting model, other metrics like Weighted

Absolute Percentage Error (WAPE) or Weighted Squared Error (WSE) are also considered

by a large body of literature. For completeness, we present the definition of WAPE and

WSE:

WAPE =
∑∣∣∣∣predicted value

true value
− 1

∣∣∣∣ = 1

|I||H|
∑

i∈I,h∈H

∣∣∣∣ 1n
∑n

j=1 x̂
j
T+h,i

xT+h,i

− 1

∣∣∣∣,
WSE =

∑(
predicted value

true value
− 1

)2

=
1

|I||H|
∑

i∈I,h∈H

( 1
n

∑n
j=1 x̂

j
T+h,i

xT+h,i

− 1

)2

,

where x̂i,j is the predicted values from forecasting model. We report WAPE, WSE and

wQL under deterministic and probabilistic attacks on electricity dataset in Table 3.4 and

Table 3.5.

Also, Table 3.6 reports the effect of choosing different values for σ in data augmen-

tation and randomized smoothing.
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Table 3.4. Metrics on Electricity dataset under deterministic attack. Target time
series I = {1} and attacked time stamp H = {τ}. Smaller is better.

Sparsity (κ)
no defense data augmentation

WAPE WSE wQL WAPE WSE wQL

0 0.4005±0.2036 0.2360±0.2525 0.2991±0.1684 0.4241±0.2092 0.2596±0.2625 0.3280±0.1497
1 0.4900±0.2488 0.3529±0.3769 0.3745±0.2106 0.4123±0.1829 0.2310±0.1934 0.3019±0.1138
3 0.6382±0.3434 0.6222±0.5886 0.5043±0.2917 0.5654±0.2475 0.4313±0.3707 0.3919±0.1876
5 0.7524±0.3675 0.8123±0.6218 0.6097±0.3218 0.7460±0.3803 0.8201±0.6628 0.5379±0.2833
7 0.8786±0.4171 1.0889±0.7785 0.7432±0.3702 0.8465±0.4014 1.0102±0.6389 0.6425±0.2985
9 1.0134±0.4541 1.4028±0.9685 0.8851±0.4023 0.9093±0.4454 1.1883±0.7720 0.7007±0.3395

Sparsity (κ)
randomized smoothing mini-max defense

WAPE WSE wQL WAPE WSE wQL

0 0.3501±0.1630 0.1710±0.1486 0.2751±0.1068 0.3237±0.1379 0.1394±0.0913 0.2342±0.0917
1 0.4209±0.1700 0.2298±0.1683 0.2965±0.1003 0.4498±0.2253 0.2949±0.2276 0.3511±0.1825
3 0.5887±0.2543 0.4644±0.3784 0.3965±0.1797 0.7447±0.3758 0.8120±0.6684 0.6038±0.3358
5 0.7504±0.3607 0.8002±0.5999 0.5619±0.2779 0.9603±0.4190 1.2419±0.8369 0.8182±0.3845
7 0.8353±0.4315 1.0369±0.7496 0.6311±0.3152 1.1056±0.4847 1.6504±1.0591 0.9689±0.4350
9 0.9986±0.5026 1.4574±0.9998 0.7700±0.3717 1.2476±0.4860 1.9870±1.0815 1.1133±0.4306

Next, we report wQL loss of Taxi and Wiki dataset under both types of attacks in

Table 3.7, Table 3.8, Table 3.9 and Table 3.10 respectively.

3.8 Detailed proofs

Proof of Lemma 1. We can compute

P(δi = 0) = 1 − P
(
ui ≤ Φ−1

(
ri(γ)

))
= 1− ri(γ). (3.8.1)

That is, with probability 1− ri(γ), δi = 0. Equivalently, δi is distributed by a degenerated

probability measure with Dirac density D(δi) concentrated at 0. On the other hand, with

probability ri(γ), δ
i is distributed as q′i(·|x; β). Combining the two cases, it follows that

δi is distributed by a mixture of q′i(·|x; β) and D(δi) with weights ri(γ) and 1 − ri(γ)

respectively.
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Table 3.5. Metrics on electricity dataset under probabilistic attack using sparse layer.
Target time series I = {1} and attacked time stamp H = {τ}. Smaller is better.

Sparsity (κ)
no defense data augmentation

WAPE WSE wQL WAPE WSE wQL

0 0.3842±0.2620 0.2162±0.3044 0.2909±0.0748 0.3074±0.1746 0.1250±0.0946 0.2374±0.0764
1 0.6230±0.6324 0.7881±1.1864 0.4364±0.1296 0.7476±0.7240 1.0830±1.8593 0.5923±0.0913
3 1.0540±0.7522 1.6768±1.4810 0.7245±0.2434 0.8484±0.6809 1.1834±1.3998 0.5738±0.1759
5 1.2078±0.7451 2.0139±2.0667 0.9143±0.3235 1.1444±0.6665 1.7538±1.4318 0.8422±0.2945
7 1.3236±0.7310 2.2863±1.8336 0.9991±0.3505 1.1304±0.6522 1.7031±1.4053 0.8267±0.2823
9 1.3656±0.8671 2.6166±2.6679 1.0317±0.3707 1.0912±0.6181 1.5727±1.2081 0.8139±0.2827

Sparsity (κ)
randomized smoothing mini-max defense

WAPE WSE wQL WAPE WSE wQL

0 0.2858±0.1547 0.1056±0.0761 0.2237±0.0750 0.3218±0.1429 0.1240±0.0830 0.2342±0.0710
1 0.7683±0.8771 1.3596±2.7290 0.5940±0.1142 0.6990±0.6957 0.9726±1.7182 0.4935±0.1450
3 0.6784±0.5230 0.7337±0.7698 0.4581±0.1301 0.9909±0.7564 1.5540±1.8925 0.8079±0.2838
5 1.2310±0.7025 2.0090±1.6609 0.9276±0.3208 0.6966±0.4554 0.6927±0.8752 0.5265±0.1611
7 1.3496±0.6777 2.2809±1.7240 1.0100±0.3554 0.8424±0.7803 1.3186±1.7286 0.6161±0.1986
9 1.1978±0.6742 1.8894±1.5309 0.8919±0.3072 0.8691±0.7410 1.3043±2.0663 0.6466±0.2054

Proof of Lemma 2. By the construction of ri(γ),

E
[
s(δ)

]
=

d∑
i=1

E
[
I
(
ui ≤ Φ−1 (ri(γ))

)]
=

d∑
i=1

P
(
ui ≤ Φ−1 (ri(γ))

)
=

d∑
i=1

ri(γ) =
κ√
d
·
∑d

i=1 γ
1/2
i(∑d

i=1 γi

)1/2 ≤ κ.

Proof of Theorem 3. Denote pσ(·) as the density of N(0, σ2Id) and p(·) as the density of

N(0, Id). Let Fx(r) ≜ P(z(x) ⪯ r).
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Table 3.6. Average wQL on Electricity dataset under deterministic attack. The
defense is data augmentation and randomized smoothing with varying σ = 0.1, 0.2, 0.3.
Target time series I = {1} and attacked time stamp H = {τ}. Smaller is better.

σ = 0.1 σ = 0.2 σ = 0.3

Sparsity (κ) no defense DA RS DA RS DA RS mini-max

no attack 0.2853 0.2288 0.2176 0.2321 0.2389 0.2999 0.3053 0.2154
1 0.3410 0.2949 0.2826 0.2717 0.2866 0.2959 0.3456 0.2990
3 0.4559 0.3655 0.3757 0.4822 0.4421 0.4323 0.3930 0.3775
5 0.5770 0.5554 0.5560 0.6130 0.5790 0.5998 0.5351 0.5273
7 0.6687 0.7076 0.7072 0.6796 0.6677 0.6743 0.6447 0.6506
9 0.8282 0.8412 0.8327 0.8243 0.8222 0.7953 0.7335 0.7503

Table 3.7. Average wQL on Taxi dataset under deterministic attack. Target time
series I = {1} and attacked time stamp H = {τ}. Smaller is better.

Sparsity (κ) no defense data augmentation randomized smoothing mini-max defense

no attack 1.2135±0.4050 1.2137±0.4091 1.2574±0.4281 1.0447±0.3607
1 1.3152±0.4580 1.3455±0.4666 1.3455±0.4627 1.1222±0.3960
3 1.6389±0.5810 1.6805±0.5982 1.6503±0.5756 1.3624±0.4956
5 2.0317±0.7161 2.0625±0.7290 2.0123±0.7059 1.6830±0.6206
7 2.3695±0.8064 2.3712±0.8028 2.3450±0.7978 1.9750±0.7033
9 2.5605±0.8531 2.5525±0.8616 2.5422±0.8619 2.2374±0.7785

Table 3.8. Average wQL on Taxi dataset under probabilistic attack. Target time series
I = {1} and attacked time stamp H = {τ}. Smaller is better.

Sparsity (κ) no defense data augmentation randomized smoothing mini-max defense

no attack 1.2118±0.4412 1.2526±0.4733 1.2241±0.4531 1.0481±0.3840
1 1.4598±0.5315 1.3539±0.5199 1.3512±0.5100 1.1528±0.4345
3 1.5659±0.6589 1.5446±0.6197 1.5567±0.5784 1.3940±0.5472
5 1.9123±0.7513 1.7824±0.6962 1.8857±0.7441 1.6897±0.6829
7 2.2915±0.8954 1.7340±0.7638 1.8370±0.7597 1.5865±0.6191
9 2.4815±0.9286 2.1159±0.7515 2.2400±0.7860 1.4921±0.5551

Table 3.9. Average wQL on Wiki dataset under deterministic attack. Target time
series I = {1} and attacked time stamp H = {τ}. Smaller is better.

Sparsity (κ) no defense data augmentation randomized smoothing mini-max defense

no attack 0.1645±0.0588 0.0868±0.0232 0.0796±0.0272 0.2331±0.1186
1 0.2430±0.0889 0.0775±0.0171 0.0687±0.0119 0.1683±0.1097
3 0.2771±0.0807 0.2225±0.1217 0.2260±0.1089 0.1466±0.0976
5 0.4260±0.1127 0.3533±0.1602 0.3084±0.1365 0.1675±0.0675
7 0.5173±0.1045 0.4290±0.1524 0.4112±0.1420 0.1973±0.0632
9 0.6276±0.1178 0.4362±0.1360 0.4451±0.1461 0.2185±0.1131
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Table 3.10. Average wQL on Wiki dataset under probabilistic attack. Target time
series I = {1} and attacked time stamp H = {τ}. Smaller is better.

Sparsity (κ) no defense data augmentation randomized smoothing mini-max defense

no attack 0.1748±0.1144 0.0837±0.0432 0.0828±0.0443 0.2376±0.1510
1 0.3255±0.2132 0.1647±0.1126 0.1976±0.1274 0.1834±0.1409
3 0.4080±0.1724 0.3104±0.1550 0.2255±0.1322 0.2549±0.1530
5 0.5336±0.2318 0.2759±0.1368 0.1714±0.1348 0.1299±0.0852
7 0.6547±0.2940 0.3940±0.1849 0.2656±0.1708 0.2569±0.1605
9 0.8463±0.2715 0.5140±0.2195 0.2745±0.1513 0.2909±0.1918
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Consider

sup
r∈Rd

∣∣∣G(r)−Gδ(r)
∣∣∣ = sup

r∈Rd

∣∣∣∣∫
ϵ∈Rd×T

(
Fx+ϵ(r)− Fx+δ+ϵ(r)

)
pσ(ϵ) dϵ

∣∣∣∣
= sup

r∈Rd

∣∣∣∣∫
ϵ∈Rd×T

Fϵ(r)
(
pσ(ϵ− x)− pσ(ϵ− x− δ)

)
dϵ

∣∣∣∣
= sup

r∈Rd

∣∣∣∣∫
ϵ∈Rd×T

∫ 1

0

Fϵ(r)∇pσ(ϵ− x− tδ)δ dt dϵ
∣∣∣∣

= sup
r∈Rd

∣∣∣∣∫ 1

0

∫
ϵ∈Rd×T

Fϵ(r)

(
δ · ϵ− x− tδ

σ2

)
pσ(ϵ− x− tδ) dϵ dt

∣∣∣∣
=

1

σ
sup
r∈Rd

∣∣∣∣∫ 1

0

∫
ϵ∈Rd×T

Fx+tδ+ϵ(r) (δ · ϵ)p(ϵ) dϵ dt
∣∣∣∣

≤ 1

σ

∫
ϵ∈Rd×T

∣∣∣δ · ϵ∣∣∣p(ϵ) dϵ
≤ ∥δ∥2

σ

(
Eϵ∼N(0,Id)∥ϵ∥

2
2

) 1
2

=

√
d

σ
∥δ∥2,

which completes the proof.

3.9 Non-transferrability of attacks between univari-

ate and multivariate forecasters

We study the transferrability from univariate attack to multivariate attack. To

be specific, if an attack is generated on the same subset (excluding target time series)

of time series using a univariate model and then fed into a multivariate model, can it

indirectly harm the prediction of target time series. Next, we report the experiment results

of univariate attack and multivariate attack.

Table 3.11. Transfer the attack from DeepAR to DeepVAR. Target items I = {1} and
time horizon to attack H = {τ}. Clean DeepAR and DeepVAR models are used. Averaged
wQL is reported.

No attack Univariate attack Multivariate attack
0.288 0.322 0.390
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3.10 Conclusion

In this work, we investigate the existence of sparse indirect attack for multivariate

time series forecasting models. We propose both deterministic approach and a novel

probabilistic approach to finding effective adversarial attack. Besides, we adopt the

randomized smoothing technique from image classification and univariate time series

to our framework and design another mini-max optimization to effectively defend the

attack delivered by our attackers. To the best of our knowledge, this is the first work to

study sparse indirect attack on multivariate time series and develop corresponding defense

mechanisms, which could inspire a future research direction.

Chapter 3, in part, has been submitted for publication of the material ”Robust

Multivariate Time-Series Forecasting: Adversarial Attacks and Defense Mechanisms”,

Liu, Linbo, Park, Youngsuk, Hoang, Trong Nghia, Hasson, Hilaf, and Huan, Jun to

International Conference on Learning Representations and is currently under review. The

dissertation author was the primary investigator and author of this paper.
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Chapter 4

Promoting Robustness of Random-
ized Smoothing: Two Cost-Effective
Approaches

4.1 Introduction

The existence of adversarial examples of deep neural networks (DNNs) [126, 45]

has raised serious concerns to deploy DNNs in real-world systems, especially in the

safety critical applications such as self-driving cars and aircraft control systems. Thus,

many research efforts have been devoted into developing effective defenses methods to

safeguard DNNs. One of the most promising direction is known as certified defense via

randomized smoothing, where the word certified means that the defense methods have

provable theoretical guarantee as opposed to easily broken heuristic defenses [7], and

randomized smoothing is a popular technique that allows scalable certified defenses for

state-of-the-art DNNs against adversarial examples.

Randomized smoothing is recently proposed by [76, 80, 29] and has achieved state-

of-the-art robustness guarantees. Given any classifier f , denoted as a base classifier,

randomized smoothing predicts the most-likely class on the randomly perturbed input x

with Gaussian noises. Following this new prediction rule, randomized smoothing acts like

an operator on the original base classifier and produce a new smoothed classifier which
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is equipped with provable robustness guarantees under various ℓp norm threat models

[76, 29, 79].

Unfortunately, without specially-designed training techniques, the robustness cer-

tificate of the smoothed classifier is usually very weak [29]. Thus there are a few recent

works [116, 152] proposed to design specialized robust training methods to improve the ro-

bustness certificate of the smoothed classifier. In [116], the authors propose an adversarial

training method called SmoothAdv, which is similar to the PGD training [92] but on the

smoothed classifier. On the other hand, [152] propose MACER, whose training objective

involves a term to maximize the robustness certificate directly. However, SmoothAdv

often requires heavy tuning on a number of hyper-parameters for different noise level σ

which could be computationally challenging, while MACER needs a much larger number

of (3×) training epochs to train (and unfortunately the resulting models often have weaker

certificate despite higher clean accuracy).

Motivated by the need of cost-effective robust training methods for random-

ized smoothing, in this work, we propose two approaches to address the limitations

of SmoothAdv and MACER. First, we propose a new robust training method called

AdvMacer, which takes the best of both worlds in SmoothAdv and MACER: AdvMacer

enjoys computational efficiency, gives larger ACR while preserving good accuracy in most

settings. Besides, AdvMacer attains a universal configuration that works well across

different setting with different values of the smoothing noise’s variance σ. Second, we

propose to equip our AdvMacer models with a training-free ensemble method EsbRs,

which can further enlarge the resulting model’s certified radius (by up to 8% compared

with SmoothAdv and 15% compared with MACER), hence establishing the new state-of-

the-art result on certified radius. Crucially, we present a general theoretical analysis and

demonstrate the effect of both intra-model ensembles and mixed -model ensembles from

the theoretical point of view. Grounded by our theoretical findings, an optimal weighted

ensemble can be derived analytically where the weights are dependent on the input data.
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4.2 Related works and backgrounds

In this section, we first give backgrounds on randomized smoothing and the related

certified defense SmoothAdv [116] and MACER [152]. Next, we review recent liteature on

applying ensemble methods to randomized smoothing.

Randomized smoothing Consider a neural network classifier f : Rd → Y that

maps an input sample x ∈ Rd to its predicted label in Y. [29] introduced a randomized

smoothing (RS) technique that can turn any base classifier f(x) into a smoothed classifier

g(x) with provable robustness guarantees. When taking a sample x, the smoothed classifier

g returns the class that the base classifier f is most likely to return under isotropic Gaussian

noise perturbation of x:

g(x) = argmax
c∈Y

Pϵ∼N (0,σ2I)(f(x+ ϵ) = c),

where σ is the noise level that controls the trade-off between clean accuracy and model

robustness.

[29] further proved the robustness guarantees of such smoothed classifier in Theo-

rem 4. Let Φ denote the cumulative density function (CDF) of the standard Gaussian

distribution. Suppose that under Gaussian perturbation ϵ ∼ N (0, σ2I), the most likely

class cA is returned with probability pA and the second most likely (runner-up) class cB is

returned with probability pB, i.e.

cA = argmax
c∈Y

P(f(x+ ϵ) = c),

cB = argmax
c̸=cA

P(f(x+ ϵ) = c),

pA = P(f(x+ ϵ) = cA), pB = P(f(x+ ϵ) = cB).

Theorem 4 (Theorem 1 of [29]). Assume pA attains a lower bound pA and pB attains an
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upper bound p̄B with pA < p̄B, then g(x+ δ) = cA for all ∥δ∥2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(p̄B)).

In practice, Monte Carlo sampling is employed to obtain an estimate of pA, see [29].

Unfortunately, as reported in [29], the robustness certificate is weak without

any specifically-designed training techniques for randomized smoothing. Thus, a few

techniques have been developed to enhance the robustness of randomized smoothing.

In particular, [116] proposed to train base classifier f on adversarial examples that are

generated by PGD [92] applied to soft-RS classifiers. Another line of work [152] considered

an attack-free robust training by directly maximizing certified radius of each training

sample. We briefly revisit these two methods [116, 152] in the following: Formally, suppose

that F β : Rd → P (Y) is the soft version of classifier f whose last layer is a softmax layer

with inverse temperature β and P (Y) is a probability distribution over the label space Y .

We omit the superscript β if there is no ambiguity. Consider a smoothed soft classifier

G(x) = Eδ∼N (0,σ2I)F (x+ δ).

SmoothAdv [116] introduced SmoothAdv to find adversarial examples by PGD.

Denote LCE as the canonical cross entropy loss. Given a labeled data (x, y), SmoothAdv

finds a point x̂ that maximizes the cross entropy loss of G(x) in the local neighborhood of

x:

x̂ = argmax
∥x′−x∥2≤ϵ

LCE(G(x
′), y) = argmax

∥x′−x∥2≤ϵ

− logEδ∼N (0,σ2I)F (x
′ + δ)y. (4.2.1)

Such optimization problem (4.2.1) is solved by projected gradient descent (PGD). To

estimate the gradient of (4.2.1), [116] used Monte Carlo simulation to approximate
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∇x′LCE(G(x
′), y) by

∇x′

(
− log

( 1

m

m∑
k=1

F (x′ + δk)y

))
,

where δ1, . . . , δm are drawn i.i.d. from N (0, σ2I).

MACER Since the certified radius is related to the difference between the top

probability pA and the runner-up probability pB, [152] constructed MACER loss LMACER,

which consists of classification loss and robustness loss to both minimize classification

error and maximize the certified radius of those correctly classified samples. Specifically,

LMACER(x) = LCE(G(x), y) + λLR(G;x, y), (4.2.2)

where λ ≥ 0 is a tuning parameter. The loss in (4.2.2) involves the soft smoothed classifier

G and [152] proposes to approximate G(x) by Monte Carlo sampling:

G(x) ≈ ẑ(x) =
1

m

m∑
k=1

F (x+ δk), (4.2.3)

ĝ(x) = argmax
i∈Y

ẑi(x).

where δ1, . . . , δm are drawn i.i.d. from N (0, σ2I). Denote by ĈR(x, y) the approximated

certified radius at x, then

ĈR(x, y) =
σ

2
(Φ−1(ẑy(x))− Φ−1(max

y′ ̸=y
ẑy′(x))).

Therefore, the robustness loss LR(G;x, y) can also be approximated by

LR(G;x, y) ≈ LR(ẑ;x, y) = max{ϵ+ ϵ̃− ĈR(x, y), 0}1(ĝ(x) = y)

=
σ

2
max{γ − ξ̂θ(x, y), 0}1(ĝ(x) = y), (4.2.4)
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where ϵ, ϵ̃ > 0 are hyper-parameters in hinge loss, γ = 2
σ
(ϵ+ ϵ̃), and

ξ̂θ(x, y) = Φ−1(ẑy(x))− Φ−1(max
y′ ̸=y

ẑy′(x)).

Finally, MACER trains a base classifier by minimizing the approximated MACER loss on

training dataset. We refer readers to [152] for more details.

Ensemble. Model Ensemble is a popular technique in the machine learning

literature to practically improve model performance and reduce generalization errors [3].

Recently, there are a few works investigating the idea of using model ensemble to improve

robustness of a randomized smoothed classifier [57, 147]. However, [57] focused on ensemble

the same type of models (i.e. models trained from the same process but with different

random seeds) and did not study the effect of using different types of models. Although

[147] doesn’t have any explicit assumptions on model types, they only experimented using

same types of model to ensemble. Also, their analysis is based on a model smoothness

assumption, which is not easy to verify especially for DNN. In contrast, as will be introduced

in Section 3.2, our proposed EsbRs is a more general ensemble method where we study

the effect of mixed -model ensembles and optimal weighted ensembles. Although weighted

ensemble has also been studied in [57], their model learns the weights from training

and cannot justify the weights’ optimality. However, in our work, we develop a novel

design framework of the optimal weight ensemble based on our theory to best improve the

robustness certificate of a randomized smoothed classifier.

4.3 Our proposed main methods

In this section, we propose two novel and cost-effective approaches to improve

robustness of a randomized smoothed classifier. First, we introduce a new robust training

method AdvMacer that aim to maximize the certified radius over adversarial examples,

and we present the intuitions, formulations as well as the details of our algorithm in
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Figure 4.1. The illustration of the idea behind AdvMacer : x (black dot) is the original
data sample and x̂ (red dot) is an adversarial example of x. The solid black line is the
original decision boundary. The blue line in (b) is the decision boundary using SmoothAdv
and the green line in (c) is the decision boundary after applying AdvMacer . SmoothAdv
force the classifier to classify x̂ correctly to get the red boundary. AdvMacer force x̂
to not only have correct prediction but also a large margin. Therefore, AdvMacer can
obtain larger certified radius R3 > certified radius of smoothadv R2 > certified radius of
the original classifier R1.

Section 4.3.1. Next, in Section 4.3.2, we propose a novel ensemble method called EsbRs

with theoretical analysis. Different from the two recent works [147, 57], we provide a

more general analysis which does not require individual classifiers to come from the same

training method. Our analysis allows the derivation of the optimal weight for individual

classifiers, which is the key to promote robustness and the study of optimal weight has

not been explored in the prior work.

4.3.1 Approach 1: AdvMacer

Inspired by the prior work SmoothAdv [116] and MACER [152] and to address

their limitations, we argue that a smoothed classifier can be trained to have larger certified

radius by directly optimizing the certified radius of adversarial examples instead of the

clean data points. However, notice that this statement requires adversarial example to be

predicted correctly (otherwise, the certified radius of original data point may be actually

decreased). The intuition is illustrated in Figure 4.1. Based on the above idea, we propose

the following formulation.
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Formulation.

Given data x and its label y, we aim to minimize the proposed AdvMacer loss

consisting of two terms:

LAdvMacer(x) = LCE(ẑ(x̂), y) + λLR(ẑ; x̂, y),

where ẑ and LR are given in (4.2.3) and (4.2.4) respectively. The 1st term LCE(ẑ(x̂), y) is

to encourage adversarial examples x̂ to be classified correctly, and the 2nd term

LR(ẑ; x̂, y) =
σ

2
max{γ − ξ̂θ(x̂, y), 0}1(ĝ(x̂) = y)

is to maximize the certified radius at the adversarial example x̂, where

x̂ = argmax
∥x′−x∥2≤ϵ

LCE(ẑ(x
′), y).

To minimize the LAdvMacer(x), we generate the adversarial examples x̂ via Equation (4.2.1)

with T -step PGD using SmoothAdv [116], i.e. in the i-th step, we update

xi+1 =
∏
B(x,ϵ)

(
xi +∇x

(
− log

( 1

m

m∑
k=1

F (x′ + δk)y

))∣∣∣∣
x=xi

)
,

where
∏

S(·) is the projection onto set S and we set x̂ = xT . The training objective is

to minimize LAdvMacer(x) by first-order optimization method, and a detailed algorithm is

presented in the Appendix due to page constraint.

Hyper-parameters Note that there are a few hyper-parameters in AdvMacer

: σ is the noise level that is introduced when f or F is smoothed; ϵ in (4.2.1) controls

the size of the ℓ2 ball when doing PGD; γ in (4.2.4) is the parameter in hinge loss; λ

is the regularization parameter which controls the trade-off between clean accuracy and

robustness; m in (4.2.3) is the number of Monte Carlo samples used to estimate G(x); T
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is the number of PGD step to generate adversarial samples. Finally, recall that the soft

classifier F = F β, where β is the inverse temperature in softmax layer. The larger β is,

the closer the soft classifier F is to the hard classifier f .

Discussion and Comparison.

(I). SmoothAdv [116] adapted adversarial training to defend against the least

favorable samples but did not consider certified radius as another metric. MACER [152]

used robust training to directly maximize certified radius on clean samples instead of

adversarial examples. In contrast, our proposed AdvMacer trains a model on adversarial

examples while taking certified radius into consideration. Compared with SmoothAdv,

AdvMacer doesn’t bring any additional computational overhead to calculate robust

loss as there exist analytic formula for certified radius; in the meantime, compared with

MACER, we require much fewer number of epochs (3× smaller) to obtain a robust model

with much larger certified radius. From the experiments in Section 4.4, it can be seen

that AdvMacer outperforms both SmoothAdv and MACER on various dataset. (II).

SmoothAdv needs to tune a number of hyper-parameters for different noise level σ, which

becomes a significant challenge when the computing resources are limited. Although

MACER also has many tuning parameters, empirical experiments showed that most of

these parameters don’t change across different σ and datset. However, MACER needs

more training epochs (440 epochs per [152]) to yield a robust classifier, taking days to train

a ResNet-110 [56] on Cifar-10 [73]. Also, MACER usually achieves better clean accuracy

but smaller average certified radius (ACR). In contrast, our AdvMacer takes the best of

both world in Smoothadv and macer: AdvMacer enjoys computational efficiency, gives

larger ACR while preserves good accuracy in most settings. Besides, AdvMacer attains a

universal configuration that works well across different σ. Equipped with ensemble method

presented in Section 4.3.2, AdvMacer also enriches the diversity of component models,

making mixed ensemble more robust. For a thorough comparison by experiments, see
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Section 4.4 for more details.

4.3.2 Approach 2: EsbRs

Ensemble is a cost-effective post-training technique to enhance model performance

and reduce generalization error without spending much additional efforts on re-training

the neural networks. By simply averaging the output from several models, ensemble

shows remarkable boost in test accuracy and model robustness. Recently, there are a

few works investigating the idea of using model ensemble to improve robustness of a

randomized smoothed classifier [57, 147]. However, the existing work mainly focused on

ensembling similar classifiers with learnable weights. In contrast, we also consider mixed

ensemble with component classifiers coming from different training methods and conduct

theoretical analysis explaining the success of mixed ensemble in certain cases. Besides,

unlike [83] learning the ensemble weights empirically from training set, we develop a novel

theoretical framework to design optimal ensemble weights based on our analysis. Empirical

experiments verify the superiority of our proposed methods.

Formulation Suppose we have k trained soft classifiers F 1, . . . , F k : Rd → P (Y)

and Y = {1, . . . , c}. Consider soft-ensemble model H whose output is a weighted average

of the logits from F 1, . . . , F k:

H(x) =
k∑

l=1

wlF
l(x).

Suppose the associated hard classifier is

h(x) = argmax
c∈Y

(
H(x)

)
c
.

Then we apply RS to h and get the corresponding smoothed classifier g. Extensive

experiments from Section 4.4 show that ensemble-RS classifier g outperforms all component

classifiers F 1, . . . , F k in general, no matter F l comes from the same or different training

methods. Specifically, if F l comes from more than one training methods, we call g a mixed
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ensemble.

Theoretical analysis We present some theoretical analysis on how (mixed)

ensemble can reduce the variance and hence increase certified radius. We generalize the

analysis in [57] to allow mixed ensemble, which provide deeper insights on model ensemble

study and in fact motivate a novel design of optimal ensemble as described in Designing

optimal weighted ensemble paragraph.

For a fixed query point x with a Gaussian perturbation ϵ ∼ N (0, σ2I), suppose

logits vector yl ∈ P (Y) is returned by F l. Without loss of generality, assume 1 is the

majority class in RS for all F l. For simplicity, we can work with classification margin

zli = yl1 − yli, for i ∈ Y. Let ȳ = H(x + ϵ). Therefore, ȳ =
∑k

l=1wly
l. Similarly define

z̄i = ȳ1 − ȳi. Consider E[z̄] ∈ Rc and Var(z̄) ∈ Rc×c , where the expectation is taken over

the randomness in training process, including random initialization and stochasticity in

GD. Then we have

Var(z̄) = Var
( k∑

l=1

wlz
l
)

=
k∑

l=1

w2
l Var(z

l) + 2
∑
l ̸=m

wlwmCov(z
l, zm) (4.3.1)

Hence, Var(z̄i) = Var(z̄)ii. Denote pi(w) = Var(z̄i) as a function of w = [w1, . . . , wk]
⊤ and

αi = αi(s) = max
1≤l≤k

Var(zl)ii

βi = βi(s) = max
l ̸=m

Cov(zl, zm)ii

Suppose there are a fixed number of training methods and denote this number by s, so the

above maximum is in fact taken over s different classes. As a result, αi(s), βi(s) = O(1)

even as k →∞.

A special case As a special case, consider wl =
1
k
for all l = 1, . . . , k. By (4.3.1),

122



we derive

pi(w) = Var(z̄i) ≤
kαi + k(k − 1)βi

k2
= βi +

αi − βi
k

. (4.3.2)

These classifiers either come from different training methods, or same training method

with different random seeds. Thus, existing work all assumes that the logits from one

classifier have larger covariance αi than the logits from different classifiers βi. However, as

we will see in Discussion paragraph, ensemble may harm the performance if the above

assumption doesn’t hold. For now, let’s assume αi > βi. By (4.3.2), we conclude that the

upper bound of Var(zi) decreases to a constant βi as k →∞.

Next, we explain how Var(z̄i) affects certified radius. From Theorem 4, we see that

R = σΦ−1(pA) if pA ≥ 1
2
, hence we only need to show a lower bound on the top class

probability pA increases as k becomes larger. Since we assume the majority class’s number

is 1, we see that

p1 = P(z̄i > 0,∀i = 2, . . . , c) ≥ 1−
c∑

i=2

P(z̄i ≤ 0) (4.3.3)

By Chebyshev’s inequality, P(z̄i ≤ 0) ≤ P
(∣∣z̄i − E[z̄i]

∣∣ ≥ E[z̄i]
)
≤ Var(z̄i)

E[z̄i]2 and let

ei = ei(s) = minl E[zli], thus from (4.3.3) we have

p1 ≥ 1−
c∑

i=2

Var(z̄i)

e2i
. (4.3.4)

The above equation suggests us to choose the weight w that maximizes the RHS of (4.3.4)

to have a larger p1, hence larger certified radius. Since ei is independent of the choice of

w, we can obtain the optimal weight by solving

min
w∈Rk

c∑
i=2

aipi(w) s.t.
k∑

l=1

wl = 1, wl ≥ 0, (4.3.5)

where ai = e−2
i are constants. Note that when wl =

1
k
for all l = 1, . . . , k, we have a lower
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bound on p1 by (4.3.2) and (4.3.4):

p1 ≥ 1−
c∑

i=2

βi + (αi − βi)/k
e2i

→ 1−
c∑

i=2

βi
e2i

as k →∞.

This explains why larger k makes p1 and certified radius larger even in average ensemble.

Discussion

Compared with [57], we generalize their analysis to allow both weighted and mixed

ensemble and hence have several new findings. First, if αi < βi, namely the logits

from one model have smaller variance than those from different models, the RHS of

(4.3.2) becomes an increasing function in k, which implies ensemble does not always work.

Second, suppose F 1, F 2 come from model category 1 (for example, SmoothAdv) and F 3

comes from model category 2 (for example, AdvMacer ). If the logits from different

types of models have smaller variance than those from the same type of model, namely

Cov(F 1, F 3) < Cov(F 1, F 2), βi will become smaller and makes mixed ensemble work

better than single ensemble. This phenomenon is observed in Figure 4.2.

Designing optimal weighted ensemble

The optimization problem in (4.3.5) allows us to design an optimal weight that

can maximize the lower bound on p1. Consider the case where k = 2, then (4.3.5) can be

solved analytically given the knowledge of Var(z1),Var(z2),Cov(z1, z2) and ai. To see this,

let bi = Var(z1)ii, ci = 2Cov(z1, z2)ii, di = Var(z2)ii, then the objective function in (4.3.5)

can be re-written as

q(w) =
c∑

i=2

ai(biw
2
1 + ciw1w2 + diw

2
2)

(i)
=

c∑
i=2

ai[biw
2
1 + ciw1(1− w1) + di(1− w1)

2], (4.3.6)
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where (i) uses the constraint w1 + w2 = 1 to eliminate w2. Therefore, the problem (4.3.5)

can be further cast as a quadratic optimization with linear constraints:

min
w1∈R

q(w1) = Aw2
1 +Bw1 + C

s.t. 0 ≤ w1 ≤ 1, (4.3.7)

where A =
∑c

i=2 ai(bi + ci + di), B =
∑c

i=2−ai(ci + 2di) and C =
∑c

i=2 aidi. Notice that

this problem has an analytical solution: if A > 0 and 0 ≤ − B
2A
≤ 1, w1 = − B

2A
and

w2 = 1 + B
2A
; else q(w1) attains minimum at boundary w1 = 0 or 1.

Next, we aim at giving an estimate of ai, bi, ci, di. To account for randomness

both from training and Gaussian perturbation ϵ around the input x, we first generate

n i.i.d. Gaussian noisy data x1, . . . , xn from N (x, σ2I). Second, we incorporate random

perturbation for the parameters θ in classifier F to imitate random seeds in training, as

this is the cheapest way (without extra training cost). We randomly select t% parameters

from F and add i.i.d. Gaussian noise δ ∼ N (0, σ̃2) for each selected parameter. This

returns a perturbed model F̂ from the base model F . Repeating the above process on F 1

and F 2 for m times gives us 2m perturbed models F̂ 1
1 , . . . , F̂

1
m and F̂ 2

1 , . . . , F
2
m.

Now, we pass x1, . . . , xn into F̂ 1
1 , . . . , F̂

1
m to get mn output logits vector

y1,1, y1,2, . . . , y1,mn.

Also, y2,1, y2,2, . . . , y2,mn can be obtained similarly by passing n noisy data intom perturbed

models of F 2. Compute zl,ji = yl,j1 − y
l,j
i for 1 ≤ i ≤ c and l = 1, 2. Then an estimation of
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variance and covariance can be their empirical parallel:

bi = Var(z1)ii =
1

mn

mn∑
j=1

(z1,j − z̄1)(z1,j − z̄1)⊤ii ,

ci = 2Cov(z1, z2)ii =
2

mn

mn∑
j=1

(z1,j − z̄1)(z2,j − z̄2)⊤ii ,

di = Var(z2)ii =
1

mn

mn∑
j=1

(z2,j − z̄2)(z2,j − z̄2)⊤ii ,

where z̄l = 1
mn

∑mn
j=1 z

l,j for l = 1, 2. Also obtain ai = e−2
i = min{z̄1i , z̄2i }−2 Hence, we can

solve (4.3.7) by plugging in ai, bi, ci, di. A detailed algorithm is given in Algorithm 6 in

Section 4.9.

Remark 1. To our best knowledge, we are the first work to develop a practical and

theoretical grounded methodology to obtain the optimal weight of the ensemble scheme.

We note that the two recent works [147, 57] did not explore this direction.

4.4 Experiments

In this section, we present experimental results that empirically evaluate the

performance of our proposed methods, AdvMacer and EsbRs, on Cifar-10 [73] and

SVHN [103] dataset. To make fair comparisons with previous baseline models, we use

the same architectures as in [29, 116, 152]: ResNet-110 [56]. We train our models with

σ = 0.25, 0.50, 1.00 on Cifar-10 and σ = 0.25, 0.50 on SVHN. We train all models on a

single NVIDIA V100 GPU and the training time reported below is all from NVIDIA V100

GPU.

Evaluation We mainly evaluate model performance on two metrics: clean accu-

racy and average certified radius (ACR). Clean accuracy is the classification accuracy when

taking the original test images as the input and cannot evaluate model robustness. A more
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Figure 4.2. The plot of ACR against different number of component models in EsbRs
on Cifar-10 with σ = 0.50. Single ensemble uses N AdvMacer models. Mixed ensemble
with totally N component models uses m AdvMacer models and n SmoothAdv models,
where m and n are given in Table 4.5 ofSection 4.7.

reasonable metric for evaluating robustness is ACR. We follow the standard evaluation

protocol used in [29, 116, 152] for fair comparison: for each test data (xi, yi) ∈ Stest, record

the radius Ri that can be certified the by the model g. Set Ri = 0 if xi can’t be classified

correctly by g. Then ACR = 1
|Stest|

∑
iRi. Since the denominator is the size of the full test

set, one cannot obtain large ACR without high accuracy. Thus ACR becomes a popular

choice in most of the DL robustness literature. We use CERTIFY algorithm in [29] to

obtain certified radius and choose N0 = 100, N = 100, 000, α = 0.001 in CERTIFY. We

report model performance on the first 500 test images on Cifar-10 and SVHN.

Baseline models Two baseline models are discussed in this section: MACER
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Table 4.1. Cifar-10: ACR of different models on the first 500 test images of Cifar-10
with varing σ. Clean accuracy is reported in parenthesis. Reported models include
SmoothAdv, MACER, AdvMacer , Esb-RS. N = 100k samples are used in certification
unless otherwise specified.

Methods σ = 0.25 σ = 0.5 σ = 1.0 Ensemble?

Baselines

SmoothAdv [116] 0.541 (74.2%) 0.735 (56.4%) 0.758 (45.8%) ×
MACER [152] 0.518 (79.4%) 0.682 (63.4%) 0.768 (42.4%) ×
SmoothMix [62] 0.545 (76.0%) 0.685 (63.8%) 0.626 (48.4%) ×
SmoothMix+1-step adv [62] 0.533 (72.8%) 0.743 (62.0%) 0.788 (43.0%) ×
Consistency [63] 0.535 (78.4%) 0.701 (64.6%) 0.719 (45.8%) ×
Consistency + SmoothAdv [63] 0.532 (71.8%) 0.733 (53.2%) 0.834 (42.8%) ×

Ours

AdvMacer 0.554 (76.0%) 0.742 (58.4%) 0.794 (47.6%) ×
EsbRs-AdvMacer ×3 0.583 (76.4%) 0.772 (58.8%) 0.805 (47.6%)

√

EsbRs-SmoothAdv×3 0.567 (76.6%) 0.777 (58.4%) 0.801 (46.6%)
√

EsbRs-AdvMacer ×1+SmoothAdv×2 0.572 (77.2%) 0.783 (59.4%) 0.810 (47.2%)
√

EsbRs-AdvMacer ×2+MACER×1 0.568 (79.8%) 0.728 (63.6%) 0.801 (42.8%)
√

EsbRs-AdvMacer ×1+MACER×2 0.570 (80.4%) 0.723 (65.0%) 0.760 (44.0%)
√

and SmoothAdv. For MACER, we follow the configurations given by Table 4 in [152]. For

SmoothAdv, we pick the best models under different σ = 0.25, 0.50, 1.00 from the Github

repo of [116]. See Table 4.4 in Section 4.6 for more details on hyper-parameter selection of

SmoothAdv.

AdvMacer We apply Algorithm 5 to train our AdvMacer models. On Cifar-10,

we choose γ = 8.0, λ = 12.0, β = 16.0 for all σ = 0.25, 0.50, 1.00. The choice of T,m, ϵ

are summarized in Table 4.4. We follow the same training scheme as [116]. The initial

learning rate is 0.1 and decays by a factor of 0.1 every 50 epochs. A batch size of 256

is used in the training. For more details, please refer to [116]. Note that by the choice

of hyper-parameters, SmoothAdv and AdvMacer have the same training time, which

implies the improved performance of AdvMacer is not gained from more expensive

computation. The experiment results on Cifar-10 are summarized in Table 4.1.

EsbRs We also employ our proposed ensemble technique introduced in Sec-

tion 4.3.2 to enhance robustness performance. We use the following naming convention to

report our result: EsbRs-Model1×n+Model2×m represents the ensemble model obtained

by n Model1 and m Model2. Each component model’s configuration is the same as that of
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the non-ensemble individual model for fair comparison. For example, EsbRs-AdvMacer

×1+SmoothAdv×2 on Cifar-10 with σ = 0.25 represents the ensemble of one AdvMacer

model and two SmoothAdv models with configuration from Table 4.4.

Our empirical experiments also verifies the theoretical analysis on the success of

mixed ensemble and optimal weighted ensemble in Section 4.3.2. In ensemble experiments,

we independently train all AdvMacer and SmoothAdv models on Cifar-10 with σ = 0.50

and the model configuration is given by Table 4.4. For single ensemble, we use 1/2/3/4/5/6

AdvMacer models. For mixed ensemble, the number of component model from each

category is summarized in Table 4.5 of Section 4.7. In Figure 4.2, we observe that ACR

improves as the number of component models increases. The same observation holds

for both single ensemble and mixed ensemble. Besides, mixed ensemble gives universally

better ACR as shown in Figure 4.2, which is in accordance to the analysis in Section 4.3.2.

Discussion

Different from [57], we allow mixed ensemble that are a mixture of robust models

from various training methods. The introduction of AdvMacer brings enriched diversity of

component models that can be used in model ensemble. In addition, we conduct experiment

on optimal weighted ensemble with two component models. The weights w1, w2 are

computed by Algorithm 6. The experiment is on Cifar-10 with σ = 0.25 and choose both F 1

and F 2 from AdvMacer models. Weighted ensemble model is given by H = w1F
1+w2F

2.

We set n = 10,m = 10, σ = 0.25, σ̃ = 0.01, t = 0.3 and certify each test image x by H

using CERTIFY algorithm from [29] with N0 = 100, N = 100, 000, α = 0.001. The

results are given in Table 4.2. It shows that the choice of optimal weight does improve

both accuracy and ACR, compared with average weighted ensemble method. It is worth

noting that we are the first work to study and propose the optimal design of ensemble

weight for randomized smoothing to best improve the robustness.

Additional experiment on SVHN We compare the performance of SmoothAdv,
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Table 4.2. Optimal weighted ensemble. ACR and clean accuracy on the first 500
test images of Cifar-10 with σ = 0.25. All certification has parameters N0 = 100, N =
100, 000, α = 0.001. Optimal weights are computed from Algorithm 6 with AdvMacer
models F 1, F 2, m = 10, n = 10, t = 0.3, σ = 0.25, σ̃ = 0.01.

Model Accuracy ACR Certificate Time

AdvMacer 0.760 0.554 8.9s
Avg weight EsbRs 0.760 0.572 18.0s
MME [147] 0.754 0.567 19.6s
Optimal weight EsbRs 0.766 0.576 26.3
max-EsbRs (n = 102) 0.762 0.591 9.0s
max-EsbRs (n = 104) 0.766 0.597 10.8s

MACER and AdvMacer on SVHN dataset with σ = 0.25, 0.50. On SVHN with σ = 0.25,

we choose T = 2, m = 4, λ = 12.0, γ = 8.0, β = 16.0, ϵ = 0.5 and train the model for 150

epochs. On SVHN with σ = 0.50, we still choose T = 2, m = 4, γ = 8.0, β = 16.0, ϵ = 0.5

but a different λ = 4.0. The model is also trained for 150 epochs. The initial learning

rate is set to 0.01 and drops by a factor of 0.1 every 50 epochs. The other training details

follow the same as Cifar-10. For SmoothAdv, take T = 2,m = 4, ϵ = 0.5 when σ = 0.25

and T = 2,m = 4, ϵ = 0.25 when σ = 0.50. We train MACER model for 440 epochs whose

configuration is given by C.2.2 of [152]. We report the experiment results in Table 4.3 and

leave details in Table 4.9 in Section 4.10.

Certified accuracy and Performance We also report the certified accuracy

in Section 4.8 for each ℓ2 radius ranging from 0.25 to 2.00 and increasing by 0.25 under

σ = 0.25, 0.50, 1.00 on Cifar-10. From Table 4.1, Table 4.3 in this section and Table 4.9 in

Section 4.10, AdvMacer has largest ACR among all non-ensemble models for every σ on

both Cifar-10 and SVHN dataset. Training time of AdvMacer is the same as SmoothAdv,

but significantly less than MACER. Ensemble can boost both accuracy and ACR and

EsbRs-AdvMacer ×3 achieves the best ACR on Cifar-10 with σ = 0.25. AdvMacer

×1+SmoothAdv×2 outperforms all the other models on Cifar-10 with σ = 0.50, 1.00,
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Table 4.3. SVHN: clean accuracy and ACR of different models evaluated at the first 500
test images of SVHN with σ = 0.25.

Model Accuracy ACR

SmoothAdv 85.8% 0.560
MACER 86.8% 0.549
AdvMacer 86.6% 0.569

EsbRs-SmoothAdv×3 87.8% 0.578
EsbRs-AdvMacer ×3 88.2% 0.582
EsbRs-AdvMacer ×1+MACER×2 87.8% 0.559
EsbRs-AdvMacer ×2+MACER×1 88.6% 0.570
EsbRs-AdvMacer ×1+SmoothAdv×2 87.8% 0.577
EsbRs-AdvMacer ×2+SmoothAdv×1 87.6% 0.582

suggesting that one may prefer mixed ensemble in particular situations.

Universal configuration As SmoothAdv requires different model configurations

for different tasks, unexpectedly long training time becomes a challenging issue especially

when the computing resource is limited. Smaller number of Gaussian samples m and

fewer PGD steps T in SmoothAdv can reduce the training time significantly but also

compromise the robustness significantly. However, AdvMacer combines adversarial and

robust training and is expected to still performs well even with reduced m and T . We

choose universal configuration m = 2 and T = 2 for all experiment setting on Cifar-10 and

compare the performance to SmoothAdv with the same configuration in ??. For every

σ, AdvMacer is at least comparable to SmoothAdv and MACER. For example, the

ACR of AdvMacer is only smaller than the best model by 0.002, but costs 12% of the

training time. Moreover, on σ = 0.50 and σ = 1.00, AdvMacer has noticeably larger

ACR than both SmoothAdv and MACER, while still costs only 12% of the training time

of MACER. For larger σ (σ = 1.00), AdvMacer even has the best clean acc among all

reported models. This characteristic makes AdvMacer more scalable and cost-effective.
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4.5 Full Algorithm of AdvMacer

Algorithm 5. Our AdvMacer (σ,m, T, λ, β, γ)

Input: training set p̂data, noise level σ, number of Gaussian samples m, regularization
parameter λ, hinge factor γ, inverse temperature β, number of PGD step T
for each iteration do

1) Sample a mini-batch (x1, y1), . . . , (xn, yn) ∼ p̂data
2) For each (xi, yi), use T -step SmoothAdv to generate adversarial example x̂i
3) For each (x̂i, yi), draw m i.i.d. Gaussian samples xi1, . . . , xim from N (xi, σ

2I)
4) Obtain an estimation of Gθ(x̂) by

ẑθ(x̂)←
1

m

m∑
k=1

Fθ(x̂ik), for i = 1, . . . , n

5) Collect the set of data with correct prediction:

Sθ = {i : yi = argmax
c

ẑθ(x̂i)c}

6) For each i ∈ Sθ, compute the second most likely class

ŷi ← argmax
c ̸=yi

ẑθ(x̂i)c

7) For each i ∈ Sθ, compute

ξ̂(x̂i, yi)← Φ−1(ẑθ(x)yi)− Φ−1(ẑθ(x)ŷi)

8) Sample δ ∼ N (0, σ2I) and update θ with SGD to minimize

− 1

n

n∑
i=1

log ẑθ(x̂i + δ)yi

+
λσ

2n

∑
i∈Sθ

max{γ − ξ̂θ(x̂i + δ, yi), 0}

end for
Output: model parameters θ
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Table 4.4. Model configuration: main hyper-parameters and training time for Smooth-Adv
and AdvMacer on Cifar-10 with varing σ. For the additional parameters in AdvMacer
, we pick λ = 12.0, γ = 8.0, β = 16.0.

Models T m ϵ Epochs σ Time

SmoothAdv
2 8 1.0 150 0.25 15.5h
2 8 2.0 150 0.50 15.5h
2 4 2.0 150 1.00 8h

AdvMacer
2 8 1.0 150 0.25 15.5h
2 8 2.0 150 0.50 15.5h
2 4 2.0 150 1.00 8h

4.6 Model configuration

We summarize the configuration of the SmoothAdv and AdvMacer models on

Cifar-10 in Table 4.4.

4.7 Details of mixed ensemble component

The details of the component models for mixed ensemble in Figure 4.2 are given in

Table 4.5.

Table 4.5. Component models in mixed ensemble experiment in Figure 4.2. The mixed
ensemble with totally N component models uses m AdvMacer and n SmoothAdv models.
m and n are given as follows.

N m n

1 1 0
2 1 1
3 1 2
4 2 2
5 3 2
6 3 3
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4.8 Certified accuracy

More results on certified accuracy of Cifar-10 is presented in Section 4.8 and

Table 4.8.

4.9 Optimal weighted ensemble

We give the detailed algorithm (ComputeWeight(F 1, F 2, σ, σ̃, n,m, t, x)) to com-

pute the optimal weight in ensemble in Algorithm 6.

4.10 More SVHN experiments

See Table 4.9 for more experiments.

4.11 Certification with more or fewer samples

Since ensemble of k models takes k times longer certification time, we also certify

ensemble model with N/k samples and single model with kN samples to make certification

time comparable. Esb-AdvMacer ×3 with N/3 samples underperforms AdvMacer

mainly due to insufficient number of samples ([29] claimed one needs 105 samples to achieve

significance level α = 0.001). Compared SmoothAdv with 3N samples to SmoothAdv×3,

ensemble model outperforms the base model while σ = 0.50, 1.00 and is only slightly

worse while σ = 0.25, which showcases the power of ensemble. For a complete table, see

Table 4.10 below.

4.12 ImageNet

4.13 Conclusions

In this work, we have proposed two novel and cost-effective approaches to promote

robustness of randomized smoothed classifiers. Our first approach AdvMacer improve
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Algorithm 6. Optimal weights of ensemble with 2 models. The function Com-
puteWeight will return the optimal weights

Input: two base models F 1, F 2, number of Gaussian noise n, number of perturbed
models m, noise level σ, proportion of the parameters to perturb t, standard deviation
of perturbation on parameters σ̃, query point x, target label y
function PerturbModel(F 1, F 2,m, t, σ̃):

for l = 1, 2 do
for each j = 1, . . . ,m do

for each parameter θ in F l do
Draw a Bernoulli variable X from Bernoulli(t)
if X = 1 then

Draw δ ∼ N (0, σ̃2) and update θ ← θ + δ
end if

end for
Store perturbed model F̂ l

j

end for
end for
Output: perturbed models F̂ 1

1 , . . . , F
1
m and F̂ 2

1 , . . . , F̂
2
m.

function Estimation([F̂ 1
1 , . . . , F

1
m], [F̂

2
1 , . . . , F̂

2
m], σ, n, x, y):

Draw n i.i.d. noisy samples from N (x, σ2I) and denote them by x1, . . . , xn
for dol = 1, 2

for i = 1, . . . ,m do
for j = 1, . . . , n do

Compute zl,(i−1)n+j ← F̂ l
i (xj)y1− F̂ l

i (xj), where 1 = [1, 1, . . . , 1]⊤ is the
vector of all 1’s.

end for
end for

end for
Output: estimates of logits zl,j for l = 1, 2 and j = 1, . . . ,mn
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function ComputeWeight(F 1, F 2, σ, σ̃, n,m, t, x, y):

1) [F̂ 1
1 , . . . , F

1
m], [F̂

2
1 , . . . , F̂

2
m] ← PerturbModel(F 1, F 2,m, t, σ̃)

2) zl,j ← Estimation([F̂ 1
1 , . . . , F

1
m], [F̂ 2

1 , . . . , F̂
2
m], σ, n, x, y) for l = 1, 2 and j =

1, . . . ,m
3) Compute z̄l ← 1

mn

∑mn
j=1 z

l,j for l = 1, 2 and ai ← min{z̄1i , z̄2i }−2 for i = 1, . . . , c
4) Compute

bi ←
1

mn

mn∑
j=1

(z1,j − z̄1)(z1,j − z̄1)⊤ii ,

ci ←
2

mn

mn∑
j=1

(z1,j − z̄1)(z2,j − z̄2)⊤ii ,

di ←
1

mn

mn∑
j=1

(z2,j − z̄2)(z2,j − z̄2)⊤ii .

5) Compute

A =
c∑

i=2

ai(bi + ci + di), B =
c∑

i=2

−ai(ci + 2di), C =
c∑

i=2

aidi.

if A > 0 and 0 ≤ − B
2A
≤ 1 then

w1 ← − B
2A

and w2 ← 1 + B
2A

else
w1 ← 0, w2 ← 1 if A+B > 0 else w1 ← 1, w2 ← 0

end if
Output: w1, w2
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Table 4.9. SVHN: clean accuracy and ACR of different models evaluated at the first 500
test images of SVHN with varing σ.

σ Model Accuracy ACR Training Time

0.25

SmoothAdv 85.8% 0.560 11.4h
MACER 86.8% 0.549 48.5h

AdvMacer 86.6% 0.569 11.4h

EsbRs-SmoothAdv×3 87.8% 0.578 NA
EsbRs-AdvMacer ×3 88.2% 0.582 NA

EsbRs-AdvMacer ×1+MACER×2 87.8% 0.559 NA
EsbRs-AdvMacer ×2+MACER×1 88.6% 0.570 NA

EsbRs-AdvMacer ×1+SmoothAdv×2 87.8% 0.577 NA
EsbRs-AdvMacer ×2+SmoothAdv×1 87.6% 0.582 NA

0.50

SmoothAdv 71.2% 0.552 11.4h
MACER 58.4% 0.535 48.5h

AdvMacer 67.8% 0.572 11.4h

EsbRs-SmoothAdv×3 71.2% 0.573 NA
EsbRs-AdvMacer ×3 70.4% 0.588 NA

EsbRs-AdvMacer ×1+MACER×2 62.8% 0.551 NA
EsbRs-AdvMacer ×2+MACER×1 66.0% 0.564 NA

EsbRs-AdvMacer ×1+SmoothAdv×2 71.8% 0.577 NA
EsbRs-AdvMacer ×2+SmoothAdv×1 71.2% 0.583 NA

the robustness by maximizing the certified radius over adversarial example, and our second

approach EsbRs can further improve AdvMacer on both clean accuracy and robustness

certificate. We show that we could improve ACR by 15% compared with MACER and 8%

compared with the best models of SmoothAdv Moreover, we provided a general theoretical

analysis for EsbRs and develop a theoretical-grounded methodology to design optimal

ensemble scheme, which outperforms prior works.

Chapter 4, in part, has been submitted for publication of the material ”Promoting

Robustness of Randomized Smoothing: Two Cost-Effective Approaches”, Liu, Linbo,

Trong, Hoang, Nguyen, Lam, and Weng, Tsui-Wei to Computer Vision and Pattern

Recognition Conference and is currently under review. The dissertation author was the

primary investigator and author of this paper.
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Table 4.10. Cifar-10: ACR of different models on the first 500 test images of Cifar-10 with
varing σ. Clean accuracy is reported in parenthesis. Reported models include SmoothAdv,
MACER, AdvMacer , EsbRs. N = 100, 000 samples are used in certification unless
otherwise specified.

Methods σ = 0.25 σ = 0.5 σ = 1.0 Ensemble?

Baselines
SmoothAdv 0.541 (74.2%) 0.735 (56.4%) 0.758 (45.8%) ×
MACER 0.518 (79.4%) 0.682 (63.4%) 0.768 (42.4%) ×

Ours

AdvMacer 0.554 (76.0%) 0.742 (58.4%) 0.794 (47.6%) ×
EsbRs-AdvMacer ×3 0.583 (76.4%) 0.772 (58.8%) 0.805 (47.6%)

√

EsbRs-SmoothAdv×3 0.567 (76.6%) 0.777 (58.4%) 0.801 (46.6%)
√

EsbRs-AdvMacer ×1+SmoothAdv×2 0.572 (77.2%) 0.783 (59.4%) 0.810 (47.2%)
√

EsbRs-AdvMacer ×2+MACER×1 0.568 (79.8%) 0.728 (63.6%) 0.801 (42.8%)
√

EsbRs-AdvMacer ×1+MACER×2 0.570 (80.4%) 0.723 (65.0%) 0.760 (44.0%)
√

EsbRs-AdvMacer ×3 with N/3 0.550 (76.4%) 0.736 (58.8%) 0.785 (47.4%)
√

SmoothAdv with 3N 0.568 (74.6%) 0.761 (56.8%) 0.771 (45.6%) ×

Table 4.11. ImageNet: ACR on 500 test images of ImageNet. Clean accuracy is reported
in parenthesis.

Methods σ = 0.25 σ = 0.5 σ = 1.0 Time

Baselines
SmoothAdv 0.519 (61.5%) 0.801 (55.6%) 0.971 (41.4%) 48.4h
MACER 0.438 (63.2%) 0.628 (52.6%) 0.634 (37.8%) 70h

Ours AdvMacer 0.537 (63.9%) 0.837 (56.2%) 0.989 (45.6%) 48.4h
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Chapter 5

Robust Estimation in Linear Regres-
sion with both Heavy-tailed Data
and Noise

5.1 Introduction

In this big data era, tools for dealing with high dimensionality has been well-

studied. The traditional least square technique is not even available in the setting where

the dimension of data is only slightly larger than the sample size. The development of

popular Lasso [130] provides an alternative to analyze the high-dimensional data, see

also [15]. However, Lasso loses its robustness when the error comes from a heavy tail

distribution, due to the nature of squared error loss which tends to over-penalize the

sample with large error. Modern data collected from various scientific areas reveals a

feature of heavy tail, hence more robust methods are to be proposed. [38] proposes to

estimate the mean regression by regularized huber loss when the error term is lack of

light tail assumption, provided that the underlying data still comes from a sub-Gaussian

distribution. Shrinkage techniques are widely used when tacking heavy-tailed features, see,

for example, [158].

In this chapter, we aim at estimate mean regression vector by shrinkage and
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regularized huber loss. To fix the idea, let’s consider the following linear model,

y = Xβ∗ + ε, (5.1.1)

where the design matrix X ∈ Rn×p has i.i.d rows xi for i = 1, . . . , n, and the zero-mean

noise ε ∈ Rp is independent of X. Throughout the chapter, we assume log p/n→ 0.

The chapter is organized as follows. In section 2, we propose the method of achieving

the robust estimation and present the main result of this chapter. All the technical proofs

are left in section 3.

5.2 Methodology

5.2.1 Estimation

In order to robustify the estimation, we propose to consider the huber loss

ℓα(x) =


2α−1|x| − α−2, if |x| > α−1

x2, if |x| ≤ α−1

and the shrinkage for {xi} and {yi}

x̃ij = min{|xij|, T}
xij
|xij|

, j = 1, . . . , p

ỹi = min{|yi|, T}
yi
|yi|

.

We estimate β∗ by solving the following minimization problem:

β̂ = argmin
β

1

n

n∑
i=1

ℓα(ỹi − x̃Ti β) + λn∥β∥1 (5.2.1)
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The robustness is preserved by the property of huber loss and the nice behavior of the

data at the tail is guaranteed by shrinkage operation.

5.2.2 Main result

We shall present the main conclusions in this section. Observe that the signal β∗

can be expressed as

β∗ = argmin
β

E[∥y −Xβ∥2].

We decompose the error ∥β∗ − β̂∥2 into two terms,

∥β∗ − β̂∥ ≤ ∥β∗
α − β̂∥+ ∥β∗ − β∗

α∥,

where β∗
α = argminβ E[ℓα(y−xTβ)], representing the minimizer of the population mean of

huber loss. Throughout the chapter, we suppose the vector β∗ − β∗
α lies in some bounded

ball in Rp. In the field of sparse recovery, we need to assume some sparsity structure on β∗
α

as in many other popular literatures. Here, we suppose that supp(β∗
α) = S with |S| ≤ s.

The sparsity should satisfy (s log p)/n → 0. For the choice of parameter, we will select

λn ≍
√

log p/n and T ≍ (n/ log p)1/4.

Next, we present the separate bounds for both terms.

Assumptions 5.2.1. For some q > 2,

(1) E[ε2q] ≤M2q.

(2) E[(xTv)2q] = µ with ∥v∥2 = 1.

(3) 0 ≤ κ1 ≤ λmin(E[xxT ]) ≤ λmax(E[xxT ]) ≤ κ2 <∞.

Theorem 5.2.2. Under the assumption 5.2.1, it holds that

∥β∗ − β∗
α∥2 ≲ αq−1.
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Now, we aim to bound ∥β̂ − β∗
α∥2.

Theorem 5.2.3. Under assumption 5.2.1 and additionally assume that E[x2ijx2ik] ≤ R4,

for any 1 ≤ j, k ≤ p. Then

∥β̂ − β∗
α∥2 ≲

√
s log p

n

with probability at least 1− 4p−c for some universal constant c > 0.

Put theorem 5.2.2 and theorem 5.2.3 together, we have the following theorem

establishing the convergence of our estimator β̂.

Theorem 5.2.4. Under the assumptions in theorem 5.2.2 and theorem 5.2.3, we have

∥β̂ − β∗
α∥2 = O(αq−1) +O(

√
s log p

n
)

with probability at least 1− 4p−c for some universal constant c > 0.

Remark 5.2.1. Our result is as sharp as the result in [38] except a multiplicative constant 2

in the power of α. In practice, we always choose α such that αq−1 = O(
√
s log p/n). Hence,

by a smaller choice of α, we obtain exactly the same order O(
√
s log p/n) on the upper

bound as in [38], which means the shrinkage estimation is as optimal as the estimation of

light-tailed data.

5.3 Proof

In this section, we mainly prove theorem 5.2.2 and theorem 5.2.3.

5.3.1 Proof of theorem 5.2.2

Proof of theorem 5.2.2. It follows from the proof of Theorem 1 in [38] that for some vector

β̃ lying between β∗ and β∗
α, it holds that

κ1∥β∗
α − β∗∥22 ≤ 2(2α)q−1E

[(
M q

q + |xTi (β∗ − β̃)|q
) ∣∣xTi (β∗

α − β∗)
∣∣] . (5.3.1)
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By hypothesis, we see that

E
[(
M q

q + |xTi (β∗ − β̃)|q
)2]

= O(1).

By Cauchy-Schwartz inequality, it follows from (5.3.1) that

κ1∥β∗
α − β∗∥22 ≤ O(αq−1∥β∗

α − β∗∥2).

Dividing both sides by ∥β∗
α − β∗∥2 completes the proof.

5.3.2 Proof of theorem 5.2.3

Before we proceed to the proof, it’s useful to introduce some notations. Let

Ln(β) =
1

n

n∑
i=1

ℓα(yi − xTi β)

L̃n(β) =
1

n

n∑
i=1

ℓα(ỹi − x̃Ti β)

be the average huber loss for the original and shrinkage data respectively. We begin the

proof with a preliminary lemma, which explains the choice of λn and T .

Lemma 5.3.1. Choose λn ≍
√

log p
n

and T ≍
(

n
log p

)1/4
, then it holds that

∆̂ = β̂ − β∗
α ∈ C(S) = {∆ ∈ Rp : ∥∆Sc∥1 ≤ 3∥∆S∥1}

with probability at least 1− 2p−c0 for some universal constant c0.

Proof of lemma 5.3.1. By the lemma 1 in [102], ∆̂ ∈ C(S) whenever λn ≥ 2∥∇L̃n(β
∗
α)∥∞.

Therefore, it suffices to show that with the choice of λn, the condition that λn ≥

2∥∇L̃n(β
∗
α)∥∞ holds with high probability.
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Direct calculation gives us

∇L̃n(β
∗
α) =

1

n

n∑
i=1

2

α
ψ(α(ỹi − x̃Ti β∗

α))x̃i,

where ψ(x) = x, if |x| ≤ 1; ψ(x) = 1, if x > 1; and ψ(x) = −1, if x < −1. Notice that

1

α
|ψ(αx)| ≤ |x|, (5.3.2)

therefore we have

Var

(
2

α
ψ(α(ỹi − x̃Ti β∗

α))x̃ij)

)
≤ E

[
4(|ỹi − x̃Ti β∗

α|x̃ij))2
]
≤ 8E[(ỹix̃ij)2] + 8E[(x̃Ti β∗

αx̃ij)
2]

By the hypothesis, one has E[ỹ4i ] ≤ E[y4i ] <∞, and hence by Cauchy-Schwartz inequality

8E[(ỹix̃ij)2] ≤ L1 for some L1 > 0. Consider

E[(x̃Ti β∗
αx̃ij)

2] ≤
√

E[(x̃Ti β∗)4]E[x̃4ij] ≤
√
E[(xi − (xi − x̃i))Tβ∗

α]
4R2

≤ 4
√
E[(xTi β∗

α)
4] + E([(xi − x̃i)Tβ∗

α]
4)R2

≤ L2,

since we assume that β∗
α lies in a bounded ℓ2 ball. Combining the above displays delivers

Var

(
2

α
ψ(α(ỹi − x̃Ti β∗

α))x̃ij)

)
≤ v,

for some finite v > 0. Moreover, | 2
α
ψ(α(ỹi − x̃Ti β∗

α))x̃ij)| ≤ C1T
2 for some constant C1 > 0.

By Bernstein inequality, taking T = ξ(n/ log p)1/4, we obtain

P

(
∇L̃nj(β

∗
α)− E[∇L̃n(β

∗
α)]j ≥ C2

√
log p

n

)
≤ 2p−c′ ,
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for some constant c′ > 1 and C2 > 0. Now we only need to bound E[∇L̃n(β
∗
α)]j . From the

optimality condition of β∗
α, we see that E[∇Ln(β

∗
α)] = 0, and hence

E[∇L̃n] = E[∇L̃n −∇Ln] + E[∇Ln] (5.3.3)

Repeatedly use the observation (5.3.2) and one has E[∇L̃n−∇Ln] ≍
√

log p/n. Therefore

by (5.3.3)

E[∇L̃n(β
∗
α)] ≍

√
log p

n
.

Finally, we obtain

P

(
∇L̃nj(β

∗
α) ≥ C3

√
log p

n

)
≤ 2p−c′ ,

for some constant C3 > 0. Taking λn = 2C3

√
log p/n and a union bound yields

P
(
2∥∇L̃n(β

∗
α)∥∞ ≥ λn

)
≤ 2p−(c′−1).

Let’s introduce a restricted strong convexity condition, which turns out to be crucial

in the proof of theorem 5.2.3. Denote by δLn(β +∆, β) the Taylor remainder if we use

first order Taylor expansion to approximate Ln(β +∆), i.e.

δLn(β +∆, β) = Ln(β +∆)− Ln(β)−∇Ln(β)
T∆.

Now we are ready to state the definition of restricted strong convexity (RSC).

Definition 5.3.1 (Restricted Strong Convexity). The loss function Ln(β) satisfy the

restricted strong convexity on a set C with curvature κL and tolerance τL if

δLn(β +∆, β) ≥ κL∥∆∥22 − τ 2L, for all ∆ ∈ C.
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The following lemma establish the RSC condition of L̃n(β
∗) on C(S) ∩B2(t) with

high probability.

Lemma 5.3.2. The RSC condition holds for L̃n(β
∗
α) on C(S) ∩B2(t), i.e.

δL̃n(β
∗
α +∆, β∗

α) ≥ κ∥∆∥22 − C0t
2(

√
log p

n
+

√
s log p

n
), ∀∆ ∈ C(S) ∩B2(t),

with probability at least 1− 2p−c1.

Proof of lemma 5.3.2. By Taylor expansion,

δL̃n(β
∗
α +∆, β∗

α) =
1

n

n∑
i=1

ψ′(α(ỹi − x̃Ti β∗
α + vx̃Ti β

∗
α))(x̃

T
i ∆)2,

where ψ′(x) = 1, if |x| ≤ 1; ψ′(x) = 0, if |x| > 1. Note that ψ′(x) is not Lipschitz

continuous. In order to use the Ledoux Talagrand contraction theorem ([78]), we need to

truncate ψ′(x) from below.

Define the truncation function ϕm(u) by ϕm(u) = u2I(|u| < m
2
) + (m− u)2I(m

2
≤

|u| ≤ m). Note that ϕm(u) is bounded by m2/4 with Lipschitz constant at most 2m. First

we claim that

δL̃n(β
∗
α +∆, β∗

α) ≥
1

n

n∑
i=1

ϕtT1(x̃
T
i ∆I(|ỹi − x̃Ti β∗

α| ≤ T2)),

for 0 < α ≤ 1/(tT1 + T2), where the thresholds T1 and T2 are to be determined later. This

result was proved in the proof of Lemma 2 in [38]. Now it suffices to show that

1

n

n∑
i=1

ϕtT1(x̃
T
i ∆I(|ỹi − x̃Ti β∗

α| ≤ T2)) ≥ κ∥∆∥22 − C0t
2(

√
log p

n
+

√
s log p

n
),

∀∆ ∈ C(S) ∩B2(t),
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with high probability. We will finish the proof by two steps:

(a) E[ϕtT1(x̃
T
i ∆I(|ỹi − x̃Ti β∗

α| ≤ T2))] ≥ κ1

4
∥∆∥2.

(b) Define W (t) = sup∆∈C(S)∩B2(t)
1
n
|
∑
ϕtT1 − EϕtT1|, then

W (t) ≤ C0t
2(

√
log p

n
+

√
s log p

n
) (5.3.4)

with high probability

In order to show (a), we observe that for any 1 ≤ j, k ≤ p,

E[|xijxik − x̃ijx̃ik|] ≤
√

E(xijxik)2(P(|xij| ≥ T ) + P(|xik| ≥ T )) ≤
√
2R3

T 2
.

Furthermore, one has ∥E[|xijxik − x̃ijx̃ik|]∥∞ ≤
√
2R3/T 2. For notation simplicity, let the

event Ai = {|x̃Ti ∆| ≤ tT1/2} and Bi = {|ỹi − x̃Ti β∗
α| ≤ T2}, and drop the subscript i if

there is no ambiguity. Then it’s easy to see that

E[ϕtT1(x̃
T
i ∆I(|ỹi−x̃Ti β∗

α| ≤ T2))] ≥ E[(x̃T∆)IA∩B]

≥ ∆TE[xxT IA∩B]∆−∆TE[(xxT − x̃x̃T )]∆

≥ ∆TE[xxT (1− IAc∪Bc)]∆−
√
2R3

T 2
∥∆∥21

≥ ∆TE[xxT ]∆− µ2
4

√
P(Ac) + P(Bc)∥∆∥22 − C1s

√
log p

n
∥∆∥22.

It can be shown that

P(Ac) ≤ 4E(x̃T∆)2

t2T 2
1

≤
4
[
E(xT∆)2 +∆TE[x̃x̃T − xxT ]∆

]
t2T 2

1

≤
4
[
µ2
2∥∆∥22 + C1s

√
log p/n∥∆∥22

]
t2T 2

1

≤ C2

T 2
1

.

and similarly that P(Bc) ≤ C3/T
2
2 . Choose sufficiently large T1 and T2 of constant order,
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we have

E[ϕtT1(x̃
T
i ∆I(|ỹi − x̃Ti β∗

α| ≤ T2))] ≥ κ1∥∆∥22 −
κ1
2
∥∆∥22 − C1s

√
log p

n
∥∆∥22 ≥

κ1
4
∥∆∥22.

Next, we shall finish step (b). SinceW (t) is a bounded random variable, by Massart

inequality one has for any w > 0,

P
(
|W (t)− EW (t)| ≥ t2T 2

1

√
w

n

)
≤ 2e−w/8. (5.3.5)

In order to bound EW (t), we use symmetrization argument and bound it by Rademacher

complexity.

EW (t) ≤ 2E

[
sup
∆
| 1
n

n∑
i=1

γiϕtT1(x̃
T
i ∆IBi

)|

]
, (5.3.6)

where γi are i.i.d. Rademacher variables. By Ledoux-Taragrand contraction theorem ([78]),

(5.3.6) can be further bounded by

EW (t) ≤ 8tT1E

[
sup

∆∈C(S)∩B2(t)

| 1
n

∑
γix̃

T
i ∆IBi

|

]

≤ 32t2T1
√
sE

[
∥ 1
n

n∑
i=1

γix̃i∥∞

]

≤ C4t
2T1

√
s log p

n
, (5.3.7)

Putting together (5.3.5) and (5.3.7) and taking w = c1 log p for some constant c1, we get

the desired result (5.3.4) with probability at least 1− 2p−c1 .

With these preparatory lemmas, we are ready to prove theorem 5.2.3.
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Proof of theorem 5.2.3. We define an intermediate estimate by

β̂η = β∗
α + η(β̂ − β∗

α),

where

η =


1, if ∥β̂ − β∗

α∥2 ≤ t,

t/∥β̂ − β∗
α∥2, if ∥β̂ − β∗

α∥2 > t.

Let ∆̂η = β̂η − β∗
α, thus ∥∆̂η∥2 ≤ t by construction. From the optimality of β̂ and the

convexity of L̃n(β) + λn∥β∥1, one has

L̃n(β̂η) + λn∥β̂η∥1 ≤ L̃n(β
∗
α) + λn∥β∗

α∥1.

Furthermore,

δL̃n(β̂η, β
∗
α) ≤ λn(∥β∗

α∥1 − ∥β̂η∥1)− ⟨∇L̃n(β
∗
α), ∆̂η⟩ (5.3.8)

Denote by E and F the events in lemma 5.3.1 and lemma 5.3.2 respectively. By the

Lemma 1 in [102], ∆̂η ∈ C(S) whenever λn ≥ 2∥∇L̃n(β
∗
α)∥∞. Therefore, conditioned on

the events E and F , we have

κ∥∆̂η∥22 − C0t
2(

√
log p

n
+

√
s log p

n
) ≤ δL̃n(β̂η, β

∗
α) ≤ λn(∥β∗

α∥1 − ∥β̂η∥1)− ⟨∇L̃n(β
∗
α), ∆̂η⟩

≤ λn∥∆̂η∥1 + ∥∇L̃n(β
∗
α)∥∞∥∆̂η∥1

≤ C

√
s log p

n
∥∆̂η∥2

Some algebra shows that

∥∆̂η∥2 ≤ C1

√
s log p

n
+ tC2

(
s log p

n

) 1
4

(5.3.9)
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Choose t = 2C1

√
s log p

n
. For sufficiently large n and p, we obtain

∥∆̂η∥2 < 2C1

√
s log p

n
= t

By the construction of β̂η, we see that ∥∆̂η∥2 < t happens only if ∆̂η = ∆̂. Finally

we complete the proof by noting that P(E ∩ F ) = 1 − P(Ec ∪ F c) ≥ 1 − 8p−c′ , where

c′ = min{c0, c1}.

Chapter 5, in full, is a research project of the material ”Robust Estimation in

Linear Regression with both Heavy-tailed Data and Noise”, Liu, Linbo and will be further

enhanced for submission. The dissertation author was the primary investigator and author

of this project.
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[72] Siem Jan Koopman and André Lucas. A non-gaussian panel time series model for
estimating and decomposing default risk. Journal of Business & Economic Statistics,
26(4):510–525, 2008.

[73] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[74] Lai. Dataset of kaggle competition web traffic time series forecasting, version 3.,
2017.

[75] Sophie Lambert-Lacroix and Laurent Zwald. Robust regression through the huber’s
criterion and adaptive lasso penalty. Electronic Journal of Statistics, 5:1015–1053,
2011.

[76] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to
adversarial examples with differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 656–672, 2019.

[77] Olivier Ledoit and Michael Wolf. Improved estimation of the covariance matrix of
stock returns with an application to portfolio selection. Journal of empirical finance,
10(5):603–621, 2003.

159



[78] M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and
processes. Springer Science & Business Media, 2013.

[79] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial
robustness with additive noise. Advances in neural information processing systems,
32, 2019.

[80] Y. Li, X. Bian, and S. Lyu. Attacking object detectors via imperceptible patches on
background. arXiv preprint arXiv:1809.05966, 2018.

[81] Youjuan Li and Ji Zhu. L 1-norm quantile regression. Journal of Computational
and Graphical Statistics, 17(1):163–185, 2008.

[82] Bryan Lim, Stefan Zohren, and Stephen Roberts. Recurrent neural filters: Learning
independent bayesian filtering steps for time series prediction. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[83] Chizhou Liu, Yunzhen Feng, Ranran Wang, and Bin Dong. Enhancing certified
robustness via smoothed weighted ensembling. arXiv preprint arXiv:2005.09363,
2020.

[84] Haoyang Liu, Alexander Aue, and Debashis Paul. On the marčenko–pastur law for
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