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We describe and demonstrate an empirical strategy useful for dis-
covering and replicating empirical effects in psychological science.
The method involves the design of a metastudy, in which many
independent experimental variables—that may be moderators
of an empirical effect—are indiscriminately randomized. Radical
randomization yields rich datasets that can be used to test the
robustness of an empirical claim to some of the vagaries and
idiosyncrasies of experimental protocols and enhances the gen-
eralizability of these claims. The strategy is made feasible by
advances in hierarchical Bayesian modeling that allow for the pool-
ing of information across unlike experiments and designs and is
proposed here as a gold standard for replication research and
exploratory research. The practical feasibility of the strategy is
demonstrated with a replication of a study on subliminal priming.

robustness | generalizability | metastudy | radical randomization |
many labs

Imagine, if you will, an experiment in the psychological labora-
tory. In the experiment, a single participant provides data in

each of two conditions. Further suppose an effect is observed
in the form of a mean difference between the two conditions.
Unless there are strong reasons to believe that all humans are
largely interchangeable with respect to this particular effect,
readers and reviewers will reasonably point out that this effect
might be idiosyncratic to the participant and hence not general-
izable to the broader population.

One potential remedy is for the researcher to replicate the
experiment with the same participant and one newly recruited
participant—thereby enacting a systematic manipulation of the
suspected moderating variable (i.e., participant identity). Such a
design enables at least two related claims: possibly that there are
individual differences in the magnitude of the effect, and possibly
that the effect occurs in some participants but is absent in others.

This strategy is, however, clearly limited: It does not allow for
population-level inference. Rather than merely observing that
some individual differences could occur, we might instead be
interested in whether the effect holds for most humans, or on
average across humans, or perhaps for all humans. Such claims
call for a hierarchical strategy in which not one or two but many
participants are randomly sampled from the population toward
which we wish to generalize. If the resultant sample is represen-
tative of the population, then the sample mean effect will be an
unbiased estimate of the population mean effect and the sample
variance in the effect will permit statements about the generality
of its occurrence.

In the same way that psychological scientists typically want
to generalize from one participant to all potential participants
(within certain boundaries), so too will they often want to gen-
eralize from a small set of conditions to all conditions (within
certain boundaries). For example, researchers who want to claim
that stress impairs memory presumably believe that this effect is
not specific to the particular aspects of one specific experiment.
However, testing the myriad experimental “facets,” or moder-

ators, involved (e.g., setting, stimuli, etc.) can be burdensome,
time-consuming, and expensive. The strategy of random selec-
tion is a sound and viable one for potential moderators of an
experimental effect, including potential moderators other than
participant identity. In particular, we believe that extensive ran-
domization can lead to scientific conclusions that are more gen-
eral in scope, more robust to incidental variations in experimen-
tal setup, and more likely to replicate in future studies.

In what follows, we will we introduce the concept of a “meta-
study,” in which we combine “radical randomization” (RR) of
experimental features and systematic pooling of information
with a Bayesian hierarchical model. We argue that sampling from
a population of possible experiments in the same way one would
sample from a population of possible participants is a practically
feasible approach that can increase the robustness of empirical
findings in psychology.

Causes of Nonreplication and Variations on Replication. Replicabil-
ity of empirical findings has been a central topic in recent psy-
chological science. Following a series of dramatic revelations
in which researchers have appeared unable to reliably replicate
empirical effects once thought to be robust, there is now talk of
a “crisis of confidence” (1) in the field. While there are a num-
ber of possible explanations for the lack of replicability (2), one
commonly indicated problem is the issue of publication bias: the
preference to publish statistically significant results (i.e., results
that lead to the rejection of a null hypotheses; refs. 3 and 4).
This statistical significance filter (5) biases the published record
toward results that capitalize on measurement noise and fluke
outcomes (6).

Moreover, evidence from psychological studies—even if pub-
lished without bias toward certain outcomes—is often weak due
to traditions of insufficient sample sizes and noisy measurement
tools, which lead to generally low ability to detect true effects
and a concomitant increase in false-positive results (7, 8). The
combination of publication bias and low standards of evidence
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would naturally cause frequent failures to replicate, since effects
claimed in the published literature are likely to be false alarms.
Given the uncertain nature of one-off effects found in the liter-
ature, replication of empirical results is a clear gold standard of
convincing evidence: Greater confidence is warranted in theories
whose predictions repeatedly come true (9) or whose predictions
survive repeated falsification attempts (10).

At the same time, even when a published effect is true, it
is possible for effects to fail to replicate strictly due to seem-
ingly innocuous differences in the implementation of the exper-
iment (i.e., due to “hidden moderators” that may occur in repli-
cation studies). Small variations in experiments are of course
unavoidable: Exact replication is strictly impossible. However,
for the purposes of creating generalizable knowledge what mat-
ters most is recreating the necessary and sufficient conditions
that will show the effect as predicted by some theory. By implica-
tion, small experiment variations that are not theoretically rele-
vant should have only minimal impact on the size of a true effect.
Indeed, theoretical statements made by researchers almost with-
out fail imply some degree of robustness to irrelevant variables.
It was recently proposed that authors make these claims explicit
as part of every paper (11, 12).

Such robustness is, of course, a testable assertion. We could
take any one of these suspected hidden moderators, system-
atically vary it as an independent variable (IV) in an experi-
ment, and quantify any differences so obtained. Much theoretical
knowledge grows exactly in this fashion.

A related distinction that is often made among replication
attempts is that between direct and conceptual replications. A
direct replication is one in which the replicating team attempts
to follow the original protocol as closely as possible, allowing
for no moderating variables that might distort the findings or
obfuscate the effect seen in the original publication. In a direct
replication, the exact same theoretical prediction—that is, the
same hypothesis—is tested. A conceptual replication, conversely,
is one in which the replicating team tests the same theory but uses
a different instantiation of theory to hypothesis, with entirely dif-
ferent values on some independent variables and possibly differ-
ent dependent and independent variables as well. In such a repli-
cation the issue at hand is the robustness of a reported effect to
theoretically irrelevant design variations.

Both of these approaches have associated problems. A com-
mon concern about direct replications is that it is typically impos-
sible to copy a protocol exactly: Replications tend to take place at
a different time and place from the original, with different sub-
jects, and they are often by a different laboratory with slightly
different ineffable and undocumented practices, and not all of
the relevant details are reported in the original publication. Con-
ceptual replications, however, lack falsification power: A lack of
effect may be due to one of the many differences between the
original and the replication. While irrelevant within the adopted
theoretical framework, an innocuous difference in design might
in fact be a genuine moderating factor. As such, the masking of
an otherwise replicable effect by a hidden moderator and a gen-
uine failure to replicate are strictly unable to be teased apart with
conventional techniques.

Radical Randomization
Here we present an alternative take on replication that involves
the RR of many features of an experiment. As an example, imag-
ine a study in which researchers are interested in some difference
between two manners of stimulus presentation. A visual stimu-
lus (e.g., the symbol v) is either presented to the participant nor-
mally for a short time (e.g., 30 ms) or it is presented with tempo-
ral masking—meaning that it is preceded and followed by visual
masks (e.g., strings of symbols such as &&&). These masks are
called “forward masks” and “backward masks,” respectively, and
their addition sometimes suppresses the conscious perception of

the temporally flanked stimulus. Such an experiment has a few
immutable features that are necessary to address the question at
hand (critically, some stimuli need to be masked while others are
not). However, many of the features of this experiment are chosen
largely arbitrarily: Presumably there is nothing special about the
symbol v and the same differences could be illustrated with the
symbol b instead, and presumably ### is as effective a forward
or backward mask as &&&. If the effect exists, it should shine
through—if perhaps diminished—for many different symbols and
many different small variations on the experimental setup.

In an RR design, this presumption of robustness is put to
a critical test. Rather than consistently using the symbol v, we
instead randomly choose any symbol from a set and then choose
a new symbol whenever we can (without harming the validity
of the study). Such a design could be considered defensive in
the sense that it hardens our conclusions against minor infideli-
ties in future replication attempts (i.e., replication attempts that
are not strictly faithful and hence are not direct replications)—
infidelities such as using a different symbol. That is, the RR
design makes conclusions more robust because it mimics some of
the potential variance between an experiment and future replica-
tion attempts that are—as all replications are—inexact.

To distinguish those immutable IVs that are needed to define
the effect of interest from the innocuous design features (strictly
speaking also IVs) that are randomized, it will be useful to intro-
duce some new terminology. Borrowing from generalizability
theory (13), we call these to-be-randomized IVs facets, and we
call a study with many facets a metastudy. While a typical IV has
a limited set of values that we normally call conditions, the values
of a facet are drawn randomly from a potentially infinite popula-
tion. We call the values of a facet that happened to be drawn for
a particular metastudy its “levels,” and we call each cell in the
multifaceted design a “microexperiment.” The immutable IVs
that occur in each microexperiments will be called “elementary
IVs.” Finally, it will sometimes be useful to think of the pop-
ulation of possible microexperiments, which is defined by the
space spanned by all of the facets of a study. We call this the
“method space.”

Facets can be simple design choices (e.g., the exact stimuli
selected from a larger pool), natural constraints (e.g., the geo-
graphical location of the laboratory), or explicitly labeled nui-
sance variables that are randomized (e.g., individual differences
between participants). The goal of introducing variability in a
facet is to investigate the generality of an effect within a much
broader subspace of the method space than is commonly the
case. If an effect remains, despite variability in some design fea-
tures, we establish robustness: invariance of the effect to reason-
able variation in the facet. Alternatively, the effect may turn out
be sensitive to such variability.

What constitutes “reasonable variation”—as formalized by the
distribution from which levels of a facet are drawn—is up to the
judgment of the researcher. The sampling distribution of a facet
determines the “universe of intended generalization”: the range
within which we aim to establish the existence of the effect. In
general, levels should be sampled so that they well represent the
range of the facet across which one hopes to draw conclusions.

Facets may be of particular interest when they are predicted—
by one theory or another—to moderate an empirical effect. In
such cases, establishing the moderating influence or the invari-
ance of the effect are both of theoretical interest. However, the
purpose of an RR procedure is not to build or refine theories as
much as it is to establish that an effect holds. Researchers set-
ting up a metastudy are therefore recommended to be liberal in
which facets they select for randomization.

We are of course not the first to suggest randomiza-
tion of experimental features. Indeed, in 1973 psycholinguist
H. H. Clark (14) suggested it as a treatment for what he called the
language-as-fixed-effect fallacy, and R. A. Fisher (9) famously
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proposed it to avoid systematic effects of sampling locations in
agricultural experiments. Our position might be characterized
as an objection to a broader error of inappropriate use of fixed
effects.

Finally, we should point out that randomization itself is
not unique in its suitability toward the goal of obtaining a
representative sample (15). We merely propose it here as a con-
venient practical approach to exploring the space of possible
microexperiments.

Individually Weak, Jointly Powerful. The RR approach that we
propose involves the implicit construction of many microexperi-
ments and randomly sampling among them. A microexperiment
might consist of all of the trials that share a level of one selected
facet (hundreds or thousands of trials) but may be as small as
all of the trials in a single block by a participant (a few dozen
trials). What constitutes a microexperiment is less a design deci-
sion than a feature of the statistical analysis: It is a grouping
of observations that is homogeneous in the facet(s) of interest
(but has variability in the elementary IVs so that contrasts can be
computed).

Individually, these microexperiments do not deliver much evi-
dence for or against the existence of an effect. However, a key
component of the approach is the use of modern statistical tech-
niques (e.g., Bayesian hierarchical modeling and meta-analysis;
refs. 16 and 17) to pool information across datasets efficiently.

Theory Testing. A metastudy serves to make a stronger state-
ment about the existence of an empirical effect—namely, its per-
sistence across variations on an experiment. To test an effect
in such a hierarchical scenario it is more beneficial to increase
the number of independent variations than it is to increase
the number of data points. Hence, by randomly sampling many
locations in the method space and conducting a small inde-
pendent experiment in each location the multifaceted design
allows robust and statistically powerful statements about the
effect.

A theory, with a universe of intended generalizability, can
be formalized as an effect size function over a region within a
method space—rather than over a point, which would repre-
sent a more local hypothesis. The region of the method space
within which an effect presents itself allows us to make empiri-
cally backed statements about the constraints on generality—that
is, the boundary conditions of the theory—that are usually only
implicit in psychological theories.

While this strategy seems straightforward—perhaps even
obvious—it is to the best of the authors’ knowledge essentially
unused in psychological or cognitive science. Over time, research
groups with a concerted study program eventually develop a
portfolio of experiments that vary in small ways, and in that sense
these groups work to establish robustness (or observe the lack of
it). However, the systematic execution of such a population of
experiments—in what we here call a metastudy—does not occur,
leading to the potential for bias and correlated error. We believe
that the multifaceted design has great potential as a defensive
design strategy that allows for more general statements and tests
of theory and is likely to yield conclusions that are more robust
to small variations in design implementation.

Statistical Analysis of Multifaceted Designs
The multifaceted design affords a number of different statistical
approaches. In this section we discuss three possibilities. In the
case example, we will demonstrate all three.

In what follows, we will assume an experimental metastudy
with some set of elementary independent variables that are the-
oretically interesting (i.e., whose effect on a dependent variable
we are hoping to quantify) and some set of facets. Most facets
are not relevant according to the theory we are testing but might

be relevant according to some unspecified rival theory or be rel-
evant in ways that are simply not yet discovered.

Global Tests. Many experimental studies are specifically designed
to answer a particular question, often of the unary form “is A dif-
ferent from 0?” or the binary form “is B greater than C?” Even
though we often have multiple, randomly selected participants
and we expect there to be person-level variability, the random
effect of participant identity is often ignored on the (reasonable)
assumption that with a sufficiently large sample any interindivid-
ual differences will “wash out” so the sample is balanced and
the sample mean effect is a good estimate of the population
mean effect. With the same argument, we can—in a first pass—
ignore the differences between the randomly sampled levels of
the facets in an experiment. This way, we are able to test for the
existence of an inequality on average over the range of possible
values of the facet.

The formulation of the model is somewhat standard. Letting
ym(i) stand for the dependent variable observed at trial i (which
is nested in microexperiment m) and letting xkm(i) stand for for
the corresponding value of the k th elementary IV Xk (where
conventionally x0m(i) = 1 to represent the intercept), the global
test model has a set of regression weights βk and a variance ς2.
Errors εm(i) are identical and independently distributed (i.i.d.)
standard normal:

ym(i) =

K∑
k=0

βkxkm(i) + ςεm(i).

This fairly common formulation subsumes as special cases the
models associated with the t test (if K = 1 and X1 is binary),
linear regression (if X are continuous), or ANOVA (if K > 1
and all Xk are binary).

We emphasize, however, that such a global test is only valid
if the results are relatively homogeneous between microexperi-
ments. In the same way that ignoring large individual differences
may invalidate the results of a conventional experiment, if a facet
causes true heterogeneity in the effect size the global test can be
a poor approximation, and it is important to evaluate whether
the test is appropriate before drawing conclusions from it.

Level-2 Heterogeneity and Moderation. Experimental effect sizes
are inherently unstable. Even in the absence of explicit mod-
erators any set of experiments will show variance even in the
true effect size—that is, above and beyond measurement error.
This instability—which occurs due to ephemeral differences even
between superficially identical designs—is sometimes referred to
as level-2 heterogeneity.

The global hypothesis test above makes no statement about
the robustness of the finding to variations in the experimen-
tal setup. To evaluate robustness we can apply a hierarchical
model in which a facet is allowed to interact with any or all of
the elementary IVs (including the intercept). We then inspect
if and how the effect varies over the range of each of the indi-
vidual facets. In the hierarchical model the regression weights
are decomposed to yield the following random-effects model
equation:

ym(i) =
K∑

k=0

(βk + σkγkm) xkm(i) + ςεm(i).

Here, the new parameter γkm indicates the unique contribution
of the facet to the effect of the k th elementary IV. The parameter
is i.i.d. standard normal. Of primary interest in this scenario is σk ,
the level-2 variance of the contribution of the facet to the effect
size βk , and potentially the pattern of change in γkm across its lev-
els m . The former quantifies the heterogeneity of the effect size:
σk can be compared with the fixed effect size βk for reference;
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the ratio ρk = σk/βk is sometimes called the coefficient of vari-
ation. The parameter ρk may be interpreted as a measure of
robustness, with small values (say, less than 1/3 or 1/4) indicat-
ing robustness and large values indicating sensitivity to the facet
k . The changes in γkm over the facet allow us to visualize and
study its influence.

While it is sometimes sufficient to visualize an effect or a pat-
tern of effects across values of a moderator, we occasionally need
to test whether an effect is nominally present or absent in a given
condition. For this purpose, we can use a Bayes factor (or likeli-
hood ratio), which expresses by how much the relative probabil-
ity of a pair of hypotheses changes when the data are taken into
account. That is, if Ha andHb are the hypotheses under consid-
eration and x is the data, the Bayes factor is given by

Bab =
P(Ha |x )/P(Hb |x )

P(Ha)/P(Hb)
.

We will interpret Bab ≥ 10 as strong support forHa .

Planned Meta-Analysis. A metastudy will typically lead to some-
what larger datasets than are common in psychological science.
To apply a high-dimensional statistical model to a large dataset
we use one particularly useful approximation that changes our
analysis from a standard hierarchical model into a planned meta-
analysis. The approximation is based on the central limit theo-
rem, which allows us to substitute nm normally distributed data
points ym(i) with variance ς2 by their means ȳm with SD equal to
the SE of measurement sm :

ȳm =

K∑
k=0

(βk + σkγkm) xkm + smεm .

A conventional meta-analysis involves a set of studies, each of
which can be represented as a point in the method space, with
the exact location chosen by the experimenters. The meta-analyst
then computes a weighted average of effect sizes across these
studies. While conventional meta-analysis is often plagued by
severe issues such as publication bias, this is not a concern
for the metastudy. Similarly, the issue of hidden moderators is
reduced here since at least some differences between microex-
periments are recorded: Facets are explicitly identified and their
levels are not arbitrarily chosen but—to the extent possible—
fairly and independently sampled from a well-defined population
distribution.

In the following section we will apply these methods and anal-
yses to an experimental study in cognitive science. For the pur-
poses of exposition we will omit some detail regarding the exper-
iment (full details are available at https://osf.io/u2vwa/).

The Effect of Masked Cues on Cognitive Control
As a toy demonstration, we replicate a recently published exper-
iment in cognitive psychology. Reuss et al. (ref. 18; see espe-
cially figure 1) describe an experiment in which a cue that is
presented for a subliminal amount of time (i.e., too briefly to be
consciously detected) influences how participants balance speed
and accuracy in a response-time task. This design has obvious
facets (e.g., the color of the cue) whose exact values are not
expected to affect the finding of subliminal perception: If the
effect is robust, it should appear at all values of the facet; if it
is fickle, it should appear in some (contiguous) value ranges but
not in others; if it is false, it should not consistently appear in any
range of values.

The Basic Task. In the experiment participants were shown a
“bullseye” stimulus consisting of a dot surrounded by nine con-
centric circles. The stimulus appeared either in the right or the
left half of the screen and participants were instructed to move
the mouse pointer from the center of the screen to the center

of the bullseye and then click the left mouse button. Shortly
before the presentation of the stimulus a single-letter cue was
presented, instructing participants to either favor accuracy (mea-
sured in distance from the center) or favor speed. Additionally,
the cue was either masked (by the rapid presentation of two
three-symbol strings like ### and &&&) or not, giving rise to
four experimental conditions. Of primary interest is the effect
of the masked cue instruction on the speed and accuracy of the
responses that Reuss et al. (18) first reported.

Sampling the Method Space. During the development of the study
the experimenters collaboratively constructed a list of facets to
include. In Table 1 we list facets related to timing, including the
duration of the first and second forward mask, of the first and
second backward mask, of the masked and unmasked cue; facets
related to color, including the hue and luminance of masks and
cues; and other miscellaneous facets, such as the symbols used in
the mask and the testing location.

Each of these facets was assigned a distribution from which
its values were to be randomly sampled at the beginning of each
microexperiment. In almost all cases this involved a uniform dis-
tribution over a range of integer values (e.g., the variables relat-
ing to presentation time were naturally expressed as an inte-
ger number of frames). For one facet, variance was introduced
not through random sampling but by a convenience sample: The
experiment was conducted in six different geographical locations.

The Experiment. Each participant’s session of the experiment
began with 16 practice trials whose facets were set to match the
original study by Reuss et al. (18) as closely as possible. After
that, each block of trials consisted of (i) 40 “bullseye” trials whose
facets were set to a random value sampled from the correspond-
ing distribution and (ii) 40 “cue identification” trials whose facets
were set to the same values used in the immediately preceding
bullseye block. The first eight trials of each type were consid-
ered practice trials as well. The goal of the cue identification
trials was to confirm the true subliminal nature of the masked
cue. Crucially, all facets’ values were resampled at the start of

Table 1. Heterogeneity over facets

Facet Levels Original ρ̂∗

First forward mask duration 0–50 ms 40 ms 0.42
Second forward mask duration 0–50 ms 30 ms 0.52
Total forward mask duration 0–100 ms 70 ms 0.59
First backward mask duration 0–50 ms 40 ms 0.49
Second backward mask duration 0–50 ms 30 ms 0.52
Total backward mask duration 0–100 ms 70 ms 0.69
Masked cue duration 0–50 ms 30 ms 0.90
Blank interval duration 250–750 ms 500 ms 0.93
Intertrial interval duration 500–1,500 ms 1,000 ms 0.55
Mask and cue color 13 colors† White 0.13
Mask and cue contrast 0.5 ≤ × ≤ 1.0 1.0 0.21
Target center color 13 colors† Red 0.10
Target center contrast 0.5 ≤ × ≤ 1.0 1.0 0.21
Target surround contrast 0.5 ≤ × ≤ 1.0 1.0 0.22
First mask symbol @, #, $, %, &, ? # 0.06
Second mask symbol @, #, $, %, &, ? % 0.06
Location Six locations‡ 0.36

∗ρ̂ indicates the observed heterogeneity that the facet introduces in the
effect of masked cues on accuracy (lower values indicate greater robust-
ness).
†Twelve hues were sampled between integer multiples of 30° angles in HSV
color space; the 13th color was white.
‡The locations were the research laboratories of authors C.D. (Sydney, Aus-
tralia), C.N.W. (Syracuse, NY), D.R.L. (Melbourne, Australia), D.v.R. (Gronin-
gen, The Netherlands), J.S.T. (Nashville, TN), and J.V. (Irvine, CA).
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each block of bullseye trials, making each block of trials a unique
microexperiment.

Practice trials were discarded. At each bullseye trial we
recorded two dependent variables: (i) the participant’s response
time and (ii) the distance (in millimeters) between the center of
the stimulus and the point where they clicked. In the cue iden-
tification trials we recorded (i) the response time and (ii) the
(binary) accuracy. We discarded trials where the reaction time
was too high (over 2,500 ms) or too low (under 150 ms) and
where the participant clicked without moving the pointer.

Each of the six participating laboratories decided how many
blocks each participant would complete (all laboratories chose
14 blocks, which made for ∼1-h sessions) and how many partici-
pants would be recruited; with no fixed stopping rule set. Labora-
tories recruited between 47 and 78 participants from their insti-
tutional human subjects pools, for a total of 346 participants and
up to 4,844 microexperiments, all with randomly drawn levels on
each facet.

The experiment was approved by the institutional review
boards of University of California, Irvine (2015-1802), Syracuse
University (13-269), Vanderbilt University (151563), University
of Groningen (15122-NE), University of New South Wales (153-
2387), and the Melbourne School of Psychology (1544198.3). All
participants provided informed consent at the beginning of the
experiment and were informed that participation was voluntary.

The Dependent Variable. Throughout the following analyses, the
quantity of interest is the magnitude of the conditional effect
of the cue when it is masked—that is, the difference between
the masked-cue, accuracy-instruction condition and the masked-
cue, speed-instruction condition. For the purposes of exposition,
we will focus only on the dependent variable “accuracy” (neg-
atively coded as the distance from the center of the bullseye),
but similar results were found for the “reaction time” dependent
variable.

Level-2 Variability. To quantify the heterogeneity between the
4,844 microexperiments we applied a hierarchical Bayesian
model (19) that included a unique effect size parameter for
each microexperiment (i.e., a random effect of microexperi-
ment). This results in a distribution of effect sizes with as many
values as there were microexperiments. Focusing on the effect
of masked cues only, the mean of that effect size distribution
was estimated at β̂≈ 3.36 mm. However, its population SD was
σ̂≈ 6.46 mm and the coefficient of variability was ρ̂≈ 2, which
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Fig. 1. Level-2 variability. Histograms of estimated effect sizes across
microexperiments are split between masked (Left) and unmasked (Right)
conditions and between microexperiments that support an effect (regular
bars) versus no effect (inverted bars). Darker bars indicate stronger support
with a Bayes factor of at least 10. A majority of microexperiments show sup-
port for the unmasked effect, but a similarly large number support no effect
of the masked cue.
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Fig. 2. (Left) Microexperiments support an effect when participants are
able to consciously identify the cue (square markers), but not otherwise
(round markers). (Right) The data are split by subliminality. The facet “tar-
get center color” was varied over 13 possible levels, but the facet does not
appear to moderate the effect of interest. That is, the effect appears robust
against this facet. In both panels error bars show 99% credibility inter-
vals. Solid square markers indicate strong evidence (Bayes factor >10) for
a nonzero value. Solid round markers indicate strong evidence for a zero
value. Empty markers indicate ambiguous evidence.

indicates that the effect is sufficiently sensitive to the differences
between microexperiments that it will occasionally vanish.

A histogram of the distribution of effect sizes over microex-
periments (Fig. 1) shows the large variability. To construct these
histograms, we computed Bayes factors∗ to express the statisti-
cal support for a nonzero effect in each microexperiment. The
sample effect sizes more consistent with a zero effect make up
the inverted histogram. The figure shows that three-quarters of
the individual microexperiments in the masked condition appear
more consistent with no effect than with a positive effect and a
small number show an effect in the opposite direction. By con-
trast, in the unmasked condition the large majority of microex-
periments are more consistent with a positive effect.

The large variability appears to suggest the existence of one or
more moderating variables hidden in our design. We can quan-
tify the heterogeneity of this effect by applying a sequence of
hierarchical models. In each model we will estimate the variabil-
ity of the effect size across levels of one facet (i.e., a random
effect of the facet). Each such analysis will yield an estimated
coefficient of variability associated with that facet. These esti-
mates are given in Table 1. The largest heterogeneity is seen in
the various timing facets, and the effect is particularly unstable
across levels of “masked cue duration” and “blank interval dura-
tion,” while it appears to be relatively robust to changes in colors
and symbols.

Moderator Analysis. The observed heterogeneity can be explored
by the explicit introduction of potential moderators of the effect.
One candidate moderator that is not included in Table 1 is the
subliminality of the cue as presented. Recall that after each
block of bullseye trials participants completed a block of tri-
als in which they were asked only to identify the cue. In these
cue-identification blocks, the cue was presented with the same
settings (i.e., the same values on the relevant facets) as in the

∗The Bayes factors express how much less likely the effect size of 0 mm is under its
posterior distribution than under its prior distribution. The prior distribution of the
effect size β̂ is derived from the prior distributions of the condition means, which was in
turn derived from the source paper (18). Assuming a repeated measures correlation of
no more than 0.5, the effect size prior worked out to a normal distribution with mean
0 mm and SD 10 mm. This test is maximally sensitive to effect sizes that are slightly
smaller than the global mean effect size in the original paper. None of our conclusions
regarding Fig. 1 is sensitive to reasonable variation in these assumptions.
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bullseye trials. We can quantify the subliminality of the cue under
these conditions by the accuracy in the cue-identification trials.

Fig. 2, Left shows how the effect of the masked cue varies as
a function of the subliminality of the cue presentation. Only in
those microexperiments where the cue identification accuracy is
at least 68% does an effect of the masked cue appear. In the
figure, square markers are filled if the data strongly support an
effect (with a Bayes factor of at least 10), round markers are filled
if an effect size of zero is strongly supported, and empty markers
indicate ambiguity. Each facet can be explored in a similar way
to evaluate whether it moderates the effect of interest.

The level-2 variability analysis hinted at the presence of a
potential moderator, and Fig. 2 identifies subliminality as one.
We can construct similar figures to indicate the lack of a sys-
tematic effect of a facet. For example, a facet that is an unlikely
moderator is the color of the target center. In Fig. 2, Right, we
graph the effect size as a function of this facet, splitting microex-
periments according to whether the cues were consciously vis-
ible. The effect appears to be robust to changes in this facet
since it occurs across all levels of the facet for supraliminal tri-
als (squares) and nowhere for subliminal trials (circles).

Conclusion. The effect of masked cues is strongly qualified by the
moderator analysis. Masked cues seem to have an effect on par-
ticipant behavior only in those settings where the cue is con-
sciously visible. We find no evidence of an effect of subliminally
presented cues. On the contrary, our data are more consistent
with no effect when the cue presentation is truly subliminal.

Discussion
Robustness and generalizability of empirical results are critical
considerations regarding the reproducibility crisis that has beset
psychological science. The RR approach to experimental design,
in which features of an experimental design are strategically ran-
domized, allows researchers to make statements that are less sen-
sitive to unavoidable between-study variability. When a single
experiment demonstrates the existence of some effect there is
the risk that the effect is isolated to a particular “sweet spot” in

the method space. By contrast, the metastudy allows us to make
statements about effects in regions in a method space: a well-
defined and formalized universe of intended generalization.

In our view, metastudies complement the standard approach
to empirical research. The RR approach speaks to the robust-
ness of empirical effects, but such information is only useful to
the extent that it informs the development of substantive the-
ory. Experiments with tight control and fixed effects are an estab-
lished means of generating theoretical explanations for data; we
view metastudies as an efficient way of testing such theories by
complementing the fixed effect approach with random effects.

The strategy has some weaknesses to keep in mind. First, it is
impractical in certain settings, such as when data are expensive
to collect. However, it is particularly well suited for “many labs”-
style projects in which an ad hoc consortium of research labo-
ratories collaborates in data collection. Still, a metastudy could
very reasonably be run within a single laboratory—from a logis-
tical standpoint, the cost to each laboratory that contributed to
the applied example was comparable to that of a typical experi-
ment in cognitive science (arguably it was slightly lower since the
study materials were produced entirely by the University of Cal-
ifornia, Irvine and University of New South Wales laboratories).
Second, in all but some cases it will be impossible for a research
team to identify all facets that might moderate an effect. It serves
to remember that claims of generality remain confined to the
actually realized method space. However, the randomization of
experimental features does provide for a built-in test of some
robustness to small variations in experimental features, it can be
used to spot weaknesses in an experimental design as well as in
empirical claims, and it can be used to generate novel hypotheses
when a facet unexpectedly turns out to be influential.

The major strength of RR, and the reason why we recommend
it, is that it allows for defensive design: a design strategy under
which studies are optimized for generalizability, replicability, and
robustness.
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