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ABSTRACT

We constrain polarized foreground emission between 30 and 70 GHz with the Planck Low Frequency Instrument (LFI) and WMAP
data within the global Bayesian BeyondPlanck framework. We combine for the first time full-resolution Planck LFI time-ordered
data with low-resolution WMAP sky maps at 33, 40 and 61 GHz. Spectral parameters are fit with a likelihood defined at the native
resolution of each frequency channel. This analysis represents the first implementation of true multi-resolution component separation
applied to CMB observations for both amplitude and spectral energy distribution (SED) parameters. For synchrotron emission, we
approximate the SED as a power-law in frequency and find that the low signal-to-noise ratio of the current data strongly limits the
number of free parameters that may be robustly constrained. We partition the sky into four large disjoint regions (High Latitude;
Galactic Spur; Galactic Plane; and Galactic Center), each associated with its own power-law index. We find that the High Latitude
region is prior-dominated, while the Galactic Center region is contaminated by residual instrumental systematics. The two remaining
regions appear to be signal-dominated, and for these we derive spectral indices of βSpur

s = −3.17 ± 0.06 and βPlane
s = −3.03 ± 0.07,

in good agreement with previous results. For thermal dust emission we assume a modified blackbody model and we fit a single
power-law index across the full sky. We find βd = 1.64 ± 0.03, which is slightly steeper than reported from Planck HFI data, but still
statistically consistent at the 2σ confidence level.

Key words. ISM: general – Cosmology: observations, polarization, cosmic microwave background, diffuse radiation – Galaxy:
general

1. Introduction

One of the most important sources of information about the early
universe is the cosmic microwave background (CMB; Penzias
& Wilson 1965). By mapping and characterizing the statistical
properties of this signal, cosmologists have during the last few
decades constrained both the composition and evolution of the
universe to percent accuracy (e.g., Bennett et al. 2013; Planck
Collaboration I 2020).

As shown by the COBE-FIRAS experiment (Mather et al.
1994), the frequency spectrum of the CMB may to a very high
precision be described in terms of a blackbody with a mean tem-

? Corresponding author: T. L. Svalheim; t.l.svalheim@astro.
uio.no

perature of TCMB = 2.7255 K (Fixsen 2009). As such, its peak
intensity occurs at 161 GHz, and the primary frequency range
considered by most CMB experiments is therefore around 30 to
300 GHz. In addition to the CMB, a diverse range of astrophys-
ical emission mechanisms contribute to the observed signal at
these frequencies, both of Galactic and extragalactic origin. For
intensity, the main contributors are synchrotron, free-free, CO,
thermal dust, and anomalous microwave emission, while for po-
larization, synchrotron and thermal dust emission dominate (e.g.,
Bennett et al. 2013; Planck Collaboration IV 2018, and refer-
ences therein).

At the foreground minimum, around 80 GHz, the CMB
anisotropies dominate over the combined foreground amplitude
over most of the sky (Planck Collaboration Int. XLVI 2016), and
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CMB temperature extraction is therefore relatively straightfor-
ward. The same does not hold true for polarization, even at the
foreground minimum, the sum of synchrotron and thermal dust
emission is greater than the polarized CMB by almost a full or-
der of magnitude on large angular scales. Polarized foreground
estimation therefore plays a critically important role in contem-
porary cosmology, as such observations may contain signatures
of primordial gravitational waves created during the Big Bang
(e.g., Kamionkowski & Kovetz 2016, and references therein),
and thereby provide a unique observational window on inflation
and physics at the Planck energy scale.

However, the amplitude of the primordial gravitational wave
signal is expected to be smaller than 10–100 nK on large angu-
lar scales (Tristram et al. 2021). This, combined with a plethora
of confounding instrumental effects, such as temperature-to-
polarization leakage (Paradiso et al. 2022), correlated noise (Ihle
et al. 2022) and calibration uncertainties (Gjerløw et al. 2022),
makes high-precision CMB polarization science a particularly
difficult challenge. Furthermore, as summarized by the Planck
team in a document called “Lessons learned from Planck”,1
the quality of current state-of-the-art CMB observations is lim-
ited by the interplay between instrumental and foreground ef-
fects. This insight formed the basis for the BeyondPlanck project
(BeyondPlanck 2022), which aims to implement an end-to-end
Bayesian CMB analysis framework that jointly accounts for both
systematic effects and astrophysical foregrounds, starting from
raw time-ordered data. This framework employs an explicit para-
metric model that accounts jointly for cosmological, astrophysi-
cal, and instrumental parameters. These parameters are sampled
with Markov Chain Monte Carlo methods, such as Gibbs sam-
pling, as implemented in the Commander software. (Eriksen et al.
2004, 2008; Galloway et al. 2022).

The BeyondPlanck results are described in a suite of 17 com-
panion papers (see BeyondPlanck 2022, and references therein),
each focusing on a particular aspect of the analysis. The current
paper focuses on polarized foreground characterization, both in
terms of algorithms and results, with special attention paid to the
spectral properties of polarized synchrotron emission on large
angular scales. The current BeyondPlanck analysis considers
only the Planck LFI observations in terms of time-ordered data,
although selected preprocessed external data sets are also in-
cluded to break critical degeneracies, specifically WMAP mea-
surements between 33 and 61 GHz (Bennett et al. 2013), Planck
HFI measurements at 353 and 857 GHz (Planck Collaboration
I 2020; Planck Collaboration Int. LVII 2020), and the Haslam
408 MHz measurements (Haslam et al. 1982), the latter two are
only included in temperature. Overall, the main emphasis of the
present analysis lies on frequencies below the foreground min-
imum, between 30 and 70 GHz, and in particular on the spec-
tral behavior of polarized synchrotron and thermal dust emis-
sion within this critically important frequency range. The present
analysis is the first to combine high-resolution Planck measure-
ments with low-resolution WMAP observations into a single co-
herent model, when estimating both foreground amplitudes and
spectral parameters.

The rest of this paper is structured as follows: In Sect. 2,
we briefly review the BeyondPlanck data model, focusing on
the aspects that are relevant for polarized foreground analysis.
In Sect. 3, we review the data sets that are included in the cur-
rent analysis. In Sect. 4 we describe the basic algorithms, and
connect these to the larger Gibbs sampling framework outlined

1 https://www.cosmos.esa.int/web/planck/lessons-learned

in BeyondPlanck (2022). Results are presented in Sect. 5, before
we conclude in Sect. 6.

2. The BeyondPlanck data model

As described by BeyondPlanck (2022), the main goal of this
project is to perform end-to-end Bayesian CMB analysis, build-
ing on well-established statistical methods. The first step in any
such Bayesian analysis is to write down an explicit paramet-
ric data model that will be fit to observations through posterior
mapping techniques. For BeyondPlanck, we adopt the following
model for this purpose,

d j,t = g j,tPtp, j

Bsymm
pp′, j

∑
c

Mc j(βp′ ,∆
j
bp)ac

p′ + Basymm
j

(
sorb

j + sfsl
j

) +

+s1hz
j,t + ncorr

j,t + nw
j,t,

(1)

where j represents a radiometer (or detector) label, t indicates
a single time sample, p denotes a single pixel on the sky, and
c represents one single astrophysical signal component. Further,
d j,t denotes the measured time-ordered data; g j,t denotes the in-
strumental gain; Ptp, j is a pointing matrix; Bpp′, j denotes beam
convolution; Mc j(βp,∆bp) denotes a foreground mixing matrix
that depends on some set of spectral parameters, β, and instru-
mental bandpass specification, ∆bp; ac

p is the amplitude of astro-
physical component c in pixel p, measured at the same reference
frequency as the mixing matrix M, and expressed in brightness
temperature units; sorb

j,t is the orbital CMB dipole signal; sfsl
j,t de-

notes the contribution from far side-lobes; s1hz
j,t denotes the con-

tribution from electronic 1 Hz spikes; ncorr
j,t denotes correlated in-

strumental noise; and nw
j,t is uncorrelated instrumental noise with

(diagonal) time-domain covariance matrix Nw
j . For further de-

tails regarding any of these objects, we refer the interested reader
to BeyondPlanck (2022) and references therein.

The current paper focuses primarily on diffuse astrophysical
foregrounds, which for practical purposes are stationary in time,
and we are therefore not interested in the time-domain aspects of
the model. For this reason, we rewrite Eq. (1) into the following
compact form,

mν,p =

Bsymm
pp′

∑
c

Mc(βp′ ,∆bp)ac
p′

 + nw
p , (2)

where mν,p is a binned sky map derived by co-adding all ra-
diometer data within a single frequency channel, and we are for
the moment conditioning on all time-domain parameters,∑

j∈ν

Pt
j(N

w
j )−1P j

 mν =
∑

j

Pt
j(N

w
j )−1r j. (3)

Here, r j represents the cleaned and calibrated time-ordered data
for detector j, as defined by Eq. (76) in BeyondPlanck (2022),
and full marginalization over time-domain parameters is done
iteratively through Gibbs sampling; see Sect. 4.1 for further de-
tails.

In this paper, we are particularly interested in the total sky
signal, which may be written as follows,

s = Ma ≡
Ncomp∑
c=1

ac

[
U

∫
fc(ν; β) τ(ν) dν

]
. (4)
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Here, each astrophysical signal component, c, is associated with
an overall amplitude parameter a; a unit conversion factor U for
going from either thermodynamic or intensity units to brightness
temperature; a spectral energy density, fc, describing the inten-
sity of the component relative to some reference frequency, ν0;
and some set of spectral parameters, β, which characterize the
frequency dependence of the various emission mechanisms. Fi-
nally, τ represents an instrumental bandpass response function
that describes the detector sensitivity as a function of frequency.
Again, we refer the interested reader to BeyondPlanck (2022) for
further details.

2.1. Polarized sky model

We assume in this paper that the polarized microwave sky may
be well approximated by three physically distinct components;
synchrotron emission, thermal dust emission, and CMB. A spin-
ning dust, or anomalous microwave emission (AME) component
is also commonly included in similar studies, however with an
upper limit of its polarization fraction at <1 % (Génova-Santos
et al. 2017; Macellari et al. 2011; Herman et al. 2022), we ne-
glect it in this study.

Each component exhibits a distinctly different behavior both
in terms of spatial structure and frequency dependence, and
must be described by some unique set of spectral parameters,
β. The choice of spectral parameters is both important and non-
trivial. On the one hand, it is important that the adopted para-
metric model for each component is able to provide an accept-
able goodness-of-fit, typically as measured by some χ2 statis-
tic. On the other hand, it is also important that the model is
not too flexible, as degeneracies between components may in-
crease the effective noise level to arbitrary high levels. Gener-
ally speaking, degeneracies also tend to exacerbate instrumental
systematic errors, by attempting to accommodate small signal
discrepancies within the unconstrained parameters in the signal
model. Choosing an appropriate parametric model is thus a deli-
cate trade-off between allowing sufficient flexibility to model the
real sky, while not introducing too many parameters, which oth-
erwise may increase both systematic and statistical uncertainties
to untenable levels.

For BeyondPlanck, we adopt the following parametric
model for the polarized microwave sky,

sRJ = aCMB
x2ex

(ex − 1)2

(ex0 − 1)2

x2
0ex0

(5)

+ as

(
ν

ν0,s

)βs

(6)

+ ad

(
ν

ν0,d

)βd+1 ehν0,d/kTd − 1
ehν/kTd − 1

, (7)

where all vectors are expressed in brightness (Rayleigh-Jeans)
temperature units; x = hν/kT0 (where h and k are Planck’s
and Boltzmann’s constants respectively and T0 is the CMB
monopole of 2.7255 K; Fixsen 2009); and ν0,c is the reference
frequency for component c, a is its amplitude, βs is the syn-
chrotron power-law index, and βd and Td are the thermal dust
power-law index and temperature, respectively. Even this mini-
mal model, which adopts a power-law SED for synchrotron and
modified blackbody SED for thermal dust, contains far too many
parameters to be fit per pixel with the BeyondPlanck data set,
and several informative priors will be imposed to regularize the
system, as discussed in detail below.

3. Galactic center

1. High latitudes

4. Galactic plane

2. Spur

AsP

5 10 25 50
KRJ

AdP

5 10 25 50
KRJ

Fig. 1. Top: Final region map used in the sampling procedure for the
synchrotron spectral index. Middle: Planck 2018 polarized synchrotron
amplitude map with the corresponding spectral index processing mask
for BeyondPlanck and a region outline that divides the sky into six dis-
joint regions. This was further reduced to four, motivated primarily by
the low signal-to-noise apparent in some of the regions. The mask is
chosen to reduce temperature-to-polarization leakage bias, and to ex-
clude bright point sources. Bottom: Planck 2018 polarized thermal dust
amplitude with the corresponding processing mask.

2.1.1. Synchrotron emission

The first foreground component, and the brightest Galactic emis-
sion mechanism between 30 and 70 GHz, is synchrotron radi-
ation. This emission is generated when relativistic cosmic-ray
electrons ejected from supernovae gyrate in the Galactic mag-
netic field. From both temperature and polarization observations,
the synchrotron SED is known to be well approximated by a
power-law over several decades in frequency (e.g., Lawson et al.
1987; Reich & Reich 1988; Platania, P. et al. 2003; Davies et al.

Article number, page 3 of 18



A&A proofs: manuscript no. BPXV

2006; Gold et al. 2009), at least from 1 GHz to 100 GHz, al-
though some analyses also claim evidence for a slight spectral
steepening towards higher frequencies (Kogut 2012; Jew et al.
2019). The Galprop model (Orlando et al. 2018) is a physi-
cally motivated model that takes into account quantities such as
the electron temperature (Te) and large-scale magnetic field dis-
tributions, and this physical model also predicts SED flattening
below 1 GHz depending on the model parameters. However, be-
cause the flattening occurs at frequencies well below 10 GHz,
this is not relevant for the current analysis, which only considers
frequencies above 30 GHz, and we therefore assume a straight
power-law SED model for synchrotron emission in the follow-
ing.

Next, several analyses have reported significant spatial vari-
ations in βs (e.g., Fuskeland et al. 2014; Krachmalnicoff et al.
2018; Fuskeland et al. 2021). In general, these analyses report
flatter spectral indices (around βs = −2.8) at low Galactic lati-
tudes, and steeper at high Galactic latitudes (around βs = −3.1).
This picture appears roughly consistent with similar results de-
rived from intensity observations (e.g., Vidal et al. 2015; Plata-
nia et al. 1998; Lawson et al. 1987; Reich & Reich 1988). On the
other hand, when analyzing low-resolution WMAP polarization
data with full correlated noise propagation, Dunkley et al. (2009)
found only minor differences between low and high Galactic lat-
itudes.

As shown in the following, the BeyondPlanck data combi-
nation2 has in general low statistical power to probe spatial vari-
ations. We therefore partition the sky into four large disjoint re-
gions, as shown in the top panel of Fig. 1, and fit one spectral
index for each region. For reference, the middle panel in this fig-
ure shows the Planck 2018 synchrotron amplitude map (Planck
Collaboration IV 2018) with region outlines and a corresponding
processing mask used in BeyondPlanck.

Since the spectral index is fit uniformly over large sky
regions, it is important to impose a processing mask during
the posterior evaluation to avoid pixels with poor goodness-
of-fit from contaminating surrounding pixels. To this end, we
construct a dedicated spectral index processing mask for syn-
chrotron emission by first fitting the component amplitudes
given our chosen prior. We then smooth these map to 4◦ FWHM,
and construct a corresponding mask by thresholding on the
strongest 5 % of the signal to remove the brightest part of the
Galactic plane. Next, we combine the resulting mask with a
smoothed χ2 map thresholded at the strongest 10 % of the signal
to remove strong sources such as Tau A and their surrounding
area. Finally, we use an un-smoothed χ2 map in order to remove
particularly bright compact sources. The resulting mask is vi-
sualized along with the region outlines in the middle panel of
Fig. 1.

The region set was defined as follows: We started from the
24-region partitioning defined by Fuskeland et al. (2014), which
itself was based on the nine year WMAP polarization analy-
sis mask (Bennett et al. 2013). We then ran preliminary anal-
yses to determine the effective posterior width resulting from
each region. If this was found to be strongly prior-dominated,
we merged neighboring regions. This process resulted in four
main regions, which we will refer to as 1) High Latitudes; 2) the
Galactic Spur or simply Spur; 3) the Galactic Center; and 4) the
Galactic plane. As we will show later, even after this process the
high-latitude region does not have sufficient signal-to-noise ra-

2 Note that the BeyondPlanck data combination does not include the
WMAP K-band sky, as this channel would otherwise compete with
Planck LFI 30 GHz in terms of total signal-to-noise ratio.

tio to significantly constrain βs. The reason for this is illustrated
in the middle panel of Fig. 1; the synchrotron emission in this
region is generally very faint, and there is very little leverage to
estimate spectral variations as a function of frequency.

We also note that synchrotron emission is sensitive to Fara-
day rotation (e.g., Beck et al. 2013) in areas with high electron
densities and magnetic fields, which is the case near the Galac-
tic center. This effect is caused by circular birefringence, where
left- and right-handed circularly polarized emission traverse the
magnetic field of an ionized medium at different velocities, gen-
erating a net linear polarization signal with a polarization an-
gle proportional to the field strength. However, since this effect
is proportional to the squared wavelength of the radiation, it is
most prominent at frequencies below 5 GHz, and it is negligible
for most of the sky above 30 GHz. In this paper, we do not make
any corrections for Faraday rotation to any frequency channel.
However, as shown in Sect. 5, our synchrotron constraints for the
Galactic center region are contaminated by systematic effects,
and these are most likely due to a combination of instrumental
and astrophysical mis-modeling effects.

2.1.2. Thermal dust emission

The second most significant polarized foreground component
between 30 and 70 GHz is thermal dust emission generated by
interstellar dust grains that collectively account for ≈ 1 % of the
mass of the interstellar medium; see, e.g., Hensley & Draine
(2020) for a recent review of relevant physics and observations
constraints. The size of these grains typically varies from a few
angstroms to a few tenths of a µm, and they are heated up by the
interstellar radiation field to a temperature of about 20 K. This
heat is then re-emitted thermally with a peak frequency between
1000 and 2000 GHz (as defined in brightness temperature units).
Furthermore, due to paramagnetic dissipation resulting from in-
teractions between rotating grains and the local magnetic field,
the dust grains tend to align with their short axes parallel to the
local magnetic field. In turn, this alignment can induce a polar-
ization signal with a polarization fraction of 20 % or more, as
reported by Planck Collaboration XI (2020).

The most commonly used thermal dust SED model in CMB
studies is that of a modified blackbody function, as defined in
Eq. (7). This SED has three free parameters; 1) the amplitude ad,
which traces the surface density of dust particles along each line-
of-sight; 2) a spectral index, βd, that quantifies the low-frequency
slope of the SED, and depends on the physical composition of
the dust grains; and 3) the dust temperature, Td, which affects the
peak location of the modified blackbody function, and depends
on the local radiation field strength at any given position. More
complex, and perhaps more realistic, representations do exist, in-
cluding multi-component modified blackbody (e.g., Finkbeiner
et al. 1999; Meisner & Finkbeiner 2015) or physical dust grain
models (Guillet et al. 2018).

The particular data combination used in the BeyondPlanck
analysis has a very low signal-to-noise ratio for constraining
thermal dust SED variations, whether of frequency or spatial ori-
gin, as we are working at synchrotron dominated frequencies. In
this paper, we therefore only consider one single free parameter
for the thermal dust SED, namely a spatially constant value of
βd. The bottom panel in Fig. 1 shows the Planck thermal dust
amplitude map (Planck Collaboration IV 2018) with its corre-
sponding processing mask used in the sampling procedure. This
mask was generated by thresholding the 10 % largest values of
the smoothed χ2 map as described in the last section. The ther-
mal dust temperature map is fixed pixel-by-pixel to that derived
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Table 1. Overview of all included data bands in the BeyondPlanck polarization analysis. The columns represent the following; 1) Science exper-
iment for that band, 2) frequency band name, 3) data processing pipeline 4) HEALPix resolution in Nside, 5) highest included multipole `max, 6)
beam resolution in arcminutes, 7) bandpass center frequency in GHz, 8) bandpass width in GHz, 9) noise rms given in µK scaled by pixel size,
10) noise format.

Resolution νc Bandwidth σ
Experiment Band Processing Nside `max [arcmin] [GHz] [GHz] [ µK arcmin] Noise Format

Planck LFI . . 30 BeyondPlanck 512 1500 32′.4 28.4 5.7 260 TOD+White noise
Planck LFI . . 44 BeyondPlanck 512 2000 27′.1 44.1 8.2 370 TOD+White noise
Planck LFI . . 70 BeyondPlanck 1024 2500 13′.3 70.1 14.0 270 TOD+White noise
Planck HFI . . 353 Planck DR4 1024 3000 4′.94 353 88.2 380 White noise
WMAP . . . . . Ka WMAP 16 64 40′ 33 7.0 410 Full covariance
WMAP . . . . . Q WMAP 16 64 31′ 41 8.3 380 Full covariance
WMAP . . . . . V WMAP 16 64 21′ 61 14.0 460 Full covariance

from Planck temperature observations between 30 and 857 GHz
by Planck Collaboration Int. LVII (2020).

No attempts are made to account for SED variations along
each line of sight. As emphasized by Tassis & Pavlidou (2015),
the sum of two modified blackbodies is not a modified black-
body, and spatial variations in either βd or Td along each line-of-
sight will therefore necessarily break the current model. This ef-
fect is particularly important in polarization, since the magnetic
field direction also varies along the line-of-sight, potentially re-
sulting in different SEDs for the two Stokes parameters, Q and
U. However, these variations are far too weak to be measured
with the current data set.

3. Data selection

As described by BeyondPlanck (2022), a primary motivation
for the BeyondPlanck project is to establish a common analy-
sis platform for past, current, and future CMB observations that
supports end-to-end analysis, from raw time-ordered data to final
high-level products such as astrophysical component maps and
cosmological parameters. To support and guide the algorithm de-
velopment process, the Planck LFI observations were chosen as
a first real-world application for this framework, a choice that
was primarily motivated by the fact that this data set is already
well known to the collaboration members, and secondarily be-
cause of its modest data volume and relatively benign instru-
mental systematic effects.

At the same time, it is clear that the LFI data are by them-
selves not able to constrain all relevant astrophysical compo-
nents. There are at least five significant diffuse components be-
tween 30 and 70 GHz; CMB, synchrotron, free-free, AME, and
thermal dust emission, while the LFI data only comprise three
independent frequency channels. The LFI data must therefore be
augmented with external observations in order to derive a statis-
tically non-degenerate model. In principle, the Planck HFI data
(Planck Collaboration III 2020) would be an ideal match, pro-
viding strong constraints on CMB, free-free and thermal dust
emission. However, if these data were to be included the Be-
yondPlanck analysis in their entirety, they would dominate over
the LFI observations in terms of total sensitivity, which would
undermine the main purpose of the current presentation, which
focuses on the algorithms themselves. For this reason, we choose
to include only the Planck HFI 857 GHz channel in temperature
and the 353 GHz channel in polarization, to constrain the ampli-
tude of thermal dust emission. In both cases, we adopt the latest
rendition of these maps published by the Planck team, as de-

rived by the Planck Data Release 4 (DR4) pipeline, also known
as NPIPE (Planck Collaboration Int. LVII 2020).

The same argument applies to the WMAP K-band channel
(Bennett et al. 2013). While this channel provides strong con-
straints on both AME and polarized synchrotron emission, its
statistical sensitivity is so high that it would rival that of the
Planck LFI 30 GHz channel if included in the BeyondPlanck
analysis, which again would undermine the main purpose of the
current work. For this reason, we include only the WMAP Ka-,
Q-, and V-band channels in the following, centered on 33, 41
and 61 GHz, respectively.3

In addition, we include the Haslam 408 MHz survey to con-
strain synchrotron emission in temperature, see Andersen et al.
(2022). This results in a total of eight frequency channels in in-
tensity, and seven frequency channels in polarization, which in
principle should be sufficient to constrain a model with five in-
tensity components and three polarization components.

One of the important novel algorithmic developments that
will be described in Sect. 4 is true multi-resolution component
separation for both linear and non-linear foreground parame-
ters. Specifically, we consider in the following only the low-
resolution WMAP polarization data at a HEALPix4 (Górski et al.
2005) resolution of Nside = 16, for which dense pixel-pixel noise
covariance matrices are available (Bennett et al. 2013). This en-
sures that we have at least nominally a complete noise descrip-
tion for all frequency channels relevant for CMB extraction, and
also that small-scale polarization results are entirely dominated
by Planck LFI.

All data except the Planck DR4 353 GHz channel are ana-
lyzed as provided by the respective team without any preprocess-
ing or smoothing. The 353 GHz channel, however, is smoothed
to an angular resolution of 10′ and re-pixelized at a resolution
of Nside = 1024, corresponding to a pixel size of 3′.4. This is
done both in order to speed up the analysis process (Beyond-
Planck 2022; Galloway et al. 2022), and to suppress small-scale
correlated noise which would otherwise lead to a significant χ2

excess. Table 1 provides an overview over all data sets included
in the current analysis.

4. Methods

We now aim to fit the data model in Eq. (1) to the data listed in
Table 1. We define ω = {g, ncorr,∆bp, a, β, . . .} to be the set of all
3 The W-band channel is omitted because it is known to be contam-
inated by systematic residuals; see Bennett et al. (2013); Watts et al.
(2022) for details.
4 http://healpix.jpl.nasa.gov
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free parameters in this model of both instrumental and astrophys-
ical origin. Our main goal is then to map out the corresponding
joint posterior distribution, which is given by Bayes’ theorem,

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω). (8)

In this expression, P(ω | d) is the posterior distribution, and de-
scribes our knowledge about ω after performing the experiment
in question;L(ω) ≡ P(d | ω) is called the likelihood, and quanti-
fies the information content in d regarding ω; and P(ω) is called
the prior, which quantifies our beliefs regarding ω before doing
the experiment. The prior can also be used actively to regularize
specific degeneracies in the model.

This posterior distribution is large and complex with billions
of free parameters. Attempting to directly map out the full pos-
terior distribution by brute-force is infeasible. Instead, we resort
to Markov Chain Monte Carlo methods, and draw samples from
the posterior distribution. In particular, we find that the Gibbs
sampling algorithm (Geman & Geman 1984) is particularly well
suited to handle the complexity of this model. We therefore adopt
the Commander CMB Gibbs sampling framework as the starting
point for our analysis. This software was first introduced by Erik-
sen et al. (2004) for optimal CMB power spectrum estimation
applications, building on ideas originally suggested by Jewell
et al. (2004) and Wandelt et al. (2004), and later generalized to
also account for joint CMB and component separation by Erik-
sen et al. (2008) and Seljebotn et al. (2019). In this operational
mode, Commander played a central role in the official Planck
analysis, as summarized by Planck Collaboration I (2014, 2016,
2020) and references therein. BeyondPlanck has now general-
ized this framework further to also account for low-level TOD
processing and mapmaking, effectively turning the entire CMB
analysis challenge into one global problem.

4.1. Gibbs sampling

Gibbs sampling formalizes the idea of iterative analysis within a
rigorous statistical language. In short, the theory of Gibbs sam-
pling states that samples from a complex joint distribution may
be drawn by iteratively sampling from each (typically simpler)
conditional distribution. The full BeyondPlanck Gibbs chain
(BeyondPlanck 2022) illustrates how this is done in practice, and
can be written as

g ← P(g | d, ξn,∆bp, a, β,C`) (9)
ncorr ← P(ncorr | d, g, ξn,∆bp, a, β,C`) (10)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β,C`) (11)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β,C`) (12)
a ← P(a | d, g, ncorr, ξn,∆bp, β,C`) (13)
β ← P(β | d, g, ncorr, ξn,∆bp, a, C`) (14)

C` ← P(C` | d, g, ncorr, ξn,∆bp, a, β, ). (15)

Here, the symbol← means setting the variable on the left-hand
side equal to a sample from the distribution on the right-hand
side. For convenience, we also define the notation “ω \ ξ” to
imply the set of parameters in ω except ξ.

The parameters not already introduced are noise power spec-
trum parameters (ξn), bandpass corrections (∆bp), and the CMB
power spectrum (C`). Since the current paper focuses on polar-
ized foregrounds, we are here primarily interested in the ampli-
tude parameters, a, sampled in Eq. (13), and the spectral param-
eters, β, sampled in Eq. (14). We will therefore describe these

two sampling steps in detail in the following, and we refer the
interested reader to BeyondPlanck (2022) and references therein
for details regarding the remaining steps.

4.2. Signal amplitude sampling

We first consider the signal amplitude conditional distribution,
P(a | d, ω \ a), which has already been a primary focus of in-
terest for a long line of studies, including Jewell et al. (2004),
Eriksen et al. (2004, 2008), and Seljebotn et al. (2019). In the
following, we give a brief summary of these developments, and
also highlight two important novel features introduced in the cur-
rent work.

The appropriate starting point for this conditional distribu-
tion is the data model described in Eq. (2). We first note that a
contains all signal amplitude maps, using some appropriate lin-
ear basis, stacked column-wise, such that a = [aCMB, as, ad]t,
where the t superscript denotes the transpose operator. Further,
we adopt a spherical harmonics basis to describe each diffuse
component, such that ai = {aT

i,`m, a
E
i,`m, a

B
i,`m} contains the var-

ious temperature and polarization spherical harmonics coeffi-
cients (Zaldarriaga & Seljak 1997) for component i. Second, for
notational convenience we combine the beam and mixing matrix
operators in Eq. (2) into one joint linear operator, Aν ≡ BνMν,
such that this equation may be written succinctly as

mν = Aνa + nν. (16)

Noting that the noise, nν = mν −Aνa, is assumed to be Gaussian
distributed with vanishing mean and a known covariance matrix,
Nν, Bayes’ theorem then allows us to write the conditional dis-
tribution of interest in the following form,

P(a | d, ω \ a) ∝ P(d | ω)P(a) (17)
∝ P(m | a)P(a) (18)

∝

∏
ν

exp
(
−

1
2

(mν − Aνa)tN−1
ν (mν − Aνa)

)
· exp

(
−

1
2

(a − ā)tS−1
ν (a − ā)

)
. (19)

Here, the second line holds because TOD binning is a determin-
istic operation when conditioning on ω (BeyondPlanck 2022),
and the set of binned sky maps, m, is a sufficient statistic for
a; no additional information in the TOD can possibly provide
more knowledge about the foreground amplitude maps beyond
that stored in m if ω is exactly known. In the last line we adopt
a Gaussian signal prior with mean ā and covariance matrix S,
discussed further below. In this paper, we set ā = 0, and only
use S for smoothing purposes. Since the product of two Gaus-
sian distributions is another Gaussian, P(a | d, ω \ a) is also
Gaussian, and the appropriate sampling algorithm is given by
a standard multivariate Gaussian, which is discussed in detail
in Appendix A in BeyondPlanck (2022). In particular, a proper
sample may be drawn by solving the following linear equation
for a,(
S−1 +

∑
ν

At
νN
−1
ν Aν

)
a =

∑
ν

At
νN
−1
ν mν+

∑
ν

At
νN
−1/2
ν ην+S−1/2η0,

(20)

where ην and η0 are random Gaussian vectors of independent
N(0, 1) variates. Because of its large dimensionality, this equa-
tion must in practice be solved using iterative linear algebra tech-
niques, and we use a preconditioned conjugate gradient solver
for this purpose (e.g., Shewchuk 1994).
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This exact equation was discussed in detail by Seljebotn et al.
(2019), who also introduced two novel and efficient precon-
ditioners for partial-sky observations based on pseudo-inverse
and multi-grid techniques. However, in the present work, for
which no analysis mask is imposed during the main Gibbs sam-
pling analysis, we adopt the simpler diagonal pre-conditioner de-
scribed by Eriksen et al. (2008), which both converges slightly
faster with full-sky data, and has a lower computational cost per
iteration. The two main novel features regarding Eq. (20) intro-
duced by BeyondPlanck (as described by Andersen et al. (2022)
for temperature and by this paper for polarization) concern the
data and model representation and active use of spatial priors.

4.2.1. Vector representation and object-oriented
programming

Equation (20) is written in a general vector form, without ref-
erence to any specific vector representation or basis, or to any
specific form of either the effective mixing matrix, Aν, or noise
covariance matrix, Nν. All of these may, in principle, be cho-
sen per component and frequency channel. As detailed by Gal-
loway et al. (2022), we have implemented such flexibility in the
most recent version of Commander adopting an object-oriented
programming style, where separate classes are defined for each
object. For instance, the current implementation contains spe-
cific classes for three general types of components, namely dif-
fuse components (for which a is represented in terms of spher-
ical harmonic coefficients, a`m), point source objects (for which
a is represented in terms of a single flux density per compact
source), and fixed spatial templates (for which a is represented
in a single multiplicative amplitude per template). Any combi-
nation of such objects may all be fit simultaneously and jointly
through Eq. (20). It is also relatively straightforward to add new
types of objects as the need may arise. Two examples of classes
that might be important for future applications include pixel- or
needlet-based components (e.g., Marinucci et al. 2008), which
could be useful for modeling partial sky experiments.

Each of the instrumental objects are also implemented in
terms of individual classes. This is particularly relevant for the
noise covariance matrix, Nν, which may have very different rep-
resentations for different experiments. For example, in the cur-
rent analysis, we model the Planck LFI noise as a sum of cor-
related and white noise, where the correlated noise is treated as
a stochastic variable in the Gibbs chain, and sampled over di-
rectly, while the white noise uncertainty is propagated analyti-
cally through a diagonal Nν. This approach supports, for the first
time, propagation of both correlated and white noise at all an-
gular resolutions. For WMAP, however, we do not yet have ac-
cess to time-ordered data within our framework, so Nν is defined
in terms of the precomputed dense low-resolution noise covari-
ance matrices provided by the WMAP team (Bennett et al. 2013),
which is computationally feasable because this data is smoothed
to Nside = 16. For this reason, WMAP contributes only to large
angular scales in the current analysis. Finally, for the Planck
353 GHz measurements, which are essential for modeling polar-
ized thermal dust emission at full angular resolution, we are for
now only able to propagate white noise uncertainties with a di-
agonal Nν as given by Planck Collaboration Int. LVII (2020). Of
course, this will necessarily lead to an underestimation of dust-
related uncertainties; hence modeling Planck HFI observations
in time-domain is clearly a high-priority issue for future work,
but outside the scope of the current project.

In summary, the first critically important novel feature pro-
vided by the current Commander implementation is the ability

to operate with fundamentally different types of data sets within
one analysis and thereby exploit complementary features from
each data set to break degeneracies within the full model. At
the time of publication, there is direct support for only three
types of noise covariance matrices, namely diagonal matrices,
WMAP-style dense Stokes QU matrices, and diagonal matrices
with explicit marginalization over low-` modes. However, us-
ing the new infrastructure described here and by Galloway et
al. (2022), it is straightforward to add support for other types
of matrices. Possibly useful examples include block-diagonal or
banded covariance matrices, or noise covariance matrices with
specific subspaces projected out through operator based filters.
The latter could be particularly useful for ground-based exper-
iments that tend to have limited statistical sensitivity on large
angular scales, but high systematic uncertainties. We hope that
such features can be implemented, and made publicly available,
by third-party authors as Open Source contributions (Gerakakis
et al. 2022).

4.2.2. Gaussian spatial priors

The second novel feature supported by the latest Commander im-
plementation is the use of active spatial priors for the diffuse
components. For practical purposes, we currently support only
Gaussian priors, as described by Eq. (19), as non-Gaussian priors
would lead to a prohibitively high computational cost associated
with the current conjugate gradient-based approach. In practice,
imposing a spatial prior is therefore equivalent to specifying a
prior mean, ā, and covariance matrix, S, for each component.
In the current polarization-oriented analysis, however, we do not
wish to enforce any informative priors on any of the three free
components (polarized CMB, synchrotron or thermal dust emis-
sion), so we set ā = 0 for all three. Instead, we use S to adjust
the allowed level of fluctuations around zero for each component
as a function of angular scale; this is numerically equivalent to
choosing an appropriate effective smoothing scale for each com-
ponent, and might for this paper be considered more of a techni-
cal issue than a prior in the normal sense. For an example of an
application of active priors, however, see Andersen et al. (2022),
in which proper informative spatial priors are imposed on both
free-free and anomalous microwave emission.

The remaining question is how to choose a specific form of
S for each component. There are two main requirements for this
choice. First, S is the covariance of a, and therefore dictates the
overall fluctuation level of the fitted components. A large value
of S implies a weak prior, and the fitted component will then be
dominated by the data-driven likelihood term in Eq. (19), while
a low value of S implies a strong prior, resulting in values close
to the prior mean. In practice, we want the prior to play a lim-
ited role where the data have a large signal-to-noise ratio, but a
stronger role where the data are noise dominated. It is therefore
in general desirable to choose scale-dependent priors, in which
the smoothing becomes gradually stronger; the prime example
of this is a standard Gaussian smoothing kernel.

As already mentioned, we adopt spherical harmonics as our
basis set for a, writing each diffuse polarized signal component
as

aX(n̂) =
∑
`m

aX
`mY`m(n̂). (21)

For each component we therefore also define an angular power
spectrum prior of the form

D̂X
` =

〈
|aX
`m|

2
〉
`(` + 1)/2π, (22)
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where X = {E, B}. Note that this power spectrum prior represen-
tation is conceptually similar to the assumptions made by SMICA
(Cardoso et al. 2008), one of the four CMB extraction codes used
by Planck.

We adopt the following prior variances for each of the three
astrophysical components in the current analysis,

D̂−1
CMB(`) = 0 µK2 (23)

D̂s(`) = 200 e−`(`+1)σ2(30′) µK2 (24)

D̂d(`) = 500 e−`(`+1)σ2(10′) µK2, (25)

where σ2(θFWHM) ≡ (8 ln 2) π/(180 · 60)θ2
FWHM is the standard

deviation of a Gaussian distribution expressed in terms of a full
width at half maximum, θFWHM, in arcminutes.

Note that for the CMB component, the inverse variance is set
to zero, which is equivalent to an infinite variance—or simply no
prior at all. For the polarized synchrotron and thermal dust am-
plitudes, the priors correspond to Gaussian smoothing of 30′ and
10′ FWHM, respectively. The overall scaling factors are chosen
to be 200 and 500 µK2, respectively, which correspond to the
observed angular power spectrum of each component on large
angular scales. In these cases, the priors are used to apodize the
resulting foreground amplitude maps with Gaussian smoothing
kernels, to avoid ringing around bright sources and the Galactic
plane and unphysical degeneracies at high multipoles.

Future analyses may wish to use S to directly estimate the
angular power spectrum of each foreground component, fully
analogous to the CMB case (Colombo et al. 2022; Paradiso et
al. 2022). This will then both alleviate the need of specifying the
prior parameters by hand before executing the analysis, and it
will ensure optimal smoothing properties for each component,
resulting in minimal high-` degeneracies between the various
components.

Finally, we conclude this section by emphasizing that the
above priors are in fact only priors, and not deterministic
smoothing operators. Thus, the resulting synchrotron and ther-
mal dust component maps will be determined by the properties
of the observed data wherever the data are stronger than the prior.
This is important to bear in mind for instance when trying to es-
timate the angular power spectrum of the resulting maps; the
component maps a that result from solving Eq. (20) correspond
to a model of the sky without instrumental beam convolution,
but with spatially varying noise properties, depending on the lo-
cal signal-to-noise ratio of the data. The angular resolutions of
the synchrotron and thermal dust maps are not given precisely
by a Gaussian beam of 30 and 10′, respectively, but will gener-
ally be higher where the data are sufficiently strong. As such, the
behavior of these foreground maps is conceptually similar to the
GNILC algorithm (Remazeilles et al. 2011), in which a spatially
varying angular resolution also results from signal-to-noise ratio
variations. Likewise, it is also important to note that the noise
properties of these maps are highly non-trivial, and the only sta-
tistically robust way of assessing and propagating their uncer-
tainties is through the ensemble of sky map samples produced
by the algorithm itself.

4.3. Spectral parameter sampling

The second of the two main conditional distributions discussed
in this paper is P(β | d, ω \ β), which describes the fore-
ground SED parameters. In general, a and β are strongly corre-
lated for a given component, especially for high signal-to-noise
data. For temperature-oriented foreground analysis, the Beyond-
Planck Gibbs sampler therefore implements a special-purpose

sampling step for these parameters, by exploiting the definition
of a conditional distribution, P(a, β | d) = P(a | d, β)P(β | d)
(Stivoli et al. 2010; BeyondPlanck 2022; Andersen et al. 2022).
That is, we first sample spectral parameters from the marginal
distribution with respect to a, and then sample a conditionally
with respect to β. The resulting algorithm is thus effectively an
independence sampler in {a, β} (i.e., a sampler where the new
proposal does not depend on the previous) with an internally
vanishing Markov chain correlation length. In this case, any
long-term Markov chain correlations come from degeneracies
with other parameters.

However, as described by Stivoli et al. (2010), this algorithm
is only computationally practical for observations with the same
angular resolution, as the computational expense for evaluat-
ing the marginal distribution P(β | d) otherwise becomes pro-
hibitively high. In practice, this means that all data maps must be
smoothed to a common angular resolution. For temperature data,
this is not a major problem, but for polarization analysis it is non-
trivial, since the smoothing operation correlates the instrumental
noise. In addition, the data combination used in the current paper
involves low-resolution WMAP data with dense noise covariance
matrices, and smoothing all data to this resolution is impractical.

Since we focus on polarization in this work, we instead adopt
a standard Metropolis-within-Gibbs sampler for β. In this case,
the appropriate conditional posterior distribution may be derived
from Eq. (16) by noting that the instrumental noise is assumed to
be Gaussian distributed with covariance matrix Nν, and recalling
that the amplitude is for the moment assumed to be perfectly
known. Therefore,

P(β | d, a) ∝ P(d | a, β)P(β)

∝

[∏
ν

exp
(
−

1
2

(dν − Aν(β)a)t N−1
ν (dν − Aν(β)a)

) ]
P(β),

(26)

where d = {dν} is the set of all available frequency maps (which
within the larger BeyondPlanck framework may be a specific set
of frequency map sky samples), and P(β) is a user-defined prior,
typically a Gaussian distribution with physically motivated mean
and standard deviation.

Note that Eq. (26) is also written with a general vector nota-
tion, and makes no reference to a specific vector basis for either
a or β; it therefore allows the various data sets to be defined in
different basis sets. The only requirement is that there must exist
a well-defined mapping between β and the effective mixing ma-
trix at each frequency, Aν(β). This generality is precisely what
is needed to analyze multi-resolution observations jointly, for
instance high-resolution LFI data together with low-resolution
WMAP data.

As noted in Sect. 2.1.1, the signal-to-noise ratios of the
Planck and WMAP polarization data are modest, so we have
defined broad regions for βs, as shown in Fig. 1. To sam-
ple these values, we employ a standard Metropolis algorithm,
as outlined in Algorithm 1, using Eq. (26) as target distribu-
tion and a standard symmetric Gaussian proposal distribution,
T (β(i) | β(i−1)) ∼ N(β(i−1),Cβ), where Cβ is a tunable proposal
matrix. When evaluating Eq. (26), we first propose βs,i inde-
pendently for each region i, and then smooth the resulting map
with a 10◦ FWHM Gaussian beam to suppress edge effects. This
smoothed map is then used to evaluate the mixing matrix Aν at
the appropriate resolution for each frequency channel.

To assess the goodness-of-fit locally across the sky, we
compute a χ2 map per pixel. Since WMAP is pixelized with
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Algorithm 1: Metropolis algorithm used for spectral
index sampling.

Initialize β(0) ∼ P(β)
for i=1, n do

Propose new index map: βprop ∼ N
(
β(i−1),Cβ

)
Compute acceptance rate: α = min

{
1, P(βprop |d,a)

P(β(i−1) |d,a)

}
Draw u ∼ Uniform(0, 1)
if u < α then

Accept the proposal: β(i) ← βprop

else
Reject the proposal: β(i) ← β(i−1)

Nside = 16, the χ2 map is too. The sum of this map, after ap-
plication of an optional analysis mask, is used to evaluate the
exponent in Eq. (26) and the corresponding Metropolis accep-
tance rate.

As summarized in Algorithm 1, this method has two free
tunable parameters, the proposal matrix Cβ, and the number of
Metropolis steps per main Gibbs iteration, n. Before starting a
full Gibbs analysis, we perform a tuning run using a diagonal
Cβ and adjust the diagonal elements until the resulting accept
rate is between 0.2 and 0.8. Once that happens, we run a longer
chain with fixed Cβ and replace this matrix with the covariance
matrix from the resulting samples. Finally, we run a third chain,
computing the Markov autocorrelation length from the resulting
chain, and setting n such that the empirical correlation between
samples β(i) and β(i+n) is less than 0.1. These tuning steps are
only performed once for each analysis setup, and files are stored
on disk for subsequent runs.

4.4. Spectral index priors

The only missing part of the algorithm is now a specification of
the priors. For the synchrotron and thermal dust spectral indices,
we adopt for the main analysis Gaussian priors of βs = −3.3±0.1
and βd = 1.56 ± 0.10, respectively. The former of these are
motivated by the Planck LFI 2018 likelihood analysis, which
finds a linear scaling factor of α = 0.058 ± 0.004 between
30 and 70 GHz. Accounting for the bandpasses of the respec-
tive channels (Planck Collaboration II 2020; Svalheim et al.
2022), the quoted scaling factor translates into a spectral index
of βs = −3.3. The thermal dust spectral index prior is also in-
formed by the official Planck analysis Planck Collaboration X
(2016), and in this case the BeyondPlanck data sets do not add
any useful independent information to complement the original
work, because of the absence of the high signal-to-noise ratio
HFI measurements.

Many alternative synchrotron priors were explored during
the course of the project, varying both the mean and width. In
general, these all led to more significant residuals than the final
choice. Regarding the prior width, we note that σβ = 0.1 cor-
responds to only 1σ, and the full 3σ confidence interval there-
fore spans from −3.6 to −3.0, all of which will be covered dur-
ing the full Gibbs run. As discussed by Herman et al. (2022),
shallower indices than β = −3.0 are very difficult to accommo-
date with both LFI and WMAP without introducing an additional
low-frequency dust correlated component, for instance polarized
AME. Consequently, a broader prior width of σβ = 0.2, which
permits synchrotron indices as shallow as βs = −2.7, leads to
large foreground excesses that only can be accommodated by

2P

3 0 3

Fig. 2. Normalized and reduced χ2 per pixel, summed over Stokes Q
and U and averaged over all Gibbs samples.

the CMB component within the current model. The result is an
obvious foreground bias in the large-scale CMB extraction and a
corresponding excess in estimates of the optical depth of reion-
ization (Paradiso et al. 2022). For further discussions regarding
different priors, see Sect. 4.2.2.

We treat the four regions differently in terms of synchrotron
priors. While the Spur and Galactic plane regions are fitted us-
ing both the likelihood and prior as described above, we only
include the prior for the high-Galactic and Galactic Center re-
gions. This is because of very strong degeneracies with respect
to instrumental systematic effects in these regions. Specifically,
the Galactic Center region is particularly susceptible to band-
pass mismatch effects, as the bandpass leakage corrections for
the 30 GHz channel are of order unity in this region (Svalheim
et al. 2022), while the High Latitude region is particularly sensi-
tive to relative gain uncertainties and degeneracies with the CMB
quadrupole (Gjerløw et al. 2022). To prevent potential residual
systematic errors from contaminating these two regions, we only
marginalize over the prior in these cases. While clearly non-
ideal, we consider this approach to be preferable to simply fixing
the synchrotron index at some given value, as was done for most
previous Planck polarization analyses, e.g., Planck Collabora-
tion Int. XLVI (2016). Ultimately, this is a concession that the
current data set are not sufficiently strong to uniquely and in-
dependently determine both synchrotron and CMB components
without priors, and additional measurements from high sensitiv-
ity low-frequency experiments such as C-BASS (Jew et al. 2019)
and QUIJOTE (Génova-Santos et al. 2015) will be extremely
valuable to further improve the quality of the LFI and WMAP
data sets in the future.

5. Results

5.1. Goodness-of-fit

Before turning our attention to the final astrophysical products,
we assess the goodness-of-fit of the fitted sky model. Our first
statistic is the total χ2 per pixel, summed over frequencies and
Stokes Q and U parameters and averaged over Gibbs samples,
as shown in Fig. 2. To aid visual interpretation, this map is plot-
ted in the form (χ2 − ndof)/

√
2ndof , where ndof = 20 798 is an

estimate of the total number of degrees of freedom (i.e., num-
ber of full-frequency data pixels summed over frequencies, mi-
nus the number of fitted parameters.) within each Nside = 16
pixel. If the model performs as expected, this quantity should
have zero mean and unit standard deviation. Overall, we see that
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Fig. 3. Posterior mean total data-minus-model residual maps (rν = dν − sν) in Q and U for BeyondPlanck LFI 30 GHz (top left), 44 GHz (top
right), 70 GHz (bottom left) and 353 GHz (bottom right). All maps are smoothed to a common angular resolution of 2◦ FWHM.
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Fig. 4. Posterior mean total data-minus-model residual maps (rν = dν − sν) in Q (first column) and U (third column) for all included WMAP
bands in the two left-most columns, at Nside = 16, masked with the processing mask applied in the pipeline. The second and fourth columns
show corresponding transmission imbalance template maps for one of the differencing assemblies (eg. Q{1,2}, V{1,2}) per residual as derived by
Jarosik et al. (2007); note that these templates are each associated with an unknown scaling amplitude that may take either sign.

our model appears to perform well at high Galactic latitudes,5
while the Galactic plane shows clear excess χ2. This behavior is
not surprising, as the Galactic Center is far more complex and
difficult to model, both in terms of astrophysics and instrumental
effects. We do note that the morphological structure of the ex-
cess χ2 appears to be correlated with Galactic emission, rather
than instrumental effects.

Another useful statistic for evaluating the model goodness-
of-fit is data-minus-model residual maps per frequency,
rν = dν − sν. These residual maps provide a visual summary of
remaining systematics on a band-to-band basis, which is use-
ful when physically interpreting specific artefacts in the χ2 map.
Figure 3 shows such residual maps for the Planck frequency

5 We note that it is very difficult to compute ndof rigorously due to the
presence of active priors, since each prior-constrained model parameter
only contributes with a fraction of a degree-of-freedom. As such, the
important feature of Fig. 2 is its spatial structure, not the absolute zero-
level. The uniform and slightly negative bias at high Galactic latitudes
is thus simply an indication that ndof is very slightly over-estimated; if it
were due to over-estimating the white noise rms level, which is the only
other possible explanation for a χ2 deficit, the Planck scanning strategy
would have been visually apparent.

bands, smoothed to 2◦ FWHM to suppress white noise. Gen-
erally, these maps indicate excellent model performance, with
amplitudes of . 3 µK. High Galactic latitudes appear consis-
tent with noise, while small deviations are seen around the
Galactic Center, with a morphology that may suggest residual
bandpass-induced temperature-to-polarization leakage (Paradiso
et al. 2022).

The 44 GHz channel exhibits the largest relative variations.
This is expected from algorithmic arguments, by noting that this
channel does not dominate the determination of any single fit-
ted astrophysical component. In contrast, the 30 GHz channel
dominates synchrotron determination; the 70 GHz channel dom-
inates CMB determination; and the 353 GHz channel dominates
thermal dust determination. As such, any excess fluctuations in
these channels will rather be interpreted as signal belonging to
whichever foreground component that uses this as a reference
band. For component separation purposes, it is clearly advanta-
geous to have multiple frequency maps with comparable signal-
to-noise ratio per astrophysical component, as instrumental arte-
facts are then much easier to identify. Employing the full set of
Planck frequency maps in a future analysis will improve these
results, and provide many more internal cross-checks. However,
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Fig. 5. (Left column:) Polarized thermal dust amplitude maps, plotted in terms of the polarization amplitude P =
√

Q2 + U2 (top row) and the
Stokes Q (middle row) and U parameters (bottom row). (Right column:) Corresponding posterior standard deviation maps. All maps are evaluated
at a reference frequency of 353 GHz in units of µKRJ, and averaged over all available Gibbs samples. The effective angular resolution is 10′
FWHM.

we once again stress that the main aim of the current study is not
to present a new state-of-the-art sky model, but rather to demon-
strate the BeyondPlanck algorithm.

Figure 4 shows the remaining residual maps, i.e., WMAP Ka,
Q, and V-band. In all three cases, we see coherent large-scale
structures that are clearly morphologically inconsistent with in-
strumental noise. These residual maps appear visually similar to
the set of correction templates presented by Jarosik et al. (2007)
that account for known transmission imbalance between the A-
and B-sides of the WMAP instrument,6 as shown in the second
and fourth column of Fig. 4. In our study, we do not apply any
explicit corrections for these templates; hence, they appear in

6 Note that Jarosik et al. 2007 provide two correction templates per
WMAP differencing assembly, and both Q- and V-bands are therefore
associated with four templates each. Only one of these are shown in
Fig. 4 for intuition purposes; the other templates look qualitatively sim-
ilar.

the frequency residual maps. However, they are accounted for
in the WMAP covariance matrices, and the corresponding modes
are therefore appropriately down-weighed when fitting the astro-
physical parameters with Eqs. (20) and (26). Transmission im-
balance effects will therefore not bias any astrophysical results,
but only result in larger uncertainties. At the same time, these
residual maps clearly suggest how a future joint time-domain
processing of WMAP and Planck will be able to constrain the
WMAP transmission imbalance parameters with high precision.
Once that happens, the corresponding spatial modes will no
longer need to be algebraically projected out, as is effectively
done now, but may rather be used for scientific inference, on the
same footing as any other mode. This work has already started,
and preliminary results are discussed by Watts et al. (2022).
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Fig. 6. Same as Fig. 5, but for polarized synchrotron emission evaluated at 30 GHz. In this case, the effective angular resolution is 1◦ FWHM.

5.2. Amplitude results

We now turn our attention to the astrophysical results, and
start with the posterior amplitude maps, a. First, Fig. 5 shows
the thermal dust amplitude, plotted at an angular resolution
of 10′ FWHM at Nside = 1024 for the polarization amplitude
P =

√
Q2 + U2, as well as Q and U averaged over an ensem-

ble of Gibbs samples. The right column shows the correspond-
ing posterior distribution standard deviation per pixel, with val-
ues peaking around 3 µKRJ. As mentioned in the previous sub-
section, the thermal dust amplitude is for all practical purposes
determined by the pre-computed HFI 353 GHz band in the Be-
yondPlanck processing, and the LFI bands have little influence.
As a result, the thermal dust standard deviation maps shown
in Fig. 5 are essentially given deterministically by the input
353 GHz standard deviation map. These uncertainties are under-
estimated in the Galactic plane, where systematic effects must be
significant. Overall, the polarized thermal dust amplitude map is
in good agreement with previous results.

Figure 6 shows corresponding results for the polarized syn-
chrotron amplitude map. At high Galactic latitudes, we see that
the standard deviation of this component traces the LFI 30 GHz
scanning strategy, and is correspondingly largely determined by
instrumental white noise. However, in this case the Galactic
plane is in fact dominated by temperature-to-polarization leak-
age due to bandpass and gain uncertainties, resulting in a mor-
phology that matches the 30 GHz intensity map.

In Fig. 7, we show Stokes parameter maps of the difference
between the BeyondPlanck map of polarized synchrotron am-
plitude and two independent synchrotron tracers. The top panel
shows differences with respect to the full WMAP K-band fre-
quency map at 23 GHz. To account for its different effective
frequency, we scale the K-band map according to a power-law
model with βs = −3.1, or, explicitly, by a factor of 0.38. The two
data sets appear to agree reasonably well, with a certain degree
of diffuse large scale structure. Considering that the effective fre-
quency difference between K-band and 30 GHz is only 7 GHz,
spatial variations in the synchrotron spectral index are unlikely
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Fig. 7. (Top panel:) Difference between the BeyondPlanck polarized synchrotron amplitude and the raw WMAP K-band map (Bennett et al.
2013), the latter being scaled to 30 GHz assuming a spectral index of βs = −3.1. (Bottom panel:) Similar difference between the BeyondPlanck
and Planck DR4 (Planck Collaboration Int. LVII 2020) synchrotron amplitude maps. Left and right columns show Stokes Q and U parameters
respectively, and all maps are smoothed to a common angular resolution of 3◦ FWHM.
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is in this case βs = −2.8 ± 0.1, and all regions are constrained using the full posterior distribution.
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to be relevant, as a difference of ∆βs = 0.02 only translates into
approximately 0.5 µK in the relevant regions.

The bottom panel of Fig. 7 shows similar difference maps
with respect to the polarized synchrotron amplitude map derived
from Planck DR4 (Planck Collaboration Int. LVII 2020). In this
case, the high-latitude residuals are dominated by the Planck
scanning strategy, with an overall morphology that closely
matches the LFI gain residual template produced by Planck Col-
laboration II (2020) and discussed by Gjerløw et al. (2022) in
a BeyondPlanck context. At the same time, no striking corre-
lations are seen between the K-band and Planck DR4 residual
maps, and the overall levels of variation in these two difference
maps are comparable.

5.3. Spectral index results

5.3.1. Spectral index regions

Before presenting the synchrotron spectral index posterior distri-
bution, we revisit the final choice of sampling regions and priors
by considering a preliminary analysis configuration with nine
disjoint regions rather than four, and a spectral index prior of
βs = −2.8 ± 0.1, rather than βs = −3.3 ± 0.1. The results are
summarized in Fig. 8, which shows βs as a function of iteration
for a Gibbs chain that explored only the {a, β} sub-space. That
is, all TOD-related parameters were kept fixed in this particular
run, in order to highlight the conditional signal-to-noise ratio of
the foreground sector. Each region is labeled with its correspond-
ing posterior mean and standard deviation after a burn-in period
of 25 Gibbs samples, and accompanied by a color-coded region
map for visualization purposes.

Starting with the most visually striking result, we see that
the Galactic Center region immediately converges to a very low
mean value of βs = −4.15 ± 0.05, well outside the range of pre-
viously reported values. Of course, we already know that this re-
gion is associated with high χ2 values (see Fig. 2), and in partic-
ular shows clear evidence of temperature-to-polarization leakage
when compared to WMAP and Planck DR4 (see Fig. 7). Rather
than letting these systematic errors potentially contaminate other
parameters through an unphysical synchrotron spectral index fit,
we instead assign the spectral index of this region a physically
meaningful value, as defined by the prior. However, we do not
fix it, but rather draw a new value from the prior in every sam-
ple, and thereby marginalize over the prior. Technically speak-
ing, this is done by omitting the likelihood term in Eq. (26) when
computing the Metropolis acceptance probability.

Next, we see that the Gum Nebula region also converges to
a notably low value, and this is most likely related to the same
χ2 excess that is seen for the Galactic Center. Furthermore, we
note that the Gum Nebula region, as outlined in Fig. 1, exhibits
very little synchrotron signal and is therefore particularly prone
to residual systematic bias when applying weak prior constraints.

Most of the remaining regions fluctuate around values that
are at least nominally consistent with previous analyses reported
in the literature. We do note, however, that the two Southern
Hemisphere regions return values that are high, at βs = −2.70 ±
0.07 and βs = −2.88 ± 0.07, respectively, while most of the re-
maining ones lie around βs ≈ −3.1. Thus, even when measured
conditionally with respect to the TOD parameters, there is slight
evidence of a positive bias of ∆βs ≈ 0.1 or more with respect
to the Northern Hemisphere. Returning once again to Fig. 1, we
see that all high-latitude regions exhibit very low signal-to-noise
ratio, as the instrumental noise is comparable to, or dominates
over, the synchrotron amplitude in most pixels. These regions

are therefore all particularly susceptible to residual systematic
errors and/or prior volume effects (e.g., Dunkley et al. 2009). In-
deed, when sampling jointly over the full range of time-ordered
systematic corrections, we find that these regions converge to
βs & −2.5. As in the case of the Galactic Center, we do not
take this as evidence for a truly flatter spectral index in these re-
gions, but rather as an indication that there are low-level residual
systematics present in either BeyondPlanck, WMAP, or Planck
DR4 353 GHz (or, possibly, all of them) at a level that is suffi-
cient to bias the spectral index in the faintest regions.

We conclude that dividing into nine sky regions is sub-
optimal (not to mention 24, which was the starting point of the
analysis; see Sect. 2.1.1), as most regions do not have sufficient
signal-to-noise ratio to independently constrain βs, so they are
highly susceptible to residual systematic uncertainties. In par-
ticular, small changes in the absolute calibration can introduce
confusing CMB dipole leakage at high latitudes, while bandpass
variations can cause problems near the Galactic Center.

We therefore reduce the number of disjoint regions, and com-
bine the four high Galactic latitude regions into one, and we
merge all regions along the galactic plane, except for the Galac-
tic center. Even in this minimal configuration, the high Galactic
latitude region is not well constrained, and we therefore sample
this from the prior alone, as for the Galactic Center. This leaves
only two regions (the Galactic Spur and the Galactic Plane) to
be sampled properly with the full posterior distribution, and, for-
tunately, both of these appear to be both signal-dominated and
stable with respect to instrumental parameter variations.

5.3.2. Synchrotron spectral index results

We are now finally ready to present the main results of this pa-
per, namely constraints on the synchrotron spectral index. Start-
ing with the individual Gibbs samples, Fig. 9 shows traceplots
for each of the four regions. The first half shows the first Gibbs
chain, and the second half shows the second Gibbs chain, both
after discarding 10 samples for burn-in. Overall, we see that the
correlation length is modest, as in 30–50 samples. The chains
mix well, and appear at least visually to be statistically station-
ary; it is not easy to identify the point at which the two chains are
joined, which typically is the case if there are long-term drifts.
For completeness, Fig. 10 shows posterior mean and standard
deviation sky maps evaluated from these chains.

We also see that the Spur and Galactic Plane regions, which
are the only two regions for which βs is actually fitted, have shal-
lower mean spectral indices than the prior of βs = −3.3. This
may seem somewhat paradoxical, since it is then natural to ask
why the prior was not set to β = −3.1. As discussed earlier, the
reasons are two-fold. Firstly, the High Latitude region actually
does appear to prefer a steeper spectral index, as indicated by
the Planck likelihood analysis (Planck Collaboration V 2020),
AME constraints (Herman et al. 2022), and our own preliminary
studies. At the same time, this region is also both the most im-
portant region for CMB purposes, and it is prior-dominated. It
is therefore particularly important that the prior works well for
this region. Secondly, the prior only has a very mild effect on
the two signal-dominated regions anyway, precisely because of
their higher statistical weight. This is explicitly demonstrated in
Fig. 11, which compares conditional distributions for the Spur
region with two different priors centered on β = −3.3 (blue)
and −2.8 (red), respectively. (In this case, the TOD parameters
are kept fixed, and the P(a, β|d, ωTOD) distribution is explored
for one arbitrarily chosen realization of ωTOD.) Here we see that
shifting the prior mean by as much as ∆pβ = 0.5 only affects the
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Fig. 9. Synchrotron spectral index as a function of Gibbs iteration binned using the final BeyondPlanck analysis configuration with four disjoint
regions and a prior of βs = −3.3 ± 0.1. Dotted lines indicate regions that are sampled exclusively from the prior distribution, while solid lines
indicate regions that are sampled from the full posterior distribution.
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Fig. 10. Posterior mean (left panel) and standard deviation (right panel) maps of the spectral index of polarized synchrotron emission. Note that a
prior of βs = −3.3 ± 0.1 is applied to all four regions, but only the Galactic Spur and Galactic Plane regions are constrained with data through the
likelihood; see Sect. 5.3.2 for further discussion.

posterior by ∆β . 0.1. For a more realistic possible prior shift of
∆pβ = 0.2, the final posterior shifts will be ∆β . 0.03, which is
small compared to the overall variations seen in Fig. 9. In short,
the Spur and Galactic plane regions are signal-dominated, and
the prior is of limited importance.

Figure 12 compares the posterior distributions for these two
regions. For these, we find posterior mean and standard devia-
tions of βSpur

s = −3.17 ± 0.06 and βPlane
s = −3.03 ± 0.07. Both of

these values are consistent with earlier constraints in the litera-
ture, that suggests a steepening of the spectral index from low
to high latitudes (e.g., Fuskeland et al. 2021; Krachmalnicoff
et al. 2018). Similarly, Dunkley et al. (2009) reports a variation
of ∆βs = 0.08 between low and high Galactic latitudes using the
WMAP data, while we find a variation of ∆βs = 0.14 between
the Galactic plane and the Spur using both WMAP and LFI data.

The steepening is however only statistically significant at the 2σ
level as determined in the current analysis.

Next, to illustrate the importance of marginalization over
TOD parameters, Fig. 13 compares the full marginal posterior
distribution (thick blue histogram) with a similar posterior distri-
bution that fixes the TOD parameters at one arbitrary Gibbs sam-
ple (thin blue histogram). Thus, the former marginalizes over the
full BeyondPlanck data model, while the latter only marginal-
izes over foreground parameters and white noise. The relative
widths of the two distributions clearly demonstrates the impor-
tance of accounting uncertainties in the full parameter sets, and
correspondingly also the advantage of joint global parameter es-
timation.

As an additional validation of these results, we replace the
three BeyondPlanck-processed LFI frequency map samples with
the corresponding preprocessed Planck DR4 maps (Planck Col-
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Fig. 11. Normalized histogram of synchrotron spectral index (βs) for
the Spur region using two different priors. The solid lines show the
marginal distribution of spectral index values without TOD sampling
using a prior (dotted lines) of βs = −2.8 (red), and βs = −3.3 (blue).
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Fig. 12. Normalized histogram of synchrotron spectral index (βs) for
the Spur and Plane regions over the 500 ensemble Gibbs samples, with
corresponding prior, P(βs).

laboration Int. LVII 2020). In this case, we find spectral indices
of βSpur

s = −3.20 ± 0.06 and βPlane
s = −3.06 ± 0.06, respectively,

which are individually statistically consistent with the Beyond-
Planck results at the 0.5σ level.

5.3.3. Thermal dust spectral index

For polarized thermal dust emission, we fit only one power-law
index, βd, across the full sky, while fixing the dust temperature on
the latest Planck estimate (Planck Collaboration Int. LVII 2020).
This is exclusively due to a limited signal-to-noise ratio, and not
a statement regarding the complexity of the true sky. In this case,
we adopt a prior of βd = 1.56 ± 0.10, motivated by the most
recent Planck HFI results (Planck Collaboration IV 2018; Planck
Collaboration Int. LVII 2020).

The resulting posterior distribution is shown in Fig. 14,
which may be reasonably approximated as a Gaussian with
βd = 1.62 ± 0.04. This mean value is thus slightly steeper than
expected based on HFI, with a statistical significance of about
1.5σ. Furthermore, the uncertainty is significantly smaller than
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Fig. 13. Normalized histogram of synchrotron spectral index (βs) for
the Spur region using a prior of βs = −3.3. The bold line shows the
full BeyondPlanck posterior distribution including TOD sampling, and
the thin line shows the corresponding posterior distribution when con-
ditioning on TOD parameters.
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Fig. 14. Normalized histogram of thermal dust spectral index (βd) over
the 500 ensemble Gibbs samples, with corresponding prior.

the prior width, which suggests that the result is indeed data-
driven, even when marginalizing over the full BeyondPlanck in-
strument model.

While we caution against over-interpreting the significance
of this result, we do note that a possible spectral steepening in
the thermal dust SED around 100 GHz would have dramatic con-
sequences for future high-sensitivity B-mode experiments. Thus,
understanding whether this result is due to a statistical fluke, or
instrumental modeling errors (for instance, because of an overly
simplistic bandpass correction model), or actual astrophysics is
an important goal for future analysis. Including Planck HFI fre-
quencies between 100 and 217 GHz in a future analysis will
clearly be informative in this respect.

6. Summary and conclusions

The two main goals of this paper are to introduce a Bayesian
sampling algorithm for polarized CMB foreground models as
embedded within the end-to-end BeyondPlanck framework, and
to present the first results from this pipeline as applied to the
Planck LFI data set. This is the first time a joint global paramet-
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ric model that accounts for both instrumental and astrophysical
parameters has been fit to the Planck LFI data within a single
joint posterior distribution, allowing for seamless end-to-end er-
ror propagation. This is also the first time a joint analysis of the
Planck LFI and WMAP data has resulted in physically meaning-
ful spectral indices for both polarized synchrotron and thermal
dust emission. This analysis thus paves the way for future anal-
yses that should integrate and analyze more data sets.

Indeed, we stress that the current analysis configuration has
been specifically designed to demonstrate the properties and per-
formance of the algorithm itself, not to derive a new best-fit
sky model. Specifically, critically important data sets, such as
WMAP K-band and Planck HFI, have been intentionally omit-
ted, precisely because of their high signal-to-noise ratios; if they
had been included, the results would have been dominated by
WMAP and HFI methodology. Including these data sets, and
other important ones like C-BASS (Jew et al. 2019) or QUIJOTE
(Génova-Santos et al. 2015) will be done in future work, either
by members within the current BeyondPlanck team or by exter-
nal researchers, and either by starting from time-ordered or from
pre-pixelized sky maps. In many respects, the current analysis
configuration may very possibly represent one of the most diffi-
cult challenges that the BeyondPlanck pipeline will face, since it
is the least constrained; future analyses will always have access
to more data, and the resulting sky models will therefore be less
degenerate.

With that important caveat in mind, particularly notable
highlights from the current analysis include the following:

1. We constrain the spectral index of polarized synchrotron
emission, βs, in two large and disjoint regions of the sky, cov-
ering the Galactic Spur and the Galactic Plane, with best-fit
values βSpur

s = −3.17±0.06 and βPlane
s = −3.03±0.07, respec-

tively. These results are statistically consistent with previous
WMAP-only results (Dunkley et al. 2009). The current anal-
ysis finds some evidence for spatial variation between spur
and plane in βs, but only statistically significant at the 2σ
level. At the same time, we note that the high Galactic lati-
tude region has a too low signal-to-noise ratio to support any
robust conclusions regarding βs, while the Galactic Center
region exhibits too strong residual systematic effects.

2. We constrain the spectral index of thermal dust emission be-
tween 30 and 70 GHz to βd = 1.62±0.04, which is somewhat
steeper than that previously reported by Planck HFI (Planck
Collaboration IV 2018; Planck Collaboration Int. LVII 2020)
of βd ≈ 1.56, but still statistically consistent.

3. Through joint analysis of the Planck and WMAP data, we
have been able to isolate and highlight the effect of trans-
mission imbalance in the WMAP observations. This strongly
suggests that a future joint analysis of Planck and WMAP
data in the time-domain will be able to constrain the WMAP
transmission imbalance parameters to high accuracy. This
work has already started, as discussed by Watts et al. (2022).

Figure 15 provides an overview of the main polarized
microwave components in the frequency range from 10 to
1000 GHz, as described by the posterior BeyondPlanck results
and our assumed sky model with the addition of spinning dust
with a polarization fraction of 1 % (Génova-Santos et al. 2017;
Herman et al. 2022). Here, each component is represented in
terms of the standard deviation of the polarization amplitude
evaluated over 88 % (top edge of each band) and 27 % (bottom
edge of each band) of the sky, with all WMAP and Planck fre-
quency bands marked as vertical columns. To illustrate the im-
portance of detailed foreground modeling and error propagation,
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Fig. 15. Polarization amplitude root-mean-square (RMS) as a func-
tion of frequency and astrophysical component and polarized emission.
Each component map is smoothed to a common angular resolution of 1◦
FWHM, and the lower and upper edges of each band are defined by the
RMS outside masks covering 27 % and 88 % of the sky, respectively.
An artificial broadening has been applied to the low-amplitude tails of
the foreground spectra to visually indicate uncertainties in low signal-
to-noise regions for the relevant components. The EE CMB spectrum
is generated from ideal CMB simulations based on the best-fit Planck
ΛCDM model, while the BB limits are derived with tensor-to-scalar ra-
tios of r = 10−2 and 10−4, respectively. Additionally, we visualize an
upper limit on the polarization fraction of spinning dust of 1 % as has
been reported in literature (Génova-Santos et al. 2017; Macellari et al.
2011; Herman et al. 2022).

the predicted levels of CMB BB power for tensor-to-scalar ra-
tios of r = 10−2 and r = 10−4 are marked by diffuse gray re-
gions. In order to achieve a significant measurement of this sig-
nal, exquisite control over both foreground contamination and
systematic effects and their interplay will be quintessential. We
believe that the analysis framework presented in this paper, and
in a suite of companion papers, can play an important role in
this work, by providing a common and statistically well-defined
analysis platform for past, current and future CMB experiments.
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