
Lawrence Berkeley National Laboratory
Recent Work

Title
THE INADEQUACY OF THE NEW FORM OF THE STRIP APPROXIMATION FOR THE n-n 
SCATTERING AMPLITUDE

Permalink
https://escholarship.org/uc/item/8x81r83x

Author
Collins, P.D.B.

Publication Date
1965-08-17

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x81r83x
https://escholarship.org
http://www.cdlib.org/


tlCI'{L-16:34 7 

University of California 

Ernest 0. 
Radiation 

Lawrence 
Laboratory 

THE INADEQUACY OF THE NEW FORM OF THE STRIP APPROXIMATION 
FOR THE '11'-'11' SCATTERING AMPLITUDE 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 

Tech. Info. Division, Ext. 5545 

Berkeley, California 

0 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



;U 

Submitted to Physical Review 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California 

AEC Contract No. W -7 405 -eng -48 

UCRL-16347 

THE INADEQUACY OF THE NEW FORM OF THE STRIP APPROXIMATION 
FOR THE rr -rr SCATTERING AMPLITUDE 

P. D. B. Collins 

August 17, 1965 



' . • 
• 

• 

-1-

I. INTRODUCTION 

1 2 The new form of the strip approximation has been proposed ' as 

a method of calculating scattering amplitudes in accordance with the 

principles of maximal analytj_city of tl'.te first and second kinds. The· 

amplitudes.are constructed so tr~t they satisfy the Mandelstam repre-

sentation, and all their poles _are RegE;e poles. Such amplitudes will 

have the correct behavior in the low-energy resonance region where the 

poles dominate, and·also in the high-energy region where Regge asymptotic 

behavior is observed. It is hoped that these features include sufficient 

of the dynamics for the amplitudes to ·be self-consistent in the sense 

that the "potential" due to the crossec.-channel singularities generates 

the direct channel singularities. 

For the rr-:rr amplitude, in vrhl.ch identical processes occur in 

the direct and crossed channels, this Eelf-consistency amounts to a 

"bootstrap" req_u.irement. The dominant Regge trajectories, p, P, and .P' 

should bootstrap themselves. 

2 
Chew and Jones have devised a set of equations for investigating 

this possibility using the N/:D method, with the N function having 

the cuts of the potential, ar:~d the D function the unitarity cut in 

the strip.region. Results have already been reported3 for a self-

consistent p trajectory, but the p potential also generated an I = 0 

trajectory which was not included in the potential. In this paper we 

complete the solution by obtaining a pair of mutually self-consistent . 

trajectories, one having I = 0 and the other I = 1. However, 

these trajectories have several ~~satisfactory features, 
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and we are led to discuss some deficiencies of the new form of the 

strip approximation,and how they might be rectified. 

In the next two sections the· N/D equations and the method 

of calculating the potential f:;-om the exchange of Regge trajectories 

are reviewed. The fourth section is devoted to a discussion of the 

potential for P excha~~e, which is repulsive. The total potential 

for I = 0 exchange may be made attractive'by means of a 11normalizationu 
h 

procedure · which is supposed to take account of the effect of trajectories 

which do not reach the right-half angule.r-momentum plane, but whose presence 

is implied by the fact that the elastic discontinuity must be positive. 

However, doubt is thrown on the validity of this normalization procedure. 

In Section V vre present results for thE~ self-consistent p and 

(normalized) P trajectories. The P 1 is not found. These self-

consistent trajectories are unlike the Ilhysical p and P trajectories 

in several respects, havi~~ much larger residues than are found 

experimentally, and smaller slopes. For this reason the trajectories 

violate unitarity in the asymptotic region. In Section VI it is shown 

that the trajectories which are obtained from experiment, and which do 

satisfy asymptotic unitarity, can not gEnerate enough strength in the 

new form of the strip approximation to. 'bootstrap themselves. In 

section VII we discuss the inability of the N/D method to treat 

combinations of attractive and. repulsive potentials such as we obtain 

if the P potential is not no:rmalized. Both these problems seem to 

stem from treating the potential in the first Born approximation, and 

~' 
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in the final section we conclude that a more adequate strength, and a 

better treatment of the P repulsion,would result from iterating 

the potential in the way originally proposed by Mandelstam.5 

~' . ..:. . .;v 
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II. The N/D EQUATIONS 

The form of the N/D equations which we use has already been 

1 2 3 discussed in previous pg.pers. ' ' , lie review them here only for 

completeness. 

We relate the pg.rtial-wave amplitude for isospin I to the total 

:rc""..:'":rc scattering amplitude AI(s,t,u) by 

lie note that because of the :Bose statistics of pions only the even 
I J 

signature amplitude A+I(s,t) exists for I= 0,2 
1

and only the 

odd signature A-I(s,t) for I= 1 : 

,,_ 

(II:l) 

AI(s,t,u) = AI(s,t) + (-l)I AI(s,u). (II:2) 

The forces in the I = 2 channel are repulsive and no trajectories are 

produced, so we shall limit our attention to I = 0 and l ~ 

where p(s) = 

the phase -shift 

4 < s < s1 . 

= 
p(s) ' 

1 

cs-4)
2 

is the phase-space factor, and we assume that s 

(II:3) 

5£ I(s) is real (Le., elastic unitarity) in the range 

<) 

"' 
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We represent the partial-wave amplitude by 

= q 2£ B I (s) 
s .e 

2£ I( I I = q~, N.e s) D.e (s), 

I where B.e (s) is the reduced partial-ws.ve amplitude, with the 

kinematical singularities at threshold removed, and N.e1 (s) has the 

I le:ft-hand cut of B.e (s) and its right-hand cut for s > s1 >and 

D.ei(s) has the right-hand unitarity cut from threshold to s
1 

Here s, t, u are the squares of the ba.rycentric energi~s in the 

various channels with q J.. the corresponding momenta, and s
1 

is 
s, "'' u 

(II:4) 

the strip width. We use the pion mass as the unit of energy throughout. 

and 

where 

We then obtain the equa:l:;ions1 

: 1 fsl 
= 1 -- ds' 

1( 4 

P.e(s') N.e(s') 

·(s'- s) 

and B.ev(s) is the partial-w~ve potential function. 

(II:5) 

(II:6) 

; ..•. .,;/, 
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The integral equation (II:5) is not Fredholm because, as we 

shall see in the next section, Btv(s) has a logarithmic singularity 

at In fact 

(II:7) 

and 

(II:8) 

(say) 

This singularity serves to match the phase shift below s1 J 

given by the solution of the N/D equations
1
to the value above s1 > 

given by Regge asymptotic behavior. Clearly unitarity at s1 requires 

that 

(II:9) 

and Chew
6 

has sho~m that if this condition is satisfied Eq. (II:5) 

can be transformed, by the Wiener-Hopf method, into a Fredholm equation 

(II:lO) 

~' 

'J 

v 
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0 
where N.e (s) is related to N.e(s) by 

' (II.:ll) 

O.e(s,s') and K.e(s,s') being known7 functions of B.ev(s), ~t' and 

8 
s
1 

. A FORTRAN program for solving these eq_uations bas been devised, 

but the Wiener-Hopf transformations are rather time-consuming.9 

· Eq_uation (II~lO), being Fredholm,can be solved by ·matrix inversion. 

10 However, more recently, Jones arJdTiktopoulos have shown 

that_any integral eq_uation, the norm of whose kernel is less than one, 

can be solved by matrix inversion whether or.not it is Fredholm
1
and 

. . I 

that for an eq_uation such as (II:5) this is simply the req_uirement 

that ~.e < 1 . Thus, if unitarity is satisfied in the asymptotic 

region (s > s
1

), (II:5) can 'be solved, as it stands, by matrix 

invers:ton; providing that care iG taken with the choice of mesh points 

for s near s
1 

. 11 In view of the diffic1uties in satisfying the 

unitarity condition we decided to use the Jones-'l'Thtopoulos method 

rather than Chew's method' which had been used. in previous work. 3' 9 

A pole in the partial-wave amplitude is represented by a 

zero of the D function, and the output trajectory is the function 

a(s) such that 

0 CII:12) 
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Above threshold both a(s) and D£(s) become complex, but 

their imaginary parts are expected to be small1in which ease we can 

make the approximation of supposing that 

As previously, 3 . the solutions -~re obtain turn out to have 

Im[a(s)] large just above thresholcl, and, since it is much more 

difficult to solve the equations for comi-'lex £ , we are unable 

to trace the trajectories above threshold. 

The output residue, r(s), is obtained from the relation3 

' 

where is the pole position. 

•• 

(II:l3) 

(II :14) 



,, 
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III. THE POTENTIAL FUNCTION 

In Fig. 1 we show the six regions ( i j 1L ) of the 1, 2, 1, 2, -J., 2 

double spectral fUnctions employed in the new form of the strip 

2 
approximation. The double spectral function in region J

1
• for 

example,is given by 

where 

' 

(III:l) 

(III:2) 

aj(t) being the trajectory function, and .rj(t) the reduced residue 

function, of the ..J.th Regge trajeetory. The contribution of this strip 
. . 2 

to the amplitude is 

p ()(l-~) 
aJ t 2qt " 

ds' , (III:3) 
(s'- s) 

where this integral is defined, and for a > 0 we use its analytic 

continuation 

F.~j(t) ( 1 :~ 2s'2) j) 
----~· -~__;,_- d I 

(s' - s) s 

(III: 4) 

tf7 
'\)('i](2 
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where the sums are over the leading trajectories in the respective 
. I 

channels. 

The reduced partial-wave amplitude for complex £ is defined 

by 

1 
-2; 

0 

J 
-oo 

(III :5) 

(III:6) 

a form first pointed out by Wong, 1~~ and the partialawave potential function 

is3 (remembering the crossing symmetry) 

X 

+ 



'• 

either 

II 
r .... j(t) 

+ ~- j " 

sin :rraj (t) 

or 

J
4-t 

1 
- ~ ds' 

-ao 2 £+1_ 
(s '-s )( -q , ). s 
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where the sum is over the leading trajectories, and 

s + t + u = s + t' + u' = 4 . 

Also, 
II 

r· J(t) -
j 

~(I,I') being the isotopic spin crossing matrix 

~(I, I I) 1 
·- 3 

\5 

1, 

1 
2 

1 
- 2 

5 
3 

5 
- b 

1 
b I 

(III:7) ' 

.(III:8) 

(III:9) 
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li 

Note tb.B.t •• 

for - 1 < -y < + 1 

(:J:II:lO) 

= - sin rc t Q.e(-y) for j < -1 

From the first term of (III:7) , 

= [ 
(0 

1 I dt 
2£+2 j 

2rc q
8 

-co 
. 1 

j 

" I 

We have''included the contributions of the· strips 1
1

,
2 

to the left-

v hand cut in B£ (s), which we have .ca.lled the partial-wave potential 

:f'lmction. Strj.ctly these contributions are not part of the potential, 

but represent the reaction to the potential. However, these extra 

contributions are U..llimportant a.n<i it s~ems reasonable to use the term •. 

The "potential" is the expression in braces··. (} in Eq. (III:7). 
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· IV. THE TREA.T.MENT OF TRE POMERAliJ"CHUK REPULSION 

When Eq. (III: '7) is used to ew.lua.te the potential for an 

even signature trajectory such as the r or P' it is found that 

the potential funct:l.on is negat:t.ve (Le., repulsive). Thus if we make 

the approximation of setting a = 1 we obtain 

__ p IIj { 
~(s,t) = r (t) -

' 
where ?-(s~t) is the expression in· "braces.; (} in (IIIi7) •. For 

t << s we get 

and B.e v can be approximated by the partia:.l-~ve projection of this 

expression. It will be noted that there is a.repulsion depend:l..ng on 

s
1 

, and the expected. logarithmic singularity.· For s << s
1 

~(s,t) . l .•• J ' 

2 and the s term is related to the spin-two (f
0

) part of the P, but 

2 it is·reduced by a factor s1 compared with the repulsion. The lack 

of s dependence of the repulsion indicates that it results from the 

spin-zero part of the P exchange. · 

(IV:l) 

(IV:2) 

(IV:3) 
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Chew has shown13 how one can understand this repulsion also in 

terms of the Khuri-Jones formu~a for ~(s,t). By expanding ~(s,t) 

in partial waves in the t channel, one finds 

where 

and 1'1 (t) 

For t << s1 we have 

(IV: 4) 

(IV:5) 

and (IV:6) 

We again see a much reduced attracti.on from the 

repulsion from spin 0. 

f and a strong 
0 
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At first sight it would seem tha;t this repulsion must be 

incorrect, or at least that it must be cancelled by other contributions 

to J = 0 exchange. For, suppose we use ·:.the Froissart-Gribov2 form of · 

the partial~wave projection instead of the Wong form (III:6), 

1 
2~ 

dt ,r t ) 
2£+2 Q.£ (1 + --2 . Dt ( t, s) ' 

q '- . 2q 
s s 

where Dt(t,s) is the t-cP~nnel discontinuity of the amplitude • 

. Then,neglecti~ the strips i 1, 2 in Fig. 1, we have 

Because we take the double spectral functions to be zero outside the 

strips of Fig. 11 we can expand Dt(t,s) in a convergent partial

wave series for 4 < s < s1 and obta.in 

and since, for elastic unitarity, Im A.£ (t) must be positive,we can 
t 

see that B.e v~s) must be positive. Thus, if the strip approximation 

(IV:7) 

(IV:8) 

(IV: 9) 

' r, 
is to be corre~t, there must be other contributions to . Im A.e (t) apart 

t 
. f'rom the · P (dr P') trajectory. These could be provided by trajectories 
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which do not reach the right-half angular-momentum plane, but give a 

background contribution. (See Fig. 2.) Since such trajectories are 

not manifest, either physically, or in this type of calculation, there 

can be no hope of inclUding them individually in the bootstrap scheme, 

14 
but Chew and Teplitz have shown how to represent their effect by 

"normaliz:t.ng" the potential. This procedure consists simply of 

subtracting from v' ( s, t) the part vP ( o, t) and then adding back 

V(o,t) from (VI:9). 

Thus 

' ' 

1 = f dt [rm '~t ~ + 2:82 ){vl'(s,t) - vl'(o,t)} 
(VI:lO) 

~ ~· \ 
+ ~_{_I..L2l_ J 1

dtQ tl+.J?._) L (2.tt+l)ImAnt(,t) 
2 2.t+2 .e ~ 2 2 .e k 
~ qs ~ - qs teven 

} 

·: and Im A.e, ( t) can be made self-col:'l.sistent in the s and t channels. 
t 

It turns ou·c that the second term oi~ thi~3 equat:!.on is very small, and 

in practic·e we shall s:tmply use the first term, which is itself · 

sufficient to ensure that the I = 0 exchange force is positive. It 

will be seen in Section v·I that this "normalization" drastically 

alters the form of the potential funetiion. It would be difficult to. 

add the second term in a sel:f-consistent way because an adequate solution 

for .e = 0, wnich is sensitive to short .. range forces not included in the 
·--
u~ 

strip approx~tion, can not be found, and our solutions for .e = 2 

and higher can~',not be believed because v,re have considered only a single 
., 

t,w .. body channel whose particles (pions) have no spin. Our conclusion 
' 

v 

I' 



.. 

'•. 

' !t 

-17-

that this term would be small if it were: included is based on the 

fact that even the force from saturated unitarity in the S:wave 

[Im A
0
(t) = l/p

0
(t)] is small; and .. for the D ··wave,the contribution 

of a fixed·spin 

negligible. 

f , when modified by Chew's form factor, l3 
0 

is 

However., the argument presented to show that the I = 0 force 
l 

must be positive could well be incorrect, since it assumes that elastic 

unitari·ty holds for 4 < t < s1 . In fact it will hold exactly ·only 

for 4 < t < 16 • The double spectral functions are really non .. zero 
. ' 

within the boundaries shoW11 in Fig. 1. The region A contains the 

elastic double spectral function for the. s channel)which
1
by 

definition, sho1lid not be included in the potential, but which will 

contribute to the t- channel discontinuity where it represents inelastic 

processes. This sort of contradiction between the sign of the t - channel 

discontinuity and the s- channel potential has been noted previously, 15 

and we shall consider it further ll1 the final .section. 

In the next section we describe the results obtained when the 

normalization procedure, whatever its merit~ is :J.n fact used • 
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. V. . THE BOOTSTRAP TRAJECTORIES 

In a previous paper3 a self-consistent p trajectory was 

obtained, but the p force also produced an I = 0 trajectory which 

had not been included in the input. If now we include a ncrmalized 

Pomeranchu.k trajectory it is possible to obtain a .completely self-

consistent solution. 

As in reference 3 we use a pole formula to parameterize the 

trajectory functions, insisting that the I = 1 trajectory pass through 
I 

a = 1 for t = 28, corresponding to the p particle, and that the P 

pass through a = 2 for t = So, corresponding to the f , and through 
0 

the unitarity limit a = 1 for t·· = o. 

Thus 

where (1-a) is the intercept of the trajectory with t = 0, and 

where tA and tB are the positions of the poles, which we expect to 

lie towards the upper end of the strip. 

The s~e type of parameterization of the residue as was used 

in Ref. 3, maRt!.ng use of the Chew-Teplitz formula, was found to be 

satisfactory; 

(V:l) 

(V:2) 

~-

.... .;,.,. 
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i.e., 

'1 (t) 
p 

YpJ (t) 

·-

= 

. ' \' 

'\ 

The merit .of this.:r;arameterization stems fram the fact that the :princi:r;al 

force . in the system is p ·:·.:exchange, and the Reggeized p force is 

similar in its energy dependence to the elementary p force. The 

:parameter t p :t.s some mean energy within the strip. Thus in searching 
p, 

for self-consistency we have to vary the Regge :parameters 

a, tA' tB' C p' Cp' tp' and ~ , and the strip width . s1 

For a give~ choice of the parameters we calculate the :potential',. 

using (III:?) for a range of £ and s , and then solve the N/D 

\) equat:t.ons for I = 0 and. 1, obtaining output residue and trajectory 

functions. It was indicated :previous~ that. a large amount o.f computer 

time is required to find self-consistent solutions,, but the self-

consistency is now much more nearly unique than it was for the p alone. 

Only With. 80 < s
1 

< 130 is one able to approach self-consistency at 

all closely, and we concentrated on s
1 

= 100 • We were then able to 

obtain fairly good self-consistency for a = 0:.18, tA = llO, tB = 70, 

C = 125, CP = 230, t =O.l~O and tp = 50. p p . 

A comparison of the input and output trajectory and residue · 
' i~ • 

(V:3) 

(V:4) 

fUnctions is given in Figs~ 3 and 4. A slightly different parameterization 
f 

··, 
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of the r' s might have resulted in. some improvement, but the solution 

shown is obviously close to the best self-consistent solution. 

Idealy, in a bootstrap calculation, one ought not to fix any 

of the. parameters beforehand, but, since the force only depends on 

et(t) for .t < 0 , fixing Ct (28) 
p = 1 is not a strong restriction. 

If the trajectory is made to lie too hig·h or too low the force obtained 

is too strong or too weak for self-consistency to be possible. Fixing 

ap(o) = 1 does, however, restrict t.he solution greatly. The self

consistent p alone reported in Ref.. ) gave ri~e to a 
1
P trajectory 

which exceed.ed the unitarity limit. It is the exclusion of this type 

of solution which has caused the greater restriction in the range 

of the parameters for ,.,hich approximate self-consistency can be obtained. 

As before3 the output diverges w:i.dely. fiom the input as t 

becomes positive, the rapid variation of the output· a's and r's 

indicating that they have large imaginary rarts just above threshold. 

The input parameters, rJ28) / a~(28), correspond to a p width of 

1.2 mrc 1 but the output I = 1, £ = 1 cross .. section (Fig. 5) shows 

a width of 4.2 m 
1( 

In fact, the equivalent input p width is much 

larger ·t:b.an 1.2 m because of the u.nreali~tic way in which our 
1( 

residue function decreases for t > 0. Similarly the input r (o) p 
16 

corresponds to a rc-rc total cross section of 36 mb~ ·. . rather than 

the expected 11 mb , deduced from Ref. 17. As in Ref. 31 it was not 

possible to find solutions in which y(t) falls off sharply as t · is · ~· 

decreased frocl zero, and it was thought wise to set r(t) = 0 artificially 

., 
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for t <- s1+ 4. This makes the second term of (III:7) zero, whereas 

it would be much larger than is consistent with the -strip approximation 

were this cutoff not imposed. As vras mentioned in Ref. 3, it is 

necessary to have rapidly decreasing residues in order to produce steep 

trajectories, and it is the failure to obtain such residues as output 

which forces us to solutions with high trajectories, quite unlike those 

found from experiment in Ref. 18. 

In fact, our trajectories are not admissible solutions to the 

problem because they do not satisfy unitarity in the asjmptotic region. 

From Eq. (II:8), we see that for unitarity to be satisfied at s1 

we require 

A.£. = 

A plot of A.£ vs P. is shown in Fig •. 6, where we see that 

this condition is not satisfied for £ < 0.82 for I = 1, and 

£ < 0.95 for I = 0. The difference between the two isotopic spins 

is simply that the p trajectory contributes twice as strongly to 

(V:5) 

I = 0 because of the crossing matrix. As we mentioned in Section II, 

A.P. < 1 is the condition for ma·tr:tx inversion to give. the solution of 

the integral equation (II:5), and S() the trajectories plotted in Fig. 3 

are not to be relied upon below these values of £ • However, there 
("! 

is no discontinuity in the solution ,,f the matrix inversion equations 
I 

as A.P. bec~es greater than one, so H'e can expect the solution obtained 

to be close to the true solution to the integral equation. But Fig. 6 

shows that for £ = 0 unitarity is so far from being satisfied that the 

~I 0 



self-consistent trajectories we have found can not possibly correspond 

at all closely to the physical trajectories. One can see from Eq. (III:ll) 

·that if a and r did decrease more rapidly, and r were smaller, 

this problem would not arise. In fact, Thillips and Ra.rita18 checked 

that their trajectories satisfied unitarity at high energy. 

Our conclusion from the results reported in this section is 

that there is no bootstrap solution to the Chew-Jones equations which 

satisfies unitarity in the asymptotic region, but that, if we ignore 

this condition1trajectories which are completely_self-co~sistent for 

t < 0 can be found, which bear a rather remote resemblance to those 

determined from experiment. 

There was no sign of a secondary I = 0 trajectory corresponding 

to the P', even when attempts were mad.e to include it as a force. 
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VI. FURTHER ASPECTS OF 'l1HE RIDGE )'OTENTIALS 

Despite our inabil~ty to find a. bootstrap solution of the 

Ohew-Jones equations it is important to understand the nature of 

the potentials produced. by Regge poles. 

13 Chewhas.shown how the fixed-spin exchange potential is 

modified, by what he calls a 11 form factor, 11 when continuation in 

angular momentum is taken into account. This form factor may enhance 

or reduce the force, depending on the spin of the particle exchanged. 

For a particle of high spin the-form factor always results in a 
j 

reduction of the force, but f'or the p the situation is less certain. 

It is well known that though the p is the principal force 

in the rr~~ problem, a fixed-spin particle of the physical width 

does not give a sufficient strength to ·bootstrap itself in the first 

Born approximation. 

The potential function is 

(VI:l) 

where g is the width of the exchanged p in pion mass units, and 

the results of using such a force in the N/D equations with a cutoff 

at s1 = 200 are shown in Fig. 7• It :is seen that a width of 2.3 m1r 
2 . 

is required to produce a trajectory which passes through mp at a = 1. 

We compare this with the force obtained from two different parameteriza-

tions of the . . :. p · trajectory in Fig. 8 • The p of case (b) produces a 
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force which is similar to that from the fixed-spin p for £ = 1, 

·though it is smaller for lower values of £ , but it still suffers 

from the difficulty that unitarity in the asymptotic region can not 

be satisfied even if we neglect the fact that the P and P' 

trajectories also contribute strongly to Im B£ v(s). In case (c) the 

18 
input trajectories are similar to those found by Phillips and Rarita, 

and the '·force is much smaller. 

The addition of the even-signature trajectories is of little 

help because if the normalization procedure is used the remaining P 
! 

force is very small, as Fig. _9 shows. -If we use input parameters based 

on those of Phillips and Rarita for the p and (normalized) P the 

force is too weak to produce any output.trajecto~J at all. If the 

P contribution is not normalized the resulting total force is 

repulsive,and it is not possible to obtain a sensible solution to the 

N/D equations. This point is taken up-in the next section. 

To summarize, the forces from the sort of trajectories found . 

. ·by Phillips and Rarita are even smaller tl:an those from the exchange 

of a fixed-spin p with the experimental Width, and are .too weak to 

produce any output trajectorj.esd The force can be increased by using 

residue and trajectory functions which fall less rapidly with increasing 

ltl, but if they are flattened sufficiently to produce a force equal to 

that from the exchange of a fixed•spin p. unitarity in the asymptotic 

region is v~ol~ted at least .for low angular momentum, and even this 

force is too ~eak by a sizable factor to produce output trajectories 

corresponding .,~o experiment. 
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VII. .THE REPULSION A~!D THE N/D METHOD 

' 

We can see from Figs. 8 and 9 that, if we do not normalize . 
. • 

the P contribution, the P repulsion is much, greater than the p 

attract:ton.for both the I = 0 and I = 1 channels except for s 

nea:t• If we try to solve the N/D equati?ns with such forces 

we obtain trajectories of poles with negative residues, that is to 

say we find "ghost'' resonances which l:i.e on .the physical sheet (at a 

in Fig. 10). What is mare, the stronger the repulsion the the more 

highly bound these resoances become. Since dynamical calculations 

. 19 
hav~ usually obtained resoance widths -which are too large (e.g., at 

b in Fig. 10) it might be hoped that some more moderate amovnt of 

repulsion would result in narrow resonances (at c). 

To explore this phenomenon further we examined a potential 

scattering model in which there vas a similar combination of attractive 

and repulsive potentials, i.e., 

V(r) = 
r 

-m r 
e 2 

+ g2 r (VII:l) 

.If one, ~olves the Schroedinger equation with any such potential 

' one is guaranteed that any resonances produced will lie on the unphys:tcal 

sheet, but if we use the first Born approximation 
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and solve_the N/D equations (II:5),(II:6) with a .nonrelativistic 

pl1ase~space factor 

.e~ 

( ) ('3-4) 2 
P,e s - '(4"' 

and let s
1 

-+ m, we find similar ghost trajectories. For example, 

at J!, = o, with g2 = 10.5, m2 = 10, and ~ = 1 (there is no 

particular reason for these values),we find that for g1 = 0 a 

(VII:3) 

normal bound.state is produced at If we 

add repulsion by increasing g1 there is, pa.radoxica.D..JI)o greater 

attraction, so that for g1 = 2.6 the botmd state has moved to -23. 
v Plots. of .B , N , and D are given in Fig. lla • For g1 = 2·7 a 

. 0 0 0 

pole is produced in the N functior.t at t;hreshold and the bound state 

moves to - co • For g1 = 2.8 the N fw1etion ,just above threshold 

has changed sign (Fig. llc),with a ghost pole appearing at s = 8·5 

We see that again N % B v, because the changing sign of N makes 
' 0 0 

the contribution of the integral 1n (II:~ very small, but this clearly 

does not mean that the first Born approximation still holds good. 

Increasing g
1 

further· increases the b.ii'lding of the ghost resonance. 

This result stems from the failu~e of the first Born approximation, 

and would be improved if we were to iterate the potential in the way 
. 5 . 

suggested by Ma.ndelstam. After an infinite number of iterations the 

20 solution .to the Schroedinger equation would be obtained, and it 
;! 

l'"t 
would not be possible to have resonances except on the unphysical sheet. 

·~ . 
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One would expect the iterations to be more important for a repuJ.sive 

potential than for an attractive one because of the alternating signs 

·of the successive iterations in.the former case • 

It would seem that in our relativistic problem we are facing· 

the same sort of inadequacy of the Born approximation. 

The normalization procedure :i.s a. valid way of correcting the 

t - channel discontinuity in the range 4 < t < 16 where elastic 

unitarity is exact, and probably further out than this,since we expect 

the discontinuity of the potential to be small in the whole of the 

lower part of the strip where there are narrow resonances. This is 

bec.ause the double spectral function in the strip is approximately 

proportional to Im o:(t) {see. Eg_. (III:l)] and the width of a resonance 

21 
at tR is 

r = 

In the upper region of the strip we can have no such confidence in 

the normalization procedure, since here the discontinuity has contribu-

tions not only from the strips but also from the· corner section of the 

double spectral function (A in Fig. 1). This corner is not included 

(VII: 4) 

in the potential, by definition, but if it is an important contribution 

to the amplitude its neglect is a st~rious defect of the new form of the 

strip approxiclation. 

This J.art of the double spe\ctral function couJ.d be calculated, 
\ 

by means of .the Mandelstam iteration procedure, from the equations 
'f', . 



. 00 

p (s, t) = 
1 JJ dt'dt" (VII :5) 

1( q -{S 
s K=O 

where Dt (t, s) is the t- channel discontinuitYj and 

[ 2 2 2 tt I~ II J K(s,t,t',t") -- t + t' + t" .. 2(t t' + t't"+ t"t) - ...;..;;...._,_ 
qs 

and 

'. 

l 
p(s',t~ + 
s'- s. - i p(s,t) (VII:6) 

Starting with the t discontinuity of the potential, Vt(t,s), one 

could calculate pA(s,t), the elastic s double spectral function 

in the region A [though this would require a knowledge. of the residue 

and trajectory functions above threshold.where they are complex, a 

region which hitherto we have been able to avoid by using the Wo~~ 

partial-vmve projection (III:6)]. If we knew pA (s,t) we could find 

its contribution to B£v(s), and this would enable us to treat the P 

force properly instead of using the normalj.zation procedure for 

t >> 16, where its validity is rather doubtful. 

However, if pA(s,t) is important, so by symmetry is pB(s,t), 

the elastic t double spectral function obtained by iterating the 

s- channel di~continuity, and this imples that the assumption of· 

elastic unitarity in the s strip for the N/D equations is incorrect; 
' \· 



( ) v( ' pB s,t will also contribute to B..e s;, of course. 

Thus the new form of the strip e.pproxim.ation is seen to have 

two deficienc15, in that the cuts of the N function are taken to be 

simply those of the potential, and elastic unitarity is supposed to 

hold right out to the boundary· of the strip. 

22 Chew has argued that a proper inclusion of the P repulsion should 

result .in a narrowing of the output resonances. The argu1nent is 

based p9.rtly on the fact that
1
in.controlling the asymptotic behavior, 

the P is the main contribution to the potential for s
1
> s

1
, and 

represents the effect of the many channels opening up above the 

resonance region, and in classical nuclear physics it is the presence 

of such channels which is responsible for the narrow resonances. In 

terms of the N/D equations, the inclusiQn of the long•range P 

repulsion should reduce the N function near threshold, and hence 

the width of low-energy resonances, without greatly altering the 

position of the zero of the D function, which :·depends ' on ·the 

shorter-range p force. 

c 
'.,I·;, 

-~. 
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VIII. CONCIJUSIONS 

We have not succeeded in bootstrapping trajectories in the 

new form of.the strip approximation as it stands. This appears to 

be due to the treatment of the potentiaJ. in the first Born approximation, 

which does not produce sufficient force to regenerate the true physical 

trajector~es when the physical trajector1es are ;used as the input, and 

gives rise to a repulsion from the P . a.nd P' trajectories which 

we are only able to cope with by making doubtful assumptions about the 

' presence of a background contribution. If we neglect the requirement 

that the input forces should correspond to the known trajectory 

parameters, we fu1d t~~t it is possible to obtain self-consistent 

trajectories, but these violate unitarity very seriously in the asymptotic 

region, require the input of a p resonance of too large a width, and 

result in an even larger output width. 

It is hoped that by iterating the potential it will be possible 

to include the P force properly. and o'btain narrower resonances, .and 

that the :J.teration will produce sufficient extra strength from both 

p and P to make up the deficit. Howeyer, in view of the fact that 

it will no longer be possible to identHy the left- ani far right-hand 

cuts of the partial-wave amplitudes with those of the potential, nor 

to use elastic unitarity within the strip, there does not seem to be any 

advantage in using the N/D method. Rather one should try to obtain 

crossing analYticity by iterating the potential from a g:i ven set of 
. :t 

trajectories-'out to the asymptotic region, and discover whether the 
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asym:ptotic behavior a:p:pears to be controlled by identical trajectories 

in the crossed channel. The success of Bransden et al. 23 in iterating 

a non-Regge :potential and obtainir~ sensible output trajectories gives 

. ~ 

strong grounds for ho:ping that this l:l.J?:Proach will s¢cceed, and it is 

ex:pected that results will be available before very long. 
24 
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FIGURE CAPJ:IONS 

Fig. 1. The Mandelstam. diagram for the new form of the strip approxima

tion, showing the si.x strips (shaded) i 1, 2 , j l, 2 .. and ~' 2 

The curve enclosing A is the boundary of the elastic double 

spectral function fc~ the s channel, and that enclosing B 

is the boundary of the t - channel .. elastic double spectral 

fu.'t'lction;.. 

Fig. 2. The I = 0 trajectories, including two hypothetical low-lying 

trajectories which might give a positive background contribu-

tion to the potential. 

Fig. 3. A comparison of the input and output, approximately self-

consistent p and P trajectories. The input trajectories 

are: 

a = 0.55 + 0.27 I (1 - ti70), p 

ap = o. 625 + 0.375 I (1 - tlllO) 

Fig. 4. · A comparison of the input and output, approximately self-

consistent p and P trajectories. The input residue 

functions are 
a (t) + 1 

?'P = 125 a'p(t) (4o-t) Qa (t) (2.55) I (9) P ' 

P a (t) + 1 
rp = 230 a'p(t) (50-t) Qa (t) (2.22) / (11.5) P 

p 

Fig. 5. The I = 1, .£ = 1 cross sect:1.on obtained with the self-

ccnJisrent trajectories. The width is about 4.2 m 
1! 

.,.. 
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Fig. 6. A plot of "-£ vs. £ for the self-consistent trajectorie::;, 

showin'S that the unitarity condition. "-£ ~ 1, is satisfied 

only for the tops of the trajectories. 

Fig. 7. The trajectories obtained with the exchinge of a fixed-

spin p of width -- A = 0. 7 m , B = 1.4 m , and . rr rr 

C = 2.3 m , with a .cutoff at s1 =200m 2 
rr · rr 

Fig. 8. A comparison of the potential functions, Bp_v(s), for three 

values of £ , with sl = 200 mrr
2 

The input parameters 

for the three cases are: 

(a) Fixed spin p of width 0.7 m • rr 

(b) A. p trajectory with the parameters 

(c) 

ap = 0.107 + 0.393/(1-t/50), 
1-a (t) 

/P = 0.22 x(49) P / (l-t/200) 

A p trajectory with the parameters · 

ap = -1.5 + 2/(1- t/140), 

1.-cx (t) 
ip = 0.01 x(24) P /(1- t/100). 

. ! 

Both sets of parameters correspond to a physical p of width 
· . -a(t) 

o:.7 m • [The presence of (numerical factor) is to make 
. rr 2 a(t) 

r(t) cc /(t) (-~ ) dimensionless.] 

Fig. 9. A comparison of the · unnormalized (a) 
1 

and normalized (b) 
1 

potential functions for an inF~t ~ trajectory having the 
... 

para!neters 

ap = -1.0 + 2.0 /(1- t/240)~ 

1-~(t) 
ip = 0.007 x(24) x ~(t)/(1-t/100) 
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I 
·for $ = 0. These pa.ramei~ers. correspond to a 1t-1t total 

cross section of 1 mb '• '. The multiplication of the residue 

by a(t) is to ensure that it vanishes where the trajectory 

cuts angular momentum zero,· so that there is no "ghost" pole. 

Fig. 10. Positions of resonance pole::\ j.n the complex s plane at: 

(a) 

(b) 

~) .. 

. \ 

on the physical sheet·,,.· 

well onto the unphysical sheet,giving a wide resonance, 
·l 

just onto the unphysical sheet, giving a narrow resonance . 

Fig. 11. A comparison of the potential fUnction, Btv(s~, and the N 

··and D functions, for the potential model described in the 

text. The three cases differ in hav~g: 

(a) gl = 2.6, 

(b) gl = 2 .• 7, 

tc) gl = 2.8. 

')-/-• 

·:...· 
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