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| COMMENTARY

The Alliance of Genome Resources: Building a Modern
Data Ecosystem for Model Organism Databases

The Alliance of Genome Resources Consortium1,2

ABSTRACT Model organisms are essential experimental platforms for discovering gene functions, defining protein and genetic
networks, uncovering functional consequences of human genome variation, and for modeling human disease. For decades,
researchers who use model organisms have relied on Model Organism Databases (MODs) and the Gene Ontology Consortium (GOC)
for expertly curated annotations, and for access to integrated genomic and biological information obtained from the scientific literature
and public data archives. Through the development and enforcement of data and semantic standards, these genome resources provide
rapid access to the collected knowledge of model organisms in human readable and computation-ready formats that would otherwise
require countless hours for individual researchers to assemble on their own. Since their inception, the MODs for the predominant
biomedical model organisms [Mus sp. (laboratory mouse), Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis ele-
gans, Danio rerio, and Rattus norvegicus] along with the GOC have operated as a network of independent, highly collaborative
genome resources. In 2016, these six MODs and the GOC joined forces as the Alliance of Genome Resources (the Alliance). By
implementing shared programmatic access methods and data-specific web pages with a unified “look and feel,” the Alliance is
tackling barriers that have limited the ability of researchers to easily compare common data types and annotations across model
organisms. To adapt to the rapidly changing landscape for evaluating and funding core data resources, the Alliance is building a
modern, extensible, and operationally efficient “knowledge commons” for model organisms using shared, modular infrastructure.

KEYWORDS model organism databases; bioinformatics; data stewardship; database sustainability

A Brief History of Model Organism Databases and the
Gene Ontology Consortium

BECAUSE many basic biological processes and molecular
mechanisms are shared across all extant organisms, dis-

coveries in diverse nonprimate organisms can reveal funda-
mental properties of the homologous biological processes
in humans. Model organisms, including Mus sp. (laboratory
mouse), Saccharomyces cerevisiae, Drosophila melanogaster,
Caenorhabditis elegans, Danio rerio, and Rattus norvegicus,
and model systems less commonly used have provided

insights into the biological processes that underlie human
health and disease, and have contributed to the development
of diagnoses and treatments for genetic diseases (Iannaccone
and Jacob 2009; Phillips and Westerfield 2014; Hamza et al.
2015; Kachroo et al. 2015; Strange 2016; Ugur et al. 2016;
Bonini and Berger 2017; Golden 2017; Sen and Cox 2017;
Wangler et al. 2017; Apfeld and Alper 2018; Ingham 2018;
Nadeau and Auwerx 2019; Smith et al. 2019).

Model organism databases (MODs) have played a central
role in the success of animal models in basic and biomedical
research for decades by providing ready access to knowledge
about genome features, their functions, and their associated
phenotypes. MODs obtain and continually update this infor-
mation through expert curation and integration of heteroge-
neous data and information from peer-reviewed scientific
literature, and from direct data submissions. To assist re-
searchers in finding appropriate models for studying biolog-
ical mechanisms that contribute to complex phenotypes and
disease, MODs provide access to inventories of biological
reagents that are available from stock centers and strain
repositories. They also maintain linkages to relevant data
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available in scores of other genome-centric bioinformatics
resources and sequence archives, such as UniProtKB
(UniProt Consortium 2019) and GenBank (Benson et al.
2018). The MODs work closely with their respective organ-
ism-specific research communities to define nomenclature
and data format standards, and they serve as the authorita-
tive sources of most organism-specific gene, phenotype,
and disease annotations (Table 1). Acknowledgments of
the MODs and the Gene Ontology Consortium (GOC) in
the peer-reviewed scientific literature demonstrate that these
resources arewidely used to support science funded across all
National Institutes of Health (NIH) Institutes and have global
impact. These resources also have been leveraged heavily by
bioinformatics initiatives using comparative biology ap-
proaches for functional genomics, including MARRVEL
(Model organism Aggregated Resources for Rare Variant
ExpLoration) (Wang et al. 2017), the Monarch Initiative
(Mungall et al. 2017), GeneWeaver (Bubier et al. 2017),
Gene2Function (Hu et al. 2017), and modEnrichr (Kuleshov
et al. 2019). As noted by Oliver et al. (2016), “Without the
systematic organization of the MODs, each of our research
efforts would be drastically impeded and, in some cases,
impossible, slowing the pace of discovery and reducing
the efficient use of NIH funding.”

Common needs of the different MOD user communities
have led to collaborations among the MODs to develop novel
and important centralized genome resources. Gene Ontology
(GO), for example, was launched to annotate gene product
function, biological processes, and cellular location across
different organisms with common, well-defined terms
(Ashburner et al. 2000). Start-up funding from AstraZeneca,
along with stable funding provided subsequently by the Na-
tional Human Genome Research Institute (NHGRI), sup-
ported the centralized development of the GO and related
software tools, as well as coordinated gene function curation
efforts among the first GOC members: FlyBase, the Mouse
Genome Database (MGD), and the Saccharomyces Genome
Database. The GOC has since grown to include . 30 active
members (see http://geneontology.org/docs/annotation-
contributors/) and is one of the most cited resources in bio-
medicine (Duck et al. 2016). It is a crucial resource for the
interpretation of high-throughput experimental data, and
cross-species data retrieval and aggregation (Blake and Bult
2006). The GO has also spurred the development of a number
of other ontologies for related biological domains, including
Cell Ontology (Diehl et al. 2016) and Uberon, the multi-
species anatomy ontology (Mungall et al. 2012).

The fundamental datamanagement principles uponwhich
MODs and the GOC were built were designed to promote
“rigor and reproducibility” in biomedical research, through
the generation and maintenance of stable references to bi-
ological entities and annotations. In recent times, these
concepts are better known as FAIR principles (Findability,
Accessibility, Interoperability, and Reusability) (Wilkinson
et al. 2016). These principles remain a constant at the core
of operations for MODs and the GOC, even as the resources

continually adapt to accommodate new data types, cura-
tion methods, and data management technologies.

The Changing Landscape for Sustaining Core Data
Resources

Although several of the current major MODs existed prior to
the genome era (Table 1), a large investment was made in
genome knowledgebases by the NIH and, in particular, the
NHGRI, starting around the time of the HumanGenome Project
in the early 1990s. These investments weremade in recognition
of the importance of model organisms for understanding the
biology of the human genome and for advancing the application
of genomics to medical practice. An NIH-sponsored workshop
focusing specifically on the importance of nonmammalian
model organisms was held in February 1999 (see https://
web.archive.org/web/20000818110738/https://www.nih.gov/
science/models/nmm/) following a similar workshop orga-
nized by the National Cancer Institute in 1997 (see https://
web.archive.org/web/20000818162500/http://www.nih.
gov/science/models/nmm/nci_nmm_report.html). The exec-
utive summary from the 1999 meeting emphasized the crit-
ical need for genome sequencing, molecular and organismal
reagents, and public databases for nonmammalian model
organisms to support the interpretation of the human
genome.

Early in 2016, the NHGRI, the primary funder of most
MODs and the GOC, announced their intent to scale back
funding for these community genome resources by 30% by
Fiscal Year 2021. The leaders of the MODs and the GOCwere
urged by the NHGRI to restructure the organization, man-
agement, and operations of their resources to achieve sub-
stantial cost savings (Hayden 2016; Kaiser 2016). The main
justifications for the mandated changes were threefold. First,
there was a concern that the lack of uniformity in user inter-
faces across the different resources had resulted in uninten-
tional “siloing” of information because users had to navigate
different search and display options for common data types at
the different MOD websites. For computational biologists,
the lack of unified programmatic data access methods meant
that unique code had to be written for each database to re-
trieve similar types of data and annotations. Second, there
was a perception that there were unnecessary redundancies
in operations and infrastructure, due to the independent and
distributed nature of the genome resources. Centralization of
infrastructure was seen as a means to reduce the overall
operational and management costs of the resources. Finally,
while recognizing the critical importance of these resources,
the NHGRI argued that the ongoing financial commitment to
these resources was restricting the investments that they
could make in new areas of genome research.

In May of 2016, the principal investigators from six MODs
and the GOC presented a concept for a unified MOD/GOC
initiative to NIH program officials and their external scientific
advisors. Following this meeting, the MOD/GOC coalition
submitted a formal proposal to fund the initial steps needed
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to implement the proposed framework. This proposal was
awarded as an administrative supplement to the WormBase
grant in September of 2016, formally launching the Alliance.

The response of the research community to the NHGRI’s
announcement of reduced funding for the MODs/GOC was
one of concern and alarm. Under the auspices of the Genetics
Society of America, the Society for Developmental Biology, and
the American Society of Cell Biology, a Statement of Support
for the MODs was published that urged the NHGRI/NIH to
reconsider the funding cutbacks. The Statement highlighted
the importance of the MODs in supporting basic research and
discovery, and advocated for continued “adequate and sus-
tained funding” for the resources. The statement was signed
byover11,000 scientists (seePoston2016;http://genestogenomes.
org/action-alert-support-model-organism-database-funding/),
including 12Nobel Laureates and 57 members of the National
Academy of Sciences. It was presented to the NIH Director,
Francis Collins, at The Allied Genetics Conference (TAGC)
in the summer of 2016 (Organizers of The Allied Genetics
Conference 2016).

As a follow-up to the TAGCmeeting, NIH program officials
and external advisors, community stakeholders, and repre-
sentatives of the MODs and the GOC assembled for a meeting
ongenome resource sustainability inBethesda inMarch2017.
At this meeting, the plans and progress of the Alliance were
reported and discussed. Although no specific plans were
presented at this meeting for a new evaluation and funding
model for community resources, NHGRI Director Eric Green
reported on early stage national and international discussions
focused on developing strategies for sustainable funding of
core data resources. Patricia Brennan, the newly appointed

National Library of Medicine (NLM) Director, acknowledged
the importance of MODs, and affirmed the NLM’s commit-
ment to data standards and interoperability.

The NIH released a strategic plan for data science in June
2018 (see https://www.nih.gov/news-events/news-releases/
nih-releases-strategic-plan-data-science). The plan outlines
the need and vision for “modernizing the NIH-funded biomed-
ical data science ecosystem,” addresses the challenges of de-
fining meaningful criteria with which to evaluate core
community resources, and acknowledges the need for
evaluation criteria specifically for bioinformatics resources.
Although the plan touches on many of the important chal-
lenges for data science in biomedical research, a correspond-
ing tactical plan for sustainable funding of core resources
has yet to emerge.

The Alliance of Genome Resources

The Alliance of Genome Resources is more than a formal
consortium among the MODs and the GOC. It represents a
significant departure fromamostly decentralized approach to
knowledgebase development and maintenance to a highly
centralized and coordinated effort. Organizationally, the Al-
liance has two interdependent functional units: Alliance Cen-
tral and Alliance Knowledge Centers (Figure 1). Alliance
Central is responsible for developing and maintaining the
software platform and shared modular infrastructure, and
for the coordination of data harmonization activities across
the Knowledge Centers. The coordination of infrastructure
development reduces redundancy in systems administration,
software development, and ensures a unified “look and feel”

Table 1 The founding members of the Alliance of Genome Resources and the data for which the resource is the authoritative source: the
NHGRI at the NIH is the primary funder for all of the resources except for Rat Genome Database, where the primary funding comes from
the National Heart Lung Blood Institute

Genome resource Year founded Authoritative data/annotations

Mouse Genome Database (MGD):
http://www.informatics.jax.org/;
Bult et al. (2019)

1989 Mouse gene, allele, and strain nomenclature; gene function (GO) annotations; phenotype
annotations; mouse models of human disease; unified genome feature catalog for the mouse
reference genome

FlyBase: https://flybase.org/;
Thurmond et al. (2019)

1992 Drosophila gene and allele nomenclature; gene function annotations (GO); protein annotation;
phenotype annotations; fly models of human disease

Saccharomyces Genome Database
(SGD): https://yeastgenome.org/;
Cherry et al. (2012)

1993 S. cerevisiae reference genome sequence; reference proteome and chromosomal feature
annotations; standardized nomenclature for gene names; gene product annotations; gene
function (GO) annotations; phenotype and human disease associations; regulatory networks;
gene expression patterns; Metabolic pathways; curation of all S. cerevisiae published literature.

Zebrafish Information Network
(ZFIN): https://zfin.org/;
Westerfield et al. (1997)

1994 Zebrafish gene, allele, and strain nomenclature; gene function (GO) annotations; gene expression
annotations; phenotype annotations; zebrafish models of human disease; unified genome
feature catalog for the zebrafish reference genome; reagents; catalog of Zebrafish researchers

Gene Ontology Consortium (GOC):
http://geneontology.org/: The
Gene Ontology (2019)

1998 GO (classification of gene functions) terms and relationships among terms for Biological Process,
Molecular Function, and Cellular Component; GO annotations from multiple sources

Rat Genome Database (RGD):
https://rgd.mcw.edu/;
Laulederkind et al. (2018)

1999 Rat gene, allele, QTL, cell line, and strain nomenclature; gene function (GO) annotations; human
disease, phenotype, and pathway annotations; quantitative phenotype measurement records,
including expected ranges for individual rat strains.

WormBase: https://
www.wormbase.org/; Lee et al.
(2018)

2000 C. elegans reference genome sequence and curated gene structures; nomenclature for numerous
data types, including genes and alleles; gene function (GO) annotation; expression and
interaction annotation; ontologies for nematode phenotypes and development; catalog of
C. elegans researchers.

GO, Gene Ontology.
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for access and display of data types in common across diverse
model organisms. Alliance Knowledge Centers are responsi-
ble for expert curation of data and for submission of data to
Alliance Central using common standardized data formats.
Knowledge Centers also are responsible for organism-specific
user support activities and for providing access to data types
not yet supported by Alliance Central.

The Alliance of Genome Resources serves the same diverse
research communities supported by the existing collective of
model organism genome resources including: (i) human ge-
neticists and clinical researchers who want access to all model
organism data, which are the main sources of experimental
annotation of human genes through orthology; (ii) basic sci-
entists who use specific model organisms to investigate fun-
damental biology; (iii) computational biologists and data
scientists who need access to standardized, well-structured
data, both big and small; and (iv) educators and students.
As a consortium, the Alliance is a powerful advocate for
model organism research and will serve these diverse user
communities even better than before. Model organism re-
searchers will benefit from streamlined development and co-
ordinated delivery of access to new data types and user
interfaces. Model organisms with smaller user communities

will be able to leverage Alliance infrastructure to enhance
their impact in advancing genome biology and translational
research. Computational biologists and data scientists will
benefit from the centralized data access and common Appli-
cation Programming Interfaces.

Since its official launch in 2016, the Alliance has made
substantial progress toward unified access to common data
types across different organisms and the development of a
scalable data ecosystem for model organism knowledgebases
(Table 2). Examples of the accomplishments of the Alliance
to date include: (i) a single integrated Alliance orthology
gene set for comparative genomics of humans and model
organisms, based on the work of the Quest for Orthologs
Consortium (Glover et al. 2019); (ii) adoption of the Disease
Ontology as the common annotation standard for annotating
human disease association; (iii) a ribbon visualization widget
to display summary annotations for gene function, pheno-
type, and expression developed initially by the MGD (Bult
et al. 2016) that has been implemented by Alliance devel-
opers as a reusable web component for displaying annota-
tions across multiple organisms, and (iv) a computational
method developed by WormBase for automatically generat-
ing brief, readable summaries of gene function from

Figure 1 The Alliance of Genome Resources is organized into Knowledge Centers (expert curation, development of ontologies and standards, and data
integration) and Alliance Central (data management and delivery, software tools, and widgets). Alliance Central provides centralized infrastructure
support for Knowledge Centers. Knowledge Centers are federated to support maximally effective organism-specific data acquisition and curation.
Shared standards for knowledge representation and data formats allow for unification of Alliance Knowledge Centers with external knowledge bases
that are relevant to the Alliance mission but are not formal Alliance members. API, application programming interface.
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ontology annotations, which is now used across the Alli-
ance members to generate gene summaries for model organ-
isms and human. A recent publication on the functionality
currently supported by the Alliance website illustrates how
researchers can search the resource by gene symbols, gene
function terms, and disease terms, and then review annota-
tions from all six model organisms and human using inter-
faces that share a common look and feel (Alliance of Genome
Resources Consortium 2019).

Future Directions for the Alliance and Core Data Resource
Sustainability

The transformational potential of the Alliance of Genome
Resources is already being realized in operational efficiencies
and enhanced user experiences, driven by an enhanced ca-
pacity for rapid delivery of new data types and user interfaces
designed to facilitate comparative biology. The approach to
infrastructure development within the Alliance reflects the
central principles articulated in the NIH’s data science stra-
tegic plan as well as the requirements for core community
resources outlined by the European life-sciences Infrastruc-
ture for biological information (ELIXIR) program initiative
(Durinx et al. 2016). The Alliance builds on previous success-
ful cross-MOD projects and related initiatives, including the
Generic Model Organism Database project (Stein et al. 2002;
O’Connor et al. 2008) and InterMine (Lyne et al. 2015). Tools
and interfaces developed by the Alliance are architected for
reuse by others. The Alliance-developed “Sequence Feature

Viewer” widget, for example, has been adopted by the
Monarch Initiative (Mungall et al. 2017) for use at their
website. Further, the Alliance will seek to adopt, rather than
develop, tools and interfaces. For example, the Alliance is
using JBrowse (Skinner et al. 2009) as a common genome
browser application and are working with the JBrowse de-
velopment team to add new functionality.

Eventually, the Alliance resource will reflect the union of
data and functionality currently supported by individual
MODs and the GOC, but this will take several years to achieve
because it is critical that this goal be accomplished without
sacrificing existing quality of service and timeliness of data
updates to organism-specific user communities. For the near
term, the Allianceweb portal (www.alliancegenome.org) and
the original, pre-Alliance MOD and GOC websites and infra-
structure will coexist. Gradually, interfaces and resources de-
veloped by the Alliance are being deployed by the individual
MODs. As new shared components are developed within Al-
liance Central, eachMODwill retire its existing infrastructure
and adopt the shared components. By 2024, we envision that
the concept of “develop once, use by all”will be the standard
operating procedure for data types and software tools shared
among all Alliance Knowledge Centers.

The vision and roadmap for the Alliance are clear, and the
initiative will be funded by the NHGRI for at least the next
5 years (2019–2024). However, there is significant uncer-
tainty regarding long-term funding for the Alliance and all
core community data resources. Ideas for funding models to
reduce reliance on federal grants include public funding,

Table 2 Examples of the accomplishments of the Alliance of Genome Resources to date in the areas of organization, process, data, and
interfaces and how these accomplishments benefit the research community

Accomplishment Community benefit

Organization: Common project
management and governance
structure

Ability to leverage unique capabilities and expertise to enhance genome resources

Organization: Centralized user Help
Desk

Single point of access for inquiries about data for any organism in the Alliance

Organization: Coordinated
software development

Rapid propagation of access to new data types and interfaces across model organisms

Process: Data harmonization Essential for developing user interfaces with a unified “look and feel” for common data types
Process: Automated processes for

concise, human-readable
summaries of gene function

A short, human readable summary of gene function standardized across all model organisms in the Alliance

Data: Common set of orthologs Supports comparisons of gene function, phenotype, and disease annotations among model organisms and with
human data

Data: Common protein–protein
interaction data

Leverage existing community resources to provide a common set of PPI data for all model organisms in the
Alliance (Orchard et al. 2012; Oughtred et al. 2019)

Interface: Sequence display widget Common graphical representation of transcripts for a gene
Interface: JBrowse genome browser Adoption of externally developed software as the standard genome browser for all model organisms Skinner

et al. (2009)
Interface: “Ribbon” widget for

visualizing gene function and
expression annotation summaries

Unified visualization paradigm for annotation summary information across all model organisms in the Alliance

Interface: Common web pages for
genes and diseases

Consistent organization of common data types across all model organisms in the Alliance

Interface: Common application
programming interface for
common data types

Single point of programmatic access for common data types across all model organisms in the Alliance
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third party payers, and commercialization (Anderson and
Global Life Science Data Resources Working Group 2017;
Gabella et al. 2017). The international nature of community
resources and their user communities will likely require a
mixed model to address the questions of what constitutes a
core data resource, and how to sustain it.

Just as there are well-accepted principles for data man-
agement (e.g., FAIR) to support data reuse, decisions regard-
ing funding for core community data resources should be
guided by principles of data stewardship that extend beyond
initial funding for data generation and short-term support for
project-specific data coordination centers. For data and in-
formation that are of broad utility to the research community,
data stewardship practices by the agencies that fund data
generation should reflect a commitment to Sustained data
Access For Everyone (SAFE) and be measured by adherence
to—and long-term financial support of—essential data
stewardship practices (Peng et al. 2015), including:

• sustainable and open data access (both programmatic and
web-based),

• preservation of data and annotation quality,
• maintenance of data integrity and usability,
• traceability of provenance for data and annotations,
• clear guidelines for permissible data use, and
• support for community outreach and training.

TheMODs,GOC, and theAlliance are data stewards for the
global research community. Our efforts ensure that best prac-
tices for data management and data stewardship principles
are enforced. In turn, this work preserves, and enhances, the
impact of the significant financial investment made by gov-
ernment agencies and foundations in biological and biomed-
ical research initiatives.
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