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RESEARCH Open Access

Soil domestication by rice cultivation
results in plant-soil feedback through shifts
in soil microbiota
Joseph Edwards1,2†, Christian Santos-Medellín1†, Bao Nguyen1, John Kilmer3, Zachary Liechty1, Esteban Veliz1,
Jiadong Ni1, Gregory Phillips3 and Venkatesan Sundaresan1,4*

Abstract

Background: Soils are a key component of agricultural productivity, and soil microbiota determine the availability
of many essential plant nutrients. Agricultural domestication of soils, that is, the conversion of previously uncultivated
soils to a cultivated state, is frequently accompanied by intensive monoculture, especially in the developing world.
However, there is limited understanding of how continuous cultivation alters the structure of prokaryotic soil
microbiota after soil domestication, including to what extent crop plants impact soil microbiota composition,
and how changes in microbiota composition arising from cultivation affect crop performance.

Results: We show here that continuous monoculture (> 8 growing seasons) of the major food crop rice under flooded
conditions is associated with a pronounced shift in soil bacterial and archaeal microbiota structure towards a
more consistent composition, thereby domesticating microbiota of previously uncultivated sites. Aside from the potential
effects of agricultural cultivation practices, we provide evidence that rice plants themselves are important drivers of the
domestication process, acting through selective enrichment of specific taxa, including methanogenic archaea,
in their rhizosphere that differ from those of native plants growing in the same environment. Furthermore, we find that
microbiota from soils domesticated by rice cultivation contribute to plant-soil feedback, by imparting a negative effect
on rice seedling vigor.

Conclusions: Soil domestication through continuous monoculture cultivation of rice results in compositional changes
in the soil microbiota, which are in part driven by the rice plants. The consequences include a negative impact on plant
performance and increases in greenhouse gas emitting microbes.

Introduction
Plant roots are colonized by complex microbiota that
are largely derived from the surrounding soil [1–4].
Root-associated microbiota can benefit the host plant by
improving nutrient availability [5], excluding or defend-
ing against pathogens [6], and promoting growth by
influencing plant hormone pathways [7]. Root-associated
microbiota can also confer adverse effects to plant growth.
Studies using soils and plants from natural ecosystems

have found that plants grown in conspecific soil, that is,
soil in which a specific plant species was previously grown,
can exhibit reduced biomass and productivity compared
to plants grown in heterospecific soil [8]. This effect,
known as negative plant-soil feedback, is thought to be a
product of detrimental microbial colonization [9] as well
as a buildup of plant and microbially synthesized toxins
[10, 11]. Negative plant-soil feedback has been studied
mainly in the context of non-agronomic, terrestrial eco-
systems and is thought to be a mechanism which increases
biodiversity by limiting exclusion of plants which are less
fit than their competitors [12, 13].
Less is known about plant-soil feedback in agricultural

settings, particularly in the context of soil domestication,
the process of converting an uncultivated soil to a culti-
vated state, therefore disrupting natural soil ecosystem
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and geochemical processes [14]. Crop management
practices affect root microbial community assemblages
[3, 15], and a recent study on a peanut field indicated
that crop management, i.e., continuous monoculture vs.
rotation, alters soil microbial communities and affects
plant physiology [16]. Aerobically grown rice has notice-
able yield drop offs over time, a phenomenon known as
soil sickness [17, 18]. However, no such phenomenon
has been witnessed or reported in flooded rice [18, 19].
A recent study showed that specific maize genotypes can
condition cultivated soils by a root exudate component
that in turn affects the composition of root-associated
microbiota and negatively impacts shoot biomass [20].
In addition, cultivation of maize has been recently re-
ported to restructure soil microbial diversity in prairie
soils; however, the observed changes were attributed to
agricultural practices rather than driven by maize plants
[21]. Arising from these and earlier studies are unre-
solved but important questions, as to whether detrimen-
tal effects originating from altered microbiota are a
general feature of intensive agriculture, and to what
extent the crop plant itself, as opposed to agricultural
practices, drives such changes in the microbiome. Inten-
sive agricultural cultivation will play a pivotal role in
meeting the demands of an expanding world population,
and it is increasingly more important to understand how
soil biotic factors influence crop growth and yield. Yet,
we still know very little about how dense, monoculture
crop cultivation influences soil microbiota composition
and how microbiota patterns may shape variation in
crop growth parameters. In this study, we investigated
the following three questions: (1) Does long-term rice
cultivation change the bacterial and archaeal compo-
nents of the soil microbiome? (2) Is the rice plant itself a
driver of the soil domestication process at the microbial
level? (3) What is the impact on host plant vigor of
domesticated microbiomes compared to microbiomes of
undomesticated soils? The results provide insights into
the impacts of continuous cultivation of rice on bacterial
and archaeal soil microbiota (from herein referred to as
microbiota) and the consequences of soil domestication
through agriculture on rice plant vigor.

Results
Soil cultivation history impacts plant root microbial
assemblages
To evaluate the effect of intensive rice cultivation on the
bacterial and archaeal diversity inhabiting the soil-root
continuum, we surveyed the prokaryotic taxonomic
composition of bulk soil, rhizosphere, and endosphere
communities of rice plants grown in cultivated and non-
cultivated soils under flooded conditions in a greenhouse
(see the “Methods” section). Cultivated soils (from here
on referred to as domesticated soils) were harvested

from California fields with a history of > 8 seasons of rice
monoculture cultivation while uncultivated soils were
obtained from two uncultivated sites adjacent to rice fields
(locations for each site are plotted in Additional file 1:
Figure S1A). Soil chemistry profiles from each domesti-
cated and uncultivated soil revealed that geography, rather
than soil history, largely determined soil chemical proper-
ties (Additional file 1: Figure S1B,C, Additional file 2:
Table S1). Each uncultivated site supported differing sets
of native plant species (Additional file 1: Figure S1D) with
minimal overlap.
Consistent with our previous results [3, 22, 23], we

found a significant root compartment effect on micro-
bial communities (R2 = 0.22, P < 0.001, perMANOVA,
Additional file 2: Table S2), when using the Bray-Curtis
dissimilarity metric. Root-associated microbiota acquired
from uncultivated soils were significantly different and
clustered distinctly from those acquired from domesticated
soils (Fig. 1a, R2 = 0.18, P < 0.001, perMANOVA,
Additional file 2: Table S2). We noticed a significant inter-
action term between soil history and root compartment
(R2 = 0.05, P < 0.001, perMANOVA, Additional file 2:
Table S2). Similar patterns were also observed when other
dissimilarity metrics were calculated (Additional file 1:
Figure S2, Additional file 2: Table S3). Although prokary-
otic microbiota within each compartment were signifi-
cantly affected by soil cultivation history, the rhizosphere
communities were more affected by soil history compared
to endosphere communities (R2 = 0.31 vs. 0.27, respect-
ively, P = 0.001, perMANOVA, Additional file 2: Table
S2). Additionally, we observed significantly more variabil-
ity in uncultivated bulk soil, rhizosphere, and endosphere
microbiota compared to those of domesticated soils
(Additional file 1: Figure S3, P < 0.05, Tukey’s honest
significant difference test on distances to centroid within
groups, Additional file 2: Table S4). Because the floristic
composition inhabiting a soil may contribute to the soil
microbial community composition [24, 25], the variation
observed between uncultivated soils could be explained by
differences in plant cover between sites (Additional file 1:
Figure S1D).
The compositional transition from bulk soil to rhizo-

sphere communities is the first step in root microbiome
assembly and involves host-mediated recruitment and
depletion of specific soil taxa. To assess if this rhizo-
sphere effect displayed differential trends based on soil
domestication status, we compared the pairwise dissimi-
larities between rhizosphere and bulk soil communities
across cultivation histories. Relative to domesticated
samples, uncultivated rhizosphere microbiota exhibited
significantly greater shifts from their respective bulk soil
controls (Fig. 1b, P = 7.14 × 10–26, ANOVA). This result
suggests that, under monoculture cultivation, soil commu-
nities are potentially restructured towards a compositional
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state progressively more similar to the one observed in
rhizosphere communities. Comparing across soil history
types, we found that rhizosphere prokaryotic microbiota
were significantly more similar than those of bulk soil
samples (Fig. 1c, “between soil type” panel). We note that
this is not an effect of rhizosphere communities displaying
less variation than bulk soil communities when comparing
within soil history type (Fig. 1c, “within soil type” panel).
This pattern indicates that rhizosphere microbiome acqui-
sition reduces the inherent compositional differences
between domesticated and uncultivated bulk soil commu-
nities and therefore could reflect the initiation of soil
domestication in less than one growing season.
We next identified individual taxa responsible for the

acquired microbiome differences between plants grown
in domesticated and uncultivated soil. We used DESeq2
to identify microbes that were enriched or depleted in
the compartments of rice plants grown in domesticated
soil vs. uncultivated soil (Additional file 2: Table S5).
Because this experiment was carried out in two batches
(see the “Methods” section), we modeled each experi-
mental batch separately and found the overlap of OTUs
that were significantly enriched in each compartment of
domesticated and uncultivated soils between the batches
(Additional file 2: Table S6). We found a total of 140
unique OTUs to be enriched in the compartments of
plants grown in domesticated soil (95 in the bulk soil,
106 in the rhizosphere, and 16 in the endosphere) while
we found 256 OTUs to be enriched in the compartments

of rice plants grown in uncultivated soils (163 in the
bulk soil, 109 in the rhizosphere, and 83 in the endo-
sphere). Soil cultivation history disproportionately affected
the abundance of OTUs from several phyla: OTUs of
Euryarchaeota, Armatimonadetes, Acidobacteria, Delta-
proteobacteria, Chloroflexi, Firmicutes, and Crenarchaeota
were all enriched in the compartments of plants grown
in domesticated soils more than expected by chance
(Additional file 1: Figure S4, P < 0.05, hypergeometric
test), while Gamma, Beta, and Alpha Proteobacteria,
Gemmatimonadetes, Planctomycetes, and Actinobac-
teria members were more disproportionately enriched
in the microbiomes assembled from uncultivated soils
(Additional file 1: Figure S4, adjusted P ≤ 0.05, hyper-
geometric test). Methanogenic archaea were found to
be enriched in the compartments of rice plants grown
in domesticated soil vs. uncultivated soil. Taken to-
gether, these observations support the hypothesis that
rice cultivation “domesticates” the microbiome of the
soil environment to be more similar to the rice rhizo-
sphere microbiota.

Rice acquires a distinctive microbiome compared to
native plant species
Soil domestication in rice fields likely alters the existing
soil microbiota through a combination of mechanisms.
A legacy of flooding, addition of chemical fertilizers and
pesticides, and mechanical disruption by tilling are prac-
tices which could influence physiochemical properties of

Sacramento Uncultivated
Arbuckle Uncultivated

Biggs Domesticated
Arbuckle Domesticated

***

***

P = 0.61

Unplanted Soil Rhizosphere Endosphere

Rhizosphere

Unplanted Soil

Rhizosphere

Unplanted Soil

Within soil 
history status

A B

Between soil 
history status

C

PCo1 (23.27%)
Bray-Curtis Dissimilarity

Fig. 1 Root microbiota assembly in rice plants domesticates uncultivated soil communities. a Principal coordinate analysis of bulk soil,
rhizosphere, and endosphere communities of rice plants grown in uncultivated (purple points) and domesticated (blue points) soils. Beta-diversity
patterns are based on Bray-Curtis dissimilarities. b Distribution of pairwise BC dissimilarities between bulk soil and rhizosphere communities across
soil histories. c Distribution of pairwise BC dissimilarities between (upper panel) and within (bottom panel) soil history status in the rhizosphere
and bulk soil communities. In both b and c, asterisks indicate significant differences (one-way ANOVA, ***P < 0.001)
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soil and therefore might reshape microbial communities.
In addition, host-microbe interactions with the roots of
rice, compounded by dense and continuous monocul-
ture, may also play a prominent role in transitioning soil
prokaryotic communities from a pre-cultivated to a
domesticated status. To address the hypothesis that soil
domestication may result at least in part due to host-
microbe interactions with rice roots, we compared root-
associated microbiomes of rice plants to those of three
native plant species growing under the same flooded
and managed conditions in a rice field in Jonesboro,
Arkansas (see the “Methods” section): Heteranthera
limosa (blue mud plantain), Cyperus iria (flatsedge),
and Ammania coccinea (valley redstem). These three
species are not closely related, with the first two being
monocots of the lily and grass families, respectively,
and the third a eudicot. A principal coordinate analysis
(PCoA) of pairwise Bray-Curtis dissimilarities revealed
that samples are distinguishable by root compartment
and by plant species (Fig. 2a; compartment: R2 = 0.42,
P < 0.001; plant species: R2 = 0.14, P < 0.001, perMA-
NOVA, Additional file 2: Table S7). Similar results were
found using alternative dissimilarity metrics (Add-
itional file 1: Figure S5, Additional file 2: Table S8).
There was a significant interaction term between
compartment and plant species (R2 = 0.05, P < 0.011,
Additional file 2: Table S7), suggesting that the magni-
tude of divergence between microbiota of the different
plant species is dependent upon the root compartment.
We compared the effect sizes for host species on
microbiome composition between each compartment
finding that endosphere microbiomes were slightly
more affected by host species (R2 = 0.42, P < 0.001,
Additional file 2: Table S7) than the rhizosphere micro-
biome (R2 = 0.35, P < 0.001, Additional file 2: Table S7).
In both the rhizosphere and endosphere, rice plants
appeared to host microbiota distinct from each native
plant, i.e., native plants support microbial communities
that are more similar to each other than to rice. We
further confirmed that, after excluding rice plants from
the analysis, host plant species explained a significant
proportion of the observed community variance (rhizo-
sphere: R2 = 0.23, P < 0.001; endosphere: R2 = 0.28, P <
0.001, perMANOVA, Additional file 2: Table S7). These
results indicate that rice supports root-associated
microbiota distinct from native plants growing in a sub-
merged rice field and that each native plant species is
colonized by microbiota divergent from the other sur-
veyed native plant species.
Another observation from the PCoA was that rice

rhizosphere samples clustered closer towards the rice
field bulk soil samples than did the native plant samples
(Fig. 2a). Direct comparisons of rhizosphere community
dissimilarities to bulk soil indicated that rice rhizosphere

microbiota have greater similarity to bulk soil communi-
ties as compared to those of the native plants (Fig. 2b,
Additional file 2: Table S9). Taken together, these obser-
vations suggest that in addition to flooding and other
cultivation practices, rice plants likely have a role in do-
mesticating soil microbiota through selective enrichment
and depletion of microbial taxa by roots.
We next investigated which OTUs differentiate the

rice microbiome from the native plants by inspecting
which microbes have significantly different relative
abundances using DESeq2 (Additional file 1: Figure S6A,
Additional file 2: Table S10). We determined a core set
of rice enriched and depleted microbes through identify-
ing microbes that were commonly enriched or depleted
in rice compared to the native plants (solid points in
Additional file 1: Figure S6A and three way intersects in
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Fig. 2 Rice assembles a compositionally distinct root microbiota
from native plant species grown in flooded paddy fields. a Principal
coordinate analysis of soil, rhizosphere, and endosphere
communities across rice (O. sativa) and three different native plant
species: redstem (A. coccinea), mudplantain (H. limosa), and sedge (C.
iria). Beta-diversity patterns are based on Bray-Curtis dissimilarities. b
Bray-Curtis dissimilarity values comparing bulk soil prokaryotic
communities to those acquired in the rhizosphere of rice and
native plants
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Additional file 1: Figure S6B, Additional file 2: Table
S11). The set of rice core enriched microbes in the
rhizosphere disproportionately belong to Acidobacteria,
Chloroflexi, Euryarchaeota, Gemmatimonadetes, Epsi-
lonproteobacteria, and Crenarchaeota (adjusted P < 0.05,
hypergeometric test; Additional file 1: Figure S7). In the
endosphere, the rice core enriched microbes dispropor-
tionately belong to Deltaproteobacteria, Firmicutes, Eur-
yarchaeota, Chlorobi, and Spirochaetes (adjusted P <
0.05, hypergeometric test; Additional file 1: Figure S7).
On the other hand, the core native plant enriched
microbes (i.e., microbes consistently depleted from rice
roots compared to native plants) disproportionately
belonged to Betaproteobacteria, Verrucomicrobia, Bac-
teroidetes, Planctomycetes, and Gammaproteobacteria in
the rhizosphere and Betaproteobacteria and Gammapro-
teobacteria in the endosphere (adjusted P < 0.05, hyper-
geometric test; Additional file 1: Figure S7).
Methanogenic archaea are important contributors to

methane emissions from rice paddies. In the set of
differentially abundant microbes, we found 7 OTUs
belonging to methanogenic taxonomies specifically
enriched in the rice rhizosphere and 8 OTUs in the
endosphere. Four OTUs were shared between the rhizo-
sphere and endosphere rice core enriched methanogens.
Of the 36 methanogenic OTUs detected in the rhizo-
sphere, the rice core enriched OTUs were all within the
top 12 most abundant (Fig. 3a). Similarly in the endo-
sphere, of the 31 detectable methanogenic OTUs, the
rice core enriched were all within the 11 most abundant

(Fig. 3a). We were unable to identify any methanogenic
OTUs enriched in the native plants compared to rice.
We next compared methanogenic relative abundance

between the root compartments separately for rice plants
and the native plants. We found, in general, that the rice
rhizosphere hosted a greater relative abundance of metha-
nogens compared to both bulk soil and endosphere
communities (Additional file 1: Figure S8), similar to
results previously reported by us and others [3, 26]. How-
ever, when we performed similar comparisons between
the root compartments of the native plants, we found that
bulk soils hosted significantly greater abundances of
methanogens than rhizosphere and endosphere communi-
ties (Additional file 1: Figure S8). Together, these results
suggest that rice plants, but not native plants, enrich for
methanogenic archaea in the rhizosphere when under
flooded conditions.
Methanotrophic eubacteria use methane as an energy

source, thus counteracting methane emissions. We found
no rice-specific methanotrophic OTUs in the rhizosphere
dataset, and only one methanotrophic OTU in the rice
core enriched endosphere microbiota, although this
particular OTU was the most abundant methanotrophic
bacteria in our endosphere dataset (Fig. 3b). The core
native plant enriched microbes contained more methano-
trophs: in the rhizosphere set, we found 2 methanotrophic
OTUs while we found 3 in the endosphere set. The core
native plant methanotrophs were among the most abun-
dant methanotrophs in the rhizosphere and endosphere
datasets.
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Fig. 3 Contrasting enrichment of methanogenic archaea and methanotrophic eubacteria in root-associated communities of rice and native plant
species. a, b Rank abundance curves for methanogens (a) and methanotrophs (b) in rhizosphere and endosphere communities of rice plants.
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Because total CH4 flux is a function of the activity of
methanogenic vs. methanotrophic microbes, we next
compared the relative abundance ratios of methanogenic
archaea to methanotrophic bacteria in each plant spe-
cies. The rhizosphere generally supported higher ratios
of methanogens to methanotrophs compared to the
endosphere (Fig. 3c). This is expected as roots contain
the highest levels of oxygen in an otherwise flooded,
anoxic environment and methanotrophs flourish under
aerobic conditions (while the opposite is true for metha-
nogens). We found that rice had a significantly higher
ratio of methanogenic microbes than methanotrophic
bacteria in both the rhizosphere and endosphere com-
pared to native plants growing in the same environment.
The native plants had mean ratios < 1 in both the rhizo-
sphere and endosphere, while rice had mean ratios > 1
in both compartments. Without knowing the activity
levels of methanogens and methanotrophs in our data-
set, it is not possible to reach definitive conclusions
regarding the efficiencies of rice and the native plants as
methane producers or methane sinks. Nevertheless,
these data are consistent with a primary role for the rice
root microbiome in CH4 production from rice fields, as
compared to those of the native plants.

The rice core enriched microbiota show enrichment in
domesticated soils
The above results suggest that rice plants acquire
distinct root-associated microbiota compared to native
plants growing in the same environment. Additionally,
our results indicate that rice cultivation is associated
with a considerable shift in soil microbiota from a wild
status to a domesticated status. While flooding and
nutrient addition likely play a role in domesticating rice
field soils, we hypothesized that rice plants themselves
are an important factor for domesticating soils via select-
ive recruitment and exclusion of specific microbes. To
support this hypothesis, we might expect there to be an
overlap in domesticated soil enriched OTUs and rice
core enriched OTUs. We compared the OTUs that were
found to be significantly enriched in the microbiomes
assembled from domesticated soils (Additional file 2: Table
S6) to the rice core enriched microbes (Additional file 1:
Figure S6, Additional file 2: Table S11). Of the 256 unique
OTUs enriched in microbiomes originating from the
domesticated soils, we found an overlap of 48 OTUs with
the rice core enriched taxa (black data points, Fig. 4,
Additional file 2: Table S12). This overlap was significantly
greater than expected by chance given the contrasting
microbiota between the two datasets (P = 1.88 × 10−49,
hypergeometric test). Among the overlapping OTUs were
two of the dominant methanogenic archaea taxa Methano-
cella and Methanosarcina as well as four OTUs within the
genus Anaerolinea, which exhibits cooperative behavior

when co-cultured with methanogens [27]. Conversely, only
8 rice enriched OTUs overlapped with the uncultivated soil
enriched OTUs (P = 0.06, hypergeometric test). Of the
native plant enriched OTUs, only one overlapped with the
domesticated soil enriched OTUs and 12 overlapped with
the uncultivated soil enriched OTUs (P = 1.41 × 10−5,
hypergeometric test). The extent of the overlap between
rice core enriched OTUs and domesticated soil OTUs is
surprising given that the native plant experiment was
conducted in Arkansas, USA, and the soils used for the soil
domestication experiment were collected from locations in
California. These results support the hypothesis that
microbiota in domesticated field soils are shifted signifi-
cantly by rice plants towards a composition that is charac-
teristic for rice roots.

Domesticated soils confer reduced rice seedling vigor
compared to uncultivated soil
After establishing that soil cultivation history influences
the composition of rice root-associated microbiota, we
next investigated the impact of domesticated and
uncultivated microbiota on seedling vigor traits in two
independent experiments. A soil nutrient analysis
showed differences in soil chemistry as a function of
geography (Additional file 1: Figure S1B, C). Therefore,
in order to avoid confounding edaphic abiotic and biotic
factors (e.g., varying soil physical and chemical proper-
ties, potential allelopathic compounds, and other root
metabolites), we grew rice plants in a common growth
substrate inoculated with soil-derived microbiota sus-
pensions. Furthermore, to confirm that the observed
effects resulted from compositional differences rather
than residual abiotic variation in our microbiota inocula,
we grew plants in a substrate mock-inoculated with ster-
ilized suspensions (see the “Methods” section).
In the first experiment, inert calcined clay was inocu-

lated with microbial communities derived from two
domesticated soils and three uncultivated soils. Addition-
ally, a sixth microbial inoculum was harvested from an
experimental plot that cultivates rice during some summer
seasons, while remaining fallow during others therefore
representing an intermediate soil type. Rice seedlings
growing with domesticated soil microbiota exhibited
reduced shoot fresh weight and dry weight and height
compared to plants associated with uncultivated and
intermediate microbiota (Fig. 5a, Additional file 1: Figure
S9A, Additional file 2: Table S13). Plants grown in mock-
inoculated substrate displayed uniform shoot biomass
and length, indicating that the differences exhibited
between uncultivated and domesticated soil inocula are
biological in nature (Fig. 5a, Additional file 1: Figure
S9A, Additional file 2: Table S13).
In the second experiment, UC Mix III, a sandy plant

growth matrix containing organic matter in the form of

Edwards et al. Genome Biology          (2019) 20:221 Page 6 of 14



peat moss, was inoculated with two domesticated and
two uncultivated soils. We again found that plants
grown with live inocula differed significantly by soil
cultivation history: plants which received inocula from
domesticated soils had significantly reduced shoot fresh
weight and shoot heights compared to plants which re-
ceived uncultivated soil inocula (Additional file 1: Figure
S9B, Additional file 2: Table S13). Plants which received
mock inocula did not differ significantly by soil history
status, again suggesting that the differences in seedling
vigor traits that we witnessed between plants with
domesticated and uncultivated soil microbiota were
biological in nature (Additional file 1: Figure S9B,
Additional file 2: Table S13).
We hypothesized that the divergence in the plant

growth traits between soil types and inoculation types (live
vs. mock) would correlate with microbiota structure;
therefore, we next analyzed root-associated bacterial and
archaeal microbiota for seedlings. Live and mock-
inoculated seedlings hosted significantly divergent root
microbiota in both experiments (Fig. 5b, Additional file 1:
Figure S10, Additional file 2: Table S14): seedlings hosting

the live inocula displayed significantly greater variation in
microbiota structure compared to seedlings hosting mock
inocula (Additional file 1: Figure S10), suggesting that
filter sterilization/autoclaving was sufficient to disrupt
microbiome structure. Seedlings inoculated with live soil
communities also hosted microbiota which displayed in-
creased separation between domesticated and uncultivated
soils than plants hosting mock inocula (Additional file 1:
Figure S10). Microbiota from seedlings inoculated with
the intermediate soil type in experiment 1 clustered with
the domesticated soil type microbiota (Fig. 5b) despite
these plants displaying elevated seedling vigor characteris-
tics (Fig. 5a). Together, these results indicated that differ-
ences between soil microbiota were reduced by filter
sterilization/autoclaving and shows that divergences in
seedling growth parameters correlate with microbiota
structure.
We next sought to identify bacterial taxa whose rela-

tive abundance correlated with seedling vigor trait vari-
ation. We identified 151 OTUs which showed significant
positive or negative correlations with seedling shoot
height from experiment 1 plants inoculated with live soil
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Fig. 4 Soil domestication shifts the relative abundances of a taxonomically diverse set of OTUs. Phylogenetic tree displaying OTUs differentially
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microbiomes (Fig. 5c, Additional file 2: Table S15). Only
7 OTUs were identified showing significant positive or
negative correlations with shoot height in seedlings host-
ing the mock communities, none of which overlapped
with the live OTUs from live inoculations. Of the
correlative OTUs of plants with live soil inoculations, 62
showed positive and 89 showed negative correlations,
containing 4 and 9 phyla, respectively. OTUs with
positive correlations to seedling height were largely
composed of taxa belonging to Rhizobiaceae [22], Oxalo-
bacteraceae [9], Comamonadaceae [6], and Methylophi-
laceae [4]. Negatively correlating OTUs were more
taxonomically diverse, including 29 different bacterial
families. Together, these results suggest that rice seed-
ling vigor is negatively affected by microbes which accu-
mulate over repeated seasons of cultivation.

Discussion
Soils constitute a critical agricultural resource, and
understanding how biotic components of the soils are im-
pacted by crop cultivation and how, in turn, these changes
affect crop performance will be important for sustained
agricultural productivity. This study shows that the
compositions of microbiota in soils from fields where rice
has been cultivated for extended periods of time are
considerably shifted from uncultivated, non-agricultural
soils originating from geographically contiguous areas,
which therefore potentially represent a pre-domesticated
state. While cultivation practices, such as flooding and
nutrient addition, are likely contributors to soil domestica-
tion, our findings suggest that rice plants themselves,
through selective recruitment and diminishment of
specific microorganisms, are also important drivers of the
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changes in microbiota during soil domestication (Fig. 4).
Native plants growing in the same field environment do
not appear to have a demonstrable role in shifting the soil
microbiota towards a domesticated status, as these plants
acquire microbiota distinct from the surrounding soil,
from rice rhizosphere and roots, and from each other and
are not prominent members of the rice field flora.
Soil microbiota are influenced by plant cover [24, 25];
therefore, native plants may play a stronger role in
rice field soil domestication as farmers use different
weed control strategies.
We further characterized these changes in microbiota

with respect to their impact on plant performance. Con-
tinuous rice cultivation under flooded conditions signifi-
cantly shifts the soil microbiota in a rice field towards a
more consistent microbial community structure (Fig. 1a,
Additional file 1: Figure S2), which negatively impacts
seedling vigor (Fig. 5a, Additional file 1: Figure S9)
compared to uncultivated soil microbial inocula or
sterilized inocula. This inhibitory effect is remarkably
potent, as it can be observed with 200-fold dilutions of
the soil microbiota inoculum into sterilized potting mix.
Previous reports in rice have suggested that aerobically
grown (i.e., not flooded) rice is susceptible to negative
plant-soil feedback (also known as soil sickness), and
have speculated that abiotic factors underlie the deleteri-
ous effect that continuous cultivation has on rice
performance [19, 28]. Given the dilution factors of our
inoculum, and the elimination of the effect after
sterilization by filtration, we propose that biotic factors,
specifically changes in the microbiota, are a major factor
in the decline of plant vigor in domesticated soils. We
consider unlikely the possibility that differences in seed-
ling vigor could result from allelopathy, as rice plants
display autotoxicity only when exposed to concentra-
tions of root exudates greater than 100 mg/L [29], a
concentration unachievable with our diluted inocula.
The mechanism of rice growth inhibition by microbiota

in domesticated soil is presently unclear. A recent study in
maize found growth inhibition by microbiota from
agricultural soil growing wild-type corn plants at 10-fold
dilutions, but not by microbiota from agricultural soil
growing mutant corn deficient in production of DIMBOA,
a metabolite important for herbivore defense [20]. Rice
plants do not produce DIMBOA; therefore, DIMBOA
exudation cannot explain the observed inhibition of
growth by rice field microbiota, which we find to be effect-
ive even at much higher dilutions. These observations
imply that plant-soil feedback is a general outcome of crop
cultivation, in which multiple mechanisms are likely to be
involved. From our study, it is not possible to determine
the number of growing seasons necessary to domesticate
soils such that they have negative impacts on seedling
vigor. However, we do show that the rhizosphere

microbiota of plants grown in uncultivated soil show
greater similarity to rhizosphere microbiota of rice grown
in domesticated soils, than to the microbiota of unplanted
domesticated soils and uncultivated soils (Fig. 1b). These
data suggest that soil domestication has already initiated
at 6 weeks after germination and is presumably reinforced
by multiple seasons of cultivation. We further found that
seedlings with soil inocula from a rice field left fallow for
over a growing season hosted microbiota more similar to
domesticated soils (Fig. 5b, Additional file 1: Figure S10).
Unexpectedly, these seedlings displayed vigor traits equal
to or greater than uncultivated soils (Fig. 5a, Additional file 1:
Figure S9A). These results suggest that the negative effects
of continuous rice cultivation imparted by microbiota may
be reversible if rice cultivation is halted even temporarily.
The growth inhibition observed in our study does not

appear to arise from specific prokaryotic taxa. Negative
correlation with seedling height was widely distributed
across bacterial phyla and classes. However, positive cor-
relation with growth was more restricted in distribution
and included several taxa within the order Rhizobiales.
Specifically, we identified 13 Rhizobium OTUs, 4 Agro-
bacterium OTUs, and 2 Devosia OTUs that correlated
positively with seedling height. Rhizobiales are widely
distributed in natural soils, a pattern also observed in a
recent study of native prairie soils relative to cultivated
maize plots, although possible correlations with plant
vigor and negative plant-soil feedback were not
examined [21]. Interestingly, a recent study found that
Rhizobiales bacterial isolates generally induced growth
promotion in Arabidopsis thaliana and that some Rhizo-
bium strains interfered with the MAMP-triggered im-
munity response, perhaps allowing for root colonization
without causing a negative effect on plant growth by
induction of an immune response [30]. These results
suggest that rice soil domestication selects for an enrich-
ment of microbes deleterious for plant growth at the ex-
pense of growth-promoting bacteria (Additional file 1:
Figure S11). We did not examine the impact that soil
domestication may have on the fungal communities, and
therefore, we cannot exclude that the feedback effect on
rice growth arose from specific fungal taxa. However, a
study found that peanut plants grown in field soil
subjected to monoculture show upregulated expression
of genes involved in defense against bacteria but not
fungi, suggesting that at least in that system, bacterial
communities are responsible for the deleterious effects
on plant growth [16]. An implication of this inference is
that partial remediation of such negative effects might
be feasible through growth-promoting microbes supplied
to plants grown in domesticated soil. It is interesting to
note that major shifts in human and captive nonhuman
primate gut prokaryotic microbiota have been shown to
be correlated with diets typical of industrialized societies
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[31–34]. Despite likely differences in the specific mecha-
nisms, they illustrate a similar underlying concept in which
industrialization and development can lead to unintended
consequences through modulation of microbiomes.
The results from this study also have implications for

agriculture-related production of greenhouse gases. Paddy
fields account for 15–30% of anthropogenic methane
emissions [35, 36]. Since methane has a greenhouse
warming potential that is 25-fold greater than carbon
dioxide [37], anticipated increases in rice cultivation to
meet future demand make it important to understand the
potential impacts on methanogens. Flooded soils, includ-
ing marshlands, maintain anaerobic conditions that are
known to favor methanogenic archaea [26, 38]. However,
in addition to the anoxic environment imposed by flood-
ing, it is not clear whether methanogen residence in rhizo-
sphere and root tissues exhibit plant host-specific
enrichment. Here we have shown that specific methano-
genic archaea are uniquely enriched in the rhizosphere
and roots of rice plants compared to native plants growing
in the same flooded environment. Furthermore, methano-
genic archaea are also enriched in microbiota of rice
plants grown in rice domesticated soils compared to wild
soils (Fig. 4). These data suggest the preponderance of
some dominant methanogenic archaea in rice fields might
be facilitated through a two-step process. Flooded condi-
tions provide favorable anaerobic conditions for methano-
gen establishment, thus setting the stage for colonization
of the rhizosphere and root tissue of the rice plants. Rice
plants then enhance colonization of specific methanogens,
as compared with other aquatic native plants that appear
to not support methanogen entry to the rhizosphere and
endosphere (Additional file 1: Figure S8). Previous studies
have indicated that the archaea Methanocella is a predom-
inant utilizer of rice plant-derived carbon [39, 40], and its
genome encodes pathways for carbon assimilation as well
as aerotolerance [41]. In our study, Methanocella and
Methanosarcina, another dominant methanogen in rice
soils, were found to be enriched in domesticated soils
compared to uncultivated soils, and both were also
present in the set of rice core enriched microbes (Fig. 4).
Thus, an important byproduct of soil domestication by
rice cultivation is the buildup of methanogenic archaea
that could have longer term climatic consequences. If rice
is a strong driver of highly active methanogens, then this
accumulation might be ameliorated by an imposed
discontinuity of rice cultivation within a field, or by select-
ing rice cultivars that are lower in methane emissions [42]
that might be potentially less active in methanogen
recruitment and growth.

Conclusion
This study characterizes the consequences of domestica-
tion on soil microbiomes and on plant-soil feedback

arising from continuous monoculture of rice, globally
the most important food crop. The findings indicate that
compositional shifts in the soil microbiota appear to be
partly driven by the rice plants and are not solely a
consequence of cultivation practices. These microbiota
changes can inhibit plant growth and potentially impact
agricultural yields, as well as contribute to global
methane emissions. Questions that should be addressed
in future research will include the extent of persistence
of the altered microbiota with crop rotation, or if culti-
vation is paused or terminated, the rate of decay of the
domesticated state in the absence of a feedback loop,
and the degree of reversion to the microbiota composi-
tions of the geographically related uncultivated soils.

Methods
Soil collection and characterization
Soils used in the soil domestication and seedling vigor
studies were collected from multiple sites across the
California Central Valley (Additional file 1: Figure S1A).
Domesticated soils were harvested from rice fields in
Arbuckle (39° 00′ 42.2″ N, 121° 55′ 19.6″ W) and Biggs
(39° 27′ 50.8″ N, 121° 44′ 14.4″ W); uncultivated soils
were harvested from non-agricultural sites in Arbuckle
(39° 00′ 44.8″ N 121° 53′ 09.4″ W), Biggs (39° 27′
53.0″ N 121° 43′ 49.9″ W), and Sacramento (38° 34′
29.6″ N 121° 38′ 43.8″ W); and one intermediate soil
was harvested from an experimental plot in Davis (38°
32′ 37.9 N, 121° 48′ 44.0″ W). Soil chemistry profiling
was performed by the UC Davis Analytical Laboratory.

Soil domestication study
This study was conducted in two batches using four dif-
ferent soils (Additional file 1: Figure S1A). The first
batch included an uncultivated soil from Sacramento
and a domesticated soil from Arbuckle (both collected
on April 10, 2015), while the second batch included an
uncultivated soil from Arbuckle and a domesticated soil
from Biggs (both collected on June 3, 2016). Soils were
homogenized, placed into pots, and kept under sub-
merged conditions with deioinized water in controlled
greenhouse conditions (Fig. 6a). Half the pots were
reserved for unplanted soil controls, and the other half
were used to transplant 7-day-old axenic rice seedlings
(cultivar M206) germinated in 0.5× MS agar plates from
surface-sterilized dehulled seeds (70% bleach for 5 min,
followed by three washes in autoclaved deionized water).
The plants and soils were irrigated under flooded condi-
tions for the duration of the experiments. Plants and
soils were supplemented with nutrient solution every 14
days. Six weeks after transplantation, samples were
harvested and bulk soil, rhizosphere, and endosphere
communities were immediately processed following the
steps described below.
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Seedling vigor study
This study encompassed two independent experiments,
each one with specific growth substrates, inoculation
treatments, and harvesting times (Fig. 6b).

Experiment 1
This study included six different soils: two domesticated
soils from Arbuckle and Biggs; three uncultivated soils
from Arbuckle, Biggs, and Sacramento; and the inter-
mediate Davis soil (all collected on April 5, 2018). Each
soil was homogenized, scooped into a pot, and kept
under submerged conditions for 10 days. Soil suspensions
were then generated by stirring 100 g of submerged soil
into 1 L of sterile 0.5× strength MS media. For the live
microbiota treatments, 500mL of each soil suspension
was added to 10 L of twice-autoclaved calcined clay. The
inoculated substrate was thoroughly mixed and scooped
into two 72-cell propagation trays that were immediately
bottom-saturated with deionized water to achieve a sub-
merged condition. For the mock inoculation treatments,
the same procedure was followed except soil suspensions
were allowed to settle for 30min before collecting and
filter-sterilizing (0.22-μm filter membrane, Millipore
Sigma, SCGPU10RE) the supernatant. Surface-sterilized
hulled rice seeds (10% bleach for 1 h, followed by three
washes in autoclaved deionized water) were then sewn

into the inoculated calcined clay. For each of the 12 treat-
ment/soil combinations, 144 seeds were planted. Plants
were kept under controlled greenhouse conditions and
bottom-irrigated to maintain submerged conditions. Upon
harvesting, the shoot height and fresh weight of 21-day-
old rice seedlings were immediately registered. The
collected tissue was then allowed to dry for 1 week before
measuring the dry weight. Additionally, whole root sys-
tems (three per tray, six per treatment/soil combination)
were collected in sterile PBS for endosphere microbiome
characterization following the steps described below.

Experiment 2
This study included four different soils: two domesti-
cated soils from Arbuckle and Biggs and two unculti-
vated soils from Arbuckle and Sacramento (all collected
during November 2016). Each soil was homogenized,
scooped into a pot, and kept under submerged condi-
tions for 14 days. For the live microbiota treatments, 18
g of submerged soil stirred into 1 L of sterile 0.5×
strength MS media was added to 1.8 kg of twice-
autoclaved UC Mix III. UC Mix III is a potting soil mix
utilized by University of California campuses that is
primarily composed of sand and peat moss (https://
agops.ucr.edu/soil/). For each soil, the inoculated sub-
strate was thoroughly homogenized and scooped into 16
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Fig. 6 Experimental design. a Soil domestication study: rhizospheres and endospheres of rice plants grown in two domesticated and two
uncultivated soils were 16S rRNA gene profiled to understand how soil cultivation history affects root microbiome assembly. Additionally,
unplanted bulk soils were sampled to characterize the inherent compositional differences between soil types. Both planted and unplanted potted
soils were kept under submergence in a controlled greenhouse setting. b Native plant study: rhizospheres and endospheres of rice (Oryza sativa),
mudplantain (Heteranthera limosa), sedge (Cypeus iria), and redstem (Ammania coccinea) were 16S rRNA gene profiled to explore differences
between a monoculture crop and native plant species grown in the same flooded rice paddy. Additionally, bulk soil samples were collected to
understand the compositional relationship of their associated communities to those acquired by the conspecific plant (rice) and the other hosts.
c Seedling vigor study: rice plants were grown in a common substrate treated with microbial inocula derived from domesticated, uncultivated, or
intermediate soils in order to analyze the effect of soil microbiomes with distinct cultivation histories on plant growth. As a control, plants were
grown in substrate treated with corresponding sterilized inocula in order to account for any residual abiotic variation. Additionally, the
endospheres of a subset of plants were 16S rRNA gene profiled to assess community structure. In all panels, tables under each graphic represent
the number of replicates sequenced for each treatment/sample type combination. BS, RS, and ES stand for bulk soil, rhizosphere, and endosphere
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respectively. In all cases, NA stands for not applicable
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8-cell polypropylene boxes previously perforated to allow
water flow. The boxes were then evenly distributed
between two plastic trays and bottom-saturated with
deioinized water. For the mock inoculation treatments,
the same procedure was followed except soil suspensions
were autoclaved before inoculating the UC Mix III sub-
strate. Surface-sterilized hulled rice seeds (1% bleach for
2 h, followed by three washes in autoclaved deionized
water) were then sewn into the inoculated UC mix III.
For each of the eight treatment/soil combinations, a
total of 256 seeds were planted (2 seeds per well within
each cell of the polypropylene box), and later thinned to
128 seedlings per treatment. Plants were kept under
controlled greenhouse conditions and bottom-irrigated
to maintain submerged conditions. Upon harvesting, the
shoot height and fresh weight of 14-day-old rice seed-
lings were immediately registered. Additionally, whole
root systems (three per tray, six per treatment/soil
combination) were collected in sterile PBS for endo-
sphere microbiome characterization following the steps
described below.

Native plant study
Rice (Oryza sativa, cultivar Sabine), valley redstem
(Ammania coccinea), blue mudplantain (Heteranthera
limosa), and flatsedge (Cypeus iria) plants (n = 4–6 per
host) were harvested in a flooded paddy near Jonesboro,
Arkansas, on August 22, 2015 (Fig. 6c). Roots were col-
lected from plants in the reproductive stage as plant
phenology affects the root microbiota composition [4,
23, 43]. Roots were vigorously shaken to remove loose
soil and collected into 50-mL Falcon tubes with 15mL
of sterile PBS solution. Additionally, unplanted bulk soils
(n = 15) were directly collected into 50-mL Falcon tubes.
All samples were immediately stored on ice and shipped
overnight to the University of California, Davis. Upon
receiving them, bulk soil, rhizosphere, and endosphere
compartments were processed for DNA extraction as
described below [44]. Briefly, harvested rice roots were
vigorously shaken to remove loosely bound soil and
collected into 50-mL Falcon tubes with 15 mL of sterile
PBS solution. Rhizosphere fractions were then harvested
by vortexing the roots and collecting 500 μL of the
resulting soil slurries into PowerBead tubes for DNA
extraction. Roots were then vortexed in consecutive
washes of fresh PBS solution until all soil was depleted
and sonicated three times at 50 Hz for 30 s in fresh PBS
to remove all rhizoplane microorganisms. The remaining
roots were then placed into PowerBead tubes for endo-
sphere DNA extraction. For bulk soil samples, ~ 250 mg
of soil was directly placed into PowerBead tubes for
DNA extraction. All DNA extractions were performed
using the MoBio Powersoil DNA isolation kit.

16S rRNA gene amplification and sequencing
All 16S rRNA gene amplification was performed as
noted in [44]. Briefly, the V4 region of the 16S rRNA
gene was amplified using PCR with a dual indexing strat-
egy. For each PCR reaction, a corresponding negative
control was also performed. All reactions were checked
for amplification by running PCR products out on a 1%
agarose gel. If a reaction’s negative control succeeded in
amplification, then we discarded the particular reaction
and reperformed the PCR. The PCR reactions were puri-
fied using AMPure beads and measured for concentration
using a Qubit. The PCR products were pooled in equimo-
lar concentrations, concentrated using AMPure beads,
and then gel extracted from a 2% agarose gel. Sequence
libraries were sent to the University of California DNA
Technologies Core Laboratory for 250 × 250 bp sequen-
cing on the Illumina Miseq platform.

Sequence processing
The resulting paired end sequences were demultiplexed
using custom Python scripts [44] and aligned into con-
tiguous reads using PANDAseq [45]. The contiguous
reads were discarded if containing any ambiguous bases
or if the length exceeded 275 bases. All reads were then
clustered into OTUs based upon 97% sequence identity
using NINJA-OPS [46]. OTUs with plastid and mito-
chondrial taxonomies were removed from all resulting
OTU tables.

Statistical analyses
All statistical analyses were conducted using R version 3.1
[47]. Unless otherwise noted, we determined statistical
significance at ɑ = 0.05 and, where appropriate, corrected
for multiple hypothesis testing using the Benjamini and
Hochberg method [48]. For beta-diversity analyses, OTU
counts were normalized using the variance-stabilizing
transformation implemented in DESeq2 [49, 50]. Shannon
diversity was calculated using the diversity() function,
PCoA and CAP analyses were conducted using the
capscale() function, perMANOVA was conducted using
the adonis() function, distances to within-group centroids
were calculated (i.e., Additional file 1: Figure S3) using the
betadisper() function, and Bray-Curtis dissimilarities were
calculated using the vegdist() function all from the Vegan
package [51]. Differential abundance analyses were per-
formed with the DESeq2 package [49, 50]. Linear mixed
effects models were fit with the lmerTest package [52].
Beta regression was run using the betareg() function from
the betareg R package [53], and ANOVA was run using
the aov() function the Stats package [47]. Hypergeometric
tests were run using the phyper() function. Phylogenetic
trees were displayed using the plot_tree() command from
the PhyloSeq package [54]. All other graphs and plots
were generated using the ggplot2 package [55].
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