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RESEARCH ARTICLE
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positioning, and 3D localization features
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1, Karine G. Le Roch2*, William

Stafford NobleID
1*

1 Department of Genome Sciences, University of Washington, Seattle, Washington, United States of

America, 2 Department of Molecular, Cell and Systems Biology, University of California, Riverside, California,

United States of America

* karinel@ucr.edu (KGL); william-noble@uw.edu (WSN)

Abstract

Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs

a broad range of mechanisms to regulate gene transcription throughout the organism’s

complex life cycle. To better understand this regulatory machinery, we assembled a rich

collection of genomic and epigenomic data sets, including information about transcription

factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occu-

pancy, GC content, and global 3D genome architecture. We used these data to train

machine learning models to discriminate between high-expression and low-expression

genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium

life cycle. Our results highlight the importance of histone modifications and 3D chromatin

architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription

factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic

factors.

Author summary

The parasite responsible for the most lethal form of malaria, Plasmodium falciparum,

employs a variety of mechanisms to modify the expression of its genes throughout its

complex life cycle. In this work, we gather a rich collection of data describing various

aspects of the gene regulatory apparatus in P. falciparum, and we use a machine learning

approach to help understand the relative importance of each potential regulatory mecha-

nism. Our results highlight the importance of two particular mechanisms: patterns of bio-

chemical modifications on the histone proteins that form the primary scaffold for DNA in

the cell and the three-dimensional conformation of DNA in the nucleus.
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Introduction

Plasmodium falciparum is the deadliest species of malaria parasite, responsible for 445,000

deaths in 2016 [1]. As resistance to antimalarial drugs spreads, demand for novel antimalarials

increases. Designing such novel drugs would require an improved understanding of the biol-

ogy of this parasite. Currently, one of the primary open questions in Plasmodium biology is

how the parasite maintains precise control of gene expression. The current work aims to

address this question by constructing an accurate predictive model of P. falciparum transcrip-

tion. The model accounts for the rich landscape of transcriptional control mechanisms in

Plasmodium by incorporating five types of features, representing transcription factor (TF)

binding, covalent histone modifications, nucleosome positioning, GC content, and chromatin

3D structure.

In many eukaryotes, TF binding within and around gene promoters is considered the dom-

inant mechanism of gene expression control. However, in Plasmodium, several lines of evi-

dence suggest that TF binding may be less central to transcriptional control. First, although

major components of the general transcription machinery are present in the Plasmodium
genome [2], a relatively small set of specific Plasmodium TFs (* 27) have been identified and

validated in the parasite genome [2]. In comparison, the similarly sized genome of the yeast

S. cerevisiae contains *170 specific TFs [3]. Second, among the subset of TFs whose binding

affinities have been characterized via in vitro protein binding microarrays [4], only a handful

display stage-restricted expression and play clear roles in regulating life cycle transitions. An

example is PfAP2-G, which drives expression of gametocyte-specific genes [5, 6]. Third, a

large number of Plasmodium genes are predicted by homology to function in the regulation of

chromatin structure, mRNA decay, and translation [2], suggesting the importance of epige-

netic and post-transcriptional regulation.

Among mechanisms for epigenetic regulation, patterns of covalent histone modifications

are perhaps the most widely studied and understood. In this respect, some aspects of P. falcipa-
rum gene regulation are shared with other eukaryotes, including the presence of the typically

heterochromatin-associated H3K9me3 histone modification at repressed var genes (referred

to as virulence genes, for their role in parasite pathogenicity) [7] and depletion of promoter

nucleosomes correlating with gene transcription [8]. On the other hand, Plasmodium epige-

nomic dynamics also exhibit notable deviations from those in commonly studied eukaryotes,

such as abundant and broad distributions of activating histone marks [9, 10] or active histone

variant H2Z in the promoters of all genes with the exception of genes involved in immune eva-

sion [11], an absence of H3K27me3 repressive marks [9], and genome-wide changes in nucleo-

some occupancy during the asexual cycle [8, 12]. These observations suggest that the parasite

may make use of a “histone code” like other well-characterized eukaryotes, though the specific

role of individual elements may differ.

In addition, empirical evidence suggests that gene regulation in Plasmodium occurs

through changes in chromatin structure, including shifts in nucleosome occupancy at the local

level and 3D positioning at larger scales. Nucleosome occupancy, as measured by MNase-assis-

ted isolation of nucleolar elements (MAINE) and formaldehyde-assisted isolation of regulatory

elements (FAIRE), or assay for transposase accessible chromatin with high-throughput

sequencing (ATAC-seq), exhibit cyclic patterns that closely track changes in gene expression

during the red blood cell (erythryocytic) stages of the parasite life cycle [12, 13]. In addition,

3D models of Plasmodium DNA based on Hi-C assays at multiple time points during the red

blood cell [9] and transmission [14] stages of the parasite point to a “gradient” of expression

across the nucleus, from a repressive center near the telomeres to an expressive center at the

centromeres.
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Based on the above evidence, we hypothesized that the cascade of transcripts observed

throughout the red blood cell (erythrocytic) cycle is the result of a combination of transcrip-

tion factor binding, histone modifications, and changes in chromatin structure. We further

predicted than an integrated analysis of the relationships among transcription and TF binding,

histone modification, and chromatin structure data could reveal the relative significance of

individual features in defining high- and low-expression genes.

We are not the first to build predictive models of gene expression (Table 1), though to our

knowledge we are the first to do so in Plasmodium. To keep the model simple, we focus on the

binary classification task, in which each gene is either “on” or “off,” rather than the more chal-

lenging regression setting. Prediction of gene expression has been framed as a classification

Table 1. Comparison of methods for predicting gene expression. The “mRNA Expression” feature involves using the mRNA expression of a set of putative regulators to

predict the mRNA expression of a different set of target genes.

Model Year Yeast Mouse Human mRNA

expression

TF

motifs

DNA

sequence

TF

ChIP-

seq

Histone

ChIP-seq

DNase or

ATAC

PolII

ChIP-

seq

Classification Regression

Multiple linear

regression [18]

2001 ✓ ✓ ✓ ✓

Conditional

probability given levels

of regulators [19]

2002 ✓ ✓ ✓

Classification tree [20] 2003 ✓ ✓ ✓

Bayesian network [21] 2004 ✓ ✓ ✓ ✓

Boosted alternating

decision trees [22]

2004 ✓ ✓ ✓ ✓

Boosted alternating

decision trees [23]

2006 ✓ ✓ ✓ ✓

Principal component

regression and

regression tree [24]

2009 ✓ ✓ ✓

Multiple linear

regression [25]

2010 ✓ ✓ ✓

Support vector

machine [15]

2011 ✓ ✓ ✓ ✓

Random forest and

multiple linear

regression [16]

2012 ✓ ✓ ✓ ✓

Multiple log-linear

regression [26]

2012 ✓ ✓ ✓ ✓ ✓

Bayesian variable

selection regression

[27]

2014 ✓ ✓ ✓ ✓

Multiple regression

[28]

2015 ✓ ✓ ✓ ✓ ✓ ✓

Multilayer perceptron

[29]

2016 ✓ ✓ ✓

Convolutional neural

network [17]

2016 ✓ ✓ ✓

Multiple regression

[30]

2017 ✓ ✓ ✓ ✓ ✓

Convolutional neural

network [31]

2018 ✓ ✓ ✓

Multitask regression

[32]

2018 ✓ ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pcbi.1007329.t001
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task in numerous previous works, with our approach most closely resembling the analysis in

references [15–17]. Furthermore, because we sought to determine the importance of features

within individual stages we restrict ourselves to predicting relative high- or low-expression

labels with respect a single parasitic stage at a time, rather than developing a single model

that predicts absolute expression values irrespective of stage. Accordingly, we build separate

models in three different stages of the P. falciparum life cycle and analyze the resulting models

to understand which features are implicated in the up- or down-expression of Plasmodium
genes in different stages of the parasitic life cycle.

Methods

A description of all methods is given below. All processed data, as well as code used for data

processing and model training/evaluation, is available online (https://github.com/Daread/

plasmodiumExprPrediction).

Data sets

Although P. falciparum passes through multiple stages—mosquito, human liver, and human

blood—we focus here on the human blood stage of the parasite life cycle, primarily because of

the availability of a wide number of relevant data sets. We gathered data for three time points,

corresponding to the three main asexual stages within the red blood cell cycle: ring, trophozo-

ite and schizont. Most data sets described below (Table 2) are available in all three of these

time points, with the exception of some ChIP-seq data for covalent histone modifications

(H3K36me2, H3K36me3, H3K9me3, H4K20me3, and one replicate of H3K4me3 [33]) that

were not available for the trophozoite stage.

GRO-seq. To define the on/off labels for our classifier, we used the GRO-seq values from

Lu et al. [37]. We used GRO-seq values normalized for GC content, gene length, and the “para-

sitemia factor” of a stage [37], available in S1 Table. To generate binary labels for genes, for

each stage we sorted all protein-coding genes by the normalized GRO-seq counts assigned to

that gene in that stage. We labeled the top third of genes as “High expression” and the bottom

Table 2. Summary of datasets used in classification models. Dataset sources are shown, along with the time points from each study which were used to represent each of

three life cycle stages. “N/A” is listed for the GC content and motif score features, as they did not vary across life cycle stages.

Feature Study Description Time point

Ring Trophozoite Schizont

Distance to telomeres [34] Hi-C inferred distance ✓ ✓ ✓

Distance to centromeres [34] Hi-C inferred distance ✓ ✓ ✓

Distance to center [34] Hi-C inferred distance ✓ ✓ ✓

Nucleosome occupancy [8] 100-200 base pair fragments ✓ ✓ ✓

H2A.z [35] ChIP-Seq ✓ ✓ ✓

H3K9Ac [35] ChIP-Seq ✓ ✓ ✓

H3K4me3 (Bartfai et al) [35] ChIP-Seq ✓ ✓ ✓

H3K36me2 [33] ChIP-Seq ✓ ✓

H3K36me3 [33] ChIP-Seq ✓ ✓

H3K9me3 [33] ChIP-Seq ✓ ✓

H4K20me3 [33] ChIP-Seq ✓ ✓

H3K4me3 (Jiang et al) [33] ChIP-Seq ✓ ✓

GC content See Methods 100 bp sliding windows N/A N/A N/A

TF motifs [36] FIMO scan of TF motifs N/A N/A N/A

https://doi.org/10.1371/journal.pcbi.1007329.t002
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third of genes as “Low Expression” (Fig 1). The middle third of genes were not used in the

analysis.

The decision to use tertiles rather than, say, quartiles or simply dividing at the median was

somewhat arbitrary. Past works have used a number of schemes, such as dividing genes into

Fig 1. Differences between high- and low-expression genes. (A) Histograms showing the distribution of normalized GRO-Seq values

assigned to protein-coding genes within each of three stages of the P. falciparum life cycle. The labeled, dashed vertical lines indicate the cut-

off values for genes categorized as low- and high-expression. (B) Aggregation plots showing the average signal for features with respect to

the start codons of high-expression (blue) and low-expression (orange) genes in the ring stage.

https://doi.org/10.1371/journal.pcbi.1007329.g001
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tertiles [22, 23], dividing genes in half at the median [15, 17], or dividing by zero/non-zero sta-

tus [16]. We elected to use tertiles and perform classification using the top and bottom sets in

part to make the classification task somewhat easier (by only giving the model examples that

are well-separated by expression) and in part to limit the detrimental effect of possible noise in

the GRO-seq data (because noise is less likely to flip a gene between classes when the divisions

are made at tertiles than if divisions were made at the median).

Transcription start site and coding sequence annotations. Many of the features that we

employed require specifying the start coordinate of each given gene. For this purpose, we use

two data sets of coordinates: either the start codons from the PlasmoDB v29 annotation or

transcription start sites based on CAGE-Seq data from [38]. In that resource, multiple start

sites are often annotated for a given protein coding gene. To assign a single TSS for use in fea-

ture assignment, we first looked to see if the “primary TSS” assigned in [38] was upstream of

the start codon of a gene. If it was, then the start of that TSS was used. Otherwise, we used the

TSS lying upstream and closest to the start codon. If no annotated TSS was upstream of the

start codon of a gene, then the start codon was used.

Histone modification ChIP-seq. ChIP-seq data for the following histone modifications

were collected from two studies: H3K4me3, H3K9Ac, and H2.Az from Bartfai et al. [35] and

H3K36me2, H3K36me3, H3K9me3, H4K20me3, and H3K4me3 from Jiang et al. [33] Note

that one mark, H3K4me3, was measured in both studies. All of the ChIP-seq data was reana-

lyzed using a standard pipeline that consisted of trimming reads to 76 nucleotides using the

fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html), mapping reads to the P. fal-
ciparum genome (PlasmoDB v29) using bwa-mem [39], filtering unmapped and multimap-

ping reads using samtools [40], and generating bedgraph files using bedtools [41]. Fold-

change over background was calculated relative to input DNA where available. For histone

ChIP-seq datasets from Jiang et al., no input DNA data was available, so values were calculated

relative to the mean signal over all the data.

Nucleosome occupancy. MNase data from [8] was downloaded in FASTQ format, then

trimmed and filtered using sickle version 1.33 (https://github.com/najoshi/sickle). Reads were

aligned to the P. falciparum genome (PlasmoDB v29) using bwa-mem [39], then sorted and fil-

tered for mapped reads using samtools [40]. A custom Python script selected all alignments

between 100 and 200 bp in length, which were then used to generate a bedgraph file using gen-

omeCoverageBed [41].

Hi-C. Per-gene distances from telomere centroid, centromere centroid, and center were

computed in a previous study carried out by our lab [34], using 3D models generated from

Hi-C data using PASTIS [42]. These values were obtained directly from https://noble.gs.

washington.edu/proj/plasmo3d/.

DNA sequence features. Position-frequency matrices for 25 AP2 family transcription fac-

tors for P. falciparum were downloaded from CIS-BP [36]. We focused on available AP2 family

motifs for two reasons. First, AP2 transcription factors have been widely speculated to play a

key role in TF-mediated transcriptional regulation throughout the erythrocytic cycle due to

variable expression, sequence-specific DNA binding, and presence of AP2 motifs upstream of

genes whose expression varies throughout erythrocytic stages [43, 44]. Second, the DNA bind-

ing specificities of AP2 transcription factors were evaluated en masse using a high-throughput

in-vitro protein binding microarray and subjected to in vivo validation [43], generating a motif

set derived by a consistent, rigorous workflow.

With each motif, we scanned the P. falciparum genome using FIMO [45] with a p-value

threshold of 0.01. This fairly permissive cut-off was arbitrarily set, leaving more aggressive fea-

ture selection for downstream model training and evaluation. To ensure that the background

model represented the unique sequence context of P. falciparum, we generated a background
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model from the P. falciparum genome with the MEME Suite command fasta-get-
markov with Markov order 1 [46]. In addition, percent GC was calculated in 101 base win-

dows centered at each position in the genome.

Features based on histone modifications, H2Az composition, nucleosome occupancy, and

GC content were segregated into “promoter” and “gene body” features. The “promoter” fea-

ture was the mean feature signal from -500 bases up to the start codon, whereas the “gene

body” feature was the mean feature signal from the start codon to 1 kb into the coding

sequence.

Predictive models

Models. We used three types of models to classify Plasmodium expression and select pre-

dictive features. The first was logistic regression with elastic net regularization, using the sci-

kit-learn implementation (sklearn.linear_model.SGDClassifier). The second was a tree model

with gradient boosting, using the XGboost Python implementation (xgboost.XGBClassifier).

The third was a multi-layer perceptron model, with two hidden layers, each containing the

same number of nodes as the input layer. This model was implemented by DeepPINK [47],

which is designed to achieve robust feature selection with a controlled error rate.

Performance metric. The performance of each model was evaluated in terms of receiver

operator characteristic (ROC) curves. These plots show the rate of true positive classifications

(on the y-axis, indicating sensitivity) against the rate of false positive classifications (on the x-

axis, indicating 1—specificity). The area under the ROC curve (AUROC) quantifies the ability

of the classifier to balance sensitivity (true positives) against specificity (avoiding false posi-

tives). An AUC value of 1 corresponds to perfect performance, whereas a value of 0.5 corre-

sponds to random guessing.

For Fig 2A, the ROC curve for logistic regression classification was generated by combining

the gene scores from the test sets in three separate folds of cross-validation. These scores were

sorted together to generate the combined ROC curve shown.

Train/test data splitting. We split the P. falciparum into five approximately equally sized

(by gene count) folds by chromosome: fold 1 included chromosomes 1, 3, and 13; fold two

included 2, 9, and 11; fold three included 7 and 14; fold four included 6, 8, and 10; and fold

five included 4, 5, and 12. This split was done by calculating the number of genes-per-fold in a

perfectly even split, then choosing the division of chromosomes whose totals had the smallest

mean-squared error from this ideal value, across all possible permutations of chromosome-to-

fold assignments. A Python script that tests all permutations of chromosome sets, selecting the

division that minimizes the mean squared error, is available in the Github repository, dataPre-

Processing/selectingDataFolds/divideGenomeIntoFiveSets.py.

Model development and hyperparameter tuning

The first three folds were used for feature development and hyperparameter tuning. During

this stage, we selected hyperparameters by three-fold internal cross-validation. For the logistic

regression model with elastic net regularization, we tuned the “alpha” and “l1_ratio” parame-

ters in a sklearn.linear_model.SGDClassifier model. The “alpha” value determines the magni-

tude of the regularization penalty relative to classification error, while “l1_ratio” determines the

relative magnitude of the L1 and L2 penalty terms (1 = pure LASSO penalty, 0 = purely ridge

regularization). For the boosted trees model, we tuned the “max_depth”, “min_child_weight”,

“subsample”, “colsample_bylevel”, and “n_estimators” hyperparameters in an xgboost.

XGBClassifier model. “Max_depth” controls the tree depth of the decision trees composing the

XGBoost ensemble, “min_child_weight” controls the minimum weight in a leaf node that is
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allowed to be split further, “subsample” controls the portion of training data samples for train-

ing each additional tree, “colsample_by_level” controls whether re-sampling is done for each

new depth level within trees, and “n_estimators” is the number of trees in the model. In each

case, we performed a grid search across the values listed in Table 3, testing all possible

Fig 2. Comparison of classification models. (A) Classification models outperform all individual features for use in classification of gene

expression. Grey lines represent the ROC curves resulting from ranking genes by the values of single features in the ring stage, with the

best-performing feature shown in red. The blue line represents the ROC curve from training a logistic regression model with elastic net

regularization, where the curve is created by combining the predictions across all three test sets. (B) The ROC curves for classification of

gene expression by logistic regression across ring, trophozoite, and schizont stages. Individual curves represent performance in one of test

three folds in cross-validation. (C) AUROC values for logistic models trained with or without motif scores as features. Points represent

AUROC values on the test set in three-fold cross-validation; bars represent average AUROC values on the test data. (D) The AUROC

values resulting from training of distinct models in different stages (“Log” = Logistic Regression, “XGB” = XGBoost, “DP” = DeepPINK).

Individual points represent the AUROC values from distinct test sets, for the listed model in a given stage. Brackets are labeled with p

values for pairwise comparisons within stages where p< 0.05, using the DeLong method for comparing AUC values.

https://doi.org/10.1371/journal.pcbi.1007329.g002

Table 3. Hyperparameter selection.

Model Parameter Possible values Selected value

Ring Trophozoite Schizont

LR alpha 0.1, 0.01, 0.001, 0.0001 0.0001 0.0001 0.0001

LR l1_ratio 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 0.95 0.8 0.9

Boosted trees max_depth 4, 5, 6, 7, 8, 9 4 6 4

Boosted trees min_child_weight 2, 3, 4, 5, 6, 7 5 5 6

Boosted trees subsample 0.3, 0.4, 0.7, 0.8, 1.0 0.7 0.4 0.4

Boosted trees colsample_bylevel 0.3, 0.5, 0.7, 1.0 0.3 0.5 0.3

Boosted trees n_estimators 40, 60, 80, 100 100 60 80

https://doi.org/10.1371/journal.pcbi.1007329.t003
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combinations of hyperparameter values using cross-validation within the three folds used for

model development and selecting the hyperparameter combination with the lowest test error.

On the basis of initial analyses, we eliminated the motif-based features from our feature set,

and we chose to use features based on CDS rather than TSS locations (see Section for details).

Model evaluation on test data

Subsequently, we trained classifiers to make predictions on each of the two test folds, in each

case training on the four remaining folds. In this case, hyperparameters were selected that

yielded the greatest AUROC value in the three training set “sub-folds” using cross-validation,

as implemented in GridSearchCV in sklearn.grid_search. The selected hyperparameters are

listed in Table 3. Probabilistic classification scores for all genes in both of the two test folds

were combined for testing the statistical significance of differences in AUC values. AUC values

were compared using the DeLong test for correlated AUCs [48] as implemented in the pROC

package in the R language [49].

XGBoost and SHAP values. The gradient boosting method XGBoost is powerful but

challenging to interpret. XGBoost assigns classification labels by taking a consensus decision

from an ensemble of individual decision trees [50]. XGBoost models are appealing due to their

ability to capture complex interactions among features as well as non-linear relationships

between features and classification labels [50]. However, understanding the importance of

individual features within such ensembles is challenging, because the model may use a given

feature in multiple locations across the individual trees (in contrast to a regression model with

a readily interpretable coefficient assigned to a feature).

Consequently, we used SHAP [51] to help interpret the trained XGBoost models. SHAP is a

software package that quantifies the effect of each feature on the classification of each example

(each gene, in our case) by measuring how much information that feature provides in addition

to various subsets of other features being used in the model. The method obeys key mathemat-

ical properties and matches human intuition in tested cases [51]. Running SHAP on our

trained XGBoost models provided us with “SHAP values” for each feature, for every gene.

These scores can be studied on a gene-by-gene basis and can be aggregated across all genes

within a stage to obtain a consensus score, comparable to a regression coefficient.

DeepPINK. Similar to XGBoost, DeepPINK can also capture non-linear relationships

between features and classification labels. Rather than boosted gradients, DeepPINK uses a

deep neural network model. Importantly, DeepPINK is able to reliably choose relevant features

with a controlled error rate, regardless of arbitrarily complex interactions among features. To

rigorously control the false discover rate among selected features, DeepPINK relies upon the

recently described model-X knockoffs framework [52]. The primary methodological novelty

in DeepPINK is its deep neural network architecture, which enables application of the model-

X framework.

Determining feature importance

After training, we examined each model to extract information about which features the

model deemed most relevant to the given classification task. For the logistic regression models,

we recorded the coefficients assigned to each feature. For XGboost, we used the SHAP package

to calculate “SHAP values” for each feature at each gene [51]. The magnitude of the feature

importance score was defined as the mean SHAP value across all genes. The sign for the fea-

ture importance score (indicating whether a feature indicates high- or low-expression) was

defined by the direction of correlation between feature values and SHAP values across all

genes. DeepPINK computes feature weights by multiplying the weight matrices across all
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layers of the deep neural network. The resulting weights can be either positive or negative,

indicating the direction of correlation between features and the label. We used the the squared

value of the feature weight as the feature importance score.

Results

High- and low-expression genes display qualitative genetic and epigenetic

differences

Drawing from a variety of data sources, as described in Methods, we constructed a data set of

heterogeneous gene features across each of three stages of the erythrocytic cycle (ring, tropho-

zoite and schizont). GRO-seq measurements of nascent transcription were used to identify

genes which high expression (top third) and low expression (bottom third) (Fig 1A).

As an initial step of data exploration, features with signal at a base-by-base level (such as

ChIP-seq tracks or GC content) were visualized using aggregation plots showing the average

level of signal for a feature with respect to the start codon, segregated by high-expression and

low-expression genes (Fig 1B). These plots show expected trends, including enrichment of

H3K4me3, H3K9Ac, and H2Az in highly expressed genes, as well as depletion of nucleosome

occupancy in promoter regions.

Given the apparent differences in signals upstream and downstream of the start codon, we

split each of these main features into two features. The “promoter” feature was the mean fea-

ture signal from -500 bases up to the start codon, whereas the “gene body” feature was the

mean feature signal from the start codon to 1 kb into the coding sequence. This was done for

all covalent histone modification features, H2Az composition, nucleosome occupancy, and

GC content.

Similarly, for motif features, we calculated the maximum motif match log-odds score in

two windows. The “promoter” window was from -500 bases up to the start codon, while the

“gene body” region extended from the start codon up to 1000 bases into the coding sequence.

Ultimately, each ring- and schizont-stage gene was characterized by a set of 73 features,

including 50 motif-based features, 14 histone modification features, 7 features characterizing

local and global chromatin structure, and 2 features describing local GC content. Trophozo-

ite stage genes used the same feature vector, but with 10 histone features removed due to

missing ChIP-seq data sets in that stage. These matrices, including feature values and gene

labels, are available for all three stages via the Github repository under the modelData direc-

tory. For each stage, we include two versions of the file, with and without motif features, for

convenience.

Machine learning models accurately distinguish between expressed and

non-expressed genes

We initially examined single features to establish a baseline of classification performance based

on a simple ordering of genes by each individual feature. In this way, we generated one ROC

curve for each feature (gray lines in Fig 2A), obtaining AUROCs as high as 0.82 for H3K4me3

gene body signal (blue line in Fig 2A) in classification of ring-stage genes.

Next, we compared this baseline approach against a machine learning method that inte-

grates all of the available features. We observed, not surprisingly, that an elastic net-regularized

logistic regression (“Logistic”) model that integrates all features outperformed rankings based

on single features alone: the ROC curve generated by the logistic regression (red curve, Fig 2A)

dominates all of the ROC curves generated by ranking genes using single features. We

observed similar levels of performance across the three erythrocytic stages, where in a three-

Predicting gene expression in the human malaria parasite Plasmodium falciparum

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007329 September 11, 2019 10 / 23

https://doi.org/10.1371/journal.pcbi.1007329


fold cross-validated test, the logistic regression model achieved average AUROCs of 0.868 in

ring (Fig 2B), 0.817 in trophozoite and 0.829 in schizont.

Start codons outperform TSSs for predicting transcription

During our exploratory work using the three “development folds” of data, we tested two differ-

ent approaches for defining the start of a gene: transcription start sites (TSSs) and start codons.

Surprisingly, this testing indicated that start codons are more useful than TSSs for defining the

division between promoter and gene body for our predictive models. We started by using

genome-wide CAGE-seq datasets to define transcription start sites for all genes (see Methods).

Plots of feature scores with respect to these two types of “start” positions—start codons (Fig

1B) and TSSs (Fig 3A)—qualitatively showed stronger trends between high- and low-expres-

sion genes when defining promoter/gene body splits using start codons rather than TSSs. Fur-

thermore, when we trained classifiers to label genes using features split by either start codon or

TSS, the models using promoter/gene body definitions split by start codons consistently out-

performed models using TSSs (Fig 3B). Consequently, we focused analyses in this work on

models that are split by start codons rather than TSSs.

Motif features are not helpful

A key question we aimed to address is the relative utility of the scores derived from TF motifs.

Accordingly, we repeated the cross-validated testing of the logistic regression model using

three different feature sets: the full set of features, a reduced set in which the TF motif PWM

scores have been eliminated, and a set containing only TF motif features. This analysis sug-

gested that the motif features did not aid in classification when combined with non-motif fea-

tures, and if anything hurt the performance of our models (Fig 2C). Furthermore, models that

used only motif features were far less accurate than models that incorporated non-motif fea-

tures (Fig 2C). In addition, we investigated the possibility that the −500 bp window size used

for promoter features may have under-utilized AP2 motifs, if relevant regulatory sequences are

spread over larger upstream distances. To this end, we re-trained and evaluated new “motif-

only” models, varying the promoter region to include either 1 kb or 2 kb of upstream sequence

(instead of 500 bp, as in the original analysis). This analysis (S1 Fig) shows that expanding the

range of the upstream window does not improve the performance of models using motif

Fig 3. Transcription start sites versus start codons. (A) Aggregation plots showing the average signal for features with respect to the transcription

start sites of high-expression (blue) and low-expression (orange) genes. (B) A plot of AUROC scores obtained for training a logistic classifier to

classify genes as high- or low-expression (in the Ring, Trophozoite, and Schizont stages, left to right). The left column for each stage represents

scores using promoter/gene body divided at the start codon (as was done throughout the analysis up to this point), while the right column in each

stage used TSSs to divide promoter/gene body regions.

https://doi.org/10.1371/journal.pcbi.1007329.g003
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features alone, suggesting that our modest upstream window size is not missing valuable

upstream regulatory AP2 family binding sites.

At this point, we considered our model development complete. Hence, all subsequent anal-

yses incorporate two folds of data that had not been used in prior model development. Thus,

whereas previous analyses involve three-fold cross-validation on 3/5 of the data, all subsequent

analyses perform two folds of a five-fold cross-validation, training on 4/5 of the data and test-

ing on each of the two held-out test folds (see Section for details).

Different models have similar accuracies

To determine whether our results thus far depend upon the choice of machine learning

method, we also tested two additional types of models: a boosted trees ensemble (“XGBoost”),

and a multilayer perceptron with two hidden layers (“DeepPINK”). Refer to “methods” for

descriptions of the methods and links to further reading. In each stage, the three models dem-

onstrate similar AUROC performance, with a slight trend of the multi-layer perceptron model

outperforming XGboost, which in turn outperforms logistic regression (Fig 2D). We examined

all pairwise model comparisons within each stage (DeLong test for correlated AUCs, see Meth-

ods), finding three comparisons to have statistically significant differences (Fig 2D). However,

even the differences that are statistically significant are relatively modest in absolute terms,

leading us to conclude that each of these machine learning methods achieves reasonably good

performance in discriminating between Plasmodium genes with high and low expression.

Accordingly, we used all three methods in subsequent analyses.

Classification models use stage-specific features

Having established the feasibility of predicting gene expression in Plasmodium, we next turned

to the more interesting question: which features contribute most strongly to the performance

of each classifier? By including three different types of models, we reasoned that if multiple

classification models select a similar set of informative features within a single stage, then this

would suggest that those features are robust to the choice of model. Accordingly, for each

model we calculated a feature importance score (see Methods) on a 0 to 1 scale, where 0 means

uninformative and 1 means strongly informative. We also determined the direction of effect,

indicating whether a high feature value is predictive of high or low expression. Additionally,

the DeepPINK model identifies which features are informative for classification using a

method that allows for explicit control of false discovery rate (FDR < 0.05, see Methods). Note

that due to the exclusion of motif features from our analysis (Fig 2C), we do not obtain feature

scores for any AP2 motifs. Given the fundamentally different methods used to assign feature

importances in each of the three models, we would not expect a precise quantitative agreement

in scores. For instance, elastic-net regularized regression models favor zero-valued coefficients,

whereas no such sparsity-inducing behavior occurs in XGBoost or DeepPINK models. How-

ever, we would expect that model agreement on feature importances would result in similar

feature rankings. Indeed, when we calculate the Spearman correlation between all model pair-

ings in a given stage we see a strong correlation between different models’ feature orderings

(Table 4). We note that the agreement is imperfect, particulalry between XGBoost and Deep-

PINK models in the schizont stage (correlation = 0.533), with obvious differences between the

two models in their use of H3K36me2 and H3K36me3, among others (Fig 4A). In general,

occasional instances of disagreement between models feature attributions within a given stage

(Fig 4A and Table 4) are difficult to interpret with confidence given the lack of a ground truth

to which we can compare the models’ feature attributions.
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Given the observation that our models attribute similar importances to features within a

single stage (Table 4 and Fig 4A), we inspected the features that the models selected as infor-

mative. All three models identify high H3K4me3 signal within the gene body as indicative of

high expression in the ring stage, select high H3K4me3 signal as indicative of high expression

in the trophozoite stage, and identify high H3K9Ac and H4K20me3 signal in the gene body as

indicative of high expression in the schizont stage. Similarly, the three models tend to attribute

consistent importance to physical chromatin features: all three models highlight the impor-

tance of gene body nucleosome occupancy in the trophozoite stage and telomere distance in

the ring stage (using inferred distance based on a 3D computational model, see Methods). This

consistency across models and methods suggests that our approach to identifying informative

features is generally robust to the differences in modeling approaches.

In contrast to the high concordance among the three models, we observed low concordance

among the importance of individual features across different stages of the erythrocytic cycle.

For instance, H4K20me3 was highly informative for predicting a “high expression” label in the

schizont stage, but almost completely uninformative in the ring stage (data was unavailable for

this mark in the trophozoite stage). To investigate the extent of this disagreement, we calcu-

lated Spearman correlations for all stage pairs for a given model type (Table 5). These correla-

tions (mean = 0.623) are notably lower than the correlations observed between different

models trained within the same stage (Table 4, mean = 0.803). The comparatively higher con-

sistency of feature importance within a stage versus between stages (difference = .18. p = .0176,

two-sided t-test) argues that inter-stage differences are not an artifact of the model training

process and suggests that distinct regulatory mechanisms may control transcription in the

three different stages. However, further work and replicatation is required to rule out con-

founding issues such as batch effects between datasets for different stages. For instance, the

H3K4me3 features from one source [35] was marked as informative for classification in the

schizont stage by all three models, while H3K4me3 signal from a different source [33] was

found to be relatively uninformative, by comparison (Fig 4A). Such discrepancies likely stem

from differences in either the data generation processes or the synchronization of parasitic

stages across distinct sources.

The XGBoost model afforded an additional look at each individual features’ effects on the

classification of single genes. In addition to assigning feature significance and direction-of-

effect at the level of the model as a whole (as in Fig 4A), the SHAP score for the XGBoost

model can be calculated separately for each feature at each gene. Briefly, to generate classifica-

tions the XGBoost model generates a score for each gene. Suppose that correctly classified

“low-expression” genes receive scores in the range 2–8 (on an arbitrary scale), and a particular

low-expression gene has been given a score of 6, indicating that the model (correctly) predicts

that the gene is at a low expression level. SHAP scores assign scores to each of the 23 features

used in the prediction, such that the sum of the 23 scores adds up to 6, the final classification

value. In this way, large positive SHAP scores indicate features that were important for assign-

ing this particular gene a “high-expression” label (see Section and [51] for details). The result-

ing distribution of per-gene SHAP scores for each feature (Fig 4B) suggests that some features

Table 4. Intra-stage consistency of model feature attributions. Spearman correlations between all pairs of models were calculated for features within individual stages, as

well as averaged across all stages.

Model comparison Ring features Trophozoite features Schizont features

Logistic vs. XGBoost 0.945 0.934 0.718

Logistic vs. DeepPINK 0.876 0.857 0.772

XGBoost vs. DeepPINK 0.821 0.775 0.533

https://doi.org/10.1371/journal.pcbi.1007329.t004
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Fig 4. Feature importance measures. (A) Feature importance scores assigned for different models (Log = Logistic Regression,

XGB = XGBoost, DP = DeepPINK Multilayer Perceptron). See “Methods” for details on how feature importance scores were calculated.

Scores were normalized to lie within a 0-to-1 range by subtracting the minimum absolute value of all scores in a model, then dividing those

numbers by the score with the maximum absolute value. Bar height represents the magnitude of feature significance, while the color of bars

indicates the direction of effect (Red: Higher feature value predicts high expression. Blue: Higher feature value predicts low expression.).

Features using averages over “promoter” and “gene body” windows (such as ChIP-seq tracks) are split by these sub-features, while features

that are not divided (such as distance to centromere centroid) are not. Stars indicate features that were selected as significant using the

DeepPINK model, controlling false discovery rate<0.05. (B) SHAP values for features used in the XGboost classifier for all genes. SHAP

values for a given gene represent how significant a specific feature was for classification of a gene as low-expression or high-expression, as

well as the direction in which the feature pushed the classification. A positive SHAP score for a feature for a specific gene means that the

value of that feature was changed that gene’s classification toward “low expression,” while a negative SHAP value means that feature pushed

the gene toward a label of “high expression.” (C) SHAP values for features used in the XGboost classifier for virulence genes.

https://doi.org/10.1371/journal.pcbi.1007329.g004
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exhibit non-linear relationships between SHAP scores and expression prediction, visually

observable as asymmetry in the density plots shown in Fig 4B. For instance, the effect of

H3K36me2 gene body signal in the schizont stage model is not a simple relationship where

increases in the feature value lead to consistent changes in model classification Fig 5A. In a his-

togram showing H3K36me2 distributions for high- and low-expression genes (Fig 4C), we see

that over the range of -4 to -3, almost all genes are “low-expression.” This corresponds to the

“flat” region in the -4 to -3 range in the SHAP scores of Fig 4A, because values within this

range are all treated as essentially the same by the XGBoost model. In contrast, between 0 and

1 we observe a shift in the relative abundances of high- and low-expression genes: most genes

with 0 signal are high-expression, whereas most genes with 1 signal are low expression.

Table 5. Inter-stage consistency of model feature attributions. Spearman correlations between all pair-wise comparisons of stages were calculated for features within

individual model types.

Model Ring vs. Trophozoite Ring vs. Schizont Trophozoite vs. Schizont

Logistic .830 .632 .722

XGB .711 .641 .365

DeepPINK .758 .385 .565

https://doi.org/10.1371/journal.pcbi.1007329.t005

Fig 5. Nonlinear relationships between feature values and SHAP values. (A) Scatter plot showing the values of H3K36me2 signal in the gene

body of schizont-stage genes (x-axis) against the SHAP values assigned to those genes (y-axis). (B) A scatter plot plot showing H3K4me3 in the

gene body of schizont genes ([35], x-axis) against SHAP values for those genes (y-axis). (C) Histogram showing the H3K36me2 feature value

distributions for low-expression (red) and high-expression (blue) genes. (D) Histogram showing H3K4me3 values for low-expression (red) and

high-expression (blue) genes.

https://doi.org/10.1371/journal.pcbi.1007329.g005

Predicting gene expression in the human malaria parasite Plasmodium falciparum

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007329 September 11, 2019 15 / 23

https://doi.org/10.1371/journal.pcbi.1007329.t005
https://doi.org/10.1371/journal.pcbi.1007329.g005
https://doi.org/10.1371/journal.pcbi.1007329


Consequently, we see that SHAP scores have a steep slope over the 0 to 1 range, meaning that

small changes in H3K36me2 have large effects on model predictions for genes within this

range. Similarly, a unit change in gene body H3K4me3 intensity does not lead to a specific

change in XGBoost predictions across all ranges of H3K4me3 signal (Fig 5B). We see a marked

change in the relationship (slope) between SHAP scores and H3K4me3 signal around a score

of “0.5” (Fig 5B), which is at the point at which genes transition from being mostly low-expres-

sion to mostly high-expression, as seen in the distributions of Fig 5D.

Intuitively, this observation indicates that the XGBoost model can discriminate between

feature input ranges where small changes are important versus regions where small changes

are insignificant. This can help capture the behavior of underlying non-linear mechanisms:

for instance, high levels of H3K4me3 may indirectly help recruit pre-initiation complex

components, but after a certain level H3K4me3-mediated recruitment is no longer the rate-

limiting step for transcription, so further H3K4me3 deposition will not further increase poly-

merase activity. Non-linear models such as XGBoost and DeepPINK are able to capture such

feature-response nonlinearities, allowing for improved predictions when modeling a process

with significantly non-linear mechanisms. In contrast, a linear model like logistic regression

treats -4 and -3 as being exactly as different as 0 and 1, regardless of the underlying feature

distribution.

We also repeated the per-gene SHAP analysis for the Plasmodium virulence genes, which

encode a protein family that functions to anchor infected erythrocytes to the endothelium of

blood vessels and are an important target for immune recognition [53]. The virulence genes

are tightly regulated, with each parasite expressing exactly one of the 60 genes at a given time.

In agreement with a known role for H3K9me3 in repression of virulence genes [7], we find

that virulence genes have large SHAP scores assigned to H3K9me3 signal. This observation

demonstrates that the classification model is not only able to find genome-wide rules for classi-

fication, but also selects important features with respect to a specific subset of genes, capturing

factors that are known to be important for transcriptional control of that gene family.

Discussion

We developed predictive models for Plasmodium gene expression that yield AUC values in the

range of 0.79–0.88 in cross-validated testing. These values are somewhat lower than AUC val-

ues reported from studies carried out in other eukaryotes like mouse (0.94 [15]) or human

(0.95 [16]). Many factors may contribute to this difference. For example, Plasmodium has a

smaller number of datasets available for use as features in our models: at most six unique his-

tone covalent modifications were used in our models, whereas 11 unique histone modification

features were used in both [15] and [16]. Consistent with this, using a small feature set (five

histone modifications) to classify expression in human cells resulted in a model with an aver-

age AUC of *0.8, a value in line with the performance we observed. Furthermore, compared

to human and mouse, Plasmodium has far fewer genes, which yields fewer examples for train-

ing our models. Additionally, the high AT-content of the Plasmodium genome presents a con-

sistent challenge to generation of high-confidence genomic datasets [9], so noise in feature

datasets may have led to reduced accuracy. An alternate explanation comes from the apparent

abundance of genes related to post-transcriptional regulation, rather than gene-specific tran-

scriptional control [2]. This discrepancy has led to speculation that the most significant level of

gene expression control occurs at regulation of translation, relaxing requirements for strict

transcriptional regulatory programs [2]. It is possible that a relatively low reliance on strict

transcriptional control allows the parasite to tolerate high noise in transcriptional regulation,

in turn leading to a system that is difficult to model accurately.
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One surprising outcome was the apparently low utility of features derived from AP2 family

TF binding motifs. Plasmodium AP2 genes are conserved proteins containing putative DNA-

binding domains, homologous to the plant Apetela2/Ethylene Response Factor (AP2/ERF)

DNA-binding proteins, the second largest class of transcription factors in Arapidopsis thaliana
([54]). Gene expression profiling of a number of Plasmodium species as well as targeted knock-

out studies have demonstrated that some of these proteins are transcriptionally regulated and

play key roles during developmental stages, including sexual differentiation ([55]). Finally, a

pronounced paucity of alternative transcription factors with DNA sequence specificity [43]

and the presence of high-affinity AP2 motifs upstream of genes whose expression varied across

the erythrocytic cycle led to the notion that these Ap2 factors could be the missing reservoir of

sequence specific TFs in Plasmodium. The strikingly low value of AP2 motifs that we obtained

raises three possibilities. First, this result may be indicative of the relatively low importance of

local TF activity in regulating gene expression during the erythrocytic cycle. Second, we cannot

completely rule out the possibility that the low value of AP2 motifs arose simply because the

motifs used here are of low quality or because the way we employed the motifs (by scanning

and aggregating p-values) is suboptimal. Alternately, it is possible that AP2 DNA binding

requires both a TF-specific motif and a permissive epigenetic state at a given locus. DNA acces-

sibility and epigenetic state is known to play a role in restricting TF binding in eukaryotes gen-

erally [56], with the consequence that TF motifs are an imperfect predictor of DNA binding in

the absence of additional epigenomic data [30, 57]. In Plasmodium specifically, detailed study

of one TF found that the presence of a consensus motif was neither strictly necessary nor suffi-

cient for TF binding [58]. If local chromatin state affects TF binding even in the presence of a

TF-specific DNA motif, the predictive value of AP2 motifs could be masked by subtle interac-

tions with local DNA accessibility and chromatin state. Consistent with this possibility, previ-

ous models of mammalian gene expression based on sequence motifs captured a small amount

of gene expression variation [18, 59], while models using TF binding assayed by ChIP-Seq

were able to predict expression with far greater accuracy [60]. This is presumably because

ChIP-Seq data implicitly captures both motif presence/absence as well as epigenetic factors

affecting TF binding. Clearly, an extensive collection of TF ChIP-seq data would be hugely

valuable in exploring the extent to which TFs play an active role in gene regulation in Plasmo-
dium and would clarify if AP2 factors truly play a limited role in erythrocytic transcriptional

regulation. Initial Chip-seq results against AP2-G2 and AP2-I, transcription factors thought to

be involved in sexual development and cell invasion respectively, suggest that AP2 may inter-

act with some promotors to either act as a repressor for AP2-G2 ([61]) or activator in associa-

tion with several chromatin-associated proteins, including the Plasmodium bromodomain

protein PfBDP1 for Ap2I ([62]).

Inspection of our trained models revealed the use of multiple types of features, from local

histone modifications to high-order spatial positioning. Covalent histone modifications were

consistently found to be informative features, including the designation of gene-body H3K9Ac

and H3K4me3 [35] as statistically significant by DeepPINK FDR control in all three stages

(Fig 4A). Furthermore, nucleosome occupancy and GC content were repeatedly identified as

informative features (Fig 4A, Ring and Trophozoite feature use). Together, these observations

indicate that nucleosome occupancy, histone modification status, and GC content all contain

valuable information regarding the activity status of a locus. In addition, the gene distances to

telomere cluster and nuclear center (based on 3D models from our groups’ previously gener-

ated data, see Methods) were also consistently informative for classification of Plasmodium
gene expression, albeit to a lesser extent than local features such as histone modifications (Fig

4A). This is consistent with previous observations that Plasmodium expression correlates with
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gene spatial positioning [34], and suggests that Plasmodium may encode regulatory informa-

tion in the 3D position of a gene, in addition to its local epigenetic state. Our findings comple-

ment previous identification of co-regulatory relationships between functionally related genes

in Plasmodium [63], with our analysis identifying a repertoire of epigenetic features that

underpin such observed patterns.

Interestingly, in the DeepPINK model H2Az coverage in the gene body of trophozoite

genes was marked as significant (FDR< 0.05) and associated with low expression. In contrast,

scores assigned to this feature were close to zero for both the Logistic and XGBoost models.

H2Az signal was previously reported to be almost completely absent from gene coding

sequence [35], which makes the apparent significance of gene-body H2Az signal quite surpris-

ing. Follow-up validation would be required to see if a minimal level of H2Az truly encodes

information within coding sequence, or if the identification of the feature as significant is an

artifact of the DeepPINK procedure. However, previous studies in metazoan genomes have

also identified H2A.Z in gene bodies. While some research groups link low levels of H2A.Z

with inhibition of transcription in reconstituted nucleosomes [64, 65], others suggest that

H2A.Z nucleosomes may facilitate transcriptional elongation [66]. Our results support a

model in which a low level of H2A.Z nucleosomes acts as a simple barrier to transcriptional

elongation. However, given the general agreement between models for almost all other features

(Fig 4A) the assignment of importance to H2Az signal by DeepPINK alone suggests that the

relationship should be considered very tentative.

An inherent limitation of our analysis is that, given these data, we cannot easily separate

correlations from causative relationships. This is particularly important when modeling tran-

scription using epigenetic data, given previous evidence that some histone marks (H3K36 and

H3K79 methylation) are deposited directly as an effect of Pol II elongation, rather than preced-

ing transcriptional activation [67]. In the absence of detailed perturbational experiments, the

predictive relationships that we observe between features and expression cannot be clearly

defined as directly regulatory or not.

Despite this limitation, our identification of predictive features is helpful on two fronts.

First, epigenomic changes resulting from transcriptional activity can themselves serve in regu-

latory roles. In some species, H3K36 methylation, for instance, is deposited concurrently with

transcription but serves a regulatory role thereafter, suppressing aberrant initiation of tran-

scription within gene bodies [67]. This means that our models may identify factors important

not only for regulation preceding initial activation of a locus, but also for feedback regulatory

mechanisms. Second, the observed differences in selected features in distinct stages gives a

clear prioritization for points in the Plasmodium life cycle where experimental dissection of

epigentic function would be most informative. For instance, H4K20me3 is not predictive of

expression the ring stage, but is consistently associated with transcriptional repression in the

schizont stage (Fig 4A). Whether H4K20me3 is a cause or effect of transcription, the molecular

events linking this mark to transcription likely only take place—and are experimentally target-

able—in the schizont stage. Our analysis specifically suggests that H3K9me3, H4K20me3, and

K3K9Ac play schizont-specific regulatory roles in the erythrocytic cycle of Plasmodium (Fig

4A). This observation suggests that disruption of enzymes controlling the levels of these marks

would result in schizont-specific disregulation, either through genetic ablation or chemical

inhibition. Therapeutic targetting of specific epigenetic pathways is already an active area of

study in oncology [68] and virology [69], and future efforts applying epigenetic disruption to

antimalarial regimens will benefit from our determination that the schizont stage appears to

rely upon a larger variety of covalent histone modifications than other erythrocytic stages.

Analyzing XGBoost models suggested that the best solution to the classification task did not

take the simple form in which a unit increase in a given feature leads to a specific, constant
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change in classification probability (Figs 4B and 5). Consistent with this, our two approaches

that allow for feature interactions and non-linear feature/classification relationships, XGBoost

and DeepPINK, slightly but consistently out-performed logistic regression (Fig 2D). However,

the improvements in test AUC for the XGBoost/DeepPINK models are statistically significant

in only a subset of these comparisons, and in all cases are quite modest in absolute terms. This

is consistent with work in other eukaryotic genomes, where incorporating feature interactions

provided minimal improvement in gene expression prediction accuracy, compared to simple

linear models [15, 16]. It is possible that complex models would demonstrate a more signifi-

cant advantage in a regression task—such as predicting absolute mRNA abundance—rather

than the binary classification task that we considered. In our case, however, it appears that

models using simple additive effects, such as logistic regression, captured most of the informa-

tion found within the input features.

Our work only studied factors associated with relative control of expression within a partic-

ular erythrocytic stage. This approach has the limitation of ignoring gene expression dynamics

related to changes in absolute expression. In our per-stage labeling approach, 2937 genes

received the same label (“high”, “low”, or “intermediate”) in all three stages, 2162 were either

“high” and “intermediate” or “low” and “intermediate”, and the remaining 182 were labeled as

“high” and “low” expression at least once. Fig 1A shows that genome-wide expression values

vary widely between stages, consistent with known inter-stage variation in transcriptional

activity. From this, we know that many genes are changing in absolute expression levels

between stages, but ending up with a “constant” expression label when classified by relative

expression. Conversely, a subset of housekeeping or otherwise constantly expressed genes may

not actually vary in absolute expression themselves but end up with varying high/intermedi-

ate/low labels due to global shifts of transcription. An alternative modeling approach could

build upon our analysis of intra-stage expression regulation to incorporate inter-stage expres-

sion changes and absolute expression regulation, with the aim of building a complementary

picture of Plasmodium transcriptional control.

During model development and feature refinement, we came to the surprising discovery

that placing the promoter/gene body division using start codon position was more effective

than using transcription start sites (Fig 3B). This observation is consistent with a previous anal-

ysis in which five out of six covalent histone modifications associated with high transcription

in Plasmodium displayed peak enrichment at the start codons of Plasmodium genes, while

only one displayed the highest enrichment at transcription start sites [70]. Additionally, this is

consistent with the observation that Plasmodium lacks a strongly positioned +1 nucleosome at

the TSS, but that clearly positioned nucleosomes are observed at the start and end of coding

sequences [8, 9]. In the future, it would be interesting to see if epigenetic information related

to transcriptional control is truly encoded primarily with respect to start codons, or if technical

artifacts due to the extreme AT bias in non-coding DNA upstream of start codons leads to the

apparently limited information value of TSS-centered signals.
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