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COMFORT, PERCEIVED AIR QUALITY, AND WORK PERFORMANCE IN A 
LOW-POWER TASK-AMBIENT CONDITIONING SYSTEM 

Hui Zhang, DongEun Kim, Edward Arens, Elena Buchberger, Fred Bauman,  
and Charlie Huizenga  

Center for the Built Environment (CBE), University of California, Berkeley 
 
 
EXECUTIVE SUMMARY 

Zhang’s thermal comfort model predicts that the local comfort of feet, hands, and face predominate in 
determining a person’s overall comfort in warm and cool conditions.  We took advantage of this by 
designing a task-ambient conditioning (TAC) system that heats only the feet and hands, and cools only 
the hands and face, to provide comfort in a wide range of ambient environments.  Per workstation, the 
TAC system uses less than 42W for cooling and 60W for heating.  By reducing the amount of control 
normally needed in the overall building, it could be possible to save much larger amounts of energy in the 
building HVAC system.    

We tested the TAC system on 18 subjects in our environmental chamber, at temperatures representing a 
wide range of practical winter and summer conditions (18-30ºC, or 65-86 ºF).  A total of 90 tests were 
done.  We measured subjects’ skin and core temperatures, obtained their subjective responses about 
thermal comfort, perceived air quality, and air movement preference.  The subjects performed three 
different types of tasks to evaluate their productivity at white-collar-types of work during the testing.   

The TAC system was able to maintain positive comfort levels across the entire temperature range tested.  
TAC did not significantly affect the task performance of the occupants compared to a neutral ambient 
condition.  Whenever air motion was provided, perceived air quality was significantly improved, even if 
the air movement was re-circulated room air.  There was no dry-eye discomfort with the head ventilation 
device as designed, even at 1 m/s in the breathing zone.  The acceptable thermal sensation levels were 
from  –2.2 to 2.  In our tests, subjects found thermal environments acceptable even if they were judged 
slightly uncomfortable (-0.5).   

Simulated annual energy savings with the TAC system in Fresno, Oakland, and Minneapolis were each 
about 40% with intensive use of TAC (allowing 18-30ºC ambient interior temperature), and 30% with a 
moderate use (in 20-28ºC ambient temperature). 
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1. BACKGROUND 

Office occupant surveys show that thermal discomfort is a major cause of dissatisfaction with office 
environments (Huizenga et al. 2006), and is linked with occupants’ perceived work productivity (Goins 
2007).  Surveys have also shown that providing occupants with personal control of temperature and air 
movement enlarges the range of ambient temperatures in which they are comfortable (Brager et al. 2004, 
Bauman et al. 1998).  Other surveys suggest that increased air movement improves occupants’ perceived 
air quality (Zhang et al. 2007).  Finally, a laboratory study has demonstrated that in warm conditions, the 
comfort of the head and hands dictates a person’s overall discomfort; in cool conditions, the comfort of 
the feet and hands dictate overall discomfort (Arens et al. 2006, Zhang 2003).  These results suggest that a 
personally controlled task-ambient system (TAC) that focuses directly on these body parts may efficiently 
improve comfort in office environments. 

2. OBJECTIVES 

The study was designed to: 

• Examine the ability of a low-power task-ambient conditioning system to maintain comfort over a 
wide range of ambient room temperatures. 

• Explore productivity effects associated with this type of task-ambient conditioning. 

• Examine connections between air speed near the face and the perception of air quality. 

• Examine how the presence of personal control affects comfort. 

• Quantify this TAC system’s ability to reduce overall building energy use.  

3. METHODS 

3.1  Summary 

We designed a Task-Ambient Conditioning (TAC) system consisting of 4 subcomponents, each under the 
user’s control.  The four subcomponents address the head-hand-foot combinations identified by Zhang 
(2003, Arens et al., 2006a, b).  The system’s peak wattage for cooling is 41W, and for heating at steady 
state is 59W.  The system was tested in an environmental chamber operated across a range of 
temperatures representing a wide range of practical winter and summer conditions (18-30ºC, or 65-86 ºF).  
Electricity use of the TAC system and environmental parameters were measured.  

Human subject tests were conducted from February through May, 2007.  We measured subjects’ skin and 
core temperatures, asked their subjective responses related to thermal comfort, perceived air quality, air 
movement preference, etc.  We had the subjects perform 3 different types of tasks to evaluate work 
performance during the test.   

The following sections describe the TAC design, chamber setup, and human subject tests. 

3.2  TAC system design   

Figure 1 shows the four TAC devices.  A conductive hand warmer and a radiant foot warmer heat these 
extremities in cool (winter) conditions.  For summer conditions, a head-ventilation device cools the head 
by air motion, and a hand-cooling device operates through conduction and air motion.  During the design 
process of these TAC systems, we took IR images to examine the effectiveness of the systems.  The IR 
images are displayed in Figure 1 as well. 
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In designing these systems, we paid attention to make them simple, energy efficient, and as practical as 
possible.  

Cold conditions Warm conditions 

palm warmer and a heated 
keyboard   

 
heated mouse head ventilation device 

before applying TAC after applying TAC  

before applying 
TAC  (head and 
hands) 

after applying 
TAC (head and 
hands) 

Foot warmer 

before applying TAC  after applying TAC 
inside foot 
warmer 

hand cooling device  

Figure 1.  Four TAC systems, with example infrared images of their effects on skin temperature 

(1) Hand warmer.  The hand warmer is a curved surface made of 1/16”aluminum sheet which has very 
high heat conductance.  There are electrical heating tapes underneath the aluminum to warm the palm 
surface quickly and efficiently.  See Figure 1.  The aluminum surface temperature is typically 35ºC.  
The keyboard and mouse are also heated.  These are commercially available units, controlled by on-
off switches.   

We found during the testing that the surface temperature of the heated keyboard (32ºC) was too low 
to have a strong impact on hand warming.  The hand warming observed in these tests came mainly 

Heated keyboard
Palm warmer

Heated keyboardHeated keyboard
Palm warmer
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from the palm warmer, with its higher temperature and a more conductive surface.  This could be 
corrected in future keyboard designs.  We built a more successful prototype later that effectively 
warmed the fingers with plastic keys at 43 ºC.  

(2) Hand ventilation device.  The aluminum palm warmer is at the front edge of a tray holding the 
keyboard.  Beneath the keyboard but within the tray there are three small computer fans (2W each).  
The fans direct air through a small gap between the keyboard and the palm warmer (Figure 1).  The 
gap acts as a linear nozzle creating a sheet of air that moves horizontally over the keyboard, so that 
the hands are convectively cooled when typing, but the air does not come into the user’s face.  The air 
is drawn into the fans from the back of the keyboard tray, so the cooling is entirely by re-circulated 
room air.  The velocity at the hands is low, around 0.5 m/s.   

(3) Foot warmer.  We fabricated a well-insulated box, with a reflective foil lining inside, and with a 
curtain in front (see foot warmer in Figure 1).  There is a 123 W heating lamp installed at the top of 
the box.  With the insulation and the curtain, the feet are warmed not only by the radiation from the 
heating lamp, but also from the warm air trapped inside the box.  Air temperature in the box is 
typically 32ºC. Partial heating rates are created by cycling the lamp on-off for varying lengths of 
time. 

(4) Head cooling and ventilation device.  We positioned two 2-inch diameter air supply nozzles 0.6 m (2 
ft) away from the center of the subject’s chair on both sides of the workstation.  The nozzles are in 
pilaster-like towers in the workstation partitions, and are connected to a local fan in the underfloor 
plenum.  The HVAC system for the Controlled Environment Chamber provided a dedicated ducted 
supply of cool air (called the spot cooling line) to the local underfloor fan serving the towers.  It is 
designed in such a way that when the spot cooling supply fan is on, it delivers cool primary air to the 
tower nozzles.  The cool air is from 100% outside air that is conditioned to the desired setpoint 
temperature based on a control sensor just inside the tower supply nozzle.  When the spot cooling 
supply fan is off, the local underfloor fan connected to the towers draws air from the underfloor 
plenum.  Since the air in the plenum is connected to the Controlled Environment Chamber through 
grilles in the raised floor, the air from the nozzles in this mode is re-circulated room air. 

To avoid the possibility of discomfort from air movement drying the eyes, we installed the nozzles on 
both sides of the occupant aimed towards the occupant’s cheeks and the breathing zone in front of 
them.  In this way, the air movement does not impact the eyes directly. It is also not present at the 
back of the neck, which is more sensitive to draft than the face.  The maximum outlet velocity from 
the head ventilation device at the outlet is about 6 m/s, reducing to around 1 m/s by the time it reaches 
the vicinity of the cheek.  We believe this nozzle configuration can be practically implemented in real 
office environments, integrated into furniture and conventional arrangements of office partitions. 

(5) TAC control units.  The four TAC systems were controlled at the desktop (Figure 2).  There are 
sliders on the left panel that adjust the surface temperature of the aluminum palm warmer, the air 
movement level through the nozzles, and the fans providing cooling air from under the keyboard.  For 
the foot warmer, the control unit on the right adjusts the on/off time of the heating lamp.  The 
keyboard and mouse were turned on with a switch on each unit.  
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(6) Monitoring the use of the TAC systems.  The levels of heating or air motion settings on the TAC 
controllers were recorded by a wireless sensing device in the control unit, and transmitted every 5 
seconds to the monitoring computer.  

3.3  Chamber set-up  

We set up the controlled Environment Chamber at UC Berkeley with two workstations so that two 
subjects could be tested at the same time.  The subjects wore standardized clothing provided to them, with 
fixed summer and winter levels.  Figure 3 shows the layout of the workstations.   

 

Two subjects with winter clothing (.66 clo) 

 

Subject with summer clothing (.5 clo) 

Figure 3.  Experimental setup and clothing 

3.4  Test conditions  

We tested 5 chamber air temperatures, two cooler ones representing ‘winter’ conditions (18 ºC and 20ºC), 
two ‘summer’ conditions (28 ºC and 30ºC), and a neutral condition for each season (Table 1).  We 
provided the subjects with winter and summer clothing appropriate for the tests.  Winter clothing 
consisted of a short-sleeve T-shirt, long-sleeve cotton shirt, cotton long pants, sneakers, underwear, and a 
pair of thick socks.  Summer clothing includes a short-sleeve cotton shirt, long cotton pants, underwear, 
light shoes, and a pair of thin socks.  In both summer and winter tests, underwear for women consisted of 
briefs and for men, shorts.   

Since we provided different clothing for winter and summer conditions, there are two neutral condition 
temperatures, 24.5ºC and 25ºC, respectively.   
 

 

Figure 2.  Control units of the 4 TAC systems 
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Table 1.  Chamber air temperatures and effective temperatures 

 
 
Each test included three control strategies for operating the TAC system: ‘No TAC’, ‘Fixed TAC’, ‘User 
Control’.  ‘No TAC’ means none of the TAC features are enabled.  ‘Fixed TAC’ means that the TAC 
settings are fixed at levels prescribed by the experimental design.  Under ‘User Control’, the subjects 
were allowed to adjust the levels of heating and cooling provided by the TAC system.  
 
In ‘winter’ conditions (18 and 20ºC) tests, the heating TAC system was provided: foot warmer, palm 
warmer, heated keyboard, and heated mouse.  In the ‘Fixed TAC’ mode, the aluminum surface of the 
palm warmer was controlled at 35ºC, and the heated keyboard and mouse were each fixed at 32 ºC.  The 
foot warmer was controlled at the on/off ratio of 4/12 (4 seconds on and 12 seconds off), producing inside 
the warmer an average radiant flux of 45W, and an internal air temperature of 32 ºC. 
 
In the 28ºC ‘summer’ condition test, air motion was provided through the head and the hand ventilation 
devices, both using re-circulated room air.  The 30ºC tests are the same as the 28ºC tests, except that the 
head cooling airflow in this case is outside air, supplied at 24ºC (6ºC cooler than the room air 
temperature).  Due to mixing, by the time the air reaches the breathing zone of an occupant, the air 
temperature is around 28ºC.  Under neutral conditions, there is no ‘Fixed TAC’ condition, because at 
neutral we assumed that the occupants would not need any local conditioning.  
 
Eighteen subjects (9 male and 9 female) participated in each of the 5 test conditions listed in Table 1.  In 
total, we conducted 90 three-hour tests. 

 
3.5  Schedule for human subject tests 

Each test took three hours, divided into 3 one-hour sessions, corresponding to three control strategies: No-
TAC, Fixed-TAC, and User-Controlled TAC.  The sequence of the three sessions was alternated to keep a 
balanced order.  For the neutral condition, in which there was no Fixed-TAC session, the three-hour test 
was divided into either of the following two sequences: No-TAC, User-Control, No-TAC, or User-
Control, No-TAC, User-Control.   
 
The subjects arrived 15 minutes before the test started to change into the test clothing, tape on the skin 
temperature sensors, and swallow a transducer pill which measures their body core temperatures 
(described in detail later). 

Figure 4 shows the plan of each test.  The vertical arrows indicate the times that subjective surveys were 
administered.  These were done at 30 minutes intervals, with a survey at the beginning of each test 
session, one in the middle, and one at the end.  In the short interval between sessions, the researchers 
adjusted the test conditions (e.g., put the TAC into its fixed value settings), provided a light snack for the 
subjects and let the subjects stretch and move about (described in detail later). 

 

 Room air temperature Effective temperature (ET*) 
hot 30ºC (86ºF) 29ºC ±0.1 

warm 28ºC (82.4ºF) 27.5ºC ±0.1 
neutral 25 or 24.5 ºC (77ºF or 76ºF) 24.2ºC ±0.1 

cool 20 (68ºF) 19.9ºC ±0.1 
cold 18 ºC (64.4ºF) 18ºC ±0.1 
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Alternating sequence of one-hour sessions 
 

 
 
 
(Arrows indicate times when surveys are administered.  Each survey addresses 
 thermal comfort, perceived air quality, air movement, and dry-eye discomfort) 
 
   
 
 
        No TAC (60 min)    Fixed TAC (60 minutes)     User Control (60 minutes)   
 
    Occupant no control       Occupant no control            Occupant control  
 
 
     Task performances 
 
 
 
 
Figure 4.  The schedule of sessions and surveys within a 3-hour test 
 

 

The schedule for each hour is described in Figure 5.  The surveys and subjects’ tasks (sudoku, math, and 
typing; described later) were all pre-scheduled into the computers that the subjects worked on, so they 
automatically appeared on their screens according to the timeline shown here. 

 

Figure 5.  Schedule of tasks performed in each 1-hour test session  

Figure 5: schedule for each hourly test 

15 min 
setup 
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3.6  Subjective surveys 

The survey questionnaires appeared automatically on the subject’s computer screen at the times shown in 
Figure 4.  The subjects’ votes were stored in the computer.  In each test a subject answered the following 
questions on 17 pages.  The order of the 17 pages did not alternate.  A subject typically finished the 
questions in 2 minutes. 

Pages 1-5.  Thermal sensation and preferred thermal sensation for 4 local body parts (head, left hand, 
right hand, feet), and the whole-body.   

We asked sensation for left hand and right hand separately because the two hands may work on keyboard 
and mouse separately.  Since the two feet are not exposed to different environments, we did not ask 
questions about them individually.    

An example of the sensation survey is shown in Figure 6.  Subjects registered their votes by clicking on 
the place that best described their thermal sensations.  The scale is continuous and they could click on any 
place.  They could change their votes by dragging the arrow up and down, or by clicking on a different 
place.  The numerical values of the sensation scale are: -4 (very cold), -3 (cold), -2 (cool), -1 (slightly 
cool), neutral (0), 1 (slightly warm), 2 (warm), 3 (hot), 4 (very hot). 

We used paired thermal sensation and preferred sensation surveys because this format not only indicates 
thermal preference (want to be warmer, no change, cooler) by subtracting the two votes, but it also 
indicates the thermal sensation that a subject prefers, the magnitude of the preference, and whether neutral 
is the preferred sensation.  This scale pairing was first proposed by Griffiths (1990), and was adopted by 
Humphreys (Humphreys et al. 2006).  

 

 

Figure 6.  Thermal sensation and preferred thermal sensation questionnaire  
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Pages 6-8.  Thermal sensation for leg, arm, and trunk 

We asked only thermal sensation for these three body parts, not the preferred thermal sensation, because 
TAC does not influence these body parts directly.  Therefore, only the left side of the Figure 6 was used 
on these pages. 

Pages 9-13.  .  Comfort for the 4 local body parts and the whole-body 

We used the same comfort scale (Figure 7) as in our previous human subject studies (Zhang 2003, Arens 
et al. 2006a & b).  Again, it is a continuous scale, from just comfortable (+0) to very comfortable (4), just 
uncomfortable (-0) to very uncomfortable (-4).  There is a gap between just comfortable and just 
uncomfortable to ask the subjects to make a decision whether they are on the comfortable side, or on the 
uncomfortable side.  We asked about comfort for the same 4 local body parts, and for the whole-body. 

 

Figure 7.  Thermal comfort questionnaire 

Page 14.  Perceived air quality 

The appearance of the perceived air quality questionnaire is very similar to the comfort scale.  The 
continuous scale runs from just acceptable (+0) to very good (4), just unacceptable (-0) to very bad (-4).  
Again there is a gap between just acceptable and just unacceptable to ask the subjects to make a clear 
distinction between the acceptable and unacceptable perceived air quality (Figure 8). 

 

Figure 8.  Perceived air quality questionnaire 
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Page 15.  Acceptance of the air movement and preference 

We provided two questionnaires regarding air movement, one on its acceptability, and one on preference 
for more, less, or the same (Figure 9).  The acceptance scale runs from just acceptable (+0) to clearly 
acceptable (+4), just unacceptable (-0) to clearly unacceptable (-4).  The air movement scale has three 
choices, less air movement (-1), no change (0), more air movement (1).  Both questionnaires have been 
commonly used when evaluating the effects of air movement on comfort.   

 

Figure 9.  Air movement acceptance and preference 

 

Page 16.  Acceptance of the thermal environment 

The subjects were asked to give votes regarding the acceptance of the thermal environments (Figure 10).  
The numerical values of the scale are the same as the air movement acceptable scale shown in Figure 9. 

 

Figure 10.  Thermal environment acceptance 
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Page 17.  Dry-eye discomfort 

Air movement could cause dry-eye discomfort (Wyon 1987, Wolkoff et al. 2005, Pejtersen et al. 2005).  
We designed the head ventilation system so that the air does not blow directly onto the face and eyes.  
The purpose of this questionnaire is to examine whether dry-eye discomfort occurs (Figure 11).  The 
numerical values are the same as the other comfort and acceptable scales.   

 

Figure 11.  Dry-eye discomfort questionnaire 

 

3.7  Productivity evaluation 

Common approaches to evaluating productivity in laboratory studies include math exercises (normally 
addition), typing, proof reading, and creative thinking.  It often happens in laboratory studies that the 
differences in the task performances between different environmental conditions are not significant, while 
in field studies, significant differences are seen (Niemela, R. et al. 2002, Tham et al. 2004, Tanabe et al. 
2005).  The lack of response in laboratory studies could mean that the environment did not impact 
productivity.  It could also mean that the methods used in the laboratory studies did not properly represent 
normal office work, or that the motivation of subjects over the short duration of laboratory tests 
overwhelms environmental influences that in normal life would have an impact on office work.  We 
looked for ways to evaluate task performances (productivity), over a reasonably long time period, 
involving both mental and dexterity work, and providing resolution in the level of response.   
 
We spent some time exploring the possibility of using Graduate Record Examination (GRE) or Student 
Aptitude Testing (SAT) practice tests as a way to evaluate the performance.  The advantages are that such 
tests involve both thinking and typing, cover a reasonable length of time, and are real work that is being 
undertaken anyway by university student subjects, for whom the pacing of work and motivation would be 
realistic.  However, we found that during the one-hour test sessions planned for our experiment, including 
the time needed for the subjective surveys, we could only arrange to do one session of the GRE test.  One 
session normally only covers 18 – 25 questions, so the resolution was too low (e.g. if one question is 
wrong, it has a large impact on the score).  The GRE and SAT tests may be a good approach if the test 
session is longer (for example, people can do two SAT sessions).  It was not a feasible choice for this test.   
 
We chose the following three tasks to evaluate work performance, each of which was automated on the 
computer.  The schedule for performing the three tasks in each hour session is shown above in Figure 5. 
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Logical thinking: Sudoku, 15 min.  Medium difficulty examples were chosen so that subjects could 
complete more than one in a session, and not become stuck on any test. 
 

 
Figure 12. A screen shot of an automated Sudoku of medium difficulty 
 
 
Mental performance: Math problems, 8 min.  We chose fraction multiplication for the math problems, 
because the exercises were not tedious but also not too difficult; always solvable but at varying rates of 
speed depending on how many mental shortcuts are employed. 

 

Figure 13. A screen shot of math test sheet 

 
 
Dexterity: Typing, 10 min. 
 
We used commercially available typing training software that automatically scored the speed and 
accuracy of the typing.  
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Figure 14. A screen shot of typing during a test 

At the end of each one-hour test session, we asked the subjects to stretch their bodies during a five-minute 
break.  The researchers also initiated short conversations with them.  We also provided a light snack 
before the start of the next one-hour session.  The break was to prevent subjects becoming tired or sleepy, 
or low in blood sugar, since we could not standardize the meals they had before they arrived for the tests.  
Figure 15 shows a subject looking at posters in the chamber during this short break.  The subjects could 
easily move around because we used wireless sensors measuring skin and core temperatures.  

 

Figure 15.  Subject during a break between sessions 

3.8  Subject training sessions carried out prior to testing  

All subjects attended training prior to the experimental tests.  The training sessions served two purposes.  
First, the subjects needed to know about the experimental procedures, the nature of the survey 
questionnaires that they would be answering, and the tasks that they would perform.  It was important that 
they be fully familiar with the experimental activities prior to the first comparative test.  The second 
purpose was to have the subjects practice the sudoku and math problems, so that they were well up on 
their individual learning curves about these skills before the tests began. 

We provided two types of training.  The first was a 2.5 hour training session during which we first 
described the test procedure and survey questionnaires via a Powerpoint presentation.  Then we asked the 
subjects to practice three 15-minute sudoku exercises, and three 8-minutes math solution exercises.  
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Figure 16 shows the researchers explaining the test procedure and the three tasks.  After they practiced the 
sudoku and math, they went to the environmental chamber to visit the work stations and to learn how to 
use the control units of the four TAC systems. 

  

Figure 16.  Subject training sessions 

Following this training session, we had the subjects come in twice over two weeks to do example math, 
sudoku, and typing tests, answer survey questions, and use the TAC systems in the chamber, working just 
as they would be doing in the real test.  After the two weeks, the subjects were thoroughly familiar with 
the test procedures and the TAC control units, and had reached a fairly steady state in their skills with the 
productivity tests.   

3.9 Physiological measurements 

We measured skin temperature at 10 locations (Figure 17).  Two of the locations represent places on bare 
skin that are directly heated or cooled by the TAC systems, and therefore undergo fast transients in skin 
temperature (finger and cheek).  Eight other locations are under clothing and not directly under the 
influence of the TAC.  Seven of these are used for the calculation of mean skin temperature, and one was 
added to measure upper arm temperature.  For the bare-skin locations we used fine thermocouples, each 
connected to an Onset Corp Hobo thermocouple data logger (represented by stars in the figure).  The 
eight other locations used more massive thermistor sensors, connected to two 4-channel Hobo 
temperature loggers (grouped as blue rectangles and pink ovals).  Altogether each subject had 4 hobo 
loggers, located in a small fanny pack worn at the waist.  The thermistors were recorded in 10-second 
intervals, and the thermocouples in 5-second intervals. 

The core temperature was measured by a wireless transducer (a pill, size of a vitamin capsule) which each 
subject swallowed before the start of a test.  A receiver/logger was put into the pocket of the shirts that 
subjects wore.  The core temperature data was recorded in 20-second intervals.   
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Figure 17.  Skin and core temperature sensors and skin temperature 
measurement locations 

3.10  Measurement of environmental conditions  

At each workstation, 3 Hobo thermistors measured the air temperature at the three standard heights (0.1, 
0.6, 1.1m) specified for seated subjects in the ASHRAE and ISO environmental standards.  Globe 
temperature and humidity were measured at 1.1 m.  Another Hobo thermistor measured the air 
temperature at the outlet of the nozzle (Figure 18), and a thermocouple to measure the surface 
temperature of the palm warmer.  Because the foot warmer was controlled by cycling the heat lamp 
inside, an illumination-sensing Hobo in the warmer monitored the on/off times of the lamp. 

 

 

 

Figure 18.  Thermistors and thermocouple to measure 
workspace environmental conditions and the TAC 
system temperatures 

Figure 19, breathing-zone velocity 
measurement near the heated thermal 
manikin 

 

The air velocity field in the workstation was characterized before the actual tests, because velocity 
measurement during testing would have been too intrusive.  This was done with a manikin (Figure 19), 
with the head-cooling air jets set at various velocities.  The manikin surface was heated to generate a 
realistic buoyant plume around the person.  During the subsequent human subject tests, the experimenters 
did spot checks of velocity around the head with hand instrumentation, to assure that actual airflows 
matched the values predicted from the airflow control settings. 
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4 RESULTS AND ANALYSIS 

4.1 Whole-body thermal sensation 

Figure 20 presents the 18 subjects’ average whole-body (‘overall’) thermal sensation, for each of the 5 
environmental conditions and the three control strategies.  From the figure we see that the TAC systems 
bring thermal sensation almost to the ‘neutral’ level for the 20ºC and 28ºC air temperatures, and that they 
bring the sensation at 18ºC and 30ºC to within ‘slightly cool’ (-1) and ‘slight warm’ (1).   No obvious 
difference is seen between the Fixed-TAC and the User-Controlled strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20.  Whole-body thermal sensation 

 

Figure 21 plots the same sensation data against room air temperature, for the three control strategies.  The 
slope of the No-TAC data is steeper than the slopes of Fixed-TAC and User-Controlled, indicating that 
the TAC devices compensate somewhat for both the high and low air temperatures.  We see no difference 
in the slopes for Fixed-TAC and User-Controlled TAC, indicating that in these tests, with the Fixed-TAC 
settings we chose, we didn’t detect an advantage coming from occupants being able to control their TAC 
devices.   

The sensation differences between No-TAC and with TAC (Fixed-TAC and User-Controlled) are 
significant for all conditions.  They are much larger in warm environments with ventilation devices than 
in cool environments with local heating devices; and the significant level is also higher (Figure 21).  This 
indicates that ventilation-cooling devices are more effective than heating devices at improving thermal 
sensation. 
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Figure 21.  Whole-body thermal sensation with air temperatures for three control strategies 

 

4.2 Whole-body thermal comfort  

Comfort was improved by TAC systems in all conditions except one (20ºC with Fixed-TAC, Figure 22). 
The TAC systems made people comfortable (comfort scale equal or above 1) over a large air temperature 
range, from 18ºC to 30ºC.   

The comfort level was slightly higher with User-Control than with Fixed-TAC, significant at two 
conditions (28 and 20ºC). When the air temperature is as low as 18ºC and as high as 30ºC, the User-
Controlled TAC does not provide obvious advantage over Fixed-TAC because people’s requirements for 
warmth and coolth are clear and the Fixed-TAC can be easily set to fulfill the requirements.  It is in the 
less extreme conditions (in our test conditions, 20 and 28ºC air temperatures), that the User-Controlled 
shows significant improvement over Fixed-TAC.  People’s demand for warmth and coolth is more 
variable and sensitive in these less extreme conditions.   

We found that at 20ºC room air temperature, the palm warmer was often regarded by subjects as 
unnecessary, and that it could create discomfort.  The Fixed-TAC surface temperature for the palm 
warmer was supposed to be set at 35ºC, but we discovered that this value was sometimes exceeded.  The 
higher palm temperatures were less welcome to subjects in the 20ºC environment than in the cooler 18ºC 
environment.  Local palm discomfort affects the whole-body comfort at 20ºC. 
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Figure 22.  Whole-body thermal comfort 

In the neutral condition, comfort is significantly improved (p<0.04) with User-Controlled TAC (overall 
comfort 2.5) compared with No-TAC (overall comfort 2.0), even there should be no thermal discomfort 
with the No-TAC neutral condition.  However, because we didn’t provide a perfect neutral condition for 
the No-TAC neutral condition (overall sensation is 0.35 instead of zero, Figure 21), we could not attribute 
this improvement entirely to the ability to control. 

Figure 23 plots whole-body comfort data against air temperature for the three control strategies.  With 
No-TAC (blue diamonds), we see that people’s comfort decreases more rapidly on the warm side than on 
the cool side, indicating that people are more sensitive to warm discomfort than to cool discomfort.  Both 
the Fixed- and User-Controlled TAC strongly improve subjects’ comfort on the warm side (p<0.04 at 
neutral, p<0.01 at 28 and 30ºC), and less strongly on the cool side (p<0.04 at 20 ºC and not significant for 
18ºC).   
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Figure 23.  Whole-body thermal comfort with air temperatures for three control strategies 

4.3 Acceptability of the thermal environment 

(1) Comfort and acceptability 

The scatter plot in Figure 24 shows the subjects’ thermal comfort votes to be linearly related to their 
thermal acceptability votes.  After binning the data (to get average values for each 0.5 comfort interval), 
the linear relationship is clearer (Figure 25).  The regression line shows people felt ‘just acceptable’ when 
their comfort averaged –0.5; ie., people found the environment acceptable even when they felt slightly 
uncomfortable (-0 means ‘just uncomfortable’).  

Examining the Figure 25 data for the three control strategies (blue diamond for No-TAC, red square for 
Fixed-TAC, and green triangle for User-Controlled-TAC), we see that the data for no-TAC has a steeper 
trend than the other two.  We therefore did separate linear regressions for the three strategies (Figure 26), 
and indeed, the three linear regressions show different slopes and intercepts (comfort thresholds for ‘just 
acceptable’).  Figure 27 – 29 show regressions for comfort and acceptance using binned data for each 
control strategy.  From these equations, we calculate the comfort thresholds for No-TAC at –0.2, Fixed-
TAC at –0.7, and User-Controlled-TAC at –0.84.  These different thresholds means that with either TAC 
system, people accept thermal environments at lower comfort levels than under No-TAC, even when 
people don’t have control over the TAC systems.  This is encouraging for the design of TAC systems.  In 
addition, because the comfort votes with TAC systems in general are higher than with No-TAC, therefore, 
with the TAC, these lower thresholds are less frequently reached.    
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Figure 24.  Thermal comfort and thermal acceptance 
(just acceptable at comfort –0.6) 

 

Figure 25.  Thermal comfort and thermal 
acceptance with binned data (just acceptable at 
comfort –0.5) 

Figure 26.  Thermal comfort and thermal acceptance 
with binned data for all three control strategies  

Figure 27.  Thermal comfort and thermal 
acceptance with binned data for No-TAC (just 
acceptable at comfort –0.2) 

T h e rm a l C o m f o rt a n d  A c c e p ta b ility

- 4

- 3

- 2

- 1

0

1

2

3

4

- 4 - 3 - 2 - 1 0 1 2 3 4

y =0 .81x + 0 .4 8
R ©÷=0.59

Just acceptable
Just unacceptable

Clearly acceptable

Clearly unacceptable

Thermal comfort

T h e rm a l C o m f o rt a n d  A c c e p ta b ility

- 4

- 3

- 2

- 1

0

1

2

3

4

- 4 - 3 - 2 - 1 0 1 2 3 4

y =0 .81x + 0 .4 8
R ©÷=0.59

Just acceptable
Just unacceptable

Clearly acceptable

Clearly unacceptable

Thermal comfort

p y
y = 0.8x +  0.4

R2 = 0.83

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

thermal comfort

th
er

m
al

 a
cc

ep
ta

bi
lit

y 
  

Clearly acceptable

Clearly unacceptable

Just acceptable
Just unacceptable

p y
y = 0.8x +  0.4

R2 = 0.83

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

thermal comfort

th
er

m
al

 a
cc

ep
ta

bi
lit

y 
  

Clearly acceptable

Clearly unacceptable

Just acceptable
Just unacceptable

y

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
therma l comfort

th
er

m
al

 a
cc

ep
ta

bi
li

ty
   

.

Clearly acceptable

Clearly unacceptable

Just acceptable
Just unacceptable

4 y

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
therma l comfort

th
er

m
al

 a
cc

ep
ta

bi
li

ty
   

.

Clearly acceptable

Clearly unacceptable

Just acceptable
Just unacceptable

4
y = 0.83x + 0.16

R2 = 0.95

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

therm al  comfort

th
er

m
al

 a
cc

ep
ta

b
ili

ty
   

.
Clearly acceptable

Clearly unacceptable

Just acceptable
Just unacceptable

y = 0.83x + 0.16
R2 = 0.95

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

therm al  comfort

th
er

m
al

 a
cc

ep
ta

b
ili

ty
   

.
Clearly acceptable

Clearly unacceptable

Just acceptable
Just unacceptable



PAGE  21 COMFORT, PAQ, AND WORK PERFORMANCE IN A LOW-POWER TAC SYSTEM APRIL 2008 

Figure 28.  Thermal comfort and thermal acceptance 
with binned data for Fixed-TAC (just acceptable at 
comfort –0.7) 

Figure 29.  Thermal comfort and thermal 
acceptance with binned data for User-Controlled 
(just acceptable at comfort –0.84) 

 

For No-TAC, 36% of all acceptance votes were above zero.  For Fixed-TAC and User-Controlled, the 
percentages above zero were 49% and 64% respectively.  This also indicates higher acceptance with TAC 
systems. 

(2) Thermal sensation and comfort 

Figure 30 shows the quadratic relationship expected between thermal sensation and comfort.  The highest 
comfort (top of the quadratic curve) happens when sensation is near neutral (sensation = -0.12).  Thermal 
comfort is above zero (‘just comfortable’ and above) within the sensation range of -2 ~ 1.8.   

43% of No-TAC votes, 49% of Fixed-TAC votes, and 57% of User-Controlled votes were positioned 
above ‘just comfortable’.  As with acceptance, a larger percentage of the population is therefore 
comfortable with TAC systems than with No-TAC.   
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Figure 30.  Thermal sensation and thermal comfort 

 

(3) Sensation and acceptability 

In Figure 31, the most acceptable sensation is also near neutral (sensation = -0.11) in the quadratic 
relationship.  The range of acceptable sensations ranges from -2.2 ~ 2, 0.2 scale units wider on both sides 
than the range for comfortable sensations.  Again, a larger percentage of the population finds the 
environment acceptable with the TAC systems than without.  40% of No-TAC votes, 47% votes of Fixed-
TAC votes, and 67% of User-Controlled votes coincided with acceptance above zero.  
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Figure 31.  Thermal sensation and thermal acceptance 

 

From the above figures relating thermal acceptance and comfort with thermal sensation, one can see that 
the thermal sensations –2 and +2 are the thresholds within which most people are comfortable and accept 
the environment, and that people accept thermal environments when comfort is slightly uncomfortable (-
0.5) and above. 

4.4  Task performance 

The levels at which individual subjects performed the 3 different types of tasks are very different.  Also, 
the differences between the subjects are larger than the intrapersonal productivity effects caused by the 
environment.   

We normalized each subject’s task scores using the score of the same person under a reference condition, 
the neutral condition without TAC.  The reference score was set as 100% and the other scores were 
converted into either increases or decreases from the reference.  The results for the three task 
performances are presented in Figure 32. 
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In general, having TAC produces better performance for sudoku and math (the pink and light blue lines 
are above the dark blue line in Figure 32).  However, the differences are significant at level p<0.05 only 
under two conditions, marked by the two dashed boxes in the figure.  For Sudoku (logical thinking), 
performance was better in warm conditions and for the Math (mental performance), performance was 
better in cool conditions. We were expecting to see that mental performance (sudoku and math) would be 
better under cool environments.  For typing, we might have expected to see improved performance as the 
air temperature gets warmer (Alan Hedge (2006) found this and attributed it to improved dexterity).  
However, in this test, the differences in typing rate among all the conditions are insignificant.  Typing 
does not appear to be a sensitive method for evaluating performance in this range of environmental 
conditions.  Possibly mental effects act to counteract dexterity effects, but we cannot test this with our 
data. 

It is interesting to see that for sudoku and math tasks, the performance with TAC systems in many cases 
is better than in the neutral condition.  That could be an encouraging sign for the design of non-uniform 
environments.  

 

   

Figure 32.  Task performance normalized to the neutral condition 

 

As we saw before with the subjective comfort votes, math performance was unexpectedly low in the 20ºC 
air temperature condition with TAC systems.  The same explanation may hold--that the room wasn’t 
sufficiently cold for the high surface temperature of the palm warmer to feel comfortable.  From their 
comments, we know that it bothered some subjects and may have lowered their performance.   

It is possible that the task performance under User-Control may be lowered because it takes time for 
subjects to make adjustments to the TAC systems.  Over the limited time period of the tasks, this lost time 
might act to lower the performance scores.  We are not able to quantify this potential effect. 

4.5 Perceived air quality 

The lower red curve in Figure 33 presents the perceived air quality (PAQ) under 30ºC air temperature, 
under fixed velocities without User Control.  It shows that PAQ is significantly better with 1 m/s air 
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movement at the breathing zone than with still air (increased by 2.4 scale units, from –0.8 to 1.6; 
p<0.001).1   

Since in the 30ºC tests the nozzle air supply was cooled (24ºC right at the outlet of the nozzle, about 28ºC 
when it reaches the breathing zone), and coming from the outdoors, one might attribute the improved 
PAQ to three causes: air movement, lower air temperature, and/or the freshness of the supply air.   

The middle curve in Figure 33 tends to reject both lower supply air temperature and fresher supply air as 
causes of the improvement.  This curve represents the 28ºC room condition (also fixed velocities without 
User Control), in which the nozzle supply air was entirely re-circulated room air drawn from near the 
floor.  Since the air temperature and freshness were identical to those of the surrounding room air, the 1.6 
scale unit improvement in PAQ at 28ºC (p<0.001) must be attributed to air movement.  This is further 
supported by the top curve in the figure representing neutral temperature, with the airspeed under User 
Control.  In this, the PAQ under neutral conditions was increased (0.6 scale, P<0.004) when subjects 
increased the air speed.  Again, the moving air was re-circulated room air.  No cooled or fresh supply air 
was involved. 

   

Figure 33.  Perceived air quality versus air speed measured in the breathing zone 

One can see that the large difference in PAQ between the air temperatures 28ºC and 30ºC (middle and 
bottom curves) under still air (p<0.05), dropped to a small difference when the air speed was 1 m/s.  Air 

                                                      

1 (The small ‘n’ number for the air speed 0.5 m/s results from a small number of tests we did at that condition early 
in the project when the overall test duration was four hours.  We found that four hours was too long for the subjects, 
and that their performance was lowered toward the end of each test. In order to drop this last hour, we chose to drop 
the 0.5 m/s condition 
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movement caused part of this improvement.  Presumably the cooler supply air provided in the 30ºC 
ambient tests (which reached the breathing zone at 28ºC) also improved PAQ .   

Figure 34 shows the increases in PAQ for a range of airspeeds that were chosen by the user (User 
Control), compared against still air (No-TAC).  Each line represents the results measured for 18 subjects.  
The velocities were chosen by the subjects.  It shows that when the air temperature was high (28 and 30ºC 
in the figure), the higher the airspeed, the better the PAQ.  Under neutral conditions, once the air velocity 
reached about 0.3 m/s, further airspeed did not enhance the PAQ.  

 

Figure 34.  Increases in perceived air quality caused by air speed, at three temperatures (user-
controlled TAC) 

 

Figure 35 allows us to further examine how much air movement improved PAQ.  Under Fixed-TAC, a 1 
m/s air speed (shown in Figure 33) almost brought the PAQ up to the levels found in cool and neutral 
conditions.  Figure 35 also shows that the significant improvement in PAQ occurred mostly when adding 
air motion for cooling (right part of the figure shown by a gray bar), not when adding local heating (left 
part of the figure, shown by a gray bar), although comfort was significantly improved for both cooling 
and heating (Figure 22 and 23).  Both these observations indicate that it is mainly the air movement, not 
increased comfort, that enhanced the PAQ. 
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Figure 35.  Temperature and air speed effects on perceived air quality 

 

The coincident comfort differences are also given above in Figure 33.  Like the PAQ, they are larger 
under still air and smaller at 1 m/s.  We might therefore examine the relationship between PAQ and 
comfort. 

Figure 36 presents the relationship between PAQ and thermal comfort.  The data are the averaged results 
of tests with no air movement (No-TAC), under 5 test conditions (18, 20, neutral, 28, 30ºC).  The figure 
shows that PAQ was almost constant across different levels of comfort when the air temperature was 
from cool to neutral (18ºC to neutral), but linearly decreased with decreasing comfort as the air 
temperature rose from neutral to warm (neutral to 30ºC).   

User control (which contributed the TAC’s heating and cooling along with a sense of personal control to 
the No-TAC situation) significantly increased comfort and PAQ for almost all the equivalent points.  The 
Fixed-TAC (contributing heating and cooling but not the sense of control) increased comfort and PAQ 
significantly over No-TAC for the 28 and 30ºC temperatures, but not significantly for the 18 and 20ºC 
temperatures. 
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Figure 36.  Comfort and perceived air quality under still air 

 

In conclusion:  air movement by itself affects PAQ, and thermal comfort may affect (or be affected by) 
PAQ under warm still-air conditions. 

4.6 Dry-eye discomfort and air movement preference 

We designed the head ventilation nozzles to supply air into the occupant’s breathing zone from the side, 
for two reasons:  to avoid dry-eye discomfort, and to avoid draft discomfort.  The survey results shown in 
Figure 37 demonstrate that the air movement at the 28 and 30ºC did not cause any dry-eye discomfort.  In 
the left figure, the lines including the head ventilation device are similar to the No-TAC line without the 
device.  In general, the eye-dryness comfort was lower when the air temperature was warmer.   

With the air speed 1 m/s in the breathing zone at warm temperatures (middle figure, again the two TAC 
lines), the air movement was judged acceptable.  Still air was not acceptable in warm environments (No-
TAC line). 

The air movement preference shown in the right figure indicates that with 1m/s at the breathing zone 
under warm environments (TAC lines), people preferred ‘no change’ (didn’t want the air movement 
slower).  In still air (No-TAC line), people preferred more air movement, in both the warm environments 
and the neutral one. 
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Figure 37.  Dry-eye discomfort, air movement acceptance and preference 

 

4.7 Body temperatures 

Table 2 shows the cheek, finger, and foot skin temperatures, and the core temperature measured under all 
the test conditions.  The data are the average of the last 5 minutes of each one-hour session, under each air 
temperature and control strategy (No-TAC, Fixed-TAC, User-Controlled-TAC).  We assume the body 
had reached a stable temperature condition after one-hour exposure to each air temperature.   

The core temperature was lowered in cool environments (18, 20ºC) when heating had been applied to 
hands and feet by the heated TAC devices.  The core temperature was increased in warm environments 
(28, 30ºC) when ventilation had been applied to cool head and hands.  Following the core temperatures 
under No-TAC for each air temperature, we also see that the core temperature decreased as the air 
temperature increased from 18 to 30ºC.  These are expected results, showing that under our test 
conditions (which are not extreme conditions), human body thermoregulation caused the core temperature 
to go in the opposite direction as the environmental temperature. 

Table 2.  Skin and core temperatures under five environmental conditions and three TAC control 
strategies 

      

 18ºC No TAC Fixed TAC
User-

Controlled 
TAC 

∆x=  
(FixedTAC-

NoTAC ) 

∆x=  
(UserContrlTAC-

NoTAC) 

Cheek(n=18) 30.49 30.46 30.41 -0.03 -0.09 

Finger(n=16) 24.57 25.81 26.41 1.24 1.83 

Foot(n=18) 32.28 33.53 33.32 1.25 1.03 

CORE(n=11) 37.24 37.21 37.18 -0.03 -0.06 
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 20ºC No TAC Fixed TAC
User-

Controlled 
TAC 

∆x=  
(FixedTAC-

NoTAC ) 

∆x=  
(UserContrlTAC-

NoTAC) 

Cheek(n=18) 31.12 31.10 31.26 -0.01 0.14 

Finger(n=16) 27.18 28.81 28.91 1.64 1.74 

Foot(n=18) 32.74 33.41 33.15 0.67 0.42 

CORE(n=7) 37.16 37.04 37.03 -0.11 -0.13 

      

 Neutral No TAC   
User-

Controlled 
TAC 

∆x=  
(FixedTAC-

NoTAC ) 

∆x=  
(UserContrlTAC-

NoTAC) 

Cheek(n=18) 33.50  32.52  -0.98 

Finger(n=16) 32.04  30.60  -1.43 

Foot(n=18) 33.25  33.26  0.02 

CORE(n=14) 37.02  37.06  0.05 

 

      

 28ºC No TAC Fixed TAC
User-

Controlled 
TAC 

∆x=  
(FixedTAC-

NoTAC ) 

∆x=  
(UserContrlTAC-

NoTAC) 

Cheek(n=18) 34.35 32.96 33.29 -1.40 -1.06 

Finger(n=16) 33.82 32.64 32.60 -1.17 -1.21 

Foot(n=18) 34.42 34.10 34.04 -0.32 -0.38 

CORE(n=18) 37.07 37.07 37.11 -0.01 0.03 
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 30ºC No TAC Fixed TAC
User-

Controlled 
TAC 

∆x=  
(FixedTAC-

NoTAC ) 

∆x=  
(UserContrlTAC-

NoTAC) 

Cheek(n=18) 35.56 33.13 33.48 -2.44 -2.08 

Finger(n=18) 34.97 33.54 33.91 -1.43 -1.06 

Foot(n=18) 35.29 34.84 34.75 -0.45 -0.54 

CORE(n=16) 37.03 37.13 37.11 0.14 0.08 

 

Figure 38 shows these core and skin temperatures from the last 5 minutes of each test, together with the 
coincident local- and whole-body thermal comfort. 
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Figure 38.  Comfort votes and physiological temperatures over the final 5 minutes of each test 
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In the neutral condition, comfort for the local body parts and the whole-body increased going from No-
TAC to User-Controlled.  This is true for the foot even though its skin temperature did not change (green 
line). This might have been caused by the subjects’ perception that control was available.  However we 
did not see many control-availability benefits in most of the other tests in this experiment. 

At 28ºC, cheek and finger temperatures decreased and comfort increased under Fixed-TAC. Foot 
temperature decreased by 0.38ºC even when there was no cooling for feet.  All comfort increased further 
under User-Controlled, even though finger and foot skin temperatures in fact increased slightly. 

At 30ºC, we see a similar trend as in 28ºC, that the comfort increases as the skin temperature decreases 
under Fixed-TAC.  We did not see a further increase in comfort when user had control.  A temperature 
decrease was observed for the foot under Fixed-TAC. 

Generally, whole-body comfort follows the changes in local body comfort. Under our 5 test conditions, 
we found the skin temperatures associated with highest comfort to be:  

• Cheek: 32.5 ‒  33.5ºC, found in the neutral condition tests 

• Finger: 30.6 - 32ºC, found in the neutral condition tests 

• Foot: 33.15ºC, found in the 20ºC User-Controlled tests and in the neutral condition tests 

These temperatures might be useful for the design and control of TAC systems. 

4.8 Comparing the energy use of the TAC system with that of a conventional HVAC system 

The energy use of our TAC system was compared to a conventional HVAC system in Oakland and 
Fresno California, using the simulation program EnergyPlus.  Oakland is in a mild coastal climate, while 
Fresno’s Central Valley location is both hotter in summer and colder in winter.   

(1). Measured energy use of TAC systems 

We measured the power consumption of each of the four TAC systems under tested conditions.  
Following figures (Figure 39 and 40) present the energy consumption for cooling and heating.  

 

  
1 fan @ 35W cooling head through 2 nozzles 3 fans @2W each, cooling hands through 

keyboard 

Together, 41W  

Figure 39.  Summer Condition (Cooling Mode): measured energy use for cooling 
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We did not estimate the energy required to cool the TAC supply air to 24 ºC (for the 30 ºC ambient 
condition), because doing so requires a number of assumptions about the building’s overall HVAC 
system and operation.  The amount of air passing through the TACs is very small relative to that of the 
overall system, so this would be a small load. 
 

Winter Condition (Heating Mode at 18ºC) air.   

    
25.6W, aluminum palm warmer 30.8W, warming feet 

Palm-Warmer: 25.6W  

Heated Mouse: (powered through the 

computer USB port): 3W 

Together, 59W 

Foot-Warmer: 123W x 0.25 (fraction of time 

heating lamp on) =30.8W 

Figure 40.  Measured energy use for heating 

As described earlier, our commercially obtained heated keyboard was not effective at heating the hand, 
and the hand heating from the experiments derived almost entirely from the palm-warmer and the heated 
mouse.  Therefore, in this analysis we exclude the energy used by the keyboard from the energy required 
to obtain the levels of heating observed in our human subject test.  
 
(2) Simulating the energy savings of a TAC-equipped building  

(A) Description of the building and energy simulation approach 

The energy use of the TAC system is here compared to a conventional HVAC system in Oakland (a mild 
coastal climate), Fresno (Central Valley climate, hotter in summer and colder in winter), and Minneapolis 
(hot in summer, very cold in winter).  The simulations were performed using EnergyPlus/DesignBuilder.  
 
The comparison building is 90 x 60m, with three stories (Figure 41).  Each floor plate is 5,400 m2 (usable 
area 5,312 m2/story).  The glazing area is 30% of the wall area.  Each floor consists of five zones of open 
office plan, with the perimeter zones 4.5m in depth.  
 
The occupant density is 0.04 persons/m2.  Internal loads include 8.07 W/m2 computer heat gain, and 
10.76 W/m2 (200 lux) lighting.  Infiltration is assumed to be 0.85 air changes per hour.  

In this paper we term the indoor temperature range between thermostat calls for heating and cooling a 
‘dead-band’, as in deadband thermostats.  The conventional building has VAV with terminal reheat, 
maintaining a room air temperature dead-band of 21.5 – 24 ºC.  Mechanical ventilation provides fresh air 
at 7.1 l/s per person (15cfm).  Heating is by gas boiler and cooling by an electrical chiller.  The TAC 
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building has the same HVAC system and ventilation rate, but the ambient conditions are controlled to two 
different dead-bands: 20 – 28ºC, and 18 – 30ºC.  As presented in section 4.2 and Figure 22, occupant 
comfort is well-maintained in all these temperature ranges.  The palm-warmer and the foot warmer are 
added to each workstation for heating, and the head and hand ventilation devices for cooling.  The total 
energy is the sum of ambient HVAC energy and local TAC energy.  

 

 

 

Figure 41.  Configuration of the simulated building with perimeter and core zones 

The energy use for a conventional HVAC system is the energy used to keep the indoor air temperature 
within 21.5 – 24ºC.   

The energy use of the TAC plus HVAC system consists of two parts.  The first is the HVAC energy used 
to keep the indoor air temperature within 20 – 28ºC or 18 – 30ºC.  The energy needed to maintain each of 
these ranges was simulated by EnergyPlus, providing the two base conditions in the description below.  
The second part is the energy used by all the individual TAC systems at the workstations.  When the air 
temperature is within 21.5 – 24ºC, no TAC is applied.   

The TAC system components for heating (0.059kW/person or workstation) are used when the indoor air 
temperature is above 24ºC: 

• 5480 m²/story x 3 story x 0.09 people/m² x 0.8 (occupancy) x 0.059kW/person x (number of 
hours above 24ºC) = 69.85kWh 

The TAC system components for cooling (0.041kW/person or workstation) are used when the indoor air 
temperature is above below 21.5ºC:5480 m²/story x 3 story x 0.09 people/m² x 0.8 (occupancy) x 

0.041kW/person x (number of hours below 21.5ºC)= 48.54kWh 

In summer, because the indoor air temperature is always above 21.5ºC, no heating TAC is applied.  In 
winter, because the indoor air temperature may be both below 21.5ºC and above 24ºC (Table 3, winter), 
either cooling or heating TAC may be applied. 

Because 0.059kW/person for heating is data we measured for TAC system under our coldest test 
condition (18ºC air temperature), the energy savings results will be conservative for TAC systems 
operated under less extreme conditions.  When the indoor air temperature is higher than 18ºC, less heat 
will be needed for the palm and foot warmers. 

In contrast, we overestimated the cooling energy savings of TAC at 30ºC by a small amount, because we 
did not attempt to include the energy required to cool the 24ºC supply air through the TAC nozzles in the 
30ºC condition.  The supply volume through the nozzles was very small, and because of the mixing 
between the TAC ventilation nozzle and the breathing zone, the breathing zone temperature experienced 
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by the occupant was 28ºC, close to that of room air.  We believe the human subject results would have 
been very similar using recirculated room air through the nozzles. 

In our calculations, we assumed 80% workstation occupancy.  Bauman et al. (1994) measured 70% 
average occupancy in an office field study. Since TAC systems are automatically turned off when there is 
no occupant, this mode of occupant-sensitive environmental conditioning produces significant energy 
savings.   

One might ask whether the hottest and coldest ambient conditions would be acceptable for office workers 
when they are not at their workstations.  In our tests, our subjects took a five-minute break between each 
one-hour session.  During the breaks the subjects left their workstations and were exposed to the ambient 
condition.  There was no discomfort noted, either in the hot or cold conditions.  Comfort at the 
workstations therefore persists for a length of time, but we did not examine this beyond five minutes.  
This might be a reasonable time period for going to copy machines, bathroom, etc., but it would be useful 
for future TAC design to obtain statistical data for both the length of typical breaks and the occupants’ 
reactions to them. 

(B).  Floating indoor air temperature without heating or cooling.  

Expanding a dead-band produces savings in two ways:  it reduces the temperature difference between the 
set points and the building’s floating temperature, and it reduces the number of hours per year needed for 
mechanical conditioning.  Some of the savings of TAC systems will come from the opportunity to use 
unconditioned outside air--through economizer or natural ventilation--to satisfy the wider ambient 
temperature deadbands that TAC enables.   

We first examine the building’s annual indoor air temperature distribution in the absence of mechanical 
heating or cooling.  The internal loads, solar load, and required ventilation air changes cause the indoor 
temperature to float above the outdoor temperature.  Figures 42a (Fresno), 42b (Oakland), and 42c 
(Minneapolis) show outdoor and floating indoor temperatures, along with the temperature dead-bands 
assumed for TAC-based systems (20 – 28ºC and 18 – 30ºC) and conventional systems (21.5 – 24ºC). The 
accumulated time when the naturally-occurring indoor temperature is within the TAC dead-bands but 
outside the conventional dead-band indicates when energy may be saved by TAC systems.  In Fresno, the 
main demand is for cooling and in Minneapolis, it is for heating.  In Oakland the overall demand is less, 
but for this internal-load-dominated building cooling demand is larger than heating. 

 



PAGE  37 COMFORT, PAQ, AND WORK PERFORMANCE IN A LOW-POWER TAC SYSTEM APRIL 2008 

 

Figure 42a.  Outdoor air temperature and indoor air temperature (with internal and solar loads but 
without AC or heating applied) in Fresno 

Figure 42b.  Outdoor air temperature and indoor air temperature (with internal and solar loads but 
without AC or heating applied) in Oakland  
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Figure 42c.  Outdoor air temperature and indoor air temperature (with internal and solar loads but 
without AC or heating applied) in Minneapolis 

 
Table 3 gives the number of working hours (8 AM – 6 PM, Monday – Friday) in which the floating air 
temperature is within each temperature deadband enabled by TAC.  Hours within the deadbands would 
otherwise require mechanical heating or cooling so that they would be within 21.5-24ºC.  Fresno and 
Oakland benefit a great deal from raising the deadband upper limit, but not at all from reducing the lower 
limit.   Minneapolis benefits at both ends.  The number of hours outside of the TAC-enabled deadbands is 
much smaller than within them, with Oakland having the smallest number of hours needing conditioning. 

Table 3.  Annual working hours (8 AM – 6 PM, Monday – Friday) binned by interior floating 
temperatures.  The total number of working hours in a year is 2613. 

Temperature range 
(ºC) 18 –21.5 24 - 3 

<18 or 
>30 

20 - 
21.5℃ 24 - 28℃ 

<20 or 
>28ºC 

Fresno 5 2465 143 6 2344 263

Oakland 1 2576 36 0 2547 66

Minneapolis 774 1566 273 761 1484 368

 

(C).  Seasonal energy consumption calculations 

The energy consumption of the conventional and TAC systems is usefully compared on a seasonal basis, 
to clarify when the performance differs and why.  The summer and winter seasons are each 3 months long.  
The simulation results are presented in Table 4. 
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Table 4.  Seasonal energy use of the TAC+HVAC system, compared with a conventional HVAC system 

System type Fresno  Oakland  Minneapolis 

  summer winter summer winter summer winter 

Conventional HVAC (kWh) 324,038 169,832 183,174 115,004 238,826 566,956 

TAC system, dead-band 18 – 30ºC 

Ambient conditioning (kWh) 224,884  51,025  97,197  42,105  141,622  370,641  

(% of Conventional HVAC) 69.4% 30.0% 53.1% 36.6% 59.3% 65.4% 

Local task conditioning: 
heating (kWh) 

873  30  16,790  

(% of Conventional HVAC) 

0 

0.50% 

0 

0.03% 

0 

2.96% 

Local task conditioning: 
cooling  (kWh) 

13,592  8,239  13,801  10,371  13,801  585  

(% of Conventional HVAC) 4.20% 4.90% 7.53% 9.02% 5.78% 0.10% 

Local+ambient system (kWh) 

(% of Conventional HVAC) 

238,475 

73.6%   

60,136 

35.4%   

110,997 

60.6% 

52,506  

45.7% 

155,422 

65.1%   

388,017 

68.4%   

Savings of TAC system 
versus conventional HVAC 

26.4% 64.6% 39.4% 54.3% 34.9% 31.6% 

TAC system, dead-band 20 – 28ºC 

Ambient conditioning (kWh) 255,564  79,836  116,575  54,775  169,055  422,821  

(% of Conventional HVAC) 78.90% 47% 63.64% 47.63% 70.77% 74.58% 

Local task conditioning: 
heating (kWh) 

1,023  30  16,880 

(% of Conventional HVAC) 

0 

0.60% 

0 

0.03% 

0 

 
2.98% 

Local task conditioning: 
cooling  (kWh) 

13,592  5,771  13,801  12,128  13,780  314  

(% of Conventional HVAC) 4.20% 3.40% 7.53% 10.54% 5.77% 0.06% 

Local+ambient system (kWh) 

(% of Conventional HVAC) 

269,156 

83.1%   

86,630 

51.0%   

130,375  

71.2% 

66,933  

58.2% 

182,835 

76.6%   

440,015 

 77.6% 

Savings of TAC system 
versus conventional HVAC  

16.9% 49.0% 28.8% 41.8% 23.4% 22.4% 
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One can see that the TAC-assisted HVAC system uses between 17 to 65% less seasonal energy to 
maintain its broader dead-bands than the narrower conventional dead-band.  The savings come mostly 
from the ambient HVAC, since the TAC local heating components use less than 3% of the conventional 
HVAC use, and cooling components less than 11%.   

Figure 42 a, b, &c show the extent to which internal and solar loads raise the interior room air 
temperature above the outdoor air temperature in Fresno, Oakland, and Mineapolis.  This indicates that 
natural ventilation would be beneficial much of the year.  We simulated continuous natural ventilation at 
2.5 and 4.5 ACH (air change rate per hour) for the Oakland building.  Natural ventilation reduced the 
floating indoor air temperature significantly.  Without NV, the hours above 30ºC and 28ºC indoors are 
571 and 657, respectively.  These numbers are 111 and 235 at 2.5ACH, and 30 and 90 at 4.5 ACH.  These 
numbers represent the time that mechanical air conditioning is needed; with natural ventilation at 4.5 
ACH, air conditioning is needed less than 1% of all hours for both TAC 30ºC and 28ºC cooling setpoints.   
 
(D).  Annual energy savings from TAC systems. 

The total annual HVAC consumptions and savings attributed to TAC at the two interior temperature 
deadbands is presented in Table 5 and 6.  The total energy consumption is highest in Minneapolis, middle 
in Fresno, and lowest in Oakland, due to the difference in severity of the three different climates.  The 
savings are greatest in Oakland’s milder climate, where natural ventilation can be used most frequently.  
Savings are roughly the same in Fresno and Minneapolis.  The numbers in Tables 4 and 5 are different 
because Table 5 includes all four seasons, whereas Table 4 is for summer and winter only.  The transition 
seasons vary in their effect and importance among the three climates. 

Table 5.  Annual HVAC energy consumption of TAC system 

Annual energy intensity (kWh/m2) 

Interior temperature 
range 

Fresno Oakland Minneapolis 

18 - 30℃ 34.8 20.7 52 

20 - 28℃ 40.8 24.5 60 

21.5 - 24℃ 56.1 37.0 85.1 

 

Table 6.  Annual HVAC energy saving of TAC system 

Annual Saving 

Interior temperature 
range 

Fresno Oakland Minneapolis 

18 - 30℃ 38% 44% 39% 

20 - 28℃ 27% 34% 29% 
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It is instructive to look at the annual heating and cooling energy savings per degree of HVAC deadband 
width.  Figure 43 shows the energy savings and the annual energy use intensity as the deadband of a 
conventional HVAC system is broadened first toward lower (on the heating side) and then toward higher 
(on the cooling side) temperatures in Fresno and in Minneapolis.  The TAC energy is not included here. 

 
    

  

Figure 44. Annual HVAC energy saving and intensity in Fresno and Minneapolis for a range of dead-
bands  

In the Fresno climate, raising the cooling design setpoint for a conventional HVAC system above 24ºC 
results in an initial 10% saving of annual HVAC energy per degree K, tapering off above that so that the 
rate over the 24-30ºC range is 7%/K.  In Minneapolis, the initial saving is the same but the overall rate is 
6%/K.  Lowering the heating setpoint below 21.5ºC saves 6%/K and 4%/K in Minneapolis and Fresno, 
respectively.  The savings in the heating and cooling directions can be added.   

Because the energy used by the TAC components is not part of the Figure 44 analysis as it is in Tables 5 
and 6, the energy use for comparable deadband widths is roughly 5% higher in the tables, and the savings 
less. 

5  DISCUSSION 

1) The analysis of acceptance and comfort (section 4.3) shows that people accept environments even 
when they are feeling slight discomfort.  Aggregating all our tests (Figure 25), our subjects on 
average accepted the thermal environment when their comfort was -0.5 (on the uncomfortable side of 
the comfort scale) and above.  Their acceptance of discomfort was less when they did not have access 
to TAC (comfort scale -0.2 and above). 

With TAC, our subjects accepted thermal environments with lower comfort (-0.7 for Fixed-TAC--
when subject did not have control--, and –0.8 for User-Controlled-TAC).   

Cooling Cooling Heating Heating 
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Our TAC system improves comfort in the three important body parts (head, hand, foot) identified by 
Zhang (2003).  Other systems have been designed that impact other body parts.  Zhang and Zhao 
(2008) tested a Fixed-TAC system that provided local cooling to the face, chest, and back.  Under test 
conditions neutral and warmer, using the same sensation, comfort, and acceptance scales, their results 
show that the threshold of acceptance corresponded to comfort of -0.14 (calculated from the 
regression equation in the paper).  This value is close to our No-TAC result, but not as low as our 
result with Fixed-TAC.  The difference could be that the three local body parts impacted by our TAC 
design are more effective at influencing people’s acceptance of thermal environments. 

2) The thresholds of thermal sensation for acceptance above zero (sensation range –2.2, +2) is slightly 
wider (0.2 scale units) than the threshold of comfort for acceptance above zero (sensation range -2, 
+1.8, described in section 4.3).  These results in general match the studies from the literature.  Data 
from Gagge et al. (1967; discussed in McIntyre 1980 and Wang et al. 2007) found that sensation –1.5 
and 2 are the thresholds ensuring comfort.  Wang et al. (2007) found that for keeping comfort above 
zero, the thresholds for sensation are –1.3 and 1.8.  Again, under test conditions neutral and warmer, 
Zhang and Zhao (2008) show that for acceptance above zero, the threshold for warm sensation is 1.4; 
for comfort above zero, the sensation threshold is 1.27.  Their results agree with ours that the range of 
thresholds for acceptance is slightly wider than the range of thresholds for comfort. 

3) User control.  In the more extreme test conditions (18 and 30ºC), there was no significant 
improvement in comfort with User-Controlled over Fixed-TAC.  We were able to select control 
settings for the TAC system that worked well for our test subjects.  This appears to be easier to do 
when people clearly need warming (at 18ºC) and cooling (at 30ºC).  In the less extreme conditions 
(20 and 28ºC in our test), the degree of heating and cooling appeared to differ among subjects and the 
User-Controlled TAC was rated more comfortable than Fixed-TAC.  This finding does not support 
the contention that “being able to control” contributes substantially to occupants’ comfort (Bauman et 
al. 1998) and (Brager (2004).  If this were true, we would expect to have seen significant 
improvements in all our User-Controlled test conditions.  

Under neutral conditions, people’s comfort was significantly improved with User-Controlled 
compared to the No-TAC.  However, because our neutral test condition was perceived as slightly 
warm, the increase in comfort cannot be attributed only to the availability of control.     

4) For perceived air quality, Fang et al. (1998) found that PAQ is better in cooler environments.  Our 
data supports this finding only when the environment is neutral to warm.  Because our PAQ does not 
decrease with air temperature from cool to neutral, we cannot conclude that the lower the air 
temperature, the better the PAQ.  Humphreys et al. (2002) found that PAQ is mostly related to 
thermal comfort.  PAQ was the best under neutral conditions.  When people preferred to be either 
warmer or cooler, the PAQ was lowered, with a stronger reduction when people preferred cooler.  
Our study supports part of this finding by showing a very linear relationship between PAQ and 
comfort in neutral and warm environment.  However, the PAQ decrease as people become cooler than 
neutral is insignificantly small, which is different from Humphreys’ finding.  

5) The results from our study demonstrate that air movement not only provides comfort, it also 
significantly improves PAQ.  How air movement physically affects PAQ is not clear.  The air 
movement might be disrupting the thermal plume around an occupant’s body, or an association with 
ventilation and outdoor breezes might be causing people to associate perceived air movement with 
better air quality.  It could also be true that the air movement improves comfort, which, as in 
Humphreys’ finding, might cause people to feel better about the PAQ.  

6) Wang et al. (2007) found that 30ºC was the finger temperature threshold below which whole-body 
cool discomfort begins.  Our study found that at finger temperature 30.6 – 32, the whole body and 
finger experienced the highest comfort.   
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7) Although the results are not statistically significant, we did observe that for Sudoku and math tasks, 
the performance with TAC systems was frequently better than in the neutral condition.  In an early 
study (Arens et al. 2006), we showed that people’s comfort is better under some transient and non-
uniform conditions than the uniform neutral condition.  From both types of studies, we see that non-
uniform or transient conditions do not necessarily reduce comfort and task performance.  That is an 
encouraging sign for the use of non-uniform environments in office environments. 

8) Practicality of TAC system.  The system tested was designed to be practically feasible in current 
open-plan office design.  However it will be useful to know how great the distance between nozzle 
and occupant can be.  We intend to examine in a new project the performance of such a TAC system 
with a variety of jet nozzles and throw distances.  

6  CONCLUSIONS 

1) Comfort was well-maintained at an acceptable level (comfort above 1) in wide range of room 
temperatures (18 – 30 ºC) by a TAC heating and cooling system.  Our ventilation cooling devices seemed 
to be more effective at improving comfort than our heating devices. 

2) The non-uniform environments provided by the TAC devices did not lower the task performance of 
the occupants.  In fact, under some TAC conditions, performance was better than under the neutral 
condition.  Two conditions produced significant improvements in Sudoku and math.  Typing showed no 
significant difference across all the tests.   

3) Perceived air quality was significantly improved by providing air motion, even if it was re-circulated 
room air.  The impact from 1 m/s air movement on PAQ was about equivalent to reducing the 
temperature from warm (28ºC) and hot (30ºC) to a neutral environment at 24.5 ºC.  The PAQ decreased 
with rising air temperature under neutral to warm conditions.  It is almost constant from neutral to cool 
conditions. 

4) There was no dry-eye discomfort with the head ventilation device as designed.  People accepted the 
air movement when it was 1 m/s around the breathing zone.  People expressed a preference for more air 
movement in neutral and warm conditions when the TAC devices were off.   

5) The acceptable thermal sensation levels were from –2.2 to 2.  For maintaining comfort above ‘just 
comfortable’ (zero), this range is –2 to 1.8.   

6) Instead of air-conditioning the entire room to a tight dead-band, the TAC system focuses on the three 
most influential local body parts, while using HVAC to condition the room to a wider dead-band.  This 
can be done very efficiently compared to conventional systems.  For our three test cities, the annual 
HVAC energy saving is approximately 40% for the wider 18 – 30ºC ambient deadband, and 30% for the 
narrower 20 – 28ºC one.   

7) Natural ventilation design combines well with TAC.  NV can by itself provide the TAC space’s wide 
range of ambient temperatures for a larger number of hours than it can provide the narrow range of 
interior temperatures required in a conventional HVAC space. 

8)   A plot of energy use and savings against dead-band width shows the rate of change per degree.  In the 
Fresno climate, raising the cooling design setpoint for a conventional HVAC system above 24ºC results in 
an initial 10% saving of annual HVAC energy per degree K, tapering off above that so that the rate over 
the 24-30ºC range is 7%/K.  In Minneapolis, the initial saving is the same but the overall rate is 6%/K.  
Conversely, lowering the heating setpoint below 21.5ºC saves 6%/K and 4%/K in Minneapolis and 
Fresno, respectively.    
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