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ABSTRACT OF DISSERTATION 
 

Molecular Basis of Adaptation in Experimentally Evolved Drosophila 
 

By 
 

Thomas T. Barter 
 

Doctor of Philosophy in Biological Sciences 
 

University of California, Irvine, 2019 
 

Professor Laurence D. Mueller, Chair 
 
 
 

The molecular mechanisms underlying adaptation have eluded evolutionary biologists even 

with the advent of new sequencing technology. Many attempts to address this issue have focused 

on using knockout or knock-down genes in inbred populations, but have failed to fully 

characterize how molecular changes ultimately effect phenotypic changes. These systems likely 

fall short because inbred populations give variable and inconsistent results, while knockout and 

knock-down genes have unknown pleiotropic effects.  

Experimental evolution in Drosophila features replicated outbred populations with easy 

access to both phenotypic and molecular characterization. Experimentally evolved Drosophila 

populations are outbred and offer ample replication which is necessary when using statistical 

learning tools to search for the molecular basis for phenotypic change. My work chiefly focuses 

on 20 experimentally evolved Drosophila populations, ten selected for short life-cycles and ten 

selected for long life-cycles. Using these 20 populations, I find that phenotypic divergence from 

an ancestral population occurs rapidly, within dozens of generations, regardless of evolutionary 

history and similarly, populations sharing a selection treatment converge on common phenotypes 

in the same time frame (Chapter 1). From the same 20 populations, I find that traits are heavily 
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influenced by selection regime when the trait is fitness-related; conversely, when the trait is not 

fitness-related, evolutionary history takes precedent (Chapter 2). Next, I sequenced the 

transcriptome from these 20 populations and found evidence for convergence within each group 

of populations undergoing the same selection regime, and moderate differentiation between the 

two groups of populations (Chapter 3). Lastly, I applied statistical learning tools to genomic, 

transcriptomic, and phenotypic data obtained from these 20 populations. I found that (a) the 

transcriptome is static in adult Drosophila, (b) both genome and transcriptome can be good 

predictors for phenotypic characters, and (c) gene expression is influenced by genomic sites 

found all across the genome (Chapter 4). 
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INTRODUCTION 

 Evolutionary biology has long sought to uncover how molecular mechanisms shape 

phenotypic characters.  The overall pathway of these molecular mechanisms is known in general 

terms, but how specific changes in the genome or the transcriptome affect specific phenotypic 

traits remains unknown. Many attempts to address this question have used knockout gene studies 

or even knockdown gene studies (Alberts et al. 2002; Hall et al. 2010). These studies tend to 

focus on using inbred lines in order to properly set up the knockout gene. These inbred lines, of 

course, have little to no genetic variation and whatever results may be concluded from these 

experiments seem to be case-specific. In other words, if the same genes were to be knocked out 

in another inbred line, the results are likely to vary (Eisener-Dorman et al. 2009). 

 Contrary to using inbred lines and working with knockout genes, experimental evolution 

has become an alternative means of addressing the basic mechanisms of evolution. Experimental 

evolution has been key in furthering our understanding of evolutionary mechanisms in microbial 

ecology (Chao et al. 1997; Turner and Chao 1999; Crill et al. 2000; Kaltz and Bell 2002), life 

history evolution (Mueller and Ayala 1981; Luckinbill et al. 1984; Rose 1984; Service et al. 

1988; Chippendale et al. 1997), and evolutionary physiology (Graves et al. 1992; Rose et al. 

1992; Gibbs et al. 1997; Djawdan et al. 1998; Swallow et al. 1998; Swallow et al. 1999; Roff et 

al. 1999). In addition, experimental evolution has become a great tool for understanding the 

genetic foundations of adaptation when paired with next-generation sequencing for both 

genomics and transcriptomics (Long et al. 2015; Schlötterer et al. 2015). Experimental evolution 

of outbred sexual populations has clear advantages over the use of inbred lines and knockouts, in 

that it maintains a moderate level of genetic variation and allows for a high level of replication. 

These two strengths together allow the use of high powered statistical tools, which further allow 
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tests for interactions between the genome, transcriptome, and phenotypic traits on a scale that has 

never been achieved before.  

 The goal of my thesis is two-fold. First, show the consistency and repeatability of 

experimental evolution when using outbred sexually reproducing populations with moderate 

replication. Unlike inbred or asexual populations, sexually outbred populations have the capacity 

to adapt to novel selection regime in a parallel fashion due to their maintenance of genetic 

variation, at least when they are not inbred. Although both inbred and asexual populations have 

their advantages in simpler laboratory maintenance, these populations do not accurately simulate 

how adaptation functions in nature for many organisms. Experimentally evolved outbred 

populations may also not be a perfect simulation for adaptation in nature, but will almost always 

be a closer emulation than inbred or asexual populations. For the second part of my thesis, I use 

genomic, transcriptomic, and phenotypic data from these 20 outbred sexual populations to 

determine how these three components interact with one another. 

 Numerous attempts have been made to tackle the overarching issue of how molecular 

changes ultimately affect phenotypic traits in inbred or asexual populations, but this has not been 

the case for outbred sexual populations. Experimentally evolved, outbred, sexual populations 

offer statistical power that results from extreme phenotypic differentiation (Garland and Rose 

2009). The statistical power gained by using these populations is critical in dissecting the 

interplay between the three levels of genome, transcriptome, and phenotype. 

 My scientific material consists of experimentally evolved outbred sexual populations of 

Drosophila melanogaster maintained in the Rose Lab at the University of California, Irvine. 

Specifically, I have studied two sets of 10 replicate populations maintained under different 
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selection regimes. Within both sets of 10 replicate populations, five are considered long-standing 

in that they have been maintained in their current selection regime for over 300 generations. The 

remaining five are considered newly-derived, in that they have only been maintained in the 

current selection regime for less than 250 generations. Using these populations, I measure how 

rapidly and repeatedly these populations have converged within selection regime and diverged 

between selection regimes for mortality and fecundity (Chapter 1). After seeing how rapid and 

repeatedly these populations have converged and diverged for mortality and fecundity, I sought 

to see if the same trend remains for other phenotypic characters such as development time and 

egg hatching time (Chapter 2). Next, I characterize the transcriptomes of the same 20 populations 

featured in Chapter 1 and 2, and again measure the level of convergence within selection regime 

and divergence between the two selection regimes (Chapter 3). Lastly, I use genomic, 

transcriptomic, and phenotypic data together in conjunction with statistical learning modeling to 

see how these three levels of biological machinery interact with each other (Chapter 4).  
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Chapter 1 

Rapid Divergence and Convergence of Adult Mortality and Fecundity in Experimentally 

Evolved Drosophila melanogaster 

 

ABSTRACT 

Laboratory selection experiments are alluring in their simplicity, power, and ability to 

inform us about how evolution works. A longstanding challenge facing evolution experiments 

with metazoans is that significant generational turnover takes a long time.  In this work, we 

present data from a unique system of experimentally evolved laboratory populations of 

Drosophila melanogaster that have experienced three distinct life-history selection regimes. The 

goal of our study was to determine how quickly populations of a certain selection regime diverge 

phenotypically from their ancestors, and how quickly they converge with independently derived 

populations that share a selection regime.  Our results indicate that phenotypic divergence from 

an ancestral population occurs rapidly, within dozens of generations, regardless of that 

population’s evolutionary history.  Similarly, populations sharing a selection treatment converge 

on common phenotypes in this same time frame, regardless of selection pressures those 

populations may have experienced in the past.  These patterns of convergence and divergence 

emerged much faster than expected, suggesting that intermediate evolutionary history has 

transient effects in this system.  The results we draw from this system are applicable to other 

experimental evolution projects and suggest that many relevant questions can be sufficiently 

tested on shorter timescales than previously thought. 
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INTRODUCTION 

 Evolutionary biologists have long used laboratory selection to explore hypotheses about 

adaptation. Such experimental evolution can quickly, dramatically, and reproducibly shape 

phenotypes in model species (Garland and Rose 2009). When adequately replicated, 

experimentally evolved populations can be used to test general theories about evolution in well-

defined settings, albeit ones which may be significantly difference from any that actually exist in 

the wild (cf. Garland and Rose 2009; Rose et al. 2001; Barrick and Lenski 2013).  

 But there is an important bifurcation in the experimental evolution literature, that 

between (i) studies of rarely recombining microbes, like Escherichia coli (e.g. Lenski et al. 

1991), and (ii) studies of outbreeding species that recombine sexually and maintain standing 

genetic variation, such as Drosophila melanogaster (e.g. Luckinbill et al. 1984). Recombination 

and standing genetic variation are either absent or rare in many paradigms for microbial 

experimental evolution (e.g. Tenaillon et al. 2012), though genetic variation can arise from 

mutator substitutions in some cases after many generations of clonal evolution (e.g. Barrick et al 

2009). The lack of recombination in such clonal evolution experiments gives rise to very 

different patterns of adaptation from those observed in experiments with outbreeding sexual 

species. Clonal evolution features selective sweeps, clonal interference, and whole-genome 

hitchhiking, all of which both purge genetic variation and slow the genome-wide response to 

selection (reviewed by Burke 2012; Kawecki et al. 2012). By contrast, it has been found that 

experimental evolution in outbred Drosophila populations involves abundant standing genetic 

variation, many genomic sites that respond to selection, and rapid immediate responses to 

selection (Burke et al. 2010; Orozco-terWengel et al. 2012; Burke 2012; Rose et al. 2015). While 



 8 

the differences between these two types of experimental evolution are considerable, ideas from 

one type of system can serve as useful sources of hypotheses for the other.  

For example, an issue of great interest in the microbial evolution literature has been the 

extent to which multiple replicated lines converge on similar phenotypic and genetic outcomes, 

the so-called “chance versus necessity” or “history versus selection” issue (e.g. Woods et al. 

2006; Tenaillon et al. 2012).  Here we study experimental evolution in 30 populations of 

Drosophila melanogaster, with a view to addressing the repeatability of phenotypic evolution in 

outbreeding, sexually-reproducing populations, which for clarity we hereafter term ‘Mendelian’ 

populations.  

Research on the Mendelian experimental evolution paradigm has already produced some 

useful initial findings concerning divergence, convergence, and the repeatability of evolution.  

First, it is clear that phenotypic divergence occurs rapidly in Mendelian populations subject to 

new types of selection.  Phenotypes of newly-selected populations differentiate from their 

ancestors in tens of generations; this has been shown in multiple Drosophila experiments (e.g. 

Luckinbill et al. 1984; Rose et al. 1992; Chippindale et al. 1997; Zhou et al. 2007; Turner et al. 

2011; Turner and Miller 2012), as well as in other insects (e.g. Roff et al. 1999; Beldade et al. 

2002; Zera 2005; Michalczyk et al. 2011), mice (Swallow et al. 1999; Chan et al. 2012), 

domesticated birds (Johansson et al. 2010; Stringham et al. 2012), and foxes (Trut et al. 2004).  

Second, independent replicate populations experiencing identical selection pressures quickly 

converge on common phenotypes (Teotonio and Rose 2000; Simões et al. 2008; Fox et al. 2011; 

Fragata et al. 2014). However, studies that assess the rapidity of convergence and divergence 

simultaneously, in order to assess the importance of evolutionary history, are lacking. Here, we 
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carry out simultaneous comparisons of convergence and divergence to determine the degree to 

which selection might erase or preserve the signature of history for specific fitness traits. 

We present life-history data from two sets of populations: 15 long-standing populations 

and 15 recently-derived populations. Five populations from each set are subject to one of three 

regimes of experimental evolution: (1) selection for accelerated larval development, (2) the 

ancestral laboratory selection regime of two-week life cycles, and (3) selection for postponed 

reproduction. Put another way, we present the results from three tests of evolutionary 

convergence and divergence involving ten populations each, with large-scale parallel assays of 

life-history characters. Our results reveal significant detail about how Mendelian experimental 

evolution produces both phenotypic divergence and convergence, on time scales vastly 

compressed compared to those of clonal evolution. 

 

MATERIALS AND METHODS 

Experimental evolution regimes 

 This study uses large, deliberately outbred, lab populations of Drosophila melanogaster 

selected for different patterns of age-specific reproduction. All the lines used in the current study 

originate from an ancestral “IV” population first collected from South Amherst, MA in 1975 by 

Phillip Ives (vid. Rose 1984), and then cultured in the lab using two-week discrete generations. 

These ancestral IV flies were subsequently used in February 1980 to create five “O” (old) 

replicate lines, using females of increasing ages over successive generations until these flies were 

maintained on a 10-week generation cycle (Rose 1984).  The IV flies were also used to found 

five additional “B” lines in February 1980, lines which have since been cultured using the same 
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protocol as the IV populations from which they were derived.  Detailed descriptions of the 

subsequent history and culture methods for these lines can be found in Rose et al. (2004).  

 The populations of the O selection treatment are the ancestors of 5 additional 

experimental treatments that along with the B selection treatment make up the 6 focal treatments 

of this study.  These treatments belong to one of two temporal designations (“longstanding” or 

“recent”) and one of three selection types (“A”, “B”, or “C”, described below).  Thus, these 6 

treatments provide opportunities to study the differences between populations that have the same 

selection regime but were established long ago versus recently, and also to study the differences 

between populations that diverged from the same ancestor recently but experience selection for 

different life histories. See Figure 1.1 for an overview of the experimental evolution design of 

the present study.  

We call these 6 selection treatments ACO, AO, B, BO, CO, and nCO, with each letter 

referencing a selection regime and evolutionary history. The CO populations were derived from 

the original O treatment after 57 generations of O-type selection in 1989. The “C” in CO 

indicates a 28-day selection regime while the O represents the CO treatment’s most recent 

common ancestor. The ACO lines are the only populations that did not directly originate from 

the O treatment, but were instead derived from the CO populations after 27 generations of C-type 

selection in 1992.  The AO, BO, and nCO lines (“n” stands for new CO treatment) were derived 

from the O treatment around 2007 after 153, 150, and 159 generations of O selection, 

respectively.  Thus, these three treatments were derived relatively recently, while the CO, ACO, 

and B treatments are longstanding. 

This system of 30 populations is now maintained using three distinct selection regimes:  

A, B, and C. A selection regime: the ten ACO and AO populations spend the first 9 days of life 
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in 8-dram glass vials, and at day 10 adults are transferred to a Plexiglass “cage” in which they 

are given fresh food and allowed to oviposit for 24 hours.  B selection regime:  the ten B and 

BO populations spend 14 days in 8-dram vials, and are then allowed 1-2 hours in fresh vials to 

oviposit before adults are discarded.  C selection regime:  the ten CO and nCO populations 

develop in vials for 14 days prior to being transferred to Plexiglass cages. C flies are then given 

48 hours to oviposit before eggs are collected on day 28.  All populations are supplied with 

food made from cooked bananas, barley malt, yeast (3.6% w/v), corn syrup, and agar. The 

populations that spend time in cages are also supplied with a 5% live yeast paste on the food 

surface to promote oviposition 24-48 hours prior to egg collection. Lastly, all populations are 

kept at 23q C and left in a 24-hour light cycle room. See Figure S1.1. 

 

Experimental comparisons 

 Two experimental comparisons were performed: (1) Common-garden comparison of 

initial fecundity of flies from the AO, ACO, B, BO, CO, and nCO treatments; and (2) Parallel 

simultaneous cohort comparisons of adult fecundity and survivorship of flies from the AO, ACO, 

CO, and nCO treatments. The goal of these two comparisons was to determine the degree to 

which divergence has occurred among the three different selection treatments, as well as the 

degree to which convergence has occurred between the longstanding and recently-derived 

treatments in adult phenotypes. For these two experiments, all replicate populations assayed were 

reared in parallel on a B-type culture schedule for two generations before each experiment to 

minimize maternal effects.  
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Experiment 1: Initial fecundity of newly eclosed adults 

 Early-life fecundity measures were collected from the newly eclosed adults in all 

replicate populations of the ACO, AO, B, BO, CO, and nCO treatments. Newly eclosed flies 

were collected every 12 hours, sorted into 40 mating pairs, and then placed into vials to mate and 

lay eggs. Every 12 hours until day 14 of age from egg, the mating pair was given a vial cap 

containing fresh food to lay eggs. The eggs laid on the old vial caps were placed on a flatbed 

scanner to create a digital image for egg counting purposes.  

 

Experiment 2: Adult mortality and fecundity from day 14 onward 

 For this experiment, adult mortality was measured in all replicate populations of the 

ACO, AO, CO, and nCO selection treatments. After two generations of standardized rearing, 

~1200 adult flies were emptied into Plexiglass cages. Cages were supplied with fresh food daily. 

Dead flies were counted and eggs collected from cages at the same time every day until all flies 

in the experiment died. 

 Mortality data were obtained from the 30 experimental populations over all adult ages. 

Each assayed cohort began as four cages containing ~1200 flies each, where the volume of a 

cage was 13.2H x 18.5 W x 22.4L cm3. We redistributed and combined flies periodically to 

maintain this 1200 flies/cage density as the number of individuals in the cohort declined. When a 

cohort fell to 600 individuals (50% cage density), flies were transferred to a half cage, at 300 

individuals, the cohort was transferred to a quarter-cage, and at 100 individuals, the cohort was 

transferred to a single 8-dram vial. Flies were briefly anesthetized using carbon dioxide during 

these consolidations. The number of dead flies in each cage or vial was recorded over daily 

intervals.  
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 A fecundity measure was made in concert with the mortality assay. After the daily 

mortality count, flies were given a new plate of food. Eggs that had been laid on the surface of 

the old food plate were collected through a filtration process onto a membrane using a modified 

Buchner funnel. A digital image of the membrane was then taken and the number of eggs laid 

were counted using ImageJ software. Carbon dioxide can make females eject eggs in greater than 

normal numbers. To compensate for this problem, the number of eggs laid during the 24 hours 

after exposure to carbon dioxide was removed from the fecundity analysis. 

 

Statistical methods 

Experiment 1 

 We tested for convergence between paired selection treatments (i.e., CO vs. nCO, AO vs. 

ACO, and B vs. BO) for effects of selection on fecundity over 3-4 consecutive ages. The 

observations consisted of fecundity at a particular age (t) but within a small age interval (k = 

1,2,…,m). These age intervals were chosen to span the ages, such that all comparison 

populations had live flies. Within each interval, fecundity rates were modeled by a straight line 

and allow selection regime (j = 1 (ACO or CO or B) j = 2 (AO or nCO or BO)) to affect the 

intercept of that line but not the slope. However, slopes were allowed to vary between intervals. 

Populations (i = 1,…,10) were assumed to contribute random variation to these measures. With 

this notation, the fecundity at age-t, interval-k, selection regime-j, and population-i, is yijkt and is 

described by,  

 

𝑦𝑖𝑗𝑘𝑡 = 𝛼 + 𝛽𝑘 + 𝛿𝑗𝛾𝑗 + (𝜔 + 𝜋𝑘𝛿𝑘)𝑡 + 𝛿𝑘𝛿𝑗𝜇𝑗𝑘 + 𝑐𝑖 + 𝜀𝑖𝑗𝑘𝑡            (1) 
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where Gs = 0 if s = 1 and 1 otherwise, and ci and Hijkt are independent standard normal random 

variables with variance σ2c and σ2
H respectively. The effects of selection on the intercept are 

assessed by considering the magnitude and variance of both γj and μjk. 

 To test for divergence, the six selection regimes were reclassified to three difference 

categories: AO and ACO to A; CO and nCO to C; B and BO to B. Equation (1) was then used to 

assess the effects of the three selection treatments. Parameters of equation (1) were estimated by 

the restricted maximum likelihood techniques implemented by the lme function in R (R Core 

team 2014). For both the convergence and divergence analysis, we used the Bonferroni 

correction to adjust the significant level for each pair-wise comparison made by dividing the 

significance level by the number of age intervals used in the analysis (0.05/n, where n is the 

number of age intervals used).   

 

Experiment 2 

 The same basic analysis as that of Experiment 1 was used to test for convergence and 

divergence of age-specific fecundity and mortality across the adult portion of the life-cycle. 

However, this experiment did not contain all six selection treatments, instead it only contained 

four (ACO, AO, CO and nCO). For convergence the same pairing was used (i.e., ACO vs. AO 

and CO vs. nCO) and for divergence we used the same classification used in Experiment 1.  

 

RESULTS 
2 

Early fecundity results from Experiment 1: 

 We observe similar early-life fecundity trajectories in the matched long-standing and 

recently derived A, B, and C-type selection treatments. Populations that share the same selection 
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regime recently (e.g. ACO and AO) are markedly different from those that do not. Qualitatively, 

the A, B, and C treatment groups of populations are clearly divergent from each other, although 

this is most obvious in the earliest ages assayed. Statistically comparisons made between 

treatments of the same type return with no difference, with the exception of ACO vs AO at ages 

12, 13, and 14 (bold values in Table 1.1; hours 276-336, p<0.0125). In contrast, comparisons 

made between selection types return with statistically significant differences, with the exception  

of B-type vs C-type after 11 days of age (bold values in table 1.2, hours 276-336, p>0.0166). Our 

significance thresholds vary between experiments and sometimes between treatment 

comparisons within an experiment due to the number of tests involved in each comparison.  

 

Adult life-history results from Experiment 2: 

 Figures 1.3 and 1.4 reiterate the convergence and divergence patterns observed in 

experiment 1. Within A and C-type treatments, long-standing and newly derived populations are 

not significantly different from one another (Table 1.3). On the other hand, populations that do 

not share the same selection regime are highly divergent from one another. A notable exception 

from this trend is evident in middle-period fecundity, between ages 17 and 25 days from egg, 

when there is no detectable difference in fecundity among those flies that are still alive in A and 

C cohorts. But in keeping with the results from experiment 1, fecundity prior to age 16 is 

significantly different among selection treatments (Table 1.4, p<0.005), and furthermore, 

fecundity after age 25 is significantly different (Table 1.4, p<0.005), as A flies die in large 

numbers after this age (Fig. 1.3).   
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DISCUSSION 

Overview of results: rapid divergence and convergence 

 First, when comparing the degree of phenotypic divergence among populations of the 

three recently derived treatments (AO, BO, and nCO) with those of the long-standing treatments 

(ACO, B, and CO), it is apparent that adult life-history differentiation is remarkably similar 

when the comparison is made between these two sets of treatments. In effect, hundreds of 

additional generations of A, B, and C-type selection seem to have yielded at most minor 

increases in adult life-history differentiation. 

 Second, and conversely, there is a high degree of phenotypic convergence within each of 

the three sets of A, B, and C-type populations. There are some exceptions to this general pattern. 

For example, (i) early fecundity over age 12, 13 and 14 days was significantly different between 

the ACO and AO populations, and (ii) early fecundity over age 12 and 13 days was significantly 

different between the CO and nCO populations.  

 We find that the phenotypes of our newly derived populations usually converged with 

those of longstanding populations sharing the same selection regime within 200 generations. We 

also find that these newly derived populations, all initiated from a common ancestor, 

significantly diverge from one another within this time frame. The rapidity of convergence and 

divergence suggests that in this particular set of 30 populations, recent evolutionary history is 

highly predictive of phenotype. We do not presume that phenotypic divergence and convergence 

in these experiments necessarily involves the same underlying genetic mechanisms. In 

Mendelian evolution experiments, selection treatments sometime produce common phenotypes 

in independent replicates that are the result of different genetic “solutions” (e.g. Garland et al. 

2002; Kawecki and Mery 2006).  However, recent work by Graves et al. (2017) on these same 



 17 

thirty populations reveals the same parallel genomic convergence as I find for life-history 

convergence. Specifically, they find genomic convergence in the frequencies of single-nucleotide 

polymorphisms, transposable elements, insertions, and structural variants.  Likewise, they found 

similar patterns of divergence. 

Given that Mendelian populations maintain a considerable amount of standing genetic 

variation which is reshuffled every generation by recombination, it is certainly reasonable to 

expect selection histories to be erased quickly even in moderately sized populations. Whether or 

not this occurs appears to depend on the details of the experiment in question. Populations of a 

bean weevil collected from different geographic origins continued to differ in host preference 

(Kawecki and Mery 2003), and in a number of life-history traits (Bieri and Kawecki 2003), 

despite 120 generations of adaptation to a common laboratory environment. Populations of 

Drosophila collected from different locations and reared in a uniform laboratory environment 

have previously been shown to converge for some phenotypes but not others (Cohan and 

Hoffman, 1989; Griffiths et al. 2005; Simões et al. 2007; Simões et al. 2008; Santos et al. 2010). 

This could be attributable to stochastic effects during the initial founding phase, insufficient 

sampling of natural variation or both. 

It is also conceivable that the speed of convergence among populations with different lab 

evolutionary histories is trait-specific. One version of this hypothesis is that history should play a 

greater role in the convergence of traits less directly related to fitness; that is to say, fitness traits 

should converge faster and more consistently than less traits less obviously associated with 

fitness as determined by a particular selection regime. This is a classic result of evolution 

experiment with asexual populations (e.g. Lenski and Travisano 1994; Travisano et al. 1995), but 

remains ambiguous in experiments with Mendelian populations (e.g. Joshi et al. 2003; Matos et 
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al. 2002; Fragata et al. 2014; Simões et al. 2019). Our finding that early fecundity was the same 

between the long-established ACO and newly derived AO populations prior to age 13, but 

diverged after age 13, is potentially consistent with this idea. Early fecundity is the primary 

fitness trait in the A-type selection regime, as eggs are collected within 10 days from hatching in 

a single generation (Fig. S1.1). Thus, fecundity after this age should be effectively decoupled 

from fitness. 

Another aspect of the hypothesis that the effect of history on convergence is trait specific 

is that past selection might continue to affect the adaptation of populations to new selection 

pressure if the past selection gave rise to particular patterns of genotype by environment (GxE) 

interactions. We have invoked this explanation before in a study of reverse evolution with some 

of the same populations as in the current study (Teotonio and Rose 2000). Notably, that study 

showed somewhat less phenotypic convergence for some characters and populations than we 

have generally found here. Recent work by Fragata et al. (2014) reports that strong initial 

differentiation among populations of D. subobscura is diminished within 22 generations of a 

common selection environment, both for traits expected to be correlated with fitness and those 

that were not. Overall, our results are consistent with this result and support the view that past 

evolutionary history generally has transient effects in the face of strong selection and ongoing 

recombination.  

 

Novel aging result: early-adult mortality plateaus 

 The second major finding that emerged from this study was the virtual absence of aging 

between ages 14 and 28 days, from egg, in the age-specific mortalities and fecundities of the two 

C cohorts assayed in Experiment 2. These cohorts were derived from populations that had been 
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cultured for about 350 (CO) and 200 (nCO) generations without reproduction during, or of 

course before, this period of adult life. Thus, there has been full-intensity selection for continued 

survival to least up to the age of 28 throughout these hundreds of generations. From this 

standpoint, then, it is perhaps unsurprising that we find little statistically detectable aging during 

this period of adult life, despite the reproductive maturity of these fruit flies (Rose et al. 2007).  

 But prior studies of ours did not reveal this pattern; for example, previous experiments 

with CO lines do not reveal an absence of aging during the same period (Rose et al. 2002). 

Rather, aging appears to start soon after the age of 16 or 18 days from egg in the cohorts assayed 

at that time, when the CO populations were well over 150 generations of selection for survival 

until at least 28 days, bearing in mind their history of O selection prior to their derivation as CO 

stocks in 1989 (vid. Rose et al. 1992; Fig. 1.4). This disparity relative to the present data is 

particularly obvious for the female cohort data from the 2002 study of Rose et al., which shows a 

pattern of increasing mortality between ages 14 and 28 days from egg, unlike the data found in 

our present comparison of A and C type mortality rates.  

 At present, our interpretation is that this disparity was due to our earlier use of vial assays 

of age-specific adult life-history. The A, O, and C type populations are cultured using adults 

laying eggs in cages, with C populations living in cages for the two weeks between ages 14 and 

28 from egg. Thus, we suggest, the present assay was performed under conditions more 

representative of the conditions that selection was actually focused on over the last 200 or 35 

generations of the culture of nCO and CO populations, respectively. Conversely, our earlier 

assays were conducted under conditions that did not closely reflect the circumstances of C-type 

selection. Our conclusion is that, if we had used the same type of cage assay as that employed in 
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the present study before, we would have previously detected the virtual absence of aging during 

the 14-28 day life-history period.  
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Figure 1.1. Schematic of population selection history. Abbreviated illustration of the 
evolutionary relationships between the focal selection treatments of this study. All treatments 
share ancestry, some more recently than others. The first capitalized letter of a treatment name 
indicates the type of life-history regime for which it has sustained selection: A (10-day cycle), B 
(14-day cycle), or C (28-day cycle).  
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Figure 1.2. Early-life fecundity comparison in all six contemporary selection treatments. 
Initial age-specific fecundity prior to day 14 from 30 cohort of our six laboratory selection 
treatments. Open circles and dashed lines represent average eggs laid per female per day as a 
function of age in the five replicated longstanding populations (ACO in the top panel, B in the 
middle panel, CO in the bottom panel), and solid circles and solid lines represent the five 
replicated newer derived populations (AO in the top panel, BO in the middle panel, nCO in the 
bottom panel). 
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Figure 1.3. Adult age-specific mortality among males and females from A-type and C-type 
selection treatments. Points represent log-transformed mortality per population in each 
selection treatment, and are presented separately for females (left panels) and males (right 
panels). Open circles represent longstanding populations (ACO in the top panels and CO in the 
bottom panels), and solid circles represent newer derived populations (AO in the top panels and 
nCO in the bottom panels). 
  



 28 

 

Figure 1.4. Adult age-specific fecundity from A-type and C-type selection treatments. Points 
represent average number of eggs laid per female per day as a function of age. Open circles 
represent longstanding populations (ACO in the top panel, CO in the bottom panel), where 
closed circles represent newer derived populations (AO in the top panel, nCO in the bottom 
panel). 
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Table 1.1. Convergence of early-life fecundity. Calculated p-values for the linear mixed 
effects model of convergence on initial fecundity between populations (Experiment 1). 
Fecundity estimates are compared between selection treatments within the same age 
intervals, although these intervals vary slightly by comparison. Bold values indicate 
significant non-convergence. 
 

Age range 
(hours) 

ACO vs. 
AO 

Age range 
(hours) 

B vs.  
BO 

Age range 
(hours) CO vs. nCO 

204-228 0.025         
240-264 0.381 228-252 0.04 240-264 0.568 
276-300 0.011 264-288 0.764 276-300 0.090 
312-336 0.008 300-336 0.561 312-336 0.362 
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Table 1.2. Divergence of early-life fecundity. Calculated p-values for the linear mixed 
effects model of divergence on initial fecundity between selection regimes for Experiment 1. 
Bold values indicate non-significant divergence. 
 
 

Age range  
(hours) 

A-type vs.  
B-type 

A-type vs.  
C-type 

B-type vs.  
C-type 

240-264 
276-300 
312-336 

3.26 x 10-4 
4.74 x 10-9  

5.29 x 10-12 

2.57 x 10-12 
1.90 x 10-6 

6.46 x 10-13 

1.73 x 10-8 
0.013 
0.216 
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Table 1.3. Convergence of A-type and C-type female fecundity. Calculated p-values for the 
linear mixed effects model of convergence on adult age-specific fecundity in Experiment 2 
between ACO vs. AO and CO vs. nCO.  
 
 

Age range 
(days) 

ACO vs. 
AO 

CO vs.  
nCO 

14-16 0.889 0.137 
17-19 0.637 0.801 
20-22 0.528 0.91 
23-25 0.45 0.713 
26-28 0.573 0.667 
29-31 0.758 0.942 
32-34 0.639 0.899 
35-37 0.357 0.982 
38-40 0.272 0.89 
41-43 0.502 0.97 
44-46 0.574 0.654 
47-49 0.384 0.732 
50-52 0.989 0.95 
53-55 0.717 0.865 
56-58  0.742 
59-61  0.519 
62-64  0.759 
65-67  0.467 
68-70  0.895 
71-73  0.907 
74-76  0.762 
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Table 1.4. Divergence of A-type and C-type female fecundity. Calculated p-values for the 
linear mixed effects model of divergence on female age-specific fecundity in Experiment 2 
between A-type selection and C-type selection. Bold values indicate non-significant 
divergence.  
 
 

Age range 
(days) 

Female 
fecundity 

14-16 2.03 × 10-5 
17-19 0.193 
20-22 0.195 
23-25 0.089 
26-28 0.004 
29-31 0.002 
32-34 4.45 × 10-4 
35-37 1.11 × 10-5 
38-40 2.71 × 10-5 
41-43 2.48 × 10-5 
44-46 8.94 × 10-5 
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Figure S1.1. Detailed schematic for A, B, and C culture protocols. 



 34 

Chapter 2 

Divergence and Convergence of Egg Hatching and Larval Development 

 in Experimentally Evolved Drosophila melanogaster 

 

ABSTRACT 

Laboratory selection experiments are characteristically simple, yet powerful enough to 

allow insights into the mechanisms of evolution. But a longstanding challenge facing evolution 

experiments with metazoans is the sheer amount of time required to see significant changes due 

to selection. In this work, we present data from a unique system of experimentally evolved 

laboratory populations of Drosophila melanogaster that have experienced three distinct life-

history selection regimes. The goal of our study was to determine how quickly populations 

undergoing selection diverge phenotypically from their ancestors, and how quickly they 

converge with independently derived populations that share a selection regime. Our results 

indicate that if phenotypic divergence from an ancestral population occurs rapidly when a trait is 

related to fitness under a particular selection regime. Similarly, populations sharing a selection 

regime converge phenotypically for the same traits over similar time frames. In both instances, 

evolutionary history appears to have little to no influence on the evolution of fitness-related 

phenotypes. Conversely, the absence of phenotypic response to a particular selection regime 

suggests that a trait is not related to fitness in that selection regime.  In addition, populations that 

fail to show convergence for the same traits. For these fitness-unrelated traits, evolutionary 

history had a larger influence on predicting phenotypes than recent selection regime. Ultimately, 

these results demonstrate that selection regime can have varying impact on numerous traits 

depending on their relation to fitness. 
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INTRODUCTION 

Laboratory selection experiments have been often used to explore hypotheses concerning 

adaptation.  Experimental evolution can quickly, dramatically, and most importantly 

reproducibly shape phenotypes in model species (Garland and Rose 2009). Experimentally 

evolved populations, when adequately replicated, can be used to test general theories about 

evolution in well-defined settings (cf. Garland and Rose 2009; Rose et al. 2001; Barrick and 

Lenski 2013).  

Although these experimentally evolved populations are prime tools for testing hypotheses 

concerning adaptation, the general patterns of phenotypic responses to selection remain 

inadequately characterized. In some cases, populations exposed to the same selection regime do 

not show signs of convergence for several life-history traits even after numerous generations 

(Kawecki and Mery 2003; Bieri and Kawecki 2003). In other cases, populations from numerous 

backgrounds have shown convergence for some, but not all, phenotypes when reared in a 

uniform laboratory environment (Cohan and Hoffman, 1989; Joshi et al. 2003; Griffiths et al. 

2005; Simões et al. 2007; Simões et al. 2008; Santos et al. 2010). Lastly, we have seen rapid 

convergence within populations experiencing the same selection regime and rapid divergence 

between populations of differing selection regime for adult mortality and fecundity (Chapter 1). 

These varying results could be attributed to insufficient sampling of natural variation, the 

founding populations being too different, or both.  

 It’s possible that the impact of selection on convergence and divergence is trait-specific. 

Traits that are more closely related to fitness under a particular selection regime are probably 

affected by such selection more so than traits that are less related to fitness. In the same vein, 

traits not related to fitness may be impacted by evolutionary history more than selection. This has 
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been shown in asexual populations (e.g. Lenski and Travisano 1994; Travisano et al. 1995), but 

not in sexual populations, with the possible exception of some of the research of Matos et al. 

(multiple references). Previously, we have shown in Chapter 1, here, that adult mortality and 

fecundity, two traits that are heavily related to our three selection regimes, have converged and 

diverged rapidly, in keeping with this notion (Chapter 1). Here we examine the effects of 

selection on three additional traits that are conceivably related to our selection regimes (egg 

hatching time, larval development, and pupal development), in 30 experimentally evolved 

populations of Drosophila melanogaster.  

Our 30 experimentally evolved populations are broken into two sets of populations: 15 

long-standing populations and 15 recently-derived populations. Five populations from each set 

are subject to one of three regimes of experimental evolution: (1) selection for accelerated larval 

development, (2) the ancestral laboratory selection regime of two-week life cycles, and (3) 

selection for postponed reproduction. Due to the nature of the selection regimes, it is reasonable 

to believe that development as a whole will be impacted by these varying selection regimes. 

Specifically, the populations selected for accelerated larval development will likely show a 

change in development, but populations that are not directly selected for development may 

nevertheless show signs of change in their development due to pleiotropic effects.  

Similarly to Chapter 1, we aim to study the extent to which multiple replicated lines 

converge on similar phenotypic and genetic outcomes. We use 30 experimentally evolved 

populations of Drosophila melanogaster to address the repeatability of phenotypic evolution in 

outbreeding, sexually-reproducing populations. Here, we test for rapid convergence and 

divergence between and within treatment types for egg hatching times, larval development, and 
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pupal development to determine the degree to which selection might erase or preserve the 

signature of evolutionary history in these traits.  

 

MATERIALS AND METHODS 

Experimental evolution regimes 

 This study uses large, deliberately outbred, lab populations of Drosophila melanogaster 

selected for different patterns of age-specific reproduction. All the lines used in the current study 

originate from an ancestral “IV” population first collected from South Amherst, MA in 1975 by 

Phillip Ives (vid. Rose 1984), and then cultured in the lab using two-week discrete generations. 

These ancestral IV flies were subsequently used in February 1980 to create five “O” (old) 

replicate lines, using females of increasing ages over successive generations until these flies were 

maintained on a 10-week generation cycle (Rose 1984).  The IV flies were also used to found 

five additional “B” lines in February 1980, lines which have since been cultured using the same 

protocol as the IV populations from which they were derived.  Detailed descriptions of the 

subsequent history and culture methods for these lines can be found in Rose et al. (2004).  

 The populations of the O selection treatment are the ancestors of 5 additional 

experimental treatments that along with the B selection treatment make up the 6 focal treatments 

of this study.  These treatments belong to one of two temporal designations (“longstanding” or 

“recent”) and one of three selection types (“A”, “B”, or “C”, described below).  Thus, these 6 

treatments provide opportunities to study the differences between populations that have the same 

selection regime but were subjected to them long ago versus recently, and also to study the 

differences between populations that diverged from the same ancestor recently, but experience 
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selection for different life histories. See Figure 2.1 for an overview of the experimental evolution 

design of the present study.  

We call these 6 selection treatments ACO, AO, B, BO, CO, and nCO, with each letter 

referencing a selection regime and evolutionary history. The CO populations were derived from 

the original O treatment after 57 generations of O-type selection in 1989. The “C” in CO 

indicates a 28-day selection regime while the “O” represents the CO treatment’s previous 

selection regime. The ACO lines are the only populations that did not directly originate from the 

O treatment, but were instead derived from the CO populations after 27 generations of C-type 

selection in 1992.  The AO, BO, and nCO lines (“n” stands for new CO treatment) were derived 

from the O treatment around 2007 after 153, 150, and 159 generations of O selection, 

respectively.  Thus, these three treatments were derived relatively recently, while the CO, ACO, 

and B treatments are longstanding. 

This system of 30 populations is now maintained using three distinct selection regimes:  

A, B, and C. A selection regime: the ten ACO and AO populations spend the first 9 days of life 

in 8-dram glass vials, and at day 10 adults are transferred to a Plexiglass “cage” in which they 

are given fresh food and allowed to oviposit for 24 hours.  B selection regime:  the ten B and 

BO populations spend 14 days in 8-dram vials, and are then allowed 1-2 hours in fresh vials to 

oviposit before adults are discarded.  C selection regime:  the ten CO and nCO populations 

develop in vials for 14 days prior to being transferred to Plexiglass cages. On day 26 C flies are 

given 48 hours to oviposit before eggs are collected.  All populations are supplied with food 

made from cooked bananas, barley malt, yeast (3.6% w/v), corn syrup, and agar. The 

populations that spend time in cages are also supplied with a 5% live yeast paste on the food 
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surface to promote oviposition 24-48 hours prior to egg collection. Lastly, all populations are 

kept at 23q C and left in a 24-hour light cycle room. See Figure S2.1. 

 

Experimental comparisons 

 Two experimental comparisons were performed: (1) Common-garden comparison of egg 

hatching time from the ACO, AO, B, BO, CO, and nCO treatments; and (2) Common-garden 

comparison of development times from (a) hatching to the start of pupariation and (b) hatching 

to adult eclosion from pupae, assayed in parallel among flies from the ACO, AO, B, BO, CO, 

and nCO treatments. The goal of these two comparisons was to determine the degree to which 

divergence has occurred among the three different selection treatments, as well as the degree to 

which convergence has occurred between the longstanding and recently-derived treatments in 

adult phenotypes. For these two experiments, all replicate populations assayed were reared in 

parallel on a B-type culture schedule for two generations before each experiment to minimize 

maternal effects.  

 

Experiment 1: Comparison of egg hatching time for 30 populations 

 Egg hatching time measures were collected from freshly laid eggs in all replicate 

populations of ACO, AO, B, BO, CO, and nCO treatments. After the two generations of 

standardized rearing, females from each replicate were provided with ample yeast to promote 

egg laying days before the collect. Prior to the collect, fresh food was provided to allow for 

additional egg laying to minimize the effects of slightly ovoviviparous flies. Then, the females 

were given one hour with a charcoal infused food plate supplied with yeast in the center for 

oviposition. For the subsequent 30 hours, plates were monitored every hour for the presence of 
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newly hatched larvae. Newly-hatched larvae were noted and recorded and removed from the 

plate. 

 

Experiment 2: Parallel assays of two developmental stages in 30 populations 

 For this experiment, two phases of metamorphosis were measured, from hatching to the 

onset of pupariation, and from hatching to adult eclosion. After the two generations of 

standardized rearing, each population from the ACO, AO, B, BO, CO, and nCO treatments laid 

eggs on a food-free agar plate. From each such plate, 30 first-instar larvae were individually 

transferred to a food vial, three vials per population. For the subsequent 14 days, vials were 

monitored every four hours for the presence of newly formed pupal casings, as well as newly 

eclosed adult flies. Newly formed pupae were noted and the time recorded, while newly eclosed 

flies were collected, sexed, and counted.  

 

Statistical methods 

Experiment 1 

 In experiment 1, we tested for convergence between paired selection treatments (i.e., 

ACO vs. AO, B vs. BO, CO vs. nCO) for effects of selection on egg hatching time. The 

observations consisted of the hatching time of individuals (yikm) from selection treatments (i = 1 

(ACO or B or CO), 2 (AO or BO or nCO)), populations-k (k = 1,…,10), and plate m (m = 

1,…,3), and are assumed to be described by,  

 

  𝑦𝑖𝑘𝑚 = 𝜇 + 𝛼𝛿𝑖 + 𝑏𝑘 + 𝑐𝑘𝑚 + 𝜀𝑖𝑘𝑚                                            (1) 
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where δs = 0, if s = 1 and 1 otherwise, and bk, ckm, and εikm are independent standard normal 

random variables with zero means and variance σb2, σc2, and σH2, respectively. Statistically testing 

for a significant effect of selection regime on egg hatching time corresponds to determining if α 

is significantly different from 0. Parameters of equation (1) were estimated by the restricted 

maximum likelihood techniques implemented by the lme function to R (R Core team 2014). 

 To test for divergence, we used the same basic analysis for convergence, except the 

treatments were not separated in a pairwise fashion. Instead all treatments were included at once 

(i = 1 (ACO), 2 (AO), 3 (B), 4 (BO), 5 (CO), and 6 (nCO)). Since the degree of divergence 

varied between treatments we then compared all treatments in a pairwise fashion using lsmeans 

(Lenth 2016).  

Experiment 2 

 The same basic analysis for convergence as that of Experiment 1 was used for pupal and 

adult development time. To test for divergence, the six selection regimes were reclassified to 

three different categories: ACO and AO to A; B and BO to B; CO and nCO to C. The effects of 

selection regime were then evaluated with equation (1).  

 

RESULTS 

Egg hatching results from Experiment 1: 

 Figure 2.2 illustrates a pattern of the older derived populations hatching earlier than the 

newly derived populations disregarding the current selection regime. With the matched A, B, and 

C-type populations, it appears that the long-standing and recently derived populations have not 
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converged in their egg hatching patterns. In addition, populations undergoing entirely different 

selection regimes share similar egg hatching patterns (e.g. AO and CO). 

 Comparisons made between treatments of the same type showed significant differences 

(see Table 2.1) except for ACO and AO. In contrast, comparisons made between the old derived 

populations, B v. BO and CO v. nCO, show no statistically significant differences, whereas AO 

is significantly different than that of its newly derived counterpart, ACO.  

 

Development time results from Experiment 2: 

 Figure 2.3 illustrates patterns of convergence and divergence observed for the 

developmental characters measured in Experiment 2. First, measures of pupariation and eclosion 

taken within matched A, B, and C-type treatments, both long-standing and recently derived, are 

very similar. Thus, both metrics of development show strong convergence, regardless of a 

population’s specific evolutionary history. Second, populations that share the same selection 

regime recently (e.g., ACO and AO) are markedly different from those that do not; that is to say, 

A-type development is more rapid than B-type development, which is more rapid than C-type 

development. Thus, both the time from hatching to pupariation and the time from hatching to 

eclosion are development characters that have unambiguously diverged in the A, B, and C 

treatment groups of contemporary populations.  

Adult and pupal development times show no significant differences when populations 

subjected to the same selection regimes are compared, despite the differences in duration of the 

shared selection regime (Table 2A). For pupal development time, these tests could have detected 

differences at 7% of the mean and for adult development times about 4% of the mean (Table 

2A), thus these are not insensitive tests. However, when populations subjected to different 
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selection regimes are compared we see significant development time differences, with A-type 

selection resulting in the fastest development time followed by B-type selection and then C-type 

selection (Table 2B).  

 

DISCUSSION 

 Similar to the results of Chapter 1, when comparing the degree of phenotypic divergence 

among populations of the three recently derived treatments (AO, BO, and nCO) with those of the 

long-standing treatments (ACO, B, and CO), it is apparent that larval and pupal development 

differentiation is remarkably similar between the recently derived treatments and the long-

standing treatments. In effect, hundreds of additional generations of A, B, and C-type selection 

seem to have yielded at most minor increases in larval and pupal development differentiation. To 

add to this, there is a high degree of phenotypic convergence within each of the sets of A, B, and 

C-type populations for larval and pupal development.  

 Similar to the phenotypes examined in Chapter 1, we find that the larval and pupal 

development of our newly derived populations usually converged with those of the longstanding 

populations sharing the same selection regime within 200 generations. In addition, these newly 

derived populations, all initiated from a common ancestor, significantly diverged from one 

another within this time frame. These results suggest that recent evolutionary history is highly 

predictive of phenotype. Although the phenotypes have converged, we do not assume that the 

genetic mechanisms underlying these phenotypes are the same between the two groups of 

populations. Selection treatments sometimes produce common phenotypes in independent 

replicates that are the result of different genetic “solutions” (e.g., Garland et al. 2002; Kawecki 

and Mery 2006). However, recent work by Graves et al. (2017) on these same thirty populations 
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reveals the same parallel genomic convergence as I find for life-history convergence. 

Specifically, they find genomic convergence in the frequencies of single-nucleotide 

polymorphisms, transposable elements, insertions, and structural variants.  Likewise, they found 

similar patterns of divergence. 

 Although the trend of rapid convergence and divergence held consistent for larval and 

pupal development, this was not the case for egg hatching time. First, there is varying phenotypic 

convergence within each of the three sets of A, B, and C-type populations. The A-type 

populations were the only treatment type to show evidence of convergence for egg hatching, 

where the two sets of B and C-type populations show no signs of convergence. Second, there is 

very little phenotypic divergence within populations of the three recently derived treatments and 

within populations of the three long-standing treatments. The only exception is the AO 

populations which have diverged from the remaining two recently derived treatments. 

 The contrasting results of convergence and divergence between the egg hatching times 

and larval and pupal development in our 30 populations suggest that the speed of convergence 

and divergence is trait-specific and selection-specific. In addition, this would imply that the 

impact of evolutionary history and current selection regime on a given phenotype are also trait 

and selection specific. 

Both the B and C-type populations showed evidence of convergence within treatment 

type and divergence between treatment type for larval and pupal development, but not for egg 

hatching time. Due to the nature of the B and C-type selection regime, in that the selection 

focuses on later life, it’s conceivable that only certain aspects of development were indirectly 

affected by selection via antagonistic pleiotropy. In other words, egg hatching time may not be 

considered a fitness-related trait for the B and C-type selection regimes, therefore there is no 
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evidence of convergence or divergence.  For larval and pupal development, recent selection 

regime played a critical role in differentiating these populations, whereas evolutionary history 

appeared to have no significance. The opposite holds true for egg hatching, in that for it 

evolutionary history contributed more to the phenotype than current selection regime.  

In contrast, the A-type populations, who are selected for accelerated larval development, 

do show convergence within treatment type and divergence between treatment type for all three 

developmental traits. Due to the A-type selection regime directly focusing on the developmental 

stages of the flies, it is reasonable that all three stages of development show rapid convergence 

within treatment and divergence between treatment. Similarly to Chapter 1, recent selection 

regime seems to be the only driving force on these developmental phenotypes, and previous 

evolutionary history seems to have been erased. 

Recent selection regime and evolutionary history appear to be the two major forces 

contributing to any given phenotype, assuming the environment is held constant. These forces 

are inversely related to one another, in that, as one force is stronger the other force appears to 

diminish in effect. The strength of either force on a trait is entirely dependent on how relevant 

the trait in question is to fitness. Simply put, the more related to fitness the trait is, the more 

likely the recent selection regime will impact the trait’s phenotype. 
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Figure 2.1. Schematic of population selection history. Abbreviated illustration of the 
evolutionary relationships between the focal selection treatments of this study. All treatments 
share ancestry, some more recently than others. The first capitalized letter of a treatment name 
indicates the type of life-history regime for which it has sustained selection: A (10-day cycle), B 
(14-day cycle), or C (28-day cycle).  
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Figure 2.2. Comparison of egg hatching times in all 6 contemporary selection treatments. 
Time to egg hatching from 60 cohorts of our six laboratory populations averaged at the 
population level. Open circles and dashed lines represent older derived populations, where solid 
circles and solid lines represent newer derived populations. First 15 hours are not shown in figure 
due to there being very minimal hatching prior to hour 15. 
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Figure 2.3. Comparison of larval and pupal development time in all 6 contemporary 
selection treatments. (a) Time to pupariation from thirty cohorts of our six laboratory 
populations. Open circles and dashed lines represent the percentage of cohort pupariated by each 
hour assayed in the five replicated longstanding populations (ACO in the top panel, B in the 
middle panel, CO in the bottom panel), and solid circles and solid lines represent percentage of 
cohort pupariated per hour assayed in the five replicated newer derived newer derived 
populations. (b) Time to eclosion from thirty cohorts of our six laboratory populations. The 
percentage of each cohort that reached eclosion by each hour assayed s expressed following the 
same conventions as 3a. 
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Table 2.1. Calculated p-values for the linear mixed effects model of convergence on egg 
hatching times between all 6 selection treatments. 
 
Comparison p-value 
ACO vs AO 0.3898 
ACO vs B 0.9192 
ACO vs BO <0.0001 
ACO vs CO 0.2628 
ACO vs nCO <0.0001 
AO vs B 0.9301 
AO vs BO 0.0122 
AO vs CO 0.9999 
AO vs nCO <0.0001 
B vs BO 0.0007 
B vs CO 0.8342 
B vs nCO <0.0001 
BO vs CO 0.0252 
BO vs nCO 0.1677 
CO vs nCO <0.0001 
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Table 2.2. Convergence and divergence in development time among contemporary 
populations.  Egg-to-pupa and egg-to-adult development times (hours) in Experiment 2.  
95% confidence intervals are computed for the development time differences using eq. 2. 
Newly-derived selection treatments of similar types (A) show no significant differences 
from long-established selection treatments of the same type.  Conversely, selection regimes 
of the different types (B) are all significantly diverged from one another. 
 

 Comparison Pupae Diff 95% c.i. Adult diff 95% c.i. 

A AO 80.5   155.0   

 ACO 81.3 (ACO-AO) 0.8 r 5.8 152.3 (AO-ACO) 2.7 r 5.4 

 BO 88.1   172.1   

 B 86.4 (BO-B) 1.7 r 5.9 173.1 (B-BO) 1.0 r 7.4 

 nCO 99.4   188.4   

 CO 98.2 (nCO-CO) 1.2 r 6.1 186.1 (nCO –CO) 2.3 r 6.6 

B A 80.9 (B-A) 6.4 r 3.6 153.6 (B-A) 19.0 r 4.0 

 B 87.3 (C-B) 11.5 r 3.6 172.6 (C-B) 14.6 r 4.0 

 C 98.8 (C-A) 17.9 r 3.6 187.2 (C-A) 33.6 r 4.0 
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Figure S2.1. Detailed schematic for A, B, and C culture protocols. 
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CHAPTER 3 

Drosophila Transcriptomics with and without Ageing 

 

ABSTRACT 

 The genomic basis of ageing still remains unknown despite being a topic of study for many 

years. Here, we present data from 20 experimentally evolved laboratory populations of Drosophila 

melanogaster that have undergone two different life-history selection regimes. One set of 10 

populations demonstrates early ageing whereas the other set of 10 populations shows postponed 

ageing. Additionally, both types of populations consist of five long standing populations and five 

recently derived populations. Our primary goal was to determine which genes exhibit changes in 

expression levels by comparing the female transcriptome of the two population sets at two different 

time points. Using three different sets of increasingly restrictive criteria, we found that 2.1-15.7% 

(82-629 genes) of the expressed genes are associated with differential ageing between population 

sets. Conversely, a comparison of recently derived populations to long-standing populations 

reveals little to no transcriptome differentiation, suggesting that the recent selection regime has 

had a larger impact on the transcriptome than its more distant evolutionary history. In addition, we 

found very little evidence for significant enrichment for functional attributes regardless of the set 

of criteria used.  Relative to previous ageing studies, we find little overlap with other lists of aging 

related genes. The disparity between our results and previously published results is likely due to 

the high replication used in this study coupled with our use of highly differentiated populations. 

Our results reinforce the notion that the use of genomic, transcriptomic, and phenotypic data to 

uncover the genetic basis of a complex trait like ageing can benefit from experimental designs that 

use highly replicated, experimentally-evolved populations. 
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INTRODUCTION 

 The use of evolutionary genomics to study aging is still in its infancy (Braendle et al. 2011; 

Rose and Burke 2011; Hubley et al. 2016; Graves et al. 2017).  Experimental evolution offers 

extreme phenotypic differentiation among traits in replicated populations (Garland and Rose 

2009).  Combining such populations with high-throughput omics can identify important genetic 

variants (Hubley et al. 2016; Bryant et al. 2017) and intermediate molecular phenotypes such as 

expression levels (Remolina et al. 2012; Mallard et al. 2018).  This experimental and analytical 

framework has the potential to suggest causal genetic regions in the genome and unexpected 

molecular mechanisms responsible for the differentiation of ageing and characters related to it. 

Despite ageing having been a subject of study for many decades, a precise understanding 

of its underlying physiological and molecular mechanisms remains elusive.  One type of study has 

focused on knocking out candidate genes to examine its effect on longevity (Bray et al. 2016).  

Other types of studies have focused on changes at the genomic level between populations of 

varying ageing patterns (Remolina et al. 2012), with an extension of this approach to the analysis 

of transcriptome differentiation (Carlson et al. 2015; Sarup et al. 2011).  Many of these latter 

studies focus on either a single population tracked over several life stages or on different 

populations exposed to different treatments that result in differing ageing patterns, in order to 

uncover the transcriptome changes that result from altered ageing. 

A more extreme kind of comparison is possible when populations of the same 

chronological age differ with respect to whether they are ageing at all. Burke et al. (Burke et al. 

2016) have demonstrated that two sets of ten Drosophila melanogaster populations, called “A” 

and “C”, show distinctively different ageing patterns: The A populations begin demographic 
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ageing at least two weeks before the C populations. These twenty populations also show extensive 

and consistent differences in genome-wide patterns of single-nucleotide polymorphism (SNP), 

transposable element (TE), and structural variant (SV) frequencies (Burke et al. 2016; Graves et 

al. 2017). 

We sequenced the transcriptomes of the twenty A and C populations of D. melanogaster 

populations.  Expression profiling was performed on whole-body females collected at both day 14 

and day 21 from each cohort’s egg-stage. At these collection points, the individuals from the ten 

A populations had an adult age of 6 and 13 days respectively whereas those from the ten C 

populations had an adult age of 2 and 9 days. These time points were specifically chosen because 

A-type populations show demographic ageing at those times, unlike the C-type populations (Fig. 

3.1). Given this extreme demographic contrast, we compiled three different lists of genes 

putatively associated with ageing in D. melanogaster. 

 

MATERIALS AND METHODS 

Experimental populations 

The populations used here were experimentally evolved over numerous generations (Rose 

et al. 2004; Burke et al. 2016; Graves et al. 2017).  These populations were subject to two selection 

regimes which differed in length of their discrete generations.  Each selection regime was applied 

to two sets of five populations, each with known distinct evolutionary histories (Fig. S3.1).  The 

ACO and AO sets are both A-type, whereas the CO and nCO populations are both C-type.  

Although the individuals of the two population-types differ in body size, there is no evidence of 

major allometric differences. 
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Fly husbandry 

Each population is maintained over generations at a census size of ~2000 individuals in 

order to reduce the effects of genetic drift on genetic variation.  Flies are kept in 8-dram plastic 

vials during development and placed in Plexiglass cages on day 10 (A-type) and day 14 (C-type).  

For the A-type treatment, once the flies are placed in cages, they are given a 24 hour oviposition 

window on fresh food.  For the C-type treatment, the flies are left in cages until day 26, when they 

are given 48 hours to oviposit on fresh food.  All populations are fed with fresh medium made with 

cooked bananas, corn syrup, yeast, barley malt, and agar (Rose et al. 2004).  Fresh food is 

supplemented with 5% live yeast paste to enhance oviposition duration egg-laying.  All 

populations are kept at about 23qC and exposed to a 24-hour light cycle. 

RNA preparation and sequencing 

For each population and time point combination, 150 whole-body females from the same 

cohort were submerged in TRIzol, snap-frozen in liquid nitrogen, and stored at -80C until 

extraction.  Total RNA was purified using the RNeasy Mini Kit (Qiagen).  RNA concentration, 

purity, and integrity were estimated using a NanoDrop 8000 Spectrophotometer and the RNA 6000 

Nano Chip Kit (Agilent Technologies) with an Agilent 2100 Bioanalyzer.  Ribodepleted, strand-

specific paired-end libraries were prepared using the Ribo-Zero Gold Set A and the TruSeq Total 

RNA Library Prep kits from Illumina.  Libraries were multiplexed and sequenced from both ends 

for 75 cycles over four lanes on an Illumina HiSeq2500 at the University California Irvine 

Genomics High Throughput Facility. 
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Gene expression analysis 

Quality checks of each RNA paired-end sequencing output were performed with FastQC 

v0.11.5 (Andrews 2010).  Subsequent sequence processing with Trimmomatic v0.35 (Bolger et al. 

2014) included removal of adapter sequences, trimming of 3’ nucleotide calls with Phred score 

lower than 30, and filtering out of sequencing reads with a final length lower than 36 bp or overall 

Phred score lower than 30.  Paired-end reads were mapped to the D. melanogaster Release v6.18 

reference genome assembly (dos Santos et al. 2015) using STAR (Dobin et al. 2013) –under default 

settings except for an adjustment to avoid the detection of novel junctions– as this tool shows 

enhanced accuracy mapping rates in relation to other alignment tools (Baruzzo et al. 2017).  The 

average alignment rate for the 40 sequencing outputs was 89.5% (minimum=73.3%, 

maximum=97.8%).  Alignment post-processing was performed with SAMtools v0.1.19 (Li et al. 

2009).  Read counting per gene and population was done using HTSeq v0.6.1p1 (Anders et al. 

2013) at default settings.  Genome coverage was estimated using the genomeCoverageBed utility 

from BEDTools v2.25.0 (Cridland et al. 2015).  Summary statistics and NCBI SRA accession 

numbers are provided in Table S3.1. 

For each sample, per gene read counts were normalized using the default DESeq2 

settings (Love et al. 2014).  Genes showing normalized count values greater than 4 in at least 8 

out of 10 populations, within at least one of the treatment types, were included in downstream 

analyses.  To see any relationships between populations, we conducted a principal component 

analysis with the normalized count data using prcomp and ggplot2 (Wickham 2016).  To 

accommodate any block effect associated with different rounds of extraction and sequencing, the 

normalized count data for reproducibly expressed genes were analyzed using a linear mixed 

effects model (R Development Core Team 2016). In each population we have a measure of gene 
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expression, eijk, from selection treatment-i (i=1 (A) or 2(C)), block-j (j=1 (ACO and CO) or 2 

(AO and nCO)), and population-k (k=1,..,20). We can then model expression with the mixed 

linear effects function, 

𝑒𝑖𝑗𝑘 = 𝜇 + 𝛿𝑖𝛼𝑖 + 𝑏𝑗 + 𝜀𝑘,       

where Gi =0, if i=1 and 1 otherwise, b and H are assumed to be independent random variables 

with a normal distribution with zero mean and variances 𝜎12 and 𝜎22 respectively. Significant 

treatment effects are determined by testing whether D2 is significantly different from zero. 

Statistical significance for differential expression of any given gene was set at a 5% FDR for ~4000 

tests,  i.e. the number of expressed genes that passed filtering (Benjamini and Hochberg 1995). 

Searches for biological patterns across GO and KEGG terms, and other genome features 

such as chromosome distribution, were performed using DAVID 6.8 (Huang da et al. 2009).  The 

Benjamini-Hochberg correction for multiple tests was applied given that we were performing 50-

600 tests, i.e. the number of differentially expressed genes inputted into DAVID, across different 

gene lists. 

 

RESULTS 

Evidence for transcriptional convergence within selection regimes 

 We employed double-stranded Illumina RNA-seq to sequence the transcriptome of 

whole-body females from the A and C populations to determine the magnitude and patterns of 

differentiation as a result of the selection regimes to which they have been exposed. Due to the 

recent increase in annotated noncoding RNA genes in D. melanogaster (Matthews et al. 2015), a 

fraction of which lacks poly(A) tail (Yang et al. 2011), we decided not to enrich for poly(A) 
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mRNAs.  We made this choice in order to perform an unbiased search across all transcripts. For 

each population type by time point combination, 10 populations were profiled. 

 The median number of uniquely mapped sequencing reads per population was 8.1 

million, bringing the total to 332.7 million reads, which in total sequence length amounts to ~21 

Gb. This represents ~272 fold coverage of the fraction of the genome that has been found to 

produce primary transcripts (Graveley et al. 2011).  Out of 17,481 gene features (from protein-

coding sequences to pseudogenes to non-coding RNA genes) annotated in the R6.18 of D. 

melanogaster, 3,994 were found to be reproducibly expressed at a significant level across a 

majority of at least one of the two population types, thereby excluding potential transcriptomic 

noise, and therefore were considered suitable for downstream analyses (Material and Methods). 

 After data normalization relative to the total transcript output, we performed a principal 

component analysis on the transcript level of each of the expressed genes. This led to a clear 

segregation of the samples by time point and selection regime (Fig. S3.2). Due to sequencing 

batch discrepancies at day 21, we employed a linear mixed-effects model to account for the 

effect of sequencing batch. 

 We then calculated the pairwise correlation coefficient between the expression levels of 

the 20 populations assayed. To study the relationships among all 20 populations studied, we used 

Pheatmap (Kolde 2015), a clustering program, that uses these correlation coefficients and 

generates a dendrogram. The resulting dendrogram perfectly separates the A- and C-population 

types (Fig. S3.3). It is remotely conceivable that these populations are grouped in the expected 

manner due to chance.  To address whether or not this result occurred due to chance, we shuffled 

the expression values within each gene and recreated 1000 simulated dendrograms. We found 

that none of the simulated dendrograms showed the same topology as our experimental result 
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(P<0.001). This is a particularly remarkable result, because the populations within each of the A 

and C types feature two subsets that have only recently experienced parallel selection regimes.  

This result provides strong evidence of genome-wide transcriptional convergence of the two 

subtypes of populations within each selection regime, which is precisely in alignment with the 

convergence they exhibit for both life history traits and genome-wide variation (Burke et al. 

2016; Graves et al. 2017). 

 

Transcriptional differentiation between population types 

 At a 5% false discovery rate (FDR) per gene, we found 906 genes differentially 

expressed in the A and C populations: 277 at day 14 only, 366 at day 21 only, and 263 at both 

time points (Fig. 3.2). 24.6% (i.e. 133) of the differentially expressed genes at 14 days and 

23.5% (i.e. 148) of the differentially expressed genes at 21 days were found to differ by two-fold 

or more, respectively (Fig. 3.3a-b).  The highest fraction of differentially expressed genes, across 

all genes analyzed, is seen on day 21 (16.2% of expressed genes vs 14.7% on day 14). 24.9% 

(i.e. 225) of the genes that are significantly differentiated at one of the two time points are not 

significantly differentiated at the other time point.  Of the 540 differentially expressed genes 

found at day 14, 229 (42.4%) genes were significantly overexpressed in the A-type populations 

in relation to the C-type populations whereas 311 genes showed the opposite pattern. At day 21, 

the proportion of significantly overexpressed genes in the A-type versus the C-type population is 

very similar, with 282 (44.8%) genes significantly overexpressed out of 629. 

 Gene ontology (GO), KEGG pathway, and chromosomal enrichment analyses found no 

biologically interpretable patterns of differentiation at either time point. Notably, when 

reviewing the gene-feature types among the differentially expressed genes, we found numerous 
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non-coding RNA genes (ncRNA).  Specifically, we found significant differentiation for 402 and 

482 protein-coding genes for day 14 and day 21, respectively.  There were 136 and 246 ncRNA 

genes that were significantly differentiated for those same time points, respectively.  One 

annotated pseudogene (CR18275) appeared also as differentially expressed at each time point, 

and one tRNA gene was also found differentially expressed on day 14.  In light of the numerous 

ncRNA genes found to be differentially expressed, and the fact that there is little known about 

them at the functional level, we repeated the GO analyses without the inclusion of non-protein 

coding genes. However, this more selective analysis provided no evidence for significant 

enrichment with respect to any biologically interpretable pattern. 

 

Transcriptional differentiation due to ageing 

 There are numerous ways of curating these data to obtain a list of genes differentially 

expressed due to ageing. We adopted three different approaches: I, II, and III. The relationships 

among these lists are highlighted in Fig. 3.4. 

 

List for Approach I 

 First, we simply compiled the genes that were differentially expressed at day 21 between 

the A-type and C-type populations. In this case, we purposefully ignored day 14 because at day 

14 both A-type and C-type populations were transferred from vials to cages shortly before being 

collected for sequencing, potentially influencing expression levels for some of the transcribed 

genes.  In addition, day 21 is not affected by the females from the C-type populations not being 

fully sexually mature.  More importantly, the degree of mortality-rate differentiation between A 

and C population types at day 21 is substantially higher than at day 14 (Fig. 3.1). 



 63 

 We found 629 differentially expressed genes between A-type and C-type populations at 

day 21. Of these genes, 282 were significantly more expressed in the A-type populations while 

347 were more expressed in the C-type populations (Fig. 3.2b).  Searching for biologically 

interpretable patterns within this list found no significant pattern.  This result did not change after 

omitting 146 ncRNA genes and 1 pseudogene. 

 

List for Approach II 

 Next, we adopted a more stringent approach and analyzed only genes that were 

differentially expressed at both day 14 and 21 between the A-type and C-type populations. The 

rationale behind this approach was that, at both time points, the A-type populations are ageing 

whereas the C-type populations have yet to age (Fig. 3.1).  Essentially, we were interested in 

those genes that exhibit sustained interpopulation differences across 7 days.  We found 263 

differentially expressed genes between A-type and C-type populations at both day 14 and day 21.  

Of them, 94 genes exhibit significantly higher expression in the A-type populations whereas 169 

do so in the C-type populations (Fig. 3.3a-b).  Again, no biologically interpretable patterns were 

found, which did not change upon omitting 73 ncRNA genes. 

 

List for Approach III 

 Lastly, we focused on genes that were differentially expressed in the ageing populations 

(A-type), but not in the non-ageing populations (C-type). More specifically, we were interested 

in the genes that were differentially expressed in the A-type populations between day 14 and day 

21 but showed statistically similar expression in the C-type populations between day 14 and day 

21.  The A-type populations are clearly ageing between day 14 and day 21 (Fig. 3.1) and 
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therefore identifying genes that are differentially expressed between these two time points would 

capture potential ageing related genes.  As the C-type populations are not ageing during this 

same time frame, the cross examination of the two sets of genes should eliminate any genes that 

are differentially expressed due to any random environmental artifacts at day 14.  We ultimately 

found 82 genes that fit these criteria.  Of these 82 genes, 38 had higher expression in the day 14 

A-type populations and 44 had higher expression in the day 21 A-type populations (Fig. 3.3c-d).  

Further, the search for biologically interpretable patterns among these 82 genes revealed an 

enrichment for genes associated with the ABC transporter-like pathway (GO:0005524, 

GO:0016887: Padj = 0.021).  ABC transporter proteins are part of the ATP-Binding Cassette 

(ABC) superfamily and are widely used in the hydrolysis of ATP to energize many biological 

processes.  These transporters are key for the import and export of many substrates, in particular 

toxins (Saurin et al. 1999).  Similar to the previous analyses, there were numerous ncRNA genes 

within this list.  Specifically, we found 61 protein coding genes, 19 ncRNA genes and 2 tRNA 

genes.  Removing the 19 ncRNA genes due to their poor functional annotation led to the 

detection of no additional patterns. 

 The gene lists obtained upon applying these three sets of criteria not only differ in total 

number of genes included, but also in the degree of overlap (Fig. 3.4). List II is essentially a 

more restricted version of list I, as the transcriptome differentiation in day 14 is incorporated. 

List III differs substantially from list I and list II, with 49 (59.8%) of the genes being specific to 

it. 
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Genomic comparison 

 We compared our three lists of ageing-related genes with that previously identified from 

genomic analysis (Graves et al 2017), in order to determine what fraction of the differentially 

expressed genes between population types harbored significantly differentiated SVs, TE 

insertions, and SNPs. For SVs specifically, we were interested in in duplications and deletion 

events that could modify expression levels (Cardoso-Moreira et al. 2016). Next, we checked for 

local TE insertions that may also affect gene expression (Cridland et al. 2015).  Lastly for SNPs, 

we were interested in finding differentiation in gene regions that can accommodate cis-regulatory 

motifs, i.e. the 5’ and 3’ UTRs and the promoter.  The latter was taken to reside within 1 kb 

upstream of the transcriptional start site of the gene.  To this purpose, we examined both coding 

and non-coding gene regions, including exons, introns, and the aforementioned untranslated 

regions, as well as the upstream region for each of the differentially expressed genes. 

 We identified 12, 8, and 2, in lists I, II, and III respectively, differentially expressed 

genes that harbor differentiated SVs. In contrast, only 3, 2, and 0, differentially expressed genes 

between the A-type and C-type populations contain differentiated TE. Further, we identified 48, 

26, and 4 differentially expressed genes (Table 3.1) that harbored differentiated SNPs in lists I, 

II, and III respectively. Of these genes, 66.7% (32), 69.2% (18), and 75% (3), respectively, had 

such SNPs within exonic or intronic regions. More importantly, 60.4% (29), 65.4% (17), and 

50% (2) of the genes, respectively, contained SNPs in at least one gene region where cis-

regulatory motifs reside, potentially contributing to the detected differences in mRNA 

abundance.  The remaining differentially expressed genes either have no differentiated SNPs or 

the SNPs are located in gene regions usually devoid of cis-regulatory motifs.  Differences in 

gene expression for this latter gene set should be primarily influenced by trans-regulatory effects. 
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Comparison of ageing genes to previous lists of ageing-related genes 

 We compared our lists of candidate ageing genes to others obtained in similar studies. 

First, we considered the gene list at the repository for D. melanogaster at GenAge (de Magalhaes 

2014).  Of the 193 genes present in the GenAge database, only four were also part of List I. Lists 

II and III showed no overlap with the GenAge list.  This lack of overlap may be due to the fact 

that GenAge specifically focuses on genes that have an ortholog associated with ageing in 

humans.  In addition, GenAge focuses on genes that are only ageing-specific, and omits genes 

that may play roles in other biological processes. 

 Subsequently, and more in the context of transcriptomic changes associated with ageing, 

we compared our lists to that from a previously published expression profiling study in D. 

melanogaster (Carlson et al. 2015). That study found 1581 genes differentially expressed across 

11 time points and 79 days, compared to a control sample consisting of 2-day old (after eclosion) 

females.  We identified 51, 20, and 5 genes from their list that were also present in our I, II and 

III lists, respectively.  Interestingly, this is lower than what we found by randomly selecting 1581 

genes from the reference genome and compare it to our ageing lists.  After 1000 simulations, we 

found that the probability of having at least 51, 20, or 5 overlapping genes from lists I, II, and III 

respectively was 0.824, 0.825, and 0.890.  Thus random selections of genes have more overlap 

with our results than the genes identified by Carlson et al. (Carlson et al. 2015).  Conversely, if 

we were to take a random sample from the reference genome using the length of our three lists 

individually and compared it to their list of 1581 genes, we found the probability of having at 

least the same number of overlapping genes as observed was 0.445, 0.574, and 0.759 for lists I, 

II, and III respectively.  A major difference between our study and that of Carlson et al. (Carlson 
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et al. 2015) is how a gene was ultimately considered to be associated with ageing.  The gene list 

in Carlson et al. (Carlson et al. 2015) was obtained by studying transcriptional changes in one 

large population over time, always relative to the first time point.  By contrast, the lists generated 

in this study derive from comparing an ageing set of populations and a non-ageing set of 

populations under three different sets of assumptions.  An additional difference is that the 

females collected in the study of Carlson et al. (Carlson et al. 2015) were exposed to males for 

only 24 hours before the beginning of the assay, whereas our samples contain females that were 

exposed to males the entire time up until their sampling point. 

 

Power of replication 

 We evaluated how our level of replication might have impacted our inferences. The 

power to detect differentially expressed genes is negligible with only four or fewer replicates, 

which holds regardless of the set of criteria used to deem a gene as ageing-related (Fig. 3.5).  

Therefore, it is surprising that studies with this low level of replication find even more 

differentially expressed genes (Carlson et al. 2015; Hsu et al. 2019).  Combining multiple inbred 

or isofemale lines is commonplace in Drosophila studies, but they might in fact contribute to the 

large number of differentially expressed genes documented.  Increased linkage disequilibrium, 

which is a typical consequence of combining multiple lines, and having insufficient replication 

are likely to result in unforeseen effects in gene expression.  Therefore, our results strongly 

suggest that, given the phenotypic plasticity of expression levels (Scheiner et al. 2012; Dayan et 

al. 2015), using properly maintained evolved populations that derived from an outbred 

population plus high replication levels are crucial to reduce both type I errors and type II errors 

when generating a portrait of differences in gene expression. 
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DISCUSSION 

 Having two clearly defined sets of D. melanogaster populations has enabled us to dissect 

what is ageing-related in the transcriptome. Specifically, one set of ten populations (A-type) is 

demographically ageing between day 14 and day 21 and the other set of ten populations (C-type) 

is not demographically ageing (Fig. 3.1).  This extreme contrast of ageing vs non-ageing 

populations is particularly useful, because we can assay them at the same chronological ages, day 

14 and day 21.  In addition, these populations are not exposed to any metabolic arrest or other 

manipulation (e.g. nematodes, (Ayyadevara et al. 2008)); their differences are genetic.  Lastly, 

these two sets of populations are closely related, despite the stark difference in their ageing 

patterns between day 14 and day 21. 

 Furthermore, these two sets of ten populations have been extensively characterized for 

genomic differentiation (Graves et al. 2017), development differentiation (Burke et al. 2016), and 

physiological differentiation (Rose et al. 2004; Kezos et al. 2019). Developmentally, the two sets 

of ten populations show SNP, TE and SV differentiation.  Phenotypically, the 10 A-type 

populations develop from egg to pupation and pupation to eclosion significantly faster than the 

10 C-type populations.  Physiologically, the A-type populations have a shorter time to starvation 

than the C-type populations and the same is true for desiccation.  Considering the stark 

difference between the two sets of populations at the genomic and phenotypic levels, it is not 

surprisingly that we find here a substantial amount of transcriptomic differentiation. 

 Unlike the statistical results testing for differentiation between A-type and C-type 

populations, within A-type comparisons of populations and within C-type comparisons show 

little to no differentiation. That is, the transcriptomic results are parallel to those previously 
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found for within-type convergence with respect to life-history phenotypes (Burke et al. 2016) 

and genomics (Graves et al. 2017).  As before, this convergence has arisen despite two very 

different selection histories underlying the differentiation of members of the A and C sets of 

populations.  Specifically, the A group is made up of five populations that share long-standing 

A-type selection (the ACO), as well as five other populations that have undergone A-type 

selection for substantially fewer generations (the AO).  Likewise, the C group is made up of five 

populations that share relatively long-standing C-type selection (the CO), as well as five other 

populations that have undergone C-type selection for substantially fewer generations (the nCO).  

The newly derived populations are much more closely-related phylogenetically than the longer-

standing populations, with just 327 generations separating them versus 1171 generations 

separating the longer-standing populations.  When comparing the newly derived populations 

with each other and with their selection regime counter parts (AO with ACO; nCO with CO), we 

find that the newly-derived populations show no evidence of less differentiation, suggesting that 

recent selection regime has a larger impact on the transcriptome than evolutionary history, as we 

have previously found both phenotypically and genomically (Burke et al. 2016; Graves et al. 

2017).  We believe this notion only stands true for populations that maintain moderate census 

size to combat the effects of inbreeding.  With inbred populations, we would expect evolutionary 

history to have a larger impact on the transcriptome than recent selection regime (Sarup et al. 

2011). 

 When reviewing the nature of each differentiated gene, there was a high proportion of 

non-coding RNA genes that were differentially expressed. These genes are currently poorly 

understood.  But due to their abundance among systematically differentiated transcripts in our 

data, our findings support the hypothesis that they can play an important role in gene regulation 
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(Deveson et al. 2017). Another striking result was that only 4-6%, depending on which criteria 

used, of the differentially expressed genes between the A-type and O-type populations harbored 

SVs, TE insertions, or SNPs in cis-regulatory regions, suggesting that much of the transcriptome 

differentiation between population types stems primarily from trans-regulatory effects. 

 Next, when comparing our lists of ageing-related genes to that of previous ageing related 

work (Carlson et al. 2015; Hsu et al. 2019), we find very little overlap with previous findings. In 

addition, we find little to no enrichment for biological processes delimited in GO with our 

ageing-related lists of differentiated transcripts.  These two results together suggest that our lists 

are novel relative to the current state of ageing transcriptomics in D melanogaster. 

 Here, we have presented two-time point comparisons using 10 replicates for each set of 

populations. But it is clear from Fig. 3.5 that even at 10 replicates we have not reached saturation 

for detection of differentially expressed genes, suggesting that still more replication would allow 

better detection of transcripts that differentiate with respect to ageing versus non-ageing.  In 

addition to increased replication, more time point sampling should improve our understanding of 

how the transcriptome is affected by ageing.  Lastly, integrating genomic analysis with still more 

powerful transcriptomics should further improve our understanding of how differentially 

expressed transcripts are regulated. 

 Currently, we have only sequenced the transcriptomes of our A-type and C-type 

populations, because of their clear difference in ageing. Adding additional types of populations 

to transcriptomic analysis should foster the parsing of transcriptomic differentiation with respect 

to whether or not any particular transcript difference is involved in the differentiation of ageing 

versus other types of phenotypic differentiation.  In previous phenotypic and genomic work, we 

have used an intermediate set of 10 populations, the B-type, in addition to the current sets (Burke 
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et al. 2016; Graves et al. 2017; Mueller et al. 2018).  The B-type populations have a generation 

length of 14 days, which falls between that of the A-type and C-type populations.  The B-type 

populations would be therefore a prime candidate to add to bolster our ability to parse 

transcriptomic differentiation. 

 Although having a full suite of genomic, transcriptomic, and phenotypic data is powerful 

in itself, parsing all three bodies of data together is challenging. Due to the inherent complexity 

of ageing, complexity should be maintained and not sacrificed when analyzing all these data 

together.  Modeling techniques commonly called “AI”, but more properly defined as statistical 

learning (Hastie et al. 2009), allow us to address this challenge of parsing complexity.  Currently, 

the Fused Lasso Additive Model or FLAM (Petersen et al. 2016; Mueller et al. 2018) shows 

promise in making sense of large data sets, such as those of genomic data.  Ultimately, we 

propose that combining the omics of highly replicated experimentally evolved populations with 

statistical learning tools could prove promising for uncovering the foundations of any complex 

trait, those of ageing included. 
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Figure 3.1. Age specific log mortality plotted for the 20 populations used. Mortality graphs 
were plotted for both A-type (black) and C-type (blue) populations. Both types of populations 
consist of five long standing populations (open circles) and five recently derived populations 
(closed circles). The red lines show when samples were collected for RNA-sequencing. More 
notable, for day 21, the A-type populations are within their ageing trajectory whereas the C-type 
populations are still in their pre-ageing phase. 
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Figure 3.2. Clustering of differentially expressed genes in the female transcriptome of D. 
melanogaster between two population types. Heatmaps for the two time points assayed: 14 
days (left), 492 genes; 21 days (right), 603 genes. Heatmaps were generated using hierarchical 
clustering of gene normalized mean expression levels. Ward’s minimum variance was used as a 
distance metric. Gene clustering simultaneously results in a perfect grouping of populations 
based on the type of selection regime to which they were exposed. Blue, underexpression; red, 
overexpression. The identity of each population is shown at the bottom of each chart. 
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Figure 3.3. Differences in mRNA abundance in the female transcriptome between two 
population types and two time points. Volcano plots for day 14 and day 21 (a and b) time 
points show the differences in expression between the populations types A and C. Similar plots 
for A-type and C-type (c and d) populations showing differences in expression between the two 
time points. x axis, difference in normalized log2-transformed expression difference in mRNA 
abundance between day-21 and day-14; y axis, significance of the differences as –log10(Padj 
value). Statistically significant differences were determined using a linear mixed effect model. 
Blue dotted line, Padj = 0.05. 
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Figure 3.4. Venn diagram showing the overlap between the three different lists of ageing 
related genes. The three gene lists were curated using different outlooks on the same data set. 
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Figure 3.5. Differentially expressed genes versus number of replicates in each treatment. (a) 
Number of differentially expressed genes determined between the A-type and C-type for both 
day 14 and day 21 depending on the number of replicates included in the analysis. (b) number of 
differentially expressed genes between A-type and C-type populations sustained at both day 14 
and day 21. (c) Number of differentially expressed genes deemed ageing-related between ageing 
populations and non-ageing populations.  
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Table 3.1. Cis-regulatory nature of population-differentiating-SNPs in ageing related 
differentially expressed genes. 
  

 

 Cis-Regulatory Motifs  Non-Cis-Regulatory Motifs   

 Promoter 5’UTR 3’UTR Combined *  Exons Introns Combined *  Total * 

List I 20 9 7 29  18 19 32  48 

List II 13 4 4 17  12 14 18  26 

List III 2 0 0 2  2 2 3  4 



 82 

 

 
 
Figure S3.1. Timeline of the generation of the experimentally evolved populations of D. 
melanogaster used. Any terminal arrow denotes five populations. In parenthesis, number of 
generations elapsed of separated evolution for a particular subset of populations. All evolved 
populations analyzed derive ultimately from an outbred population, named IV, collected at South 
Amherst, MA (Rose 1984). More recently, all evolved populations are derived from an ancestral 
treatment “O”, which is characterized by a generation length of 70 days. Initially, the “CO” 
populations were derived from the “O” populations by following the C-type selection regime, 
which entailed a 28-day generation length. From the “CO” lines, the “ACO” populations were 
generated by applying the A-type selection regime of accelerated development, shortening the 
generation length to 10 days. Lastly, the “nCO” and “AO” treatments derived from the original 
“O” populations undergoing again the mentioned C-type and A-type selection regimes, 
respectively.  
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Figure S3.2. Principle component analysis (PCA) plots. PCA was done for 14- and 21-day 
time points (left and right, respectively) using normalized RNA-seq count data for ten early 
reproducing populations (five ACO and five AO) and ten late reproducing populations (five CO 
and five nCO). The proportion of variance explained by each component is indicated. For both 
time points, the grouping of the populations recapitulates the type of selection regime to which 
they were exposed.   
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Figure S3.3. Correlation matrices among expression levels across populations. Correlation 
matrices were generated for 14- and 21-day time points (left and right, respectively) using 
normalized RNA-seq count data from each population. For both time points, the clustering of the 
populations precisely segregates to which of the two selection regimes the populations were 
individually exposed. Equivalent randomized expression data (per gene across populations) 
yielded no equivalent perfect segregation of populations based on their association with a 
particular treatment (P<0.0001; 1000 randomized datasets). The average correlation values were 
0.987 and 0.987 day 14, and 0.986 and 0.987 day 21, for the A- and C-population types, 
respectively. The identity of each population is shown on the right and at the bottom of each 
chart. 
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Table S3.1. Salient features of the RNA sequencing datasets used. 
   

Population     
Type Subtype Time Point Sample ID Paired-End Reads * Alignment-Rate 
A CO 14 ACO1-14 16025476 0.876808152 
A CO 21 ACO1-21 22176411 0.902874726 
A CO 14 ACO2-14 13943892 0.828386149 
A CO 21 ACO2-21 19202323 0.819104699 
A CO 14 ACO3-14 15683573 0.792458389 
A CO 21 ACO3-21 18643435 0.930756644 
A CO 14 ACO4-14 18485653 0.8895689 
A CO 21 ACO4-21 20590149 0.82164199 
A CO 14 ACO5-14 21404467 0.918499162 
A CO 21 ACO5-21 19896435 0.879402265 
A O 14 AO1-14 14056489 0.884199177 
A O 21 AO1-21 12519550 0.891047921 
A O 14 AO2-14 15437468 0.963942209 
A O 21 AO2-21 15069859 0.83153346 
A O 14 AO3-14 16755513 0.882576857 
A O 21 AO3-21 19414394 0.922414627 
A O 14 AO4-14 14028270 0.946618721 
A O 21 AO4-21 22313935 0.848291931 
A O 14 AO5-14 14046479 0.916425533 
A O 21 AO5-21 18176024 0.909287037 
C O 14 CO1-14 13367541 0.959978129 
C O 21 CO1-21 18687732 0.902321159 
C O 14 CO2-14 12568207 0.901285521 
C O 21 CO2-21 17717238 0.876936349 
C O 14 CO3-14 14347571 0.978301414 
C O 21 CO3-21 20501662 0.73301945 
C O 14 CO4-14 16408974 0.948465151 
C O 21 CO4-21 17343174 0.953346025 
C O 14 CO5-14 13202116 0.824949728 
C O 21 CO5-21 20626122 0.895099234 
C n 14 nCO1-14 15899729 0.86004252 
C n 21 nCO1-21 18663753 0.960601975 
C n 14 nCO2-14 13249715 0.914027811 
C n 21 nCO2-21 17073607 0.966421155 
C n 14 nCO3-14 14775698 0.94502703 
C n 21 nCO3-21 17917845 0.896108042 
C n 14 nCO4-14 14604651 0.896100359 
C n 21 nCO4-21 17559627 0.90201113 
C n 14 nCO5-14 14343972 0.937844552 
C n 21 nCO5-21 18494703 0.893432082 

 
 
 



 86 

Chapter 4 

Bridging the Gap between Genomics, Transcriptomics, and Phenotypes 

 in Experimentally Evolved Drosophila 

ABSTRACT 

 The molecular basis of adaptation has eluded biologists, even with the advent of new 

sequencing technology. Previous attempts to address this question have knocked out or knocked 

down genes, but these approaches are not applicable to populations with moderate to high 

genetic variation. By contrast, experimental evolution offers replicated outbred populations with 

well-defined selection regimes and known evolutionary histories. The goal of this chapter is to 

use experimentally evolved populations in conjunction with statistical learning tools to explore 

interactions between the genome, transcriptome, and phenotypes. Our results indicate that 

transcriptomic measures from adult female samples can predict phenotypic characters at many 

adult ages, suggesting that the adult transcriptome is relatively stable in Drosophila. In addition, 

when comparing the genome and transcriptome in predicting phenotypic characters, we find that 

both types of data are equally powerful. When using genome sites as predictors for the 

expression of the transcriptome, we find that gene expression is influenced by genomic regions 

across all large chromosome arms. Conversely, we found many genomic regions influencing the 

expression of numerous genes, suggesting that many genomic regions have widely pleiotropic 

effects. Our results also highlight the power of the combination of experimental evolution, next-

generation sequencing, and statistical learning tools in exploring the molecular networks 

underlying adaptation. 
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INTRODUCTION 

 Despite some recent attempts (Graves et al. 2017; Barter et al. 2019), the study of how 

evolutionary mechanisms shape life history traits via genome-wide evolution is still in its infancy 

(Braendle et al. 2011). Experimental evolution establishes selection on populations in well-

defined environments as a means to decipher the interplay between population genetics and 

selection (Bennett and Lenski 1999; Garland and Rose, 2009; Schlotterer et al. 2015). High-

throughput omic methodologies can provide a precise catalog of the frequency spectrum of 

genetic variants in lab evolved populations, as well as  a portrait of their  expression levels 

(Remolina et al. 2012; Mallard et al. 2018). New statistical approaches have been developed that 

capitalize on large-scale omic data obtained from replicated experimental evolution (de Los 

Campos et al. 2013; Petersen et al. 2016; Mueller et al. 2018). The hope is that the combination 

of next-gen sequencing, statistical learning, and such massive data might help us to understand 

how genetic variation underpins evolution generally. Here, we study the interplay between 

genomics, transcriptomics, and life history traits from 20 experimentally evolved Drosophila 

melanogaster populations. Of these populations, 10 populations have been selected for 

accelerated development, and the remaining 10 have been selected for postponed reproduction. 

Previous work collected data on the genomics (Graves et al. 2017), transcriptomics (Barter et al. 

2019), and life history traits (Burke et al. 2016) for all 20 populations. In this study we use 

genomic and transcriptomic data to infer which gene regions might be causally linked to the 

phenotypes of age-specific mortality and fecundity. These inferences are made using a statistical 

learning technique which computer simulations have suggested may work well with 

experimentally evolved population (Mueller et al., 2018). 
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MATERIALS AND METHODS 

Experimental populations 

 The populations used in this study were subject to two selection regimes which differed 

with respect to age-at-reproduction (Rose et al. 2004; Burke et al. 2016; Graves et al. 2017). 

Each selection regime was applied to two sets of five populations, each with known distinct 

evolutionary histories (Fig. S4.1). The ACO and AO populations, collectively called A-type, 

were selected for accelerated development and have a generation length of 10 days. The CO and 

nCO populations, collectively called C-type, have a generation length of 28 days. 

 

Phenotypic Data 

 We relied on age specific adult mortality and fecundity data for the ten A and ten C 

populations reported by Burke et al. (2016). [Also presented in Chapter 1 of this thesis, because 

those data were obtained by myself.]  Burke et al. (2016) measured mortality and fecundity over 

the entire adult lifespan of the flies. In our analysis, phenotypes we focused on were the average 

mortality and fecundity measures over 3-day intervals. 

 

Genomic Data 

 For our analyses, we used the genome-wide SNP data previously published in Graves et 

al. (2017). The details of extraction, sequencing, and read mapping are described in Graves et al. 

(2017).  

 We only considered biallelic sites and required each site to have coverages between 20x 

and 200x in each of the 20 populations. We also required each site to have a minimum minor 

allele frequency of 2% across all 20 populations. All sites failing to meet these criteria were 



 89 

discarded. To test for SNP differentiation, we used the Cochran-Mantel-Haenzel (CMH) test as 

implemented in PoPoolation2 (Kofler et al. 2011). CMH tests were performed between the 10 A-

type populations and 10 C-type populations at all sites meeting our SNP calling criteria. 

Populations were paired based on treatment and replicate number (e.g. ACO1 was paired with 

CO1, AO1 with nCO1, etc). To correct for multiple comparisons, genetic drift, and sampling, we 

used the permutation approach featured in Graves et al. (2017). Briefly, we randomly assigned 

each population to one of two groups, and then performed CMH tests at each polymorphic site in 

the shuffled data set to generate null distribution of p-values. We did this 1,000 times, and each 

time we recorded the smallest p-value generated. We then used the quantile function in R (R 

Core Team, 2018) to establish a significance threshold that defines the genome-wide false-

positive rate, per site, at 5%. Using this significance threshold, we identified a total of 4,211 

candidate SNPs that were differentiated between the A-type and C-type populations and spread 

out across the five major chromosome arms. 

To minimize the effects of linkage disequilibrium on our analyses, we opted to establish 

candidate SNP regions around our list of 4,211 candidate SNPs rather than using each candidate 

SNP. We first divided each chromosome arm into 50 kb windows and discarded any windows 

that contained less than three candidate SNPs. For the remaining windows, we recorded the 

position in the window with the smallest p-value from the CMH tests. This resulted in a list of 

194 positions that serve as representatives of the 50 kb genome regions that met our criteria. 

These positions and their associated SNP frequencies were then used as inputs in our analyses. 
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Transcriptomic Data 

 For our analyses, we used the genome-wide transcriptomic data published in Barter et al. 

(2019). The details of extraction, sequencing, and read mapping are highlighted in Barter et al. 

(2019). The two time points (day 14 and day 21 from egg) studied in Barter et al. (2019) are 

included in our analyses. 

 After the reads were mapped, alignment post-processing was performed with SAMtools 

v.0.1.19 (Li et al. 2009).  Read counting per gene and population was done using HTSeq 

v0.6.1p1 (Anders et al. 2013) at default settings. For each sample, per gene read counts were 

normalized using the default DESeq2 settings (Love et al. 2014). Genes showing normalized 

count values greater than 4 in at least 8 out of 10 populations, within at least one of the treatment 

types, were kept and the rest were discarded. With these normalized gene count values, we used 

the linear mixed effects model featured in Barter et al. (2019) to determine which genes were 

differentially expressed between our two selection regimes. Put simply, our analysis took into 

account any block effects that may be associated with different rounds of extraction and 

sequencing. Statistical significance for differential expression of any given gene was set at a 5% 

false discovery rate (FDR) for ~4000 tests, i.e. the number of expressed genes that passed 

filtering (Benjamini and Hochberg 1995). The normalized gene count values for the 

differentially expressed genes were then used as inputs in our analyses.  

 

FLAM Analyses 

To find gene regions that might be causally related to the phenotypes we studied, we used a 

statistical learning method called the “fused lasso additive model” or “FLAM” (Petersen et al, 

2016). This method has been shown to effectively identify loci which cause phenotypic variation 
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in experimentally evolved populations that exhibit large phenotypic differences (Mueller et al., 

2018). In addition, FLAM has the ability to distinguish between these causal loci and those that 

show genetic differentiation between populations, but are not causally related to the phenotype of 

interest (Mueller et al., 2018). Mueller et al. (2018) describe a permutation procedure for 

expanding the list of causative loci. In this study, a total of 100 permutations of the columns of 

genetic data were done and the final list consisted of genes which occurred at a frequency of at 

least 50% of the most common gene in the list. 

 

RESULTS 

The plasticity of the transcriptome 

 Unlike the genome, the transcriptome is subject to change over the course of an 

organism’s life, most notably in the developmental stages. This stands true in Drosophila for 

development, but once flies reach adulthood the transcriptome may shift to a more static state 

similar to the genome, due to minimal cellular changes during a fly’s adulthood. [Few cells 

divide in the adult soma, and there is relatively little protein synthesis.]  If the adult 

transcriptome is static, then assaying multiple time point analyses for adult Drosophila may be 

redundant. 

Here we analyze how well the transcriptomic data, at both day 14 and day 21, predict 

age-specific mortality and fecundity for every adult age. We used the transcriptome data from 

the day 14 and day 21 differentially expressed genes as predictors of mortality at days 14-35. We 

used the differentially expressed genes from day 14 as predictors in our FLAM analysis for 

fecundity at days 14-35.  From our analyses at day 14 and day 21, FLAM would report which 

genes were classified as viable predictors and these predictors were then labeled as focal 
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predictors. Our data was then fractured into two parts: 16 populations were used as a training set 

and the remaining 4 populations were used as a testing set. Using our training set of populations, 

we include all age-specific mortality and fecundity data as outcomes and the normalized gene 

count values for the focal predictors were used as inputs. By doing this, we restricted FLAM to 

using only these focal predictors determined from our analyses at day 14 or day 21. With the 

specific fit, we use the normalized gene count values from the test set to predict their phenotypes 

and compare it to the observed phenotypic values. The correlation between the predicted 

phenotype and observed phenotype was then determined (Figure 4.1). 

We find that the transcriptomic data reasonably predicts mortality at all ages, even though 

the transcriptomic data was limited to the focal genes identified from either day 14 or day 21. 

However, day 21 transcriptomic data appear to be able to predict latter age-specific mortality 

marginally better. This marginal increase in predictability may originate from the fact that at day 

14 the C populations may still have lingering developmental effects, since day 14 is shortly after 

the C populations have completed development.  

The same trend is not seen for fecundity. FLAM could only create a good fit for day 14 

data.  There is no differentiation between the A and C population fecundity values at days 17-25. 

It appears that there is only a strong correlation between the actual phenotype and the predicted 

phenotype at the focal age, 14. This is plausible considering the fact that fecundity is 

significantly different at days 14-16, but not between days 17-25 (Fig. 4.2). Even though 

fecundity is significantly different for days after day 25, we still see only a weak correlation 

between the actual phenotype and the predicted phenotype. This is likely due to the fact that day 

14 transcriptomic data does not reasonably predict fecundity at all ages. 
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Genomics vs transcriptomics on predicting phenotypes 

 It is imaginable that both the genome and transcriptome have the ability to predict a given 

phenotype, but here we ask whether the genome or transcriptome has more predictive power 

when using FLAM specifically. When compared against each other for the same phenotype, if 

one performs better in providing viable predictors, then it could suggest favoring one type of 

omic analysis over the other in further understanding the molecular basis of adaptation. 

 To address this, we did three different analyses. (i) We first used genomic data (SNP 

frequencies) to predict mortality at days 14 and 21, as well as early fecundity. (ii) We used 

transcriptomic (normalized gene expression counts) data as predictors. (iii) We used both 

genomic and transcriptomic data as potential predictors with the same phenotypic outcomes to 

see which type of –omic data is best at predicting these phenotypes. 

 The results vary depending on which phenotype is used as outcome (Fig. 4.3-5, Table 

S4.1-3). For day 14, it is evident that the genomic data appears to be better at predicting the age-

specific mortality data, but the transcriptomic data appears to be better at predicting the age-

specific fecundity data (Fig. 4.3-4, Table S4.1-2). For the most part, it appears that the genomic 

locations and the genes found as good predictors of phenotypes individually also show up in the 

combined list. It is clear that neither genomic or transcriptomic data are obviously better at day 

14. 

 Day 21 genomic and transcriptomic data was only used to predict mortality, since there 

were no statistically significant differences in fecundity at ages greater than 21 days. When given 

both genomic and transcriptomic data for day 21, we find that both –omic data sets perform 

relatively well (Fig. 4.5, Table S4.3). The model does not appear to strongly favor one –omic 

data set over the other, the way we found for the day 14 data.  
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 Due to the fact that both genomic and transcriptomic predictors are being selected as 

predictors suggests that using only one set of –omic data is ill-advised. The reason why one type 

of –omics may perform better for some phenotypes, but not for others remains unclear.  

 

Unbiased approach on predicting transcriptomic expression using genomics 

 It’s evident that the genome ultimately shapes the transcriptome, but how the genome is 

shaping the transcriptome remains largely unknown. The main focus of research on this topic has 

been around the issue of cis- versus trans- regulation of genes, in that there are specific regions in 

the genome that are either local or distant that might control the expression of a gene. 

 Although we do not focus on regulation specifically here, we use genomic data as 

predictors and each individual gene expression count data as outcomes. By doing this we are able 

to see which SNP regions are considered good predictors for the expression of each 

differentiated gene. All the SNP regions are included in this analysis to include all interactions 

between the genome and the transcriptome.  

 As shown in Figure 4.6, there are numerous interactions between the genome and the 

transcriptome. These interactions are not limited to the same chromosome, between the two sets 

of data, suggesting there is a lot of cross-chromosomal interactions. The average number of 

genomic sites that are considered good predictors for a given transcript is 5.7, with the lowest 

being 0 and the highest being 29. The average number of times a genomic site was chosen as a 

good predictor across all genes is 18.3, with the lowest being 0 and the highest being 77. The X 

chromosome contains the most predictors when compared to the other chromosome arms, but 

contained the largest portion of genomic inputs. Whereas, 3R had the least amount of predictors, 

and the trend remains the same in that 3R had the least amount of inputs.   
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 Our results show evidence of pleiotropy in that a single genomic region is reliably 

contributing to the prediction of expression in numerous genes. In contrast, we see that the 

expression of a single gene is being predicted by numerous genomic regions, many that originate 

from a different chromosome. Although we see many interactions between the genome and the 

transcriptome, these interactions should not all be considered regulation due to the fact that the 

genomic regions are quite large and the true nature of how these regions are potentially affecting 

gene expression remains unknown.  

 

DISCUSSION 

 Having two clearly defined sets of experimentally evolved D. melanogaster populations 

in conjunction with a full suite of genomic, transcriptomic, and phenotypic data for both sets of 

populations has enabled us to piece together how these three levels of biological machinery 

interact with one another. Specifically, the 10 A-type populations are clearly differentiated from 

the 10 C-type populations across the genome (Graves et al. 2017), across the transcriptome 

(Barter et al. 2019), and in age-specific mortality and fecundity (Burke et al. 2016). Conversely, 

there is little to no differentiation between the populations within a single set of 10 populations 

for all three sets of data. This level of differentiation between two sets of populations and level of 

convergence within each set has yet to be seen in sexually reproducing populations in other 

experiments.  Lastly, these two sets of populations are closely related, despite their marked 

differentiation at all three levels, genomic, transcriptomic, and phenotypic. 

 When reviewing the plasticity of the transcriptome, we find that once the population has 

reached adult maturity, the transcriptome seems to be relatively static. Transcriptomic data at day 

21 accurately predicts mortality for all ages after day 21. Since the transcriptome data did not 
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result in accurate predictions of fecundity after day 14 we are unable to make any inferences 

about the relative stability of transcriptome effects on fecundity at later ages. 

 Next, when comparing the genome and the transcriptome in predicting phenotypic 

outcomes, we find that there is no clear consensus on which –omic data set performs better. As it 

stands, both data sets are being used by the model to properly predict phenotypic outcomes. 

 We sought genomic regions that were good predictors for the expression of each 

differentiated gene. Although these regions may have predicted the expression of the 

differentiated gene, these regions should not be considered specific regulators for the gene. Some 

of regions may contribute to the regulation of the gene, but it is doubtful that that these regions 

have evolved solely for their effects on transcript regulation.  In addition, the location of each 

predictive genomic region was not restricted to the cis-locale of the gene. It is very clear that 

gene expression is characteristically affected by many sites across the entirety of the genome. 

Lastly, it appears as if the X and 2L chromosome arms (Fig. 4.6, blue and red) are favored in the 

number of predictive genomic regions. However, this may have arisen because those two 

chromosome arms had the most candidate genomic regions. In other words, the number of 

predictors from a given chromosome arm is proportional to the number of sites in its sequence 

that are associated with evolutionary divergence between the “A” and “C” selection regimes.  

 Currently, we only have the full suite of genomics, transcriptomics, and phenotypic data 

for 20 populations. As shown in Mueller et al. (2018), a 20 population analysis is barely 

sufficient for detecting causal loci, and by no means will detect the full range of causally 

important sites in the genome. Ideally, the number of populations used in analyses of this kind 

should be toward 100 populations. Only at such a high level of replication is it plausible that this 
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experimental strategy will reveal a high proportion of the genomic sites that are involved in the 

response to selection. 

  Although having the full suite of all three types of data is ideal, just having genomics 

and phenotypic data in additional populations would allow a drastic increase in power for 

detecting causal loci. In recent phenotypic and genomic work, we have access to 30 additional 

populations. The first additional set of 10 populations were selected for reproduction in vials 

(Graves et al. 2017). The second set were selected for starvation resistance (Kezos et al. 2019), 

while the third additional set of 10 populations are on a standard 21-day generation cycle 

selection regime (Phillips et al. 2018). With the addition of the genomic and phenotypic data 

from these 30 populations, we can raise our population count to 50 and run similar analyses to 

those shown here for the genomic foundations of adaptation. Beyond those 50 populations, we 

have plans to sequence an additional 40 populations, allowing us to approach the level of 

hundred-fold replication, at which point thorough penetration of the genomic complexity of 

adaptation might be achievable.  
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Figure 4.1. Correlation values when comparing predicted phenotypic values to true 
phenotypic values at every age. We compare how well focal transcriptomic predictors can 
predict phenotypes at non-focal ages. The values shown here are the comparison between the 
actual phenotypic values and the predicted phenotypic values from our test set. The predicted 
phenotypic values were generated using the model fit at each age from the focal transcriptomic 
predictors. (A) Day 14 transcriptomic data was used as predictors and age-specific mortality as 
outcomes. (B) Day 14 transcriptomic data was used as predictors and age-specific fecundity as 
outcomes. (C) Day 21 transcriptomic data was used as predictors and age-specific mortality as 
outcomes. 
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Figure 4.2. Adult age-specific fecundity from A-type and C-type selection treatments. Points 
represent average number of eggs laid per female per day as a function of age. Black signifies A-
type populations and Blue signifies C-type populations. Open circles represent longstanding 
populations (ACO and CO), where closed circles represent newer derived populations (AO and 
nCO).  
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Locus 
G-omics 
Only 

T-omics 
Only Both 

2L _ 15739428     
2L _ 3727143      
2L _ 6763833     
2L _ 9801815     
2L _ 9952686     
2R _ 21861391     
3L _ 15299546     
3L _ 20624856     
3L _ 21392047    
3L _ 774317     
X _ 2741972     
X _ 5747134     
X _ 6429797     
X _ 6582092     
CIAPIN1     
skd     
CG3777     
CG14416     
CG18223     
CG33655     
CG44532     
lncRNA:CR45591    
lncRNA:CR45668    

 
Figure 4.3. Genomics versus Transcriptomics in predicting mortality day 14. Predictive loci 
(black box) from genomics (G-omics) and transcriptomics (T-omics) in all three analyses and 
from which analyses they are considered predictive loci.  
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Locus 
G-omics 
Only 

T-omics 
Only Both 

2L _ 20801145     
2L _ 5630344     
2R _ 18407331     
2R _ 19198631     
vir      
CG2854     
CG7857     
CG7742      
bun     
SmD2      
asRNA:CR43243      
asRNA:CR44054      
asRNA:CR44969      

 
Figure 4.4. Genomics versus Transcriptomics in predicting fecundity at day 14. Predictive 
loci (black box) from genomics (G-omics) and transcriptomics (T-omics) in all three analyses 
and from which analyses they are considered predictive loci. 
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Locus 
G-omics 
Only 

T-omics 
Only Both 

2L _ 3727143     
2L _ 6661063     
2L _ 6763883     
2L _ 9801815     
2R _ 15739964     
2R _ 18407331     
2R _ 18523555     
2R _ 21786327      
2R _ 21825170     
2R _ 21861391     
3L _ 1471378     
3L _ 9479257     
3R _ 14317104     
3R _ 20677283     
3R _ 29608163      
X _ 10652956     
X _ 13618883      
X _ 16270729     
X _ 16352150     
X _ 4249731     
X _ 5346401     
Shark      
CG15209     
CG15725     
CG11777     
CG10307     
CG2225     
Sh3beta     
CG11267      
CG8176     
Mms19     
CG10264      
tw      
Gr39a      
asRNA:CR43615      

 
Figure 4.5. Genomics versus Transcriptomics in predicting mortality at day 21. Predictive 
loci (black box) from genomics (G-omics) and transcriptomics (T-omics) in all three analyses 
and from which analyses they are considered predictive loci. 
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Figure 4.6. Interactions between predictive genomic regions and differentiated transcripts. 
Each line is an interaction between a predictive genomic region to a gene that the genomic region 
can accurately predict the expression. The color of the line denotes which chromosome arm the 
genomic region originates from. The genomic regions are classified as 50kb windows in which 
there contained at least 3 differentiated SNPs. The transcripts are classified as the expression of 
each differentially expressed gene.   
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Table S4.1. Genomics versus Transcriptomics in predicting mortality at day 14. 
 
Genomics only Transcriptomics 

only 
Both 

2L_15739428 CIAPIN1 2L_3727143 
2L_3727143 skd 2L_9801815 
2L_6763833 CG3777 3L_21392047 
2L_9952686 CG14416 X_5747134 
2R_21861391 CG33655 X_6429797 
3L_15299546 CG44532 CG18223 
3L_20624856 lncRNA:CR45591  
3L_774317 lncRNA:CR45668  
X_2741972   
X_6582092   
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Table S4.2. Genomics versus Transcriptomics in predicting fecundity at day 14. 
 
Genomics only Transcriptomics 

only 
Both 

2L_20801145 vir vir 
2L_5630344 CG7742 CG7857 
2R_18407331 SmD2 CG7742 
2R_19198631 asRNA:CR43243 CG2854 
 asRNA:CR44054 bun 
 asRNA:CR44969 SmD2 
  asRNA:CR43243 
  asRNA:CR44054 
  asRNA:CR44969 
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Table S4.3. Genomics versus Transcriptomics in predicting mortality at day 21. 
 
Genomics only Transcriptomics 

only 
Both 

2L_3727143 Shark 2L_9801815 
2L_6661063 CG15725 2R_21786327 
2L_6763833 CG11777 3L_9479257 
2R_15739964 CG10307 3R_29608163 
2R_18407331 Sh3beta X_10652956 
2R_18523555 CG11267 X_13618883 
2R_21786327 Mms19 X_16270729 
2R_21825170 CG10264 Shark 
2R_21861391 tw CG15209 
3L_14741378 Gr39a CG2225 
3R_14317104 asRNA:CR43615 CG11267 
3R_20677283  CG8176 
3R_29608163  CG10264 
X_13618883  tw 
X_16352150  Gr39a 
X_4249731  asRNA:CR46058 
X_5346401   
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CONCLUSIONS 

 Selection experiments using experimentally evolved populations have become quite 

popular and can be useful in determining the underlying mechanisms of evolution itself. 

Although the field of experimental evolution is quantitatively dominated by studies of asexual 

populations (Barrick et al. 2009; Tenaillon et al. 2012; Maddamsetti et al. 2015), there is much to 

gain in using sexual populations. For instance, asexual populations undergoing selection must 

wait for a beneficial de novo mutation before they can start to adapt, whereas adaptation in 

sexual populations is primarily driven by standing genetic variation (Burke 2012). Considering 

this, sexual populations with moderate standing genetic variation should adapt rapidly and in 

parallel with other populations, providing those populations have similar levels of genetic 

variation and undergo identical selection. Ultimately, the possibility of rapid repeated adaptation 

in sexual populations allows us to use statistical learning tools to better understand the 

interconnections between the genome, transcriptome and phenotype, as these tools require heavy 

replication. 

 This dissertation first sought to determine how quickly and repeatedly selection in 

experimentally evolved sexual populations resulted in these populations achieving similar 

phenotypes and gene expression levels. Secondly using the same experimentally evolved 

populations and a statistical learning model, the thesis research attempts to uncover interactions 

between the genome, transcriptome, and phenotypes. 

 Chapter 1 of my thesis measured adult life-history in 30 experimentally evolved 

Drosophila populations. Ten of these 30 populations were selected for accelerated development, 

ten were selected for standard laboratory selection in vials, and ten were selected for postponed 

reproduction. Within each group of 10 populations undergoing the same selection regime, there 
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were 5 populations that were considered long-standing while the remaining 5 were considered 

recently-derived. The long-standing populations each had over 200 generations in their current 

selection regime, whereas the recently-derived populations had as little as 45 generations under 

their current selection regime. I measured age-specific early fecundity (pre-day 14) for all 30 

populations, as well as life-long mortality and fecundity (post-day 14) for 20 populations. First, I 

found that there was significant evidence for divergence between all three selection regimes. 

Second, I found there was significant evidence for convergence within each selection regime. 

This led to the conclusion that populations with moderate standing genetic variation are capable 

of diverging from their ancestral state and converging with populations undergoing similar 

selection, all within as little as 45 generations. An unexpected result was that there was a clear 

stage of non-aging in our postponed reproduction populations. Prior studies did not reveal a 

similar pattern (Rose et al. 2002), but I believe this was likely due to how the experiment was 

conducted. Our previous mortality assays were conducted in vials, whereas in my work it was 

conducted in cages. 

 Chapter 2 of my thesis is similar to Chapter 1, in that I measured different phenotypes 

from the same 30 experimentally evolved populations to examine the rapidity and repeatability 

of selection in sexual populations. I measured egg hatching time, larval development, and pupal 

development. Larval and pupal development data were similar to the data of Chapter 1, in that I 

saw evidence of convergence within selection regime and evidence of divergence between 

selection regimes. I did not see the same pattern for egg hatching. Instead, what I found was that 

only the accelerated development populations showed evidence of convergence within selection 

regime, and divergence from the other selection regimes. For the remaining populations, it 

appeared as if recent evolutionary history played a larger role in determining egg hatching time. 
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This led me to the conclusion that the nature of the selection imposed on the populations has a 

clear implication for how phenotypes will evolve. If a phenotype is strongly affected by 

selection, then evolutionary history has a diminished effect on the phenotype. The converse is 

also true, in that if selection does not impact the phenotype, then evolutionary history takes 

precedent. 

 Chapter 3 of my thesis analyzed transcriptomic data from 20 of the previously described 

populations at two different time points. Specifically, I took female whole-body samples from 

populations selected for the accelerated development and postponed reproduction. To determine 

differentiation between the two selection regimes, I compared the RNA abundance at the gene 

level for all 20 populations. I found that within-selection regime there is very little 

differentiation, while between selection regimes there were hundreds of genes that were 

differentially expressed. These results are very similar to those seen in Graves et al. (2017) for 

genomic differentiation. Unexpectedly, I found that a high proportion of non-coding RNA genes 

were differentially expressed. Although, I currently do not have much insight into why this is the 

case, it is likely that non-coding RNA genes play some role in phenotypic differentiation. 

 Chapter 4 of my thesis sought to examine the interactions between the genome, 

transcriptome, and organismal phenotype using statistical learning tools (Mueller et al. 2018). 

Genomic data were taken from Graves et al. (2017), transcriptomic data were taken from Chapter 

3 (Barter et al. 2019), and phenotypic data were taken from Chapter 1 (Burke et al 2016). All 

measures are from the populations selected for accelerated development and postponed 

reproduction. First, I compared how well transcriptomic measures predict phenotypes at many 

different ages, using the transcriptomic measures  from just one age. I found that once the 

population has exited the developmental stage, the transcriptome can reliably predict mortality at 
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seven of the eight ages tested. Second, I compared whether the genome or the transcriptome can 

better predict phenotypic measures. I found that neither the genome or the transcriptome had a 

clear advantage in predicting age-specific mortality and fecundity. Their specific value varied 

depending on which phenotypic measure I used as an input. Lastly, I sought to find genomic 

regions that were good predictors for the expression of each transcript that was differentiated 

between the two selection regimes. I found that causal genomic regions for the expression of a 

differentiated gene were found across the genome, rather than being restricted to the locale of the 

differentiated gene. In addition, I found that most candidate genomic regions were predictive for 

the expression of multiple transcripts, suggesting these regions have pleiotropic effects. 
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