
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Graph Embeddings, Disentanglement, and Algorithm Maps

Permalink
https://escholarship.org/uc/item/8xb4737b

Author
Qiu, Frank Yuchen

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xb4737b
https://escholarship.org
http://www.cdlib.org/

Graph Embeddings, Disentanglement, and Algorithm Maps

by

Frank Qiu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Giles Hooker, Co-chair
Professor Bruno Olshausen, Co-chair

Professor Haiyan Huang
Professor Song Mei

Spring 2023

Graph Embeddings, Disentanglement, and Algorithm Maps

Copyright 2023
by

Frank Qiu

1

Abstract

Graph Embeddings, Disentanglement, and Algorithm Maps

by

Frank Qiu

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Giles Hooker, Co-chair

Professor Bruno Olshausen, Co-chair

We tackle three disparate topics in this thesis - graph embeddings, disentanglement, and
algorithm maps.

In Chapters 2 and 3, we cover graph embeddings: methods which embed graph as vectors in a
structure-preserving way. We start at the principle of superposition used by vector-symbolic
architectures and derive the tensor product as the canonical binding operation along with
a natural random code. Together, they form a novel embedding method, and we list some
common graph operations our embeddings are capable of. We give a precise characterization
of its statistical behavior, showing it achieves a packing upper bound. and go on to establish
a link to adjacency matrices with applications toward their drastic compression. Then, we
compare our method to other bind-and-sum methods and showcase a fundamental memory
vs. capacity tradeoff.

In Chapter 4, we cover disentanglement, the discovery of semantically meaningful latent fac-
tors. We assume that data lives on a low-dimensional manifold and define disentanglement
in terms of local charts. Exploring the consequences of this definition, we find that com-
mutativity of the latent factors is an equivalent condition for disentanglement. Under our
framework, we also show that sufficiently rich generative models can always be disentangled,
and we apply the commutativity condition to learning a dictionary of Lie group operators.
We conclude with a discussion of how our definition relates to previous work, suggesting that
it is no accident that commutativity - which has been used a computational or conceptual
convenience - is so prevalent in these methods.

In Chapter 5, we give some preliminary thoughts on the transfer of algorithms between
different contexts. Our key insight is that, rather than focusing on the transfer of a single
algorithm, it is more profitable to consider the conditions in which the states and actions of

2

one setting can be mapped to those of another setting. This in turn induces a natural map
of algorithms between contexts, and we give some basic consequences of these definitions.

i

To Lynda Qiu and Yang Duobao

ii

List of Figures

2.1 Values are the absolute deviations of the average query scores from the ideal score
in each experiment. The number of edges is increased while holding the graph
embedding dimension constant. 20

2.2 Effect of varying codebook size. We looked at edge query performance while
varying the number of possible vertices. The results show that performance does
not degrade with increasing codebook size. 21

3.1 Spherical/tensor scheme. Results are shown for the edge query and edge com-
position operations. For each graph operation, we tested performance in both
detecting a test edge and ignoring a spurious edge. The red line indicate the
ideal values in each case - 1 for the positive case and 0 for false positive case. . . 42

3.2 Rademacher/Hadmard scheme. We repeated the same tests from the tensor/spherical
scheme. In this case, the ideal values for the positive and false positive cases are
16 and 0 respectively, denoted by red lines. 43

iii

List of Tables

4.1 d denotes the dimension of the underlying space, and n denotes the number of
matrix generators. The Average Relative Error (ARE) is a measure of how well
the learned diagonalized system approximates the original matrix exponentials. . 60

iv

Contents

List of Figures ii

List of Tables iii

Contents iv

1 Introduction 1
1.1 Graph Embeddings . 1
1.2 Disentanglement . 2
1.3 Transfer of Algorithms . 2

2 Graph Embeddings via Tensor Products
and Orthonormal Codes 4
2.1 Introduction . 4
2.2 Notation and Terminology . 5
2.3 Method Overview . 5
2.4 Graph Operations . 6
2.5 Theoretical Derivation of the Embedding Method 11
2.6 Spherical Codes and Approximate Orthonormality 14
2.7 Relationship to Adjacency Matrices . 17
2.8 Compressing Adjacency Matrices . 18
2.9 Experiments . 19

3 Memory and Capacity of Graph Embedding Methods 22
3.1 Introduction . 22
3.2 Alternative Binding Operations . 22
3.3 Random Codes . 26
3.4 Binding Comparison Overview . 28
3.5 Vertex Queries . 29
3.6 Edge Composition . 35
3.7 Binding Comparison Summary . 40
3.8 Simulations . 41

v

4 Disentanglement from the Manifold Perspective 44
4.1 Smooth Manifolds: Technical Preliminaries 45
4.2 Flows over the Data Manifold . 46
4.3 Commutativity . 48
4.4 Disentangling Generative Models . 53
4.5 Application to Matrix Exponential Operators 56
4.6 Commutativity and Operators . 61

5 Transfer of Algorithms: Players and Worlds 65
5.1 Introduction . 65
5.2 Basic Definitions . 66
5.3 Basic Properties . 67
5.4 Composition of Players . 71

Bibliography 72

A Superposition and Graph Hierarchical Models 75
A.1 Superposition Again . 75
A.2 Hierarchical Model Basics . 76
A.3 Properties and Comparisons . 77
A.4 Booleans to States . 84

vi

Acknowledgments

This thesis would not be possible with the support, time, and friendship of those I’ve met
while at UC Berkeley. First and foremost, I would like to thank my advisors Professor Giles
Hooker and Professor Bruno Olshausen. They were always generous with their time and
advice, giving me the encouragement to pursue my interest and providing invaluable help in
guiding my research.

The members of the Redwood Center of Theoretical Neuroscience were a fundamental
part of my graduate experience: their research and discussions planted the seeds of the topics
covered in this thesis and broadened my academic horizons. In particular, I would like to
thank Yubei Chen, who acted as a mentor to me for many years. His tireless efforts to include
me on projects, ask about my well-being, and provide a limitless supply of interesting ideas
were fundamental to my success as a graduate student. I would also like to thank Ho Yin
Chau, who along with Yubei was a key collaborator on a project that inspired many ideas in
this thesis; his insight and helpful discussions sharpened my understanding of key concepts
which laid the foundation for some work in this thesis. Others in the Redwood Center I
would like to thank include Christian Shewmake, Brian Cheung, and Connor Bybee.

I would also like to thank the staff of the Statistics Department: from cookie time to
navigating paperwork, their help was invaluable. In particular, I would like to thank Mary
D. Melinn and La Shana Porlaris, who I caused much trouble for and am eternally grateful
for their patience. I would like to thank Professor Bin Yu for serving as my faculty mentor:
my membership in BAIR and choice to attend Berkeley were largely due to her advice and
guidance.

As an instructor, I would like to first thank Professor Merle Behr and Johnny Hong,
whose guidance and example were critical in my first semester as a GSI. I would also like
to thank Professor Gaston Sanchez, Professor Hank Ibser, Professor Jared Fisher, Professor
Aditya Guntuboyina, and Profesor Likun Zhang who I had the pleasure of being a GSI for.
I would also like to thank all my fellow GSIs that I worked with, whose company and help
were greatly appreciated.

In the Statistics department, I’ve been the beneficiary of the generosity and warmth of
many fellow students. I would like to thank all the students in my cohort; our mutual support
and commiseration helped me through the most difficult years of my degree: Olivia Angiuli,
Jacob Calvert, Miyabi Ishihara, Tyler Maltba, Mehdi Ouaki, Briton Park, Alexander Tsigler,
and Zoe Vernon. In particular, I would like to thank Mehdi Ouaki for the many years of
friendship during our time as roommates: movie nights were something I looked forward to
every week. I would also like to thank Zsolt Bartha, Billy Fang, Arturo Fernandez, Ella
Hiesmayr, Runjing Liu, Benji Lu, Jake Soloff, Dan Soriano, Simon Walter, Jason Wu, and
many other peers who helped brighten my day.

Finally, I would like to thank the other members of my committee: Professor Haiyan
Huang and Professor Song Mei. Their suggestions after my qualifying exams helped guide
the research presented in this thesis, and I am grateful for the time they sacrificed by serving
on both my qualifying and thesis committees.

1

Chapter 1

Introduction

This thesis is divided into three primary topics: Chapters 2 and 3 deal with graph embed-
dings, Chapter 4 with disentanglement, and Chapter 5 is preliminary work on the transfer
of algorithms. In addition, the appendices contain supplementary material on graph hierar-
chical models as well as experimental disentanglement results.

1.1 Graph Embeddings

Graph embeddings are a family of methods that embed graphs as vectors, so that we may
work with them as we would other real-valued data. A good embedding is one that captures
the structure of the graph, allowing us to extract information directly from the embedding
without accessing the graph itself. Some methods achieve this by embedding a graph’s
vertices in a way that encodes their connectivity [10] [1]; others seek to factorize a graph’s
adjacency matrix or tensor to capture relation information [23]. The method in this thesis
takes the approach of embedding a graph by embedding its edgeset in a manner that allows
for flexible manipulation and graph operations.

To do this, we draw inspiration from the field of vector symbolic architectures (VSAs)
[15] [13] [9], which seek to augment vector spaces with the capacity to represent symbolic
structures. VSAs do this by equipping a vector space with two primary operators: the
binding and superposition operators. The binding operator generates vectors that represent
the symbolic binding of two entities, and the superposition operator, usually summation, is
used to generate vectors that represent many entities at once. Our method uses the original
binding operator - the tensor product - which was first proposed by Smolensky [26] along
with summation as the superposition operator.

In Chapter 2, we introduce our method and show its rich representational capacity. We
give a statistical characterization of its behavior, demonstrating it achieves a packing upper
bound. Moreover, we show our binding operator is the most general method with respect to
superposition as summation and that our method is a generalization of adjacency matrices
with application towards their compression. In Chapter 3, we compare our method’s memory

1.2. DISENTANGLEMENT 2

and capacity to other popular bind-and-sum schemes. We show that compressing the tensor
product not only hinders the representational capability of the embeddings but also incurs a
proportionate penalty in the capacity, challenging criticisms of the tensor product’s memory
expense relative to alternative binding operations. Finally, in the appendices we introduce
some cursory thoughts on superposition as a computational paradigm and graph hierarchical
models.

1.2 Disentanglement

Disentanglement is a term with many interpretations in the machine learning community,
but broadly it is the discovery and separation of semantically meaningful latent factors in a
dataset. There is a rich literature tackling it from many angles: statistical independence [5]
[8] [11], factorized generative models [2] [4] [28], and even group-theoretical approaches [3] [7]
[12]. In Chapter 3 , we interpret disentanglement in the context of the manifold hypothesis,
which states that high-dimensional data lies on or near a low-dimensional manifold. From
this perspective, we define disentanglement as the discovery of an atlas of local charts for
the data manifold, where the local coordinates all correspond to semantically meaningful
factors. Exploring the consequences of this definition, we find that commutativity between
the latent factors is a necessary and sufficient condition for disentanglement. This resulting
commutativity criterion is useful for easily checking the validity of a set of candidate factors
as well as a guiding principle in the construction of disentangling techniques. Furthermore,
under our framework we show how sufficiently rich generative models can always be dis-
entangled in the local chart sense. We conclude with an application of the commutativity
criterion to the learning of matrix operators, demonstrating experimentally that a system
of matrix exponentials can be well-approximated by a commuting system of exponentials.
Included in the appendices are experimental results showing the emergence of local charts
in the latent code of a deep autoencoder.

1.3 Transfer of Algorithms

The ability to generalize strategies in one context to another is a primary research topic
of interest, and in Chapter 5 we give some preliminary work on a formal framework for
describing this transfer. This work was partly inspired by the phenomena of skill transfer
between video games and partly by attempts to define an isomorphism of Turing machines
[29]. In both cases, the transfer of strategies requires both a map of context states as well
as allowable actions. For example, skilled players in one fighting game tend to be skilled at
other fighting games, even though the mechanics and controls may differ. Similarly, the rule
table of a Turing machine is tied to the symbols the machine can read and write with, and
implementing the rule table in another machine requires translating the original symbols to
the ones of new machine. We formalize this observation by defining worlds - sets with an

1.3. TRANSFER OF ALGORITHMS 3

associated set of functions - and players that operate in such worlds. We go on to define
world maps that naturally map sets of players between worlds, and we give some basic
results concerning these player maps. While this work is far from finished, we hope this
section provides some entertainment and food for thought.

4

Chapter 2

Graph Embeddings via Tensor
Products
and Orthonormal Codes

2.1 Introduction

Our method specifically represents a graph by embedding its edge set as a real-valued ma-
trix. To do this, we borrow two key ingredients from the VSA approach: the principle of
superposition - the embedding of a set is the sum of its constituents’ embeddings - and a
binding operation that generates edge embeddings. Thus, we represent the edgeset as the
sum of its edge embeddings. This comprises the first part of our method, and the second
part is the vertex code used to generate the edge embeddings. We shall describe both of
these components and analyze them in separate sections.
The general problem of embedding symbolic structures into continuous spaces is a major
area of focus in the field of vector symbolic architectures, and this paper draws on key ideas
from the field - namely superposition and binding. Indeed, our binding method was first
proposed in [26] by Paul Smolensky, who introduced it in the general context of role-filler
bindings of arbitrary order. In this work, we study it in the specific context of graphs, where
the binding order is fixed at two (two vertices bound into an edge). This fixing of the binding
order sidesteps a major issue with the tensor product, whose dimension explodes with the
binding order. In fact, in a companion paper we compare the tensor product to other popu-
lar binding methods that were specifically proposed as memory-efficient alternatives; in that
paper, we find that, at least for graphs, those alternatives offer no memory advantage and
sacrifice the tensor product’s expressiveness. Similarly, our use of spherical codes was also
inspired by previous work by [13], [15],[6], which leveraged the fact that high-dimensional
vectors are nearly orthogonal with high probability. Indeed, our spherical code is of the same
family as the binary and phasor codes proposed in those papers, where the code vectors are
all unit vectors. Furthermore, [22], [20], [25], [14], [24] are examples of graph embedding

2.2. NOTATION AND TERMINOLOGY 5

approaches that employ the same bind-and-sum approach taken in this paper.

2.2 Notation and Terminology

Our work focuses on embedding objects - vertices, edges, graphs - into vector spaces. There-
fore, we shall denote the objects using bolded letters and their embeddings with the corre-
sponding unbolded letter. For example, we denote a graph using G and its embedding using
G. In later sections, when there is no confusion we shall drop the distinction between the
object and the embedding and just use the unbolded letter.

We also adopt graph terminology that may be non-standard for some readers. There are
many names for the two vertices of a directed edge (d, c) = d → c. In this paper, we shall
call d the domain of the edge and c the codomain. Unless stated otherwise, all graphs will
be directed graphs.

2.3 Method Overview

Given some set V , we propose a method for embedding the family of graphs that can be
made from V . Specifically, for any directed graph G = (VG,EG) such that VG ⊆ V and
EG ⊆ V × V , we embed G by embedding its edge-set EG into a vector space. To this
end, we first embed the large vertex set V by assigning each vertex to a d-dimensional unit
vector, drawn independently and uniformly from the unit hypersphere Sd−1. We then embed
each directed edge (d, c) in the edgeset by the tensor product of their vertex embeddings:

(d, c) 7→ d⊗ c

Fixing the standard basis, the tensor product is the outer product dcT . Then, the embedding
G of the graph G - which we represent by its edgeset EG - is the sum of its edge embeddings:

G 7→ G =
∑
i

di ⊗ ci =
∑
i

dic
T
i

Our embedding method can be separated into two parts: the spherical code used to embed
vertices and the tensor product used to bind vertices into edges. Later sections will analyze
both separately as well compare them to other coding-binding schemes.

Finally, while we represent a graph G by representing just its edgeset EG, we can also
embed its vertex set as well by augmenting EG with self-loops (v,v) for each v ∈ VG.
This introduces confusion between a vertex and its self-loop, but for certain graphs,such as
directed acyclic graphs, this is not a concern. However, we will focus on the original method
of solely embedding the edgeset in this paper.

2.4. GRAPH OPERATIONS 6

2.4 Graph Operations

Key Assumption: (Nearly) Orthonormal Vertex Codes

In this section, we will give an overview of some core graph operations possible under the
proposed embedding framework. One key property we require is that the vertex codes be
(nearly) orthonormal vectors, and this is the primary motivation behind the our use of
spherical codes. Later sections will give a more precise analysis of near orthonormality, and
for clarity we shall assume exactly orthonormal vertex codes in this section.

Edge Addition/Deletion

Adding/deleting the edge (a, b) to a graph corresponds to simply adding/subtracting abT

from its graph embedding G.

Outbound/Inbound Vertices

For a given vertex d in G, suppose we wanted to find all the vertices ci that a vertex d points
to: (d, ci). To do this, we multiply G by d on the left:

dTG = dT (
∑
i

dic
T
i) =

∑
i

⟨d, di⟩cTi =
∑
di=d

cTi

In the last equality, we use the fact that the vertex embeddings are orthonormal. Since we
represent sets as sums, this result is precisely the set of vertices that d points to.

Conversely, say we were interested in finding all vertices di that point to a vertex c: (di, c).
This would analogously correspond to right multiplying by c:

Gc = (
∑

dic
T
i)c =

∑
⟨ci, c⟩di =

∑
ci=c

di

We can generalize this to a set of candidate vertices. For example, we first represent a set
of vertices S by the superposition of its constituents S = s1 + · · · + sn. Then, to find all
vertices in G that are connected to any vertex in S by an inbound edge, we multiply G on
the right by S:

GS = (
∑

dic
T
i)(s1 + · · ·+ sn) =

∑
ci∈S

di

Analogously, to find all vertices in G connected to S by an outbound edge, we multiply G
on the left by ST . All subsequent operations are also multilinear like the vertex query, and
so they can all be similarly extended to handle sets of vertices or edges. For simplicity, we
will focus on just the singleton case from now on.‘

2.4. GRAPH OPERATIONS 7

Edge/Node Queries

Combining the two operations above, checking if a graph G contains the edge (d, c) would
correspond to multiplying G by d on the left and c on the right:

dTGc = dT (
∑

dic
T
i)c =

∑
⟨d, di⟩⟨c, ci⟩ = 1{(d,c)∈EG}

Now suppose G were augmented with self-loops for each vertex, where G contains the loop
vvT for each of its vertices v. One can use the above procedure to detect if G contains a
given vertex.

Edge Composition, k-length Paths, and Graph Flow

We can also perform edge composition with the graph embeddings. For example, given edges
(a, b) and (b′, c), we want to return the composite edge (a, c) only if b = b′. This can be done
by matrix multiplication of the edge embeddings:

(abT)(b′cT) = ⟨b, b′⟩acT = 1{b=b′}ac
T

Therefore, we can compose all edges in a graph G by computing its second matrix power:

G2 = (
∑

dic
T
i)(

∑
djc

T
j) =

∑
i,j

⟨ci, dj⟩dicTj =
∑
ci=dj

dic
T
j

Generalizing to paths of length k, the matrix powers of G correspond to the sets of paths of
a fixed length:

Gk = {all k-length paths in G}

We can combine this with vertex queries to compute graph flows. Say one wanted to know,
starting at initial vertex v, all vertices c that are reachable from v by a path of length k.
Then one would compute:

dTGk = dT (
∑

dic
T
i)(G)

k−1 =
∑
di=d

cTi (G
k−1) = · · · = {c such that there is a k-length path d→ c}

An analogous operation exists for determining all vertices d that end up at final vertex c
after a path of length k:

Gkc = {d such that there is a k-length path d→ c}

Edge Flipping, Undirected Graphs, and Alternization

Given an edge (a, b) with representation abT , the representation of the flipped edge (b, a) is
the transpose matrix:

baT = (abT)T

2.4. GRAPH OPERATIONS 8

Therefore, the embedding of the dual graph Gop - flipping all edges of G- is the transpose of
G.

Gop = GT

One interesting application of this property is to extend our current graph framework to
undirected graphs using the matrix symmetrization procedure:

G 7→ G+GT

This procedure may introduce double-counting of certain edges, but for certain graphs, like
directed acyclic graphs, this is not an issue.

Subsetting and Subgraphs

In a previous section, we saw that vertex queries can determine the vertices connected to or
from a set of vertices S ⊆ V . Now, suppose we wanted to know not the vertices but the
edges whose domain is in S. Abusing notation, let S denote the matrix whose columns are
the vertex embeddings s ∈ S, and let PS = SST be the associated projection matrix. To
find all edges whose domain is in S, we compute:

PSG = SST (
∑

dic
T
i) =

∑
⟨sj, di⟩sjcTi =

∑
1{sj=di}sjc

T
i =

∑
di∈S

dic
T
i

Similarly, to find all edges whose codomain is in S, we compute:

GPS = (
∑

dic
T
i)SS

T =
∑

⟨sj, ci⟩disTj =
∑

1{sj=ci}dis
T
j =

∑
ci∈S

dic
T
i

Now, say we wanted to extract the full subgraph GS of G, whose edges are those of G that
have both domain and codomain in S. Combining the above two equations, this amounts to
conjugating G with PS:

GS = PSGPS

Translation between Vertex Codes

Suppose we have two different vertex codes ϕ1 : V → V1 and ϕ2 : V → V2. For a graph G,
we then have a graph embedding induced from each vertex code, denoted ϕ1(G) and ϕ2(G).
There is a natural way to convert ϕ1(G) to ϕ2(G). Let Φ1 be the matrix who columns are
the vertex codes {ϕ(v1), ϕ(v2), · · ·} in that order; let Φ2 be the similarly defined matrix for
ϕ2. Then, we have the transition map between vertex codes Ψ : V1 → V2 represented by the
matrix Φ2Φ

T
1 :

Ψ : V1 → V2 ; ϕ1(vi) 7→ ϕ2(vi) ; Ψ = Φ2Φ
T
1

Then, the graph representations ϕ1(G) and ϕ2(G) follow the relation:

ϕ2(G) = Ψϕ1(G)Ψ
T

2.4. GRAPH OPERATIONS 9

Counting via the Trace

The trace of a graph embedding G will count the number of self-loops in the graph:

tr(G) = tr(
∑

dic
T
i) =

∑
⟨di, ci⟩ =

∑
1{di=ci}

This property can be used for many interesting graph operations.

Vertex Counting in Augmented Graphs

For a graph G whose edgeset set is augmented with the self-loops vvT for every v in its
vertex set VG, the trace will naturally return the cardinality of its vertex set:

tr(G) = tr(
∑

dic
T
i) =

∑
⟨di, ci⟩ = |VG|

Edge Counting and a Natural Metric

To count the number of edges in a graph G =
∑
dic

T
i , one computes:

tr(GTG) = tr((
∑

cid
T
i)(

∑
djc

T
j)) = tr(

∑
⟨di, dj⟩cicTj) =

∑
⟨di, dj⟩⟨ci, cj⟩ = |EG|

This gives a nice relation to the Frobenius norm ||·||F via the identity ||A||2F = tr(ATA). This
shows that the squared Frobenius norm of a graph representation is precisely the cardinality
of its edge set. Hence, the natural metric on our graph embeddings would be the one induced
from the Frobeinus norm:

d(G,H) := ||G−H||F =
√
of different edges

where this metric depends solely on the number of different edges between the two graphs.

Testing Graph Homomorphisms

Finally, one interesting application of the trace is to quantify the ’goodness’ of a proposed
graph homomorphism. Recall that a graph homomorphism f from graph G to graph H is
comprised of a vertex function f1 : VG → VH and edge function f2 : EG → EH such that
every edge (a, b) is mapped by f2 to the edge (f1(a), f1(b)). Hence, every homormorphism is
completely determined by its vertex function, and so it suffices to test if a vertex function
f : VG → VH induces a graph homomorphism. Therefore, for every proposed vertex function
f we assign a quantity called the graph homomorphism coefficient, described in detail below.

Given two graphs G =
∑
dic

T
i and H =

∑
ajb

T
j with proposed vertex function f : VG →

VH , the vertex function f induces the following map:

G =
∑

dic
T
i 7→

∑
f(di)f(ci)

T = f(G)

2.4. GRAPH OPERATIONS 10

Note that f(G) can be computed using the method mentioned in the previous section. If f
is truly a graph homomorphism, then f(G) is a subgraph of H and every edge of f(G) is
an edge of H. We therefore compute the number of matching edges between f(G) and H,
denoted δf :

δf = tr(f(G)TH) = tr((
∑

f(ci)f(di)
T)(

∑
ajb

T
j)) =

∑
⟨f(di), aj⟩⟨f(ci), bj⟩

Dividing δf by |EG| = tr(GTG) gives the fraction of edges in f(G) that have matches in H.

We call this ratio the graph homomorphism coefficient, denoted as ∆f :=
δf

|EG| . Note that

∆f ∈ [0, 1]. If f truly induces a graph homomorphism, then every edge has a match and
∆f = 1; conversely, if f(G) has no matching edges in H, then f(G) is totally different from
H and ∆f = 0. In this sense, the graph homomorphism coefficient gives a measure of how
close a vertex function f is to inducing a graph homomorphism.

Vertex Degree and Gram Matrices

In a directed graph G, consider a fixed vertex v. Then, the in-degree of v, in(v), is the
number of edges that go into v - ie. have codomain v. Similarly, the out-degree of v, out(v),
is the number of edges that go out of v - ie. have domain v. Generalizing these definitions, we
define the joint in-degree of two vertices v and w, in(v, w), as the number of vertices di that
have both an edge into v and an edge into w. The joint out-degree of two vertices v and w,
out(v, w), is similarly defined. Note that using the generalized definitions, the in/out-degree
of a vertex with itself coincides with the single-case definition. Using our graph embeddings,
there is a natural way to compute both of these degrees.

We first handle the in-degree of a vertex. Recall that Gv is the superposition, or sum,
of all vertices di that go into v with an edge (di, v). Since vertex codes are orthonormal, we
can use the squared Euclidean norm to count the number of vertices in superposition:

||Gv||2 = (Gv)TGv = vT (GTG)v = in(v)

In fact, for two vertices v and w, we again appeal to orthonormality of the vertex codes to
compute their joint in-degree:

(Gv)TGw = vT (GTG)w = in(v, w)

Thus, we see that the Gram matrix GTG represents a bilinear form that computes the joint
in-degree of two vertices:

GTG : V × V → R ; v × w 7→ vT (GTG)w = in(v, w)

We shall called the gram matrix GTG the in-degree matrix.
A similar line of reasoning shows that the Gram matrix GGT is a bilinear form that

computes the joint out-degree between two vertices. Hence, we shall call GGT the out-
degree matrix. Immediately, one natural question when working with Gram matrices are
their spectral properties. Indeed, there are natural links to properties of graph connectivity,
which we discuss in the next section.

2.5. THEORETICAL DERIVATION OF THE EMBEDDING METHOD 11

Graph Connectivity

We embed a graph G as a matrix Rd×d ∼= V
⊗

V , and so we may view each graph embedding
as a linear operator on the vertex code space V . This perspective yields some interesting
links to the connectivity properties of graphs.

Invariant Subspaces and Connected Components of Undirected Graphs

Given a linear operator T : V → V , a subspace W ⊆ V is an invariant subspace of T if
T (W) ⊆ W . An invariant subspace W is irreducible if it contains no non-trivial invariant
subspace. Now, consider a directed acyclic graph G, its dual GT , and a subset of its vertices
{v1, · · · , vn} ⊆ VG. Let W = span({v1, · · · , vn}), and let U(G) = G + GT be its induced
undirected graph.

Suppose W were an invariant subspace of G, or equivalently Gvi ∈ W for all vi. As Gvi
is the sum of all vertices dj that connect to vi via an outbound edge, this means that the
only in-bound connections to {v1, · · · , vn} are from its members. Similarly, the condition
that W be an invariant subspace of GT is equivalent with the condition the only out-bound
to {v1, · · · , vn} are from its members. Thus, if we consider the induced undirected graph
U(G) = G+GT , W is an invariant subspace iff all paths starting at any vi terminate at some
other vj. Hence, W is an invariant subspace iff the underlying set of vertices {v1, · · · , vn}
is a union of connected components of U(G). Immediately, {v1, · · · , vn} is a connected
component iff W is an irreducible invariant subspace. These are the weakly connected
components of the directed graph G.

2.5 Theoretical Derivation of the Embedding Method

In this section, we derive the tensor product binding from principle of superposition and
show that it is the most ’general’ embedding method. We also explore how orthonormal
codes and the tensor product are naturally derived when considering suitability for certain
graph operations.

Superposition and the Tensor Product

We shall derive the tensor product from the principle of superposition. Indeed, along the
way we shall establish the following connection between the principle of superposition and
the tensor product:

Theorem 2.5.1. For any fixed vertex code ϕ : V → V , let ψ : V × V → Rn be any binding
operation that respects superposition. Then the resulting bound code ψ(V, V) has a unique
linear derivation from the tensor product V

⊗
V . In this sense, the tensor product is the

most general binding operation.

2.5. THEORETICAL DERIVATION OF THE EMBEDDING METHOD 12

Proof. Assume we are given a vertex code ϕ : V → V . Given a directed graph G = (VG, EG)
in V , our task is to represent G by embedding edge set EG via a superposition of its edges.
First, suppose G has multiple edges from a common domain {d} to multiple codomains
{c1, . . . , ck}:

{(d, c1), · · · , (d, ck)} =
⋃
i

{(d, ci)}

Simiarly, consider the reverse situation to multiple domains with a single codomain. Then,
any edge embedding ψ : V × V → Rn that respects superposition must satisfy the following
two equations:

ψ({(d, c1), · · · , (d, ck)}) =
∑

ψ({(d, ci)})

ψ({(d1, c), · · · , (dk′ , c)}) =
∑

ψ({(dj, c)})

Thus, ψ induces a bilinear function ψ̃ on the vertex code via:

ψ̃ : V × V → Rn

(ϕ(v), ϕ(w)) 7→ ψ(v, w)

By the universality of the tensor product ([16]), the bilinear ψ̃ map has a corresponding
unique linear map ψ∗ : V

⊗
V → Rn, and so the tensor product uniquely maps into every

edge embedding that respects superposition.

For example, three common alternative binding operations - Hadamard product, convolu-
tion, and circular correlation - all are linearly induced from the tensor product. Representing
the tensor product as the outer product matrix, the Hadamard product is the diagonal of
the matrix, while the convolution and circular correlation are sums along pairs of diagonals.
Therefore, given a vertex code ϕ we may as well consider its natural induced edge embedding
under the tensor product. Fixing a basis, this can be expressed as the outer product of the
vertex codes:

ϕ̃ : V × V → V
⊗

V ; (d, c) 7→ d⊗ c = dcT

Derivation from Graph Operations

In this section, we shall show that the tensor product and orthonormal codes can be naturally
derived when considering suitability toward graph operations. While we can analyze many
possible graph operations and still get the same result, for brevity we shall focus on the
vertex query function Q:

Q : (V ×G) → V

that takes as input a vertex-graph pair (v,G) and returns all the vertices that v points to
or is connected to. We shall consider a general edge-binding operation ψ, and denote edges

2.5. THEORETICAL DERIVATION OF THE EMBEDDING METHOD 13

under this binding operation as ψ(v, w). As usual, we assume that both Q and ψ respect
superposition.

Since Q respects superposition and hence is a multilinear function, we can completely
characterize it by considering its actions on some basis set bi×ψ(bj, bk). Let us assume some
subset of vertex embeddings form a basis for V , and let us examine Q applied to a single
edge: Q(u, ψ(v, w)). For notational simplicity, we will drop the ψ and just represent edges
as tuples (v, w). Ideally, we want:

Q(u, (v, w)) =

{
w u = v

0 u ̸= v

However, this condition makes Q a non-linear function. Instead, the ’closer’ u is to v, we
want the output of Q to be closer to w; on the other hand, if u is totally ’different’ from v,
we want the query function to return nothing: the zero vector. In fact, let us fix w, so now
the function has just two arguments:

Q(−, (−, w)) = Qw(−,−)

By fixing w, in light of the previous discussion we see that Qw interpolates between w and 0
depending on the similarity of its two arguments. Equivalently, this means we can factorize
Qw into a similarity function S multiplying w, where the output of S is in [0, 1].

Qw(−,−) = S(−,−)w

The similarity function S checks for agreement between query vertex u and source vertex v,
and the closer they are the closer the output is to w. Ideally, we want S to return 1 (and
hence an output of w) whenever u = v:

S(u, v) = 1 if u = v

There is one more thing we need to consider: the orthogonal projection. Consider the
orthogonal decomposition of v onto u: v = vu + v⊥u . By linearity, our similarity function
becomes:

S(u, v) = S(u, vu) + S(u, v⊥u) =
⟨u, v⟩
⟨u, u⟩

S(u, u) + S(u, v⊥u)

Consider the second term S(u, v⊥u). It is natural that this term be 0, since these two vectors
are not equal/are orthogonal. As we agreed earlier that S(u, u) = 1, our similarity function
becomes:

S(u, v) =
⟨u, v⟩
⟨u, u⟩

We can arbitrarily scale S by some constant and shrink u by that same constant without
affecting the outcome, so for convenience let us now assume all vertices are unit vectors.
Then, our similarity function becomes:

S(u, v) = ⟨u, v⟩

2.6. SPHERICAL CODES AND APPROXIMATE ORTHONORMALITY 14

Picking any unit basis {bi} of V and applying the same analysis to all pairs of basis vectors,
we come to the general equation:

S(bi, bj) = ⟨bi, bj⟩

By linearity this completely determines S, and so S is just the usual dot product.
Having determined the form of S, our query function Q can now be expressed as:

Q(u, (v, w)) = ⟨u, v⟩w

This holds for any w, and so by multilinearity our query function takes the form:

Q(
∑

ui,
∑
j

(vj, wj)) =
∑
i

(
∑
j

⟨ui, vj⟩wj) =
∑
i

uTi (
∑
j

vjw
T
j)

Focusing on the graph term
∑

j vjw
T
j , we see this is the graph embedding using the tensor

product as a binding operation. To summarize, we derived the form the vertex query Q
should take using just multilinearity and some natural conditions, and this natural form
is a linear computation involving our proposed embedding method. Hence, regardless of
the binding method ψ, the query function Q can be equivalently computed using the graph
embedding under the tensor product. Moreover, the natural similarity function, after nor-
malization, is the dot product, and this suggests orthogonality is needed to distinguish the
vertex codes.

Considering just the vertex query function, we naturally derive our graph embedding
scheme. Indeed, this derivation is connected to superposition and multilinearity. Any graph
operation that respects superposition must be linear in each argument; as all multilinear
functions filter uniquely through the tensor product, all natural graph operations can be
derived from corresponding operations on the tensor product. Thus, we could similarly
derive the tensor product when considering any other natural graph operation.

2.6 Spherical Codes and Approximate

Orthonormality

In previous sections, we assumed our vertex code to be exactly orthonormal. However,
this orthonormality requirement is not efficient in the number of codes we can pack into a
space, as we can pack at most d orthonormal vectors into Rd. Instead, we can relax strict
orthonormality to pack a much larger number of vertex codes into the same space, and so
we pass to nearly orthonormal codes via spherical codes. Two natural questions arise: how
many nearly orthogonal vectors can one pack into Rd, and how close do spherical codes
come to achieving this limit? In this section we shall answer these two questions and give
an account of approximate orthonormality in high dimensions.

2.6. SPHERICAL CODES AND APPROXIMATE ORTHONORMALITY 15

Packing Upper Bounds

First, we give an upper bound on the number of approximately orthornormal vectors one
can pack in Rd. To make approximate orthonormality precise, we say the unit vectors u, v
are ϵ-orthogonal if |⟨u, v⟩| < ϵ. Using the Johnson-Lindenstrauss Theorem, we derive the
upper bound as a corollary:

Theorem 2.6.1 (Johnson-Lindenstrauss). Let x1, · · · , xm ∈ RN and ϵ ∈ (0, 1). If d > 8ln(m)
ϵ2

,
then there exists a linear map f : RN → Rd such that for every xi, xj:

(1− ϵ)||xi − xj||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ϵ)||xi − xj||2

Corollary 2.6.1.1. For any ϵ ∈ (0, 1
2
), one can pack at most O(eCdϵ

2
) ϵ-orthogonal unit

vectors in Rd for some universal constant C.

Proof. Let m be any integer such that d > 8ln(m+1)
ϵ2

. Consider the set of (m + 1) vectors
{e1, · · · , em, 0} in Rm. These satisfy the conditions of the Johnson-Lindenstrauss Theorem,
and let f be the JL map. Then,

(1− ϵ) = (1− ϵ)||xi||2 ≤ ||f(xi)− 0||2 = ||f(xi)||2 ≤ (1 + ϵ)

Hence, since ||ei − ej||2 = 2 for i ̸= j:

2(1− ϵ) ≤ ||f(ei)− f(ej)||2 = ||f(ei)||2 + ||f(ej)||2 + 2⟨f(ei), f(ej)⟩ ≤ 2(1 + ϵ)

Plugging the first equation to the second, we have:

−2ϵ ≤ ⟨f(ei), f(ej)⟩ ≤ 2ϵ

Thus, using ui =
f(ei)

||f(ei)|| , the first equation, and the fact that ϵ < 1
2
:

−4ϵ ≤ − 2ϵ

(1− ϵ)
≤ ⟨ui, uj⟩ ≤

2ϵ

1− ϵ
≤ 4ϵ

Therefore we have:
D > 8ln(m+ 1)/ϵ2 =⇒ m = O(eCdϵ

2

)

for some constant C.

This upper bound is in fact shown to be tight [17].

Spherical Codes

In practice, we use spherical codes - sampling uniformly from the d-dimensional unit hy-
persphere Sd−1 - to generate nearly orthornormal vertex codes. In this section, we give the
exact distribution of the dot product between spherical codes and show that they achieve
the previous packing upper bound.

2.6. SPHERICAL CODES AND APPROXIMATE ORTHONORMALITY 16

Theorem 2.6.2. If u, v are uniformly distributed over Sd−1, let X = ⟨u, v⟩ and Y = X+1
2

.
Then, Y follows a Beta(d−1

2
, d−1

2
) distribution.

Proof. Since both u and v are uniformly distributed over Sd−1, by symmetry we may fix v as
any unit vector without changing the distribution of X. Hence, let v be the first coordinate
vector e1, and so X = ⟨u, e1⟩. The set of vectors u such that ⟨u, e1⟩ = x form a spherical
section of Sd−1: a (d−1)-sphere of radius

√
1− x2. Hence, the set of vectors with dot product

x ≤ X ≤ x+ δ corresponds to a d-dimensional belt on the sphere. Since the probability of a
set is proportional to its surface area, P (x ≤ X ≤ x+ δ) is proportional to the surface area
of the belt. The area of a d-dimensional sphere of radius r is Crd−1 for some constant C,
and if θ = cos−1(X) we have:

P (x ≤ X ≤ x+ δ) ∝
∫ cos−1(x+δ)

cos−1(x)

(
√
1− cos2(θ))d−2dθ

=

∫ x+δ

x

(
√
1− t2)d−2d(cos−1 t)

∝
∫ x+δ

x

(1− t2)
d−3
2 dt

Hence, if fX is the density of X, fX ∝ (1 − x2)
d−3
2 . Then, letting X + 1 = 2Y , we can

simplify:

(1− x2)
d−3
2 = (1− x)

d−3
2 (1 + x)

d−3
2 = (2− 2y)

d−3
2 (2y)

d−3
2 ∝ (1− y)

d−3
2 y

d−3
2

Thus, Y = X+1
2

follows a Beta(d−1
2
, d−1

2
) distribution

Corollary 2.6.2.1. The dot product X between u, v, uniformly distributed over Sd−1, has
E(X) = 0 and V ar(X) = 1

d
.

Now, given a set of k spherical codes, we want to ensure that all of them are nearly or-
thogonal. Surprisingly, we shall see that for a fixed probability of violating ϵ-orthonormality,
the number of spherical codes k will be O(eCdϵ

2
) for some constant C, matching our upper

bound: spherical codes are optimal.

Theorem 2.6.3. For k vectors x1, · · · , xk sampled iid from the uniform distribution on Sd−1

and for any ϵ > 0, we have:
max
i,j

|⟨xi, xj, |⟩ < ϵ

with probability at least 1− 2
(
k
2

)
e−

d
2
ϵ2

2.7. RELATIONSHIP TO ADJACENCY MATRICES 17

Proof. From Corollary 2.6.2.1, the dot product X is a random variable bounded absolutely
by 1 and with variance 1

d
. Hence, Bernstein’s inequality gives:

P (|X| > ϵ) = 2P (X > ϵ) X is symmetrically distributed about 0

≤ 2eϵ
2/(2

d
+ 2ϵ

3
) Bernstein’s inequality

≤ 2eϵ
2/ 2

d

= 2e
d
2
ϵ2

Using a union bound over all
(
k
2

)
pairs gives the result.

Hence, for a fixed error threshold P (maxi,j |⟨xi, xj⟩| > ϵ) ≤ T , we can choose the optimal
number of vectors k that still put us under the threshold:

T ≈ C2

(
k

2

)
e−C1dϵ2 =⇒ k ≈ O(eC3dϵ2)

for universal constants C1, C2, C3. This matches the upper bound given by Theorem 2.6.1,
and choosing random unit vectors is optimal.

2.7 Relationship to Adjacency Matrices

A few of the proposed graph operations in the previous section might seem familiar to
the operations one can do with adjacency matrices. In fact, in the ideal case of exactly
orthonormal vertex codes, our proposed method is a generalization of them. In this section,
we shall discuss this connection and explore its implications.

Generalization of Adjacency Matrices

Given a vertex set V , suppose we encode each vertex as a unique coordinate vector. Then,
for any graph G in V , its graph embedding is its adjacency matrix. Moreover, given any
other orthonormal code {vi}, there is always an orthogonal change of basis, represented by
orthogonal matrix P such that:

{v1, · · · , vn} = P{e1, · · · , en}

Therefore, if A is the adjacency of graph G we have the following relationship to its graph
embeddings:

G = PAP T

We see that in the exact orthonormal case, the graph embedding is equal to the adjacency
matrix up to an orthogonal change of basis.

2.8. COMPRESSING ADJACENCY MATRICES 18

2.8 Compressing Adjacency Matrices

Our graph embeddings are generalizations of adjacency matrices in the idealized case of exact
orthonormal codes, but in the case of approximately orthonormal codes we can drastically
reduce the dimensionality while retaining all of their functionality. Hence, our method may
also be viewed as a way to compress adjacency matrices while still retaining much of the
functionality toward graph operations.

Usually, the dimension of the adjacency matrix grows quadratically with the size of
the vertex set d of a graph. For sparse matrices, where the number of edges k is much
lower than number of total possible connections d2, this is very inefficient from a memory
perspective since we are using d2 parameters to represent k << d2 edges. However, we can
view adjacency matrices as special cases of our graph embeddings, and instead the problem
becomes representing a superposition of k edges. In the next chapter we show that the
dimension of our graph embeddings only needs to scale as k in order to preserve accurate
graph operations. Hence, rather than using d2 parameters to represent a k-sparse graph, we
instead use the intuitively correct scaling of k parameters.

In the meantime, we establish that for a graph G, the graph embedding generated by our
method is close to its adjacency matrix, up to some orthogonal change of basis.

Theorem 2.8.1. For a d-dimensional, ϵ-orthonormal code V = {v1, · · · , vm} where m ≤ d,
let G be any graph embedding using V with n distinct edges and A be the corresponding
adjacency matrix induced from this vertex ordering. Then, there exists an orthogonal change
of basis P :

||G− PAP T ||F = ||P TGP − A||F < O(
√
nmϵ)

Proof. We use the Gram-Schmidt process to compute an orthogonal set of vectors ui from
the vertex code {vi}:

ui = vi −
i−1∑
j=1

⟨vi, uj⟩
⟨uj, uj⟩

uj = vi −
i−1∑
j=1

⟨vi, uj⟩uj

where uj is the unit-length version of uj. By ϵ-orthonormality, we know that |⟨vi, vj⟩| < ϵ
for all i, j. We know that u1 = u1 = v1. Then, for u2:

1− ϵ ≤ ||u2|| = ||v2 − ⟨v2, u1⟩u1|| ≤ 1 + ϵ

and
||v2 − u2|| = ||⟨v2, u1⟩u1|| < ϵ

Hence,
||v2 − u2|| ≤ ||v2 − u2||+ ||u2 − u2|| ≤ 2ϵ

Similarly, for ||u3|| = ||v3 − ⟨v3, u1⟩u1 − ⟨v3, u2⟩u2||, let us unravel the term ⟨v3, u2⟩:

|⟨v3, u2⟩| = |⟨v3, v2⟩ − ⟨v2, u1⟩⟨v3, u1⟩| < ϵ+ ϵ2

2.9. EXPERIMENTS 19

This gives:

1−O(2ϵ) = 1− O(2ϵ)

1− ϵ
≤ ||u3|| ≤ 1 +

O(2ϵ)

1− ϵ
= 1 +O(2ϵ)

and so:
||v3 − u3|| ≤ O(2ϵ)

Repeating a similar analysis, we see that for m ϵ-orthogonal codes {v1, ·, vm}, there exists an
orthonormal basis {u1, · · · , um} such that ||vi − ui|| < O(m2ϵ). Hence, let GV be any graph
embedding using the vertex codes {vi} and GU be the corresponding matrix derived from
swapping vi with ui. We then have:

||GV −GU ||F = ||
n∑
k=1

vikv
T
jk
− uiku

T
jk
||F ≤ O(

√
nm2ϵ)

As GU is a sum of the outer products between the orthonormal ui, we see that UTGUU is
an adjacency matrix. Since the Frobenius norm is preserved under orthogonal basis change,
we see that GV is O(

√
nmϵ) close to an adjacency matrix with respect to the Frobenius

norm.

2.9 Experiments

In this section, we look at how well our methods performs with respect to two basic graph
operations - edge query and edge composition - as we increase the number of edges in
superposition. This ties into the previous connection of our method as a compression of
adjacency matrices. The two graph operations because they are examples of a first and
second order linear operations. We shall see that, especially in the case of the first order
edge query, our graph embeddings still retain accurate operations even when the number of
edges greatly exceeds the graph embedding dimension.

Vertex Query and Edge Composition Accuracy

In all experiments, our vertex codebook had 64 codes, each vertex code a 16-dimensional
vector. We used spherical codes, generating our codebook by randomly sampling a unit
vector from R16. Finally, we looked at performance over a range of edges in superposition:
8, 16, 24, 32, 48, 64, 80, 128, 240, 400, 540, 800.

For the edge query, we additionally generated two new vertex codes that would serve as
the signal edge. For a given edge capacity k, we generated k edges by randomly sampling
from the vertex codebook and computing their tensor product. We added them together,
as well as the signal edge, to get a final graph embedding. Then, we queried the graph
embedding about the presence of the signal edge. For each edge capacity k, we repeated
the above procedure 100 times and averaged the query scores. Similarly, we also tested for
spurious edge detection by repeating the above steps with one modification: we excluded the

2.9. EXPERIMENTS 20

signal edge from the sum so the final graph embedding didn’t have it. We then proceeded
as above, querying for the now nonexistent signal edge and repeating this 100 times for edge
edge capacity k.

For the edge composition, we generated three new vertex codes v1, v2, v3. For each edge
capacity k, we first generated a graph embedding with k random edges from the codebook
and then added the two edges v1v

T
2 and v2v

T
3 . We then performed edge composition and

queried for the existence of the composite edge v1v
T
3 . We again repeated this for 100 trials

and averages the query scores. We also tested for spurious edge composition by omitting the
two edges v1v

T
2 and v2v

T
3 and proceeding as above. The results are shown in Figure 3.1.

Figure 2.1: Values are the absolute deviations of the average query scores from the ideal score
in each experiment. The number of edges is increased while holding the graph embedding
dimension constant.

2.9. EXPERIMENTS 21

Effect of Varying Codebook Size

Earlier, we claimed that the dimension of our graph embeddings scales with the number of
edges in superposition, independent of the number of vertices. We confirm this in simulation
by repeating the above edge query experiment, except this time we fix the number of edges
to 64 and instead vary the number of vertices from 64 to 2048.

Figure 2.2: Effect of varying codebook size. We looked at edge query performance while
varying the number of possible vertices. The results show that performance does not degrade
with increasing codebook size.

The results in Figure 3.2 support our claim that the size of graph embeddings scales with
the number of edges rather than the number of vertices, and in the next chapter we prove
this result.

22

Chapter 3

Memory and Capacity of Graph
Embedding Methods

3.1 Introduction

In this chapter, we analyze the graph embedding method proposed in Chapter 2. In partic-
ular, we focus on its memory - the number of parameters used- and its capacity - the size
of the graphs it can accurately store in superposition, and we compare it to a comparable
graph embedding methods using popular-binding combinations [14] [25] [24]. Previous works
have also analyzed the capacity of general vector symbolic architectures [27] [13], and in this
work we specifically focus on the contexts of graphs.

3.2 Alternative Binding Operations

Our graph embedding method uses the tensor product to bind the vertex codes together
into an edge. However, this means that the graph embedding space scales quadratically with
the vertex code dimension, and in response various memory efficient alternatives have been
proposed. In this and the subsequent section, we shall primarily analyze three prominent
alternative binding operations: the Hadamard product, convolution, and circular correlation.

Hadamard Product

The Hadamard product of two vectors a and b, denoted a ⊙ b, is their element-wise multi-
plication:

[a⊙ b]k = akbk

It preserves the dimension of the vertex code and scales linearly with the code dimension.
The most common vertex codes when using the Hadamard product are phasor codes and
binary codes: vectors whose entries are the complex and real units respectively. These codes

3.2. ALTERNATIVE BINDING OPERATIONS 23

have nice unbinding operations with respect to the Hadamard product, where multiplication
by the conjugate of a vertex code will remove that code from the binding:

a⊙ (a⊙ b) = b

In the next section, we also briefly touch on other codes. However, we shall see that since
unbinding the Hadamard product requires element-wise division, many choices of random
codes are not suitable for accurate graph operations.

Convolution

The convolution of two vectors a and b, denoted a ∗ b, is defined as:

[a ∗ b]k =
∑
i

aibk−i

If F denotes the Fourier transform, then the convolution can also be expressed as:

a ∗ b = F−1(F(a)⊙F(b))

Hence, convolution and the Hadamard product are equivalent up to a Hermitian change of
basis, and so it is sufficient to analyze just the Hadamard product. Indeed, common codes
used with convolution are those whose Fourier transforms are phasor and binary codes, and
there is a bijection between the codes used for convolution and codes used for the Hadamard
product.

Circular Correlation

The circular correlation of two vectors a and b, denoted a ⋆ b, is defined as:

[a ⋆ b]k =
∑
i

aibk+i

Using the Fourier transform, the circular correlation also can be expressed as:

a ⋆ b = F−1(F(a)⊙F(b))

Note that if a is a real vector, then F(a) is the Fourier transform of the flipped vector: let
yk be the kth Fourier coefficient of a:

yk =
n−1∑
s=0

exp

(
2πi(−ks)

n

)
as

Taking the conjugate, we get:

yk =
n−1∑
s=0

exp

(
2πi(ks)

n

)
as =

n−1∑
s′=0

exp

(
2πi(−ks′)

n

)
a−s′

3.2. ALTERNATIVE BINDING OPERATIONS 24

Hence, F−1(Fa) = Pa, where P is the permutation that flips indices, and so the circular
correlation is convolution augmented with flipping the first argument. This is a special case
of using permutation to induce ordered bindings, which we shall cover in the next subsection.
Since the circular correlation is a permuted convolution and convolution is equivalent to the
Hadamard product, it is sufficient to study the Hadamard product with permutations.

Alternative Bindings as Compressions of the Tensor Product

As noted in our derivation of the tensor product from superposition, the tensor product is a
universal construction. That is, every binding method that respects superposition - bilinear-
ity - is linearly induced from the tensor product. The three alternative binding operations -
the Hadamard product, convolution, circular correlation- are no exception.

More specifically, fixing the standard basis the tensor product v ⊗ w is the outer product
vwT , a d× d matrix. The Hadamard product is the main diagonal of this matrix. Similarly,
the entries of the circular correlation are sums along pairs of diagonals of vwT , spaced by
an interval of 2(d− 1). For convolution, we analogously take sums along pairs of the reverse
diagonals (bottom left to top right).

Hence, all three operations can be seen as compressions of the tensor product, where we
compress a d× d matrix into a d-dimensional vector. While on the surface this might seem
to save much in terms of memory, in the next subsection we shall see these compressions are
unable to perform some fundamental graph operations. Moreover, in the subsequent section
we shall see that these binding alternatives do not actually save on memory, because they
suffer from proportional decrease in their representational capacity.

Hadamard Product: Graph Functionality

As established in the preceding subsections, all three operations are, up to a Hermitian
change of basis, equivalent to the Hadamard product with possibly a permutation applied
to one of its arguments. Hence, in this section we shall analyze the Hadamard product and
its suitability for graph embeddings.

Firstly, the Hadamard product can perform edge composition when used in conjunction
with binary codes. This is because it has easy unbinding operations, where multiplication
by a code will remove that code from the binding. Using the binary/Hadamard scheme, we
can perform edge composition by taking the Hadamard product of two edges:

(a⊙ b)⊙ (b⊙ c) = a⊙ c

Moreover, note that in the case of a mismatch between the vertices, the resulting edge is:

(a⊙ b)⊙ (b′ ⊙ c) = a⊙ c⊙ n

3.2. ALTERNATIVE BINDING OPERATIONS 25

where n is a noisy binary code. Importantly, there is no destruction of mismatched edges
during edge composition. This will impact its representation capacity, which we shall cover
in the next section. Indeed, one can ask if there is any alternative edge composition function
that can improve on using the Hadamard product. Assuming this edge composition function
respects superposition, one can show that the natural edge composition function under the
Hadamard product is again the Hadamard product. We give a sketch of the argument: firstly,
the desired composition function respects superposition, so it is a multilinear function and
is completely determined by its action on some basis {bi}. Fixing the standard basis, we
impose the natural constraint:

(ei ⊙ ej)× (ek ⊙ el) 7→

{
ei ⊙ el j = k

0 j ̸= k

Since these constraints are satisfied by the Hadamard product, our natural edge composition
function must be the Hadamard product, and the defect of mismatched edges not interfering
destructively during edge composition remains.

Furthermore, the Hadamard product is unable to represent directed edges because it is
symmetric: a⊙ b = b⊙ a. A common fix is to permute one of its arguments before binding,
so now we bind as Pa⊙b where P in some permutation matrix. Then our augmented binding
scheme becomes:

(a, b) 7→ Pa⊙ b

This augmented scheme is certainly able to represent directed edges, but it is now unable to
perform edge composition. Indeed, disregarding oracle operations where one already knows
the bound vertices, using the Hadamard product to perform edge composition results in:

(Pa⊙ b)⊙ (Pb⊙ c) = a⊙ c⊙ (b⊙ Pb)

The noise term (b ⊙ Pb) will not cancel unless P is the identity, the non-permuted case.
A similar question arises whether there is a better edge composition funciton for the per-
mutated Hadamard: assuming this edge composition function respects superposition, by
multilinearity one can show no such operation exists. Intuitively, one would like to send the
pair (Pa, a) to the vector of all ones, but the symmetry in the Hadamard product and its
compression means such a map is not possible without breaking multilinearity.

In summary, we see that in the binary/Hadamard scheme one sacrifices some core graph
functionality: with the regular Hadamard product, one can perform edge composition but
cannot represent directed edges; in the permuted case, one can represent directed edges but
cannot perform edge composition. Indeed, one can show that other core graph operations,
like subsetting and graph homomorphisms, are also impossible under such schemes. Thus,
in the binary/Hadamard case we see that compression hurts the representational power of
the embedding method.

3.3. RANDOM CODES 26

Hadamard Product: Phasor Codes

Phasor codes, which generalize binary codes, are even less suitable than binary codes. The
natural unbinding operation for phasor codes is to multiply by the conjugate codes. How-
ever, this already makes it unsuitable for edge composition in both the non-permuted and
permuted case. In the non-permuted case:

(a⊙ b)⊙ (b⊙ c) = ā⊙ c ̸= a⊙ c

The permuted case has a similar deficiency. Again due to the compression of the Hadamard
product, there is no multilinear function that conjugates just one argument of the bound
edge a⊙b. Intuitively, this is due to the symmetry of the Hadamard product, since it unable
to distinguish which particular vertex to conjugate. Edge composition using phasor codes is
impossible, and any code which can be derived from the phasor code suffers a similar defect.

Hadamard Product: Continuous Codes

Similarly, since the unbinding the Hadamard product requires element-wise division, many
choices of random continuous codes are numerically unstable. In fact, the next section
we shall see that specific cases of continuous codes all suffer from having infinite moments,
making accurate graph operations impossible since the noise terms will overwhelm the signal.
Morever, operations like edge composition are also impossible for similar reasons as the
phasor code, where one need to apply the unbinding operation to a specific vertex of the
bound edge. Due the Hadamard product’s compression, such a multilinear map does not
exist.

3.3 Random Codes

First, we state some facts about the different coding schemes under consideration. We shall
assume all codes have common dimension d.

Spherical Codes

We generate spherical codes by sampling iid from the d-dimensional unit hypersphere Sd−1.
They have the following properties:

Theorem 3.3.1 (Spherical Code Properties). Let X denote the dot product between two
spherical codes. Then, the following statements hold:

1. X+1
2

∼ Beta(d−1
2
, d−1

2
)

2. E(X) = 0 and V ar(X) = 1
d

3. |X| ∝ 1√
d
with high probability.

3.3. RANDOM CODES 27

Proof. The first two claims follow from the results of [Qiu˙Recipe]. The final claim follows
from either a standard Bernstein bound or a Gaussian approximation.

Rademacher Codes

Rademacher codes are vectors v where each entry is an iid Rademacher random variable:
vi = ±1 with probability 1

2
. They have the following properties.

Theorem 3.3.2 (Rademacher Code Properties). Let X denote the dot product of two
Rademacher vectors. The following statements hold:

1. X+d
2

∼ Binom(d, 1
2
)

2. EX = 0 and V ar(X) = d

3. 1
d
X is approximately N(0, 1

d
).

4. X ∝
√
d with high probability.

Proof. The first two claims follow from the fact that a sum of n iid Rademacher variables is
Binomial(n, 1

2
).. The third claim follows either from the Central Limit Theorem or from the

Gaussian approximation to the binomial. The fourth claim follows from this same Gaussian
approximation or a standard Chernoff inequality.

Note that all Rademacher codes have norm d. Thus, we may scale them by 1√
d
to

normalize them, and in this sense they are special cases of spherical codes. In fact, by a
similar argument as the spherical codes case, one can show that for a fixed error threshold of
violating ϵ-orthogonality, normalized Rademacher codes achieve the Johnson-Lindenstrauss
upper bound. However, one can have at most 2d unique codes, while any finite number of
spherical codes have probability zero of having a repeat. Rademacher codes still have a hard
packing limit, but the trade-off is cleaner unbinding with respect to the Hadamard product.

Other Continuous Codes

Here, we will briefly describe three common continuous codes: Gaussian, Cauchy, and uni-
form codes. Gaussian codes are generated by having the component of each vector be drawn
iid from some Gaussian - for now, let us assume the standard Gaussian. Cauchy and uniform
codes are analogously generated - for now, let us assume the standard Cauchy and uniformly
on the unit interval [0, 1]. The main problem with these codes is that the Hadamard unbind-
ing operation requires element-wise division: the resulting ratios random variables will have
infinite moments. This makes them unsuitable for accurate graph operations, since they will
result in ill-controlled noise terms.

Theorem 3.3.3. For t, u iid Gaussian, Cauchy, or uniform. Let Y = t
u
. Then, for any of

the three distributions, all moments of Y are undefined.

3.4. BINDING COMPARISON OVERVIEW 28

Proof. In the Gaussian case, the ratio of two independent standard Gaussians is a Cauchy
random variable, which is known to have infinite moments. In the Cauchy case, the ratio of
two independent standard Cauchy rv’s has the density:

fYc(y) ∝
1

(y2 − 1)
ln(y2)

Then, comparing integrals:

∞ =
1

2

∫ c

0

|ln(y2)| ≤
∫ c

0

yfYc(y) ≤
∫ ∞

0

yfYc(y)

we see that the first moment is also undefined (for some sufficiently small constant c). In
the uniform case, the ratio of two independent U [0, 1] rv’s is:

fYu(y) =

1
2

0 < y < 1
1

2z2
y ≥ 1

0 y ≤ 0

A similar comparison test also shows that the first moment is undefined. Thus, the first
moment, and hence all moments, are undefined for all three choices of distribution.

3.4 Binding Comparison Overview

In a previous section, we showed that two other alternative binding methods - convolution
and circular correlation - are special cases of the Hadamard product; similarly, we found
that, of the codes considered, the binary code was the one that had the most representational
power with respect to graph operations. Hence, we shall primarily analyze the memory and
capacity of our graph embedding method relative to the Hadamard/Rademacher scheme.
which uses random binary codes. We also briefly consider other continuous coding schemes
paired with the Hadamard product, but we shall see that they are too noisy for accurate
graph operations.

We shall look at the memory vs. capacity tradeoff of different edge binding methods
with respect to certain graph functions. Firstly, by the superposition principle we assume
that the considered graph functions are multilinear functions. Secondly, we focus on two
types of graph operations: first and second order operations. First order operations f1 are
any operations that involve graph embeddings once: f1(∗, G) where ∗ represents non-graph
arguments. Second order operations f2 involve graph embeddings twice: f2(∗, G,G′). We
analyze one representative graph operation from each type: vertex queries as a first-order
operation and edge composition as a second-order operation. For both, we analyze the
magnitude of the error term as well as the probability of error.

3.5. VERTEX QUERIES 29

3.5 Vertex Queries

We denote the edge binding operation as ψ, which can be either the Hadamard product or
the tensor product. Let us work with the following fixed graph:

G = ψ(v, u) +
k∑
i=1

ψ(qi, ri)

where all the q, r’s are distinct from u, v. We will perform an edge query that seeks to find
the vertices in G that vertex v points to (or is connected to in the undirected case).

Hadamard Product and Rademacher Codes

We first look at the Rademacher-Hadamard scheme, analyzing both the magnitude of the
error term as well as bouding the probability of retrieving the correct vertex.

Error Norms

In this case, our vertex query is of the form:

Q(v,G) = v ⊙ (v ⊙ u+
k∑
i=1

qi ⊙ ri) = u+
k∑
i=1

qi ⊙ ri ⊙ v

Since the product of Rademcher’s is still Rademacher, we see that each term qi⊙ ri⊙u = si
is still a Rademacher random vector. We can express the output as:

Q(v,G) = u+
k∑
i=1

si

Thus, the result of our query can be split into the correct signal u and a noise term ϵ, which
is a sum of k independent Rademachers. We then have the following result on their expected
magnitudes.

Theorem 3.5.1 (Hadamard/Rademacher Signal-to-Noise). When performing a vertex query
with a single correct vertex u, under the Hadamard product and Rademacher codes of dimen-
sion d we have:

1. The squared norm of the signal E||u||2 is d.

2. The squared norm of the noise E||
∑k

i=1 si||2 is kd

3. The signal-to-noise ratio is 1
k

3.5. VERTEX QUERIES 30

Proof. Let us consider the norm of the noise term
∑k

i=1 ri relative to the signal u. Then,
using the results from Section 3.3 and independence, we see that:

E||u||2 = d ; E||
k∑
i=1

ri||2 =
∑
i

E||ri||2 +
∑
j ̸=k

E⟨rj, rk⟩ = kd

Hence, their ratio is 1
k

Note that we assumed that all the edges were generated by independently sampling
Rademacher codes, and hence precludes the possibility of a vertex participating in more than
one edge. However, note that we can write the graph embedding into a sum of subgraphs
such that each subgraph has edges whose vertices are all distinct:

G =
l∑
i

Gi

Note that the number of subgraphs is upper bounded by the maximum node connectivity
of the graph G. That is, if every vertex in G is connected to at most L other vertices, then
it is possible to express G as a sum of at most 2L subgraphs. Hence, we have the following
corollary.

Corollary 3.5.1.1. If a graph G has maximum connectivity L, then:

1. The squared norm of the signal E||u||2 is d.

2. The squared norm of the noise E||
∑k

i=1 si||2 is 4L2kd

3. The signal-to-noise ratio is 1
4L2kd

Note that this is a very loose result, since we count each of the k edges L times.

Statistical Error

Now, at this point our query function returns a superposition of the answer u with a noise
term

∑k
i=1 si. Hence, we would like to perform a look-up operation to recover u by seeing

which of the vertex embeddings the output u +
∑k

i=1 si is most similar to. In this case,
we will use the dot product to measure similarity. Due to the noise term, we might be
concerned with the possibilities of recovering the wrong vertex. In particular, Theorem 3.5
suggests that as the number of edges increases, the probability of recovering an incorrect
edge increases.

First, consider the dot product of the true answer u with the output:

T = ⟨u, u+
k∑
i=1

si⟩ = d+
k∑
i=1

⟨u, si⟩ = d+ ϵ

3.5. VERTEX QUERIES 31

Thus, the dot product of the true answer T will have ET = d and V ar(T) = kd. The noise
term ϵ is a sum of kd Rademacher random variables, and so ϵ+kd

2
∼ Binom(kd, 1

2
). The

variance of ϵ is kd, and using the normal approximation to the binomial it is of order
√
kd

with high probability. Similarly, consider the dot product of a false vertex v (that does not
equal si or u) with the output:

F = ⟨v, u+
k∑
i=1

si⟩ = ⟨v, u⟩+
k∑
i=1

⟨u, si⟩

Here, F is the sum of (k + 1)d Rademacher random variables, with mean 0 and variance
(k + 1)d; moreover, F is of order

√
(k + 1)d with high probability.

Now, we first approximate the probability that F exceeds d = ET . We will use the
CLT/Gaussian approximation to Binomial to approximate the sum of n iid Rademachers
X as N(0, n). Then, we can use these Gaussian bounds:

C

t
e−

t2

2 ≤ P (X > t
√
n) ≤ Ce−

t2

2

where C is some constant. Hence, applying this to F :

C

√
(k + 1)

d
e−

d
2(k+1) ≤ P (F > d) = P (F >

√
d

(k + 1)

√
(k + 1)d) ≤ e−

d
2(k+1)

Thus, this suggests the limit of edges we can store in superposition and still have accurate
recovery is O(d). A similar computation shows the probability of T being less than 0 scales
in a similar manner:

C

√
k

d
e−

d
2k ≤ P (T < 0) ≤ e−

d
2k

In fact, we can be a bit more precise and compute a lower bound on the probability of correct
recovery.

Theorem 3.5.2. Under the above setup, let A be the correct recovery event given M erro-
neous choices: the event where the correct vertex u is most similar to the output of the vertex
query relative to M other wrong candidate vertices. Then, for some constant C we have:

P (A) ≥ 1−Me−
d

2(2k+1)

Proof. Now, let us first compute the lower bound. Note that correct recovery is precisely
the event where the similarity of the correct vertex T = ⟨u, u⟩ is larger than the similarities
F1 · · · , FM of theM erroneous vertices, where Fi = ⟨vi, u⟩ for the erroneous vertex vi. Then,

P (T > max(F1, · · · , FM)) = P (∩{T > Fi}) = 1− P (∪{T ≤ Fi})

3.5. VERTEX QUERIES 32

By construction, the Fi’s are iid. Letting ϵ denote the error term:

P (∪{T ≤ Fi}) ≤
M∑
i=1

P (T ≤ Fi)

=MP (T ≤ F1)

=MP (d+ ϵ ≤ F1)

=MP (F1 − ϵ ≥ d)

≤Me−
d

2(2k+1)

Hence
P (T > max(F1, · · · , FM)) ≥ 1−Me−

d
2(2k+1)

We used the fact that a difference of Rademacher sums is still a Rademacher sum, so F1 − ϵ
is a sum of (k + 1)d+ kd = (2k + 1)d Rademachers.

This theorem confirms the informal analysis of this section: the number of edges k that
be stored in superposition cannot be more than O(d) without seriously compromising the
accuracy of the vertex query.

Hadamard Product and Continuous Codes

Now, let us suppose the we were working with any continuous code (Gaussian, Cauchy,
Uniform). Our vertex query would now be unbinding the graph by the reciprocal of the
query vertex u:

Q(u,G) = u−1 ⊙ (u⊙ v +
k∑
i=1

qi ⊙ si) = v +
k∑
i=1

u−1 ⊙ qi ⊙ si

In the noise term, note that we now have a sum of vector whose entries are ratios: qi
u−1 si. In

section 3.3, we saw that the entries will have undefined moments: they follow heavy-tailed
distribution. Thus, it is very likely that the noise overwhelms the true answer v regardless
of how many edges k are in superposition. This makes such continuous codes infeasible for
vertex queries.

Tensor Product and Spherical Codes

Here, we look at the same error quantities for the tensor-spherical scheme: the error norms
and the probability of retrieving the correct vertex.

3.5. VERTEX QUERIES 33

Error Norms

Now, our vertex query is of the form:

Q(v,G) = vT (vuT +
k∑
i=1

qir
T
i) = uT +

k∑
i=1

⟨v, qi⟩rTi = uT +
k∑
i=1

sTi

We have a corresponding result on the average squared norms and the signal-to-noise ratio.

Theorem 3.5.3 (Tensor/Spherical Signal-to-Noise). When performing a vertex query with
a single correct vertex u, under the tensor product and spherical codes of dimension d we
have:

1. The squared norm of the signal E||u||2 is 1.

2. The squared norm of the noise E||
∑k

i=1 si||2 is k
d

3. The signal-to-noise ratio is d
k

Proof. The first claim holds since spherical codes have norm 1. The squared norm of the
nuisance term

∑k
i=1⟨v, qi⟩sTi is:

E||
k∑
i=1

⟨v, qi⟩sTi ||2 =
∑
i

E(⟨v, qi⟩)2 + 2
∑
j ̸=k

E⟨v, rj⟩⟨v, rk⟩⟨rj, rk⟩ =
k

d

Hence, the ratio of the answer-noise average norms is d
k

Statistical Error

Now, we again want to recover the answer u by finding which vertex embedding the query
output is most similar to, and we will again use the dot product to measure similarity. First,
the dot product of the true answer u with the query output:

T = uT (u+
k∑
i=1

⟨v, qi⟩ri) = 1 +
k∑
i=1

⟨v, qi⟩⟨u, ri⟩ = 1 + ϵ

The noise term ϵ is a sum of k terms of the form ei = ⟨v, qi⟩⟨u, ri⟩, and using independence
and the Cauchy-Schwarz inequality:

Eei = 0 ; Ee2i =
1

d2
; E|ei| ≤

1

d

3.5. VERTEX QUERIES 34

Hence, the variance of ϵ is k
d2
, and so for accurate retrieval we see that k ≤ O(d2) or else ϵ

will be of the same magnitude as the signal 1. Similarly, the dot product of a false vertex t
(not matching any of the vi’s) is:

F = ⟨t, u⟩+
k∑
i=1

⟨v, qi⟩⟨t, ri⟩ = ⟨t, u⟩+ ϵ

Hence, let us first calculate the probabilty that F exceeds the ET = 1. However, it is a sum
of random variables with a different distribution, so we will make one further simplification.
As in section 3.3, the term ⟨t, u⟩ will be of the order 1√

d
with high probability. Hence, we

assume conservatively that |⟨t, u⟩| = O(1√
d
). Thus, for large d we can make the following

simplification:

P (F > 1) ⪅ P (ϵ > 1−O(
1√
d
)) ≈ P (ϵ > 1)

Hence, as ϵ =
∑k ei where ei’s are independent with Ee2i =

1
d2
, then Bernstein’s inequality

gives:

P (F > 1) ≈ P (ϵ > 1) ≤ e−1/[2(k
d2

+ 1
3
)] ≈ e−

d2

2k

A similar computation. using the fact that ϵ is symmetrically distributed, gives an upper

bound of e−
d2

k for P (T < 0). Hence, both suggest that the limit of edges we can store in
superposition an still have accurate recovery is O(d2).

As in the Hadamard/Rademacher case, we have corresponding bound on the probability
of accurate recovery for the tensor/spherical scheme.

Theorem 3.5.4. Under the Hadamard/Rademacher scheme, let A be the correct recovery
event given M erroneous choices: the event where the correct vertex u is most similar to
the output of the vertex query relative to M other wrong candidate vertices. Then, for some
constant C we have:

P (A) ⪆ 1−Me−
d2

k

Proof. First, we compute the lower bound.. We have:

P (T > max(F1, · · · , FM)) = 1− P (∪{T ≤ Fi})

We can make the same simplifying conservative assumption of |⟨t, u⟩| = O(1√
d
) as above to

3.6. EDGE COMPOSITION 35

get:

P (∪T ≤ Fi) ≤
∑

P (T ≤ Fi)

=MP (T ≤ F1)

=MP (1 + ϵ1 ≤ ⟨t, u⟩+ ϵ2)

⪅MP (ϵ2 − ϵ1 ≥ 1 +O(
1√
d
))

≤Me−
d2

k

Thus,

P (T > max(F1, · · · , FM)) ⪆ 1−Me−
d2

k

Thus, this also confirms that when the vertex code dimension is d, we cannot store more
than d2 edges using the tensor/spherical scheme without compromising the accuracy of the
vertex query.

Memory and Capacity

As a reminder, the vertex code has dimension d. Then, using the Hadamard product with
Rademacher codes, the graph embedding space is also dimension d; the previous analysis
suggests that we can store at most k = O(d) edges in superposition without seriously affecting
the accurate retrieval of the answer. On the other hand, using the tensor product with
spherical codes, the graph embedding space is d2, and the previous analysis shows that we
can store at most k = O(d2) edge without affecting accuracy. Hence, in both cases the
number of edges we can store in superposition vs. the dimension of the graph embedding
space have the same ratio.

3.6 Edge Composition

Now, let us work with the following fixed graph:

G = ψ(u, v) + ψ(v, w) +
k−1∑
i=1

ψ(qi, ri)

where all the q, r’s are distinct from u, v, w and ψ denotes the binding operation. We will look
at edge composition, checking specifically for the correct composition of the two composable
edges:

(u, v) ◦ (v, w) 7→ (u,w)

To check for the presence of the correct edge, we will perform an edge query and analyze
both the error norms and probability of successfully retrieving the correct edge.

3.6. EDGE COMPOSITION 36

Hadamard Product and Rademacher Codes

In this section, we analyze edge composition in the Hadamard/Rademacher scheme.

Error Norms

We want to do edge composition with G, which in this case represents just the binding of G
with itself:

G⊙G = (u⊙ v + v ⊙ w +
k−1∑
i=1

qi ⊙ ri)⊙ (u⊙ v + v ⊙ w +
k−1∑
i=1

qi ⊙ ri)

After distributing, we will get (k + 1)2 total terms:

G⊙G = u⊙ w +

(k+1)2−1∑
i=1

ei = u⊙ w +R

We assumed that all every vertex was distinct, so each ei is a Hadamard product of either
two or three vertices. Since a product of Rademachers is still Rademacher, each ei is a
Rademacher vector and ϵ is a sum of (k + 1)2 − 1 = k2 + 2k independent Rademacher
vectors.

Theorem 3.6.1 (Hadamard/Rademacher Signal-to-Noise). When performing a edge query
with a single correct edge (u, v), under the Hadamard product and Rademacher codes of
dimension d we have:

1. The squared norm of the signal E||u⊙ w||2 is d.

2. The squared norm of the noise E||R||2 is (k2 + 2k)d

3. The signal-to-noise ratio is 1
k2

Proof. By construction there is only one correct composable edge in G - u⊙w - and all other
terms are noise. Using the results from section 3.3, we can characterize the signal-to-noise
ratio.

E||u⊙ w||2 = d E||R|| =
∑
i

E||ei||2 +
∑
j ̸=k

E⟨ej, ek⟩ = (k2 + 2k)d

Statistical Error

After performing edge composition, we have a superposition of the single composed edge
in G - u ⊙ w - along with noise ϵ. Now, say we want to recover exactly which edges were
composable in G. To this end, we can do two things: we can either unbind by one vertex

3.6. EDGE COMPOSITION 37

and compute a dot product with the other, or we can unbind by the given edge and then
sum all the entries together. Both approaches give the same result, so we shall focus on the
latter for simplicity.

Hence, we shall detect the (non)existence of a candidate edge s ⊙ t by first unbdinding
and then summing the entries:

G⊙G 7→ (s⊙ t)⊙ (G⊙G) 7→ sum[(s⊙ t)⊙ (G⊙G)]

Now, let us first consider checking the true edge u⊙ w:

(u⊙ w)⊙ (u⊙ w + E) = (1 + E ′)

Unbinding by the true edge will generate a vector of 1’s and, as a product of Rademachers is
still Rademacher, a new error term ϵ′ that, like ϵ, is a sum of k2+k independent Rademacher
vectors. Now, we then sum up the entries (or equivalently compute the dot product with
the vectors of 1’s) and we get:

T = sum(1 + E ′) = d+

d(k2−2k)∑
ri = d+ ϵ

where each ri is a Rademacher random variable. Therefore, we use the same arguments as
the vertex query section to get E(T) = d and V ar(T) = d(k2 − 2k). The noise term ϵ has
variance d(k2−2k), and so it is of order

√
d(k2 − 2k) ≈ k

√
d. This suggests that for accurate

retrieval, the number of edge in superposition k ≤ O(
√
d).

Similarly, we now do the same procedure for a false random edge s⊙ t, and since it does not
match then we will get sum of d(k2 − 2k+1) Rademachers. Thus, the output F of any false
edge is:

F =

d(k+1)2∑
ri

We conclude that EF = 0 and V ar(EF) = d(k + 1)2.

Repeating the same analysis as in the vertex query section, we get the following bounds
on the probability that F exceeds d = ET :

C

√
(k + 1)2

d
e
− d

2(k+1)2 ≤ P (F > d) ≤ e
− d

2(k+1)2

Similarly,

C

√
(k2 − 2k)

d
e−

d
2k ≤ P (T < 0) ≤ e

− d
2(k2−2k)

Finally, for M false edges we have the following result using the same techniques as in the
vertex query case:

3.6. EDGE COMPOSITION 38

Theorem 3.6.2. Under the Hadamard/Rademacher scheme, let A be the correct recovery
event given M erroneous choices: the event where the correct edge u ⊙ v is most similar
to the output of the edge query relative to M other wrong candidate edges. Then, for some
constant C we have:

P (A) ≥ 1−Me
− d

4(k+1)2−2

Thus, these all suggest that for accurate edge composition, the number of edges in su-
perposition can be at most

√
d.

Tensor Product and Spherical Codes

Error Norm

Using the tensor product, our graph G is:

G = uvT + vwT +
k−1∑
i=1

qir
T
i

and we do edge composition by a matrix multiplication of the graph embedding:

G2 = uwT +

(k+1)2−1∑
i=1

⟨ai, bi⟩dicTi = uwT +R

where a, b, c, d are all iid uniform from the d-dimensional hypersphere.

Theorem 3.6.3 (Tensor/Spherical Signal-to-Noise). When performing a edge query with a
single correct edge (u, v), under the tensor product and spherical codes of dimension d we
have:

1. The squared Frobenius norm of the signal E||uwT ||2F is 1.

2. The squared Frobenius norm of the noise E||R||2F is k2−2k
d

3. The signal-to-noise ratio is approximately d
k2

Proof. The signal, as the outer product of two orthonormal vectors, has Frobenius norm 1.
Similarly, the nuisance term E has the following expected squared Frobenius norm:

||E(RTR)||2F = tr[E(RTR)] =
∑
i

E(⟨ai, bi,)⟩2 =
k2 − 2k

d

Hence, the ratio of the answer-noise average norms is d
k2−2k

≈ d
k2
.

3.6. EDGE COMPOSITION 39

Statistical Error

Again, we query the edge composition G2 for the (non)existence of a candidate edge. In the
tensor product case, the natural edge query operation for a query edge (s, t) is:

sTG2t

Hence, let us first examine the result for the only true edge (u,w):

T = uT (G2)w = uT (uwT +R)w = 1 + uTRw = 1 + ϵ

Expanding the error term ϵ:

ϵ = uTRw = uT (
k2−2k∑

⟨ai, bi⟩dicTi)w =
k2−2k∑

⟨ai, bi⟩⟨u, di⟩⟨ci, w⟩

we see it is a product of k2− 2k iid terms, each of which is the product of three independent
dot products. Hence, we have E(ϵ) = 0 and V ar(ϵ) = k2−2k

d3
≈ k2

d3
, and similarly ET = 1 and

V ar(T) = k2−2k
d3

. This suggests that k ≤ O(d
3
2) to have accurate edge composition.

Similarly, let us considering querying by any non-existent edge s→ t:

F = sTG2t = ⟨s, u⟩⟨w, t⟩+
k2−2k∑

⟨ai, bi⟩⟨s, di⟩⟨ci, t⟩ = ⟨s, u⟩⟨w, t⟩+ ϵ

The first term is a product of independent dot products, so it has mean 0 and variance 1
d2
.

The second term has the exact same distribution as the error term in the previous paragraph.
We have EF = 0 and V ar(F) = 1

d2
+ k2−2k

d3

Now, we first compute the probability that F exceeds ET = 1. As in the edge binding
section, using a Bernstein concentraation inequality the first term of F - ⟨s, u⟩⟨w, t⟩ - has
magnitude at most 2

d
with high probability. Hence, we work with the conservative assumption

that |⟨s, u⟩⟨w, t⟩| = O(1
d
). Hence, for large d we can make the simplification:

P (F > 1) ⪅ P (ϵ > 1−O(
1

d
)) ≈ P (ϵ > 1)

Then, using a Bernstein inequality gives:

P (F > 1) ⪅ P (ϵ > 1) ≤ e−1/[2(
k2+2k)

d3
+ 1

3
)] ≈ e−

d3

2k2

A similar computation for T , using the fact that ϵ is symmetrically distributed, gives:

P (T < 0) ⪅ e−
d3

2k2

These both suggest that we can store at most O(d
3
2) edges while retaining accurate recovery.

Finally, as in other sections we compute a lower bound on the probability of getting a
correct answer when testing both the true edge (t, w) and M false edges.

3.7. BINDING COMPARISON SUMMARY 40

Theorem 3.6.4. Under the tensor/spherical scheme, let A be the correct recovery event
given M erroneous choices: the event where the correct edge uvT is most similar to the
output of the edge query relative to M other wrong candidate edges. Then, for some constant
C we have:

P (A) ≥ 1−Me−
d3

k2

Proof. Again, we make the same conservative assumption of |⟨s, u⟩⟨w, t⟩| = O(1
d
). We have:

P (∪{T ≤ Fi}) ≤
∑

P (T ≤ Fi)

=MP (T ≤ Fi)

=MP (1 + ϵ1 ≤ ⟨s, u⟩⟨w, t⟩+ ϵ2)

⪅MP (ϵ2 − ϵ1 ≥ 1)

≤Me−
d3

k2

Again, this suggests the number of edges k in superposition must have order less than d
3
2

for accurate recovery.

Memory and Capacity

The graph embedding dimension under Hadamard product with Rademacher codes is d, and
the above analysis gives a limit of

√
d edges that can be stored in superposition. On the

other hand, the tensor product with spherical codes has dimension d2 and it can store at
most d

3
2 edges in superposition. In both cases, the edge-dimension ratio is

√
d. Again, the

Hadamard product with Rademacher codes offers no concrete memory advantages over the
tensor product. Any savings we have in memory are offset by a corresponding reduction in
capacity.

3.7 Binding Comparison Summary

General Memory vs. Capacity Ratio

In general, for the Hadamard/Rademacher scheme a n-order operation on a graph with k
edges will create kn nuisance terms. Hence, a similar argument as the above two sections
will give a limit of at most d

1
n edges that can be stored in superposition. Thus, the general

capacity-memory ratio for the Hadamard/Rademacher scheme is:

d1/n

d
= d

1
n
−1 = d−

n−1
n

On the other hand, for the tensor/spherical scheme an n-order operation will also create kn

edges, but each will be weighted by a random coefficient with mean 0 and variance d−(n−1).

3.8. SIMULATIONS 41

During edge recovery, we will then have kn error terms with mean 0 and variance d−(n+1).
Thus, our capacity-memory ratio for the tensor/spherical scheme is:

d−(n+1)/n

d2
= d−

2n−(n+1)
n = d−

n−1
n

In summary, we see that the Hadamard/Rademacher offers no relative memory advantages,
since it suffers from proportional hit to its capacity.

Compression and Expressivity

In the previous two sections, we saw that the Hadamard/Rademacher scheme not only falls
short of the tensor/spherical scheme in terms of graph functionality, it also provides no
meaningful savings in relative memory efficiency. Indeed, while we analyze just the specific
Hadamard/Rademacher case, we can extend it to cover the other two alternative binding
operations: these two alternatives are special cases of the Hadamard product, so we may as
well analyze the Hadamard product and its possible codes; of the possible codes, the binary
and phasor codes do not suffer from numerical and accuracy issues stemming from element-
wise division as other codes do; of these two codes, the binary code is the only one capable of
edge composition. Hence, from a graph functionality standpoint the Hadamard/Rademacher
scheme is the closest to matching the tensor/spherical scheme, and so it is the natural
scheme for comparison. However, we see that the Hadamard/Rademacher scheme still falls
short in representational power and only matches in relative representational capacity of the
tensor/spherical scheme.

A final point might be made about the effect of higher order tensors and their impact on
memory, since the dimensionality of an n-order tensor is dn. While this is general is a defect
of the tensor product that the other alternative binding methods do not suffer from, in the
specific context of graph embeddings the tensor order is always small; usually, it is at most
3 when working with typed graphs. Hence, concerns about memory stemming from higher
order tensors do not apply to graph embeddings. In summary, from a memory standpoint
the tensor product performs just as well as other alternative binding methods.

3.8 Simulations

In this section, we perform some simulations that confirm out theoretical results. For the
spherical/tensor and Rademacher/Hadamard schemes, we looked at performance in the edge
query and edge composition, comparing accuracy in detecting both the presence and absence
of a signal edge. In all cases, we looked at accuracy when varying the number of edges in
superposition from 8 to 500; at each edge capacity, we generated a new graph and performed
the one of the graph operations, repeating this for 200 trials and averaging the results. Each
graph was generated by independently generating vertex codes, binding them, and summing
them together. Shown below are the results of these experiments for the spherical/tensor

3.8. SIMULATIONS 42

case. The red lines denotes the ideal values: a value of 1 when the target edge was present
and 0 when the target edge was absent.

Figure 3.1: Spherical/tensor scheme. Results are shown for the edge query and edge com-
position operations. For each graph operation, we tested performance in both detecting a
test edge and ignoring a spurious edge. The red line indicate the ideal values in each case -
1 for the positive case and 0 for false positive case.

3.8. SIMULATIONS 43

Similarly, shown below are the same experiments for the Rademacher/Hademacher scheme.
We see that the values deviate from the correct values much faster than the tensor spherical
case.

Figure 3.2: Rademacher/Hadmard scheme. We repeated the same tests from the ten-
sor/spherical scheme. In this case, the ideal values for the positive and false positive cases
are 16 and 0 respectively, denoted by red lines.

We note that our theoretical analysis assumed that the graph embeddings had distinct
edges, with no repeats. However, in these experiments we generated edges by binding to-
gether two vertex codes randomly sampled from a fixed codebook. While this codebook was
randomly generated, this procedure does not exclude the possibility of vertex codes partic-
ipating in multiple edges, which explains the monotonic behavior of the edge query/ edge
composition tests. We chose this experimental setup because it is how graph embeddings are
generated in practice, and the empirical results still corroborate our theoretical results: the
capacity of the Rademacher/Hadamard scheme is much lower relative to the spherical/tensor
scheme.

44

Chapter 4

Disentanglement from the Manifold
Perspective

Introduction

Most approaches to disentanglement involve learning a generative function f(X1, · · · ,Xn)
such that each argument Xi corresponds to semantically meaningful variations in the data.
That is, given a dataset P , one learns a generative function f such that:

f(x1, · · · , xn) ≈ p ; ∀p ∈ P

The above requirement might be unrealistic for real datasets where the data can vary in many
distinct ways. For example, consider a collection of headshots of multiple people, taken under
varying lighting conditions and poses. It would difficult to learn a global function f(x1, x2)
where x1 controls lighting and x2 controls pose, since there is so much variability of facial
features between subjects. Instead, it might be more realistic to learn a local function fp
that controls lighting and pose for each person p.

The above process of breaking up the generative function f can be further extended: for
many or all data points pi we learn a local generative function fpi(x1, · · · , xn) such that

fpi(x1, · · · , xn) ≈ p′

for p′ close to pi. We’ve gone from the strong requirement of a global generative function
f to the weaker requirement of a collection of local functions fpi(x1, · · · , xn). Intuitively,
we can interpret these latent variables x1, · · · , xn as the intrinsic coordinates of the data.
For example, going back to our dataset of headshots, variations in lighting, pose, and other
features are intrinsic coordinates that describe our data.

Defining Disentanglement

The manifold hypothesis posits that high-dimensional data drawn from the real world lies
on or near a low-dimensional manifold. More informally, high-dimensional data has a low-
dimensional description. This description is given by the manifold’s local charts, which map

4.1. SMOOTH MANIFOLDS: TECHNICAL PRELIMINARIES 45

patches of the manifold to Euclidean coordinates. Returning to our disentangling generative
function f(x1, · · · , xn), let us assume the latents xi are all real numbers. As previously
discussed, we can interpret these disentangled latent variables as coordinates with which
to describe our data. Therefore, we formalize this coordinate intuition in the language of
manifolds:

Definition 1. Data lies on a manifold, and disentanglement is the discovery of an atlas
of local charts for the data manifold.

4.1 Smooth Manifolds: Technical Preliminaries

In this section, we give a brief technical overview of smooth manifolds. If the reader is
already familiar with the topic, they are encouraged to skip ahead.

Smooth Manifolds

A manifold is a space that locally looks like Euclidean space, much like how a sphere lo-
cally looks like a plane. More formally, a n-dimensional manifold M is a second-countable
Hausdorff space equipped with a collection of local charts ϕi : Vi → Ui. Here, the Vi form
an open cover of M , and each local chart is a homeomorphism between an open set in the
manifold Vi ⊆ M and an open set in Euclidean space Ui ⊆ Rn. Unpacking this definition,
our manifold is some space with a collection of small patches that tile it, and each patch
is associated with its own chart map that gives a bijective mapping between the manifold
patch and a corresponding patch of Euclidean n-space. If we consider each dimension of
Euclidean space as a spatial coordinate, the chart map ϕi gives the n local coordinates of
the patch Vi. Hence, manifolds are locally equivalent to patches of Euclidean space.

A manifold is smooth if the transition maps between its local coordinates are smooth maps
with smooth inverse. That is, consider the neighborhood V1 ∩ V2, which is the intersection
between the local charts ϕ1 : V1 → U1 and ϕ2 : V2 → U2. These give two coordinate systems
describing V1∩V2, and we require that reparametrizing from coordinates U1 to coordinates U2

be a smooth function ϕ1 ◦ϕ−1
2 : U1 → U2 with smooth inverse. Note that our transition map

is just a map between open subsets of Euclidean space, and so we can interpret smoothness
here in the usual sense for Euclidean spaces. In summary, a smooth manifold is just a
manifold where reparametrization of local coordinates is smooth.

Finally, we define smooth maps between smooth manifolds. We say a map f : M → N
is smooth if for each p ∈ M there exist open patches U ⊆ M and V ⊆ N such that: p ∈ U ,
f(p) ∈ f(U) ⊂ V and the maps between their coordinates is smooth. That is, breaking the
map f into its action on local patches, the map f is a smooth map if it is smooth in local
coordinates.

4.2. FLOWS OVER THE DATA MANIFOLD 46

Tangent Spaces, the Tangent Bundle, and Vector Fields

Each point p on the smooth manifold M has an associated vector space called the tangent
space, denoted TpM . Intuitively, the tangent space TpM is the set of directional derivatives
along the manifold at p, and we can interpret an element of the tangent space v ∈ TpM as
the derivative along velocity v. For example, consider the unit sphere. The tangent space at
a point p on the sphere is isomorphic as a vector space to R2, and visually it’s represented
by the tangent plane to the sphere at p. Every vector in this plane represents a possible
direction we could move on that sphere. Note that the vector perpendicular to this plane
does not lie in the tangent space - it represents a direction that takes us off the sphere.

Consider a smooth function between smooth manifolds f : M → N . f induces a linear
map between the tangent spaces, and we call this induced map the differential df . Repre-
senting f in local coordinates, the differential df coincides with the Jacobian of f . Just as
the Jacobian maps directional derivatives in one space to directional derivatives in another,
the differential gives a linear map between the tangent spaces TpM and Tf(p)N .

Now we define vector fields over a manifold M . In the Euclidean case, a vector field
assigns a directional derivative to each point, and analogously a vector field on a manifold
M assigns a direction of change to each point p ∈ M . In light of the above discussion, this
amounts to assigning each point p to a vector in its tangent space vp ∈ TpM .

At each point p of the smooth manifold we have its associated tangent space TpM . If we
take the disjoint union of these tangent spaces to create a set, this set has a natural atlas of
charts induced from M ; this makes it into another manifold called the tangent bundle TM .
Returning to vector fields, we define smooth vector fields as smooth functions X :M → TM
such that X(p) ∈ TpM ⊆ TM ; a smooth vector field is a vector field that is a smooth map
between the manifolds M and TM .

4.2 Flows over the Data Manifold

In this section, we introduce the technical concept of smooth flows over a smooth manifold.
We then interpret this in the context of the data manifold, showing how flows correspond to
our natural intuition of varying a latent factor. Throughout this and subsequent sections,
we assume our data lies on a smooth manifold M .

Data Flows: Intuition

Given our smooth data manifold M , let us concentrate on a single data point p0 ∈ M . It
is contained in some open set V with local chart ϕ : V → U ⊆ Rn, and we can describe
V using the local coordinates U . Let u0 = ϕ−1(p0) denote the coordinates of p0. Starting
at u0, suppose we moved in coordinate space along the first dimension via the smooth path
γ1(t) = u0 + te1. This then induces a smooth path on our data manifold by mapping this
path onto the manifold through the inverse local chart map: γ̃1(t) = ϕ−1◦γ1(t). Since we are

4.2. FLOWS OVER THE DATA MANIFOLD 47

manipulating a single dimension in coordinate space, on the data manifold this corresponds
to manipulating the data by varying a single latent factor. For example, in a dataset of
shapes at different locations and orientations, varying a single coordinate might correspond
to smoothly translating each shape in one direction. Now, at any point p within that same
local chart, let consider a family of paths like γ1. In fact, treating the start point as another
variable, we get a function of two variables: θ1(t, p) = p + te1. This function θ1 describes a
time-dependent evolution of the manifold patch V ⊆M , where after time t we have displaced
each point t units along the first coordinate axis.

Curves, Flows, and Vector Fields

To formalize the preceding discussion, we define a smooth flow on a manifoldM as a smooth
function θ : D ×M → M , where for every p the slice D × p ⊆ R is some open interval
containing 0, such that:

θ(t, θ(s, p)) = θ(t+ s.p) ; θ(0, p) = p

Intuitively, we think of the argument D as the time parameter, and a smooth flow describes
a path over the manifold starting at point p after time t. We may also restrict the flow to
be defined over some local patch V ⊂ M rather than the entire manifold. Indeed, for a
majority of this paper we shall be primarily concerned with flows over a local patch.

Let us return to the example of the first coordinate flow θ1 in the previous section. There
is a connection between θ1 and the first coordinate vector field X1:

X1 : U → TU ; u 7→ e1|u =
∂

∂x1
|u

Thinking of vector fields as describing dynamics on U , say we begin at some point u ∈ U .
We then follow the dynamics of X1 to traverse U , and in fact this gives rise to the flow
function θ1(t, u). Conversely, if we were to take the time derivative of θ1 at each point u,
this in fact would return the vector field X1. The flow and vector field generate each other,
and we formally call X1 the infinitesimal generator of θ1:

θ1(t, u) : R× U → U ; θ1(t, u) = u+ te1 ;
∂

∂t
θ1(t, u) = X1(u)

Indeed, the smooth curve γ1(t) = u0 + e1t previously mentioned is a curve of θ1, where we
follow the flow starting at point u0:

γ1(t) = θ1(t, u0)

and we see that taking the derivative at any point of γ coincides with X1:

d

dt
γ1|s = X1(γ1(s))

4.3. COMMUTATIVITY 48

Formally, γ1 is called an integral curve of X1, and we see that in fact it is part of the flow θ1
generated from X1. All three constructions - curve, flow, vector field - are related.

Using the inverse local chart ϕ−1 to map from coordinate space back to the data manifold,
all of the above machinery have analogues on the manifold. There is a corresponding vector
field X̃1:

X̃1 = dϕ−1 ◦X1 ◦ ϕ :M → TM

with a corresponding flow on the data manifold θ̃1(t, p). Going back to the face example, the
flow θ̃1(t, p) could correspond to varying the lighting condition of various faces, and starting
at a face p the traced path would define a curve γ̃1(t) on our data manifold:

γ̃1(t) = θ̃1(t, p0)

This flow in turns corresponds to the vector field X̃1, and in our example this vector field
would describe the dynamics of changing the lighting condition.

Coordinate Flows to Data Flows

The above discussion focused on the curves, flow, and vector field associated with the first
coordinate, and each of the n coordinates have analogous constructions. Each coordinate
has its constant vector field Xi(u) =

∂
∂xi

|u which assigns the ith coordinate derivative to each
point in coordinate space, and each coordinate vector field has its associated coordinate
flow function θi. Using the inverse local chart ϕ−1 to map back onto the manifold, we have
the corresponding vector fields X̃i and flows θ̃i, which correspond to changing the data by
varying a single latent factor. For example, starting at an image of triangle, smoothly varying
the first coordinate might correspond to smoothly translating this triangle. The local chart
ϕ disentangles a patch of the data manifold into semantically meaningful coordinates, and
varying the coordinates corresponds to traversing the data manifold by following the induced
flows of these coordinate vector fields.

4.3 Commutativity

In this section, we first establish formal definitions of commutativity for smooth flows and
vector fields before giving examples where checking commutativity is intuitive and easy.
We then establish that commutativity is an equivalent condition for disentanglement and
examine its implications.

Intuition

One observation is that in coordinate space, the flows of the coordinate vector fields commute.
Suppose we flow along the ith coordinate for time t and along the jth coordinate for time s. If
we were to reverse their order, we would still end up in the same place - the order of the flows

4.3. COMMUTATIVITY 49

is interchangeable. Since each manifold patch is diffeomorphic to a coordinate patch, the
corresponding manifold flows must also commute. This simple observation has important
consequences on what constitutes a valid coordinate system and in fact is a necessary and
sufficient for disentanglement.

Commutativity: Technical Definitions

Flows

First, we shall establish formal definitions of commutativity for the two pieces of manifold
machinery mentioned so far: vector fields and curves. As in the above motivating example,
we say that two flows commute if their order is interchangeable:

θi(t, θj(s, u)) = θj(s, θi(t, p)) ∀s, t, p

where we appropriately restrict the flow domains s, t so everything is well-defined.

Vector Fields

As for vector fields, we can define commutativity via the Lie bracket. For two smooth vector
fields V,W on smooth manifold M , their Lie bracket [V,W] is another a smooth vector field
on M . While it has many interpretations, one characterization of the Lie bracket [V,W] is
that it coincides with the Lie derivative of V with respect to W : LWV . In local coordinates,
LWV is the directional derivative of V along the flow of W , and intuitively it captures how
much V changes when moving along W . Now, we say the vector fields V and W commute if
[V,W] = 0. From the Lie derivative interpretation this means that V doesn’t change when
moving along the flow of W . Since the Lie bracket is antisymmetric ([V,W] = −[W,V])
this also means that W doesn’t change along the flow V . The dynamics of V and W don’t
change when following the other’s flow; they are independent of each other. The following
results summarize the discussion so far:

Theorem 4.3.1. (Thm 9.42 of [18]) For smooth vector fields V and W , The following are
equivalent:

1. V and W commute

2. W is invariant under the flow of V

3. V is invariant under the flow of W

A Practical Interpretation of Commuting Vector Fields

Consider a dataset of images of a single triangle at different locations and orientations. The
three relevant factors here would be the triangle’s orientation and location on the plane.
Intuitively, the triangle rotates ”in the same way” regardless of its location, and vice versa

4.3. COMMUTATIVITY 50

for moving the triangle regardless of its orientation. If we denote the location of a triangle by
a center point c, this can be formalized by the following rotation and translation operators
that act on the plane:

θrot(t, (p, c)) = [exp

([
0 −t
t 0

])
(p−c), c] ; θtrans((u, v), (p, c)) = (p+(u, v), c+(u, v))

where p is a point on the plane. One can show that these two operators commute in the formal
sense, and this coincides with our intuition that rotations and translations are independent
operations. Therefore, we can interpret the commutativity of vector fields as their dynamics
being decoupled from each other, and in the context of disentanglement this means our latent
factors’ variations are independent of one another.

Commutativity Equivalence and Practical Implications

Now that we’ve established definitions of commutativity for flows and vector fields, it turns
out that there is an equivalence between their commutativity:

Theorem 4.3.2. (Thm 9.44 of [18]) Smooth vector fields commutes iff their flows commute.

From the previous section, checking the commutativity of vector fields requires computing
their Lie bracket. However, the above result means we can also determine commutativity by
checking if their associated flows commute, which can be a much simpler, intuitive method.
For example, going back to the translation/rotation operators mentioned in the triangle
example, one could certainly check commutativity by computing their Lie bracket. However,
it is clear that rotating the triangle about its center and translating it are interchangeable,
and so the associated vector fields must commute. In practice, usually it is much easier
to check commutativity in the flows than in the vector fields, and their equivalence greatly
simplifies checking commutativity.

The Commutativity Criterion

Local Charts and Commutativity

Let us concentrate on a local patch V of the data manifold with local chart ϕ : V → U . As
mentioned previously, the coordinate vector fields in U induce vector fields X̃i on the data
manifold. By the naturality of the Lie bracket, the induced vector fields also commute:

[X̃i, X̃j] = 0 i ̸= j

Theorem 4.3.2 tells us that their flows must also commute. Any local chart induces com-
muting flows on the data manifold, and commutativity is a necessary condition. It turns out
the reverse is also true:

4.3. COMMUTATIVITY 51

Theorem 4.3.3. (Thm 9.46 of [18]) Let X̃1, · · · , X̃k be linearly independent commuting
vector fields on a open subset V of a smooth manifold M . For every p ∈ V , there exists a
local chart ϕp : Vp → Up containing p such that X̃i correspond to the coordinate vector fields
Xi of that chart for 1 ≤ i ≤ k.

The extra condition of linear independence between the vector fields precludes trivial
cases: the Lie bracket is anti-symmetric which implies that [V, V] = 0; every vector field
commutes with itself; therefore, if {Xi} is a system of commuting vector fields, then adding
any linear combination to that set still results in a commuting set. In summary, the co-
ordinate fields of every local chart form a commuting system, and a commuting system of
linearly independent vector fields are the coordinate fields of some local chart.

Disentanglement and Commutativity

From the disentanglement perspective, the above result gives a necessary and sufficient
condition for disentanglement. Any system of latent factors must commute in order to form
a disentangled description of the data, and if they commute they there exist a local chart
such that each factor corresponds to a coordinate. Note that Theorem 4.3.3 does not require
that the number of latent factors k be equal to the dimension n of the data manifold - we
can still apply the commutativity criterion to a set of latent factors that we believe only
partially describe our data. Hence, disentanglement and commutativity are equivalent, and
learning a system of commuting factors automatically gives a disentanglement description
of our data. We summarize the discussion so far in the following statement:

Theorem 4.3.4 (Commutativity Criterion). Let {Xi} be any set of potential latent fac-
tors. Assuming linear independence, commutativity, in either their flows or dynamics, is a
necessary and sufficient condition for their disentanglement.

Example: Rotations and Translations

The above result implies that it is impossible for a system of non-commuting factors to be
jointly disentangled. Let us return to the image dataset of triangles under different orienta-
tions and locations. One well known example of non-commutative data transformations are
translations and rotations of images, where rotation happens about the center of the image
grid (rather than about the triangle’s center). Disentangling this dataset would amount to
learning some local chart

ϕ(x1, x2, x3) = p

such that x1 corresponds to rotations and x2, x3 correspond to translations. However, ro-
tations about a fixed point and translations don’t commute, so no such chart can exist by
Theorem 4.3.4. It is impossible to jointly disentangle them.

There is a fix to this problem: rather than rotations about a fixed point of the image grid,
x1 can instead parametrize rotations about a center point of the triangle. Object-centric
rotations do commute with translations, which means their underlying vector fields must

4.3. COMMUTATIVITY 52

commute. By Theorem 4.3.3, this guarantees the existence of local chart that disentangles
them, and indeed we previously gave explicit operators that commuted with each other:

θrot(t, (p, c)) = [exp

([
0 −t
t 0

])
(p−c), c] ; θtrans((u, v), (p, c)) = (p+(u, v), c+(u, v))

These operators act on both point p in the plane and a center point c of the triangle.
Regarding images as functions on a subset of the plane, these operators induce changes in
images by acting on their domains. Since these operators and hence their corresponding
vector fields commute, these factors can be disentangled into a local chart.

Even though we could have generated the data using rotations about the image grid’s
center and translation, we are unable to disentangle them. What went wrong? Theorem
4.3.4 insists their joint disentanglement is impossible, but this might seem counter-intuitive
since we generated the data using them. For example, we can certainly come up with a
generative function

f(x1, x2, x3) = R(x1)T (x2, x3)p0

where R(x1) rotates the triangle and T (x2, x3) translates it. Indeed, let us distinguish one
corner of the triangle to break its natural symmetry, so each image of the triangle is uniquely
determined by its orientation and spatial location. In fact, the dataset can be identified
with the manifold S1 × R2 with local coordinates (s, u), where the s indicates the triangle’s
orientation and u its spatial position. Assuming the original triangle p0 has orientation 0
and is located at the origin, the generative function f in local coordinates would be:

(t, v) 7→ (t, R(t)v)

Under this map, the three coordinate vector fields are sent to:

∂

∂t
7→ ∂

∂t
+ (−v1 sin t− v2 cos t)

∂

∂v1
+ (v1 cos t− v2 sin t)

∂

∂v2
∂

∂v1
7→ cos t

∂

∂v1
+ sin t

∂

∂v2
∂

∂v2
7→ − sin t

∂

∂v1
+ cos t

∂

∂v2

Note that all three vector fields involve the angle of rotation t. In particular, the translation
vector fields ∂

∂v1
and ∂

∂v2
depend on the rotation operator, meaning that they are jointly

entangled. While the generative function is a diffeomorphism, the coordinate fields it gives
rise to do not coincide with the operations of grid-centric rotation and translation, and these
transformations cannot be realized as a local chart.

While the above generative function f is rich enough to generate the entire dataset, its
latent variables are entangled. One cannot find a coordinate description of the data such
that the coordinates correspond to grid-centric rotation and translation. However, we were
able to find another parametrization that could be realized as a coordinate chart, and the
question arises if this is possible for any generative model. In the next section we tackle this
question.

4.4. DISENTANGLING GENERATIVE MODELS 53

4.4 Disentangling Generative Models

Overview

So far, we assumed our data lies on a manifold and framed disentanglement as learning the
local charts of this data manifold. How do generative models fit within this framework?
Suppose given dataset P , we learned some generative model:

f(x1, · · · , xm) = p ; p ∈ P

We assume that f is a smooth function like most popular generative models. Now, consider
the latent code xp = (x1, · · · , xm) that gives rise to the data point p: f(xp) = p′. The
generative model should ideally capture all of the variation in the data, so any sufficiently
small variation in p should be captured by small variations about the latent code xp. We
shall see that this condition is enough to guarantee the existence of a local chart, up to a
reparametrization and subsetting of the latents. In other words, the latent space of a suffi-
ciently rich generative model can be compressed and locally disentangled into a coordinate
map of the data.

The Rank Theorem

First, we establish some technical machinery that allows us to frame the preceding discussion.
We say a smooth map between two manifolds g : M → N has constant rank r if, at each
point p ∈ M , the image dg(TpM) has dimension r (recall that dg is map between vector
spaces). We say that g is a smooth submersion if its rank equals the dimension of N and
a smooth immersion if its rank equals the dimension of M . Returning to our generative
model f , we assumed that around each data point p our model is rich enough to capture
all local variation around p by a corresponding variation in its latent variables. Equating
small variations with derivatives, this means that the generative model is surjective on each
data point’s tangent space. This surjectivity requirement is the same as requiring f to be a
smooth submersion. Now, we state an elementary result of constant rank maps.

Theorem 4.4.1 (Thm 4.12 of [18]). Let M and N be smooth manifolds of dimension m and
n respectively, and let F : M → N be a smooth map of constant rank r. At each p ∈ M
there exists a smooth chart (U, ϕ) containing p and a smooth chart (V, ψ) containing F (p),
where F (U) ⊆ V , such that F in local coordinates takes the form:

F (x1, · · · , xm) = (x1, · · · , xr, 0 · · · , 0)

In particular, if F is a smooth submersion then:

F (x1, · · · , xn, xn+1, · · · , xm) = (x1, · · · , xn)

Around each point there exists some local coordinate system such that only the first n
coordinates of the latent space M are relevant, and in local coordinates F is merely a
projection map.

4.4. DISENTANGLING GENERATIVE MODELS 54

Application to Generative Models

Let us apply the above result to our generative model. A new coordinate system is just a
reparametrization of the old one, and so the result states that there is a smooth reparametriza-
tion of the latent space such that only the first n latents are relevant (n is the dimension of
the data manifold). That is, there is exists some reparametrization ϕ of the latents:

ϕ(y1, · · · , ym) = x1, · · · , xm

such that only y1, · · · , yn matter. In fact, this subset gives rise to a local coordinate chart
of the data manifold:

Theorem 4.4.2 (Disentanglement of Generative Models). Suppose the data comprises or
lies on an n-dimensional smooth manifold M . Let f : U →M be a generative function that
is a smooth submersion from an open set U ⊆ Rn onto the data manifold. Then, for each
datum p with latent code xp (ie. f(xp) = p), there exists a local smooth reparametrization
ϕp such that the first n reparametrized coordinates are the coordinates of a local chart of M
containing p.

Proof. The Rank Theorem guarantees the existence local charts (ϕp, V) and (ψp,W) con-
taining xp and p respectively such that f in local coordinates is a projection onto the first n
coordinates. More precisely, if πn denotes the projection onto the first n coordinates then:

ψp ◦ f ◦ ϕ−1
p = πn

Let π(V) denote the projection of V onto its first n coordinates, and let π−1 : π(V) → V
denote the injection into the slice {x ∈ V | xk = 0 ∀k > n} (we may center V about 0
without affecting anything). Then, the map ψp ◦ f ◦ ϕ−1

p ◦ π−1 is the identity. Therefore,
f ◦ ϕ−1

p ◦ π−1 is a diffeomorphism from π(V) ⊆ Rn to a local neighborhood of M containing
f(p), and its inverse is a local chart of M containing f(p). The coordinates of this local
chart are the first n reparametrized coordinates of the latent space under ϕp.

Locally around each data point p there exists a reparametrization of the latent space
that gives a disentangled description. Let us revisit the image dataset of triangles under
translations and rotations. We previously noted that we could generate the entire dataset
by translations and rotations about the image center, but we were unable create a local
chart using these operations. However, the Rank Theorem guarantees the existence of a
reparametrization that makes the latent variables into a local chart, and in that case we
changed image-centric rotations to object-centric rotations.

Relaxing the Smooth Submersion Condition

So far, our discussion centered on generative functions that, at each data point p, could
capture any small variation by a corresponding variation in the latent code. This condition

4.4. DISENTANGLING GENERATIVE MODELS 55

is strong and might not hold for every single data point, especially at the edges of the data
cloud. However, it turns out we can apply the previous machinery locally at data points
where the generative function captures all small variations about that point. First, we make
use of the following result:

Theorem 4.4.3. Let F : M → N be a smooth map between manifolds. If dFp is surjective
(injective), then there exists an open neighborhood U containing p such that f |U is a smooth
submersion (immersion).

For a generative function f it is very likely there are data points p where f can capture all
small variation about p, and dfp is surjective. Then, the above result allows us to restrict our
attention to an open neighborhood around the latent code xp of p and apply the previous
subsection’s machinery to yield a local chart about p.

On the other hand, sometimes a generative model can only partially describe the data,
especially if it can vary in many complex ways. In such cases, it is reasonable to assume that
at some points our generative model is nondegenerate, where each latent dimension encodes
a different variation in the data. The above result states that in a local neighborhood about
such points, the generative model is a smooth immersion. Applying the Rank Theorem to
this local neighborhood gives a reparametrization that disentangles the latent space into a
subset of the data manifold’s coordinates. In fact, using a similar argument as in the previous
subsection, this leads to a slice chart, a partial description of the manifold. The discussion
up to this point can be summarized in the follow result:

Theorem 4.4.4 (Local Disentanglement of Generative Models). For a generative model f ,
let p be a point where either f captures all local variation (dFp surjective) or each latent
variable encodes different variations (dFp injective). Then, there exists a local neighborhood
containing the latent code xp of p that can be disentangled.

Maximal Compression of Generative Models

It often arises that the latent space of a generative model f is overcomplete, and one would
like to reduce the latent dimension. Ideally, the goal would be to maximally compress the
latent dimension without affecting the expressivity of the model. In this section, we consider
how to define expressivity in a generative model, and we argue that the disentanglement
procedure in the previous section achieves the above goal.

Defining the Expressiveness of a Generative Model

There are many ways to define the expressiveness of a generative model. One natural def-
inition is its range, or the breadth of data a model can generate. However, we shall see
that some maps preserve the global range of a function while restricting its local range.
This suggests that an appropriate definition of expressiveness should also consider the local
variability of a model.

4.5. APPLICATION TO MATRIX EXPONENTIAL OPERATORS 56

Consider two clocks, each of which has only an hour hand. We can describe these clocks
via two dimensions, one for each hand’s location, and in fact the positions of the clocks’
hands are isomorphic to a torus. Therefore, let our generative function be the natural map
g : R2 → T 2. Suppose we simultaneously rotated the left clock at rate a and the right clock
at rate b. Coupling the rotations reduces the degrees of freedom from two to one, expressed
via the map γ:

γ : R → R2 ; t 7→ (at, bt)

Under this reparametrization, our generative function g ◦ γ generates clock positions by
simultaneous rotation at rates a and b for their respective clocks. If a

b
is irrational, then

simultaneously rotating both will never lead to a repeat position, and with sufficient rotation
g ◦ γ can approximate any clock position arbitrarily well: we have described our data using
just one latent dimension rather two. However, this is unsatisfying because g ◦ γ is locally
limited in its clock positions. Originally, we could arbitrarily rotate either of the clocks’
hands under g, but under g ◦ γ small variations in the latent dimension lead to specific
coupled combinations of clock positions.

In light of this, merely preserving a generative function’s range does not seem to be a
satisfactory definition of expressiveness, and we need to consider local expressivity. One
of way of framing local expressivity is by considering all possible directions of change at a
point; preserving a generative model’s expressiveness would mean preserving all directions of
change possible under the generative model. Therefore, we formalize the local expressivity
of a generative model under the following definition:

Definition 2. The local expressivity of a generative model f : X → M at latent code
x ∈ X is quantified by the dimension of the tangent space df(TxX).

Disentanglement Provides Maximal Compression

Given a latent reparametrization γ, the tangent space Tg◦γ(y)M is a subspace of Tg(x)M
where x = γ(y), and preserving the tangent space is equivalent to preserving its dimension.
Therefore, we require that any latent reparametrization γ to preserve the dimension of
TxX. Our machinery applies whenever g is full rank (ie. submersion or immersion), and
in local coordinates it results in a full-rank projection map. Therefore, under our proposed
definition of local expressivity, the disentangling reparametrization introduced in this section
maximally compresses the latent space while preserving a generative model’s expressivity
since it automatically is a full-rank reparametrization.

4.5 Application to Matrix Exponential Operators

In this section, we apply the concepts covered so far to the task of learning matrix exponential
operators that traverse a dataset. We shall see that applying the commutativity criterion
justifies a common computational shortcut and vastly simplifies the dictionary of matrix
generators to be learned.

4.5. APPLICATION TO MATRIX EXPONENTIAL OPERATORS 57

Overview

One common approach to learning continuous data operators is through the matrix expo-
nential

f(t) = etA

This can be seen as a continuous analog of the linear operator A, applied for time t. In
practice, to learn these operators one learns a dictionary of matrix generators Ai. Then, one
generates a continuous operator by summing and exponentiating these matrix generators:

e
∑
αiAi

Given some starting point p0, one finds an appropriate matrix exponential that such that
any close point p can be approximated by its application to p0:

e
∑
αiAip0 ≈ p

In this manner, the learned dictionary of matrix generators form operators that can describe
any point of the dataset.

Sums of Matrix Generators

Commutativity of Matrix Generators

Computing a matrix exponential is relatively expensive, and a common computational short-
cut is to assume the generators Ai are jointly diagonalizable: A = PDiP

−1 for some diagonal
matrix Di with common matrix P . Then, the matrix exponential is easy to compute

e
∑
αiAi = e

∑
αiPDiP

−1

= Pe
∑
αiDiP−1

as the matrix exponential of a diagonal matrix is just the exponentiation of each individual
diagonal entry.

Furthermore, one problem when working with sums of matrix generators is that the
property

esA+tB = esAetB

generally holds only when A and B commute. This introduces a spurious ordering in the
dictionary elements, where the matrix exponential will be different depending on the order
of summation. A common solution is to enforce that the matrix generators commute, and
this also has a computational benefit: since commuting matrices are simultaneously diago-
nalizable, the dictionary of commuting matrices can be put in the form Ai = PDiP

−1. We
arrive at the diagonalization trick by enforcing commutativity.

Let us examine commutativity of these matrix exponentials from the disentanglement
perspective. Locally at each datapoint p0 we can think of these operators as generative
functions ϕ:

ϕ(α1, · · · , αn) = e
∑
αiAip0 = p

4.5. APPLICATION TO MATRIX EXPONENTIAL OPERATORS 58

where the generators Ai commute. Suppose we varied α1 while holding all other αi’s constant,
and let p = e

∑
2 αiAip0. The resulting function would be a flow function θ1, as

θ1(t+ s, p) = e(s+t)A1p = etA1esA1p = θ1(t, θ1(s, p))

In fact, each of the arguments αi corresponds to a flow θi, and since their sums commute
their flows also commute. Their associated vector fields are Xi(p) = Aip, and computing
their Lie bracket:

[Xi, Xj]p = JXi
|pXj(p) + JXj

|pXi(p) = AiAjp− AjAip = 0

wherre JXi
|p is the Jacobian of Xi evaluated at p. Their Lie bracket is 0, so the vector fields

commute. Indeed, using the fact that ∂
∂t
etA = A, every matrix exponential is the flow of a

unique linear vector field XA(p) = Ap. Using the commutativity equivalence between flows
and their infinitesimal generators, we confirm that commutativity of matrix exponentials is
equivalent with commutativity of their matrix generators.

By the commutativity criterion, our generative function ϕ(α1, · · · , αn) is in fact a lo-
cal chart. Commuting systems of matrix generators are special not only because they sum
nicely or are easy to compute: they are precisely the generators that lead to a disentangled
description of our data. This also implies that when working with a general system of ma-
trix generators, the systems of non-commuting generators are the coupled systems whose
dynamics are entangled. Therefore, this suggests that the correct formulation is the diago-
nalized case: not only is it computationally cheaper and simpler, it is the formulation that
guarantees a disentangled system of linear operators.

Commutative Approximation to a System of Matrix Exponentials

So far, we have covered theoretical reasons for why it is desirable to start with diagonal
matrices when working with matrix exponentials. However, suppose we started with an
arbitrary system of matrix generators. Then, is there an equivalent or approximating system
of diagonal generators?

Assuming our original system is linearly independent, applying the disentangling ma-
chinery from the previous section yields reparametrized latents:

β1, · · · , βn = ψ(α1, · · · , αn)

that form a local chart. Then, using these reparametrized latents our generative function
becomes:

ϕ(β1, · · · , βn) = e
∑
ψ−1
i (β)Aip0

where the weights ψ−1
i (β) are smooth functions of the reparametrized coordinates. At this

point, one may ask if there is an equivalent system of matrix exponentials that uses the
disentangled coordinates βi. Since such a system is a local chart and hence must commute,

4.5. APPLICATION TO MATRIX EXPONENTIAL OPERATORS 59

the associated matrix generators are jointly diagonalizable. Hence, we equivalently ask if
there exists diagonal matrices Di and matrix P such that

ψ(β1, · · · , βn) = Pe
∑
βiDiP−1p0

generates the same range as that of our original generative model ϕ. While we do not have
a definitive answer, we perform some experiments that suggest we can approximate our
original system with a commuting one.

Experiment Overview

In this section, we empirically test if an arbitrary system of matrix exponentials can be well
approximated by a commuting one, at least locally around a point. We are given a system
of matrix generators Ai along with a fixed initial point p0. Together, these describe a small
patch around p0 via the generative function:

ϕ(α1, · · · , αn) = e
∑
αiAip0 = p

Our question is if there exits diagonal matrices Di with common matrix P such that the
function:

ψ(β1, · · · , βn) = Pe
∑
βiDiP−1p0

generates a similar set of points as that of ϕ. To simplify things, we will assume that P
is orthogonal and so P−1 = P T . To this end, we shall learn Di and P by optimizing the
following objective:

L(P,D, β, p) =
1

2
||Pe

∑
βiDiP Tp0 − p||2

for p in the range of ϕ.

Gradients

Let ϵ = Pe
∑
βiDiP tp0 − p denote the error; let D =

∑
βiDi the exponent; let Pj denote the

jth column of P . Then, the gradients are:

∂L

∂βi
= ϵT (PeDP Tp0)

∂L

∂Pj
= Djj[(P

T
j p0)ϵ

T + (P T
j ϵ)p

T
0]

∂L

∂Dij

= ϵT (PjP
T
j e

Dβi)p0

4.5. APPLICATION TO MATRIX EXPONENTIAL OPERATORS 60

d n ARE

8 3 .022
10 4 .098
15 6 .074
30 9 .090
60 18 .142

Table 4.1: d denotes the dimension of the underlying space, and n denotes the number of
matrix generators. The Average Relative Error (ARE) is a measure of how well the learned
diagonalized system approximates the original matrix exponentials.

Experiment Details and Results

We generate a batch of 50 data points p = eαiAip0, where the α’s are randomly sampled.
Then, we perform alternating gradient descent to learn P and Di, and this procedure is
performed on 5 batches in total.

After learning the diagonalized system (P, {Di}), we test how closely it approximates
the original system by testing it on a separately generated batch of 100 points. We then
compute the average relative error (ARE):

ARE =
1

N

∑
i

||p̂i − pi||
||pi||

where p̂i is the approximation of pi using our diagonalized system. We repeat the above
procedure for a range of values in both the data dimension d and the number of generators
n. The results are summarized in Table 4.1.

We see empirically that commuting systems approximate non-commuting systems, even
when the number of generators is small relative to the dimension. In light of the theoretical
and computational properties of commuting diagonalized systems, this suggests that using
disentangled systems from the start is a good approach.

Extending to a System of Matrix Exponentials

To conclude this discussion, we briefly touch on extending a system of commuting matrix.
We are given generators Ai that give a partial, disentangled description of our data, where
Ai = PDiP

−1 for some common matrix P . Suppose there were a matrix A such that together
with Ai’s they form a (partial) local chart. The commutativity condition requires that the
vector fields represented by Ai commute with that of A, or equivalently that Ai commutes
with A as we saw in a previous section. Hence, they can be jointly diagonalized as QDiQ

−1.
The question arises: is this new basis Q different from P , and do we have to learn an entirely
new basis? The answer is no:

4.6. COMMUTATIVITY AND OPERATORS 61

Theorem 4.5.1. Let Ai be commuting set of matrices, which can simultaneously diagonalized
as Ai = PDiP

−1 for some common matrix P . Let A be a matrix that commutes with every
Ai. Then, A = PDP−1 for some diagonal matrix D.

Proof. We know that the set of matrices {A,A1, · · · , An} is a commuting set of matrices.
Therefore, they can be simulatenously diagonalized as QEiQ

−1 for common matrix Q. Diag-
onalization of a square matrix C is a special case of its Jordan canonical form C = JBJ−1.
Here, B is some block diagonal matrix, where the blocks corresponds to the generalized
eigenvalues of C. Up to a permutation of the blocks in B and corresponding columns in
J , the JCF of C is unique - in particular, J is unique up to a permutation of its columns.
Applying this to our system of commuting vectors fields and their associated matrices, we
can express A1 as PDP−1 and QD1Q

−1. By uniqueness of the JCF, we see that P = Q.
Hence, A = QDQ−1 = PDP−1.

When extending a system of commuting matrix exponentials, the basis P stays the same.
All that needs to be done is to learn a new diagonal matrix D, and extending a disentangled
system of matrix exponentials is straightforward.

4.6 Commutativity and Operators

In this section, we briefly touch on interpreting commutativity from the perspective of op-
erators acting on the data. That is, we shall focus on a set of operators Tt1 , · · · , Ttn that
generate our data by sequential action on a starting data point p0:

Ttn ◦ · · · ◦ Tt1p0 = p

Here, the parameter ti indexes a family of operators Tti : for example, we might consider the
family of rotation operators, indexed by rotation parameter θ. Indeed, if we further impose
the condition that Ts1 ◦ Tt1 = Ts1+t1 , the operator family Tti forms a (possibly non-smooth)
flow function.

Coordinate Description via Operators

Recall that in the case of translations and grid-centric rotations of a triangle, these operators
did not commute and hence they could not be realized as a coordinate chart. In that case,
we generated the data by first translating then rotating a triangle p0:

(t, v) 7→ Rt ◦ Tvp0

where Rt is rotation by angle t and Tv is translation by vector v. In fact, this generative
function was a diffeomorphism onto our data manifold and gave rise to a local chart. However,
the induced coordinate vector fields under this local chart were not the original operators as
the translation vector fields depended on the angle of rotation.

4.6. COMMUTATIVITY AND OPERATORS 62

Indeed, the above situation is true for any set of operators. While one can certainly
generate data by a sequential application of operators, by the commutativity criterion only
the commuting sets can be expressed as coordinates. Otherwise, as we saw in the example
of the triangle, the induced coordinate flows will not correspond to the original operators.

Operators and Group Actions

There has been a body of work that frames the data-generating process in terms of group
actions: some set of composable, invertible transformations acting on the data to generate
the entire dataset. Interestingly, the discussion so far on commutativity has some natural
links to various approaches on this topic.

Factorizing Group Actions

In [12], they begin with the setup of a big group G acting on the data X to generate the
dataset. In this context, disentanglement is framed as factorizing this group action into
a product group ΠGi acting on a corresponding factorized set ΠXi, with each factor Gi

acts only on its corresponding Xi. Thinking of each Gi as representing a different set of
symmetries, we have separated the data into different components Xi that have their own
symmetries Gi.

However, recall the example of the triangle: the data was generated by the product group
S1 × R2 - grid-centered rotation and translation - acting on the data, yet we could not give
a coordinate map where each coordinate represented the appropriate operators. The main
problem was that the two group factors - grid-centric rotation and translation - did not
commute. This is a general defect, and we shall see that factorization into a product group
requires commutativity.

Firstly, a group action of G on X can be understood as a group homomorphism f of
G into Aut(X), the automorphism group of X. Now, suppose we had a set of candidate
subgroups Gi that might factorize the action of G, with a corresponding collection of group
actions for each subgroup fi : Gi → Aut(X). Then, this collection of group actions naturally
filters through the categorical coproduct:

Gi

∐
Gi

Aut(X)

fi ∐
fi

However, the group coproduct is the free product, not the product group as proposed in
the above definition. This is because the image f(G) ⊆ Aut(X) might not be commutative
and could be sensitive to the order in which each group Gi is applied. Thus, while we may
certainly consider different sequences of the Gi acting on X, the order matters and may
lead to different orbits. For example, suppose we act on a triangle by grid-centered rotation

4.6. COMMUTATIVITY AND OPERATORS 63

and vertical translation. If the triangle started at the origin, rotation followed by vertical
translation would only generate triangles on the y-axis. On the other hand, translation
followed by rotation would generate triangles with non-zero x-coordinates. This sensitivity
to the order is incompatible with a factorized group acting on a factorized set: if each Gi acts
separately on an Xi, then their order should not matter since they are acting on different
components.

On the other hand, supposed we assumed that the entire group action was commutative,
or equivalently that f(G) is a commutative subgroup of Aut(X). The categorical coproduct
for commutative groups coincides with the direct product for finitely many factors, and
hence the natural construction becomes the product group. Moreover, if we relaxed our
assumption to just the f(Gi) commuting with each other, that is enough to define a unique,
order-agnostic map from the direct product into Aut(X) that makes the following diagram
commute

Gi

∏
Gi

Aut(X)

fi
f∗

where f ∗(g1, · · · , gn) =
∑
fi(gi). Indeed, commutativity of the subgroups Gi is a necessary

consequence of the factorization G = ΠGi. Each subgroup Gi in G is of the form e1 ×
· · · × Gi × ei+1 × · · · × en, and so each subgroup must commute with the others as their
multiplication involves different components:

(g, e) ∗ (e, h) = (g, h) = (e, h) ∗ (g, e)

Therefore, since the subgroups Gi commute with each other, it is natural to require that
their corresponding actions f(Gi) commute. If we directly consider G to be a subgroup of
Aut(X) itself, the above discussion shows that G can be factorized as ΠGi only if the Gi

commute with each other. Factorization implicitly assumes commutativity.

Commutative Lie Group Actions

On a related note, there has been some work in learning actions of a commutative group on
the data. That is, given some commutative groupG, we wish to learn an appropriate mapping
f : G → Aut(X) that fully describes our data ([7], [3]). In these works, one assumed that
G was a linearly acting on the data via orthogonal transforms, and the goal was learn these
operators by learning appropriate combinations of the irreducible representations. To vastly
simplify the problem, one further assumed that G was a compact, connected, commutative
Lie group, which are all equivalent to torii. This allowed one to express the group action in
a simple form:

f(x1, · · · , xn) = V eD(x1,··· ,xn)V T

where D(x1, · · · , xn) is a diagonal matrix who entries represented the weighted sums of the
irreducible representations. This greatly simplifies the problem and is a general case of

4.6. COMMUTATIVITY AND OPERATORS 64

the diagonalization trick for learning matrix exponentials. For both of these shortcuts, the
commutativity criterion gives another perspective on why these approaches work so well: the
restriction to commutative groups guarantees that the learned map would be a disentangled
chart of the data.

65

Chapter 5

Transfer of Algorithms: Players and
Worlds

This chapter constitutes more speculative work and is included for the sake of complete-
ness. We hope that the ideas presented here seem interesting to the reader. The primary
contribution of this chapter is the assertion that a player or algorithm cannot be separated
from its context, because its actions are tied to the world it lives in. Therefore, rather than
focusing on the transfer of a specific player, we focus on structural maps between the worlds
the players live in which induces a natural map of players.

5.1 Introduction

A Turing Machine (TM) is an abstract machine equipped with an infinitely long tape of
discrete squares. It has a single machine head that scans one square at a time, and depending
on the symbol in the scanned square as well as its own internal state (m-configuration in
[29]) the TM does some operation(s) and changes its internal state. The TM has a table of
rules that governs its actions, and there are finitely many rules in this table. As with any
mathematical structure, one natural goal is to define the structure preserving maps. That
is, what is a homomorphism of TMs? Purely as a model of computation, we can say two
TMs are equivalent if they compute the same sequence. However, the construction of the
universal TM, which is able to implement the rule table of any other TM, suggests some
finer notion of similarity - that TMs are not only similar if they give the same output, but
they also follow ”similar” computations to arrive at that output. If we think of a given TM
as an algorithm, we are asking if two algorithms are similar in the steps that they take, not
just in the end product of their computation.

In this sense, suppose we had some TM M working with some set of symbols L. If we
were to swap L bijectively with a new set L′ and change the rule table accordingly, this would
generate a new TM M ′; however, M ′ is in some loose sense isomorphic to M , because they
are doing the same computation but using different symbols. On the other hand, consider

5.2. BASIC DEFINITIONS 66

two implementations of the same TM: say one is implemented on a physical machine with
a physical tape, while the other is implemented virtually on a computer. Both again are
running the same ”algorithm”, but formally they are different because they use different
operations and symbols.

The difficulty here is trying to precisely separate the abstract ”algorithm” and the imple-
mentation of said algorithm. The algorithm of the TM - its rule table - is tied to a specific
set of readable and writable symbols. Hence, rather than trying to lift an algorithm into
multiple settings, it might be more profitable to think in terms of ”nice” structural maps
between the worlds that they are implemented in. Many of the notions in this chapter draw
heavily from category theory, and for the uninitiated reader we refer them to the classical
text by MacLane [21].

5.2 Basic Definitions

We define a world W as a double W = (Ω,F), where Ω is some set and F is a set of
functions f : Ω → Ω that includes the identity function. We then define a player P as a
double P = (Q,Γ). Q is the set of internal states with a reserved start symbol q0 ∈ Q and
stop symbol q1 ∈ Q; Γ is the transition function Γ : Q × Ω → Q× F . Similar to a Turing
Machine, a player has its own internal state, and given some state of the world ω ∈ Ω, the
player will perform one of the allowable actions f ∈ F before transitioning to a new internal
state according to Γ. Note that in this setup, the actions of the player P are inherently tied
to the world W it lives in, and P can only interact with W using the allowable functions F .

We can augment the definition of a player to enforce finite running time. A finite player
is any player that reaches the stop state q1 after finitely many operations (calls to Γ) given
any starting state ω0 ∈ Ω. From now on we assume all players are finite unless otherwise
stated. For finite players, we can denote their start and end states as Start(P), End(P) ∈ Ω.
Then, we say that two finite players P1,P2 are homotopic if

Start(P1) = Start(P2) =⇒ End(P1) = End(P2)

That is, viewing each finite player as a function Ω → Ω, two players are homotopic if they
represent the same function.

Having defined players and the worlds they live in, we can now define world maps
Φ : W → W ′: a pair of functions Φ = (ϕ, ψ) that makes the following diagram commute for
f ∈ F .

Φ : W = (Ω,F) → (Ω′,F) = W ′

ϕ : Ω′ → Ω ; ψ : F → F ′

Ω′ Ω′

Ω Ω

ψ(f)

ϕ ϕ

f

5.3. BASIC PROPERTIES 67

Given source world W and target world W ′, the world map Φ maps states of the target into
the source and actions of the source into the target.

Maps of Players

If P = (Q,Γ) is a player in world W , then a world map Φ : W → W ′ can be used to translate
P into a player in W ′ via the following transformation:

Q 7→ Q ; Γ 7→ (IQ × ψ) ◦ Γ ◦ (IQ × ϕ) (5.1)

In other words, the induced player Φ̃(P) will have the same internal states as P . During its
operation, the induced player first maps the current state ofW ′ into a state ofW , whereupon
the original player decides on an action f and then selects the appropriate analog ψ(f) for
the induced player to perform. Note that the commutative diagram condition enforces
consistency between the actions of P and P ′: following the operation of P , at any point we
may map the current state ω to the corresponding state ω′ and it would be consistent with
following the operation of P ′.

For world W , let P(W) be the set of all possible players in W . Then, a world map
Φ : W → W ′ induces a map of players using equation 5.1.

Φ : W → W ′

Φ̃ : P(W) → P(W ′)

Example: Homomorphisms of TMs

A TM can be framed as player in a specific world W = (Ω,F). Let Ω be set of all functions
f : Z≥0 → L×{0, 1}, where f(i) = (Li, ik) with ik = 1 if the ith square is the scanned square
and 0 otherwise. F would comprise the two shift operators as well as a print function for
each symbol. Then, a homomorphism from TM M to M ′ would actually be a world map
Φ : W → W ′ such that M = Φ̃(M) = M ′. Applying this to the case of TMs running in
different languages, the state map would map sequences and print functions in one language
to the other. In the case where the languages are bijective, the world map defined above
is also bijective and hence the induced player map is also bijective. The makes precise
the intuition that bijectively swapping the tape symbols does not change the underlying
algorithm: they are related by a bijective, ”algorithm-preserving” map of players.

5.3 Basic Properties

In this section, we’ll gives some basic properties about world maps and their induced players
maps.

Theorem 5.3.1. The following proerties hold for world maps:

5.3. BASIC PROPERTIES 68

1. The composition of world maps is a world map

2. The induced player map of the composite is the composite of the induced maps: Φ̃1 ◦ Φ2 =
Φ̃1 ◦ Φ̃2.

3. For each world, the identity functions on the states Ω and functions F comprise the
identity world map

Proof. Let Φ1 and Φ2 be two worlds maps, with their associated state maps ϕ1, ϕ2 and
function maps ψ1, ψ2. We defined the composite map via composition of the state and
function maps: Φ2 ◦Φ1 = (ϕ1 ◦ϕ2, ψ2 ◦ψ1). Commutativity of the composite map’s diagram
easily follows. Hence, the composite map is also a world map.

Now, let Φ̃i be the induced player maps for i = 1, 2. Again, the induced player map acts
on each players transition function Γ by:

Γ 7→ (IQ × (ψ2 ◦ ψ1)) ◦ Γ ◦ (IQ × (ϕ1 ◦ ϕ2)) (5.2)

Using the identification IQ× (ψ2 ◦ψ1) = (IQ×ψ1)◦ (IQ×ψ2), it is easy to see that the above
map is precisely the composite of the induced player maps.

Finally, it is easy to see that the state and function identity maps form a commutative
diagram, so together they form the identity world map.

The previous properties can then be summarized as:

Theorem 5.3.2. Let W be the category of worlds, with objects as worlds and morphisms
as world maps. Then, the correspondence between world maps and player maps is a functor
from W to SET .

Theorem 5.3.3. The category of worlds W has categorical products.

Proof. The categorical product is essentially gluing the two worlds in a disjoint fashion. We
shall construct the categorical product for worlds W = (Ω,F) and W ′ = (Ω′,F ′). First,
note that world map W → W ′ comprises of a covariant map ψ : F → F ′ and a contravariant
map ϕ : Ω′ → Ω. Hence, we are led to the coproduct of the underlying state space and
the product of the underlying function set. Let W × W ′ = (Ω

∐
Ω′,F × F ′). The state

space is the disjoint union of Ω and Ω′. The function set F × F ′ consists of all functions
f × f ′ that act on Ω by f and act on Ω′ by f ′. Consider any two world maps Φ1 : V → W
and Φ2 : V → W ′. By the universality of the coproduct, for the state maps we have the
commutative diagram:

Ω Ω
∐

Ω′ Ω′

ΩV

iW

ϕ1
ϕ1

∐
ϕ2

i′W

ϕ2

5.3. BASIC PROPERTIES 69

Here, iW , i
′
W are the canonical inclusions, and ϕ̃1

∐
ϕ2 is the induced map from ϕ1, ϕ2. Sim-

ilarly, for the function set we have the following commutative diagram:

F F
∏

F ′ F ′

F

πF πF′

ψ1 ψ2
ψ1

∏
ψ2

Firstly, the projections W × W ′ π−→ W ,W ′ are worlds maps because they’re restriction to
either Ω or Ω′ in the disjoint union with their respective function projections. Now, what
remains is to check that the induced product map Φ1×Φ2 = (ϕ1

∐
ϕ2, ψ1×ψ2) is a world map.

However, because this is essentially the disjoint operation on either Ω or Ω′, commutativity
follows.

Theorem 5.3.4. The category of worlds has the trivial world W0 = (∗, id) as an initial
object.

Proof. The trivial world is the singleton equipped with just the identity as a function. Every
set has a canonical map to the singleton, and the canonical function map is the one that
maps on identity function to the other. Taken together, these define a canonical world map
from the trivial world to any world.

Corollary 5.3.4.1. The category of players has an initial object, and this initial object points
to the ’do nothing’ player in each player set.

Theorem 5.3.5. The category of worlds doesn’t have a terminal object.

Proof. This follows from the fact that the category of sets has no initial, as world maps are
contravariant to their set maps.

Lemma 5.3.1. Suppose Φ = (ϕ, ψ) is a world map W → W ′ such that ϕ, ψ have inverses
ϕ−1, ψ−1. Then, Φ has the inverse Φ−1 = (ϕ−1, ψ−1).

Proof. Note that as Φ is world map, the following equality holds for every f ∈ F :

f ◦ ϕ = ϕ ◦ ψ(f)

which implies:
f = ϕ ◦ ψ(f) ◦ ϕ−1

5.3. BASIC PROPERTIES 70

For f ′ ∈ F ′ we have f ′ = ψ(f ∗) for some f ∗ ∈ F by bijectivity of ψ. Then,

ϕ−1ψ−1(f ′) = ϕ−1ψ−1ψ(f ∗)

= ϕ−1f ∗

= ϕ−1(ϕ ◦ f ′ ◦ ϕ−1)

= f ′ ◦ ϕ−1

Hence, the map makes the diagram commute and is a world map.

Corollary 5.3.5.1. For world map Φ = (ϕ, ψ), if:

1. If ϕ is surjective then ψ must be injective.

2. If ϕ is injective then Φ̃ maps homotopic players to homotopic players.

Proof. Let use first assume that ϕ is surjective. Suppose ψ(f) = ψ(f ′). As usual, we have
the equality:

f ◦ ϕ = ϕ ◦ ψ(f)

This implies:
f ◦ ϕ = f ′ ◦ ϕ

Since ϕ is surjective, we have f = f ′.
Now let use assume that ϕ is injective. Then, let P ′ denoted the induced player from P .

We have

Start(P ′
1) = Start(P ′

2) =⇒ Start(P1) = Start(P2)

=⇒ End(P1) = End(P2) since homotopic

=⇒ End(P ′
1) = End(P ′

2) by injectivity

One important question is whether a world map always exists between different worlds.
The answer to this question is no.

Theorem 5.3.6. The set of maps between different worlds W and W ′ may be empty

Proof. We give a counter example. Let W1 = (2,Σ2) be the set of two elements with the
flip and identity as its function set. Let W2 = (3, {Id, Cyc}) be the set of three elements
with the function set consisting of the identity and a cyclic permutation. Consider any world
map from W1 → W2. Focusing on its function map ψ, it must send the flip operation F on
the 2-set to either the cycle or the identity. The state map ϕ : 3 → 2 partitions 3 into two
disjoint fibers. In order for the diagram to commute, we need a ϕ such that ψ(F) acts like
the flip F on the fibers of ϕ. This is impossible, because we cannot partition a set of three
elements in two such that the cyclic permutation or identity will flip the partitions.

5.4. COMPOSITION OF PLAYERS 71

5.4 Composition of Players

Recall that a player always starts with the start state q0 and terminates operation with the
end state q1. Hence, there is a natural way to compose two players: once the first reaches
its end state, we begin the operation of the second player. Formally, we can construct the
composition of two players P2 ◦ P1 as follows. The state space will be the disjoint union
of the two players’ states: Q = Q1

∐
Q2; the start symbol q0 = q10 will come from Q1,

and the end synbol q1 = q21 will come from Q2. The transition function Γ will be defined
piece-wise:

Γ(q, ω) =

{
Γ1(q, ω) q ∈ Q1

Γ2(q, ω) q ∈ Q2

with the identification of the start state of Q1 and the end state of Q2: q
1
1
∼= q20. If we

consider the equivalence classes of players that are the same up to some finite sequence of
the identity function, this immediately imposes a monoid structure on the set of players. In
fact, world maps preserve this monoid structure.

Theorem 5.4.1. The category of players is a subcategory of the category of monoids MON .
Moreover, the correspondence between world maps and player maps is a functor from W to
MON .

Proof. It is easy to see that the ”do nothing” player serves the role as the identity. The
preceding discussion shows that, with respect to composition, a set of players (or more
correctly their equivalence classes) forms a monoid. The fact that the induced players maps
from a world map are a monoid homomorphism follow from the fact that the composition
of commutative diagrams is again a commutative diagram.

72

Bibliography

[1] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps and Spectral Techniques for
Embedding and Clustering”. In: Proceedings of the 14th International Conference on
Neural Information Processing Systems: Natural and Synthetic. NIPS’01. Vancouver,
British Columbia, Canada: MIT Press, 2001, pp. 585–591.

[2] Charles F. Cadieu and Bruno A. Olshausen. “Learning Intermediate-Level Represen-
tations of Form and Motion from Natural Movies”. In: Neural Computation 24 (2012),
pp. 827–866.

[3] Ho Yin Chau et al. “Disentangling images with Lie group transformations and sparse
coding”. In: Neural Information Processing Systems. 2022.

[4] Yubei Chen, Dylan M. Paiton, and Bruno A. Olshausen. “The Sparse Manifold Trans-
form”. In: Neural Information Processing Systems. 2018.

[5] Brian Cheung et al. Discovering Hidden Factors of Variation in Deep Networks. 2014.

[6] Brian Cheung et al. “Superposition of many models into one”. In:ArXiv abs/1902.05522
(2019).

[7] Taco Cohen and Max Welling. “Learning the Irreducible Representations of Commuta-
tive Lie Groups”. In: Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32. ICML’14. Beijing, China: JMLR.org,
2014, II–1755–II–1763.

[8] Patrick Esser, Robin Rombach, and Björn Ommer. “A Disentangling Invertible In-
terpretation Network for Explaining Latent Representations”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 9220–
9229.

[9] Ross W. Gayler and Simon D. Levy. “A Distributed Basis for Analogical Mapping”.
In: 2009.

[10] Aditya Grover and Jure Leskovec. “Node2vec: Scalable Feature Learning for Net-
works”. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’16. San Francisco, California, USA: Associa-
tion for Computing Machinery, 2016, pp. 855–864.

BIBLIOGRAPHY 73

[11] Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[12] Irina Higgins et al. Towards a Definition of Disentangled Representations. 2018.

[13] Pentti Kanerva. Sparse Distributed Memory. Cambridge, MA, USA: MIT Press, 1988.

[14] Jaeyoung Kang et al. “RelHD: A Graph-based Learning on FeFET with Hyperdimen-
sional Computing”. In: 2022 IEEE 40th International Conference on Computer Design
(ICCD) (2022), pp. 553–560.

[15] Denis Kleyko et al. “Vector Symbolic Architectures as a Computing Framework for
Emerging Hardware”. In: Proceedings of the IEEE 110.10 (2022), pp. 1538–1571.

[16] Serge Lang. Algebra. New York, NY: Springer, 2002.

[17] Kasper Green Larsen and Jelani Nelson. “Optimality of the Johnson-Lindenstrauss
Lemma”. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). 2017, pp. 633–638.

[18] John M. Lee. Introduction to Smooth Manifolds. Springer, 2000.

[19] Tai Sing Lee and David Mumford. “Hierarchical Bayesian inference in the visual cor-
tex.” In: Journal of the Optical Society of America. A, Optics, image science, and
vision 20 7 (2003), pp. 1434–48.

[20] Yunpu Ma et al. “Holistic Representations for Memorization and Inference”. In: UAI.
2018.

[21] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in
Mathematics, Vol. 5. New York: Springer-Verlag, 1971.

[22] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. “Holographic Embeddings
of Knowledge Graphs”. In: AAAI. 2016.

[23] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A Three-Way Model for
Collective Learning on Multi-Relational Data”. In: Proceedings of the 28th Interna-
tional Conference on International Conference on Machine Learning. ICML’11. Belle-
vue, Washington, USA: Omnipress, 2011, pp. 809–816.

[24] Igor O. Nunes et al. “GraphHD: Efficient graph classification using hyperdimensional
computing”. In: 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE) (2022), pp. 1485–1490.

[25] Prathyush Poduval et al. “GrapHD: Graph-Based Hyperdimensional Memorization for
Brain-Like Cognitive Learning”. In: Frontiers in Neuroscience 16 (2022).

[26] P. Smolensky. “Tensor Product Variable Binding and the Representation of Symbolic
Structures in Connectionist Systems”. In: Artif. Intell. 46.1–2 (Nov. 1990), pp. 159–
216. issn: 0004-3702.

BIBLIOGRAPHY 74

[27] Anthony Thomas, Sanjoy Dasgupta, and Tajana Simunic. “A Theoretical Perspective
on Hyperdimensional Computing”. In: J. Artif. Intell. Res. 72 (2020), pp. 215–249.

[28] Yao-Hung Hubert Tsai et al. “Learning Factorized Multimodal Representations”. In:
ArXiv abs/1806.06176 (2018).

[29] Alan M. Turing. “On Computable Numbers, with an Application to the Entschei-
dungsproblem”. In: Proceedings of the London Mathematical Society 2.42 (1936), pp. 230–
265.

75

Appendix A

Superposition and Graph Hierarchical
Models

This appendix contains some cursory material on graph hierarchical models as a compu-
tation paradigm for hyperdimensional computing, applying the graph embedding method
introduced in Chapter 2. The main ingredient starts with the premise of computing using
superpositions of states, represented by linear sums of (nearly) orthonormal vectors. This
naturally leads to state maps, which can be represented by our graph embedding method.
We highlight some of its desirable properties and compare to a traditional Bayesian model.
In particular, we hope that its properties make it a good alternative to realizing the ideas
presented in Lee and Mumford’s paper on modeling the visual processing pathway[19].

A.1 Superposition Again

Taking the concept of superposition a bit more literally, we can start at the notion of a
superposition of states:

Ψ =
∑

aiψi

where the vectors ψi form an orthonormal set and ||Ψ||2 = 1. When we want to ”measure”
from the state Ψ, we will observe one of the states ψi with corresponding probability a2i .

We can work backwards: say we had some finite set X = {x1, · · · , xn}. We could assign
each element xi to some vector vi such that {v1, · · · , vn} form an orthonormal set. Then,
any distribution P = (p1, · · · , pn) on X could be represented by a superposition of the form:

ΨP =
∑

aivi ; a2i = pi

Importantly, assuming ai ∈ R, we have two choices ±ai that satisfy the above constraints.
Here, one might object and say that we could also represent the same distribution P by a
convex combination of the embedding vectors:

P = (p1, · · · , pn) 7→
∑

pivi

A.2. HIERARCHICAL MODEL BASICS 76

This way, we avoid the ambiguity of the sign of the coefficients and get a one-to-one map
from distributions to convex combinations. However, as it will become clearer later, the
introduction of parity allows for interesting behavior to emerge, since states can add or
cancel each other. This idea of fuzzy superposition leads to an interesting question: how can
we build hierarchical models using such a framework?

A.2 Hierarchical Model Basics

In this section, we detail the basic operation of a hierarchical model, and we specifically
consider a hierarchical model with 3 layers - X → Y → Z - where each layer is a set of
possible states generated by superpositions of their respective singular states. To ground
things, we can imagine this as some model of the visual pathway, where X, Y, Z represent
low, mid, and high-level stages of visual cognition.

State Maps

The singular low-level state x1 might suggest multiple mid-level states yi, which we represent
as a superposition:

x1 7→
∑

αi1yi ;
∑

α2
i1 = 1

By linearity, this map can be represented by:

(
∑

αi1yi)⊗ x1 =
∑

αi1(yi ⊗ x1) =
∑

αi1(yix
T
1)

In a similar fashion, every singular state xi ∈ X would also be mapped to some state in Y .
By the superposition principle, this defines a linear map α : X → Y which takes the form:

α =
∑
i

∑
j

αij(yixj)
T

Thus, the state x =
∑
ajxj would be mapped to:

x 7→ αx = [
∑
ij

αij(yix
T
j)](

∑
ajxj) =

∑
ij

αijajyi

After normalization, we have a valid state of Y . In the context of the visual pathway, a low-
level visual percept like as a curve might suggest multiple mid-level percepts like a circle, an
oval, or a square. We represent this by mapping the single percept to a superposition of the
many percepts it suggests. Note that the proposed state map is precisely the graph embed-
ding method proposed earlier. Indeed, we may pass from an orthonormal basis of singular
states to a nearly orthonormal set using spherical codes, allowing for drastic compression of
our model’s parameters - especially, as we saw earlier, when our state map’s matrix is sparse.

A.3. PROPERTIES AND COMPARISONS 77

So far we have described how states of X map to states of Y : how does this fit within
the hierarchical model? Say we have initial states x0, y0 of X, Y . The state x0 then maps
to αx0, and we would like to update the state of Y using this information. There are two
natural update rules: we can either replace or add the current state y0 with αx0. We defer
to addition, because this has a nice interpretation as discretizing the dynamics of the linear
vector field α. Thus, a single pass of bottom-up inference will use the information x0 in X to
compute a new suggested state αx0 of Y . This new state will be combined with the current
state to give the updated state y1 = y0 + αx0, and after normalization this is again a valid
state. The same mechanics apply for bottom-up inference from Y to Z.

Top-Down Inference and Update Rules

Now, we would like to perform top-down inference, where we update X using information
from Y . Given the state map α : X → Y , there is a natural choice: the adjoint operator
of α. The adjoint operator is a linear map αT : Y → X which, as the notation suggests, is
just the transpose of α in matrix form. Using the adjoint map αT , we update X using Y
in the same fashion as bottom-up inference: given y0, we compute αTy0 and add it to the
initial state x0 to get the updated state x1 = αTy0+x0. After renormalization, this becomes
a valid state of X. The adjoint map αT is a natural inverse to the flow of information from
a state map α: the more the current state y coincides with αxi, the more weight xi will be
given under αT .

Another thing to note is that the state map α : X → Y maps singular states of X to
states of Y , so we require the columns of α to be unit norm. Say we relaxed this requirement
to the columns of α having norm at most 1. Then, we could consider maps of the form τα
for some constant 0 < τ < 1, and the update rule than becomes y1 = y0 + (τα)x0. Letting
τ → 0, we see that our hierarchical model, during both bottom-up and top-down inference,
becomes a linear dynamical system. In this sense, the update rule of adding together states,
rather than replacing them, can be thought as discretizing the dynamics of a linear system.

A.3 Properties and Comparisons

In this section we’ll go over some interesting properties of this hierarchical model and compare
it to the traditional hierarchical statistical model: the Bayesian hierarchical model.

Modularity

The proposed model is amenable to manipulation: we can not only arbitrarily modify a state
map xi 7→ αjyj independently of all others, we can also easily expand the model to handle
new singular states, especially when using an approximately orthonormal set. Modifying
the state map for an individual state consists of just adding or subtracting the appropriate
edges

∑
j αjyjx

T
i . Expanding the singular states is similarly simple. Say that we wanted

A.3. PROPERTIES AND COMPARISONS 78

to add the singular state y′ to Y , which would allow for new states that are superpositions
involving y′; note than any states of Y remain valid superpositions in this new expanded state
space. Going back to modeling the visual pathway, we might want to form a new mid-level
concept y′. Naturally, we would define this mid-level concept as a superposition of lower-
level concepts, giving rise to the state map y′ 7→

∑
α′
ixi. We then expand the state map

αT : Y → X to accommodate y′ by just adding the appropriate edges: αT = αT +
∑
α′
ixiy

′T ,
and this similarly updates the adjoint map α. A similar picture holds for adding singular
states to X.

Bayesian Comparison

For comparison, consider a traditional Bayesian model of the form P (Y |X). Adding a
new value y′ to the support of Y would require generating a fundamentally new likelihood
function P (Y

⋃
y′|X). Even if we already have the values P (y′|x) for every x ∈ X, there

is no canonical procedure for grafting these values with P (Y |X). Similarly, adding new
values x′ to X entails creating a new prior distribution P (X

⋃
x′). While there are definitely

ways to augment the likelihood/prior in both cases, it is not as straightforward as in the
superposition model.

Positive and Negative Interference: Explaining Away

As mentioned earlier, working with superpositions of states rather than convex combinations
of states allows for states to interact in both a constructive and destructive manner. For
example, suppose we had two states of X and two states of Y related by the following map:

x1 7→
1√
2
(y1 + y2) x2 7→

1√
2
(y1 − y2)

Individually, both x1 and x2 map to a state that is an equal superposition of the two singular
states y1 and y2, and we have an equal chance of observing y1 or y2 in either state. By the
superposition principle the state 1√

2
(x1 + x2) would map to y1, as destructive interference

cancels out the y2 term. Translating this to the visual model case, we can say that the low-
level percepts x1 and x2 individually both involve the percepts y1 and y2 equally; however,
when we know that both x1 and x2 are relevant, information about the relevance of both
low-level percepts allows us to pinpoint a single mid-level percept y1.

Similarly, the adjoint of the above map leads to the equations:

y1 7→
1√
2
(x1 + x2) y2 7→

1√
2
(x1 − x2)

Using top-down inference, the state 1√
2
(y1 + y2) maps to the singular state x1. We then

update the state of X by adding x1 and normalizing: we push the state closer to x1, and
increase the probability of observing just x1. Going back to the visual processing model,
mid-level concepts can ”explain away” lower-level concepts through destructive interference.

A.3. PROPERTIES AND COMPARISONS 79

A similar phenomenon occurs when states interact through positive interference. If we
consider the maps

x1 7→
1√
2
(y1 + y2) x2 7→

1√
2
(y2 + y3)

the state 1√
2
(x1 + x2) maps to 1√

6
(y1 + 2y2 + y3) - we are four times as likely to observe y2

as the other singular states. Individually, x1 and x2 map to states that do not statistically
prefer a single one, but a superposition of both leads to a state where one observes y2 with
high probability.

Bayesian Comparison

Such behavior is impossible to implement in a Bayesian model, because when we work with
probabilities we are working with mixtures and not superpositions. That is, when dealing
with distributions over X, the state of X is always a single outcome x1 and can never be
both x1 and x2 at the same time. Therefore, it is impossible to model interactions between
the different states. In a Bayesian model, the closest analog to a superposition a1x1+a2x2 is
the corresponding distribution P = (a21, a

2
2). Then, through the likelihood function P (Y |X)

this induces a distribution on Y :

P (y) = P (y|x1)p(x1) + P (y|x2)p(x2)

Note that since all of the terms on the RHS are positive, one can never have destructive
interference of probabilities. The closest behavior one can get is if one state x1 induces a
(near) deterministic state on Y . For example, we have P (y1|x1) = 1. Then, we can push Y
toward the state y1 by pushing the distribution on X towards x1. However, this is unlike the
behavior of the superposition model: with superposition, we had a maximum entropy state
1√
2
(x1 + x2) induce a zero entropy state y1, even though each individual zero entropy state

xi induces a max entropy state 1√
2
(y1 ± y2).

Model Transfer

One central question concerning any model is how to transfer a given model to a new context.
For the superposition model, there is a natural way to do this: suppose we had two state
spaces X,X ′. What is a suitable definition for how these two spaces are related? One way
would be to define a state map ρ : X → X ′, and by the superposition principle such a map
is completely determined by its action on the singular states of X. Hence, our state map is:

ρ : X → X ′ ; ρ =
∑
j

(
∑

ρijx
′
i)x

T
j

Going to our visual pathway model, our model might originally be attuned to processing
images of people, where mid-level percepts are noses, eyes, arm, etc. Now, say we wanted to

A.3. PROPERTIES AND COMPARISONS 80

transfer this model to handle images of lions. Then, a nose might correspond to a snout, a
hand to a paw, hair to a mane, etc.

Now, say we wanted to retain the high-level percepts of a face, a lower and upper body,
running motion, etc. for lions as for people, so we have the identity map I : Z → Z ′

on the space of high-level percepts (technically not the identity map but an isomorphism).
Through the adjoint map βT : Z → Y , we can describe each high level percept z ∈ Z as a
superposition of mid-level human percepts. For example, a human face z1 could be described
as a superposition of a nose y1, a mouth y2, eyes y3, and hair y4:

z1 =
∑
i

βTi1yi

The map of mid-level percepts, from human to lion, would then create a corresponding
description for a lion face: a lion face z′1 would be described as a superposition of a snout
ρ(y1), a mouth ρ(y2), eyes ρ(y3), and a mane ρ(y4):

z′1 =
∑
i

βTi1ρ(yi)

Hence, given any superposition model · · · → Xi → Xi+1 → · · · defined by the maps αi :
Xi → Xi+1, we can transfer it to a model on a new context · · · → X ′

i → X ′
i+1 → · · · via

state maps on the corresponding state spaces ρi : Xi → X ′
i. Then, a map α′

i : X
′
i → X ′

i+1

would be described via the composition:

α′
i : X

′
i

ρTi−→ Xi
αi−→ Xi+1

ρi+1−−→ X ′
i+1 α′

i = ρi+1αρ
T
i

For example, in the example of transfer the human, the adjoint map βT : Z → Y from high
to mid-level percepts take the form:

βT = ρβT IT = ρβT

Bayesian Comparison

There are many restrictions when working the Bayesian hierarchical model. For example,
say we wanted to transfer a Bayesian model X → Y to one on different spaces X ′ → Y ′.
Conceptually, this would be working with the pull-back measures given measurable maps
f : X → X ′ and g : Y → Y ′. However, we run into practical issues: Bayesian models
are based on densities - P (Y |X), P (X) - so how do we compute the densities of pull-back
measures?

Our best and possibly only tool for computing such a density is to use the change-of-
variables formula. However, at the very least this requires the maps f, g to be invertible. On
the other hand, degenerate maps can arise in many context: two different outcomes x1 and
x2 might be most similar to the same outcome x′1. Without the change-of-variables formula,
it is unclear how to compute such densities.

A.3. PROPERTIES AND COMPARISONS 81

Moreover, the fact that we are working with mixtures and not superposition doesn’t allow
the maps f, g to have the same nuance as those of the superposition model. For example, in
the human-lion example, there is no clear human analog for the percept of a tail y′1. Hence,
instead we can map the tail percept y′1 to a superposition of the two closest human percepts:
an arm y1 and a leg y2. Hence, we have the map:

y′1 7→ ρ1y1 + ρ2y2

However, a map of probability spaces maps each outcome to a single outcome; it would be
impossible to represent such ambiguity when working with the Bayesian model.

Skip Connections

In our three layer hierarchical model X → Y → Z, we considered both bottom-up and
top-down inference between immediate layers: X → Y and Y → Z. However, one might
want to consider the effects of X on Z without going through the mediating step of updating
Y . Given the state maps α : X → Y and β : Y → Z, by superposition (ie. linearity) we can
compute the resulting state map γ : X → Z via:

γ : X → Z γ = βα

Note that we do need to normalize the columns of γ to ensure each singular state is sent to
a valid state of Z. Thus, to directly pass information from X to Z, to calculate the state
map we just need to do a matrix multiply.

Bayesian Comparison

Assuming we are working with a finite (or at least countable) state spaces, a Markov bayesian
modelX → Y → Z consists of two likelihood matrices P (Y |X) and P (Z|X). To compute the
corresponding likelihood matrix P (Z|X), we would also just do a matrix multiply. Assuming
the Bayesian state space is finite/countable, both models are equally easy to work with in
this aspect.

However, the picture becomes different when dealing with continuous state space for the
Bayesian. In this case, to compute the likelihood function P (Z|X) we need to compute the
integral:

p(z|x) =
∫
p(z|y)p(y|x)dy

This is a much more intensive computation than a matrix multiply. One might argue that a
continuous state space for the Bayesian model is the more natural comparison to the super-
position model: the superposition state space is always continuous, since each normalized
superposition is a distinct space.

A.3. PROPERTIES AND COMPARISONS 82

Simulateneous Inference

In our three layer model, X → Y → Z, how we do simultaneous inference of Y given X,Z?
We are looking for some state function ϕ : X × Z → Y that respects superposition and
appropriately updates Y . Fixing the Z argument to a singular state z1, we have an induced
state map ϕz1(x) = ϕ(x, z1) : X → Y . Since such a state map must obey the superposition
principle, we see ϕ must be linear in the first argument. A similar argument shows ϕ must
be linear in the second argument, and so ϕ is a bilinear function X × Z → Y . By the
universality of the tensor product, ϕ has a unique corresponding linear map ϕ̃ : X⊗Z → Y .
Thus, we can bind together states of X and Z using the tensor product into a single state
space X⊗Z, and our state function ϕ becomes the unique linear map ϕ̃ : X⊗Z → Y . Both
problem formulations are equivalent: we either look for a bilinear map on the product space
X × Z or a linear map on the tensor product X ⊗ Z.

Now, we are looking for some bilinear map induced from the linear maps α : X → Y
and βT : Z → Y . The pair of linear maps (α, βT) naturally induce a linear map: α ⊗ βT :
X ⊗ Z → Y ⊗ Y , where:

xi ⊗ zj 7→ (αxi)⊗ (βT zj)

This construction is universal in the sense that the set of pairs of linear maps (α, βT) is
bijective with the set of linear maps α⊗ βT . That is, there is a natural bijection (in fact, a
natural isomorphism in the language of category theory):

[L(X, Y)× L(Z, Y)] ∼= L(X ⊗ Z, Y ⊗ Y)

We can go from the specific problem of finding a bilinear map for the pair (α, βT) to the
general problem of finding a ”nice” function F that associates an appropriate linear map
F (f, g) : X⊗Z → Y to every pair of maps (f, g). That is, we are looking for some nice map
F :

L(X ⊗ Z, Y ⊗ Y)
F−→ L(X ⊗ Z, Y)

Hence, the problem reduces to finding a fixed linear map F : Y ⊗ Y → Y . One canonical
map is the diagonal map D, which maps yi ⊗ yi 7→ yi and 0 otherwise. Thus, using F = D,
we have the resulting state function: ϕ = D ◦ (α ⊗ βT). Specifically, for αxi =

∑
αsyi and

βT zj =
∑

t βtyt, then ϕ(xi ⊗ zj) 7→
∑
αsβsys.

The states xi, zj map to the states αxi, β
T zj ∈ Y , and for simultaneous inference we just

compute the element-wise product the two vectors αxi, β
T zj - their agreement. Practically,

to compute the resulting state from the pair (x, z), we would first compute αx, βz and then
element-wise multiply the two vectors together. Then, inference would proceed as normal:
add it to the current state of Y and normalize to get a new state. In summary, there is a
natural and compuationally easy method to implement simultaneous inference.

A.3. PROPERTIES AND COMPARISONS 83

Bayesian Comparison

The analog in a Markov Bayesian model X → Y → Z would be computing the likelihood of
Y given X,Z:

P (Y |X,Z) = P (Z|Y)P (Y |Z)
ZY

where ZY is the normalization constant. Much difficulty comes from computing the nor-
malizing constant ZY . Some numerical approaches like MCMC are used to sample from the
distribution P (Y |X,Z); other variation approaches that try to approximate the likelihood.
There are probably many other classes of methods for approximating the likelihood, but all
of these methods approximate the likelihood and are usually computationally expensive.

Priors

In our model α : X → Y , we update Y using value of X by adding αx to the current state
y. Thus, the initial states x0, y0 are natural analogs to priors in the usual Bayesian setup,
and we can seed them with an appropriate state.

Bayesian Comparison

Note that unlike a prior, the initial state y0 can have a negatively weighted singular state
yi in its superposition. Upon updating from X via αx, this negative term could cancel
and destroy yi from consideration. If we interpret a negative sign as meaning the belief in
the exclusion of that state, the Bayesian analog would be having a prior probability of 0:
p(yi) = 0. In a Bayesian model, we update the prior to the posterior via:

p(yi|X)
P (X|yi)P (yi)

P (X)

Hence, if the prior is 0 then the posterior will always be 0, which is one major weakness
of Bayesian models: certainty of exclusion in the prior persists. On the other hand, the
superposition model has no such limitation.

Another issue in Bayesian models is the choice of an uninformative prior. Sometimes, the
uniform prior is used and justified as a max entropy distribution. However, it is not invariant
to reparametrizations of the sample space and so expresses a statement for a particular
parametrization. On the hand, the Jeffrey’s prior is another choice of uninformative prior
that is invariant to reparametrizations. It is uninformative in the sense of depending solely on
the likelihood function P (X|Y), but it is perhaps antithetical to a Bayesian approach because
the Fisher information is an expectation over all possible data X rather than the observed
data. In any case, there is no canoncial uniformative prior. However, in the statemodel case
the uninformative prior state would just be initialization at 0 - no state.

A.4. BOOLEANS TO STATES 84

A.4 Booleans to States

So far, we have discussed the superposition of states xi with the strict condition of orthonor-
mality. However, in the real world we often deal with states that are ”related” some manner,
and we want the geometry of state space to reflect these relations: ”related” things should
be parallel while ”unrelated” things should be orthogonal. In this section, we’ll consider how
to reflect statistical relations in the geometry of state space.

Norm-Preserving Maps

Say we have some set of singular states xi. The state space X consists of superpositions
of these states, and when we measure from a state x ∈ X we will always observe one of
the singular states. Over some period of repeated observation we begin to notice statistical
relations between the observed states xi, and we want the geometry of state space to respect
these statistical relations.

Here is the formalism. At any fixed point of time, the observation of state xi is a Boolean
random variable Bi, with value 1 if we observe xi and 0 otherwise. Thus, to each state xi is
the associated Boolean Bi, and together they live in the L2 space of some probability space
P : L2(P). Modulo the set of functions that are 0 a.s., this is an inner product space under
the inner product:

< f, g >= Efg

Rather than working with the Boolean Bi, we will instead work with the mean-zero, unit-
variance versions: B′

i =
Bi−EBi√
V ar(Bi)

= Bi−pi√
pi(1−pi)

. Note that the inner product between the B′
i’s

is equal to the correlation:
< B′

i, B
′
j >= Corr(Bi, Bj)

Since we want the geometry of the singular states xi to reflect their statistical relations, we
want the following equation to hold for all i, j:

Corr(Bi, Bj) =< xi, xj >

Properties

Correlation, Negation, and Independence

We have the following result:

Theorem A.4.1. For any two Boolean functions Bi and Bj:

1. Corr(Bi, Bj) = 1 iff Bj = Bi.

2. Corr(Bi, Bj) = −1 iff Bj = 1−Bi.

3. Corr(Bi, Bj) = 0 iff Bi and Bj are independent.

A.4. BOOLEANS TO STATES 85

Proof. We’ll start with proving (1) and (2). For the Boolean Bi with its scaled/centered
version B′

i =
Bi−pi√
pi(1−pi)

, the negation 1−Bi has the corresponding scaled/centered version:

(1−Bi)
′ =

1−Bi − (1− pi)√
(1− pi)pi

= −B′
i

Hence, the correlation between a Boolean and its negation is -1. On the hand, for an inner
product space the Cauchy-Schwarz inequality is exact iff one of the vectors is a multiple of
the other:

< u, v >= ||u||||v|| ⇐⇒ u = cv

If the correlation between two Boolean Bi, Bj has absolute value 1, then B′
i = cB′

j. Since
they are Booleans, this implies c = ±1, so Bj is equivalent to either Bi or its negation. This
establishes (1) and (2).

Now for (3). The correlation between two Boolean is 0 iff their covariance is 0. For two
Booleans, this means:

Cov(Bi, Bj) = E(BiBj)− E(Bi)E(Bj) = 0

=⇒ P ({Bi = 1} ∩ {Bj = 1}) = P (Bi = 1)P (Bj = 1)

From the above equation, we deduce that two Boolean Bi, Bj are independent iff they have
0 correlation.

Hence if we embed vectors such that:

< xi, xj >= Corr(xi, xj)

then independent states map to orthogonal vectors and logical opposites map to the reverse
vector.

Implementation

This structure can be learned on the fly, where over the course of observation we push the
vectors of correlated states together and orthogonalize independent states. For example, we
can keep a running total

Nij

N
over some fixed window of time T , where Nij is the number of

times the states xi, xj occur close together and N is the total number of observations over
that window. Then, we would push the two vectors together

xi 7→ (η
Nij

N
xj + xi)/||η

Nij

N
+ xi||

We could easily update the state maps α : X → Y via the projection operator. If x′i is the
new state vector and xi is the old, the projection operator would be P = x′ix

T
i . Then, we

can update α to αP T . A similar procedure works for updating the codomain Y .

	List of Figures
	List of Tables
	Contents
	Introduction
	Graph Embeddings
	Disentanglement
	Transfer of Algorithms

	Graph Embeddings via Tensor Products and Orthonormal Codes
	Introduction
	Notation and Terminology
	Method Overview
	Graph Operations
	Theoretical Derivation of the Embedding Method
	Spherical Codes and Approximate Orthonormality
	Relationship to Adjacency Matrices
	Compressing Adjacency Matrices
	Experiments

	Memory and Capacity of Graph Embedding Methods
	Introduction
	Alternative Binding Operations
	Random Codes
	Binding Comparison Overview
	Vertex Queries
	Edge Composition
	Binding Comparison Summary
	Simulations

	Disentanglement from the Manifold Perspective
	Smooth Manifolds: Technical Preliminaries
	Flows over the Data Manifold
	Commutativity
	Disentangling Generative Models
	Application to Matrix Exponential Operators
	Commutativity and Operators

	Transfer of Algorithms: Players and Worlds
	Introduction
	Basic Definitions
	Basic Properties
	Composition of Players

	Bibliography
	Superposition and Graph Hierarchical Models
	Superposition Again
	Hierarchical Model Basics
	Properties and Comparisons
	Booleans to States

