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ABSTRACT OF THE DISSERTATION 

 

Predicting Titanic Survival Rates:  

A Comparison of AdaBoost, XGBoost, and Random Forest 

 

by 

 

Wu TongChangYu 

Master of Applied Statistics & Data Science 

University of California, Los Angeles, 2024 

Professor Ying Nian Wu, Chair 

 

 

The factors influencing survival rates during disasters had always been an important 

subject of research. With the rise of machine learning, predictive modeling has improved 

significantly. This paper presented a comparative analysis of three Machine Learning 

models—XGBoost, Random Forest, and AdaBoost—trained using well-established 

libraries to predict the survival probabilities of passengers on the Titanic. We used a well-

known dataset from the Titanic disaster, containing passenger information and whether 

they survived. After data preprocessing and model tuning, Random Forest showed the 

highest accuracy, suggesting its potential for improving survival predictions in disaster 

rescue operations. 
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CHAPTER 1 

Introduction 

The sinking of the RMS Titanic on April 15, 1912, stood as one of the most tragic and 

well-known maritime disasters in history. This disaster resulted in the deaths of over 1,500 

passengers and crew members, becoming a subject of extensive study and analysis. The 

Titanic symbolized the engineering marvels of the early 20th century, and with its luxury 

and advanced design led it to be considered the "unsinkable ship." However, the tragic 

collision with an iceberg during its maiden voyage exposed significant flawed in the 

maritime safety practices and design assumptions of the time. 

On April 10, 1912, the Titanic departed from Southampton, England, with New York City 

as its ultimate destination. Measuring approximately 269 meters in length, 28 meters in 

width, and boasting a gross tonnage of 46,328 tons, it was the largest vessel at that time. 

It offered luxurious amenities for its first-class passengers, including a grand staircase, 

swimming pool, library, fine dining rooms, and lavish cabins, while also providing relatively 

simple but still comfortable accommodations for second and third-class passengers. On 

board were 2,224 people, including wealthy individuals, ordinary passengers, and many 

immigrants seeking new opportunities. This diversity of passengers and their social 

classes provided a wealth of data for analyzing the human factors involved in the disaster. 

At 11:40 PM on April 14, lookouts spotted an iceberg and attempted to avoid it, but the 

starboard side of the ship scraped against the iceberg, causing significant damage to the 

underwater hull, the watertight compartments were breached, leading to rapid flooding of 
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the ship's interior. The subsequent evacuation process revealed numerous inadequacies 

in maritime safety protocols of the time. There were not enough lifeboats to accommodate 

all passengers and crew, and the evacuation was chaotic and inefficient. Many lifeboats 

were launched only partially filled, and the prioritization of passengers varied, although 

women and children were generally given priority. The nearby SS Californian failed to 

respond to distress signals, while the more distant RMS Carpathia rushed to the scene, 

arriving several hours later to rescue 705 survivors. 

This incident had highlighted the importance of quickly and accurately predicting survivor 

characteristics for effective rescue planning during major disasters. In recent years, 

detailed data on passengers and crew had enabled researchers to use advanced 

analytical techniques to study the event in depth. Traditional statistical analysis methods 

usually relied on manually constructed mathematical models, but machine learning 

algorithms could automatically extract features from data and build models, reducing 

human bias and improving prediction accuracy. With the explosion of data and the 

enhancement of computing power, machine learning had shown its superior modeling 

and prediction capabilities in various fields, leading to widespread application. Therefore, 

an effective approach to studying the Titanic dataset was to use machine learning to 

predict survival outcomes based on different passenger attributes. By training on 

historical data, researchers could uncover patterns and better identify key factors 

influencing survival. 

In this study, we compared three different machine learning models: XGBoost, Random 

Forest, and AdaBoost, to determine which one is most suitable for prediction. Machine 

learning algorithms could thoroughly analyze patterns within the Titanic dataset, including 
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variables such as age, gender, cabin class, ticket fare, cabin location, and family 

relationships. This research not only enhanced our historical understanding of the Titanic 

disaster but also demonstrated the remarkable ability of machine learning to extract 

meaningful patterns from complex, large-scale datasets. By using these advanced 

techniques, we could better understand the critical factors affecting survival in maritime 

disasters and provide data-driven support and insights for risk management in similar 

future situations. Combining historical analysis with modern computational methods 

offered a novel, comprehensive approach to studying this famous maritime tragedy, 

contributing theoretical value for prevention and preparedness. 

This study aimed to improve disaster management and risk assessment capabilities by 

using machine learning models to simulate and predict disaster scenarios and survivor 

characteristics, providing data support for developing more effective disaster response 

strategies. Governments and relevant organizations could conduct this approach to 

improve disaster management, risk assessment, maritime safety, and emergency 

response capabilities. Examining key survival factors not only served as a reference for 

future emergency rescue operations and the formulation of targeted and efficient rescue 

strategies but also helped improve modern maritime safety measures and emergency 

response mechanisms. Optimizing evacuation procedures and creating more efficient 

and fair evacuation plans ensured that passengers could evacuate quickly and safely in 

emergencies, reducing casualties and providing practical application value. 

Predicting key factors that affected survival rates through machine learning models 

enabled shipping companies and ship designers to better allocate life-saving equipment, 

ensuring a rational distribution and adequate reserve of lifeboats and other safety 
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equipment on board, enabling timely and effective assistance during disasters. Moreover, 

this research promoted interdisciplinary research and application. The Titanic dataset 

provided a classic case study for machine learning and statistical analysis, offering 

empirical data support for social science and behavioral studies, and helping to 

understand human behavior and decision-making in crisis. Furthermore, integrating 

historical events with engineering design offered insights for improving the safety design 

and management processes of modern engineering projects, providing a unique 

perspective for both historical and engineering research. 

The remainder of the paper was structured as follows: Section 2 provided an overview of 

the methodology employed in this study. Following that, Section 3 delved into the details 

of the dataset, including all its features and how we processed it. Moving on to Section 4, 

we conducted an exploratory data analysis (EDA) to gain deeper insights into the dataset. 

Section 5 discussed different models that were compared in this study, elaborating on 

their predictive capabilities after parameter tuning. Finally, Section 6 presented the 

conclusions drawn from our analysis, along with suggestions for future research 

directions. This was followed by a list of references and an appendix containing 

supplementary information. 
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CHAPTER 2 

Methodology 

In this section, we will delve into these three supervised Machine Learning (ML) 

algorithms we used to predict survival rates: AdaBoost, Random Forest, and XGBoost. 

Each algorithm its owns unique strengths, contributing to the development of robust and 

accurate predictive models.  

By comparing the unique capabilities of AdaBoost, Random Forest, and XGBoost, we 

could determine which algorithm offered the most accurate and reliable predictions for 

survival rates. Each of these models brought distinct advantages to the table, enabling us 

to evaluate their performance comprehensively and chose the one that best met our 

requirements. 

2.1 AdaBoost (Adaptive Boosting) 

Boosting, also known as enhanced learning, is an important ensemble learning technique 

that can transform weak learners with only barely better than random prediction accuracy 

into strong learners with high accuracy. This method offers a new and effective way to 

design learning algorithms, especially when it is challenging to construct strong learners 

directly. AdaBoost's strength lies in its adaptive approach: the weights of incorrectly 

classified samples by the previous classifier are increased, while the weights of correctly 

classified samples are decreased. These adjusted sample weights are then used to train 

the next weak classifier. In each iteration, a new weak classifier is added until a 
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predetermined low error rate or a maximum number of iterations is reached, ultimately 

constructing a strong classifier. 

Specifically, AdaBoost's fundamental principle is iteratively training multiple weak 

classifiers to build a strong classifier. Initially, all training samples have equal weights. 

The first weak classifier is trained, and then sample weights are adjusted based on its 

error rate, increasing the weights of misclassified samples to give them more attention in 

the next round of training. Each iteration involves training a new weak classifier and 

assigning it a weight based on its error rate, with better-performing classifiers getting 

higher weights. This process repeats until the number of iterations or the classifier's 

performance reaches the desired level. Finally, all weak classifiers are combined with 

their respective weights, forming a stronger classifier with better overall performance. 

Therefore, AdaBoost significantly improves classification accuracy, particularly for 

difficult-to-classify samples. 

AdaBoost offers several advantages that make it a powerful tool for classification tasks.     

Firstly, it significantly enhances classification accuracy, especially for difficult-to-classify 

samples, which is achieved by adaptively adjusting the weights of the samples, ensuring 

that misclassified samples receive more attention in subsequent training iterations.  

Secondly, it is easy to use and could be paired with various weak classifiers with minimal 

need for parameter adjustment. It adapts the assumed error rate based on feedback from 

the weak classifiers, leading to efficient performance. Furthermore, it can work with simple 

weak classifiers without the need for extensive feature selection, and it effectively avoids 

overfitting. 
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2.2 Random Forest 

Random Forest is an ensemble algorithm consisting of many decision trees operating in 

parallel, a method known as Bagging. Each decision tree in the forest operates 

independently and without correlation to the others. When handling classification tasks, 

each tree in the forest independently evaluates and classifies a new input sample. The 

final result would be obtained by voting or taking the mean to ensure that the model 

achieves high accuracy, generalizes well to new data, and maintains good stability. 

 

Fig 1 An example of Random Forest 

The strength of Random Forest lies in its characteristics of its use of "randomness" and 

its "forest" structure. The former helps prevent overfitting, while the latter significantly 

enhances prediction accuracy. Regarding randomness, on the one hand, through sample 
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perturbation, specifically utilizing Bootstrap Sampling, which contributes directly to 

introducing diversity into the dataset by allowing the samples from the original training set 

to be included multiple times in the sampling set. On the other hand, For each node in a 

decision tree, a random subset of features is selected, and the best feature from this 

subset is used for splitting. This repeated random selection increases the variability 

among the trees. As for forest, diverse decision trees are obtained by training multiple 

sampling sets, and then conducting a vote or taking the mean, resulting in higher 

prediction accuracy than most single algorithms. 

Random Forest model offers numerous advantages. Firstly, since each decision tree can 

be independently generated, supporting parallel computing and contributing to fast 

training speeds. The use of bootstrapping and random feature selection helps control 

overfitting. Furthermore outstanding data adaptability is also exhibited by enabling 

handling both discrete and continuous data, as well as data with nonlinear relationships. 

Moreover, it is capable of high-dimensional feature datasets without the need for feature 

selection or data normalization. Also, The use of bootstrapping and random feature 

selection helps control overfitting. Additionally, it is also effective with imbalanced 

datasets, balancing classification errors efficiently. Overall, it demonstrates exceptional 

performance and applicability across a wide range of applications. 

2.3 XGBoost (eXtreme Gradient Boosting) 

XGBoost stands for “extreme gradient boosting”(Chen & Guestrin, 2016) and is a scalable, 

powerful gradient-boosted decision tree (GBDT) machine learning library that provides 
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parallel tree boosting and excels in regression, classification, and ranking problems. The 

objective function of XGBoost is: 

𝑂𝑏𝑗 =% 𝑙(𝑦! , 𝑦*!)
"

!#$
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%#$
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The objective function of XGBoost has two main components: 

1, The first component measures the difference between the predicted scores and the 

actual scores. 

2, The second part is the regularization term, which helps prevent overfitting.  

The regularization term includes: 

𝛾: a parameter that controls the number of leaf nodes. 

𝑇: the number of leaf nodes. 

𝑤: the score of each leaf node. 

𝜆: a parameter that ensures the scores of the leaf nodes are not too large to prevent 

overfitting. 

The fundamental principle of the algorithm is to iteratively add decision trees and perform 

feature splits, gradually constructing a complete tree. With each tree added, a new 

function is learned to fit the residuals from the previous prediction. After 𝑘 iterations, 

training results is 𝑘 decision trees. To predict the score for a sample, identify the 

corresponding leaf nodes based on the sample's features in each tree, where each leaf 
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node corresponds to a score. The final prediction for the sample is the sum of these 

scores from all 𝑘 trees. 

XGBoost uses regularization to prevent overfitting and improves generalization 

performance. It employs several strategies to prevent overfitting, such as: regularization 

term, shrinkage, and column subsampling. Although the trees are built sequentially, 

nodes at the same level within a tree can be processed in parallel. Specifically, for each 

node, the selection of the best split points and the calculation of candidate split point gains 

are conducted in parallel using multi-threading, which accelerate the training process. 

Moreover, it is designed to handle sparse datasets and missing values, further optimizing 

computational performance. 
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CHAPTER 3 

Data 

Our dataset consisted of 12 variables and over 1,300 rows, containing detailed passenger 

information. This included various attributes such as Age, Sex, Pclass, Fare, and more. 

Table 1 in Section 3.1 provided a comprehensive overview of the dataset, outlining each 

variable and its respective characteristics. This detailed dataset formed the basis for our 

analysis and helped in understanding the factors influencing survival rates. 

3.1 Feature  

Variable Definition Notes 

PassengerID Passenger ID  

Name Name  

Sex Sex Age is fractional if less 

than 1. If the age is 

estimated, is it in the form 

of xx.5 

Survived Survival 0 = No, 1 = Yes 

Age Age in years   
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Pclass Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd 

SibSp Number of siblings / 

spouses aboard the Titanic 

 

Parch Number of parents / 

children aboard the Titanic 

 

Ticket Ticket number   

Fare Passenger fare   

Cabin Cabin number   

Embarked Port of Embarkation  C = Cherbourg, Q = 

Queenstown, S = 

Southampton 

Table 1 Features of Titanic dataset 

3.2 Data Preprocessing 

Initially, there were no duplicate values in the data, but numerous outliers existed. These 

outliers typically represented various extreme cases that fell outside the scope of the 

research and did not contribute to the objectives, so we decided to remove them entirely. 

Additionally, some variables such as Pclass, Age, Sibsp, and Parch had missing values. 

To ensure model consistency in the model, we filled these missing values with the median 

of the respective variables. During the analysis, the Fare variable exhibited severe 

skewness, which could negatively impact the model due to the imbalanced data. 
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Therefore, during the exploratory data analysis (EDA) stage, we performed data 

transformations to make the overall distribution more uniform.  

There were also some variables related to basic passenger information, such as 

Passenger ID, Name, and Ticket. These variables were primarily used for the company's 

data tracking purposes and essentially useless for the model. Furthermore, Cabin and 

Pclass and Fare exhibited some redundancy, so removing them simplified the model 

training process and improved computational efficiency. Finally, before inputting the data 

into our model, we applied dummy encoding to convert all categorical variables into 

numerical variables, which was the required input format for our model. 
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CHAPTER 4 

Exploratory Data Analysis (EDA) 

4.1 Survival Rates Distribution by Numerical Variables 

In the first part of our exploratory data analysis (EDA), we aimed to identify trends 

between continuous variables and survival rates. This involved examining how various 

continuous factors, such as SibSp, Parch, Age, and Fare correlate with the likelihood of 

survival.  By analyzing these relationships, we hoped to uncover patterns and insights 

that might explain differences in survival rates. 

4.1.1 Number of Siblings/Spouses and Survival Rates 

 

Fig 2 Impact of Siblings/Spouses on Survival Rates 
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The plot above showed that the number of siblings/spouses (SibSp) a passenger had on 

board significantly impacted their chance of survival. Passengers traveling alone (SibSp 

= 0) had a survival rate of 34.5%, while those with one sibling/spouse had the highest 

survival rate at 53.4%. However, the survival rates dropped to 46.4% for those with two 

siblings/spouses and fell sharply for those with more than two. 

Several factors explained this trend. Passengers traveling alone or those with fewer family 

members could make quicker and more effective decisions during the evacuation, faced 

fewer coordination challenges, and had better access to lifeboats. In contrast, larger 

families had to manage more complex social dynamics and collective decision-making 

processes, which likely slowed their response and reduced their chances of survival. 

Additionally, the limited lifeboat capacity and the "women and children first" policy often 

meant that large families were separated, further decreasing their survival rates. This 

analysis highlighted the importance of family composition on survival rates and 

underscored the critical role of social dynamics during emergencies. 
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4.1.2 Family Size (Parch) and Survival Rates 

 

 

Fig 3 Impact of family size (Parch) on Survival Rates 

The figure above illustrated that family size, based on the number of parents/children 

(Parch), had a significant impact on survival rates. Small families (Parch = 1 or 2) had 

higher survival chances than single passengers (Parch = 0), medium-sized families 

(Parch = 3 or 4), and large families (Parch = 5 or 6). This advantage likely came from 

better support and coordination among small families, helping them secure lifeboat spots 

more effectively. Single passengers, lacking immediate support, had lower survival 

chances. Medium-sized families exhibited a lot of variation in survival rates, likely due to 

differences in family dynamics and decision-making during the crisis. Large families faced 

significant difficulties because managing more people and the higher risk of separation 
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made survival more challenging. The high standard deviation in survival rates for 

passengers with three parents/children highlighted the crucial role of family cohesion and 

individual actions in such emergencies. 

4.1.3 Age Distribution and Survival Rates 

 

Fig 4 Age distribution by Survival status 

The age distribution of Titanic passengers appeared to follow a tailed, possibly Gaussian 

distribution. There were notable differences between the ages of those who survived and 

those who did not. Young passengers had a noticeable peak in survival rates, while old 

passengers, especially those aged 60-80, had lower survival rates. This suggested that 

although "Age" wasn’t directly correlated with "Survival” overall, certain age groups had 

different chances of survival. Specifically, very young children had a higher chance of 

survival. 
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4.1.4 Age Density Distribution of Survival Status 

 

Fig 5 Age density distribution of Survivors vs. non-Survivors 

When we overlaid the age density distributions of the survivors and non-survivors, a clear 

peak emerged for children aged between 0 and 5 years, indicating they had a significantly 

higher survival rate compared to other age groups. Moreover, the distribution showed that 

older passengers, particularly those aged 60-80, had much lower survival rates, which 

showed that while age in general might not predict survival, specific age groups had 

distinct chances of surviving. Very young children were more likely to survive, whereas 

older adults faced greater challenges. This pattern underscored the importance of 

considering age-specific trends when analyzing the factors that influenced Titanic survival 

rate. 
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4.1.5 Fare Distribution and Survival Rates 

 

Fig 6 Fare distribution 

Looking at the fare distribution, it was highly skewed, indicating an imbalance in the 

dataset. This imbalance could create issues during the modeling process since some 

models were sensitive to such skewed data. To address this, we applied a log 

transformation, which significantly reduced the skewness. The next step was to examine 

how this transformed fare data correlated with the survival rates. 

 

Fig 7 Fare distribution after log transformation 
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We could clearly observe that the skewness of the data is significantly reduced. Our next 

step was to see its correlation with our target variable survival rate.  

4.1.6 Fare and Survival Rates 

 

Fig 8 Fare distribution by Survival status 

The data presented in the figure suggested that the survival rates for individuals who 

purchased expensive tickets remained relatively stable and showed no significant 

variation. In contrast, the survival rates for those who bought cheaper tickets or were in 

the lower class was markedly lower. This significant gap highlighted a clear difference in 

survival chances based on the ticket price. The lower class passengers were at much 

higher risk, indicating the critical role that socioeconomic status played in their chances 

of survival. This pattern clearly demonstrated how financial resources and class 

influenced who survived. 
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4.2 Survival Rates Distribution by Categorical Factors 

4.2.1  Sex and Survival Rats 

 

Fig 9 Impact of Sex on Survival rates 

It was clear from the figure that males had a much lower chance of survival compared to 

females on the Titanic. This suggested that sex played a crucial role in determining who 

survived. For those familiar with the 1997 Titanic movie, the phrase "Women and children 

first" during the evacuation was memorable and highlighted the gender-based survival 

priority at the time, influenced by societal norms and evacuation protocols, resulting in 

higher survival rates for females and underscored the importance of sex as a key factor 

in survival analysis. 
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4.2.2 Pclass and Survival Rates 

 

Fig 10 Impact of Passenger Class (Pclass) on Survival rates 

The survival rates among Titanic passengers also varied significantly across the three 

different classes. First-class passengers had the highest chance of survival, followed by 

second-class passengers, while third-class passengers had the lowest survival rates. 

Several factors contributed to this disparity, such as the location of cabins, access to 

lifeboats, and socioeconomic status. First-class passengers, often located closer to the 

lifeboats and had better access to evacuation routes, leading to quicker and more efficient 

evacuation. In contrast, third-class passengers, who were on the lower decks, 

encountered greater obstacles in reaching safety, such as longer distances and possible 

language barriers. This significant difference in survival rates highlighted the impact of 

socioeconomic status and class on survival outcomes during the Titanic disaster. 
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4.2.3 Embarked and Survival Rates 

 

Fig 11 Impact of Embarked on Survival rates 

The bar chart showed that passengers who boarded at Cherbourg had noticeably higher 

survival rates compared to those who embarked at Southampton and Queenstown. At 

first glance, this difference might seem like a coincidence. However, it deserved further 

investigation to identify any underlying factors that may be contributing to this significant 

gap in survival rates. Understanding why Cherbourg passengers did better could provide 

valuable insights into differences in such as socio-economic status, cabin locations, or 

other variables that might had affected their chances of survival. Therefore, it was crucial 

to investigate this trend further to ensure our analysis accurately reflectd the factors 

influencing survival rates. 
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4.3 EDA Conclusion 

 

Fig 12 Correlation heatmap among the attributable variables 

In conclusion, our analysis indicated that Sex, Pclass, and Fare were the three most 

critical factors influencing survival rates. These features emerged as the most significant 

predictors, displaying a strong correlation with the survival rates. While other features 

such as Age, SibSp, and Parch also played important roles in determining survival rates, 

their impact was relatively less substantial compared to the key factors identified. 

Specifically, Sex was a critical factor, with women having higher survival rates than men. 

Similarly, Pclass revealed a stark contrast in survival chances, with those in higher 

classes faring better than those in lower classes. Lastly, Fare was also linked to survival, 

possibly reflecting underlying socio-economic conditions. Therefore, even though 

acknowledging the significance of various factors, we concluded that Sex, Pclass, and 

Fare were the main determinants of survival rates.  
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CHAPTER 5 

Model 

4.1 Model Evaluation Metrics and Validation 

In our model evaluation process, we prioritized accuracy as the main metric for assessing 

performance. Accuracy measured the proportion of correct predictions out of the total 

number of observations. In our context, the accuracy of predictions was crucial because 

it directly affected human lives. In real-world applications such as healthcare, disaster 

warning systems, and other life safety areas, precise predictions could save lives. Even 

a small improvement of one percent in accuracy could potentially result in more lives 

saved when dealing with large volumes of observations. Therefore, accuracy was our top 

priority when designing and training our models. While accuracy was critical, it was not 

the only evaluation criterion. We also considered other important factors like robustness, 

interpretability and fairness of the model. However, we currently believed that accuracy 

was the most urgent and essential metric because it conducted a direct impact on life and 

death. By continuously improving the accuracy of our models, we could maximize their 

life-saving potential. 

When training machine learning models, it was crucial to partition the dataset correctly 

and used appropriate validation methods to ensure the model performs well on new data. 

Therefore, we split the data into three parts: 70% for training, 20% for testing, and 10% 
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for validation. Overfitting, where a model learned the training data too well and did not 

generalize to new data, was a major challenge. Cross-validation helped us assess how 

well a model would perform on new data and helped prevent overfitting, so we used the 

10-fold cross-validation method. 

In this study, we compared three different machine learning models: XGBoost, Random 

Forest, and AdaBoost. The figure below showed the performance of these models during 

cross-validation. As you could see, the average validation scores of XGBoost and 

Random Forest were relatively close, both around 80%, while the average validation 

score of AdaBoost was slightly lower, at about 78%. 

 

Fig 13 Performance of models during Cross-Validation 
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4.2 Modeling 

To find the optimal parameters for each model, we conducted a full grid search approach. 

This method allowed us to explore a wide range of parameter combinations to determine 

the most effective settings for our models. The tables below detailed the specific 

parameters we tested and the values we found for AdaBoost, Random Forest, and 

XGBoost. 

 

Parameter Value 

base_estimator__criterion ["gini", "entropy"] 

base_estimator__splitter ["best", "random"] 

algorithm ["SAMME","SAMME.R"] 

n_estimators [1,2] 

learning_rate [0.0001, 0.001, 0.01, 0.1] 

Table 2 Grid search results for parameter optimization of AdaBoost 

 

Parameter Value 

max_depth none 

max_features [1, 3, 7, 10] 

min_samples_split [2, 5, 10] 
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min_samples_leaf [1, 3, 7] 

bootstrap [False] 

n_estimators [50, 100, 300] 

criterion [50, 100,300] 

Table 3 Grid search results for parameter optimization of Random Forest 

 

Parameter Value 

max_depth [3, 5, 7] 

learning_rate [0.01, 0.03, 0.1] 

n_estimators [100,200,300] 

Table 4 Grid search results for parameter optimization of XGBoost 

4.3 Model Performance 

Model Accuracy  

AdaBoost 0.8036516853932584 

Random Forest 0.8320480081716036 

XGBoost 0.8286006128702759 

Table 5 Models performance 
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From the results above, we observed that the Random Forest model achieved the highest 

accuracy, coming in at 83.205%. This was followed closely by XGBoost, which attained 

an accuracy of 82.860%. Among the three models we tested, AdaBoost had the lowest 

accuracy, registering at 80.37%. Based on these findings, we decided to select the 

Random Forest model as our final choice. Its superior performance in terms of accuracy 

made it the most reliable option for our predictive analysis, ensuring that we used the 

most effective model for our needs. This decision matched our goal of maximizing 

accuracy and making our final model as robust as possible. 

4.4 Feature Importance 

 

Fig 14 Feature importance analysis of Random Forest for Survival prediction 

After selecting the Random Forest model, we analyzed the feature importance to ensure 

our model not only had high accuracy but also good interpretability. According to the plot, 
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the most crucial factor for predicting survival was Sex, highlighting the common principle 

of "ladies first" in emergencies. The next important factor in our model was the Fare, 

which aligned with our earlier analysis showing that first-class passengers had a higher 

survival rate, likely due to better facilities and easier access to escape routes. The third 

one was the Age, which was closely related to gender, as the elderly and children were 

often typically given priority in emergencies. The fourth key factor was the Pclass, which 

correlated with the Fare and indicated the survival benefits of higher classes. The other 

features had minimal impact on our model and could be considered negligible. 
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CHAPTER 6 

Conclusion 

In this study, we compared three popular machine learning models: XGBoost, Random 

Forest, and AdaBoost, and found that the Random Forest model performed the best. 

Therefore, we recommend employing the Random Forest model to predict survival 

probabilities during rescue operations after disasters. 

In our analysis of feature importance, the variable "Sex" emerged as the most critical 

factor influencing survival rates. This finding strongly reflected the tradition of "women 

first" during emergencies, underscoring a deep sense of compassion and responsibility 

in humanity during crisis. Putting the safety of the most vulnerable first highlighted a noble 

and admirable aspect of human behavior. Recognizing and valuing this tradition was 

essential, as it represented a universal moral standard that ensured the welfare and 

protection of those most in need. We believed that this admirable practice should be 

cherished and upheld across the globe, serving as a guiding principle in emergency 

protocols and humanitarian efforts worldwide. 

Additionally, the “Pclass” was another important feature. First-class passengers typically 

had better access to evacuation routes and escape facilities, giving them a significant 

survival advantage. However, in disasters, the value of human life should not be 

determined by social status or wealth. Every life was equally important. Therefore, we 

recommended that shipping companies and ship designers provided more survival 
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resources to lower-class cabins to ensure that all passengers had an equal chance of 

survival in emergencies. 

In a nutshell, by comparing multiple machine learning models and thoroughly interpreting 

the results, we developed a high-accuracy survival prediction tool. More importantly, we 

had highlighted the need to integrate humanitarian concerns and equality into future ship 

design and disaster response strategies. This approach was not only a technological 

advancement but also a commitment to respecting life and promoting fairness and justice 

in our society. 
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