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Research shows that mitochondrial function and insulin resistance go hand in hand. As 

mitochondrial oxidative capacity is decreased, individuals are more likely to become insulin 

resistant and to develop type 2 diabetes. Exercise is known to increase mitochondrial oxidative 

capacity, helping these individuals enhance their insulin sensitivity. There are many genetic risk 

factors that are known to predispose individuals to type 2 diabetes and other metabolic disorders, 
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some of which may limit the beneficial effects of exercise. I hypothesized that Single Nucleotide 

Polymorphisms (SNPs) associated with high BMI and type 2 diabetes and located in or near 

genes that regulate mitochondrial function will mediate the insulin sensitizing effects of exercise. 
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Introduction  
 

Type 2 diabetes is becoming more prevalent in the United States with more than three 

million people being diagnosed each year. While the exact cause is unknown, insulin resistance 

in insulin target tissues (muscle, adipose and liver) is the primary defect leading to type 2 

diabetes1. Insulin resistance in muscle involves the impaired ability of myocytes to take up 

glucose in response to the hormone insulin1. Since glucose is not readily available in muscles, 

individuals with type 2 diabetes often experience fatigue. Many other symptoms can result from 

this increase in glucose concentration, including neuropathy and vision loss. While the side 

effects of type 2 diabetes are severe, the disease is manageable and if caught early enough, 

preventable1.  

Many Americans each year are diagnosed with prediabetes, a condition characterized by 

higher than normal blood glucose levels (100-125mg/dl) or elevated glycated hemoglobin 

(HbA1c ≥5.7%). These individuals do not tend to display many signs or symptoms. However, 

diagnosis is important during this time as the disease can progress into type 2 diabetes if 

interventions are not made2. Interventions include lifestyle changes, such as weight loss, a 

change to a reduced carbohydrate diet, and increasing physical activity. Prediabetes and type 2 

diabetes are typically associated with poor lifestyle choices including excess calorie 

consumption, high BMI, and physical inactivity. Other factors, including age, race, and family 

history, can also increase a person’s likelihood of developing type 2 diabetes3.  

 Insulin resistance is a systemic disorder in which tissues, including liver, fat, and muscle, 

have reduced ability to respond to insulin3. While insulin resistance is not a diagnostic tool for 

diabetes and prediabetes, it is a characteristic of these disorders. Insulin resistance can be gauged 

by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index.  HOMA 
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-IR factors the relationship between fasting glucose and insulin levels to determine beta cell 

function and insulin sensitivity4. While there is no set HOMA-IR value that defines insulin 

resistance, a HOMA-IR of approximately 2.7 units or higher is where insulin resistance is 

thought to occur. At this cut-point, skeletal muscle and liver cells in an individual are 

significantly limited in their ability to respond to insulin, resulting in a decrease of glucose 

regulation and increased blood glucose levels following meal consumption. Muscle cells then 

shift from using glycolysis as a primary energy source to fatty acid oxidation. This switch results 

in a build-up of fatty acid oxidation by-products in cells, resulting in mitochondrial damage. 

Lipolysis in adipocytes is also increased, resulting in hyperlipidemia, increasing risk of heart 

attack and stroke5. Insulin resistant individuals can regain sensitivity by losing weight and 

increasing physical activity levels3. The molecular mechanisms surrounding these pathways are 

well-known. 

In healthy individuals, insulin binds to the insulin receptor (IR) and induces 

autophosphorylation of the IR and tyrosine phosphorylation of the insulin receptor substrate 

(IRS). This phosphorylation allows for the downstream activation of PI3K, AKT, and their 

corresponding signaling pathways. Activation of these pathways also results in GLUT4 

transporters being translocated to the plasma membrane allowing for uptake of glucose into the 

cell6. Insulin resistant individuals display serine phosphorylation of IRS, limiting tyrosine 

phosphorylation, and therefore activation of downstream pathways. There are many causes of 

this serine phosphorylation, including, but not limited to, increased reactive oxygen species 

(ROS), intracellular stress, inflammation, and circulation of free fatty acids (FFA).  Obese 

individuals have increased FFA levels (known as lipotoxicity) and tumor necrosis factor (TNF-

alpha). TNF alpha is a proinflammatory cytokine found in white adipose tissue. TNF-alpha 
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activates JNK, a serine kinase that results in serine phosphorylation of IRS, preventing tyrosine 

phosphorylation, downstream signaling, and translocation of GLUT4 receptors to the cell 

membrane. As a result, insulin resistant individuals display decreased glucose uptake in skeletal 

muscle7.  

Exercise is an important health-promoting behavior for insulin resistant individuals, as is 

activates GLUT4 translocation to the plasma membrane and increased glucose uptake despite 

defects in the IR pathway. During exercise AMP Kinase (AMPK) is activated when the 

AMP:ATP ratio is elevated. AMPK phosphorylates AS160, a Rab-GTPase, that allows GLUT4 

to be translocated to the cellular membrane, increasing glucose uptake. In insulin resistant 

individuals, this allows for an alternative mechanism for glucose uptake8. AMPK also works to 

improve insulin sensitivity by activating the protein SIRT3, which activates SOD2. SOD2 

eliminates superoxide free radicals, reducing the insulin-desensitizing effects of ROS9. AMPK is 

involved in many other cellular pathways, including the activation of PGC-1a, a transcriptional 

co-activator involved in mitochondrial biogenesis8.  

Mitochondria serve an important role in cellular function, generating ATP as an energy 

source for cellular activities. This occurs through the Krebs cycle, beta oxidation, and the 

electron transport chain. Beta oxidation is the process of converting long chain fatty acids (acyl 

Co-A) to acetyl-CoA, generating co-enzymes that can enter the electron transport chain. The 

electron transport chain then converts these co-enzymes to ATP. During exercise, the AMP:ATP 

ratio increases as ATP is converted to AMP during muscle contraction. In order to accommodate 

increasing energy demands during exercise, mitochondria grow and divide, allowing for 

increased ATP production8. Exercise increases the activity of AMPK, increasing the activity of 

PGC1alpha. PGC1alpha binds to transcription factor NRF-1, resulting in the transcription of 
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mitochondrial transcriptional factor TFAM. TFAM enters the mitochondria increasing 

transcription of mitochondrial genes, allowing for increased biogenesis and oxidative capacity. 

This increase allows for increased rates of fatty acid oxidation without increase ROS levels10.  

In many insulin resistant individuals, exercise allows for increased glucose uptake while 

increasing mitochondrial capacity and reducing ROS. Exercise often allows insulin resistant 

individuals to improve their insulin sensitivity, reducing their risk of diabetes. However, there 

are some individuals that don’t appear to benefit from exercise resulting in impaired sensitivity. 

One speculation is that these individuals suffer from exercise-resistant mitochondrial 

dysfunction. These individuals most likely display decreased mitochondrial oxidative capacity 

and biogenesis that is not improved by exercise. As a result, they display the same lipid and ROS 

accumulation as sedentary insulin resistant individuals and are not able to increase their 

mitochondrial capacity from exercise alone. This increase in ROS results in an increase of serine 

kinase activity, preventing phosphorylation of IRS at the appropriate residues. This allows the 

cycle of insulin resistance to continue11.  

There are several possible causes for this mitochondrial dysfunction including age, 

environment, and genetics. Studies have shown that mutations found in genes that either regulate 

or are directly involved with mitochondrial function result in impaired mitochondrial oxidative 

capacity and biogenesis12. Individuals with these mutations may be more likely to develop 

metabolic disorders such as type 2 diabetes, meaning they are more likely to be insulin resistant. 

It is possible that they will have a more difficult time minimizing the effects of these disorders 

via lifestyle changes than individuals without the mutations12. I propose that physically active 

individuals with mutations in nuclear-encoded mitochondrial genes are more likely to be insulin 

resistant than physically active counterparts that do not have these mutations.  
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Single Nucleotide Polymorphisms (SNPs) are single base pair changes that occur 

throughout the genome. SNPs occur frequently, about every 300 nucleotides, and often serve as 

biological markers for certain diseases. Researchers have been trying to determine associations 

between SNPs and clinical outcomes via Genome Wide Association Studies (GWAS). As a 

result, numerous SNPs in regulatory and coding regions of genes have been identified and 

correlated with particular phenotypes. For this study, SNPs associated with high Body Mass 

Index (BMI) and Waist to Hip Ratio (WHR) were selected from various GWAS reports. These 

criteria were used because insulin resistance is known to be associated with high BMI and WHR. 

I then selected from these a subset of SNPs located in or near nuclear mitochondrial genes. SNPs 

in the mitochondrial genome were not considered as the mitochondrial genome tends to be 

highly conserved, making the frequency of these SNPs lower. I propose that these nuclear 

mitochondrial SNPs mediate the effect of physical activity on insulin resistance in physically 

active insulin resistant individuals (Figure 1). 

 
Figure 1: Mediating Effect of SNPs between Exercise and Insulin Resistance 
Figure showing the hypothesized mediating effect of SNPs in nuclear mitochondrial genes 
between exercise and insulin resistance. 
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Methods  

Study Population 

Participants were selected from the Community of Mine study, grant number 

R01CA179977. Participants were randomly selected from various neighborhoods throughout San 

Diego county, with special effort made to obtain participants from various urban areas. Urban 

areas were broken up by consensus blocks, and no more than 10 participants were selected from 

each block. Participants were given a medical questionnaire asking about personal and familial 

history of diabetes, cancer, heart disease, as well as other metabolic disorders. Demographic 

characteristics were also collected via survey. Activity data was collected from participants via 

hip accelerometer for a minimum of 14 days. The accelerometer was worn for a minimum of 10 

hours per day. Participants were required to attend one clinic visit where blood and urine samples 

were collected. Blood pressure, height, weight, BMI, and waist and hip circumference were also 

recorded during this visit. Two 24-hour food recall surveys were collected, one for a weekend 

and one for a week day. Clinical characteristics for our study population can be seen in Table 2.  

 

Sample Collection  

Participants were required to fast for a minimum of 12 hours prior to their clinic visit 

allowing for a fasting glucose measurement. A 30ml draw of whole blood was collected in an 

EDTA tube. An aliquot of whole blood was reserved and the remainder of the sample was 

centrifuged and stored as buffy coat, plasma, and serum. All samples were then stored in a -80°C 

freezer.  
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Activity  

Physical Activity was measured using a GT3X+ ActiGraph. The device is worn on the 

hip during waking hours. Moderate to Vigorous Physical Activity (MVPA) was determined to be 

1,952 activity counts or higher. This is equivalent to either going for a brisk walk, swim, or bike 

ride. All Physical Activity (PA) was determined to be 700 counts/minute or higher. This would 

include other physical activities not likely to result in an increase of heart rate or energy 

expenditure. Examples could include drinking a glass of water, typing, or washing your hands13. 

Participants will be sorted into two categories, physically active and physically inactive. 

Physically active individuals will be characterized as those meeting the requirement of 150 

minutes of MVPA per week, as per recommendation of The Office of Disease Prevention and 

Health Promotion14.  

 

DNA Isolation 

DNA was isolated from whole blood or buffy coat samples of participants using a Qiagen 

DNeasy blood and tissue kit. Following isolation, the concentration of DNA samples was 

determined using an Invitrogen Qubit dsDNA HS Assay Kit. Samples were then concentrated if 

needed and stored in a -20°C freezer until sequencing.  

 

Genotyping 

Genotyping was done using an Illumina Infinium CoreExome-24 BeadChip. Following 

genotyping, samples were compared to self-report surveys to ensure that samples matched 

participants for gender and ethnicity as described below.  
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Glucose and Insulin Assays  

Fasting glucose for participants was measured using a standard glucose oxidase method 

via a YSI 2900 Bioanalyzer glucose analyzer. Participant plasma samples were thawed and 100ul 

were plated for each measurement. Insulin was measured using a Meso Scale Discovery Multi-

Array Human Insulin Kit (catalog no. K15164C) at the NIH-Funded UC San Diego Clinical and 

Translational Research Institute Biomarker Laboratory. A standard curve generated using 

calibrator allows for measurement. Both assays were run in 96 well plates. Each 96 well plate 

contained multiple replicates of a standardized sample allowing us to ensure uniformity in the 

assay quality between plates.  

 

HOMA-IR Calculation 

Insulin Resistance was determined via HOMA-IR. Insulin resistance for this study was 

defined as a HOMA-IR of 2.7 or higher.  

𝐻𝑂𝑀𝐴 − 𝐼𝑅 =
𝑚𝑔
𝑑𝑙 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 ∗ 	𝑖𝑛𝑠𝑢𝑙𝑖𝑛

𝑚𝑈
𝐿

405  

 

SNP Selection  

SNPs were selected from GWAS reports. All SNPs were associated with either high 

BMI, waist to hip ratio (WHR), or type 2 diabetes. All SNPs had to be located in nuclear genes 

related to mitochondrial function and must have confirmed significance in GWAS reports. The 

index of SNPs used for this study will be referred to as the Mitochondrial and Oxidative 

Capacity Index (MOCI). The SNPs selected were used in a scoring system to determine an 

individual’s genetic predisposition to becoming insulin resistant. Selected SNPs are shown in 
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Table 1. The Illumina chip used for this project only contained 7 of these particular SNPs. As a 

result, only 7 will be included in our current analyses. 

Table 1: MOCI SNP Selection 
Table includes the 25 selected SNPs that contribute to the MOCI Score. Information for each 
individual SNP including RS number, chromosome/position, effect and non-effect alleles, gene,  
and mutation location can be seen below. The 7 SNPs included in this analysis are shown in bold. 

Name Effect 
allele  

Non-
Effect 
allele 

Chr. Position  Gene Location 
of 

Mutation  

Phenotype 

rs4994 C T 8 37,966,820 ABRB3 / 
W64R 

Coding - 
Missense 

BMI16 

rs470117 A G 22 50,571,524 CPT1B Coding - 
Missense 

BMI16 

rs9939609 T A  16 53,786,615 FTO Intron PCr build 
up17 

rs17094222 C T 10 100,635,683 HIF1AN 3' UTR BMI18 

rs1167827 A G 7 75,533,848 HIP1  3'UTR BMI18 

rs758747 T C 16 3,577,357 NLRC3 Intron BMI18 

rs13191362   G A  6 162,612,318 PARK2  Intron BMI18 

rs9400239 T C 6 108,656,460 FOXO3 Intron - 
5'UTR 

BMI18 

rs3849570 T G 3 81,742,961 GBE1  Intron  BMI18 

rs17724992 G A  19 18,344,015 PGPEP1 Intron BMI18 

rs4787491 G A  16 3,004,016 MAP3K 3' UTR BMI18 

rs17203016 G A  2 207,390,794 CREB1 Unknown BMI18 

rs2176040 G A  2 226,228,086 IRS1 Intergenic  BMI18 

rs1385167 G T 2 65,973,514 MEIS1 Intron WHR18 

rs9991328 T C 4 88,791,970 FAM13A Intron WHR18 

rs1776897 A C 6 34,227,234 HMGA1 Intergenic WHR18 

rs17819328 G T 3 12,447,843 PPARG Intron WHR18 

rs2645294 T C 1 119,031,964 WARS2 3' UTR WHR18 

rs714515  G A  1 172,383,850 PIGC Intron WHR18 

rs1800592 G A  4 140,572,807 UCP1 Promoter BMI19 

rs659366 T C 11 73,983,709 UCP2 Promoter BMI19 

rs660339 T C 11 73,978,059 UCP2 Coding - 
Missense 

BMI19 

rs1800849 T C 11 74,009,120 UCP3 5' UTR BMI19 

rs13107325 T C 4 102,267,552 SLC39A8 Coding - 
Missense 

BMI20 

rs11868112 T C 17 80,517,889 RPTOR Unknown Obesity 21 
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Formulation of MOCI Score   

Non-effect alleles are those that are not associated with the listed phenotype, while effect 

alleles are associated with the listed phenotype. Non-effect alleles receive a score of zero. Effect 

alleles as well as other alleles that vary from the non-effect allele will receive a score of one. 

This means that the lowest score a person can have for a particular SNP is zero if they are 

homozygous for the non-effect allele, and the highest would be two if they are homozygous for 

the effect allele. The scores for individual SNPs were totaled, meaning that each SNP shares the 

same weight in the determination on the persons MOCI score. As a result, an individual’s MOCI 

score can range from 0-14.  

 

Quality Control of Genetic Data 

Seven quality control checks were performed prior to genetic association analyses. These 

analyses were conducted at UCSD’s Center for Computational Biology. All analyses were 

conducted using PLINK and following A tutorial on conducting genome‐wide association 

studies: Quality control and statistical analysis15. 

Participants and SNPs with missingness levels greater than 0.02 (2%) were excluded. 

Data was checked for sex discrepancy, reported vs. genotypic sex. Sequencing samples that 

didn’t match were excluded. X-chromosome heterozygosity/homozygosity rates for gender 

determination were examined. Males with a homozygosity estimate of 0.8 or lower and females 

with an estimate of 0.2 or greater were excluded. Minor Allele Frequency (MAF) was 

determined for each SNP and SNPs below the MAF threshold of 0.05 were excluded. Hardy 

Weinberg Equilibrium (HWE) was determined for our population to control for genotyping 

error. SNPs that violated HWE were excluded from future analysis.  Binary traits with a HWE p-
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value less that 1e-10 and quantitative traits with a HWE p-value less that 1e-6 were excluded. 

Heterozygosity in each individual was determined in order to control for potential sample mixing 

and inbreeding. Individuals with heterozygosity rates that were ±3 standard deviation from the 

heterozygosity mean rate were excluded. Relatedness was determined by calculating Identity by 

Descent (IBD) of sample pairs. A pi_hat threshold of 0.2 was set and participants above the 

threshold were removed. This allowed all second-degree relatives to be removed from the study 

accounting for heritability of particular SNPs. Population Stratification was conducted using the 

10 suggested MDS covariates. All individuals who were identified as outliers in our population 

were removed. Individual MDS covariant scores were generated for each participant, one for 

each parameter (C1-C10). These scores will be included in future regressions to further control 

for heritability.  

 

Linear Regression 

Two linear regressions were conducted using the statistical software SPSS to examine the 

effect of each parameter on HOMA-IR. These parameters included age, BMI, reported type 2 

diabetes (either self-reported or reported taking diabetes medications), sex, and the ten MDS 

covariates. Age, BMI, reported diabetes, sex, and MDS covariates (C1-C10) served as predictors 

in both regression analyses. The first linear regression was conducted using HOMA-IR as the 

dependent variable and PA700 as the independent variable. The second linear regression will be 

conducted using HOMA-IR as the dependent variable and MVPA as the independent variable. 

These regressions will determine the significance of these parameters on HOMA-IR alone. 

Significance was defined as p-value £0.05.  
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Mediation Analysis 

 Six mediation analyses were conducted to determine if MOCI mediates the effect of 

physical activity on HOMA-IR. Mediation analyses were conducted using SPSS statistical 

software. Age, BMI, sex, reported diabetes, and the 10 MDS covariates were used as predictors. 

Two mediation analyses were conducted using the entire cohort of 221 individuals. The first 

analysis was to determine if MOCI mediates the effect of PA700 on HOMA-IR. The second was 

to determine if MOCI mediates the effect of MVPA on HOMA-IR. Our next two analyses used 

only the physically inactive subset of participants. We conducted two mediation analyses on this 

population to determine whether MOCI mediates the effect of PA700/MVPA on HOMA-IR. Our 

final two analyses used only the physically active subset of participants to determine if MOCI 

mediates the effect of PA700/MVPA on HOMA-IR. Mediation analyses were considered null if 

confidence intervals included zero. Statistical significance for each model was defined as p£0.05.  
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Results 
 
 Genotyping results were obtained for 417 individuals. The clinical characteristics for our 

cohort can be seen in Table 2. Following data quality control, our population dropped from 417 

to 221 individuals. The bulk of individuals dropped were removed in the population stratification 

step. To account for heritability of particular SNPs and prevent false positives, individuals that 

displayed high levels of genetic diversity were removed. An example of our MDS population 

stratification graph can be seen in Figure 2. Participants that fell outside of the set parameters 

were removed from further analysis. 10 MDS covariates were also generated for each participant 

from the population stratification step and were included in our regression and mediation 

analyses. Clinical characteristics for our updated population can be seen in Table 3.  

Table 2: Clinical Characteristics for Original Study Cohort  
Table showing average clinical characteristics for our study population. Sample size and 
standard deviation are also displayed.  

CLINICAL CHARACTERISTICS  

  n= Mean STD 
AGE (YRS) 417 48.8 10.9 
BMI (kg/m2) 417 28.4 6 
WHR 417 0.92 0.094 
HOMA-IR 416 3.06 3.18 
REPORTED DIABETES  50 - - 
SEX       

FEMALE 231 - - 
MALE  186 - - 

RACE       
ASIAN/ASIAN PACIFIC ISLANDER  12 - - 

BLACK/AFRICAN AMERICAN 9 - - 
MIXED/UNKNOWN 87 - - 

NATIVE AMERICAN  8 - - 
WHITE  301 - - 

MVPA (MIN/DAY) 417 29.3 23.7 
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Figure 2: Sample MDS Population Stratification Plot 
Shows step 1 of our population stratification. Axis consist of MDS coordinates comprised of 
known alleles associated with ethnic origins. Dashed lines represent cut-offs generated in this 
particular step. Legend shows self-reported race/ethnicity for participants.  
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Table 3: Clinical Characteristics for Updated Study Cohort 
Table showing average clinical characteristics for individuals that were included in our 
regression analyses. Sample size and standard deviation for each parameter are displayed below. 

 

CLINICAL CHARACTERISTICS FOR UPDATED STUDY COHORT 

  n= Mean STD 
AGE (YRS) 221 61.5 10.6 
BMI (kg/m2) 221 27.4 5.9 
WHR 221 0.91 0.10 
HOMA-IR 221 2.3 2.1 
REPORTED DIABETES  15 - - 
SEX 

   

FEMALE 116 - - 
MALE  105 - - 

RACE 
   

ASIAN/ASIAN PACIFIC ISLANDER  0 - - 
BLACK/AFRICAN AMERICAN 0 - - 

MIXED/UNKNOWN 5 - - 
NATIVE AMERICAN  1 - - 

WHITE  215 - - 
MVPA (MIN/DAY) 221 22.5 19.9 
PA 700 (MIN/DAY) 221 94.3 45.0 



 

 16 

Genotyping was performed, and a MOCI score between 0 and 14 was determined for each 

participant. The MOCI score distribution for our population can be seen in Figure 3.

 

Figure 3: MOCI Score Distribution 
The normalized distribution of MOCI score for our sample population. 
 
 

Model 1 

Two linear regression analyses were performed, one for PA700 (model 1A) and one for 

MVPA (model 1B). All PA700 included minutes of activity for all accelerometer counts above 

700 and MVPA included minutes of activity for all accelerometer counts above 1,952. These 

analyses included our entire sample population of 221 individuals. The summary for the 

parameters of these regressions can be found in Table 4. Sex, age, BMI, and reported diabetes 

were used as predictors in this model.  
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Table 4: Model Summary for Models 1A and 1B 
Model Summaries showing adjusted R2 values, sample number (n=), independent and 
dependents variables for Models 2A and 2B.  
Model Adj. R2 n= Independent 

Variable 
Dependent 
Variable 

1A 0.344 221 PA700 HOMA-IR 
1B 0.347 221 MVPA HOMA-IR 

 

From the PA700 model (model 1A) we were able to conclude that BMI, sex (female), 

and reported diabetes were significantly associated with increased HOMA-IR (Table 5). We also 

saw that PA700 had a negative correlation with HOMA-IR, meaning that as physical activity 

increased HOMA-IR decreased. However, the R2 value (Table 4) is far from one (0.344) 

meaning that the predictability of this model is low.  

Table 5: Regression Summary for Models 2A and 2B 
Regression summary for Models 2A and 2B showing b coefficients, standard error, and p-values 
for each variable. Asterisks denote significance.  
Variables  Unstandardized 

b 
Std. Error b coefficient p-value 

Model 1A: Linear Regression Using PA700 as Independent Variable  
Sex* -0.645 0.247 -0.152 0.010 
BMI* 0.163 0.031 0.455 0.000 
Reported 
Diabetes* 

1.217 0.457 0.157 0.008 
 

PA 700* -0.001 0.000 -0.136 0.027 
Model 1B: Linear Regression Using MVPA as Independent Variable 
Sex* -0.757 0.251 -0.179 0.003 
BMI* 0.158 0.022 0.441 0.000 
Reported 
Diabetes* 

1.247 0.455 0.161 0.007 
 

MVPA* -0.002 0.001 -0.146 0.018 
 

From the MVPA model (model 1B) we were able to conclude that sex (female), BMI, 

and diabetes were significantly associated with HOMA-IR (Table 5). MVPA had an inverse 

correlation with HOMA-IR. This is similar to what we see in the above model. However, the R2 
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value for this summary is significantly less than one (0.347), meaning its accuracy is relatively 

low. The model summary can be seen in Table 4.  

Mediation analyses were conducted to determine whether MOCI score mediates the 

effect of physical activity on insulin resistance. As above, these analyses were conducted using 

all physical activity (PA700) and then only using MVPA as the dependent variable. The model 

summaries for the mediation analyses are shown in Table 6.  

Table 6: Model Summary for All Mediation Analyses 
Model Summaries showing adjusted R2 values, sample number (n), independent and dependents 
variables, and mediator for all mediation analyses.  
Model R2 n Independent 

Variable 
Dependent/Outcome  
Variable 

Mediator 

Mediation of MOCI Between PA and HOMA-IR in Entire Study Population 
2A 0.4028 221 PA700 HOMA-IR MOCI Score 
2B 0.4036 221 MVPA HOMA-IR MOCI Score 
Mediation of MOCI Between PA and HOMA-IR in Physically Inactive Subset 
3A 0.4369 94 PA700 HOMA-IR MOCI Score 
3B 0.4444 94 MVPA HOMA-IR MOCI Score 
Mediation of MOCI Between PA and HOMA-IR in Physically Active Subset 
4A 0.5025 127 PA700 HOMA-IR MOCI Score 
4B 0.4686 127 MVPA HOMA-IR MOCI Score 

 

Model 2 

The indirect effect of PA700 on HOMA-IR displayed a lower limit confidence interval 

(LLCI) of 0.0000 and an upper limit confidence interval (ULCI) of 0.0003. This tells us that the 

MOCI did not have a mediating effect between PA700 and HOMA-IR. While we did not observe 

that MOCI score mediated the effect of PA on HOMA-IR, it did have a significant effect on 

HOMA-IR. From the continuous regression we observed that MOCI was inversely correlated 

with HOMA-IR. We also saw that PA was inversely correlated with HOMA-IR, while BMI, sex, 

and reported diabetes positively correlated with HOMA-IR. This data can be found in Table 7. 

While the R2 is higher than in models 1A and 1B, it is still quite low. This tells us that this model 
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is not very accurate, but more accurate than our standard linear regressions. The R2 value for 

Model 2A can be found in Table 6.  

Table 7: Regression Summaries for All Mediation Analyses 
Regression summary for all mediation analyses showing b coefficients, standard error, and p-
values for each variable. Asterisks denote significance.  
Independent 
Variables 

b coefficient Std. Error  p-value 

Model 2A – Mediation of MOCI between PA700 and HOMA-IR in All Participants 
PA 700* -0.0010 0.0004 0.0141 
MOCI Score* -0.2071 0.0948 0.0301 
BMI* 0.1636 0.0212 0.0000 
Sex* -0.6220 0.2452 0.0120 
Diabetes* 1.2596 0.4534 0.0060 
Model 2B – Mediation of MOCI between MVPA and HOMA-IR in All Participants 
MVPA* -0.0022 0.0009 0.0122 
MOCI Score* -0.1950 0.0943 0.0400 
BMI* 0.1588 0.0215 0.0000 
Sex* -0.7418 0.2489 0.0032 
Diabetes* 1.2933 0.4524 0.0047 
Model 3A – Mediation of MOCI between PA700 and HOMA-IR in Inactive Participants 
PA 700 -0.0003 0.0013 0.8333 
MOCI Score* -0.5571 0.2197 0.0000 
BMI* 0.1922 0.0436 0.0000 
Sex* -1.5677 0.5124 0.0030 
Diabetes 0.2215 0.8656 0.7987 
Model 3B - Mediation of MOCI between MVPA and HOMA-IR in Inactive Participants 
MVPA -0.0068 0.0065 0.3004 
MOCI Score* -0.5788 0.2177 0.0096 
BMI* 0.1855 0.0436 0.0001 
Sex* -1.6771 0.5156 0.0017 
Diabetes 0.1717 0.8556 0.8415 
Model 4A - Mediation of MOCI between PA700 and HOMA-IR in Active Participants 
PA 700* -0.0012 0.0004 0.0014 
MOCI Score -0.0624 0.0753 0.4092 
BMI* 0.1287 0.0195 0.0000 
Sex -0.1023 0.2113 0.6293 
Diabetes* 1.9895 0.4051 0.0000 
Model 4B - Mediation of MOCI between MVPA and HOMA-IR in Active Participants 
MVPA -0.0014 0.0008 0.0828 
MOCI Score -0.0314 0.0770 0.6837 
BMI* 0.1260 0.0201 0.0000 
Sex -0.2417 0.2142 0.2617 
Diabetes* 2.0637 0.4169 0.0000 
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The mediation analysis using MVPA (model 2B) showed that MOCI does not mediate 

the effect between MVPA and HOMA-IR (LLCI of -0.0002 and ULCI of 0.0004). However, like 

the above model we were able to conclude that the MOCI score inversely correlates with 

HOMA-IR. This linear regression also showed that MVPA inversely correlates with HOMA-IR. 

The MOCI score displays a larger β-coefficient than does MVPA, suggesting that MOCI score 

has a larger effect on HOMA-IR than MVPA. We also observed that BMI, age, and reported 

diabetes are also significant factors positively associated with HOMA-IR. This data can be found 

in Table 7. The R2 value is low, meaning that the accuracy of this model isn’t very high. The R2 

value for model 2B can be found in Table 6.  

For the analysis conducted in models 4 and 5, we divided our population into two groups, 

physically inactive (model 3) and physically active (model 4). Our physically active group 

reached 150 min or more MVPA per week while our physically inactive group did not. We then 

re-ran the mediation analysis separately for each group.  

 

Model 3 

Our physically inactive group included 94 participants. We performed two mediation 

analyses for this group - one testing the mediating the effect of MOCI between PA700 (model 

3A) and HOMA-IR (model 3B) and one testing the mediating the effect of MOCI between 

MVPA and HOMA-IR. The summary for these mediation analyses can be found in Table 6.  

The mediation analysis of MOCI score between PA700 and HOMA-IR showed a LLCI 

of -0.0004 and a ULCI of 0.0014. This tells us that the MOCI score did not have a significant 

mediating effect between PA700 and HOMA-IR. However, MOCI score was inversely 

associated with HOMA-IR. Interestingly, neither PA700 nor reported diabetes were significantly 
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associated with HOMA-IR in this inactive subpopulation. BMI, reported diabetes, and sex still 

had significant effects on predicting HOMA-IR. These results can be found in Table 7. The R2 

for both models 3A and 3B are higher than those in the previous models. The R2 values can be 

found in Table 6.  

Our second mediation analysis (model 3B) examined whether MOCI score mediated the 

effect between MVPA and HOMA-IR in the physically inactive subpopulation. The indirect 

effect of MVPA on HOMA-IR displayed a LLCI of -0.0024 and an ULCI of 0.0075. Thus, 

MOCI score did not display a mediating affect between MVPA and HOMA-IR. Similar to the 

analysis done using PA700, MOCI score showed an inverse association with HOMA-IR using a 

standard continuous regression model. Neither MVPA nor reported diabetes significantly 

correlated with HOMA-IR in this model. BMI and sex are still significantly associated with 

HOMA-IR. This data can be found in Table 7.  

Model 4 

Our final set of mediation analyses was done using the physically active subpopulation 

(met the requirement of 150 min or more of MVPA per week) . This subset included 127 

individuals. The same two mediation analyses that were performed on the physically inactive 

population were performed in this population.  Model 4A used PA700 as the independent 

variable and model 4B used MVPA as the independent variable. A summary for the two analyses 

can be found in Table 6.  

We did not observe that MOCI mediated any effect between PA700 and HOMA-IR in 

this population (LLCI of -0.0001 and an ULCI of 0.0003). Unlike in our physically inactive 

population, MOCI score was not associated with HOMA-IR using our continuous linear 

regression with PA700. This suggests that MOCI does not affect HOMA-IR in our physically 
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active participants. PA700 was inversely correlated with HOMA-IR.  BMI and reported diabetes 

were positively correlated with HOMA-IR. In this regression, sex no longer correlated with 

HOMA-IR. This data can be found in Table 7.  

MOCI score also did not mediate the effect between MVPA and HOMA-IR in our 

physically active population. It also did not have a significant effect in determining HOMA-IR in 

the regression analysis. MVPA showed a negative correlation with HOMA-IR, where as reported 

diabetes and BMI showed a positive correlation. This data can be found in Table 7. Models 4A 

and 4B both display higher R2 values than models 2A and 2B, meaning they are more accurate 

predictors of HOMA-IR. 
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Conclusion 

 MOCI score did not act as a mediator between physical activity and HOMA-IR in any of 

our mediation analyses. Interestingly, in our regression models, we observed that MOCI was 

inversely correlated with HOMA-IR. This was only seen in our analyses conducted with the 

entire population and our inactive subpopulation. In the regression analyses conducted using 

only our physically active population, MOCI was not significantly associated with HOMA-IR. 

This tells us that MOCI score does not appear to have an effect on insulin resistance in our 

physically active population. Our regression analyses conducted in the physically inactive 

population suggests that as MOCI score increases, insulin sensitivity improves. While this is 

opposite of what was predicted, the findings lead me to believe that the MOCI score does 

contribute to insulin sensitivity in some way. It is possible that the particular effect alleles used 

in the analysis may actually have a beneficial effect. This may be why our physically inactive 

participants displayed improved insulin sensitivity with increasing MOCI score. Individuals that 

are meeting the recommended 150 min/wk of MVPA would not display improved insulin 

sensitivity if MOCI is beneficial since they would be benefitting from the effects of exercise.  

 We can also conclude that MOCI score is a better predictor of insulin resistance in 

physically inactive individuals. This model has a higher R2 value than the model using all 

participants, making it more accurate. The model using physically active individuals also has a 

higher R2 value that the model using all participants. Since MOCI was not significantly 

associated with HOMA-IR in this model, we can conclude that MOCI is not a significant 

predictor of insulin resistance in physically active individuals. 

 Another unexpected finding is that light physical activity (PA700) was also inversely 

correlated with HOMA-IR. While it is known that MVPA is associated with improved insulin 
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sensitivity, studies have not shown that light physical activity can improve insulin sensitivity. 

However, in the regression model using only the physically inactive subset, PA700 did not have 

a significant effect on HOMA-IR. This suggests that PA700 may only have an effect in a 

physically active population. MVPA still had a significant effect on insulin sensitivity in the 

physically inactive subset, showing its importance. MVPA did not appear to have a significant 

effect in the physically active subset, suggesting that once the requirement of 150 min/wk of 

MVPA is met, the effect plateaus.  

 There were several limitations to this study. The most significant one being small sample 

size of not only our population but for our SNP index as well. We plan to conduct further studies 

using all of the 25 SNPs that had been identified for the MOCI score, following imputation of 

our genotype data with the 1000 Genomes database. We also plan to conduct more analyses 

using the entire sample population, including the individuals that were removed as a result of 

population stratification. Another limitation is that we only looked at the effect of the SNPs 

collectively instead of individually. It is possible that particular SNPs have a larger effect than 

others, or possibly having effects in opposite directions. As a result, our additive scoring system 

may not be very accurate. We will re-run the analysis for each SNP individually to which SNPs 

have a significant effect and determine the individual effect size of those SNPs.   

Another limitation is that we cannot measure mitochondrial function. If we were to see a 

correlation between MOCI score and insulin resistance, there is no way to definitively conclude 

that this effect if the result of mitochondrial dysfunction. Our final limitation is that we did not 

incorporate dietary intake information for participants. Since we were unable to control for diet, 

we cannot make conclusions about the effects of physical activity or genetics on insulin 

resistance alone. It is possible that our physically active individuals that are insulin resistance 
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could have poor diet quality.  Since diet is a major contributing factor to insulin resistance, this 

could be the main cause instead of genetics.  

 This study has helped set up a larger study that will be utilizing all 25 SNPs seen above. 

Our lab plans on further investigating the effects of these SNPs as well as conducting further 

research into the literature to examine the functional roles of these genes, as well as potential 

effect sizes.  While we were not able to determine that MOCI score mediated the effect of 

exercise on insulin resistance, we were able to conclude that MOCI score significantly 

contributed to insulin sensitivity in our physically inactive subset.   
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