
UC San Diego
UC San Diego Previously Published Works

Title
Repeated monitoring of corneal nerves by confocal microscopy as an index of peripheral 
neuropathy in type‐1 diabetic rodents and the effects of topical insulin

Permalink
https://escholarship.org/uc/item/8xc448ct

Journal
Journal of the Peripheral Nervous System, 18(4)

ISSN
1085-9489

Authors
Chen, Debbie K
Frizzi, Katie E
Guernsey, Lucie S
et al.

Publication Date
2013-12-01

DOI
10.1111/jns5.12044
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xc448ct
https://escholarship.org/uc/item/8xc448ct#author
https://escholarship.org
http://www.cdlib.org/


Repeated monitoring of corneal nerves by confocal microscopy
as an index of peripheral neuropathy in type-1 diabetic rodents
and the effects of topical insulin

Debbie K. Chen, Katie E. Frizzi, Lucie S. Guernsey, Kelsey Ladt, Andrew P. Mizisin, and
Nigel A. Calcutt
Department of Pathology, University of California, San Diego School of Medicine, La Jolla, CA,
USA

Abstract
We developed a reliable imaging and quantitative analysis method for in vivo corneal confocal
microscopy in rodents and used it to determine whether models of type-1 diabetes replicate the
depletion of corneal nerves reported in diabetic patients. Quantification was reproducible between
observers and stable across repeated time points in two rat strains. Longitudinal studies were
performed in normal and streptozotocin-diabetic rats, with innervation of plantar paw skin
quantified using standard histological methods after 40 weeks of diabetes. Diabetic rats showed an
initial increase, then a gradual reduction in occupancy of nerves in the sub-basal plexus so that
values were significantly lower at week 40 (68±6%) than age-matched controls (80±2%). No
significant loss of stromal or intra-epidermal nerves was detected. In a separate study, insulin was
applied daily to the eye of control and streptozotocin-diabetic mice and this treatment prevented
depletion of nerves of the sub-basal plexus. Longitudinal studies are viable in rodents using
corneal confocal microscopy and depletion of distal corneal nerves precedes detectable loss of
epidermal nerves in the foot, suggesting that diabetic neuropathy is not length dependent. Loss of
insulin-derived neurotrophic support may contribute to the pathogenesis of corneal nerve depletion
in type 1 diabetes.

Keywords
diabetic neuropathy; distal neuropathy; insulin therapy; in vivo corneal confocal microscopy;
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Introduction
Corneal confocal microscopy (CCM) has been widely used to characterize the anatomy of
corneal nerves (Labbe et al., 2006; Esquenazi et al., 2007; Stachs et al., 2007; Mathew et
al., 2008; Marfurt et al., 2010). The capacity to perform repeated measurements without
tissue removal or damage is valuable for monitoring progress after laser in-situ
keratomileusis (LASIK) procedures (Moilanen et al., 2008; Kymionis et al., 2009) and a
variety of conditions such as keratoconus (Hollingsworth et al., 2005) and complications of
keratosmileusis (Pisella et al., 2001; Kymionis et al., 2009).
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There is growing interest in the use of CCM to measure innervation of the cornea as a non-
invasive index of peripheral neuropathies (Ferrari et al., 2010; Tavakoli et al., 2010b),
including diabetic neuropathy (Rosenberg et al., 2000; Chang et al., 2006; Midena et al.,
2006; Hertz et al., 2011). Changes in corneal nerve morphology are sufficiently sensitive to
identify patients with mild neuropathy, as indicated by symptoms, electrophysiology and
skin biopsy (Quattrini et al., 2007) and to detect efficacy of intervention by pancreatic
transplantation (Mehra et al., 2007;Tavakoli et al. 2013). CCM has also been used to study
corneal anatomy in assorted animals (Kafarnik et al., 2007; 2008, Reichard et al., 2010).
Establishing the presence and natural history of corneal nerve damage in models of diabetes
and the relative sensitivity of this technique compared to other widely used indices of
diabetic neuropathy may reveal a clinically relevant target for mechanistic and therapeutic
preclinical studies and compliment the continuing development of CCM as an index of
peripheral neuropathy.

The application of CCM to longitudinal studies of disease progression requires rigorous
image collection protocols to obviate observer bias or data variability arising from the
marked differences in corneal nerve anatomy at different locations (Dvorscak and Marfurt,
2008; Patel et al., 2009). The purpose of our study was to develop a reproducible method
for quantifying corneal nerves of rodents using CCM, to establish the relative sensitivity of
corneal nerve density as measured by CCM versus other indices of neuropathy in rodent
models of type-1 diabetes and to determine whether corneal nerve depletion in type 1
diabetes is related to insulin deficiency.

Materials and Methods
Animals

All animal protocols were approved by the Institutional Animal Care and Use Committee
(IACUC) of University of California, San Diego. In order to assess assay reproducibility and
establish any between-strain differences, 9 female albino Sprague-Dawley rats (245-295 g)
and 8 age-matched female, pigmented Long-Evans rats (260-289 g) were monitored every 4
weeks for 3 months. Female Sprague-Dawley rats (221-253 g) were then used for a
longitudinal study of the impact of type-1 diabetes on corneal nerves while female Swiss
Webster mice (25-30 g) were used to assess impact of topical insulin to the eye. Rats were
made diabetic with a single dose of streptozotocin (STZ: 55 mg/kg i.p.) (Calcutt, 2004).
Mice were made diabetic by injection of STZ (90 mg/kg, i.p.) on two consecutive days
(Davidson et al., 2009). Blood glucose levels were measured 4 days after injection of STZ
and animals with blood glucose levels of >15 mmol/l were considered diabetic. Age-
matched animals served as controls. For insulin treatment, 0.1 IU of regular U-100 Humulin
(Lilly, Indianapolis, IN) in 10 μl saline (Guo et al., 2011) was applied directly on the eye of
8 control and 8 diabetic mice daily for 4 weeks and corneal nerve occupancy compared to
control and diabetic mice receiving saline treatments.

Plasma insulin, blood glucose and HbA1c
Blood was collected from the tail by venipuncture and glucose concentration measured
using the OneTouch ultra mini system (LifeScan, Inc., Milipitas, CA, USA). Blood was
centrifuged and 50 μl of plasma used to measure insulin concentration by ELISA
(Ultrasensitive Rat Insulin kit, Mercodia, Uppsala, Sweden). HbA1c was measured using the
A1CNow system (Bayer, Sunnyvale, CA, USA).

Animal imaging platform
A small animal platform (Fig. 1) was developed for use with the Heidelberg Retina
Tomograph 3 with Rostock Cornea Module (Heidelberg Engineering, Heidelberg,
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Germany). The chin rest was removed and the animal platform placed on the chin rest
attachment of the microscope. The imaging platform consists of a base platform supporting
two independent moving parts: a) nose cone for the continuous application of isoflurane
anesthesia and b) body platform with Velcro straps for body and head restraint. The relative
distance between nose cone and body platform can be adjusted for different sized animals. A
small attachment to the body platform raises the head for additional adjustment for optimal
imaging of the cornea. The base platform can swivel to orientate the animal such that the
laser light enters perpendicular to the corneal surface at the apex. The entire platform can be
removed, turned 180° and placed back on the chin rest attachment to image both eyes.

Imaging procedures
Under isoflurane (2% in oxygen) anesthesia, rats or mice were placed on the imaging
platform and secured with body and head straps such that the eyes were open and one eye
was facing the objective of the CCM. GenTeal gel (Novartis Pharmaceuticals Corp., East
Hanover, NJ, USA) was placed on both eyes for laser light coupling and to prevent the eye
from drying. The microscope objective was positioned to the center apex of the cornea using
the laser reflection on the eye and real-time images. By using the objective focus, depth was
set to zero at the internal reflection of the tomocap, being careful not to position the
objective such that the pressure from the tomocap begins to wrinkle the corneal surface
(Kobayashi et al., 2006). The depth was adjusted to 15 μm and one volume stack of 40
images (384× 384 pixels, 1 μm lateral resolution) was collected. Under the volume scan
option, the microscope automatically refocuses 10 μm superficial to the set depth and
collects volumes up to 80 μm in depth (2 μm depth resolution), resulting in a volume stack
from approximately 5-80 μm. Images were collected every 4 weeks and nerve occupancy in
the sub-basal plexus and stromal layers of the cornea quantified using a custom designed
graphical user interface developed from MATLAB (Natick, MA, USA).

Image analysis and quantification
We defined the progression from sub-basal plexus to stromal layers by the disappearance of
the fine, linear corneal nerves of the sub-basal plexus and the highly reflective background
along with the appearance of bright keratocytes and large nerve fibers on a dark background
(Labbe et al., 2006). Once the sub-basal:stromal junction was determined, inter-animal
concordance was achieved using the last image of the sub-basal plexus and the first image of
the stroma as fixed anatomical points. Each image was viewed by eye and nerves traced
using a WACOM Bamboo tablet (Saitama, Japan) in Image J (NIH) software. Composite
images were made by layering all images from sub-basal plexus using Adobe PhotoShop
(San Jose, CA), with color-coding of the traces from each image (Fig. 2).

In the absence of continuous images of nerves in the sub-basal plexus, even after stacking in
a volume scan, we developed an alternative quantification system based on occupancy. Each
image of a volume scan was loaded into MATLAB and a 5×5 grid overlaid for a total of 25
possible occupancies per image. In preliminary modeling studies, we compared 3×3, 5×5,
8×8 and 10×10 grids (data not shown). If a nerve was observed anywhere inside a box, that
box was counted as occupied (Fig. 2). For each image, the number of boxes in the grid
containing one or more nerves was counted. Nerve occupancy was calculated for both the
sub-basal plexus and stromal layers of the cornea. Equation 1 shows the formula for
calculating % nerve occupancy per layer, per animal:

(Eq.

1).
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Average nerve occupancy was measured at each image depth and then organized by distance
from the sub-basal plexus:stromal junction. Volume average analysis was conducted by
calculating the average nerve occupancy of the entire volume of sub-basal plexus or stromal
layers.

Epidermal nerves
Hind paw skin (plantar surface) was fixed overnight at 4°C in 4% paraformaldehyde in 0.1
M sodium phosphate buffer. The skin was processed, hemisectioned and embedded in
paraffin. Sections were cut at a thickness of 6 μm and collected onto glass slides then treated
with 3% hydrogen peroxide for 15 minutes followed by normal goat serum (Vectastain
Rabbit IgG ABC Kit, Vector Laboratories #PK4001, Burlingame, CA) for 30 minutes.
Sections were incubated in a primary antibody against rabbit anti-human Protein Gene
Product 9.5 (PGP9.5) (1:1000; AbD Serotec #7863-0504, Raleigh, NC) overnight at 4°C.
They were then washed and incubated with biotinylated goat anti-rabbit secondary antibody
(Vectastain ABC Kit) for 1 hour, followed by a wash and incubation with an avidin-biotin
complex solution (Vectastain ABC Kit) for an additional 1 hour. The reaction product was
demonstrated by NovaRed staining (NovaRed Peroxidase Substrate Kit, Vector Laboratories
#SK4800). Gill’s hematoxylin was used as a counterstain. Skin was viewed using a light
microscope and the number of nerve profiles of intra-epidermal nerve fibers (IENFs) and
sub-epidermal nerve plexi (SNP) counted and quantified per unit length of the
dermal:epidermal junction in the section (Beiswenger et al., 2008b).

Results
Imaging platform performance, image quantification, inter-observer variability and strain
dependence

The imaging platform was able to successfully restrain and provide continuous isoflurane
anesthesia during image collection with repositioning and re-collecting the images being
occasionally necessary. Images (384 × 384 pixels) were collected, with each representing a
400 × 400 μm area of the cornea. Image collection (one volume stack of 40 images) took
approximately 2 minutes per animal. Nerves were visible in both the sub-basal region and
the stroma but were not continuous, even after tracing and stacking consecutive images (Fig.
2). This prevented accurate measurement of nerve length, density, branching or tortuosity as
used in human studies, and prompted us to calculate nerve occupancy as an alternative.
Inter-observer variability was studied using 3 independent observers trained according to a
standard operating protocol and who counted sub-basal plexus nerve occupancy using
volume stacks from 10 Sprague-Dawley rats. Observers were allowed to make the decision
to exclude images deemed uncountable because of excessive leukocyte infiltration or
brightness of background. There were no significant between-observer differences in
measured occupancy (79.5±2.4%, vs 80.1± 3.9% vs 76.6± 4.3%: mean ± SEM). Nerve
occupancy in the sub-basal plexus and stroma did not vary within or between rat strains
when measured monthly from 23-31 weeks of age by a single observer (Fig. 3).

Corneal and epidermal nerves in long-term diabetic rats
Hyperglycemia was evident 3 days after STZ administration (24.5 ± 1.5 mmol/L) and was
sustained (29.0 ± 1.1 mmol/L) compared to controls (5.5 ± 0.1 mmol/L). Body weight,
HbA1c and plasma insulin of diabetic rats were all significantly (p<0.05, unpaired t-test)
different from that of controls at the mid-point (weeks 16 or 24) and end (week 40) of the
study, indicating sustained diabetes (Table 1). Nerve occupancy in the sub-basal plexus and
stroma of control rats was consistent throughout the study (Fig. 4). Diabetes caused a
transient increase in nerve occupancy within the sub-basal plexus during weeks 8-16, that
receded to become a significant decrease from week 32 onwards (Fig. 4a). Nerve occupancy
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in the stroma was not significantly altered by diabetes (Fig. 4b). There was no significant
difference in IENF or SNP values in paw skin between control and diabetic rats at week 40
(Fig. 5).

Corneal nerves in diabetic mice and effects of topical insulin
STZ-treated mice showed significant hyperglycemia (30.6 ± 1.2 mmol/L) compared to
controls (8.6 ± 0.5 mmol/L: p<0.001). Delivery of insulin (0.1-1.0 IU) to the eye did not
acutely alter blood glucose levels of control or diabetic mice (Fig. 6A). Topical insulin
treatment to the eye (0.1 IU daily) for 4 weeks did not change nerve occupancy in the sub-
basal plexus of control mice (saline: 28.9 ± 1.7%, insulin: 29.0 ± 2.9%: Fig. 6B). Diabetic
mice receiving saline treatment showed a significant decrease in nerve occupancy in the sub-
basal plexus (22.2 ± 3.5, p<0.05) compared to control animals and this was prevented in
insulin treated diabetic mice (29.0 ± 1.7%).

Discussion
We successfully adapted the Heidelberg HRT corneal confocal microscope for use in rats
and mice. Images were collected from the entire volume stack of 80 μm depth from the
epithelial layer to the anterior stroma. The epithelial layer contained hexagonal cells with
dark borders and bright cytoplasm in the superficial epithelium and bright borders and dark
cytoplasm in the basal epithelium (Guthoff et al., 2006). The appearance of small, linearly
directed nerve fibers traversing a bright, reflective background lacking epithelial cells or
keratocytes indicated the sub-basal nerve plexus immediately above Bowman’s layer. Two
studies reported an absence of Bowman’s layer in rats (Jakus, 1954; Davson, 1984).
However, recent technical advances have increased resolution and we routinely detected
nerves across 4-5 consecutive images in healthy rats and mice. Mice exhibited lower nerve
occupancy than rats in this region, which may reflect detection limits of the finer nerves in
mice. Progression to the anterior stroma was indicated by emergence of keratocytes and
large, highly reflective and randomly directed stromal nerves on a dark background. This
transition was used as an anatomic reference point for aligning volume stack data from
individual animals into a group analysis.

Nerves of the sub-basal plexus have the typical linear appearance noted in prior qualitative
studies (Labbe et al., 2006; Esquenazi et al., 2007). However, unlike published images from
humans using this particular corneal confocal microscope (Efron et al., 2010), nerves in the
sub-basal plexus were not continuous but moved in and out of plane of section. Stacking
consecutive images did not provide a complete view of individual nerves, presumably
because these fine nerves cannot be resolved when in the plane between adjacent images, 2
μm apart. This prevented accurate use of measures such as nerve length, branching or
tortuosity that are commonly used in clinical studies (Quattrini et al., 2007; Tavakoli et al.,
2010b). We therefore developed a method in which the apical corneal volume from the
corneal epithelia through to the anterior stroma was sampled in 2 μm sections to obviate
image selection bias and then applied a simple yes/no grid occupancy system to allow rapid
quantitative analysis of nerve fragments. This is analogous to the profile counting technique
used to quantify terminal branches of IENF in skin biopsies (Beiswenger et al., 2008b).
Another novel feature of our analysis is the collection and quantification of serial, rather
than random or selected images. Most human studies collect and assay representative images
rather than all layers of the volume stack. In order to test our training and operating
procedures, three observers were trained to count images and produced data that agreed
closely. The advantages of the occupancy system applied across all images of a volume
stack include an unbiased image collection method and the ease of use and reproducibility of
the yes/no quantification method. Sensitivity of the method is related to the size of the grid.
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Smaller grid sizes increase sensitivity but can also increase difficulty in making accurate
decisions due to the fixed magnification of the CCM. Careful consideration of sensitivity
requirements should therefore be considered for each study.

We first demonstrated the stability of iterative measurements of nerve occupancy by
collecting images from the cornea of two rat strains at monthly intervals for 3 months.
Previous studies have demonstrated strain differences in retinopathy (Dorfman et al., 2009;
Kirwin et al., 2009; Kern et al., 2010) and there are deficiencies in the visual acuity of
albino rats compared to pigmented rats (Grant et al., 2001; Prusky et al., 2002). We found
no differences between healthy pigmented and non-pigmented rats at any point across the
12-week study period. Our results also show that calculating nerve occupancy from CCM
images can provide reliable iterative measurements in rodents.

One application of quantitative and iterative CCM in rodents is to allow evaluation of their
pertinence as models of chronic neurodegenerative disease. Changes in corneal nerve
architecture detected by CCM have been proposed as biomarkers of peripheral neuropathy
in diabetic patients (Quattrini et al., 2007). We therefore performed a longitudinal study of
corneal nerve occupancy in a rat model of type 1 diabetes. Nerve occupancy was initially
increased in the sub-basal plexus after 8 and 16 weeks of diabetes while nerve occupancy in
the stromal layer was unchanged, suggesting a phenomenon specific to distal regions of the
axon. Increased nerve occupancy could arise from either increased nerve tortuosity, as
reported in some patients showing impaired glucose tolerance (Tavakoli et al., 2010b), or
collateral sprouting. While we are not aware of prior reports using CCM in type 1 diabetic
rats that could guide our interpretation of this increase in occupancy, there is precedence in
other sensory nerve terminals, as type 1 diabetes caused an early and transient increase in
density of IENF in foot pad skin of mice (Beiswenger et al., 2008a). This increase in nerve
density was accompanied by an increase in the number of axons expressing Growth
Associated Protein (GAP) 43, a marker of growing or regenerating axons. The presence of
GAP-43 in epidermal sensory nerve terminals of normal rodents (Beiswenger et al., 2008a;
Cheng et al., 2010) and humans (Fantini and Johansson, 1992; Bursova et al., 2012) has
been interpreted as evidence for continuous terminal plasticity and remodeling. Whether
corneal sensory nerves share this apparently dynamic phenotype remains to be established.

Continued monitoring of corneal nerves demonstrated that the initial increase in occupancy
in the sub-basal plexus of diabetic rats eventually progressed to a sustained decrease in
occupancy. This is consistent with reports of reduced corneal nerve length in cross sectional
clinical studies using CCM in type 1 diabetic patients (Quattrini et al., 2007; Pritchard et
al., 2011; Tavakoli et al., 2011b) and a rat model of type-2 diabetes (Davidson et al.,
2012a). The progression from increased to decreased corneal nerve occupancy also has
precedence in the increase, then eventual decrease, in IENF density seen in paw skin from
STZ-diabetic mice (Beiswenger et al., 2008a), although the rate of progression was much
faster in the mice. The slower progression in the present study could reflect differences in
species, nerve location or the underlying pathogenic mechanism. However, it should also be
noted that the present cohort showed a relatively mild degree of diabetes as they did not lose
weight over time and had detectable residual plasma insulin levels. STZ-induced diabetes is
occasionally criticized for the severity of insulinopenia and rapid onset of nerve dysfunction
compared to human type 1 diabetes. We have fortuitously studied a physiologically stable
cohort of diabetic rats that highlights the pertinence of corneal nerve depletion as an index of
early neuropathy and its potential as a tool for evaluating efficacy of potential therapeutic
agents in an assay that replicates a clinical condition.

Nerve occupancy remained normal in the stroma of diabetic rats suggesting a distal
axonopathy, as indicated by other measures of diabetic polyneuropathy (Sima et al., 1983;
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Fernandez et al., 2012; Hoke, 2012), including a recent histological evaluation of corneal
innervation in 8-week STZ-diabetic rats that showed depletion of nerves in the epithelium
before any effect on the sub-basal plexus (Davidson et al., 2012b). In the present study, the
decrease in the nerves of the sub-basal plexus occurred in the absence of any detectable loss
in paw skin IENF measurements from the same animals. Our assay is sensitive enough to
detect IENF loss after 4 weeks in severely STZ-diabetic mice (Beiswenger et al., 2008a) and
after 20 weeks in other STZ-diabetic rats (Roy Chowdhury et al., 2012). The absence of
IENF depletion in the present cohort of STZ-diabetic rats emphasizes their mild neuropathy
phenotype. It also suggests that corneal nerve occupancy provides a particularly sensitive
marker of neuropathy and argues against the concept that susceptibility to distal neuropathy
is confined to long nerves. Similar interpretations can be drawn from clinical studies in
which reduced corneal nerve length was as sensitive as IENF depletion as a marker of mild
diabetic neuropathy (Quattrini et al., 2007; Tavakoli et al., 2010a).

Reduced occupancy in the sub-basal nerve plexus of type 1 diabetic rodents could feasibly
arise from hyperglycemia, dyslipidemia or other downstream consequences of impaired
insulin signaling. Depletion of neurotrophic support has been frequently implicated in the
pathogenesis of diabetic neuropathy and NGF deficient mice have reduced corneal
innervation (de Castro et al., 1998). Our finding that topical delivery of insulin to the eye of
diabetic mice prevented reduced nerve occupancy in the sub-basal plexus, without any
effects on systemic glycemic control, suggests that insulinopenia per se may contribute or
that local insulin can compensate for other lesions. There is emerging interest in the role of
deficient insulin signaling arising from either reduced insulin production or receptor
dysfunction in the pathogenesis of diabetic neuropathy, independent of glucose modulation.
Insulin serves as a growth factor for peripheral sensory nerves (Fernyhough et al., 1993; Xu
et al., 2004; Toth et al., 2006), preserves mitochondrial function in sensory nerves from
diabetic rats (Huang et al., 2003) and protects against assorted indices of neuropathy
(Singhal et al., 1997; Huang et al., 2003; Brussee et al., 2004; Hoybergs and Meert. 2007;
Jolivalt et al., 2008; Romanovsky et al., 2010), including IENF depletion (Toth et al., 2006;
Guo et al., 2011). Interestingly, the environment surrounding distal corneal nerves is similar
to that of sensory nerves in the epidermis, in that both regions rely in part on oxygen
diffusion from the exterior and nerves receive support from local cells via diverse factors
including neurotrophin family members, CNTF, BDNF and IGF-1 (Muller et al., 2003;
Calcutt et al., 2008). Whether depletion of corneal nerves during long-term diabetes shares
the same pathogenesis as other regions of the PNS remains to be investigated.

This study has shown that volume-scanning CCM with quantification of nerve occupancy
can be used to continuously monitor nerves in a long-term disease such as diabetes. The
technique is robust and can detect time-dependent increases and subsequent decreases in
nerve occupancy. STZ-diabetic rodents model the nerve damage reported in the cornea of
diabetic patients and may be useful for investigating the pathogenesis of neuropathy and
evaluation of potential therapeutic interventions to restore established neuropathy by
systemic or topical delivery.
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Figure 1.
Custom animal imaging platform developed for use in conjunction with the Heidelberg
Retina Tomograph 3 with Rostock Cornea Module.
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Figure 2.
A sequence of images, 2 μm apart, spanning the sub-basal nerve plexus. Visible sub-basal
(thin colored lines) and stromal (thick colored lines) nerves are traced in each layer (A-E). A
representative 5×5 grid is overlaid on image E to demonstrate quantification of nerve
occupancy. The composite tracing of 5 layers is shown in (F), with each layer shown in a
different color.
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Figure 3.
Nerve occupancy (%) in the sub-basal plexus and stroma of Sprague-Dawley (N=9) and
Long-Evans (N=8) rats. Data points represent group mean ± SEM.
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Figure 4.
Volume averaged nerve occupancy (%) of the sub-basal plexus (a) and the stroma (b). Data
are group mean ± SEM. In the sub-basal plexus, 2-way ANOVA indicates that groups are
significantly different (p<0.05), time course is significantly different (p<0.001) and the
interaction is significantly different (p<0.01).
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Figure 5.
a) A representative image of foot skin where black arrows indicate IENF and red arrows
indicate SNP. b) Quantification of IENF profiles/mm at week 40. Data are group mean ±
SEM. Bar = 20 μm.
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Figure 6.
Effect of topical insulin delivery to the eye on systemic blood glucose levels (a) and of
chronic insulin delivery on nerve occupancy in the sub-basal plexus after 4 weeks of
diabetes (b). N=8 per group. Data are group mean ± SEM. *p<0.05 by ANOVA with
Student Newman Keuls post-hoc test.
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Table 1

Physiological parameters during diabetes in streptozotocin-injected rats.

Onset Mid-point End-point

Control
(n=10)

Diabetic
(n=10)

Control
(n=10)

Diabetic
(n=10)

Control
(n=10)

Diabetic
(n=8)

weight (g) 234 ± 2 235 ± 2 294 ± 3 257 ± 9** 316 ± 3 262 ± 15**

HbA1c (%) -- -- 4.2 ± 0.1 10.2 ± 0.4*** 4.2 ± 0.1 9.3 ± 0.9***

plasma
insulin (μg/l)

-- -- 0.73 ± 0.17 0.23 ± 0.1*** 0.78 ± 0.11 0.11 ± 0.04*

Body weight and plasma insulin were measured at weeks 16 and 40, while HbA1c was measured at weeks 24 and 40. Data are group mean±SEM.
Unpaired t-test was used to test significance,

*
=p<0.05,

**
=p<0.01,

***
=p<0.001.
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