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We introduce a variational algorithm to estimate the likelihood of a rare event within a nonequilibrium molecular

dynamics simulation through the evaluation of an optimal control force. Optimization of a control force within a

chosen basis is made possible by explicit forms for the gradients of a cost function in terms of the susceptibility

of driven trajectories to changes in variational parameters. We consider probabilities of time-integrated dynamical

observables as characterized by their large deviation functions, and find that in many cases the variational estimate

is quantitatively accurate. Additionally, we provide expressions to exactly correct the variational estimate that can be

evaluated directly. We benchmark this algorithm against the numerically exact solution of a model of a driven particle in

a periodic potential, where the control force can be represented with a complete basis. We then demonstrate the utility

of the algorithm in a model of repulsive particles on a line, which undergo a dynamical phase transition, resulting

in singular changes to the form of the optimal control force. In both systems, we find fast convergence and are able

to evaluate large deviation functions with significant increases in statistical efficiency over alternative Monte Carlo

approaches.

I. INTRODUCTION

A system kept away from thermal equilibrium by a con-

tinuous supply of energy is subject to fewer physical con-

straints than one evolving within an equilibrium state. As a

consequence, the application of external forces or the internal

consumption of energy can produce structures and responses

without equilibrium equivalent.1–3 Advances in the theory and

modeling of nonequilibrium steady-states4–6 have resulted in

an increased interest in trying to understand the behavior in

systems out of equilibrium and leverage their versatility to

design new functional materials.7–13 However, quantifying

emergent nonequilibrium behavior with computer simulations

is currently hampered by the lack of robust tools to sample the

rare fluctuations required to estimate response functions, over-

come kinetic bottlenecks, and reach the timescales of exper-

imental relevance. For a generic class of stochastic systems

that violate detailed balance, we have developed an algorithm

to compute control forces that can be used to enhance the sam-

pling of nonequilibrium steady-states. The control forces we

optimize are variational, as are the estimates they provide of

the likelihood of a rare fluctuation as characterized by large

deviation functions. In two paradigmatic models of nonequi-

librium systems, we demonstrate that estimating large devi-

ation functions in this way is both accurate and statistically

efficient.

Enhanced sampling methods within equilibrium ensembles

are standard tools that enable the determination of phase dia-

grams and the calculation of rates of rare events, through the

evaluation of equilibrium free energies.14 Free energies char-

acterize the likelihood of configurational fluctuations around

an equilibrium state, and the analogous quantity for fluc-

tuations of time integrated observables around nonequilib-

rium steady-states are large deviation functions.5,15,16 Large

deviation functions have been used to map regions of sta-

bility for nonequilibrium phases,17,18 to elucidate complex

dynamical behavior19–23 and infer nonlinear and multivari-

ate response.24–27 Methods to compute large deviation func-

tions in systems with many degrees of freedom have largely

been restricted to Monte Carlo based approaches, includ-

ing cloning,28,29 Forward Flux Sampling,30,31, nonequilib-

rium umbrella sampling,32 list-based algorithms33 and Tran-

sition Path Sampling.34,35 Most current algorithms scale ex-

ponentially in computational effort the further the rare fluc-

tuation is from the mean behavior, as apart from stratifi-

cation or population dynamics, most do not employ addi-

tional importance sampling.36–39 Recent work adding control

forces to importance sample trajectory based Monte Carlo has

demonstrated that even an approximate force can greatly im-

prove the efficiency of Monte Carlo methods in estimating

large deviation functions.40–42 Consequently there has been

much work to find approximate control forces analytically or

through empirical arguments in both lattice-based and con-

tinuous systems43–45 and several iterative effective force op-

timization techniques have been proposed with varying lev-

els of generality or accuracy.46–49 The control forces in gen-

eral can have many-body components in interacting particle

systems,45,50 can be long-ranged in systems with dynamical

phase transitions,51 and can stabilize otherwise metastable

states.52

For Markovian systems, there exists an optimal control

force, which is the unique additional force having the smallest

contribution to the path ensemble measure that can be added

to the system to make a rare fluctuation typical.53,54 This op-

timal control force satisfies several variational identities.55 By

deriving such a variational principle and explicit forms for

the gradients required to optimize it, we develop an algorithm

that approximates the control force sufficiently well so as to

make quantitatively accurate estimates of the likelihood of

rare events within nonequilibrium steady-states. In this way,

http://arxiv.org/abs/1909.03589v3
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we generalize previous work on variational control of single

particle systems to interacting, continuous force systems, by-

passing the need for exponentially scaling Monte Carlo sam-

pling. Our algorithm is similar in strategy to the recent use of

thermodynamic variational principles to compute equilibrium

free energies,56 and to the Rayleigh-Ritz variational princi-

ple that others have used to nonperturbatively compute effec-

tive forces far from equilibrium.57 The variational principle

that underlies our algorithm is related to minimum-entropy

production principles58,59 and the Donsker-Varadhan formula

in Markov Stochastic processes.60 While our variational esti-

mate of the large deviation function is subject to errors associ-

ated with the representation of the control force, we derive ex-

act corrections that can be evaluated straightforwardly. In the

two systems studied, these corrections are easy to evaluate, as

our control forces are sufficiently close to the optimal control

forces to make these corrections perturbatively small. How-

ever, in cases where the corrections are large, we show that

using optimized control forces in conjunction with standard

Monte Carlo algorithms can increase the statistical efficiency

in the estimatation of large deviation functions by orders of

magnitude. In this way, our algorithm is similar to the use of

variationally optimized wavefunctions for quantum Diffusion

Monte Carlo calculations.61

II. ENHANCED SAMPLING FROM OPTIMAL

CONTROL FORCES

Our aim is to construct a method by which rare fluctuations

within a nonequilibrium steady-state can be sampled. We con-

sider dynamics described by a Langevin equation of the form,

ȧ = F+ηηη (1)

where a is the vector of all dynamical coordinates, ai, which

can include the positions and velocities of all particles in the

system. Its time derivative, ȧ, depends on the force, F, with

components, Fi, that are in principle functions of all coordi-

nates, a. The Gaussian white noise, ηηη , has components, ηi,

that satisfy

〈ηi(t)〉= 0 , 〈ηi(t)η j(t
′)〉= Biδi jδ (t − t ′) (2)

where Bi are diagonal elements of the diffusion constant ma-

trix, B. While we have assumed B is diagonal and independent

of a for ease of notation, generalizations for nondiagonal and

coordinate-dependent diffusion matrices are straightfoward.

For a specific trajectory, X(τ) = {a(0), ...,a(τ)} spanning

an observation time, τ , we are interested in fluctuations of

time-averaged observables Aτ of the form

Aτ [X(τ)] =
1

τ

∫ τ

0
dt f [a(t)]+

1

τ

∫ τ

0
dt g[a(t)] · ȧ(t) (3)

where f is a scalar function and g is a vector function with

components, gi, with the second term being evaluated in the

Ito sense.62 Path observables like the particle density, particle

current, and entropy production can all be expressed in this

form. We will be interested in the statistics of this observable

in the long time limit, τ → ∞.

A. Nonequilibrium variational principle

We assume that in the long time limit, the probability dis-

tribution of Aτ satisfies a large deviation principle, with a rate

function, or log likelihood, I(A), defined by15

I(A) =− lim
τ→∞

1

τ
ln〈δ (A−Aτ [X(τ)])〉 (4)

where the angular brackets denote a trajectory average

〈δ (A−Aτ [X(τ)])〉=
∫

D[X(τ)]δ (A−Aτ [X(τ)])P[X(τ)]

(5)

and P[X(τ)] denotes the path probability associated with tra-

jectory X(τ). We will consider finite size systems that have

exponentially decaying correlation functions and thus are ex-

pected to obey the large deviation principle.

The long time behavior of Aτ can also be characterized by

its scaled cumulant generating function (SCGF), defined as

ψ(λ ) = lim
τ→∞

1

τ
ln
〈

eλ τAτ

〉

(6)

where λ is a counting parameter conjugate to Aτ , and de-

notes the extent of biasing or tilting on the typical value of

Aτ . Larger positive or negative values of λ probe rarer fluc-

tuations. This is clear by noting that the derivatives of ψ(λ )
report on the cumulants of Aτ . We refer to the rate function,

I(A), and the SCGF, ψ(λ ), collectively as the large deviation

functions. When the rate function is convex, it can be obtained

from the SCGF using a Legendre-Fenchel transform

I(A) = inf
λ
[λ A−ψ(λ )] (7)

where inf refers to an infimum taken over all possible values

of λ .

Computing either of the large deviation functions of Aτ re-

quires sampling exponentially rare fluctuations. These rare

fluctuations can in principle be made to occur more frequently

by introducing a control force into the system as a means of

importance sampling. In the presence of a new force, u(a), re-

placing the original force, F(a), the computation of the SCGF

can done by changing the path ensemble measure,

ψ(λ ) = lim
τ→∞

1

τ
ln

∫

D[X(τ)]eλ τAτ
P[X(τ)]

Pu[X(τ)]
Pu[X(τ)]

= lim
τ→∞

1

τ
ln
〈

eOτ [u]
〉

u
(8)

where 〈·〉u denotes an average in the controlled path ensem-

ble with path probabilities Pu[X(τ)], and Oτ [u] can be derived

from the difference in Onsager-Machlup path-actions,63

Oτ [u] = λ τAτ +

∫ τ

0
dt ∑

i

u2
i −F2

i − 2ȧi(ui −Fi)

2Bi

(9)

interpreted in the Ito sense. Changing the force for such a

Gaussian process does not change the normalization constant

associated with the path ensemble in the long time limit where
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boundary terms from the initial and final configurations can be

ignored.

Expanding Eq. (8) in terms of its cumulants, and using

Jensen’s inequality, we find a variational expression for the

SCGF,

ψ(λ )≥ lim
τ→∞

1

τ
〈Oτ [u]〉u (10)

in terms of the mean of Oτ [u], within the controlled path

ensemble. This expression is identical to previous work by

Chetrite and Touchette that was derived using the contrac-

tion principle.55 Among the forces that make the rare value

of the observable statistically typical, the one closest to the

original force is the optimal force that realizes the supremum

of the inequality. This many-body function can be approxi-

mated within a chosen ansatz with variationally optimizable

parameters {cn}. In the limit that {cn} represents all possible

functional forms of the many-body force, this ansatz becomes

exact,55 so that

ψ(λ ) = sup
{c1,c2,...}

lim
τ→∞

1

τ
〈Oτ [u({cn})]〉u({cn}) (11)

where the optimal coefficients {cn} will in general depend on

λ .

The existence of a control force that saturates the supremum

in Eq. (11) follows from the eigenspectrum of the generator of

the SCGF,

Lλ = λ f +∑
i

[

−λ

2
(∂ai

gi)gi +Fi(∂ai
+λ gi)

+
Bi

2
(∂ 2

ai
+λ (∂ai

gi)+ 2λ gi∂ai
+λ 2g2

i )

]

(12)

where we have suppressed the arguments of Fi, gi, and f for

compactness. This operator satisfies an eigenvalue equation

Lλ φλ (a) = ψ(λ )φλ (a) (13)

where ψ(λ ) and φλ (a) are respectively the largest real eigen-

value and corresponding right eigenvector of Lλ , which fol-

lows from the Perron-Frobenius theorem and the long time

limit of the SCGF. The optimal force uλ that solves Eq. (11)

is related to φλ through a Hopf-Cole transform53,55,64 defined

as

uλ = F+B(λ g+∇ lnφλ ) (14)

and the controlled dynamics associated with this optimal force

can be obtained from a generalized Doob transform of Lλ .53,65

For an interacting many-body system, the dominant eigenvec-

tor is a many body state, and therefore the optimal control

force is many-bodied. Generally, we will assume that the con-

trol force is well approximated by a low rank ansatz such as

obtained from a low order many body expansion.

Obtaining the SCGF from directly diagonalizing the tilted

generator in many-body systems is prohibitively expensive

due to the size of the multi-dimensional state space over which

Lλ is defined. There have been recent advances to approxi-

mate this state space using Matrix Product States for lattice

based models.66,67 However, for continuous space systems

with many particles, it is expected that Eq. (11) will present a

physically motivated way to formulate approximate solutions

to the eigenvalue problem and to the computation of ψ(λ ),
and subsequently, I(A). It is worth noting that the constrained

optimization of a variational expression analogous to (11) can

also be directly used to compute I(A),55 with a straightforward

extension of the algorithm described below.

B. Optimization algorithm with explicit gradients

In order to optimize Eq. (11) by gradient descent, we need

to calculate derivatives of 〈Oτ [u]〉u with respect to the varia-

tional parameters {cn} in the limit of a large τ . Using these ex-

plicitly calculated gradients in the optimization algorithm can

reduce the noise and numerical instabilities associated with

finite difference schemes, that are generally used to empiri-

cally estimate the gradients from the optimization trajectory

through the parameter space. The explicit gradients that we

use have the form of expectation values in the controlled en-

semble,

lim
τ→∞

1

τ

∂

∂cn

〈Oτ [u]〉u

= lim
τ→∞

1

τ

[〈

δOτ [u]

δu
· ∂u

∂cn

〉

u

+

〈

Oτ [u]
∂ lnPu

∂cn

〉

u

]

(15)

where cn is any of the optimizable parameters specifying the

control force. While the first term is straightforward to com-

pute, functional forms of ∂ lnPu/∂cn can be calculated from

the normalized path probabilities,
〈

Oτ [u]
∂ lnPu

∂cn

〉

u

=

〈

∫ τ

0
dt Ȯ[u](t)

∫ τ

0
dt

′
∑

i

ηi(t
′
)

Bi

∂ui(t
′
)

∂cn

〉

u

−
〈

∫ τ

0
dt Ȯ[u](t)

〉

u

〈

∫ τ

0
dt

′
∑

i

ηi(t
′
)

Bi

∂ui(t
′
)

∂cn

〉

u

(16)

where Eqns. (3) and (9) have been used to write Oτ [u] as a

time integral of

Ȯτ [u] = λ ( f + g · ȧ)+∑
i

u2
i −F2

i − 2ȧi(ui −Fi)

2Bi

(17)

and its fluctuation is defined as δ Ȯτ [u] = Ȯτ [u]−〈Ȯτ [u]〉u.

The averages in Eq. (16) can be computed by propagating

additional coordinates yn(t) associated with each variational

parameter cn as

yn(0) = 0 , ẏn(t) = ∑
i

ηi(t)

Bi

∂ui(t)

∂cn

(18)

where the sum has been performed over all dynamical coordi-

nates of the system, and its fluctuation is defined as δ ẏn(t) =
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ẏn(t)− 〈ẏn(t)〉u . These fictitious coordinates are known in

the literature as Malliavin weights68 and have previously been

used to calculate parameter sensitivity of steady-state distri-

butions in Langevin systems.69 Provided these averages are

evaluated in the steady-state generated by the control force,

ȧ = u+ηηη , we can invoke time-translational invariance and

note that only past noise history correlates with the observ-

able, to simplify Eq. (15),

lim
τ→∞

1

τ

〈

Oτ [u]
∂ lnPu

∂cn

〉

u

=

∫ ∞

0
dt

〈

δ ẏn(0)δ Ȯ[u](t)
〉

u
(19)

where in the long time limit, the gradient is proportional to

an integrated time correlation function. This is an example

of a generalized fluctuation-dissipation formula.70 Putting to-

gether the two contributions

lim
τ→∞

1

τ

∂

∂cn

〈Oτ [u]〉u = (20)

〈

δ Ȯτ [u]

δu
· ∂u

∂cn

〉

u

+

∫ ∞

0
dt

〈

δ ẏn(0)δ Ȯ[u](t)
〉

u

we arrive at an explicit form for the gradient of our SCGF

estimate with respect to the variational parameters that can

be estimated as time-averages from a straightforward molec-

ular dynamics trajectory with the control forces. In practice,

we will take the integral over the time correlation function in

Eq. (20) up to a time ∆t. The choice of ∆t is discussed in

Appendix A.

Using these explicit gradients, an iterative optimization is

performed in the parameter space spanned by {cn} in order

to estimate the SCGF. We use an algorithm called Nesterov’s

Accelerated Gradient Descent71,72 which shows a superlinear

convergence. The learning rate and conjugate momenta are

scaled by fixed parameters µ and ν respectively. The opti-

mization algorithm is summarized below.

Algorithm Optimizing control force

1: Begin from a guess for the variational parameters {cn} and con-

jugate momenta {pn = 0}.

2: After the k-th step of the optimization, parametrize the force u(k)

with parameters {c
(k)
n +ν p

(k)
n }.

3: Propagate an MD trajectory to evaluate the gradients d
(k)
n =

∂ [〈Oτ [u]〉u(k) /τ]/∂cn for a large τ .

4: Update the momenta as pk+1
n = ν p

(k)
n +µd

(k)
n .

5: Update the variational parameters as c
(k+1)
n = c

(k)
n + p

(k+1)
n .

6: Repeat steps (2-5) until all

∣

∣

∣
d
(k)
n

∣

∣

∣
are less than a tolerance value.

This algorithm converges to a local maximum in the pa-

rameter space, which can be different from the global maxi-

mum when the variational surface is not convex. For all the

models for which we computed the SCGF, we did not obtain

evidence of nonconvexity of the variational functional at any

point in the parameter space. However the convergence was

significantly slower at values of λ near a crossover point or a

phase transition. We have illustrated in Appendix B that we

often converge to the global maximum in the parameter space

smoothly. Nevertheless, in the event that we converge to a lo-

cal maximum, we incur a systematic error in the SCGF that

we discuss how to correct in the next section.

C. Correcting for systematic errors

In general, the ansatz specified by the parameters {cn} will

not form a complete basis for a many body system. This is

because generically, the dominant eigenvector of Eq. (13) is

a many-body state, containing exponentially many parame-

ters, and not expected to be exactly expressible with a low

rank form. Because of this, the variationally converged SCGF

ψ∗(λ ) obtained from Eq. (11) will have a systematic error.

This error, and errors associated with convergence to a local

maximum, can both be corrected in principle by computing

the remaining terms of the cumulant expansion

ψ(λ ) = ψ∗(λ )+ lim
τ→∞

1

τ

∞

∑
ℓ=2

κℓ

ℓ!
(21)

where {κℓ} are the second and higher cumulants in the ex-

pansion of ln〈exp(Oτ [u
∗])〉u∗ and the force u∗ is the solution

of the variational problem in the approximate and incomplete

ansatz. If the ansatz used to express the control force, u∗,

is close enough to the optimal force obtained from the Doob

transform, the correction terms are small in magnitude and

the series will converge quickly. This will occur when the tra-

jectory distribution generated by the controlled dynamics has

significant overlap with the tilted distribution of the original

dynamics.

In cases where the ansatz is poor and many cumulants are

needed, brute force convergence of the correction will be diffi-

cult. In such cases, control forces can be used as guiding func-

tions for estimating the SCGF through Monte Carlo based ap-

proaches like the cloning algorithm. In the cloning algorithm,

an ensemble of Nw trajectories generated from the ordinary

path probabilities P[X(τ)] are branched with corresponding

weights of exp(λ τAτ). However, under the controlled dynam-

ics, following Eq. (8), the weighted path probabilities can be

written as40,45

Pλ [X(τ)] ∝ eλ τAτ P[X(τ)] = eOτ [u]Pu[X(τ)] (22)

where system evolution under an approximate controlled

dynamics is nonconservative and must be accompanied by

branching steps with weights given by exp(Oτ). An estimate

of the SCGF is then obtained from the normalization constant

of this weight, so that in the limit of large Nw,

ψ(λ ) =
1

τ
ln

1

Nw

Nw

∑
j=1

eO
( j)
τ [u] (23)

where O
( j)
τ [u] denotes the time-integrated observable for the

walker labelled as j.

When the variationally optimized u∗ is used to generate tra-

jectories and to compute the branching probabilities, the ef-

ficiency of the cloning algorithm is improved as the control
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force samples the rare fluctuations in the observable. When u∗

is actually the optimal force derived from the Doob transform,

all trajectories achieve the rare fluctuation as typical behavior,

and the weight of each trajectory becomes a constant. In this

situation no trajectories are killed in the branching step of the

cloning algorithm, and the sampling is statistically optimal.28

However, even with an approximate ansatz the variationally

optimized force slows down the rate of death of uncorrelated

trajectories with increasing τ , as demonstrated in Sec. IIIB .

The variational algorithm along with the cumulant-

correction has improved scaling properties compared to the

cloning algorithm. By adopting an approximate ansatz for the

many-body force containing, for example, one-body and two-

body terms, for a system of identical particles we can exploit

their permutation symmetry and optimize a single one-body

and two-body force. Hence the variational algorithm scales

linearly with the system size, the computational cost arising

only from the propagation of trajectories of interacting parti-

cles. This is in contrast to the cloning algorithm, which has

an exponential scaling for observables that are system size

extensive.37 Also, while the cloning algorithm scales expo-

nentially with λ , the variational algorithm depends on the bias

only through the complexity of the optimal force and scales

linearly with the number of variational parameters required

to approximate the force. Hence in cases that the dominant

part of the optimal force can be simply expressed within the

choice of the ansatz, the computational cost for the algorithm

to converge does not increase with λ . This indicates a re-

summation of the exponential bias through the modification

of the control force. Neither does the algorithm scale with in-

creasing observation time τ , as the τ → ∞ limit has already

been incorporated in the algorithm. Lastly, this algorithm can

be parallelized trivially by distributing the computation of the

expectation values at each step of the iteration to independent

trajectories on independent processors.

III. NUMERICAL ILLUSTRATIONS

To study the accuracy and efficiency of our variational algo-

rithm to compute the SCGF and the optimal force, we apply

it to two different continuous time and space systems. The

first is a benchmark system where we can test our algorithm

against a numerically exact result. This model consists of a

driven underdamped particle in a periodic potential, for which

we have studied rare fluctuations of the total current. The sec-

ond system is comprised of multiple repulsive overdamped

particles, where we have focused on the fluctuations of the to-

tal activity, which measures how much the particles explore

configuration space. In this system, we demonstrate the abil-

ity of our algorithm to compute the optimal control force even

through singular changes in the SCGF across a dynamical

phase transition.

A. Driven underdamped particle in a periodic potential

An underdamped particle being driven on a periodic poten-

tial by a constant external force is a simple system with two

dynamical coordinates, position and velocity, that can exhibit

non-trivial nonequilibrium properties due to competing ballis-

tic and diffusive modes of transport.73,74 Large deviation func-

tions for current fluctuations in this model can be obtained by

numerically exact diagonalizations of the tilted generator, and

the controlled ensemble can show diverse behavior in different

parameter regimes.75 We consider this model to benchmark

our variational optimization algorithm.

Specifically, we consider an underdamped particle of mass

m moving in a one-dimenional periodic box of length L = 2π .

The forces acting on the particle are derived from a cosine

potential, V (x) = V0 cos(x), where V0 is the magnitude of the

potential, and include a constant external driving force, Fext.

For the particle in contact with a bath of temperature, T , and

friction coefficient, γ , the equations of motion for the position,

x, and velocity, v, are

ẋ = v

mv̇ = F(x)− γv+η (24)

where F(x) = −V
′
(x) + Fext and η(t) is a Gaussian white

noise with

〈η(t)〉= 0 〈η(t)η(t ′)〉= 2γkBT δ (t − t ′) (25)

where kB is Boltzmann’s constant. These equations of mo-

tion have the form of Eqs. (1) and (2) with two dynamical

coordinates and a vanishing noise in position.75

We investigate the statistics of the time-averaged current

flowing through the system,

Jτ =
1

τ

∫ τ

0
dt v(t) (26)

which measures the total displacement of the particle. The

SCGF for current is given by

ψ(λ ) = sup
u(x,v)

1

τ

〈

∫ τ

0
dt

(

λ v+
u2 −F2 − 2γv(u−F)

4γkBT

− mv̇(u−F)

2γkBT

)〉

u

(27)

where the path average is obtained from the controlled dy-

namics

mv̇ = u(x,v)− γv+η (28)

and the optimal force is in general a function of both position

and velocity. We expand this force in an ansatz

ũ(x,v) = F(x)+
M1

∑
p=−M1

M2

∑
q=0

cp,qeipxvq (29)

where cpq are parameters that can be optimized variationally

subject to c∗−p,q = cp,q, and the number of position and veloc-

ity basis functions are (2M1 + 1) and (M2 + 1) respectively.
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The basis is complete in the limit of large M1 and M2. Note

that this force incorporates the periodicity of x and also allows

the external nonequilibrium driving, which is the p = q = 0

term, to be optimized. In the high friction limit, the dynam-

ics becomes overdamped and in that limit the optimal force

becomes a function of just the particle position. For small

friction, inertia is important and the general form of the op-

timal force must be considered. We note that this velocity-

dependent drift function is a force only in a generalized sense.

The SCGF and the optimized control force obtained from

the variational algorithm can be compared to numerically ex-

act results obtained by solving the eigenvalue equation for the

tilted generator given by75

Lλ = v
∂

∂x
− 1

m
[vγ −F(x)]

∂

∂v
+

γkBT

m2

∂ 2

∂v2
+λ v (30)

as in Eq. (13). The exact control force is obtained using the

right eigenvector φλ (x,v) corresponding to the largest real

eigenvalue, as

u(x,v) = F(x)+
2γkBT

m

∂ lnφλ (x,v)

∂v
(31)

where numerical diagonalization of Lλ can be performed by

expressing the right and left eigenvectors over a position-

velocity grid and representing the differential operators in Lλ

using a second order finite difference scheme. The boundary

conditions are periodic in the position grid and reflective in

the velocity grid, so that only forward (backward) difference

at the minimum (maximum) velocity grid point is used to rep-

resent the differential operator.

We have computed the cumulant-corrected large deviation

functions in this system and have compared them to the nu-

merically exact results. We have worked with kBT = 1 and

γ = 1. These parameters along with the length of the box

L= 2π let us define our natural time unit as t∗ = 4π2kBT/γL2.

All observables have been reported in dimensionless units fol-

lowing these definitions. We have done our computations at

two values of mass, m/γt∗ = 1 and m/γt∗ → 0. We have also

chosen V0 = 2 and Fext = 1. The numerically exact result was

obtained with a grid of 140×50 points in the position-velocity

space. The position points span all of the box and the veloc-

ity points are centered at (Fext + 2λ kBT )/γ corresponding to

the mean velocity in the V0 → 0 limit. For all the simulations,

the timestep was chosen to be 0.001 natural time units. For

m/γt∗ → 0, an Euler scheme was used to integrate the over-

damped equation of motion, while for m/γt∗ = 1, a velocity

Verlet scheme was used.14

For each iterative step during the optimization, a trajectory

of duration 104 units was simulated. During the first half of

each trajectory, the system was allowed to come to a steady-

state, and the time-averaged gradients were computed only

with the second half of the trajectories. For implementing Eq.

(20), we integrated the correlation function up to ∆t = 100.

The size of the basis was M1 = 3,M2 = 1 for m/γt∗ = 1 and

M1 = 3,M2 = 0 for m/γt∗ → 0, the overdamped limit. The

optimization parameters used for the gradient descent were

µ = 0.5,ν = 0.2. Near λ = 0, all cpq were initialized at

−1.5 −1.0 −0.5 0.0 0.5
λ

0.0

0.2

0.4

0.6

ψ
(λ
)

a)

b)

Exact

Estimated

m/γt∗ → 0 m/γt∗ = 1

−1 0 1
J

0.0

0.5

1.0

1.5

I
(J
)

FIG. 1. Large deviation functions for current fluctuations in a driven

underdamped system in a periodic potential. a) SCGF for m/γt∗ = 1

with M1 = 3,M2 = 1 and for m/γt∗ → 0 with M1 = 3,M2 = 0. b)

Rate functions obtained by a numerical Legendre-Fenchel transform

of the SCGFs. The legend is the same as that used in a). (Inset)

Schematic diagram of the simulated system.

zero, and subsequent optimizations with increasing magni-

tude of λ were initialized from a previously optimized set of

cpq taken from the nearest value of λ . In the overdamped

limit, an accurate estimate of the SCGF could be obtained

with just the variational optimization, with the cumulant cor-

rection merely a confirmation of the optimal control forces

being correct. However for m/γt∗ = 1, the variational SCGF

had to be corrected with cumulants computed with an observa-

tion time τ = 100 and a total trajectory length 105 units. Fol-

lowing this procedure, we obtain estimates of SCGFs that are

in quantitative agreement with the numerically exact results

throughout the range of λ considered, as shown in Fig. 1(a).

We have also calculated the rate functions for the current,

Fig. 1(b), in these two parameter regimes by a numerical

Legendre-Fenchel transform of the SCGFs.

The SCGFs in Fig. 1(a) both have a locked region where

the current changes slowly with λ , and an unlocked region for

larger magnitudes of λ . Due to the time-reversal properties of

Lλ , the SCGF shows a Gallavotti-Cohen symmetry76

ψ(λ ) = ψ(−Fext/kBT −λ ) (32)

which is clear through the reflection symmetry about λ =
−0.5 of the SCGF in Fig. 1(a). Analogously, the rate func-
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FIG. 2. Overdamped limit, m/γt∗ → 0, of the driven particle on a pe-

riodic potential. a) Optimized control forces (dashed lines) overlaid

on the exact control force (solid lines). The thick curve is for λ = 0

and the curves above (below) are for λ in intervals of +0.5(−0.5). b)

Basis size errors in the variational estimate of ψ(λ ), where the de-

viation δψ(λ ) = ψ∗(λ )−ψ(λ ) is the difference between the finite

basis result ψ∗(λ ) from the exact SCGF.

tion obeys a fluctuation theorem symmetry

I(J) = I(−J)+FextJ/kBT (33)

indicating the exponentially rare probability of a current in the

direction opposite to the applied force.

Figure 2(a) shows the position-dependent optimal forces

obtained in the overdamped limit, u(1)(x), overlaid on the nu-

merically exact answers obtained from diagonalization,77 for

multiple values of λ . In the limit of |λ | → ∞, the optimal

forces approach the free-diffusion limit, where the majority of

contribution comes from a constant nonequilibrium driving.

When |λ | is of the order |Fext|/kBT , the forces have a non-

trivial position dependence. This is manifested in the size of

the basis-set, M1, required to obtain the optimal control force

accurately. Figure 2(b) shows the effect of finite basis size

on the error made in estimating ψ(λ ). Increasing M1 reduces

the error and ultimately the ansatz becomes exact when M1

is large. The error decreases when going to larger |λ | as the

forces are easier to represent using the first few basis func-

tions. The error bars were computed from 5 independent esti-

mates of the SCGF using independent trajectories.

For the m/γt∗ = 1 system, inertial effects are important and

the optimal force depends on both position and velocity, and

the optimal force has a complicated functional dependency

that is difficult to represent using a small number of basis

functions. Using a truncated basis to represent the control

force leads to a systematic error in the SCGF estimate ob-

tained using Eq. (27) that can be corrected using the cumu-

lant expansion in Eq. (21). Figure 3(a) shows the approximate

forces obtained from the variational optimization compared to

the numerically exact results. When λ is near the Gallavotti-

Cohen symmetry point, the average current is small and the

optimal control force is a complicated function of both v and

x. Within our ansatz, the optimized u(x,v) does not repro-

duce the exact form of the optimal control force. Nevertheless,

these approximate forces recover the majority of the SCGF, so

that the cumulant expansion converges for all tested λ points.

Figure 3(a) also contains the optimal force at a larger positive

λ , where the forces lose their velocity dependence and sim-

plify towards the free-diffusion limit. In this limit, position

based forces are sufficient to recover the SCGF quantitatively.

Figure 3(b) shows the convergence of the consecutive terms

of the cumulant expansion in Eq. (21) for different values of

λ . κ1, the first cumulant, is identical to ψ∗(λ ), the variational

−3 −1

1

2

3

4

5

x

v v v

Exact Exact Optimized

−3 −1v

Optimized

4 6 4 6

1 2 3 4 5
ℓ

10−5

10−4

10−3

10−2

10−1

100

|κ
ℓ/
ℓ!
|

a)

b)

λ = −1.5 λ = 2.0

λ = −1.1

λ = −0.2

λ = 0.5

FIG. 3. Underdamped system, m/γt∗ = 1, of the driven particle on

a periodic potential. a) (L-R) Exact and optimized control forces,

u(x,v), for λ =−1.5, with the solid contour at u(x,v) =−2, and the

dashed (dotted) contours being at differences of +1 (−1). Exact and

optimized control forces, u(x,v), for λ = 2 with the solid contour at

u(x,v) = 5 and the dashed (dotted) contours being at differences of

+1 (−1). b) Convergence of the cumulant expansion for representa-

tive values of λ .
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estimate. Error bars were calculated using 5 independent tra-

jectories for the estimation of the cumulants. Even though

our basis is small and approximate, the cumulants computed

from a single trajectory have decreasing amplitudes for var-

ious values λ , showing that the variational force is accurate

enough to approach the force derived from the Doob trans-

form. We note that the sign of the cumulants need not be pos-

itive, and therefore the variational structure in the estimate of

ψ(λ ) holds only for the first cumulant. Further, the magnitude

of the terms in the cumulant expansion need not be strictly de-

creasing. Figure 3(b) includes an example of a nonmonotonic

convergence for λ =−1.1. Moreover, the sign of the error of

the approximate SCGF at a given truncation of the cumulant

expansion can change resulting in the cancellation of errors of

two oppositely signed cumulant corrections and an acciden-

tal near agreement of the exact SCGF. We have found that by

considering the convergence of the consecutive terms of the

cumulant expansion we can reliably determine the accuracy

of the approximate SCGF.

B. Activity fluctuations of overdamped repulsive particles

To study how this algorithm performs in an interacting sys-

tem, we consider the fluctuations of the activity in a system

of overdamped repulsive particles on a line. In both lattice

and continuum models of volume excluding particles in one

dimension, it has been reported that there are two character-

istically distinct types of activity fluctuations, with a dynam-

ical phase transition separating them.78 For rare large nega-

tive values of the activity, such systems spontaneously phase

separate into macroscopically sized clusters, whereas for rare

small values of the activity, they form a hyperuniform phase

in which long-wavelength density fluctuations are suppressed.

This behavior emerges as a singularity in the SCGF and a

closing of the gap in the eigenspectrum of the tilted opera-

tor, which in the hydrodynamic scaling limit is predicted to

occur with a critical point at λc → 0−.45,78 This system is thus

suitable to test the effectiveness of the variational algorithm in

computing rare fluctuations that are collective in origin.

Specifically, we study the fluctuations of dynamical activ-

ity in a system of N overdamped repulsive particles in a one-

dimensional periodic box of length L. The equation of motion

is

γ ẋi = Fi(x)+ηi (34)

where Fi(x) is the total force felt by the i-th particle,

Fi(x) =− ∂

∂xi
∑
j 6=i

VWCA(xi j) (35)

where xi j = xi − x j and the force is derived from a WCA pair

potential

VWCA(r) =

[

4ε

(

σ12

r12
− σ6

r6

)

+ ε

]

, r < 21/6σ (36)

= 0 , r ≥ 21/6σ

with characteristic energy, ε , and length scale, σ . The Gaus-

sian white noise, ηi, is specified by

〈ηi(t)〉= 0 , 〈ηi(t)η j(t
′)〉= 2γkBTδi jδ (t − t ′) (37)

We work with kBT = 0.5, γ = 1 and σ = 1. As before, we de-

fine our unit of time for this system as 2kBT/γσ2 and we have

reported all observables in dimensionless units. Additionally,

we set ε = 1 and consider a density of ρ = Nσ/L = 0.5, so

that the box is half-filled.

We study a measure of activity derived from the probabil-

ity that the particles stay in the same state in a short time

interval.79 This form of the activity,

Kτ =
1

τ

∫ τ

0
dt ∑

i

(

F2
i

4γkBT
+

1

2γ

∂Fi

∂xi

)

(38)

is also a part of the time-symmetric component of the path-

action,80 and its long time statistics are similar to other com-

monly used metrics that count the total number of hops for

particles on a lattice.81,82 Using Ito’s Lemma to simplify the

last term in Eq. (9), the variational expression for the SCGF

becomes

ψ(λ ) = sup
u(x1,x2,...,xN )

1

τ

〈

∫ τ

0
dt ∑

i

[

λ

(

F2
i

4γkBT
+

1

2γ

∂Fi

∂xi

)

+
u2

i −F2
i

4γkBT
+

1

2γ

∂ (ui −Fi)

∂xi

]〉

u

(39)

where in addition to the force, we require the gradient of both

the original and the control force.

For this system, the optimal control force u(x) is in gen-

eral long-range and many-bodied. Previous work on related

one-dimensional systems have shown long-range repulsive in-

teractions stabilizing the hyperuniform state for values of ac-

tivity small in magnitude,51 and long-range attractive forces

acting on the surface of particle clusters that emerge in rare

large negative fluctuations of the activity.45 For our variational

ansatz, we have approximated the many-body force as a sum

of long-range pairwise interactions. Pair forces are the low-

est rank approximation to this system due to its translational

invariance. From the Hopf-Cole transform, optimization of a

pair force is analogous to optimization of a two-body Jastrow

function as used in variational quantum Monte Carlo.83

To represent the control force, we expand it in a basis of

Laguerre polynomials Lp with coefficients cp as

ũi = ∑
j 6=i

[

− ∂

∂xi

VWCA(xi j)+
M3

∑
p=1

cpLp(x̃i j)e
−x̃i j/2 xi j

|xi j|

]

(40)

where x̃i j = α − β |xi j| is a linear transformation on the dis-

tance between particles i and j. The parameters α and β can

be adjusted to set a scale and a cutoff for where the force

smoothly decays to zero, and M3 determines the size of the

basis. The basis is complete for all possible two-body forces

in the limit of large M3. The exponential factor makes the

basis functions orthogonal and aids in the convergence of the



9

−0.5 0.0 0.5 1.0
λ

0.0

0.2

0.4

0.6
ψ
(λ
)/
N

2
a) b)

−0.5 0.0 0.5 1.0
λ

−1.0

−0.5

0.0

〈K
〉 λ
/N

2

N = 20

N = 25

N = 30

N = 35

N = 40

0.0 0.5 1.0
λ

−0.02

0.00

ψ
(λ
)/
N

FIG. 4. Size-scaling of activity fluctuations of repulsive particles on a line. a) O(N2) scaling of ψ(λ ) in the phase-separated state. (Inset)

O(N) scaling in the hyperuniform state. b) Change in mean activity across the dynamical phase transition. (Inset) Schematic representation of

the phase-separated (left) and hyperuniform (right) states.

optimization. We have used M3 = 10 for all of our results.

We have fixed β = 2/L, and optimized {cp} and α with start-

ing values of 0 and L/2 respectively. In each iteration of the

optimization, a trajectory of length 2×104 time units is simu-

lated, the first half again reserved for equilibration and the sec-

ond half being used to compute the gradients. For computing

the integrated correlation function in Eq. (20), we have used

∆t = 200 units. After obtaining the optimized control force

in this ansatz, we use it to compute the unbiased SCGF us-

ing a cumulant expansion as before, with an observation time

τ = 10 and a total trajectory length of 5× 104 units. Across

the range of λ considered, we find convergence using the first

three cumulants to correct the variational result. The SCGF

obtained from this cumulant expansion is identical to results

obtained using a guided cloning algorithm that has been de-

scribed later in this section.

In Figure 4(a) we have plotted the size scaled SCGF, and

the mean activity, for positive and negative values of λ . For

λ > 0, we find the system in a hyperuniform state, where all

particles are pushed apart from each other and long-range den-

sity fluctuations are suppressed.78 The SCGF is size-extensive
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r

0
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30

V
(2
) (
r)

λ = −1.0

λ = −0.2

λ = 0.0

λ = 0.2

λ = 0.5

λ = 1.0

FIG. 5. Optimal pair-potential for positive and negative λ for N = 40.

in this range of λ . For λ ≪ 0 the particles phase separate,

forming a single cluster. In the region where λ is negative

but small, there is a phase transition to this clustered state ac-

companied by an inflection point in the mean activity, shown

in Fig. 4(b), obtained from taking the numerical derivative of

the SCGF, 〈K〉λ = ψ ′(λ ). The extensive scaling regime has

been explored systematically in a related model and found

to agree well with predictions from macroscopical fluctuation

theory.45 In our studies, we find it limited to 0 > λ > −0.02.

For large negative values of λ , the cluster is a highly com-

pressed solid with system-spanning correlations that result in

the SCGF scaling super-extensively. In this regime of the

SCGF, the typical force is on the order of
√

N, and can con-

tinue to increase with decreasing λ because of the soft repul-

sion of the WCA potential. Inspection of the distribution of

mean squared forces reveals that the cluster is not homoge-

neous, but most compressed in its interior with lower density

near the edges, with a system size independent profile, see

Appendix C. The phase transition from a disordered state to

a clustered state is in accord with previous observations in

related systems, and result in diverging correlation times ren-

dering the precise study of the critical point difficult.45,78 We

therefore focus our attention on the two phases on either side

of that transition. Error bars were obtained from independent

statistics from 3 distinct trajectories.

Figure 5 shows the effective pair-potential, V (2)(r), derived

from the optimal control force at different values of λ , for

N = 40, obtained by the numerical integration of the control

force. The potential is long-ranged and repulsive in the hy-

peruniform phase, and long-ranged and attractive in the clus-

tered phase. The long-range potential leads to the observed

size scaling in Fig. 4, because it imposes infinite range corre-

lations. We also observe that the depth of the attractive po-

tential for increasingly negative values of λ tends to saturate,

while the magnitude of the repulsive potential for increasingly

positive λ does not. This difference arises from the steeply

rising WCA forces that can achieve more negative values of

〈K〉λ with just a slight decrease in the nearest neighbor dis-

tance in the controlled system. In the hyperuniform phase,
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FIG. 6. Characterization of the two dynamical phases for N = 80. a)

Pair distribution functions within the phase separated, λ =−0.1, and

(inset) hyperuniform, λ = 0.1, states. b) Structure factor for various

system sizes in the hyperuniform state, λ = 1.

achieving the rarer values of activity implies an exponentially

small number of collisions between the particles, which leads

to an increasing repulsive control force. These optimal con-

trol forces derived from the variational ansatz do not contain

many-body components unlike analytically derived approxi-

mate forces,45 yet they achieve the same phenomenology of

phase separation and hyperuniformity described previously.

Figure 6(a) characterizes the steady-state radial distribution

function g(r),

ρg(r) = N〈δ (r−|x12|)〉u (41)

obtained in these phases, for a system size of N = 80, where

x12 denotes the interparticle distance between each distinct

pair of particles. In the phase-separated state, the particles

form a solid cluster that has sharp peaks in g(r) at intervals

of σ . In the hyperuniform phase, the particles are repelled

away from each other and g(r) has little structure aside from

the volume-exclusion. We also characterize the structure of

the hyperuniform state through the structure factor, S(q), as a

function of the wavenumber q, obtained from

S(q) =
1

L

〈
∣

∣

∣

∣

∣

N

∑
j=1

e−iqx j

∣

∣

∣

∣

∣

2〉

u

(42)

where the averages are computed in the ensemble with the

control force. A linear increase of S(q) from zero at small q

is a signature of the suppression of long-wavelength density

fluctuations in the hyperuniform phase, which we confirm in

Fig. 6(b). The spike at q = 2π/21/6σ results from 21/6σ be-

ing the distance of closest approach of the repulsive particles

without experiencing a force.

While we have not investigated the phase transition directly,

the disparate behavior of either side of the dynamical phase

transition provides a useful test of our ability to obtain con-

trol forces, as the structure and dynamics of the system in the

phase separated and hyperuniform states are very different.

Despite their differences in both regimes, we are able to ob-

tain control forces that are near enough to the optimal force

to converge the large deviation functions using a brute force

evaluation of the remaining cumulant expansion. Neverthe-

less, we expect this strategy may fail in general, in which case

a more robust means of estimating the remaining contribution

must be employed. To explore such alternatives, we apply

these control forces as guiding functions within the cloning

algorithm.40 To quantify the statistical benefit from the con-

trol forces, we start with a trajectory ensemble of Nw = 32000

walkers and monitor the decay rate in the number of uncorre-
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FIG. 7. Improvement of walker statistics of the cloning algorithm us-

ing approximate control forces as guiding functions in an N=20 sys-

tem, represented by f c
λ (τ) = Nc(τ)/Nw(τ), after an observation time

τ . Blue circles are without a guiding force and green squares are

with the variationally optimized guiding force. Decay of the frac-

tion of uncorrelated walkers with increasing observation time in a)

the phase-separated state (λ =−0.04) and b) the hyperuniform state

(λ = 0.2). (Insets) Decay of the fraction of uncorrelated walkers after

τ = 20 as a function of λ in a) the phase-separated state (λ =−0.04)

and b) the hyperuniform state (λ = 0.2).
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lated walkers, Nc, with and without the control forces. The

number of uncorrelated walkers is defined as those with a

distinct history, having not been previously merged into an

existing walker. Figures 7(a) and (b) show the statistics of

the walkers with respect to observation time, with and with-

out the control forces, in a system with 20 particles, and

branching steps taken every 0.5 time units. We have plotted

f c
λ (τ) =Nc(τ)/Nw(τ), where τ is the observation time, to rep-

resent the growth of correlation in the trajectory ensemble.

In the clustered state, incorporating the control forces im-

proves the number of uncorrelated walkers by multiple orders

of magnitude. For larger negative λ , an unbiased estimate

of the SCGF can be obtained only when the variational con-

trol forces are used. The improvement in the statistics of the

walkers increases for more negative λ because the magnitude

of the SCGF grows rapidly, and therefore the weight carried

by the branching step increases. We see this effect in the inset,

where we show the fraction of uncorrelated walkers left after

an observation time and how it varies with λ .40

The decay of the walkers depends on the overlap between

the tilted trajectory ensemble and that generated from the con-

trolled dynamics. Slower decay will result when the control

dynamics generates a trajectory ensemble that is close, in this

sense, to the tilted trajectory ensemble. This behavior is analo-

gous to other approximate guiding function based importance

sampling, such as that arrived by iterative feedback42 or ana-

lytical approximation.45 These effects are seen in the hyper-

uniform phase as well, albeit the decay of walkers in the ordi-

nary cloning algorithm is less drastic, and so is the improve-

ment by incorporating the guiding forces. The improvement

in statistical efficiency upon including the optimized forces is

not restricted to the cloning algorithm, and could be analo-

gously adopted within transition path sampling45 or forward

flux sampling.31

IV. CONCLUSION

We have developed a variational algorithm to compute op-

timal control forces for Langevin models driven into nonequi-

librium steady-states. We have used the control forces to sam-

ple rare fluctuations in time integrated dynamical observables

like current and activity, in order to compute large deviation

functions, and shown that they can be used to improve the ef-

ficiency of the cloning algorithm. Our variational algorithm,

along with the correction of the systematic error with the cu-

mulant expansion, has improved scaling properties compared

to trajectory ensemble methods, and can be useful in dealing

with many-particle chemical or biological systems.

Though we worked with Langevin models of structure-

less particles, the algorithm is straightforward to generalize to

higher dimensions, where optimal control forces might have

significant rotational components. It can also be extended

to lattice models, where the rate matrix has to be expressed

in a variational ansatz. A system modeled by a different

stochastic equation of motion, like that employing an Ander-

sen thermostat14 or quantum trajectory-based approaches,84,85

can also be treated through this algorithm by changing only

the functional forms of the path-actions provided a Doob

transformation exists.

The versatility of the variational algorithm allows for its

use with different force ansatzes. In the activity-biased sys-

tem, using a low-rank approximation for a many-body opti-

mal control force was sufficiently accurate. However in cases

where the control force is not expressible in a simple func-

tional form or even as a many-body expansion, machine learn-

ing using artificial neural networks could be used to approx-

imate it. The variational algorithm relies on evaluating func-

tional derivatives of the force with respect to the parameters,

which can be automated with autodifferentiation algorithms,86

as has already been demonstrated in equilibrium free energy

calculations.87 The use of techniques developed in this pa-

per can aid the formulation of such optimization algorithms

in the future. Additionally, this algorithm can be used for

model reduction in high-dimensional systems,88 and hence to

extend Variational Force-Matching and Ultra Coarse Grain-

ing algorithms89–91 out of equilibrium, so that biomolecular

and other soft matter systems can be simulated over large

length and time scales with effective forces in nonequilibrium

steady-states.

Lastly, this framework of solving the optimal forces can

tackle inverse-design problems out of equilibrium. Various

inverse-design algorithms have been proposed that can obtain

optimal forces to rationalize materials design with targeted

properties and to guide directed self-assembly of smaller

objects.92,93 Our variational algorithm can be used to ob-

tain optimal forces suitable for targeted assembly or tailored

particle distributions when nonequilibrium driving forces are

present, and hence can be used to characterize and predict dy-

namical phases in new functional materials.
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APPENDIX

A. Choice of ∆t for Malliavin weights

The choice of a finite integration limit ∆t to compute the

integral in Eq. (19) depends on both the intrinsic correlation

times of the system and the timescale of the variance of the

integrated correlation function to diverge. To illustrate this,

we plot

Ωn(∆t) =

∫ ∆t

0
dt

〈

δ ẏn(0)δ Ȯ[u](t)
〉

u
(43)
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FIG. 8. Convergence of Ωn(∆t) for λ = 0.5, for different n. Shaded

region represents optimal choice of ∆t for gradient descent.

for the system in Section IIIA in the m/γt∗ → 0 limit. The

ansatz can be written in this limit as

ũ(x) = F(x)+ c0 +
3

∑
n=1

[cn cosx+ c−n sinx] (44)

and for Fig. 8, we have chosen cn parameter values randomly

between −1 and 1, with λ = 0.5. We see that even though

the correlation function converges for large ∆t, the error in the

computed gradient increases steadily. For all the results in this

paper, ∆t was chosen to balance between these two effects so

that the computed gradients suffers from no systematic error

and minimum statistical error.

B. Convergence of gradient descent

The accelerated gradient descent algorithm converges su-

perlinearly, and in Fig. 9 we have plotted the decrease of the

0 5 10
Optimization steps

10−4

10−2

100

E
rr
or

δψ(λ)

D(ρssu ||ρλ)

FIG. 9. Simultaneous convergence of SCGF and biased density for

λ = 0.5.

systematic error δψ(λ ) in the current SCGF estimate with op-

timization steps, for the model system in Section IIIA, in the

limit m/γt∗ → 0. We also show the simultaneous convergence

of the controlled ensemble steady-state density ρ ss
u (x) to the

true biased steady-state density ρλ (x) ∝ χλ (x)φλ (x) where χλ

and φλ are the dominant left and right eigenvectors of the tilted

generator (30). We demonstrate this by plotting the relative

entropy of the two,

D(ρ ss
u ||ρλ ) =

∫

dxρ ss
u (x) log

(

ρ ss
u (x)

ρλ (x)

)

(45)

which shows that even as only the current is being optimized

to have a nontypical value, the entire trajectory ensemble si-

multaneously converges to the exact biased ensemble.

C. Activity profile in clustered state

Under large negative activity bias, we find that the over-

damped repulsive particles form a highly compressed clus-

ter. This cluster is described by system-spanning correlations.

Shown in Fig. 10 is the size-scaled profile for the first term

of the collective activity (38), 〈F2
i 〉λ/4γkBT , with respect to

a size-scaled particle index Ni = i− (N + 1)/2. The particles

are indexed from one end of the cluster to the other, such that

the center of the cluster is indexed at Ni = 0. The compressed

cluster does not break apart during the duration of the trajecto-

ries observed, so that large |Ni| unambiguously refers to parti-

cles close to the surface of the cluster. The total mean activity

〈K〉λ is proportional to the total mean squared force appear-

ing in the first term, such that the profile of the second term in

the definition looks analogous only with an opposite sign.82

The O(N2) scaling of the mean squared force and its size-

invariant parabolic profile explains the super-extensive SCGF

scaling and the system spanning correlations in this λ regime.
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FIG. 10. Size-scaling of the mean squared force profile within the

cluster for λ =−0.1.
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tingales: Volume 2, Itô calculus, Vol. 2 (Cambridge university press, 2000).
63L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).
64R. Chetrite and H. Touchette, Physical review letters 111, 120601 (2013).
65J. L. Doob, Classical potential theory and its probabilistic counterpart:

Advanced problems, Vol. 262 (Springer Science & Business Media, 2012).
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