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Abstract

Muscle contraction is an essential biological process than spans physiological size scales, ranging

from molecular interactions between the proteins actin and myosin, to larger cellular behavior, and

ultimately whole-muscle function. The mechanisms of contraction are intriguing to study because

unique behavior occurs at each physiological size scale. Developing a detailed understanding of the

connections across scales is particularly important, because whole-muscle dysfunction and disease

are often attributed to small-scale mutations. Thus, a multi-scale model of contraction is necessary

to form a comprehensive understanding of muscle function.

In the following dissertation, I develop a multi-scale model of muscle contraction based in

well-measured molecular mechanisms that spans physiological size scales to connect to the larger

fiber level. In each chapter, I focus on an unexplained attribute of muscle contraction, and using

biophysical modeling and quantitative techniques, I extend the theory to describe experimental

measurements across scales.

In Chapter 1, I begin by providing an overview of the literature of muscle contraction to contex-

tualize my research within the broader field. In Chapter 2, I explore muscle fatigue, and through

development of a model to describe molecular measurements under the fatiguing conditions of aci-

dosis and increased phosphate, provide novel insight into a molecular basis for contractile fatigue.

In Chapter 3, I scale molecular interactions to the cellular level to explore the mechanisms behind

the force transient response of a muscle fiber after a small, rapid stretch. By adjusting the model

to replicate force transient measurements, I suggest a mechanism for unexplained fiber phenom-

enon, and highlight the complex connection between molecular kinetics and fiber-level behavior.

In Chapter 4, I investigate the regime of large-amplitude, rapid lengthening of muscle fibers. To

develop the model to describe these measurements, I extend my modeling framework to explicitly

model multiple-sarcomere systems, and illustrate the need for such a model in capturing the effects

of sarcomere instabilities that arise during rapid large-amplitude lengthening.

Taken together, the work presented in the following chapters seeks to deepen our knowledge of

muscle contraction. By developing mathematical models to describe unknown muscle behaviors,

we make connections across physiological size scales and provide insight into molecular mechanisms

that cause whole-muscle function, ultimately working towards a comprehensive theory of muscle.
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Introduction

Motivation

Muscle contraction is a fundamental biological process that is necessary for a range of physio-

logical functions. Cardiac muscle contraction, for example, results in proper heart function, while

skeletal muscle contraction is crucial for actions including human locomotion and insect flight. Ad-

ditionally, involuntary muscle contraction, such as that which results in blood flow and digestion,

is a result of the contraction of smooth muscles. When these processes fail, muscle dysfunction

or disease can result in devastating physiological consequences, ranging from muscular dystrophy

to cardiac disease. Thus, having a clear understanding of the mechanisms of muscle function and

disease are imperative for human-health related fields.

The biological system of muscle contraction spans physiological size scales, beginning with pro-

tein interactions at the molecular level and scaling upward approximately eight orders of magnitude

to result in whole-muscle contraction. This system is both compelling and challenging to study,

because unique behavior occurs at each size scale. Today, there is an extensive amount of exper-

imental work exploring the spectrum of physiological scales from the molecular [e.g. Finer et al.,

1994, Guilford et al., 1997, Veigel et al., 2003, Kad et al., 2007, Debold et al., 2008] to whole-fiber

[e.g. Huxley and Simmons, 1971, Glasheen et al., 2017, Piazzesi et al., 1997] and whole-muscle

[e.g. Hill, 1938, Fenn, 1923] levels. However, given that emergent behavior occurs across physio-

logical size scales, it is challenging to make connections between single molecule mechanisms and

larger fiber behavior [Duke, 1999, Baker et al., 2002, Campbell, 2009, Stoecker et al., 2009, Wal-

cott and Sun, 2009]. The ability to associate mechanisms across scales is particularly important,

because many muscle diseases have been connected experimentally to molecular-level defects [e.g.

Landstrom et al., 2008, Tardiff, 2005, Campbell et al., 2010, Regnier, 2018, Seidman and Seidman,

2001]. For example, it has been shown experimentally that familial hypertrophic cardiomyopathy,

1



a form of cardiovascular disease, is linked to point mutations in the proteins involved in contrac-

tion [Colegrave and Peckham, 2014, Sivaramakrishnan et al., 2009, Seidman and Seidman, 2001,

Geisterfer-Lowrance et al., 1990]. Thus, a multi-scale perspective of muscle contraction is essential

for a comprehensive understanding of muscle function and disease.

One approach to developing this multi-scale understanding is through mathematical model-

ing. Throughout the study of muscle, a vast collection of theoretical work has been developed to

quantitatively describe experimental results [e.g. Lacker and Peskin, 1986, Piazzesi and Lombardi,

1995, Duke, 1999, Månsson, 2010, Walcott et al., 2012, Campbell, 2014, Tanner et al., 2007]. These

models vary in the size scales they describe, the physiological details they include, and the math-

ematical techniques they employ. In general, each model fits some subset of experimental data,

often leading to a few specific implications for understanding muscle mechanisms. However, to the

best of my knowledge, there is no single mathematical model that is able to fully describe muscle

measurements across physiological size scales.

With the work presented in this dissertation, I aim to develop a mathematical model of muscle

contraction, based in well-defined molecular mechanisms, that captures the unique behavior across

physiological scales. To do so, I formulate a simple mechanochemical model of contraction at the

molecular scale, and through collaboration with experimentalists, expand it to describe various

muscle measurements at the molecular and fiber levels. In particular, I focus on three key areas of

muscle contraction in which the molecular mechanism behind a cellular phenomenon is unknown.

These are (1) the effect of muscle fatigue at the molecular scale, (2) the mechanisms that result

in a muscle’s force response to rapid, small amplitude stretch, and (3) the behavior resulting from

large amplitude muscle lengthening and the effect of sarcomere non-uniformity.

In the following sections, I begin by introducing the biological background and mathematical

framework that form the foundation of my research (Introduction), and additionally provide an

overview of mathematical modeling in the literature to provide context for my modeling work

(Chapter 1). Next, in Chapter 2, I detail my work on muscle fatigue. In this work, I develop a

minimal cross-bridge model to describe the effects of acidosis and increased phosphate on molecular

kinetics. These factors are characteristic of muscle fatigue at the fiber level, and thus our successful

model provides insight into the molecular mechanisms of large-scale contractile fatigue (Chapter
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2, [Jarvis et al., 2018]). In Chapter 3, I explore the transient force response of a muscle fiber to

a rapid, small amplitude stretch. Through development of a model to describe this behavior, I

illustrate the complex connection between fiber level measurements and molecular kinetics, and in

particular, suggest a mechanism for the unexplained cellular-scale phenomenon of stretch-activation

(Chapter 3, [Jarvis et al., 2021]). Finally, in Chapter 4, I extend this modeling work to additionally

consider large amplitude muscle lengthening. With this work, I show that sarcomere instabilities

arise when muscle fibers are stretched to sizable lengths, resulting in the necessity of using explicit

multi-sarcomere models to appropriately model the response (Chapter 4). Taken together, my

findings provide insight into the connections across physiological scales of muscle and work towards

a multi-scale model of muscle contraction.

Biological Background

Muscle contraction is a biological system that spans about eight orders of magnitude from

the smallest molecular scale to the larger whole-muscle level (Fig. 0.1). At the largest scale, a

whole muscle is made up of many muscle fibers, which are individual muscle cells. These fibers

are composed of specialized organelles responsible for contraction, or myofibrils. Each myofibril

is sectioned into sarcomeres, which are the fundamental unit of muscle contraction. Sarcomeres

contain two sets of protein filaments: thick filaments, which include the protein myosin, and thin

filaments, which include the protein actin. At this scale, it is the cyclical interaction between actin

and myosin that powers relative sliding of the two protein filaments, which ultimately scales up to

result in macro-level contraction. In this section, I provide a brief introduction to muscle activation,

outline the complex dynamics of the interaction between actin and myosin, and discuss some of the

unexplained phenomena of contraction that motivate this work.

Muscle Activation and Cross-Bridge Dynamics: When a muscle fiber is in a pre-

activation state, the actin filament interacts with two regulatory proteins, troponin and tropomyosin.

Tropomyosin wraps around the actin filament, sterically blocking the myosin binding sites and pre-

venting the formation of cross-bridges (Fig. 0.2). When a muscle cell receives a neural input to
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Figure 0.1. Sketch of muscle physiology across scales. Unique behavior occurs at each scale,
spanning from whole-muscle contraction down to the smallest molecular scale. Adapted from Art
and Science Graphics, Ruona

signal for contraction, calcium is released from the sarcoplasmic reticulum and binds to troponin.

This causes a conformational change in tropomyosin, shifting the protein to expose some of the

binding sites on the actin filament. Myosin can then bind to actin in a cooperative process whereby

a bound myosin molecule locally displaces tropomyosin further, enhancing myosin binding in a local

region.

Actin Filament

Tropomyosin

Troponin

Figure 0.2. Sketch of actin filament in a pre-activation
state. In the absence of calcium, proteins troponin and
tropomyosin interact with the actin filament, blocking
myosin binding sites and inhibiting contraction.

Once full activation has occurred, the pro-

teins myosin and actin interact in a cyclical

process in which ATP-hydrolysis drives myosin

molecules to transiently interact with actin fila-

ments, forming cross-bridges. Once bound, the

myosin molecule undergoes a conformational

change, called the power-stroke, which applies

a force on the actin filament and results in the

two filaments sliding past one another. ATP

binding to the myosin molecule causes dissociation of actin and myosin, and finally the hydrolysis

of ATP primes the cycle to begin again.

This interaction can be represented with a simple kinetic scheme in which myosin and actin cycle

through discrete states (Fig. 0.3). Beginning in an unbound configuration, myosin is unattached
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from actin with ADP and inorganic phosphate (Pi) in its active site (state 4, Fig. 0.3). In some

order, Pi is released, myosin binds to actin, and the power-stroke conformational change occurs

(transition 4 to 1, Fig. 0.3). In this configuration, myosin is strongly-bound to actin and producing

force, with ADP in its active site. ADP can then be released in a force-dependent manner, and

myosin stays bound to actin in a rigor state (state 2, Fig. 0.3). ATP can then bind to the now

empty active site of myosin, which causes myosin to detach from actin (state 3, Fig. 0.3). Finally,

with myosin unbound from actin, ATP can be hydrolyzed into products ADP and Pi (transition

from 3 to 4, Fig. 0.3), and the cycle can repeat.

Pi
ADP

ADP

ATP

Pi

ADP

ATP

Strongly-Bound Rigor State 

Unbound State
(ATP Hydrolyzed)

Unbound State
(ATP Bound)

1 2

34

(Force-dependent)

a(x)κ

kh
+

kh
-

kD(x)

kT[ATP]

Figure 0.3. Adapted from Jarvis et al. [2021]. A simple
four-state kinetic scheme describes the interaction between
actin and myosin, including two bound states (states 1 and
2) and two unbound states (states 3 and 4).

The mechanical and chemical details in-

cluded in this scheme are well-studied, and this

minimal model is generally accepted to describe

the most basic actomyosin interaction. Addi-

tionally, many simple kinetic schemes similar to

that presented here are able to describe molec-

ular muscle measurements [e.g. Walcott et al.,

2012, Pate and Cooke, 1989, Baker et al., 2002,

Kad et al., 2007] and even have predictive power

at larger scales [e.g. Piazzesi and Lombardi,

1995, Månsson, 2010, Newhard et al., 2019].

However, these simplistic models all lack some

details, and many only describe some subset of

muscle measurements or provide only qualita-

tive predictions. A truly comprehensive theory would replicate the entire spectrum of muscle mea-

surements and have predictive power at all physiological scales. The modeling work presented in

this dissertation aims to further our comprehensive knowledge of contraction by using this four-state

kinetic scheme as foundation and extending it to describe a wider range of muscle measurements,

as detailed in the following chapters.
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Muscle Fatigue: Under normal skeletal muscle conditions, the above actomyosin dynamics

drive muscle contraction, resulting in force and motion at larger scales. However, when muscles

are stimulated repeatedly or at a high frequency, their ability to generate force and motion quickly

diminishes, resulting in muscle fatigue. While there are likely many factors that contribute to

overall muscle fatigue, including neural mechanisms, decreased calcium, increased metabolic by-

products, and more, the effect of fatigue on the molecular mechanisms of contraction are not well

understood [Debold, 2012].

It has been shown experimentally that fatigued muscle fibers exhibit acidosis, due to increased

levels of hydrogen ions from the dissociation of lactic acid to lactate [Fitts, 1994] and a by-product

of ATP-hydrolysis [Robergs et al., 2004], as well as increased levels of inorganic phosphate (Pi), due

to the breakdown of ATP to creatine phosphate. During severe fatigue, the pH in a muscle fiber

can fall from a neutral 7.0 to as low as 6.2 [Wilson et al., 1988, Cady et al., 1989, Nelson et al.,

2014], and the Pi levels can rise from just a few mM to as high as 30 mM [Nelson et al., 2014]. Many

experimental studies have illustrated a link between these agents and loss of contractile function [e.g.

Cooke and Pate, 1985, Debold et al., 2004, Nelson et al., 2014, Debold, 2012, Knuth et al., 2006].

It has been shown, for example, that acidosis alone can significantly reduce unloaded shortening

velocity and power produced by a muscle fiber [Pate et al., 1995, Knuth et al., 2006], and that

increased Pi and decreased pH in muscle fibers decrease both force and velocity [Cooke and Pate,

1985, Debold et al., 2004]. However, while it is clear that acidosis and increased Pi concentrations

contribute to contractile fatigue, it is unclear how these factors affect the interaction between actin

and myosin.

Additionally, the individual effects of pH and Pi at the molecular level of muscle are complex.

The effect of increased Pi has been studied extensively due to its connection to the conformational

change of myosin that results in force production. Experimental work has established that Pi can

rebind to myosin in a strongly-bound configuration prior to ADP release, causing early dissociation

of myosin from actin, and resulting in decreased force [Debold et al., 2013]. However, the details

of this transformation, and exactly how Pi rebinding affects the actomyosin interaction, are still

controversial.
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The molecular effect of pH is much less studied, but it has been shown experimentally that

low pH decreases myosin’s average step size in a laser trap [Debold et al., 2008] and reduces actin

velocity in a motility assay [Debold et al., 2011]. It has hypothesized that low pH affects myosin’s

ADP release rate, resulting in slower detachment from actin, and thus depressing actin velocity

[Debold et al., 2008, Debold, 2012]. However, given that acidosis does not result in an increase in

force, as would be expected from slower detachment rates and thus longer force-generating lifetimes,

pH must be affecting additional steps in the cross-bridge cycle.

Ultimately, a decrease in pH and an increase in Pi occur concurrently during muscle fatigue,

and thus in order to have a comprehensive understanding of fatigue, we must understand their

combined effects. The complex dynamics and unknown mechanisms of these agents motivate the

work presented in Chapter 2. By investigating molecular level measurements and developing a

mathematical model, we provide a possible mechanism for the combined effects of pH and Pi at

the molecular level, and contribute to a deeper understanding of muscle fatigue across scales.

Stretch-Activation: Stretch-activation (SA) is a cellular phenomenon of muscle defined as a

delayed increase in force following a rapid lengthening of a muscle fiber [Glasheen et al., 2017, Zhao

and Swank, 2016]. Nearly all muscle types exhibit some magnitude of stretch-activation, and this

phenomenon is thought to be biologically advantageous because it can enhance the amount of force

produced beyond that possible from only calcium activation [Glasheen et al., 2017, Zhao and Swank,

2016, Josephson et al., 2000]. Cardiac muscle, for example, is moderately stretch-activatable, and

it is hypothesized that stretch-activation contributes to the intrinsic ability of cardiac muscle to

adapt to differential volumes of blood flow, an effect known as the Frank-Starling mechanism [Zhao

and Swank, 2016, Campbell and Chandra, 2006]. Additionally, insect flight muscles are a form of

skeletal muscle that elicit a significant stretch-activation response. To maintain flight, insect flight

muscles contract at a very high frequency [Josephson et al., 2000]. It is hypothesized that this is, at

least in part, due to stretch-activation, which moderates force levels without the need for constant

calcium cycling, leading to more economical force and power production, and resulting in flight

[Josephson et al., 2000, Glasheen et al., 2017].
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Experimentally, stretch-activation is observed in the force transient response of a muscle after a

rapid stretch is applied to the fiber. In this protocol, the muscle fiber is calcium-activated and held

at an isometric length. At a particular point in time, the fiber is rapidly (e.g. < 0.5 ms) stretched

a small percentage of its length, and then held isometrically again. The transient response of the

muscle fiber occurs in four phases (Fig. 0.4). At the time of stretch, the force quickly increases

(phase I). After this initial peak, the force rapidly decays (phase II), followed by a delayed increase

in force known as stretch-activation (phase III), and finally a slow recovery phase (phase IV).

Phase I
Phase II

Phase III
Phase IV

Fo
rc

e

Time
10 ms

M
us

cl
e

Le
ng

th

Figure 0.4. Adapted from [Jarvis et al., 2021]. Sketch of
a typical skeletal muscle force response to a rapid, small-
amplitude stretch.

While stretch-activation is physiologically

relevant and studied experimentally, the molec-

ular mechanisms that cause it are unknown

[Ford et al., 1977, Glasheen et al., 2017, Kawai

and Halvorson, 2007, Galler et al., 1997, Linari

et al., 2004]. In Chapter 3, we develop a cross-

bridge model to reproduce two complementary

fiber-level measurements including force tran-

sients after stretch and the force-velocity re-

lationship. By determining the model compo-

nents necessary to simultaneously fit these measurements, we develop a hypothesis for the mecha-

nism of stretch-activation, provide insight into the connection across scales, and take steps towards

a comprehensive theory of contraction.

Muscle Lengthening: Human locomotion is dependent on eccentric contraction, during which

active muscles are forcibly lengthened to produce negative mechanical work. A variety of muscular

movements involved in motion and exercise, such as walking downhill, descending stairs, or running,

rely on the proper lengthening of muscle [Balnave and Thompson, 1993, Clarkson and Hubal,

2002, Hody et al., 2019, Lindstedt et al., 2001]. Eccentric contraction is a particularly interesting

contractile regime because it can result in stretch-induced muscle damage, followed by a recovery

period that fortifies the muscle against further eccentric-related injury [Proske and Morgan, 2001,

Clarkson and Hubal, 2002, Morgan and Allen, 1999, McHugh et al., 1999]. This phenomenon,
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known as the “repeated bout effect” is a compelling area of study, because fortification against

muscle damage could have implications for restoring or preserving muscle function in aged or

injured muscle [Hody et al., 2019, Brown et al., 1997, Schwane and Armstrong, 1983].

At the cellular scale, experimental studies demonstrate that muscle lengthening causes struc-

tural changes at the myofibril and sarcomere levels. Studies show disruption in Z-lines [Clarkson

and Hubal, 2002, Friden et al., 1981], disorganization of sarcomere structure [Proske and Morgan,

2001, Brown and Hill, 1991, Wood et al., 1993], and evidence of non-uniform lengthening among

sarcomeres [Wood et al., 1993, Proske and Morgan, 2001]. The exact mechanisms of these changes,

and how they scale to larger physiological levels, is not well understood.

In addition to unexplained experimental results, the majority of theoretical muscle models have

been developed to describe isometric and shortening muscle, without consideration of lengthening.

Further still, many models approximate muscle fiber dynamics with the behavior of a single half-

sarcomere, and such models would not be able to capture multi-sarcomere effects, such as non-

uniformity in sarcomere lengthening, which are observed in muscle measurements. As a result,

there is no detailed theory to describe eccentric contraction, and the connections between molecular

interactions, cellular behaviors, and whole-muscle lengthening phenomenon are unclear.

The work presented in Chapter 4 is motivated by eccentric contraction, and the advantageous

and yet unexplained features of this regime. By extending our modeling framework to describe

a multiple-sarcomere system, we investigate rapid, large-amplitude lengthening, and provide new

perspective on the model components necessary to accurately capture lengthening muscle dynamics.

Mathematical Framework

At a broad level, the objective of this dissertation research is to develop a comprehensive math-

ematical model of muscle contraction that spans physiological size scales. To do so, we develop

mechanochemical models of the interaction between actin and myosin based in well-defined molec-

ular mechanisms and use mathematical tools to connect this molecular behavior to larger scales.

In this section, I briefly introduce some of the mathematical framework used in the following work,

9



illustrate how we use mathematics to make connections across scales, and discuss how mathemati-

cal results are connected to experimental measurements.

Actin and myosin interact in a cyclical process that is fueled by ATP-hydrolysis. To model

this process, we express the interactions with simple kinetic schemes that describe the physical,

mechanical, and chemical details (e.g. Fig. 0.3 or 3.1B). We then implement a variety of quanti-

tative techniques to simulate these dynamics, choosing specific mathematical tools depending on

the experimental protocols and measurements we consider. When comparing the model to single

molecule or small ensemble measurements, for example, the kinetic scheme can be simulated using

Monte Carlo (MC) methods. For larger-scale measurements, we use a system of partial differential

equations (PDEs) to make connections across scales.

First, when considering molecular measurements, we implement a modified Gillespie algorithm

(a version of a Monte Carlo method) to simulate the time evolution of small ensembles. Throughout

time, we keep track of the state of each myosin molecule, the extension of the molecule when bound

to actin, and the reaction time for each molecule to transition to the next state. These reaction

times are determined by sampling from the appropriate distributions, given the rate constants for

the available transitions between states. To determine these, we consider a cross-bridge transition

between two states as a simple forward chemical reaction. This is modeled with a standard ordinary

differential equation of the form dn/dt = −kn where n is the fraction of molecules in the current

state and k is the forward rate constant to the next state. Thus, the fraction of molecules in the

current state exponentially decreases throughout time with the form, n = n0e
−kt. The Gillespie

algorithm works by randomly picking a reaction time from this distribution. To implement this, we

define the transition time for each molecule with the following, where X is a uniformly distributed

random number between 0 and 1, and kij is the rate constant to transition from state i to state j:

T = − 1

kij
ln (X)

At each iteration in our simulation, we determine the smallest reaction time for all molecules,

and step forward in time by this value. The corresponding molecule transitions to the next state,

and the system is updated appropriately. The use of this variable time step is characteristic of the

10



Gillespie algorithm, and is advantageous over a standard Monte Carlo method because time steps

only occur when reactions occur. Additionally, our method is a “modified” Gillespie algorithm

because some of the reaction rates in our system are force-dependent, and we must adjust these

calculated reaction times each time a molecule binds or unbinds. Employing Monte Carlo methods

is a straightforward way to simulate the interaction between actin and myosin on a small scale.

(For more information on Monte Carlo methods, see section 1.4).

When we scale the actomyosin interaction upwards and compare to fiber level measurements,

Monte Carlo simulations become computationally costly and inefficient. Therefore, we also employ

a system of integro-PDEs to make connections across scales. Here, I describe this process for a

simple four-state kinetic scheme (Fig. 0.3), and in the following chapters, the same general methods

are used for similar cross-bridge models.

To transform our four-state model into a system of differential equations, we use chemical

kinetics. However, the dynamics of the system are dependent on the force molecules experience,

and so we must take care to appropriately model this force-dependence. Let x be the extension of

a myosin molecule. When a molecule is in an unbound state (states 3, 4 in Fig. 0.3), the molecule

is unbound from actin and therefore experiences no force. Thus, the probability of being in an

unbound state, Ni(t), is simply a function of time. When a molecule binds to the actin filament

(states 1, 2 in Fig. 0.3), it does so with a particular extension, x. Thus, as with continuous random

variables, we must define the probability density that myosin is in a bound state i with extension x

as ηi(x, t). The integral Ni(t) =
∫∞
−∞ ηi(x, t)dx then defines the probability that myosin is bound in

state i at time t. Transitions between most states are defined by constants, however the attachment

rate of myosin to actin (transition from state 4 to 1 in Fig. 0.3) must also be defined as a probability

density function, since myosin binds with a particular extension. Finally, ADP release rate has been

measured experimentally to be dependent on the force a molecule experiences, and given that we

model myosin as a linear spring and thus extension is proportional to force, ADP release rate is

also dependent on x.

Assuming that myosin can bind anywhere along the actin filament (i.e. the dense binding limit,

see section 1.2) and that there is a sufficiently large number of cross-bridges, the four-state kinetic

scheme can be expressed as follows, with the final equation preserving conservation of mass:
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∂η1

∂t
+ v

∂η1

∂x
= κa(x)N4 − kD(x)η1

∂η2

∂t
+ v

∂η2

∂x
= kD(x)η1 − kT [ATP]η2

dN3

dt
= kT [ATP]

∫ ∞

−∞
η2dx+ k−hN4 − k+

hN3

dN4

dt
= k+

hN3 −
(
k−h +

∫ ∞

−∞
κa(x)dx

)
N4

1 =

∫ ∞

−∞
η1dx+

∫ ∞

−∞
η2dx+N3 +N4

(0.1)

We solve this system under a variety of different conditions, such as steady-state and isometric

(v = 0), depending on the experimental measurements we are interested in describing. To solve, we

use a collection of both numerical and analytical tools including standard ODE solvers, the method

of characteristics, and asymptotic approximations, as described in detail in the following chapters.

The results of these differential equations are then directly relatable to experimentally measured

quantities. In particular, we define force as the product of the probability a myosin molecule is

bound times the force it produces when it is. Letting κ represent the stiffness of myosin and given

that a molecule undergoes a power-stroke of size d nm once bound (and thus the extension when

bound is (x+ d)), force produced is then:

(0.2) F =

∫ ∞

−∞
κ · η1 · (x+ d)dx+

∫ ∞

−∞
κ · η2 · (x+ d)dx

With this mathematical representation of the mechanochemical cycle of actin and myosin, we

are able to relate molecular interactions to fiber-level behavior. This mathematical framework

forms the general principles and techniques of the work presented in the following chapters, with

adjustments and advancements made to the modeling work as necessary.
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CHAPTER 1

Literature Review

1.1. First Muscle Physiology Studies: The Sliding Filament Theory

Given the physiological importance of muscle contraction, it has been a subject of study for

centuries. In the early 1900s, scientists began proposing questions regarding the structure of muscle

and the mechanisms of contraction across physiological scales. Even with the limited experimental

techniques available at the time, researchers were able to develop a preliminary description of

contraction, and much of this work is still the foundation of the muscle field today.

Throughout the extensive history of studying muscle, two classic experiments on whole muscles

give motivation for the work presented in this dissertation, and provide foundation for our review

of the sliding filament theory. First, in 1923, W.O. Fenn performed experiments on frog sartorius

muscle that enabled him to study the relationship between the energy liberated by a muscle and

the work performed during contraction [Fenn, 1923]. In this work, he measured the heat a muscle

produced when it was maximally stimulated and allowed to shorten a fixed distance under an

imposed load. Fenn’s measurements showed that the heat a muscle generated increased linearly

with load. As the load increased, the muscle eventually became unable to shorten the full distance in

the time allotted, after which the heat decreased linearly (Fig. 3.1C). Additionally, Fenn determined

that the excess heat produced during a contraction in which the muscle was allowed to shorten

under a fixed load (i.e. an isotonic contraction), in comparison with a contraction in which the

muscle was held at a fixed length (i.e. an isometric contraction), was proportional to the amount

of work done by the muscle. Today, this is known as the Fenn effect [Fenn, 1923].

Subsequently, in 1938, A.V. Hill extended the experimental work on the energetics of muscle and

derived a relationship between force and velocity of contraction [Hill, 1938]. Hill’s measurements

resulted in a hyperbolic relationship between force and velocity, in which increasing force results

in a decrease in shortening velocity (Fig. 3.1D). While more recent experiments suggest deviations
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from this relationship under some conditions [e.g. Edman et al., 1976, Duke, 1999], Hill’s force-

velocity relationship remains an excellent phenomenological description and is still used in many

current muscle studies [e.g. Knuth et al., 2006, Jarvis et al., 2018, Eldred et al., 2010, Widrick

et al., 1996, Piazzesi and Lombardi, 1995].

As biologists became increasingly curious about the molecular scale in the 1950s, there was

increased interest in understanding how smaller-scale mechanisms produced whole-muscle behav-

iors. Many experimentalists turned to novel imaging techniques that illuminated the structure of

muscle at different physiological size scales. By the early 1950s, a general picture of the structure

of muscle had emerged. This work illustrated that whole muscles were comprised of many muscle

fibers. Fibers were made of bundles of myofibrils, which were long, cylindrical objects that were

sectioned into repeating units in series. These units, now known as sarcomeres, were originally

defined based on their isotropic regions (i.e. I-bands) and anisotropic regions (i.e. A-bands). It was

later determined that these light and dark regions constitute thin and thick filaments, and contain

the proteins responsible for contraction. We now know that the thick filaments contain the protein

myosin and the thin filaments contain the protein actin.

In 1954, A.F. Huxley and R. Niedergerke used imaging techniques to study the structure of

a muscle fiber during the contraction process [Huxley and Niedergerke, 1954]. In particular, they

looked at how the size of the light and dark regions changed under different contraction protocols.

They found that, during contraction, the length of the A-band region stayed constant, but the length

of the I-band region decreased as a muscle shortened [Huxley and Niedergerke, 1954]. These results

provided some of the first evidence of the thick and thin filaments sliding past one another during

contraction [Huxley and Niedergerke, 1954]. Further evidence for sliding filaments was proposed

by H.E. Huxley and J. Hanson in their work on myofibrils [Huxley and Hanson, 1954], where they

additionally experimented with varying concentrations of ATP in their experimental systems. Their

findings were some of the first to suggest that when filaments slide, connections are formed between

actin and myosin in an ATP-dependent manner [Huxley and Hanson, 1954]. Together, these studies

presented a compelling view of the sliding filaments and cross-bridge dynamics within muscle.

With these preliminary muscle experiments, a theory of the basic mechanisms of muscle con-

traction began to emerge. This theory, known as the sliding filament theory, detailed a process
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in which the thick and thin filaments transiently interact in an ATP-dependent manner to form

connections (known as cross-bridges), resulting in the production of force and the sliding of the

filaments. To further explore contraction, researchers soon began to quantitatively describe muscle.

In his pioneering work in 1957, A.F. Huxley mathematically formalized many of these preliminary

findings into the first quantitative cross-bridge theory (see section 1.2). Today, improved experi-

mental techniques and enhanced mathematical modeling have led to a more detailed and accurate

picture of muscle physiology across scales. However, these first muscle experiments and the sliding

filament theory were vital to the development of this knowledge, and still form the foundation of

the field of muscle contraction today.

1.2. Introduction to Cross-Bridge Theory: Huxley PDE Model

Huxley’s PDE Model. Soon after the sliding filament theory was first proposed, A.F. Huxley

developed one of the first mathematical explanations for this process [Huxley, 1957]. In his formu-

lation, Huxley depicts thick filaments as containing cross-bridges, which he describes as spring-like

extensions of the myosin filament that can connect with discrete sites on the actin filament. Cross-

bridges form and detach in a cyclical process, leading to a two-state model where myosin is either

bound or unbound to actin. In the detached state, myosin fluctuates due to thermal agitation.

When the myosin cross-bridge is within range of an actin binding site, it has the potential to bind

to the filament. When this binding occurs, the cross-bridge exerts a force on the actin filament,

resulting in the sliding of the filaments, and thus muscle shortening [Huxley, 1957].

To express this mathematically, Huxley had to make a few simplifying assumptions, motivated

both by mathematical feasibility and by the lack of physiological details available at the time.

Huxley assumed that binding sites on actin were sparsely distributed, that cross-bridges were able

to bind to only one site, and that cross-bridges could not interact (an assumption noted here as

the independent force generator hypothesis, discussed below). Likely motivated by mathematical

convenience, Huxley employed piecewise linear functions, f(x) and g(x), to describe the rates at

which attachment and detachment occurred, respectively. Notably, these rates were dependent on

x, the distance of the closest actin binding site relative to an unstrained cross-bridge.
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With these assumptions, Huxley used chemical kinetics to express the probability that a cross-

bridge was bound at position x at time t. Denoting this probability as n(x, t), and letting v be the

velocity of the thin filament relative to the thick filament, Huxley described cross-bridge dynamics

with the following partial differential equation:

∂n

∂t
+ v

∂n

∂x
= f(x)(1− n)− g(x)n

Given that an attached cross-bridge acted as a linear spring, and thus a cross-bridge with

position x generated a force κx, Huxley was able to calculate force using the probability that a

cross-bridge was attached and the force produced when bound. Assuming that the distance between

binding sites on the actin filament was L, this force calculation was,

F =
1

L

∫ ∞

−∞
κxn(x, t)dx

With this mathematical formulation, Huxley developed a quantitative explanation of the sliding

filament theory. He then used this model to reproduce steady-state experimental measurements

at the whole muscle level, including the force-velocity measurements of Hill [1938] [Huxley, 1957].

Notably, Huxley’s model was a crucial first link across physiological size scales of muscle, and

provided a quantitative way to connect the behavior of single myosin cross-bridge with larger fiber

behavior.

Extensions and Development of Huxley’s Model. Huxley’s mathematical formulation

of cross-bridge dynamics provided a new perspective on muscle contraction, and his remarkable

modeling work is still used today [e.g. Jarvis et al., 2021, Walcott et al., 2012, Campbell, 2014,

Eisenberg et al., 1980, Lacker and Peskin, 1986, Månsson, 2010, Piazzesi and Lombardi, 1995].

However, due to the limitations on experimental work at the time, the Huxley model includes

some simplifying assumptions regarding the details of the interaction between actin and myosin.

Additionally, in the original formulation, Huxley only applied his theory to a small selection of

steady-state muscle measurements [Huxley, 1957].

In the years following Huxley’s theory, improved experimental techniques resulted in measure-

ments that allowed for Huxley’s theory to be expanded to capture a wider range of muscle dynamics.
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In 1971, Huxley and Simmons extended the framework to describe transient muscle dynamics [Hux-

ley and Simmons, 1971]. Experimentally, they imposed a stepwise length change to muscle fibers

to measure the force transient response, and theoretically, they updated the model to reflect the

findings [Huxley and Simmons, 1971]. As experimental techniques advanced further, new insight

was gained regarding the ATP-dependence and general biochemistry of the interaction between

actin and myosin. In 1971, Lymn and Taylor explored the mechanisms of ATP hydrolysis and

its connection to the cross-bridge cycle [Lymn and Taylor, 1971]. With their results, they were

able to draw connections between enzymatic reactions of actin and myosin and the mechanisms

proposed in the sliding filament theory. In 1980, Eisenberg and Hill incorporated these results into

a mathematical model that accounted for both the mechanics and biochemistry of the actomyosin

interaction [Eisenberg et al., 1980]. Additionally, in 1974, Terrell Hill developed a detailed discus-

sion on using statistical mechanics to connect the biochemical and mechanical properties of muscle,

and extended Huxley’s model to be consistent with the laws of thermodynamics [Hill, 1974].

In these preliminary extensions of Huxley’s work, the models employ similar foundational as-

sumptions to that of Huxley, and therefore the overall model structure is equivalent to that pre-

sented in Huxley’s original formulation. However, there is another collection of models during this

time that further develop the original model by modifying some of the assumptions. These changes

ultimately alter the structure of the mathematical formulation.

One key assumption of Huxley [1957] was that each cross-bridge could attach to at most one

binding site on the actin filament. This assumption, known as the sparse binding limit, is crucial for

the mathematical formulation presented in Huxley [1957]. In particular, this lends to the definition

of x as the distance between a cross-bridge and the nearest binding site, as well as the choice

of n(x, t) to represent the dimensionless probability that myosin is bound at position x, and the

resulting PDE that governs the dynamics of the cross-bridge.

In the years that followed Huxley’s work, various models relaxed this sparse binding site as-

sumption to different degrees. In Terrell Hill’s work on the thermodynamics of muscle, he extended

Huxley’s original model, with a sparse binding limit, to be thermodynamically accurate [Hill, 1974],

but also explored two additional binding site configurations [Hill, 1976]. Hill considered the cases

when 1) cross-bridges can interact with a small, localized group of actin sites, and 2) cross-bridges

17



have access to an unlimited array of equivalent groups of binding sites. In the first case, the model-

ing of a small group of actin binding sites is fundamentally the same as the single binding site case,

except that the kinetic scheme is adjusted to include the increased binding possibilities. For exam-

ple, a cross-bridge can now be in a strongly-bound configuration at any of i = 1, 2, ...,m binding

sites, resulting in m strongly-bound states in the kinetic scheme, instead of the original one. With

this adjusted kinetic scheme, the original mathematical methods of Huxley can be applied [Hill,

1976]. In the latter case, each cross-bridge can interact with an infinite set of equivalent groups of

binding sites, each comprised of a subset of non-equivalent binding sites. While Hill argues that

this configuration is likely the most physiologically relevant, it is also complex and challenging to

model [Hill, 1976].

In 1986, Lacker and Peskin extended this binding site limit even further with a model that

approximates the thin filament as a continuum. This dense binding limit is used today [e.g. Walcott

et al., 2012, Debold et al., 2013, Jarvis et al., 2018, 2021, Srinivasan and Walcott, 2009, Walcott

and Sun, 2009, Walcott, 2014], and ultimately changes the structure of the model from a system

of PDEs to a system of integro-PDEs. In this case, x represents the displacement or extension

of a bound cross-bridge with reference to some initial bound configuration. This is distinct from

Huxley’s original formulation, in which x represented the distance between a cross-bridge and

the nearest binding site, since this distance has no meaning if the thin filament is a continuum of

binding sites. In Lacker and Peskin, the population of cross-bridges is then described by u(x, t), the

probability density function (with units of length−1) that a cross-bridge is bound with a particular

extension x at time t (note that in this dissertation, we will use η(x, t) to denote this quantity).

The integral of this function over a particular interval is then the fraction of attached cross-bridges

on that interval. Using chemical kinetics in the same manner as Huxley, this lends to a system of

integro-PDEs, since the partial differential equations in terms of u now depend on the integral of

u [Lacker and Peskin, 1986].

In 2001, Steffen and colleagues made significant advances in determining the physiological

distance between binding sites by mapping the thin filament structure using optical trapping [Steffen

et al., 2001]. This work showed that the thin filament, which is composed of a double helix of actin

monomers, had binding sites on each monomer, about every ∼ 5.5 nm [Steffen et al., 2001]. This
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distance is much smaller than that assumed with the sparse binding implementation of Huxley

and larger than assumed in a dense binding formulation, and thus neither assumption explicitly

models the true binding site spacing. However, in 2009, Walcott and Sun presented a cross-bridge

model that included a mathematical justification that a dense binding limit accurately captures the

physiological binding site spacing, but an equivalent model with sparse binding would not [Walcott

and Sun, 2009]. Thus, in the work presented in the following chapters, I assume a dense binding

site configuration [Jarvis et al., 2018, 2021].

Another key assumption of Huxley [1957] and many cross-bridge models [e.g. Walcott et al.,

2012, Lacker and Peskin, 1986] is that there are no local effects between cross-bridges, an assumption

notated here as the independent force generator hypothesis (note that this phrase has alternate

meanings in some muscle literature). This independence allows for the overall behavior of an

ensemble of cross-bridges to be described by the average state distributions, leading to a system

of PDEs that connect molecular scale dynamics to ensemble behavior. This assumption is valid at

saturating calcium concentrations when a muscle fiber is fully activated, and while this is reasonable

for experimental protocols in which calcium concentration is controlled and maximal (such as in

the steady-state measurements considered in Huxley [1957]), physiological muscle rarely performs

at full activation. At sub-saturating levels of calcium, there is cooperativity in the binding of

cross-bridges and the regulatory proteins in a muscle fiber, resulting in local coupling between

cross-bridges [Longyear et al., 2017, Walcott, 2014]. In this case, the behavior of a single cross-

bridge is dependent on the state of the neighboring cross-bridges, and thus the independent force

generator assumption is violated.

The physiological details of activation are detailed in the biological background of the intro-

duction. Briefly, prior to activation, the regulatory protein tropomyosin is positioned to sterically

block the myosin binding sites on the thin filament (Fig. 0.2). When calcium enters into the system,

tropomyosin undergoes a conformational change, shifting to expose some of the binding sites on

the thin filament. Myosin molecules then bind to the actin filament in a cooperative manner in

which a molecule binding locally displaces tropomyosin, exposing more binding sites and encour-

aging further cross-bridge binding. Throughout the years, several models have been developed to
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describe this process, with varying degrees of physiological detail. Due to the complexity of mod-

eling the cooperativity, many models lack molecular detail and include modifications that allow

for easy simulation and qualitative results [Hill et al., 1980, 1981, Sich et al., 2010, McKillop and

Geeves, 1993]. Other models incorporate an accurate molecular picture, but this level of detail

results in systems that are computationally complex, generally requiring Monte Carlo methods to

simulate each individual cross-bridge [Kad et al., 2005, Tanner et al., 2007, 2012]. And while this

implementation is useful to describe the detailed kinetics and cooperativity, the simulations are

inefficient compared to differential equation models, making it hard to optimize model parameters

and scale to larger physiological levels.

In recent years progress has been made in using differential equations to express accurate cross-

bridge models that include activation dynamics in a computationally efficient way [Walcott, 2013,

2014, Campbell et al., 2018]. For example, in the work of Walcott [2014], a model is developed in

which Huxley-like PDEs and a set of coupled ODEs are implemented to describe cross-bridge and

activation dynamics, respectively. In this model, myosin ensembles are separated into two distinct

groups, 1) an active phase in which the thin filament is fully active so local cross-bridge coupling

does not occur, resulting in a regime in which the independent force generator assumption holds

and cross-bridge dynamics can be expressed as a system of PDEs, and 2) an inactive phase in

which tropomyosin blocks the binding sites on the thin filament and myosin molecules cannot bind

[Walcott, 2014]. Throughout time, clusters of myosin molecules cycle between these extremes, with

active and inactive clusters growing and shrinking. To model the time evolution mathematically,

Walcott uses a system of coupled ODEs to describe the dynamics of the clusters of myosin, and

once activated, cross-bridge dynamics are described by a set of Huxley-like PDEs. With this math-

ematical formulation, Walcott [2014] resolves the independent force generator issue and describes

both activation and cross-bridge dynamics with a numerically efficient model.

Taken together, the first Huxley-like models laid the groundwork of muscle theory, and provided

new ideas for future experimental techniques and modeling methods that would be developed in

the years to come.
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1.3. Advances in Experimental Techniques

The sliding filament theory and the modeling work of Huxley and colleagues created a solid

foundation for the field of modeling muscle contraction. In the years since this preliminary research,

new experimental methods have been developed to study a range of muscle mechanisms, from the

smallest scale of a myosin power-stroke to the larger scale of whole muscle behavior. These new

techniques have led to the development of new mathematical models with more accurate molecular

details. In this section, I introduce some fundamental experimental advances in studying muscle,

and highlight a few experimental protocols that motivate the research presented in this dissertation.

Single Molecule Measurements. In 1994, Finer and colleagues performed novel experiments

to study the mechanisms of single myosin molecules [Finer et al., 1994]. At the time, recent

experimental work on the crystal structure of the myosin molecule had illustrated a conformational

change in the myosin head that was proposed to be related to the force produced by a bound

cross-bridge [Rayment et al., 1993]. However, the details of this conformational change were still

unknown. Finer et al. [1994]employed an innovative single molecule optical trapping technique to

measure the force and displacement of a single myosin molecule interacting with an actin filament.

The three-bead optical trap used by Finer was unprecedented at the time for its ability to capture

such small-scale details, and is still widely used today [e.g. Baker et al., 2002, Debold et al., 2005,

Takagi et al., 2006, Debold et al., 2008, Spudich et al., 2011, Woody et al., 2018, Nag et al., 2015,

Liu et al., 2018, Woody et al., 2019].

In a classic three-bead optical trap, two beads are attached to the ends of an actin filament

and are trapped in place by lasers (see Fig. 2.5B). This “dumbbell” structure is held above another

bead, coated with a low density of myosin molecules. The dumbbell is then lowered close enough to

the myosin molecule (if one is present) that interactions can occur. The displacement of the actin

filament, measured by the displacement of the attached beads, provides data on the interaction

between actin and myosin. In particular, when the myosin molecule is unbound from the actin

filament, the position of the bead fluctuates due to Brownian motion. When a molecule binds

to the filament, it undergoes its power-stroke and reduces the fluctuations of the bead position,

resulting in a shifted mean and reduced variance in the displacement trace, respectively. This
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general experimental set-up can be modified in various ways to measure different quantities [e.g.

Veigel et al., 2003, Debold et al., 2008, 2005, Baker et al., 2002, Capitanio et al., 2012, Greenberg

et al., 2017, Arbore et al., 2019].

With this technique, Finer and colleagues were able to make some of the first measurements of

the size of the step a single molecule undergoes when it binds to actin, i.e. myosin’s power-stroke size

[Finer et al., 1994]. Given that force is proportional to the displacement of the molecule, this also

gave measurements of the force produced by single myosin molecules. Finer et al. [1994] measured

a power-stroke size of around 11 nm, corresponding to about 3-4 pN of force per molecule under

isometric conditions [Finer et al., 1994]. In the years that followed, an array of similar measurements

were performed, leading to a collection of values for myosin’s power-stroke size ranging from 4 nm

to 17 nm [Molloy et al., 1995, Ishijima et al., 1994, Guilford et al., 1997].

In addition to measuring myosin’s power-stroke size and force production capabilities, single

molecule experimental work has also been focused on studying the force-dependence of the acto-

myosin interaction. Since as early as the modeling work of Huxley, it has been proposed that the

transition rates in the interaction between actin and myosin are dependent on the load a myosin

molecule experiences [Huxley, 1957, Huxley and Simmons, 1971, Smith and Geeves, 1995, Cremo

and Geeves, 1998]. In the pioneering work of Veigel et al. [2003], an optical trap was used to

explore the effect of force on the kinetics of smooth muscle by applying a force at the onset of

myosin binding. Analysis of the displacement traces suggested that myosin movement occurs in

two phases: the first of which is dependent on load and the second of which is dependent on ATP

concentration [Veigel et al., 2003]. The force-dependent detachment rate of myosin was determined

to be exponential, with higher forces resulting in slower ADP release rates, and thus longer binding

times [Veigel et al., 2003]. These findings were validated with laser trap experiments of smooth

muscle by Kad et al. [2007], with optical trapping techniques with β-cardiac myosin by Greenberg

et al. [2014], and with harmonic force spectroscopy with β-cardiac myosin by Sung et al. [2015].

This exponential force-dependent detachment rate is used in many models today [e.g. Månsson,

2010, Mijailovich et al., 2016, Campbell, 2009, Walcott et al., 2012, Jarvis et al., 2018, 2021], and

is consistent with theoretical predictions [e.g. Bell, 1978].

22



Ensemble Measurements. Single molecule measurements are crucial in the study of mus-

cle, as they provide explicit measurements of molecular interactions. However, to understand

larger whole-muscle function and to make connections across scales, we must also understand how

molecules work together. To provide this insight, experimentalists have developed a variety of

methods to study myosin ensembles of different sizes and their corresponding interactions with

actin filaments. These ensemble measurements are useful because the larger number of molecules

results in longer binding lifetimes, increasing temporal resolution of binding and providing insight

into possible cooperative effects.

For example, in addition to using optical trapping with single myosin molecules, a similar

experimental protocol can be implemented to explore myosin ensembles by using a higher density

of myosin molecules on the bead below the dumbbell (see Fig. 2.5C). In this case, multiple myosin

molecules can bind to the actin filament together, resulting in traces of actin position as a function of

time with runs of motility, where multiple myosin molecules bind in succession before all detaching

(see example in Fig. 2.2A). These optical trap experiments allow for measurements of the lifetime

and force produced from multiple-molecule binding events, providing information on how myosin

molecules work together when attached to a common actin filament [e.g. Debold et al., 2013,

Longyear et al., 2017, Woodward and Debold, 2018, Walcott et al., 2012, Jarvis et al., 2018].

Further, the laser trap protocol is versatile, and can be extended to study other muscle mechanisms.

For example, the actin filament can be replaced with a regulated filament to study the interactions

of myosin molecules with troponin and tropomyosin during muscle activation [Longyear et al., 2017,

Kad et al., 2005].

Additionally, an in vitro motility assay is a technique developed for studying larger ensembles

of myosin molecules [Kron and Spudich, 1986]. In this method, a higher density of molecules are

attached to a surface. Fluorescently labeled actin filaments are added, and as myosin molecules

bind and unbind to actin, the filaments glide across the surface of myosin (see Fig. 2.5D). The speed

of the actin filaments is measured, providing information on how an ensemble of myosin molecules

operate together to move actin [Debold et al., 2011, Haldeman et al., 2014, Harris and Warshaw,

1993]. Again, this experimental protocol is adaptable, and it is used in a variety of ways, including

to study the dependence of filament length on actin speed (as in [Walcott et al., 2012, Harris and
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Warshaw, 1993, Hilbert et al., 2013]), to produce curves of actin velocity as a function of ATP-

concentration (as in [Debold et al., 2011]), and in an inverted configuration to more accurately

mimic muscle lattice geometry (as in [Brizendine et al., 2015, 2017, Brenner et al., 2012, Previs

et al., 2012]).

Taken together, these single molecule and small-ensemble experimental protocols provide im-

portant insight into the molecular mechanisms of muscle contraction, leading to the development of

modeling work that is based in well-studied molecular dynamics and experimentally-defined mea-

surements.

Fiber Scale Measurements. In addition to molecular scale measurements, there is a vast

collection of experimental work at larger scales. This work ranges from measurements done on

single myofibrils to whole-muscle studies, and explores a variety of muscle mechanisms such as

steady-state contraction [e.g. Knuth et al., 2006, Nelson et al., 2014, Widrick et al., 1996, Eldred

et al., 2010, Newhard et al., 2019], and transient lengthening and shortening [e.g. Glasheen et al.,

2017, Zhao and Swank, 2016, Huxley and Simmons, 1971, Vanzi et al., 1995, Galler et al., 1994,

1996, Straight et al., 2019, Piazzesi et al., 1997, Lombardi and Piazzesi, 1990]. The specific details

of these experimental protocols are beyond the scope of the research presented here. However,

to establish a fully comprehensive model of muscle, we must employ a spectrum of experimental

measurements across scales, and thus these larger-scale cellular and fiber measurements are critical

in the development of a theory of contraction.

1.4. Current Muscle Models

Stemming from the first experimental muscle measurements and the sliding filament theory,

the field of muscle contraction now includes an extensive collection of mathematical models that

describe contraction in a quantitative way. The framework and methods of these models fall on a

spectrum, varying in the physiological size scales they model, the molecular details they include, and

the mathematical techniques they employ. Here, we focus on models that explicitly model molecular

interactions, however there is also a vast literature of more phenomenological models that describe
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the contraction of whole muscles or muscle groups. Additionally, while there are many ways to

classify these molecular models, here we focus specifically on mathematical implementation, and

categorize models as differential equation models or models simulated by Monte Carlo methods.

These two techniques have advantages and disadvantages, detailed below, that ultimately determine

the rigor and value of the resulting model in describing specific muscle measurements.

Muscle Models with Monte Carlo Simulations. Monte Carlo (MC) methods are a com-

mon and useful way to simulate cross-bridge dynamics [e.g. Duke, 1999, Kad et al., 2005, Tanner

et al., 2007, Geeves et al., 2011, Walcott et al., 2012, Jarvis et al., 2018]. To model the stochas-

tic interaction between actin and myosin, MC methods simulate the dynamics of each individual

myosin molecule within an ensemble, and use random numbers to simulate the stochasticity of

the chemical reactions that occur when molecules transition between states. In general, standard

Monte Carlo simulations are performed as follows. Throughout time, the state of each myosin

molecule, along with other relevant information such as molecule extension or force, is saved. The

simulation iterates through time at a defined time step (often a constant time step, though see

the Mathematical Framework section for the Gillespie algorithm which implements a variable time

step), and at each point in time, scans through myosin molecules to determine if each undergoes

transition to the next state. Which transitions occur are determined by comparing random num-

bers to the probability that a forward chemical reaction occurs, with these distributions dependent

on the rate constants of the state transitions. Once the appropriate molecules have transitioned to

the next state, the system is updated accordingly, including re-defining any force-dependent rate

constants. At the end of the simulation, information such as force produced, velocity achieved, and

lifetime of myosin attachment can be determined from the extensions of the myosin molecules and

position of the actin filament throughout time. This general process can be applied to models with

different kinetic schemes, and can be adjusted to simulate various experimental protocols. Monte

Carlo simulations can directly produce molecular level dynamics [e.g. Walcott et al., 2012, Debold

et al., 2013, Jarvis et al., 2018], as well as be related to larger-scale fiber measurements [e.g. Duke,

1999, Geeves et al., 2011, Walcott et al., 2012, Tanner et al., 2007].
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Monte Carlo Advantage: Experimental Detail

Monte Carlo simulations of the interaction between actin and myosin are advantageous in that

they provide ample opportunity for including experimental details. For example, in Walcott et al.

[2012], a model is developed to study the differences in force production across scales. Using Monte

Carlo simulations, a four-state kinetic scheme of the interaction between actin and myosin is com-

pared to measurements of both single molecules and mini-ensembles of myosin interacting with an

actin filament in an optical trap (see section 1.3, [Walcott et al., 2012]). The use of Monte Carlo

allows Walcott and colleagues to model the details of the optical trap, such as the Brownian mo-

tion of the system, the compliance and stiffness of the trap, and the adjustment that occurs when

myosin binds to the actin filament [Walcott et al., 2012]. The result of the MC simulation is the

position of the actin filament as a function of time, which is the same as the output of the optical

trap measurements. Model and measurement can then be analyzed and compared directly [Walcott

et al., 2012]. Thus, simulating the actomyosin dynamics using a Monte Carlo method allows for an

accurate depiction of the physical experimental system and the protein interactions that result.

Monte Carlo Advantage: Physiological Detail

In addition to specifying experimental elements, simulating the interaction between actin and

myosin with Monte Carlo methods allows for the inclusion of accurate and complex physiological

details. At the smallest scale, it is straightforward to include force-dependent rate constants based

in experimental measurements [e.g. Daniel et al., 1998, Walcott et al., 2012, Jarvis et al., 2018].

For example, it has been shown experimentally that ADP release rate varies exponentially with

myosin molecule strain [Veigel et al., 2003, Kad et al., 2007, Greenberg et al., 2014, Sung et al.,

2015]. Many cross-bridge models include this specific force-dependence [e.g. Walcott et al., 2012,

Debold et al., 2013, Mijailovich et al., 2016, Jarvis et al., 2018], and Monte Carlo simulations make

it simple to include this detail. Walcott and colleagues, for example, achieve this with a modified

version of a Monte Carlo method known as the Gillespie algorithm. As in a standard Gillespie

algorithm, they keep track of the extension and state of each myosin molecule, and iterate by

taking steps forward in time when reactions occur and molecules transition between states (see

Mathematical Framework section for more detail). Since ADP release rate is dependent on the
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force a molecule experiences and force is proportional to myosin extension, any bound molecule

will have a slightly variable ADP release rate, dependent on the current extension of the molecule.

In their modified Gillespie algorithm, Walcott and colleagues keep track of the individual ADP

release rate for each molecule throughout time, given the current extensions. When a molecule

binds or unbinds, the force on any other bound molecule changes, and thus the ADP release rates

of these molecules must be re-calculated. This technique, employed by Walcott and colleagues in

Walcott et al. [2012], Debold et al. [2013], and Jarvis et al. [2018], allows for explicit simulation of

a well-defined molecular mechanism.

Additionally, since MC simulations keep track of each individual molecule, it is possible to

include complex details at larger scales beyond the direct actomyosin interactions [e.g. Tanner

et al., 2007, 2012, Powers et al., 2018]. These details are significant when considering fiber level

measurements, as muscle fibers are composed of a lattice of thin and thick filaments including

regulatory proteins like tropomyosin and troponin. The ultimate interaction of actin and myosin is

dependent on the interaction between calcium, the regulatory proteins, and the cross-bridges (see

Biological Background section). Thus, it is important to consider these physiological details, and

Monte Carlo simulations are one way to achieve this.

In the context of muscle activation, a collection of models have explored the regulatory proteins

tropomyosin and troponin, and their role in regulating cross-bridge dynamics and force production

in a calcium-dependent manner [e.g. Kad et al., 2005, Tanner et al., 2012]. In 2005, Kad and

colleagues explored the mechanism of thin filament regulation at the molecular level by performing

laser trap experiments with both unregulated and reconstituted actin filaments interacting with

small ensembles of myosin molecules [Kad et al., 2005]. They developed a simple mechanistic

model, based on the dynamics observed in the laser trap data, and simulated it using a Monte

Carlo algorithm. To incorporate regulation, the cross-bridge attachment rate included inhibitory

and cooperativity constants that were tuned appropriately [Kad et al., 2005]. The success of their

minimal model in describing their measurements provided preliminary insight into the details of

thin filament regulation through MC simulations.

In the context of filament geometry within the sarcomere, Tanner et al. [2007] developed a

spatially explicit molecular model that includes features of sarcomere lattice geometry. At the
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largest scale, the model includes a physiologically accurate sarcomere lattice including thick and thin

filaments properly spaced in a hexagonal shape. In addition to this geometry, the model includes

two three-state kinetic schemes to describe thin-filament activation and cross-bridge dynamics.

Mathematically, the model is implemented with a system of linear springs, with various spring

constants for myosin, actin, and attached cross-bridges, and simulated using Monte Carlo. With

this modeling work, Tanner and colleagues showed that a model incorporating a physiologically

accurate 2:1 ratio of thin to thick filaments made predictions that were more consistent with

experimental measurements than an equivalent two-filament model, leading to the conclusion that

there is an inseparable relationship between the geometry, kinetics, and mechanical behavior of the

sarcomere [Tanner et al., 2007].

While the model of Tanner et al. [2007] included some preliminary dynamics of activation,

it did not appropriately model the kinetics of thin-filament activation, and failed to account for

the cooperative effect of myosin binding and local coupling on activation. In subsequent work,

Tanner and colleagues further developed their preliminary model to incorporate these details, and

again implemented Monte Carlo methods to do so [Tanner et al., 2012]. This improved model

additionally includes activation rates that are dependent on the local state of the thin-filament

and the neighboring cross-bridges [Tanner et al., 2012]. These details are complex, since reaction

rates are now uniquely defined based on the spatial and biochemical state of the local region, and

simulating these dynamics is dependent on Monte Carlo methods and the straightforward manner

in which they simulate each individual molecule.

Beyond activation and sarcomere geometry, an extensive collection of models have implemented

Monte Carlo methods to explore other muscle properties. Williams et al. [2010], for example, de-

veloped a complex cross-bridge model to explore radial forces within the sarcomere lattice. Most

cross-bridge models describe myosin as a linear spring that only produces force in a direction

parallel to the actin filament, and Williams et al. [2010] extension to additionally include forces

orthogonal to the actin filaments provided a more detailed understanding of the relationship be-

tween sarcomere geometry and force production. In other work, Powers et al. [2018] extended a

previous spatially-explicit model to include the protein titin. Many minimal cross-bridge models do

not explicitly model titin, so this work provided preliminary insight into the effects of the protein
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on muscle mechanics and energetics [Powers et al., 2018]. Further, Chase et al. [2004] developed a

half-sarcomere model including calcium-dependent activation and myofilament compliance to un-

derstand the effect of compliance on the regulation of contraction. Notably, all of these models

implement Monte Carlo methods, which allow for accurate and detailed simulation of cross-bridge

dynamics and physiological elements, and result in new knowledge of the mechanisms of contraction.

Challenges of Monte Carlo Methods

While the advantage of using Monte Carlo simulations to directly describe the interaction

between actin and myosin is clear from these successful models, MC simulations also present a

variety of challenges. First, while these detailed simulations are useful for describing single molecule

or small ensemble behavior, they are often computationally expensive for large ensembles ([e.g.

Walcott et al., 2012, Walcott, 2014], also see section 4.6). Simulating large ensembles of molecules

(e.g.∼ 350 in a half-sarcomere) or multi-sarcomere systems can be inefficient or infeasible, making

it challenging to achieve rigorous multi-scale associations. Many models that do explicitly simulate

multiple half-sarcomeres, for example, require differential equations to do so ([e.g. Campbell, 2009,

Stoecker et al., 2009, Denoth et al., 2002], also see section 4.6).

The computational cost of MC simulations also means that it is challenging, if not impossible,

to optimize model results to fit experimental data. For example, in the modeling work of Tanner

et al. [2007] discussed above, the model includes numerous parameters such as cross-bridge stiffness

and reaction rates that are not fully defined from the literature. One method for obtaining unknown

parameters is by fitting model results to experimental data. However, because MC simulations are

employed in Tanner et al. [2007], it is too computationally costly to do so. Instead, these unknown

parameters must be estimated or assumed from previous work, leading to model results that may

not be quantitatively rigorous. If a model with these assumptions fails to describe data, it is unclear

if the failure is a result of an incorrect model or improperly defined parameters, and Monte Carlo

methods are limiting in this way.

In addition, while MC simulations do allow for the incorporation of larger-scale features like ac-

tivation and sarcomere geometry, due to the complexity of these elements, models that incorporate

them often sacrifice on some smaller scale molecular details. For example, in Tanner et al. [2007],
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while the lattice geometry and spatially explicit details are unprecedented, the model implements a

detachment rate function that is not based in experimental measurements of the detachment pro-

cess [Kad et al., 2007, Veigel et al., 2003]. Again, when models without these well-defined molecular

mechanisms fail to reproduce data, it is unclear why this occurs, resulting in molecular mechanisms

that do not describe experimental measurements but cannot be ruled out due to imprecise mod-

eling. Thus, while Monte Carlo simulations of muscle models are advantageous for incorporating

complex physiological details as well as exploring small scale protein interactions, they are often

computationally limiting and present challenges when connecting molecular mechanisms to cellular

behavior.

Differential Equation Muscle Models. In addition to Monte Carlo methods, another collec-

tion of models implement systems of differential equations (DE) to describe cross-bridge dynamics.

Models of this form are particularly useful in making explicit and numerically efficient connections

across scales. In general, differential equation models assume that myosin molecules act indepen-

dently (though see section 1.2). This independence between molecules allows for use of a mean-field

approximation to represent ensemble behavior with the dynamics of an average molecule. Though

they differ in their details, DE models generally implement either a set of partial differential equa-

tions (PDEs) to describe the probability that myosin is bound to discrete binding sites (as in a

sparse binding site approximation), or a set of integro-PDEs to describe the probability density

that myosin is bound with a particular extension (as in a dense binding site approximation). The

solutions to these equations describe the time-evolution of the average state distributions of myosin

molecules, which then describe the behavior of larger ensembles. Though they present some chal-

lenges (see below), these models are mathematically rigorous and provide unprecedented knowledge

regarding the connections across physiological size scales.

Differential Equations Advantage: Efficiency of Numerical Solutions

One of the key differences between Monte Carlo simulations and differential equation models is

computational cost. While MC simulations of large ensembles can be inefficient due to the explicit
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simulation of each molecule, differential equation models provide a more efficient way to simulate

cross-bridge dynamics.

In general, differential equation models can be solved under a variety of conditions, such as

steady-state or isometric, depending on the objective of the modeling results. Depending on these

details, different numerical methods can be implemented to solve the system. For example, for

steady-state conditions or for fixed time, techniques such as Forward Euler [e.g. Piazzesi and Lom-

bardi, 1995], Runge-Kutta methods [e.g. Albet-Torres et al., 2009, Debold et al., 2013], or standard

ODE solvers in programs such as Matlab [e.g. Stoecker et al., 2009, Jarvis et al., 2021] can be im-

plemented. For non-steady-state conditions, numerical methods for PDEs, such as the method of

characteristics ([e.g. Jarvis et al., 2021], section 4.6), can be used. These numerical solutions provide

accurate depictions of muscle dynamics and are more computationally efficient than corresponding

Monte Carlo simulations.

In some cases, the efficiency of solving differential equations numerically makes it possible to

optimize model parameters through fits to experimental measurements [e.g. Campbell et al., 2018].

For example, Campbell and colleagues have developed a differential equation model to understand

the mechanisms of length-dependent activation in cardiac muscle [Campbell et al., 2018]. This

model couples together the cooperative and calcium-dependent dynamics of the thin-filament with

regulated cross-bridge dynamics. The kinetic scheme includes three thin-filament states and three

cross-bridge states, and the flux between the states are determined by functions that account for

factors including calcium concentration, cooperative activation, phosphorylation, and force, where

applicable. This formulation leads to a system of 45 differential equations, 4 of which describe the

flux between states and 41 of which describe the cross-bridges when in a force-generating state

(with extensions of −10 nm ≤ x ≤ 10 nm and 0.5 nm spacing). Campbell and colleagues solve

this system numerically using an adaptive step size with an embedded Runge-Kutta 2,3 method.

The numerical efficiency of their simulations allows them to fit the model results to experimental

data using simplex minimization algorithms for multidimensional parameter optimization. Based

on their model fits, Campbell et al. [2018] argue for the necessity of thick-filament mechanosen-

sitivity, and conclude that the force-dependent recruitment of myosin heads contributes to the

length-dependent activation seen in cardiac muscle. It is the efficiency of their numerical solutions,
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in particular, that allows for the rigorous fitting of model to data, and ultimately leads to new

insight regarding an unknown mechanism of muscle [Campbell et al., 2018].

Differential Equations Advantage: Analytical Solutions

In addition to the advantage of numerical solutions, differential equation models are also ben-

eficial because they can often be solved analytically. Under some assumptions, like steady-state, it

is possible to calculate an explicit analytical solution [e.g. Lacker and Peskin, 1986], and in other

contexts, mathematical techniques such as asymptotic expansions can be implemented to develop

analytical approximations to DE systems [e.g. Walcott et al., 2012, Jarvis et al., 2018]. These

analytical solutions to cross-bridge models are valuable because they provide explicit associations

between the molecular and cellular levels, further improving computational efficiency and allowing

for global parameter optimization.

One of the key benefits of using analytical solutions to differential equations is the efficiency

with which cross-bridge dynamics can be simulated. While numerical solutions provide a reason-

ably efficient way to solve differential equation models (see previous section), in some situations,

numerically solving complex ODEs and PDEs can still be too expensive to fit model to data [e.g.

Jarvis et al., 2021]. For example, solving a system of integro-PDEs under non-steady-state condi-

tions requires use of the method of characteristics, a numerical method for solving ODEs along the

characteristics, and a root find to satisfy the integral constraint (as in [Debold et al., 2013, Jarvis

et al., 2021]), resulting in a costly computation and making parameter optimization a challenge. In

cases like this, developing analytical solutions results in much faster computation, making it feasible

to fit a complex model to experimental measurements. And while analytical approximations can

be less accurate than numerical results, a combination of these methods can lead to rigorous global

parameter optimization [e.g. Jarvis et al., 2021].

In addition, analytical solutions to differential equations are beneficial in that they allow for

direct calculation of, and therefore estimation of, specific model parameters. Often, differential

equation models can be formulated in a way that individual molecular properties, such as myosin’s

force-dependence or a specific time scale, can be described by a single model parameter (as in

[Walcott et al., 2012, Jarvis et al., 2021, Newhard et al., 2019, Lacker and Peskin, 1986]). Fitting
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model to measurements, or further mathematical analysis, can then be done to estimate values

for such parameters. The work of Newhard et al. [2019] provides an example of such parameter

estimation. The objective of this work was to explore the effect of myosin’s converter domain on

the curvature of the force-velocity relationship, which is at least in part due to the force-dependent

chemistry of myosin (see section 3.5.3). To fit model to data, Newhard and colleagues express

their cross-bridge model with a system of differential equations, including a single parameter to

describe myosin’s force-dependence. The system can be solved explicitly for force as a function of

velocity, resulting in an analytical expression that can easily be fit to experimental measurements for

estimation of the force-dependent parameter [Newhard et al., 2019]. Ultimately, it is the analytical

solution to the differential equations, and the simple representation of model parameters, that make

this optimization and analysis possible.

Finally, analytical solutions provide an opportunity for making a unique connection between

scales through an inverse problem, whereby cellular level measurements are used to infer molecu-

lar level properties. In this case, differential equation models are formulated based in molecular

dynamics, the systems are solved analytically, and the resulting quantities, which include explicit

formulation of molecular details, are related to experimental measurements. The work of Lacker

and Peskin [1986] is an example of such an inverse problem in muscle. In this work, Lacker and

Peskin assume a dense binding site approximation and formulate a system of integro-PDEs which

can be solved explicitly in steady-state. Through implementation of a Laplace transform and

other mathematical manipulation, they are able to determine myosin’s attachment and detach-

ment functions from steady-state force-velocity and energetics measurements [Lacker and Peskin,

1986]. Notably, this modeling work set the stage for future work in which molecular level dynam-

ics are characterized based on cellular level measurements and the PDE systems that connect them.

Differential Equations Advantage: Mathematically Rigorous Connections Across Scales

Differential equation models of muscle are most advantageous because they allow for mathemat-

ically rigorous associations to be made between the interaction of actin and myosin and the larger

cellular level. Through implementation of both numerical and analytical methods, differential equa-

tion models are computationally efficient and enable comprehensive optimization to experimental

33



measurements, ultimately providing precise insight into how molecular mechanisms scale up to

result in fiber-level phenomenon.

One of the first mathematical formulations to make this connection was the original cross-

bridge theory proposed by A.F. Huxley, in which he used a system of differential equations to

relate cross-bridge kinetics to the evolution of an ensemble of cross-bridges throughout time (see

section 1.2 for more detail). Since this original theory, many differential equation models have

been developed from this foundation, and have been used to connect cross-bridge dynamics to

a variety of muscle functions in computationally efficient and mathematically rigorous ways [e.g.

Lacker and Peskin, 1986, Piazzesi and Lombardi, 1995, Walcott et al., 2012, Duke, 1999, Campbell,

2014, 2009, Månsson, 2010]. In the work of Piazzesi and Lombardi [1995], for example, Huxley-

PDEs are utilized to describe a five-state cross-bridge model and the results are used to understand

the behavior of shortening muscle. In this work, Piazzesi and Lombardi assume a sparse binding

limit, leading to a set of PDEs that describe the state of the cross-bridges throughout time, and

numerically integrate the system using Euler’s method. The model is implemented to reproduce

mechanical and energetic measurements of muscle after steady and stepwise shortening protocols,

providing insight into the mechanisms that result in shortening, and making direct connections

between molecular properties and larger-scale shortening behavior [Piazzesi and Lombardi, 1995].

Another example of a differential equation model that associates muscle dynamics across scales

is found in the work of Månsson [Månsson, 2010]. Here, Månsson uses a detailed kinetic scheme

of the actomyosin interaction, and develops a system of nonlinear ordinary differential equations

to describe the state probabilities of steady-state contraction. The system is numerically solved

using fourth-order Runge-Kutta-Fehlberg method, and the model is fit to a range of experimental

measurements. In his fitting procedure, Månsson finds that a velocity-dependent attachment rate

is necessary to successfully describe all of the shortening measurements. This PDE model and the

corresponding results suggest a possible connection between myosin binding rate and fiber-level

measurements [Månsson, 2010].

While the details of the kinetic schemes and mathematical methods used in these models are

unique, they all share a common theme - the use of differential equations to describe muscle

measurements across scales in a way that enhances computational efficiency and rigor in comparison
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to standard Monte Carlo methods. The distinction between DE and MC models in connecting

physiological scales, and in particular the benefit of differential equation models, is well illustrated

in the work of Walcott et al. [2012]. At the time of this work, it had been shown experimentally

that actin speed while interacting with a small ensemble of myosin molecules in vitro was faster

than that predicted from interactions with single molecules [Baker et al., 2002, 2003]. However the

reason for this disparity was unknown, and Walcott and colleagues were interested in quantitatively

understanding this complex connection [Walcott et al., 2012]. To do so, they compared a four-state

kinetic scheme to measurements at different scales, including single molecule step size and binding

lifetime, in vitro actin motility speed, filament length-dependence of actin motility, and force-

velocity of small ensembles in a laser trap. They implemented both Monte Carlo simulations and

a system of integro-PDEs to compare the model to their measurements. Notably, their results led

to the conclusion that mechanical coupling occurs between myosin molecules bound to a common

actin filament, which causes decreased binding lifetime and increased attachment distance, and

ultimately results in an acceleration of actin speed [Walcott et al., 2012].

This multi-scale finding of Walcott et al. [2012] is dependent on both Monte Carlo simulations

and solutions to integro-PDEs, but it is the differential equation modeling in particular that lends

to the rigor of the final conclusions. With Monte Carlo simulations of the kinetic scheme, Walcott

and colleagues are able to adjust parameters to reproduce the experimental measurements, result-

ing in general conclusions regarding the mechanism of ensemble-increased actin velocity. However,

by additionally expressing the system with integro-PDEs, they are able to solve for semianalytic

expressions of specific values of interest, like average actin speed, which are only dependent on a

single model parameter that describes myosin coupling. In doing so, they are able to make math-

ematically justified conclusions regarding the mechanochemical coupling of myosin molecules and

rigorous connections between size scales. Notably, these associations are made possible by the dif-

ferential equation model, providing rigor beyond that possible solely with Monte Carlo simulations.

Challenges of Differential Equation Models

While differential equation models provide a variety of assets in describing muscle, they also have

a few disadvantages. First, while DE models are advantageous for making connections across scales,
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it is often challenging to explicitly incorporate larger-scale physiological details. For example, the

dynamics of muscle activation include cooperativity between myosin molecules. This cooperativity

violates the independent force generator hypothesis, making classic PDE models invalid to describe

ensemble behavior, and requiring significant changes to standard Huxley-like PDE models (see

section 1.2, [Walcott, 2014, Campbell, 2014]). Additionally, including physiologically accurate

sarcomere geometry is challenging with PDE models. Since ensemble behavior is described by

average state distributions instead of individual molecule dynamics, it is difficult, if not impossible,

to include intricate details of the sarcomere lattice in a system of PDEs. To the best of my

knowledge, there is no PDE model that includes the hexagonal structure of thin and thick filaments

in the myofibril.

One critical flaw of many differential equation models is the accuracy with which they describe

the molecular scale. Many differential equation models are based in the preliminary work of Huxley

[1957], and while this work provides a solid foundation for describing muscle, it lacks many molec-

ular details due to the information that was available at the time (see section 1.2). Throughout

the years, novel experimental techniques have improved our knowledge on the molecular dynamics

of the interaction between actin and myosin, but many differential equation models have not been

updated to include these findings [e.g. Campbell et al., 2018, Schappacher-Tilp et al., 2015, Piazzesi

and Lombardi, 1995]. DE models that do not include well-measured molecular mechanisms, like

myosin’s force-dependent chemistry for example, do not accurately describe the dynamics of muscle,

and if these models fail to fit experimental measurements, it is unclear why the disparity occurs.

Notably, models that do not include accurate molecular details cannot be ruled out if they do not

capture data, since the discrepancy could be due to a lack of a key known molecular detail. Thus,

while differential equation models are crucial for comprehensively modeling muscle, they must be

developed with accurate molecular measurements.

Connection to the Mathematical Modeling of Jarvis and Colleagues. Today, the field

of muscle contraction includes an extensive collection of experimental measurements and theoret-

ical models. However, there is still much to be learned about the mechanisms of contraction, and

in particular, about the connections across physiological size scales. The work presented in this
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dissertation aims at furthering our comprehensive knowledge of contraction. In this section, I con-

textualize the work presented in the following chapters in connection to the literature discussed

above, and highlight the benefits and uniqueness of the modeling techniques we employ.

Combination of Monte Carlo Simulations and Differential Equation Models

In the work presented in the following chapters, we use both Monte Carlo simulations and

differential equation models to describe cross-bridge dynamics and model muscle across scales.

This is a favorable approach because these methods are distinct in their benefits and shortcomings

(described above), and by implementing both we are able to exploit the advantages unique to each

method.

In particular, we use Monte Carlo simulations to accurately describe single molecule and small-

ensemble dynamics. In Jarvis et al. [2018], we study the effects of muscle fatigue at the molecular

level through laser trap measurements under fatiguing conditions. Monte Carlo simulations allow

us to accurately model the experimental system and result in a model output that is directly

comparable to the results from our experimental protocol.

Additionally, we implement a system of integro-PDEs to describe our model when we scale

cross-bridge dynamics to larger levels. In Jarvis et al. [2018], we use our model that is successful

at describing molecular measurements to predict fiber level behavior, and to do so, we express it

as a system of integro-PDEs. In Jarvis et al. [2021] and in Chapter 4, we use a similar system

of integro-PDEs to relate cross-bridge dynamics to fiber-level lengthening measurements, and in

doing so, provide insight into molecular mechanisms that cause cellular phenomenon.

Using both Monte Carlo simulations and differential equation models provides flexibility in our

modeling, allowing us to capture unique experimental and physiological details, and accurately

describe muscle at various scales.

Accurate Molecular Details

One of the key aspects of the modeling work detailed in this dissertation is the accuracy with

which we model the molecular scale of muscle contraction. In all of our modeling work, we aim to
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develop a minimal model of muscle that is based in well-defined molecular mechanisms. Our cross-

bridge kinetics are informed by single molecule measurements, and we only include details that have

been validated through experimental findings. By only including the minimal cross-bridge features

necessary to describe muscle measurements, we elucidate the most essential molecular mechanisms

that result in fiber phenomenon.

For example, in our kinetic schemes, we employ an exponential ADP release rate guided by ex-

perimental measurements [Veigel et al., 2003, Kad et al., 2007, Greenberg et al., 2014, Sung et al.,

2015]. This formulation, kD(x) = k0
De
−Ex, only has two unknown parameters k0

D and E, and we

can perform fits to experimental measurements to determine the values of the parameters. Addi-

tionally, we only include well-studied cross-bridge features (such as the power-stroke), and do not

include behavior that has not been thoroughly measured (such as the reversal of the power-stroke).

Thus, if our models are unable to capture muscle measurements, we can conclude that our models

are lacking some necessary attribute of muscle, and we can further develop the model to explore this.

Global Parameter Optimization

Perhaps the most beneficial component of our modeling work is the combination of the above:

implementing integro-PDE modeling of minimal cross-bridge models. Together, these techniques

allow us to rigorously fit our models to experimental measurements.

To solve our system of integro-PDEs, we employ both numerical methods, which provide ac-

curate solutions, and analytical approximations, which are less accurate but more computationally

efficient. This combination of techniques allows us to perform global parameter optimization. In

general, we first fit our model results to measurements using our analytical approximations, where

we can efficiently sweep through all of parameter space and determine a region around the best-fit

parameters. We can then use this as an initial condition to our numerical solutions, and optimize

these less efficient solutions to fit our data with higher accuracy.

Additionally, our use of molecular models based in well-defined measurements makes this global

parameter optimization powerful. Because our models only include well-measured molecular details,

if we perform global parameter optimization to fit model to measurement and the model is unable

to reproduce the measurement for any parameter set, we can reject the model as stated. The ability
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to reject models in this way is significant, because we can conclude that a minimal model is lacking

some molecular feature that contributes to the muscle measurement under consideration.

In the following chapters, we employ our adaptable and advantageous modeling techniques to

explore a variety of muscle phenomena, providing a quantitative perspective on muscle function.
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CHAPTER 2

Acidosis affects muscle contraction by slowing the rates myosin

attaches to and detaches from actin
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2.1. Abstract

The loss of muscle force and power during fatigue from intense contractile activity is associated

with, and likely caused by, elevated levels of phosphate (Pi) and hydrogen ions (decreased pH).

To understand how these deficits in muscle performance occur at the molecular level, we used

direct measurements of mini-ensembles of myosin generating force in the laser trap assay at pH

7.4 and 6.5. The data are consistent with a mechanochemical model in which a decrease in pH

reduces myosin’s detachment from actin (by slowing ADP release), increases non-productive myosin

binding (by detached myosin rebinding without a powerstroke), and reduces myosin’s attachment

to actin (by slowing the weak-to-strong binding transition). Additional support of this mechanism

is found by incorporating it into a branched pathway model for the effects of Pi on myosin’s

interaction with actin. Including pH-dependence in one additional parameter (acceleration of Pi-

induced detachment), the model reproduces experimental measurements at high and low pH, and

variable Pi, from the single molecule to large ensemble levels. Furthermore, when scaled up, the

model predicts force-velocity relationships that are consistent with muscle fiber measurements.

The model suggests that reducing pH has two opposing effects, a decrease in attachment favoring

a decrease in muscle force and a decrease in detachment favoring an increase in muscle force.

Depending on experimental details, the addition of Pi can strengthen one or the other effect,

resulting in either synergistic or antagonistic effects. This detailed molecular description suggests

a molecular basis for contractile failure during muscle fatigue.
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2.2. Introduction

Muscle fatigue from intense contractility activity is likely the result of numerous factors, includ-

ing the accumulation of metabolic byproducts, generation of reactive oxygen and nitrogen species,

and compromised calcium release from the sarcoplasmic reticulum [Fitts, 1994, Allen et al., 2008].

At least part of the decrease of muscle performance during fatigue is a result of the accumulation

of inorganic phosphate (Pi) and of hydrogen ions (H+), which inhibit the function of muscle’s

molecular motor, myosin. Pi accumulates from the breakdown of ATP (T ) and creatine phosphate,

while H+ accumulates from ATP hydrolysis [Robergs et al., 2004] and dissociation of lactic acid

to lactate [Fitts, 1994]. During moderate to severe fatigue, the Pi concentration can increase from

a few mM to over 15mM, and the pH (the negative log10 of the H+ concentration) can decrease

from 7.2 to 6.2 [Wilson et al., 1988, Cady et al., 1989]. Elevating Pi and decreasing pH in a rested

single skinned muscle fiber directly depresses force and velocity, providing evidence of a causal link

between these agents and fatigue [Cooke and Pate, 1985, Debold et al., 2004]. Notably, decreas-

ing pH from 7.1 to 6.2 causes only a small decrease in isometric force, but pronounced reductions

in unloaded shortening velocity and peak power [Pate et al., 1995, Knuth et al., 2006]. Thus, it

is clear that increased Pi and decreased pH inhibit the function of the contractile proteins and

likely contribute significantly to the loss of contractile function during fatigue; however, it is still

unclear precisely how increased Pi and decreased pH alter the cross bridge cycle (i.e., myosin’s

ATP-dependent interaction with actin).

The molecular mechanisms underlying the effects of acidosis (i.e., low pH) are unclear, in part

because its effects on contractile function remain highly debated [Allen and Westerblad, 2004, Lamb

et al., 2006, Westerblad, 2016, Fitts, 2016]. Some researchers have even suggested that acidosis

may play a protective role in fatigue [Pedersen et al., 2004]. Initial observations in single muscle

fibers suggested pH values similar to those in fatigued muscle strongly depress both force by ∼ 50%

and unloaded shortening velocity by ∼ 30%. However these observations were made well below

mammalian physiological temperatures (10-15◦C), and subsequent observations at 30◦C revealed

that acidosis induces a minor depression in force (∼ 10-20%) [Pate et al., 1995, Westerblad et al.,

1997, Knuth et al., 2006], leading some to conclude that acidosis plays little or no role in fatigue.

However, the effect of reduced pH on shortening velocity is much less temperature-sensitive, causing
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nearly identical reductions (20-30%) at both 15 and 30◦C [Knuth et al., 2006]. Indeed, this decrease

in velocity explains much of the observed acidosis-induced reduction in peak fiber power [Knuth

et al., 2006]. Thus, while its effects on force are now thought to be less severe than originally

proposed [Nosek et al., 1987, Cooke et al., 1988, Chase and Kushmerick, 1988], because of the

magnitude of its effects on shortening velocity and power, acidosis remains a putative agent of

fatigue [Debold et al., 2016].

Experiments at the molecular level support the observation that acidosis reduces unloaded

shortening velocity by directly affecting myosin’s ability to translocate actin [Debold et al., 2008,

2011]. In a motility assay, acidosis (decreasing pH from 7.4 to 6.5) decreases actin filament velocity

over 50% [Debold et al., 2008] and experiments using a single myosin molecule indicated that this

velocity decrease likely results from acidosis slowing the rate of ADP release from myosin strongly

bound to actin (AM.ADP, Debold et al. [2008, 2004]). However, this cannot be the only step in

myosin’s cross-bridge cycle affected by acidosis. In particular, if the only effect of acidosis were

an increase in the AM.ADP lifetime, an ensemble of myosin would generate more force under

acidic conditions because more cross-bridges would be bound at any moment. This prediction is

contradicted by fiber experiments where acidosis either has little effect or causes a slight decrease

in maximal isometric force [Pate et al., 1995, Knuth et al., 2006]. Therefore, ADP release and some

other step(s) in myosin’s cross-bridge cycle must be affected by acidosis.

To identify the effect of acidosis on myosin’s interaction with actin, we recently measured the

impact of a drop in pH from 7.4 to 6.5 on the ability of a mini myosin ensemble to generate force in a

laser trap assay [Woodward and Debold, 2018]. Analysis of these data with a mathematical model,

and subsequent solution experiments that support the model predictions, allow us to propose a

mechanism for how reduced pH affects myosin’s interaction with actin. We then discuss how

this mechanism is consistent with a previous model of the effects of Pi [Debold et al., 2013],

describing experimental measurements from single molecules to muscle fibers. The success of this

mechanism in describing a wide range of measurements across size scales, which to our knowledge

other mechanisms cannot, suggests that it provides a molecular basis for the depressive effects of

these two key fatigue agents.
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2.3. Methods

The mini-ensemble and solution experiments are described in more detail in a separate publica-

tion [Woodward and Debold, 2018]; however, as these measurements played a critical role in model

development and validation, relevant details of the experimental methods and results are provided

in brief.

2.3.1. Proteins. The experimental data were from measurements on fast skeletal muscle

myosin isolated from chicken pectoralis muscle as previously described [Margossian and Lowey,

1982].

2.3.2. Mini-ensemble laser trap assay. The effect of a drop in pH from 7.4 to 6.5 on

myosin’s force generating capacity was determined using a mini-ensemble laser trap assay (at 25◦C,

100µM MgATP, and a total ionic strength of 125mM) using methods and instrumentation previ-

ously described [Debold et al., 2013]. Two beads were trapped in time-shared optical traps and

subsequently attached to a single actin filament. A pretension of 3-4pN was applied to the actin

filament. At the laser power used (2 Watts), this resulted in a two-trap stiffness of ∼ 0.02pN/nm.

Combining this stiffness with measurements of bead displacement gives the amount of force gener-

ated with each actomyosin interaction. These data were analyzed using a custom Matlab program

described previously [Longyear et al., 2017], which uses a thresholding algorithm to identify dis-

placements that remain greater than 10nm from a defined baseline for a duration ≥ 10ms.

2.3.3. MgATPase assay. The effect of acidosis on myosin’s steady-state MgATP hydrolysis

rate was determined using an NADH-linked assay solution with the heavy meromyosin (HMM)

fragment of myosin at 30◦C, using established methods [De La Cruz et al., 2000] in a low salt buffer,

including 20mM KCl, 25 mM imidazole, 1 mM EGTA, 4 mM MgCl2, and 1 mM dithiothreitol at

pH 7.4 and 6.5.

2.3.4. Modeling and simulations. We modeled the interaction between actin and myosin

with the kinetic scheme shown in Fig. 2.1 [Walcott et al., 2012]. In the model, myosin can exist in

four states (Fig. 2.1). The states are, using the numbering convention in Fig. 2.1: 1. a weakly-bound

state, where myosin is in the pre-powerstroke configuration, it is not bound to actin, and it has
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Figure 2.1. Kinetic model for myosin’s interaction with actin. Myosin is shown in red and actin
in blue. For clarity, only one of myosin’s two heads is drawn. The occupancy of myosin’s active
site is indicated as T (ATP), D (ADP) and DP (ADP+Pi).

ADP and Pi in its active site; 2. a strongly-bound state, where myosin is in the post-powerstroke

configuration, it is strongly bound to actin, and it has ADP in its active site; 3. a rigor state,

where myosin is in the post-powerstroke configuration, it is strongly bound to actin, and its active

site is empty; and 4. an unbound state where myosin is in the post-powerstroke configuration, it

is unbound from actin, and it has ATP in its active site. The release of ADP (the transition from

state 2 to 3) is force-dependent, according to Bell’s approximation [Bell, 1978, Veigel et al., 2003,

Kad et al., 2007]

(2.1) kD(F ) = k0
D exp

(
δF

kBT

)

where δ is a distance parameter (interpreted as the distance to the transition state), kBT is Boltz-

mann’s constant times temperature, and k0
D is the reaction rate in the absence of force. All other

biochemical steps are independent of force.

This model simplifies many of the molecular details of myosin’s ATP-dependent interaction with

actin. For example, the transition from state 1 to state 2 (see Fig. 2.1) must minimally include the

weak-to-strong binding transition, the powerstroke, and release of Pi, though not necessarily in that

order. In the model, all of these steps (and potentially more) are modeled by a single rate constant,

ka. Another simplification is the omission of the small sub-step that occurs on ADP release, between

states 2 and 3, [Veigel et al., 2003, Capitanio et al., 2006]. Despite these simplifications, the model

fits a wide range of experimental measurements, from the level of a single molecule to large myosin

ensembles [Walcott et al., 2012], including mini myosin ensemble measurements at pH 7.4 [Debold
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et al., 2013]. Since the aim of this work is to understand the effect of pH on mini myosin ensemble

measurements, adding further detail to the model would be necessary only if the current model is

unsuccessful in describing the data; however, since many of the kinetic steps in the model represent

combinations of sub-steps, we cannot clearly identify which of these sub-steps is affected by pH.

We used Monte Carlo simulations to compare this model to experimental results. Specifically,

we implemented a modified Gillespie algorithm to iterate through time and keep track of the state

of the system, making adjustments to this simulation to appropriately model single molecule, mini-

ensemble, and large ensemble measurements as in Walcott et al. [2012], Debold et al. [2013].

The basic steps of this algorithm are as follows. First, the times of all possible reaction rates

are determined, given the current states of each myosin molecule and the rate constants for the

available state transitions, by picking random numbers from the appropriate distribution. Second,

the system undergoes the chemical reaction associated with the shortest time, ts. Finally, the

system is updated appropriately (time is incremented forward by ts and mechanical equilibrium is

restored), and the process repeats again.

To model myosin’s force dependence, we kept track of the extension of all myosin molecules and

the position of the actin filament. We assumed that mechanical equilibrium occurs immediately

in the system, and when binding or unbinding occurs, we adjusted the position of the bound

myosin molecules and the actin filament to achieve this equilibrium. Additionally, since the force

on the system changes with binding or unbinding, the force-dependent ADP release rate must be

re-calculated. In general, the forces applied to the myosin molecules are different, so each bound

myosin molecule has a unique ADP release rate associated with it.

The result of these simulations is actin position as a function of time. A few adjustments were

necessary to make the simulated data comparable to the experimental results. First, we interpolated

the simulated data to match the laser trap sampling rate of 4 kHz. Additionally, we added noise to

model both the Brownian motion of the system and external noise observed in the raw data traces.

To achieve this, we added random noise from Gaussian distributions with standard deviations of

σ =
√
kBT/κtot and σ = 6.6nm, respectively, where κtot is the overall stiffness of the system at

a given point in time. The resulting simulated data were then analyzed using the same methods

used to analyze the experimental data (additional simulation details are provided in Appendix A).
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2.4. Results

We have previously performed a series of experiments measuring force generation and attach-

ment time of mini myosin ensembles [Woodward and Debold, 2018]. In these experiments, a laser

trap was used to manipulate a single actin filament over a pedestal (a 3µm diameter bead attached

to the flow cell surface) coated with myosin. With these experimental conditions, at pH 7.4 and a

MgATP concentration of [T ] = 100µM (the Control condition), short runs of motility are observed,

as the motors take several concerted steps before they all detach and the actin filament returns to

the center of the trap (see Fig. 2.2). Using customized software, maximum force (laser trap stiffness

times maximum displacement) and duration of each of these binding events were determined.

These mini-ensemble experiments were also performed in an Acidic condition (same as the

Control condition, but at pH 6.5). Median maximum event forces and event durations are given

in Table 2.1, and histograms are shown in Fig. 2.2. The Acidic condition is significantly different

from the Control condition. In particular, in the Acidic condition, events were significantly shorter

in duration and had a significantly smaller maximum force than in the Control condition. To

determine the molecular basis for these pH-dependent differences in the measurements, we used a

mathematical model.

Table 2.1. Results of mini ensemble measurements [Woodward and Debold, 2018]. Median
plus/minus half the difference between upper and lower quartiles. †Absolute value of max forces.
***Significance (p < 0.001 Kruskal Wallis ANOVA; Dunn’s method), data significantly different
(p < 0.05 Shapiro-Wilk) from normal.

Condition Control Acidic

Median Event Force† (pN) 0.78± 0.27 0.63± 0.13∗∗∗

Median Event Lifetime (s) 0.0175± 0.0084 0.0150± 0.0061∗∗∗

2.4.1. The model at pH 7.4. Although all model parameters have previously been charac-

terized (see Table 2.2), we used our current data at pH 7.4 to determine two parameters, N and

k2
a (see Debold et al. [2013], Longyear et al. [2017] for more about these parameters). The first of

these parameters, N , is the ensemble size, i.e. the number of independent myosin heads available to

interact with the actin filament. Previously, this value was estimated to be N = 21, but maximum

forces in our current data are smaller than observed previously [Debold et al., 2013]. We attribute
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Figure 2.2. Changes in pH affect the interaction between a mini myosin ensemble and a single actin
filament. In each panel, a section of raw data (bead position as a function of time) is shown (left).
Binding events were determined automatically, and maximum force and lifetime were determined
(illustrated in an inset in the top raw trace). Histograms of maximum event force (middle) and
event lifetime (right) were determined from multiple raw data traces. Insets show scatter plots of
event force and lifetime, demonstrating correlations between these two variables. The panels show
the two different experimental conditions. Data from Woodward and Debold [2018].

this difference to variability between myosin preparations, resulting in a lower concentration of

active myosin in the current measurements. We therefore expect a smaller ensemble size.

The second of these parameters, k2
a, models physical details of the mini-ensemble laser trap

assay. In particular, in the laser trap, a single myosin molecule binds to actin at k1
a = 2.2s−1

[Longyear et al., 2017]. However, in solution at saturating actin concentrations, this binding rate is

ka = 40s−1 [Pastra-Landis et al., 1983, Kovács et al., 2004]. This discrepancy has been attributed

to a lower effective actin concentration in the laser trap due to fluctuations in the height of the actin

filament above the myosin [Longyear et al., 2017]. In the mini-ensemble assay, when one myosin

molecule binds, it restricts these height fluctuations, increasing the effective actin concentration.

This is a form of cooperativity, since the binding of one myosin increases the attachment rate

of subsequent myosin, but it is specific to the mini-ensemble assay. We model it by assuming

that the first myosin molecule binds at k1
a = 2.2s−1, the second myosin binds at k2

a, which we

determined from fitting the data, and subsequent myosin bind at ka = 40s−1, the attachment rate

at saturating actin. Previously, single molecule attachment frequency had not been determined,
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Table 2.2. Parameter values used in the model. aParameter values from fits to the present data
(see Appendix A for justification). bParameter value from measurements in Longyear et al. [2017].
cParameters not fit individually; rather, the relative relationship between k1a, k2a and ka was assumed
fixed, and the three parameters were scaled uniformly. The best-fit value for this scaling parameter
at pH 6.5 was 0.25 (see Appendix A).

[Debold et al., 2013] pH 7.4 pH 6.5
Param. Value Value Value

N 21 12a 12a

k1
a 1s−1 2.2s−1b 0.55s−1a,c

k2
a 1s−1 2.2s−1a 0.55s−1a,c

ka 40s−1 40s−1 10s−1a,c

kT 2µM−1s−1 2µM−1s−1 2µM−1s−1

k+
h 100s−1 100s−1 100s−1

k−h 10s−1 10s−1 10s−1

k0
D 350s−1 350s−1 100s−1a

k1
R 0 0 8.8s−1a

k2
R 0 0 8.8s−1a

kR 0 0 10s−1a

δ 1.86nm 1.86nm 1.86nm
d 10nm 10nm 10nm
κ 0.3 pN/nm 0.3 pN/nm 0.3 pN/nm

so a value of k1
a = 1s−1 was used [Debold et al., 2013], which gave a best fit value of k2

a = 1s−1;

here, we determined k2
a from our fits, given the recent measurement of k1

a = 2.2s−1. We predict an

ensemble size of N = 12 and second myosin attachment k2
a = 2.2s−1 (Fig. 2.3A, and Appendix A).

This prediction is in reasonable agreement with an independent estimate, based on the myosin

concentration used (25µg/mL) and the geometry of the assay [Debold et al., 2005], which suggests

that roughly 10 myosin molecules were available to interact with the single actin filament.

2.4.2. A minimal model for the effect of reduced pH. Varying pH affects intramolec-

ular interactions throughout the myosin molecule. Thus, at pH 6.5, the rate constants and other

parameters that depend on those intramolecular interactions (i.e. myosin’s stiffness, κ, the force

dependent distance δ, etc.) could all differ from the values determined at pH 7.4. It is unfeasible to

determine all model parameters from a single data set, so we instead determined which parameters,

minimally, we had to change in order to fit our measurements.

Previously, pH has been shown to decrease the average step size and extend the lifetime of single

myosin molecules in the laser trap [Debold et al., 2008]. The decrease in step size was attributed to
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Figure 2.3. A pH-dependent reduction in attachment is required to fit mini-ensemble measure-
ments. A) The model fits mini-ensemble measurements at pH 7.4. Histograms of maximum event
force (left) and event lifetime (right) produced by a mini-ensemble of myosin in the laser trap and
by a computer simulation of 12 independent myosin heads are comparable. Inset shows scatter plots
of maximum event force and lifetime, demonstrating that the model reproduces the correlations
between the two. B) Decreases in ADP release rate (k0D) and/or increases in rebinding rate (kR)
cannot explain our mini-ensemble measurements at pH 6.5. The plot shows fitting error (sum of
the squared difference in cumulative probability distributions of binding event lifetime and force)
between simulation and measurement as a function of k0D and kR (red colors indicate a poor fit,
blue colors a good fit). The model not only generates a poor fit to the data, but the best fit values
(k0D = 350s−1 and kR = 0) are the parameter values at pH 7.4, indicating that the model cannot
reproduce the observed reduction in event force and lifetime that occurs under acidic conditions.
C) The model fits the measurements with a decrease in attachment (ka, the weak to strong binding
transition). The plot shows minimum fitting error, defined as the minimum error between simu-
lation and measurement upon varying k0D and kR, as a function of ka. Inset shows an example
heatmap at ka = 20s−1, which shows a much better fit than at ka = 40s−1 (as shown in panel
B) and the best-fit parameters show the expected reduction in k0D and increase in kR (color scale
the same as in panel B). D) With a decrease in attachment, and best-fit values of k0D and kR, the
model fits mini-ensemble measurements at pH 6.5. Plots are the same as in panel A. Data from
Woodward and Debold [2018]
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acidosis-dependent rebinding to the rigor state (kR in Fig. 2.1), resulting in a population of events

with 0 average displacement. The increase in lifetime was attributed to an acidosis-dependent

decrease in ADP release rate (k0
D, in Eq. 2.1). Consistent with the latter observation, actin speed

in the motility assay at saturating ATP (which, if detachment limited, is determined by ADP

release rate [Siemankowski et al., 1985]) decreases with decreasing pH [Debold et al., 2011]. Thus,

as a first hypothesis, we assumed that ADP release (k0
D) and rebinding to the rigor state (kR) are

the only pH-dependent parameters.

Fitting the model to the data, the best fit parameters at pH 6.5 were k0
D = 350s−1 and kR = 0

(see Fig. 2.3B). These are the same values as pH 7.4 (see Table 2.2). However, the data at pH 6.5

are significantly different from the data at pH 7.4 (Table 2.1). Thus, we conclude that, by only

varying kR and k0
D, the model cannot capture the observed acidosis-dependent differences in mini-

ensemble force generation and lifetime (see Appendix A for more details). So, minimally, another

parameter must change. As a likely candidate, we picked the weak-to-strong binding transition

rate, ka.

Varying ka, k
0
D and kR gave better fits to our mini-ensemble measurements, and allowed us to

capture the acidosis-dependent differences we observed in force generation and lifetime (Fig. 2.3C,

D). The best fit values point to an acidosis-dependent decrease in both ADP release rate (k0
D) and

weak-to-strong binding transition rate (ka), along with an acidosis-dependent increase in rebinding

rate (kR).

Note that, for any binding or rebinding reaction (i.e., the reactions governed by kR and ka),

we must additionally define the cooperativity that occurs in the laser trap due to restrictions in

height fluctuations of the actin filament caused by myosin binding. As a first approximation, we

assume that the relative scaling of k1
R, k2

R and kR is the same as the relative scaling for k1
a, k

2
a

and ka we obtained by fitting the mini ensemble measurements at pH 7.4. This is equivalent to

assuming an identical affinity for actin in the two states (see Appendix A for more information on

this assumption, and for alternate assumptions).

2.4.3. Steady-state MgATPase measurements confirm an acidosis-dependent de-

crease in attachment. At high actin concentrations, the hydrolysis of ATP is rate-limited by

the weak-to-strong binding transition rate, ka (Fig. 2.1, and Lymn and Taylor [1971]). Therefore,
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to test the model’s prediction of a decrease in ka with decreasing pH, we measured steady-state

MgATP hydrolysis rate in solution at pH 7.4 and 6.5 [Woodward and Debold, 2018]. If the model’s

prediction is correct, MgATP hydrolysis at saturating actin at pH 6.5 should be strongly decreased

compared to pH 7.4; indeed, the data clearly show this acidosis-dependent decrease (Fig. 2.4).

Taken together, the mini-ensemble and the steady-state MgATPase measurements suggest that

decreasing pH has three separate effects on myosin’s interaction with actin. First, it reduces

myosin’s ADP release rate (k0
D). Second, it reduces myosin’s weak to strong binding rate (ka).

Third, it enhances myosin’s rebinding to the rigor state (kR). This latter effect is only important

at low ATP concentrations; otherwise, the rigor state is not sufficiently occupied for rebinding to

have much of an effect [e.g., Debold et al., 2008].

2.5. Discussion

To gain a deeper understanding of the molecular basis of muscle fatigue, we considered measure-

ments of the force generation of mini-myosin ensembles interacting with an isolated actin filament

in the laser trap at pH 7.4 and 6.5 [Woodward and Debold, 2018]. These measurements show a

significant decrease in binding event force and lifetime at decreased pH. To interpret these mea-

surements, we modified a previously published model [Walcott et al., 2012], demonstrating that
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decreasing ADP release rate (k0
D) and increasing rebinding to the rigor state (kR) could not re-

produce the measurements at low pH. Additionally decreasing the weak-to-strong binding rate,

ka, was necessary to allow the model to fit the data. We find support for this prediction of an

acidosis-induced decrease in ka in steady-state solution ATPase measurements [Woodward and De-

bold, 2018], which are strongly inhibited at low pH. We therefore propose that, at physiological

ATP, decreasing pH decreases both myosin’s weak-to-strong binding transition rate and myosin’s

ADP release rate. However, since decreased pH occurs concomitantly with increased Pi in fatigued

muscle in vivo [Cady et al., 1989], an additional understanding of the effects of Pi on myosin is

necessary to fully understand the molecular basis of fatigue.

2.5.1. Modeling the effects of Pi on myosin’s interaction with actin. The effect of Pi on

the cross bridge cycle is controversial. While there is general agreement that Pi reduces muscular

force by rebinding to myosin molecules that are strongly bound to actin in a post-powerstroke

configuration with ADP in the active site (e.g. state 2 in Fig. 2.1), the details of this mechanism

remain equivocal [Llinas et al., 2015, Muretta et al., 2015]. The drop in force upon Pi binding can

be explained by a reversal of myosin’s powerstroke and dissociation from actin (e.g. a transition

from state 2 to state 1 in Fig. 2.1) [Hibberd et al., 1985, Webb et al., 1986, Pate and Cooke, 1989,

Smith, 2014]. This mechanism, however, does not explain the observation that Pi accelerates actin

filament velocity at low pH in a motility assay [Debold et al., 2011] or the observation that Pi has

only a small effect on myosin’s MgATP hydrolysis rate [Linari et al., 2010]. Rather, these data

suggest an alternative “branched pathway” hypothesis, where the rebinding of Pi to myosin causes

myosin to detach directly from a post-powerstroke state without reversing the powerstroke [Debold

et al., 2011]. Indeed, a mathematical model of this branched pathway hypothesis quantitatively

reproduces the observed effects on force and velocity from the single molecule to muscle fiber

level [Debold et al., 2013] and predicts the differential effects of Pi on muscle force and MgATP

hydrolysis rate [Bowater and Sleep, 1988, Potma et al., 1995, Linari et al., 2010]. Note that, by

including effects not considered here (e.g. non-linear cross-bridge elasticity), other models are able

to reproduce both the effect of Pi on force and ATPase [Smith, 2014]; however, these models do not

reproduce the Pi-induced acceleration of actin filament velocity at low pH [Debold et al., 2011].
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Figure 2.5. With a single parameter set, the model describes myosin’s interaction with actin
from the single molecule to ensemble level at variable Pi, both at pH 7.4 and 6.5. In each of the
bottom three panels, a cartoon of the experimental system is shown at left. A) The branched
pathway model for myosin’s interaction with actin in the presence of Pi. Symbols as in Fig. 2.1;
three additional states (3a, 3b and 4a) indicated in red. This model reduces to the one in Fig. 2.1
when Pi = 0. B) Model describes the ATP-dependent drop in myosin step size at low pH in the
single molecule laser trap. Measurements from Debold et al. [2008]; theoretical curves derived in
Appendix A. C) Model describes mini ensemble measurements. In each shaded box, histograms
of maximum event force (left) and event lifetime (right) produced by a mini-ensemble of myosin
in the laser trap and by a computer simulation of 12 independent myosin heads are shown. Inset
shows scatter plots of maximum event force and lifetime, demonstrating that the model reproduces
the correlations between the two. Model parameters were tuned to fit the Control and Acidic
conditions, but were not tuned to fit the Acidic+Pi condition. Data from Woodward and Debold
[2018]. D) Model describes actin speed as a function of ATP in the motility assay in the presence
and absence of 30mM Pi, both at pH 7.4 (left) and pH 6.5 (right). Data from Debold et al. [2011].
Importantly, the model reproduces the Pi-dependent increase in motility speed seen at pH 6.5.
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There are published measurements at pH 7.4 and 6.5, and at variable Pi, that span size scales

from single molecules to large ensembles [Debold et al., 2008, 2011, Woodward and Debold, 2018].

To our knowledge, only one model quantitatively fits these experimental measurements at pH 7.4

[Debold et al., 2013]. If our mechanism for the effects of acidosis is correct, then by modifying

ka, k
0
D and kR in that model, we should be able to reproduce the combined effects of reduced pH

and variable Pi. Finally, the same model should be able to qualitatively reproduce measurements

of these effects at the muscle fiber level. We therefore tested the model against a wide range of

previously published experimental data.

2.5.2. Model describes single molecule, mini-ensemble and large ensemble mea-

surements. With two modifications, described below, the model successfully fits experimental

measurements that span size scales from single molecules to large ensembles [Debold et al., 2008,

2011, Woodward and Debold, 2018] (Fig. 2.5A for kinetic scheme of model, Fig. 2.5B-D for fits,

Table 2.3 for parameter values). First, fitting motility measurements in the presence of Pi at pH 6.5

required increasing Pi-dependent detachment from the strongly bound state (the transition from

state 2 to state 3a in Fig. 2.5A) from koff = 30mM−1 · s−1 at pH 7.4 to koff = 100mM−1 · s−1 at pH

6.5 (see Appendix A). Second, fitting the ATP-dependence of single molecule step size measured in

the laser trap required us to specify cooperativity in rebinding to the rigor state (see Appendix A).

When fitting the mini ensemble data alone (section 2.4.2), we assumed that the cooperativity in

rebinding occurs via the same mechanism as attachment, so that the relative scaling of k1
R, k2

R and

kR is the same as for k1
a, k

2
a and ka. This is equivalent to assuming an identical affinity for actin in

the two states; however, our model is more consistent with the single molecule data if we assume

a greater affinity for rebinding (see Appendix A).

With these modifications, the model reproduces the following experimental results. At the

single molecule level, the model reproduces the ATP dependent decrease in step size measured in

the laser trap at pH 6.5 (Fig. 2.5B, Debold et al. [2008]). This reduction in step size is thought

to occur because, in acidic conditions, binding events occur through two pathways: first, the usual

transition from an unbound/weakly bound state to a strongly bound state, including a powerstroke

and 10nm step (state 1 to state 2 in Fig. 2.1), and second, rebinding from an unbound state to the
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Table 2.3. Additional parameter values (in addition to those in Table 2.2) used in the branched
pathway model that only apply in the presence of Pi.

aParameter values from fits to the present
data (see Appendix A for justification).

[Debold et al., 2013] pH 7.4 pH 6.5
Param. Value Value Value

koff 30mM−1s−1 30mM−1s−1 100mM−1s−1a

k+
P 0.7mM−1s−1 0.7mM−1s−1 0.7mM−1s−1

k−P 10s−1 10s−1 10s−1

kDP 40s−1 40s−1 40s−1

rigor state, that includes no rotation in myosin’s lever arm, and thus no step (state 4 to state 3 in

Fig. 2.1). This apparent ATP-dependence is thought to arise because at high ATP, the rebinding

events with a step size of 0 become short-lived and undetectable. The model reproduces these

findings (modeled step size at 1µM ATP and pH 6.5 not significantly different from measured value

(t-test, p > 0.05) but significantly lower than modeled step size at pH 7.4 (t-test, p < 0.001);

modeled step size at pH 7.4 not significantly different from measured value (t-test, p > 0.05);

modeled step size at 1000µM ATP and pH 6.5 not significantly different from measured value (t-

test, p > 0.05), but significantly greater than modeled or measured step size at 1µM ATP (t-test,

p < 0.001)).

With the same parameters, the model reproduces the acidosis- and acidosis+Pi-dependent

changes observed in mini-ensemble experiments [Woodward and Debold, 2018] (Fig. 2.5C). Impor-

tantly, model parameters were tuned to fit the Control (pH 7.4, 0mM Pi) and Acidic (pH 6.5,

0mM Pi) conditions, but were not tuned to fit the Acidic+Pi (pH 6.5, 15mM Pi) condition (see

Appendix A). Instead, these results are a prediction of the model, based on the effect of Pi (given in

Fig. 2.5A), and the change in koff necessary to fit motility measurements at pH 6.5. Although the

differences between the mini-ensemble measurements at pH 6.5 in the presence and absence of Pi are

not significant (see Table 2.4), the model nevertheless reproduces the trends in the measurements,

with a decrease in both median force and attachment time (Table 2.4).

Again, without changing parameters, the model reproduces the acidosis- and acidosis+Pi-

dependent changes in actin filament speed as a function of ATP, as measured in the motility

assay [Debold et al., 2011]. Notably, the model reproduces the Pi-dependent increase in motility

speed that occurs at high ATP and at low pH (Fig. 2.5D). This result is non-trivial, since the model
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Table 2.4. Results of mini ensemble simulations. Median plus/minus half the difference between
upper and lower quartiles. †Absolute value of max forces. a values repeated from Table 2.1

Condition Control Acidic Acidic+Pi

Median Event Force† (pN) 0.79± 0.21 0.66± 0.14 0.56± 0.06
[Woodward and Debold, 2018] (0.78± 0.27a) (0.63± 0.13a) (0.59± 0.06)

Median Event Lifetime (s) 0.0188± 0.0079 0.0173± 0.0073 0.0160± 0.0099
[Woodward and Debold, 2018] (0.0175± 0.0084a) (0.0150± 0.0061a) (0.0148± 0.0036)

predicts that lowering pH decreases myosin’s attachment rate to actin, a prediction supported by

our ATPase measurements. It is therefore possible that the observed acidosis-dependent decrease

in motility speed could arise only from a decreased attachment rate, where actin filaments move

slowly because there are periods of time when no myosin molecules are bound, i.e. motility becomes

attachment limited (as in the decrease in motility speed observed when myosin concentration is

decreased sufficiently, Uyeda et al. [1990], Harris and Warshaw [1993]). However, given the kinetic

scheme in Fig. 2.5A, a Pi-dependent increase in motility speed can occur only if motility remains

detachment limited. Thus, there must be simultaneous decreases in both attachment and detach-

ment (limited by ADP release at high ATP), in order to explain these motility data. Indeed, the

model predicts a relatively narrow range of parameters capable of describing all of these data, from

the single molecule to ensemble scale (see Appendix A).

Thus, the same model, with the same parameters, fits experimental measurements of the effects

of decreased pH and the combined effects of decreased pH and variable Pi, from the scale of a

single myosin molecule to an ensemble of around 50 myosin molecules. In all of the measurements,

a decrease in pH causes changes associated with a decrease in power output (a decreased step

size, a reduction in force production, and a decrease in motility speed). However, in the mini

ensembles, the addition of Pi introduces a synergistic effect, further dropping force; while in the

motility assay, the addition of Pi introduces an antagonistic effect, partially reversing the drop in

speed seen at decreased pH without Pi. The ability of the model to describe these measurements

across scales, and to capture context-dependent synergistic/antagonistic effects of acidosis and Pi

gives us confidence that it captures the essential molecular interactions between actin and myosin.
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Figure 2.6. Model qualitatively reproduces the pH- and pH+Pi-dependence of steady-state muscle
fiber experiments. A) Force-power curves measured in single muscle fibers at 30◦C. Reduction of
pH from 7.0 to 6.2 decreases peak power without greatly changing the force at which peak power
occurs or isometric force (curves are Hill fits reported in Knuth et al. [2006]); further addition of
30 mM Pi causes decreases in peak power, force of peak power and isometric force (curves are Hill
fits reported in Nelson et al. [2014]). Insets show force-velocity curves from which the force-power
curves are calculated. B) Force power curves predicted by the model. In each plot, solid curves are
Hill fits to simulated experiments (inset shows individual simulation results as hollow dots), and
dashed lines are numerical solutions to the partial differential equations (PDEs) that describe the
model in the large ensemble limit. Regardless of simulation technique, the qualitative predictions
of the model agree with the measurements: reducing pH decreases peak power without greatly
changing the force at which peak power occurs or isometric force; addition of Pi causes decreases
in peak power, force of peak power and isometric force.

2.5.3. Model is consistent with recent solution measurements. A recent study exam-

ined the effect of acidosis, temperature, Pi and ADP on the unbinding of pyrene-labeled myosin

from actin in solution upon the addition of a small amount of ATP [Karatzaferi et al., 2017]. For

our model, the relevant findings of that work are that ATP-induced dissociation (kT in our model)

shows only a small increase (20-25%) upon decreasing pH from 7.0 to 6.2, and that Pi acts as a

competitive inhibitor for this dissociation, with a KI of 20-30mM, independent of pH [Karatzaferi

et al., 2017]. Here, we assume kT is unaffected by a drop pH, which is consistent with the small

change observed in this study. The branched pathway model predicts that Pi will act as a compet-

itive inhibitor for ATP-induced detachment, via the transition from state 3 to state 4a (Fig. 2.5A),

with KI = k−P /k
+
P = 14mM (see Table 2.4) and these rates are assumed unaffected by a drop in

pH. The value of KI and its independence of pH are consistent the measurements in Karatzaferi

et al. [2017].

One apparent discrepancy between this study and our model is that Karatzaferi et al. [2017]

measured no effect of acidosis on the ADP affinity of myosin, whereas the model, consistent with

58



previous single molecule measurements [Debold et al., 2008], predicts an acidosis-induced decrease

in ADP release rate. One explanation for this discrepancy is that the model combines two sub-steps

(a force-dependent isomerization, followed by release of ADP) into a single transition (from state

2 to state 3 in Fig. 2.1). Thus, acidosis may decrease the isomerization, but not the release rate of

ADP, which would be consistent with both measurements [Debold et al., 2008, Karatzaferi et al.,

2017].

2.5.4. Model qualitatively predicts fiber measurements. If our model reasonably de-

scribes the effects of acidosis and Pi at the molecular level, then the model should also reasonably

describe muscle fiber experiments, with a few caveats. Specifically, unlike fiber experiments, the

molecular experiments in Fig. 2.5 do not preserve fiber geometry or allow fiber compliance [Tan-

ner et al., 2007, 2012, Campbell, 2016, Mijailovich et al., 2016], the experiments lack regulatory

and accessory proteins (e.g. troponin, tropomyosin, titin and myosin binding protein-C), and do

not include interactions between sarcomeres [Campbell, 2009, Stoecker et al., 2009, Walcott and

Sun, 2009]. Additionally, the experiments were performed on chicken pectoralis muscle at 25-30◦C

[Woodward and Debold, 2018], while most fiber experiments are performed on other muscle types

at different temperatures. Because of these differences, we do not expect quantitative agreement

with experiments. However, inasmuch as vertebrate fast skeletal muscle is similar, and that the

primary force generation comes from myosin’s interaction with actin, if our model is correct we

should expect to see qualitative agreement with experimental results.

In muscle fiber experiments, a decrease in pH generally has a small effect on force produc-

tion at physiological temperature [Pate et al., 1995, Westerblad et al., 1997, Knuth et al., 2006],

with only small changes in isometric force and the force of peak power (Fig. 2.6A). When pH is

decreased simultaneously with an increase in Pi, there is a significant decrease in both isometric

force and the force of peak power (Nelson et al. [2014] Fig. 2.6A). The model reproduces these

qualitative results, both when we simulate an experimental protocol (i.e., performing Monte-Carlo

simulations, measuring contraction velocity at a series of fixed forces and fitting the results with a

Hill curve), and when we numerically solve the integro-PDEs that govern the mathematical model

(see Fig. 2.6B, and Appendix A for methodology). Therefore, the model, which quantitatively

describes experimental results from single molecule to large ensembles (Fig. 2.5), also qualitatively
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reproduces cellular measurements (note that attachment and detachment rates can be scaled to

provide quantitative agreement with fiber experiments at high temperature and, if attachment is

more temperature sensitive than detachment, at low temperature as well, see Appendix A).

Though the qualitative agreement between simulated fiber experiments and measurements is

good, they do differ in one respect: in the simulated force-velocity curves at low pH, the addition

of Pi leads to an increase in the Vmax of the Hill fit (Fig. 2.6B, inset); while measured curves show

a decrease [Nelson et al., 2014, Karatzaferi et al., 2008]. This result is not surprising, since the

model parameters are based on in vitro motility measurements, which show an increase in velocity

upon the addition of Pi at low pH (Fig. 2.5D, data from Debold et al. [2011], also see Debold et al.

[2012]). It is unclear why these measurements disagree. There are obvious differences between

the experimental conditions, e.g. in the motility experiments, myosin molecules are isolated and

adhered to a glass coverslip and isolated actin is observed sliding freely over it. This treatment

might introduce artifacts that are not present in a working muscle [Homsher et al., 1992]. Similarly,

the muscle fiber experiments contain structural, regulatory, and accessory proteins as well as inter-

sarcomere interactions that might mask or even counter pH- and/or Pi-induced changes in myosin’s

interaction with actin.

A more specific explanation for the differences is that the fiber experiments generally report

changes in Vmax from a Hill fit. With this measurement, a drop in pH alone induces a ∼ 20% drop

in velocity [Knuth et al., 2006], while addition of 30mM Pi induces a further ∼ 20% drop from

the low pH Vmax [Nelson et al., 2014]. However, unloaded shortening from a slack test, which is

generally 1.5-2 times Vmax [Bottinelli et al., 1996, Knuth et al., 2006, Nelson et al., 2014], shows

a larger, ∼ 30% drop in velocity when pH is reduced [Knuth et al., 2006], and the addition of

Pi results in no further reduction [Nelson et al., 2014]. It is therefore possible that inaccuracies

extrapolating to 0 force with a Hill fit (see Appendix A) or some aspect of the force-velocity

measurement (e.g. sarcomere non-uniformity, [Widrick et al., 1996]) obscure the effects of Pi at

low pH. Additionally, thin filaments in a sarcomere likely experience a larger resistive load than

free actin filaments in the motility assay (e.g. myosin binding protein-C is might act as a viscous

drag, [Previs et al., 2012]), and even a small resistive load can mask or reverse the Pi-dependent

acceleration observed at low pH in our model (see Appendix A). Thus, this difference between
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the model-predicted and measured force-velocity curves might be explained by differences in the

measured parameter or the presence of a viscous drag.

Given the agreement between model and data, we look to the model to resolve an apparent

contradiction between molecular and cellular measurements. In particular, given that acidosis has

only minor effects on muscle force generation at the cellular level, one might expect that acidosis

has little effect on muscle at the molecular level [e.g. Westerblad, 2016]. However, single molecule

experiments [Debold et al., 2008], motility experiments [Debold et al., 2011] and mini-ensemble

experiments (Woodward and Debold [2018], Table 2.1) all show significant effects from acidosis.

In the model, this discrepancy is explained by acidosis introducing two effects: (1) a decrease in

attachment rate, which decreases the force produced by a myosin ensemble; and (2) an increase

in attachment duration, which increases the force produced by a myosin ensemble. At the cellular

level, these effects nearly balance, resulting in only a small change in isometric force; however, at

the molecular level, each of the two effects result in measurable changes. Thus, our model for the

combined effects of acidosis and Pi resolves apparent contradictions in the literature, and provides

a possible molecular basis for muscle fatigue.
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3.1. Abstract

Muscle contraction is a fundamental biological process where molecular interactions between

the myosin molecular motor and actin filaments result in contraction of a whole muscle, a process

spanning size scales differing in eight orders of magnitude. Since unique behavior is observed at

every scale in between these two extremes, to fully understand muscle function it is vital to develop

multi-scale models. Based on simulations of classic measurements of muscle heat generation as a

function of work, and shortening rate as a function of applied force, we hypothesize that a model

based on molecular measurements must be modified to include a weakly-bound interaction between

myosin and actin in order to fit measurements at the muscle fiber or whole muscle scales. This

hypothesis is further supported by the model’s need for a weakly-bound state in order to quali-

tatively reproduce the force response that occurs when a muscle fiber is rapidly stretched a small

distance. We tested this hypothesis by measuring steady-state force as a function of shortening

velocity, and the force transient caused by a rapid length step in Drosophila jump muscle fibers.

Then, by performing global parameter optimization, we quantitatively compared the predictions of

two mathematical models, one lacking a weakly-bound state and one with a weakly-bound state,

to these measurements. Both models could reproduce our force-velocity measurements, but only

the model with a weakly-bound state could reproduce our force transient measurements. How-

ever, neither model could concurrently fit both measurements. We find that only a model that

includes weakly-bound cross-bridges with force-dependent detachment and an elastic element in

series with the cross-bridges is able to fit both of our measurements. This result suggests that

the force response after stretch is not a reflection of distinct steps in the cross-bridge cycle, but

rather arises from the interaction of cross-bridges with a series elastic element. Additionally, the

model suggests that the curvature of the force-velocity relationship arises from a combination of

the force-dependence of weakly- and strongly-bound cross-bridges. Overall, this work presents a

minimal cross-bridge model that has predictive power at the fiber level.
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3.2. Introduction

Muscle contraction is a multi-scale biological process that drives essential physiological func-

tions. At the smallest scale, contraction is a result of interactions between two proteins, actin and

myosin, contained in thin and thick filaments, respectively. Coupled to the hydrolysis of ATP,

transient interactions occur between these proteins, whereby a myosin molecule binds to an actin

filament and forms a cross-bridge. Once bound, myosin undergoes a conformational change (the

power-stroke), which results in one filament sliding past the other. The binding of ATP to the

myosin active site causes the myosin molecule to detach from actin. ATP is then hydrolyzed while

myosin is detached from actin, and the process repeats. Direct and indirect measurements of these

molecular interactions in vitro provide insight into this process.

Optical trapping experiments with isolated actin filaments and a single myosin molecule provide

direct measurements of the lifetime of myosin binding and the size of the power-stroke [Finer et al.,

1994, Saito et al., 1994, Molloy et al., 1995, Guilford et al., 1997]. Similar experiments provide

measurements of the force-dependence of myosin’s detachment from actin [Veigel et al., 2003, Kad

et al., 2007, Greenberg et al., 2014, Sung et al., 2015]. Additionally, small ensembles of (∼ 10)

myosin molecules can be used in optical trapping protocols, resulting in measurements of actin

sliding rate as a function of force [Debold et al., 2005, Walcott et al., 2009] or the duration and

maximum force of multiple molecule binding events [Debold et al., 2013, Longyear et al., 2017,

Woodward and Debold, 2018]. Though these small ensemble results are not direct measurements

of single molecule properties, the presence of multiple myosin both increases the temporal resolution

of the measurement by increasing the lifetime of binding events, and also provides information about

how myosin molecules interact with each other through a common actin filament. Additionally,

the in vitro motility assay, which measures the velocity of actin filaments displaced by an ensemble

of ∼ 100 myosin molecules [e.g. Kron and Spudich, 1986, Harris and Warshaw, 1993], provides

complementary information about how groups of myosin function while moving a common actin

filament.

At a larger scale, experiments with whole muscle or isolated muscle fibers can provide steady-

state measurements of the force a muscle produces as a function of shortening velocity [e.g. Hill,
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1938], as well as transient measurements of force produced throughout time [e.g. Huxley and Sim-

mons, 1971]. In addition, energetics measurements inform on how the energy liberated by a muscle

is related to the work produced [e.g. Fenn, 1923]. While all of these techniques lead to an extensive

amount of experimental data across ∼eight orders of magnitude, it is challenging to make direct

comparisons between measurements at different scales, because unique behavior emerges at each

level [Duke, 1999, Baker et al., 2002, Campbell, 2009, Stoecker et al., 2009, Walcott and Sun, 2009,

Walcott et al., 2012, Hilbert et al., 2013]. Thus, it is unclear how to directly associate molecular

in vitro measurements to larger fiber and whole muscle measurements [e.g. Månsson et al., 2018].

One way to make connections across scales is through development of mathematical models. In

1957, shortly after the sliding filament theory was proposed [Huxley and Niedergerke, 1954, Huxley

and Hanson, 1954], A.F. Huxley developed a molecular-scale cross-bridge model which replicates

steady-state, whole muscle measurements [Hill, 1938]. This model was later adjusted in various ways

to replicate transient muscle measurements [Huxley and Simmons, 1971], to be thermodynamically

consistent [Hill, 1974], and to fit biochemical measurements [Eisenberg et al., 1980]. Subsequently,

as experimental techniques at the muscle fiber scale advanced, these mathematical models have

evolved to be consistent with some subset of muscle measurements, typically at the fiber or whole

muscle scale [e.g. Pate and Cooke, 1989, Piazzesi and Lombardi, 1995, Smith and Geeves, 1995,

Albet-Torres et al., 2009, Månsson, 2010].

Though they differ in their details, these models are all formulated in a similar manner. In

particular, myosin molecules transition between some number of discrete chemical states. Each

state is associated with a particular conformation, and in some, myosin is bound to actin. The rate

constants that govern the transitions between these states are force-dependent and, since myosin

is assumed to act as a linear spring, are proportional to myosin’s molecular extension, x. However,

until molecular measurements became possible, the x-dependence of these rates was unknown, so

modelers had to rely on either intuition or mathematical convenience.

Molecular measurements of the x-dependence of myosin’s reaction rates significantly constrain

these models. ADP release (kD(x)), for example, depends exponentially on molecular extension

in smooth [Veigel et al., 2003, Kad et al., 2007] and cardiac [Greenberg et al., 2014, Sung et al.,

2015] myosin, consistent with theoretical predictions [e.g. Bell, 1978]. Thus, recent models no
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longer must define an entire function (kD(x)), but rather two parameters (k0
D and E) that define it

(kD(X) = k0
De

EX). Of the current models that are informed by these molecular measurements [e.g.

Campbell, 2009, Månsson, 2010, Mijailovich et al., 2016], we focus on the model of Walcott et al.

[2012] (Fig. 3.1A), due to its relative simplicity and its ability to describe in vitro measurements

from the scale of single molecules to ∼100 molecules, all with a single set of parameters [Walcott

et al., 2012]. In addition, the model is able to fit force-velocity measurements from muscle fibers,

and infer molecular properties from these cellular measurements [Newhard et al., 2019].

While the success of such modeling approaches in bridging the molecular to cellular scale is

exciting, all models neglect some details. For example,Walcott et al. [2012] neglect a rapid, transient

interaction between myosin and actin (the weakly-bound state) that occurs prior to myosin’s strong

binding to actin and power-stroke [Eisenberg and Hill, 1985, Brenner, 1987, Cooke and Holmes,

1986]. Although this interaction is too fast to be observed with standard single molecule techniques

(though see [Capitanio et al., 2012]), its presence has been inferred from solution [Lymn and Taylor,

1971, Stein et al., 1979, Chalovich et al., 1981, Chalovich and Eisenberg, 1982] and muscle fiber

measurements [Brenner et al., 1982, 1984, Yu and Brenner, 1989]. Given that this model without

weakly-bound cross-bridges is validated across size scales, it is of interest to understand the effect

and necessity of a weakly-bound interaction.

With this in mind, we aim to develop a minimal cross-bridge model based on well-defined

molecular mechanisms that is able to scale up and have predictive power at the fiber and cellular

levels. The organization of the paper is as follows: In the Motivation section (section 3.3), we

hypothesize that such a model must include both weakly- and strongly-bound cross-bridges, based

on fits to steady-state force-velocity and force-energetics experiments performed on frog muscle

fibers under similar, but not identical, conditions. We propose a five-state model that can fit both

experiments. Adding support to this hypothesis, this model qualitatively reproduces the delayed

increase in force following a rapid lengthening of a muscle fiber (stretch-activation). However, in

the Results section (section 3.4), we show that this model is not consistent with our measure-

ments of steady-state force-velocity and tension transients performed with Drosophila muscle fibers

under identical experimental conditions. To reproduce our measurements, both force-dependent

detachment of weakly-bound cross-bridges and an elastic element in series with the cross-bridges

66



are necessary. In the Discussion section (section 3.5), we describe the implications of these results

on inferring molecular mechanisms from muscle fiber measurements.

3.3. Motivation

How does myosin’s weakly-bound state contribute to force production? Under what circum-

stances, if at all, can it be neglected? These are the central questions we wish to address. To

do so, we consider two alternative models: the first (Fig. 3.1A) is a four-state model of myosin’s

interaction with actin that is based solely on molecular measurements [Walcott et al., 2012]. This

model reproduces measurements at the single molecule to large ensemble scale in vitro [Walcott

et al., 2012] and is consistent with some fiber measurements [Newhard et al., 2019]. The second

(Fig. 3.1B) is a five-state model, identical to the first, but including a fifth state in which myosin

has bound to actin but has not undergone a power-stroke, and is therefore not producing force.

We have organized our results into two separate sections. In the first (this section), we motivate

our hypothesis that this fifth, weakly-bound state is necessary to consistently model muscle mea-

surements at the fiber scale. In the next section (the Results section), we describe experiments and

modeling that test our hypothesis.

3.3.1. Weak binding is necessary for consistent force-dependence. As a first test of

the effect of myosin’s weakly-bound state on muscle measurements, we fit the model to two classic

experiments, both of which are influenced by myosin’s force-dependent reaction rates: 1) the Fenn

effect and the energetics of muscle contraction, and 2) the Hill relationship between steady-state

muscle force and shortening velocity.

In the first set of measurements we consider, W. O. Fenn measured the relationship between

energy liberation and work performed during muscle contraction [Fenn, 1923]. With this work,

Fenn determined that the excess heat, i.e. the heat produced by a muscle during an isotonic

experiment minus the heat produced during an isometric experiment, was proportional to the

work done by the muscle. This phenomenon, known as the Fenn Effect, is attributed to myosin’s

force-dependent reaction rates [Veigel et al., 2003]. In the second set of data we model, A.V. Hill

measured the relationship between force and velocity during isotonic contractions [Hill, 1938]. Hill’s
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Figure 3.1. Motivation for weakly-bound cross-bridges in a model of muscle contraction based on
molecular measurements. A) Four-state kinetic scheme of myosin’s interaction with actin including
two bound states (states 1 and 2) and two unbound states (states 3 and 4). B) Five-state kinetic
scheme that is the same as that in A, except with the addition of a weakly-bound state labeled
in blue (state 1), where myosin is bound to actin but has not undergone its power-stroke. C, D)
Measurements of the heat produced and work done by a muscle as a function of load (C, [Fenn,
1923]) and force produced as a function of shortening velocity (D, [Hill, 1938]). The four-state
model was fit to the energetics data (dashed blue line in C), and the corresponding force-velocity
relationship is plotted in D. The four-state model was also fit to the force-velocity measurements
(dash-dotted blue line in D), and the corresponding energetics relationship is plotted in C. The five-
state model is able to simultaneously fit both measurements (red lines, C and D). E) Illustration of
a typical skeletal muscle force transient response to a quick stretch. F) Four- and five-state model
response to quick stretch (blue and red lines, respectively). Insets illustrate the lack of phase II in
the four-state model response, and the clear phase II in the five-state model response.
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measurements suggest an approximately hyperbolic relationship between force and velocity, with

shortening rate decreasing as load on the muscle increases (Fig. 3.1D). The non-linearity of this

relationship is also attributed to myosin’s force-dependent reaction rates [Newhard et al., 2019,

Huxley, 1957].

Given that the Hill and Fenn data were collected under similar experimental conditions and are

both influenced by myosin’s force-dependent reaction rates, we compared our two models, without

(Fig. 3.1A) and with (Fig. 3.1B) weak binding, to the measurements. To do so, we expressed

each model mathematically, solving for force as a function of velocity and ATP consumption as

a function of shortening velocity to compare to Hill and Fenn’s data, respectively (see section 3.7

and Appendix B). In all of our calculations, myosin’s force-dependence is defined by a single non-

dimensional parameter, E = κδd/kBT , where κ is the stiffness of myosin, δ is a parameter (with

units of distance) that describes myosin’s force-dependent chemistry, d is myosin’s power-stroke

size, and kBT is Boltzmann’s constant times temperature.

By varying the parameters of the four-state model (without weak binding) we optimized the fit

to each of the two measurements individually (see Appendix B). The agreement between model and

data is good (dashed blue line in Fig. 3.1C and dash-dotted blue line in Fig. 3.1D). However, the

parameters that optimize the model fit to Fenn’s energetics measurements are not consistent with

Hill’s shortening velocity measurements as a function of load, predicting a relationship that is too

curved (dashed blue line in Fig. 3.1D). Similarly, the parameters that optimize the model fit to Hill’s

shortening velocity measurements are not consistent with Fenn’s heat plus work measurements as

a function of load, predicting a linear relationship that is not sufficiently steep (dash-dotted blue

line in Fig. 3.1C). The inconsistency between the fits is due to a difference in force-dependence,

with the force-velocity measurements predicting a smaller force-dependence (E = 0.57) and the

force-energetics measurements predicting a larger one (E = 1.88).

The five-state model (with weak binding), however, is able to simultaneously fit both data sets

with a single force-dependence (E = 1.42, red curves in Figs. 3.1C, D) and generates a significantly

better fit than the four-state model (F-test, p < 0.05). This improved fit is made possible by

the weakly-bound cross-bridges, which act as a viscous drag on the system (see Appendix B),

providing a resistive force that varies linearly with shortening velocity. Thus, in the simulations
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of the force-velocity measurements, force comes from both the weakly-bound cross-bridges, with a

linear force-velocity relationship, and the strongly-bound cross-bridges, with a curved force-velocity

relationship whose curvature depends on E. Fitting Hill’s data with the five-state model therefore

requires a greater curvature for the force from the strongly-bound cross-bridges (i.e. a larger E)

to balance the absence of curvature from the force of the weakly-bound cross-bridges. For Fenn’s

energetic measurements, however, weak binding has a minimal effect. In particular, although the

muscle must do more work to overcome the resistive force of the weakly-bound cross-bridges, the

magnitude of this work is small compared to the work done by the muscle raising the weight (see

Appendix B). Thus, weakly-bound cross-bridges effectively mask the force-dependence predicted

from force-velocity measurements, allowing both fiber level data sets to be fit together.

3.3.2. Weak binding is necessary to reproduce force transient response. While the

Fenn and Hill measurements provide preliminary motivation for weak-binding, these experiments

are nearly 100 years old and are done under similar, but not identical conditions. Additionally, heat

measurements are challenging to interpret, because other ATP-consuming reactions besides cross-

bridge cycling occur in a muscle [Woledge et al., 1985]. Thus, to further understand the contribution

of weakly-bound cross-bridges to muscle force, we consider the transient behavior produced by a

muscle (or muscle fiber) after a quick stretch [e.g. Huxley and Simmons, 1971]. In this experiment,

the muscle (or fiber) is activated isometrically. It is then rapidly stretched a small percentage of

its length, and held isometric again. The response after stretch is often called the tension transient

[Huxley and Simmons, 1971, Ford et al., 1977, Lombardi and Piazzesi, 1990, Vanzi et al., 1995,

Huxley and Tideswell, 1996, Piazzesi et al., 1997], presumably because the measured quantity is

the tension in the muscle or muscle fiber. Here, we will refer to the response after stretch as the

force transient, because our model makes predictions of the force generated from the interaction of

myosin with actin. The force response of a muscle, or muscle fiber, post-stretch is a peak in force

at the time of stretch (phase I), followed by a rapid decay (phase II), a delayed increase in force

(phase III/stretch-activation) and finally a slower recovery period (phase IV) (Fig. 3.1E) [Huxley

and Simmons, 1971, Ford et al., 1977, Vanzi et al., 1995, Galler et al., 1996, Glasheen et al., 2017].

The molecular mechanism behind this force response is unknown [Ford et al., 1977, Glasheen et al.,

2017, Kawai and Halvorson, 2007, Galler et al., 1997, Linari et al., 2004].
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Simulating this quick stretch (see section 3.7), we find that the four-state model is unable to

reproduce all of the qualitative behavior of the force response, and in particular, is lacking the quick

decay of phase II. This model predicts a large increase in force at the time of stretch (i.e. phase I),

followed by a transient increase in force (i.e. phase III), and finally a subsequent decay (i.e. phase

IV) (Fig. 3.1F, upper inset). This response is due to the fact that strongly-bound cross-bridges

are extended with stretch and, since they act as linear springs in the model, therefore experience a

proportional increase in force. This force decreases the ADP release rate (transition from state 1 to

2 in Fig. 3.1A, see Eq. 3.2), which therefore slows the rate at which the cross-bridge detaches. The

attachment rate of cross-bridges is unaffected, so new cross-bridges continue to attach. This results

in a net increase in the amount of bound cross-bridges, and thus the transient increase in force

post-stretch. This result suggests that phase III is attributable to strong binding, and in particular

the force-dependent decrease in ADP release rate post-stretch.

The five-state model, however, is able to reproduce each of the four phases of the force response

(Fig. 3.1F, lower inset). In this model, both strongly-bound and weakly-bound cross-bridges are

extended with stretch. The strongly-bound cross-bridges have the same effect as in the four-state

model, with a decreased detachment rate resulting in a net increase of bound cross-bridges and thus

phase III. The weakly-bound cross-bridges, however, act on much faster time scale. Post-stretch,

these cross-bridges rapidly re-equilibrate, resulting in the quick decay of phase II.

Taken together, our simulation results show that the four-state model, without weak bind-

ing, cannot simultaneously fit Hill’s force-velocity and Fenn’s energetics measurements, nor does

it reproduce the qualitative behavior of force transients following a rapid stretch. In contrast, the

five-state model, with weak binding, simultaneously fits Hill’s and Fenn’s measurements and repro-

duces the four phases of the force transient post-stretch. Given these results, we hypothesize that

a weakly-bound interaction between actin and myosin is necessary to consistently model muscle

across scales. To test this hypothesis, we performed force-velocity and force transient measure-

ments on the same muscle fiber type under the same experimental conditions. We then fit our

measurements with the four- and five-state models.
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3.4. Results

We performed two different muscle mechanical experiments (force-clamps to obtain force-

velocity curves and force transients in response to length steps) on permeabilized (skinned) Drosophila

jump muscle fibers to test our hypothesis that a weakly-bound interaction between actin and myosin

is necessary to consistently model muscle across scales. Note that the jump muscle is mechanically

equivalent to a fast skeletal muscle type with maximum shortening velocity and tension generation

similar to mouse fast-twitch muscle type 2B [Eldred et al., 2010]. In the first experiment, we per-

formed force transient measurements on fibers at a sarcomere length of 3.6 µm with length increase

amplitudes ranging from 0.25% to 2% of the muscle fiber length (e.g. Fig. 3.2A). We varied the

stretch amplitudes to ensure that the muscle fiber gave a linear force response to the stretch. A

non-linear response would indicate some yielding behavior (i.e. the forcible detachment of myosin

from actin, see Chapter 4), which is not included in our model. We observe a linear relationship for

stretches less than 1% of muscle fiber length (Fig. 3.2B), and only fit the model to measurements

with stretch amplitudes in this linear range, to ensure that cross-bridges are not being forcibly

detached.

In the second experiment, we performed force-velocity measurements on fibers under the same

conditions as the force transient measurements (Fig. 3.2C, see section 3.7). These measurements

produced force-velocity curves that are comparable to our previous measurements with jump muscle

fibers from the same fly line, pwMhc2 [e.g. Newhard et al., 2019, Eldred et al., 2010, Swank, 2012],

and can be well-fit with the four-state model with an E = 0.62, or with the five-state model with

a range of E values above E = 0.62 (Fig. 3.2C, D, see Appendix B).

Given that either the four- or five-state model reproduces these force-velocity measurements,

we further test our hypothesis by fitting the force transient measurements with both of our models.

If the four-state model fits our force transient measurements and our force-velocity measurements

with a consistent set of parameters, then we reject the hypothesis that weakly-bound cross-bridges

are necessary to model muscle. If the five-state model fits the force transient measurements and

the force-velocity measurements with a consistent set of parameters, but the four-state model does

not, then we cannot reject the hypothesis. If neither model fits both measurements, we cannot
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over 0.5 ms. Inset is the same force transient on a smaller time scale. B) Relationship between
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C) Force-velocity measurements from an equivalent jump muscle fiber preparation are well-fit by
the four- and five-state models. D) Lower bound on combinations of unloaded ADP release rate
and the force-dependent parameter that fit force-velocity measurements with the five-state model
(see Appendix B).

reject the hypothesis as stated, but we can reject both models and conclude that the models do

not capture some effect contributing to muscle force.

3.4.1. Mismatch between force transient data and model. We fit the four- and five-

state models to both the force transient and force-velocity measurements. While both models could

reproduce our force-velocity measurements, neither model was able to reproduce our force transient

measurements. One obvious difference between the modeled and measured force transients was a
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discrepancy in the peak force obtained post-stretch (phase I). This discrepancy is surprising, since

this peak in force occurs over such a rapid time scale (Stretch duration: 0.5 ms, Measurement res-

olution: 0.125 ms) that myosin molecules would likely not undergo chemical state transitions, and

therefore the force response should represent the elastic stretching of myosin molecules bound to

actin. Given this simple interpretation, we investigated this difference between the peak force pre-

dicted by model and measurement in more detail; however, as we will show, even if this discrepancy

is explained, neither the four- nor the five-state model can simultaneously fit our measurements.

A simple calculation allows us to understand the mismatch between the peak force we measured,

and that which was predicted by the model. In the experiments, the half-sarcomere of the muscle

fiber is set at a length of 1.8 µm. The muscle fiber is then stretched a particular fraction, s, of its

length (e.g. a 0.5% stretch corresponds to s = 0.005). Assuming each sarcomere stretches equally,

a stretch of s muscle lengths is equivalent to stretching each sarcomere s sarcomere lengths, and

therefore s of each half-sarcomere length. The length of stretch in nanometers at the half-sarcomere

level is therefore S = 1800 nm · s. We can calculate a lower bound on the peak force post-stretch

for a given stretch amplitude by considering the force from cross-bridges that are strongly-bound

before stretch. Pre-stretch, these cross-bridges have undergone a power-stroke and therefore have

an average extension of d = 10 nm. Post-stretch, these cross-bridges have now been stretched an

additional S nm, giving an average extension of S + d nm. Assuming linear cross-bridge elasticity

and myosin stiffness of κ, the force produced by a cross-bridge post-stretch is Fp = (S + d)κ.

Normalizing this to the pre-stretch value, we get,

(3.1)
Fp
F0

=
(S + d)κ

dκ
=
S
d

+ 1 =
1800 · s

d
+ 1

We emphasize that this estimate is a lower bound because we neglect the contribution of weakly-

bound cross-bridges, which (if present) would also be stretched and would add to this force.

The measured values of peak force following stretch are much less than this estimated lower

bound (Fig. 3.2B). Importantly, only a few model assumptions lead to this model prediction,

namely linear cross-bridge elasticity, a power-stroke size of d = 10 nm, and the assumption that a

particular length change at the fiber level corresponds to the same relative change at the sarcomere

level. While it might be argued that estimates of power-stroke size vary [e.g. Finer et al., 1994,
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Molloy et al., 1995, Guilford et al., 1997, Pate and Cooke, 1989, Kaya and Higuchi, 2010], we would

need a power-stroke size of d > 25 nm in order to reproduce the experimental measurement, since

Eq. 3.1 is a lower bound. Thus, with the assumptions of linear elasticity, a power-stroke size of

10 nm (or less), and the same relative stretch amplitude across scales, the model and data are

inconsistent.

While a discrepancy between model and data means that we reject both models and neither

reject nor support our hypothesis, this conclusion depends on all of the assumptions that led to

Eq. 3.1. We therefore consider two explanations for the discrepancy that would adjust the result

from Eq. 3.1: (1) the relative change in sarcomere length is smaller than the relative change in

fiber length, resulting in an overestimation of stretch amplitude of the half-sarcomere, and (2) the

force transient data includes an “unexplained” force due to factors other than actin and myosin.

We discuss these two possibilities below, keeping in mind that they are not mutually exclusive.

3.4.2. Explanation 1: Overestimated stretch amplitude. Our calculation of peak force

(phase I) following stretch (Eq. 3.1) relies on the assumption that a relative change in fiber length

results in an equivalent relative change in sarcomere length. However, it is possible that the

change in sarcomere length is smaller than that measured at the fiber level, due to the elasticity of

structures in series with the cross-bridges. There are a variety of elastic elements that are in series

with cross-bridges (e.g. titin, Z-disks), in series with the muscle fiber (e.g. the thin-filament), in the

experimental equipment, and at the fiber ends from sarcomeres that are damaged when the fiber is

clamped. When a muscle fiber is stretched, these elastic structures (which we refer to as the series

elastic element) are also stretched, and therefore the change in sarcomere length is smaller than

the corresponding change in fiber length.

To account for this overestimation of stretch amplitude, we let stretch amplitude be a parameter

of fit, along with the other unknown model parameters (see Appendix B). In doing so, we account for

the effect of the series elastic element on the stretch amplitude, but neglect any dynamic interaction

between the cross-bridges and the series elastic element (also see section 3.4.4). Additionally, in the

force transient measurements, the isometric force post-stretch is slightly higher than the pre-stretch

isometric force (residual force enhancement). Since the model does not include a mechanism for
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residual force enhancement, we account for this by adding a small force to the model post-stretch,

so that the modeled force returns to the measured post-stretch isometric force for long time (see

Appendix B). With these specifications, we fit the model to our measurements. The optimization

converges to a good fit to the entire force transient measurement, reproducing all parts of the force

response (i.e., phases I-IV, Fig. 3.3A).

Though the model reproduces the force transient measurements, there are two reasons that we

reject this explanation. The first is that the best-fit predicts that the stretch amplitude at the

sarcomere level is an order of magnitude smaller than that imposed experimentally at the fiber

level (experimental stretch amplitude: 9 nm for a 0.5%ML stretch, predicted stretch amplitude:

0.437± 0.08 nm, see Appendix B). While series elastic elements can result in an overestimation of

the stretch amplitude at the sarcomere level, it is unlikely that the effect is of this magnitude.

The second reason that an overestimation of stretch amplitude is unlikely to explain the dis-

crepancy between simulation and measurement is that, with this small stretch amplitude, the model

requires a large force-dependence to fit the force transient measurements. This is because in the

model, phase III of the force transient response arises from stretching strongly-bound cross-bridges.
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Since the cross-bridges act as linear springs, this stretch results in a proportionate force on the cross-

bridge, which then decreases that cross-bridge’s ADP release rate (via the parameter E). Thus,

if the stretch amplitude is decreased by an order of magnitude, the force-dependent parameter E

must be increased by an order of magnitude in order to obtain the same decrease in ADP release

rate. This large force-dependence required to fit force transient measurements is inconsistent with

the force-dependence predicted from force-velocity measurements (Fig. 3.3B), resulting in a force-

velocity relationship that is too curved (Fig. 3.3C). Thus, we reject the explanation that series

elasticity results in an overestimation of stretch amplitude, and instead consider the effect of an

“unexplained” force on our calculation.

3.4.3. Explanation 2: Unexplained force. In our calculation of peak force following stretch

(Eq. 3.1), we also assume that all of the measured muscle force arises from the interaction of

myosin cross-bridges with actin. While we account for the force contribution of passive elements by

measuring the force production in experiments at low calcium concentrations (see Appendix B), it is

possible that other calcium-dependent, non-cross-bridge elements contribute to force. Indeed, such

a mechanism has been proposed to account for the increase in isometric force following a stretch

(i.e. residual force enhancement, [Leonard and Herzog, 2010, Nishikawa et al., 2012, Schappacher-

Tilp et al., 2015, Koppes et al., 2015, Labeit et al., 2003, Campbell and Campbell, 2011, Herzog

et al., 2016]).

To account for this potential non-cross-bridge force, we let it be a parameter in the model. With

this addition, we find that the optimization converges to a good fit to the entire force transient

measurement (Appendix B, Fig. B.13). However, we find that these results mirror the inconsisten-

cies we found with stretch amplitude as a model parameter (Sec. 3.4.2 and Fig. 3.3), and thus we

must reject this hypothesis. In particular, the best-fit predicts an implausibly large post-stretch

unexplained force of over 28 times the isometric force from cross-bridges. Additionally, this large

magnitude of unexplained force then requires a large force-dependence to fit our force transient

measurements, which is then inconsistent with our force-velocity measurements (see Appendix B

for details).
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The net result of the comparison of our model to our measurements is that neither the four-state

nor the five-state model can reproduce both our force-velocity and force transient measurements,

allowing us to reject both models as stated. We can therefore infer that neither model captures all

of the effects contributing to muscle force in these experiments, and conclude that at least one of

our model assumptions is wrong.

However, the success of the five-state model in fitting Fenn’s and Hill’s measurements and

reproducing both our force transient and force-velocity measurements (albeit with different pa-

rameters), suggests that some modification of the five-state model might successfully fit both of

our measurements. We therefore considered various alternative model assumptions. We found

that none of these alternative assumptions, individually, allows the model to fit our measurements.

Neither non-linear elasticity of myosin, force-dependent detachment of weakly-bound cross-bridges,

nor thin-filament activation could explain the discrepancy (see Appendix B for details). However,

when we allow the series elastic element to interact dynamically with the cross-bridges and include

force-dependent detachment of weakly-bound cross-bridges, we can fit our measurements with the

five-state model.

3.4.4. Model with force-dependent detachment of weakly-bound cross-bridges and

series elasticity is able to consistently model muscle measurements. In section 3.4.2,

we invoked a series elastic element to motivate our efforts to fit our measurements with a stretch

amplitude at the sarcomere level that is smaller than the imposed stretch. In doing so, we made the

assumption that this series elastic element does not change length after the initial stretch. However,

this elasticity, possibly due to a variety of factors (e.g. titin, Z-disks, the experimental apparatus;

see Sec. 3.4.2), may be more dynamic. If we relax our original assumption, allowing a dynamic

interplay between the contractile element and the series elastic element, the model remains unable

to fit the data. However, if we additionally include force-dependence in the detachment from

the weakly-bound state [Capitanio et al., 2012], the model is consistent with our measurements

(Fig. 3.4, see Appendix B for details of the fitting procedure and the model).

To fit our force transient measurements, we must again account for residual force enhancement,

the increase in isometric force post-stretch. Adding a small force post-stretch (as discussed in
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section 3.4.2), allows the model to fit phase I and II of the force transient. However, adding a

slightly larger force allows the model to fit phases I-III of the force transient, and to partially re-

produce phase IV (Fig. 3.4A, dashed line shows added force, Fig. 3.4B shows the four phases of the

simulated force transient). With the same parameters, the model fits our force-velocity measure-

ments (Fig. 3.4C). To our knowledge, this is the first cross-bridge model that accurately captures

both the dynamics of the force transient after stretch and steady-state force-velocity measurements.

3.5. Discussion

Bridging the molecular to cellular (and larger) scales has been a central focus in the study

of muscle contraction. Such a multi-scale understanding would have a profound impact on both

science and medicine, e.g. improving the understanding of human movement [Alexander, 2005]

and the treatment of genetic heart disease [Seidman and Seidman, 2001]. Over fifty years ago,

the sliding filament theory [Huxley and Niedergerke, 1954, Huxley and Hanson, 1954] and A. F.

Huxley’s mathematical model [Huxley, 1957] suggested that this multi-scale understanding was

within reach. Subsequent successful predictions of the sliding filament theory [e.g. Gordon et al.,

1966], biochemical and structural measurements of myosin interacting with actin [e.g. Lymn and

Taylor, 1971, Rayment et al., 1993] and molecular-scale measurements [e.g. Finer et al., 1994, Kron

and Spudich, 1986] further contributed to the idea that a multi-scale understanding of muscle

contraction was at hand. Nevertheless, to our knowledge, there is still no mathematical muscle

model capable of explaining all (or even more than a little) of muscle phenomenology at the cellular

scale.

We aim to develop a cross-bridge model that consistently describes muscle measurements across

scales. To do so, we start with a molecular-scale model that incorporates many molecular measure-

ments [Walcott et al., 2012], but we make a few critical assumptions motivated by mathematical

convenience when we apply our model to the fiber scale (e.g. that sarcomeres are uniform and

contain a large number of myosin molecules). This allows us to employ a suite of mathematical

tools (see section 3.7 and Appendix B) and perform global parameter optimization when we fit our

experimental measurements. Optimization of this form is powerful, because it allows us to rule
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Figure 3.4. The five-state model adjusted to include force-dependent detachment of weakly-bound
cross-bridges and an elastic element in series with the cross-bridges is able to reproduce our mea-
surements. A) The adjusted model reproduces all four phases of the force transient response. Inset
shows that the force in both measurement and model briefly drops below the post-stretch isometric
force (dashed line). B) Force (relative to isometric, top panel), and actin position (relative to a
steady-state position of 0, bottom panel), as a function of time during the force transient response.
The light grey regions represent time during which actin is moving in the lengthening direction
relative to myosin. The dark grey regions represent time during which actin is moving in the
shortening direction relative to myosin. C) The adjusted model replicates our force-velocity mea-
surements. D) Sum of the squared error in comparing model to measurements for combinations of
the magnitude of force-dependence of weakly- and strongly-bound cross-bridge detachment, model
parameters Ewb and E, respectively. Each axis plots the non-dimensional values of the respective
force-dependencies (see Sec. 3.5.3). The model requires a small force-dependence for strong-binding
and a large force-dependence for weak-binding to accurately fit our measurements.
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out specific models. Here, for example, we can conclude that the model assumptions in our four

and five-state models (Fig. 3.1A,B) are wrong, since neither are able to reproduce our data for any

parameter choice.

Upon rejection of these proposed models, we tested some of the assumptions we made when

we applied the five-state model to our measurements. In particular, we found that including

either non-linear elasticity of myosin, force-dependent detachment of weakly-bound cross-bridges,

or thin-filament activation did not allow the model to fit our measurements. However, extending

the five-state model to include force-dependent detachment of weakly-bound cross-bridges as well

as a dynamic interaction with a series elastic element allows the model to simultaneously fit our

measurements. As with any successful model fit, this does not guarantee that the model is correct;

however, given the difficulty in fitting the model to the data and the large number of alternative

models we were able to reject, it is an attractive hypothesis that the force transient response after

a small amplitude stretch is due the interaction of a series elastic element and weakly-bound cross-

bridges that detach from actin in a force-dependent manner. This result has implications to the

connection between cross-bridge dynamics and muscle fiber measurements.

3.5.1. Strongly-bound cross-bridges are unlikely to cause stretch-activation. Our

preliminary simulations of force transients using our two proposed models led us to hypothesize

that strongly-bound cross-bridges are responsible for the delayed increase in force of phase III

(stretch-activation). In the model, this occurs due to the force-dependence of strongly-bound cross-

bridges, which, upon stretch, experience forces that decrease their detachment rate, resulting in a

net increase in bound cross-bridges and therefore increased force (section 3.3.2). However, we reject

this hypothesis as described by the models, because neither model can fit our force transient and

force-velocity measurements. Adjusting for the possible effects of series elasticity or an unexplained

force allows the five-state model to fit our measurements of the force transient, but then it cannot

also fit our force-velocity measurements (section 3.4.2, 3.4.3).

The failure of the five-state model is due to significant differences in the force-dependence

required to fit our two experiments. In the force transient fits, large force-dependence is needed to

decrease the detachment rate of the strongly-bound cross-bridges enough to get a sufficient increase
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in force to fit the stretch-activation response. These large values are then inconsistent with those

predicted from force-velocity measurements (Fig. 3.3B). This discrepancy persists even when the

model is adjusted to include either non-linear elasticity of myosin, force-dependent detachment of

weakly-bound cross-bridges, or thin-filament activation (see Appendix B). Thus, we conclude that

strongly-bound cross-bridges cannot be solely responsible for the stretch-activation response.

When we adjust the model to include both a series elastic element interacting dynamically

with cross-bridges and force-dependent detachment of weakly-bound myosin, it can simultaneously

reproduce both the force transient response and the force-velocity relationship (Fig. 3.4A, C).

Interestingly, in the simulated force response, cross-bridge force drops below isometric at the end

of phase II (Fig. 3.4A, inset). This drop in force occurs because, even though the fiber length is

held constant, both the length of the series elastic element and the length of the contractile element

(i.e., the position of actin relative to myosin) are changing. The drop in force coincides with a

time when actin moves beyond its steady-state position relative to myosin. Actin moving beyond

its steady-state position causes the series elastic element to relax, producing less force. Actin then

moves in the shortening direction, extending the series elastic element and causing force to rise in

phase III. There is another small overshoot and drop in force which produces phase IV (Fig. 3.4B).

In the simulations of the force from the fiber, this drop is masked by the small force we add

post-stretch to account for residual force enhancement (dashed line, Fig. 3.4A). However, in some

measurements of stretch-activation, particularly at larger stretch amplitudes, a clear drop in force

below even the initial isometric force is observed [Galler et al., 1994, Stelzer et al., 2006, 2007]. Such

sub-isometric force could not occur if stretch-activation were caused by prolonged attachment of

strongly-bound cross-bridges. After stretch, there would be at least as many strongly-bound cross-

bridges as pre-stretch, and each cross-bridge would produce more force. Thus, strongly-bound

cross-bridges cannot cause sub-isometric forces post-stretch, since together they will result in more,

and not less, force. This observation further strengthens our conclusion that stretch-activation is

not solely caused by prolonged binding of strongly-bound myosin molecules, and that the major

contributor is more likely a dynamic interaction between cross-bridges and a series elastic element.
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3.5.2. Series elasticity results in a complex connection between the rates of the

force transient response and cross-bridge kinetics. Force transient measurements have been

employed to make direct connections between force decay rates and the kinetic steps of the inter-

action between actin and myosin [Huxley and Simmons, 1971, Piazzesi and Lombardi, 1995, Galler

et al., 1996, 1994]. Our results, however, suggest that the connection between force transients and

molecular kinetics may not be straightforward. In particular, in our simulations, the extension

rate of the series elastic element, and therefore the velocity of actin relative to myosin, varies post-

stretch on the same time scale as phase I and II of the force transient response. Thus, the rate at

which the phase II decay occurs reflects both the kinetics of cross-bridge unbinding and also this

rapidly changing actin velocity. This result provides further insight into why our original five-state

model, without a dynamic series elastic element, was unable to fit our force transient measurements

(Fig. 3.3). In this model, there is a mismatch in time scales between our force transient and force-

velocity measurements, with the former requiring slower ADP release than the latter (Fig. 3.3B).

The addition of a dynamic series elastic element resolves this discrepancy (Fig. 3.4).

This result fits with previous modeling studies that have highlighted the importance of series

elasticity in other contexts. For example, myofilament elasticity has been shown to have a significant

effect on cross-bridge dynamics and force in computational muscle models [Tanner et al., 2007,

Daniel et al., 1998, Campbell, 2006]. Similarly, a computational model used to reproduce the stress

relaxation response of muscle illustrates that series elasticity has a large effect on the resulting force

transient [Luo et al., 1993]. This previous modeling work highlights the necessity of appropriately

modeling filament elasticity in cross-bridge models, and that time scales of force production do not

directly relate to kinetic steps in the cross-bridge cycle. Our findings expand these results to the

context of stretch-activation. We show that the individual phases of the force transient response

cannot be directly linked to specific kinetic steps, and further, that series elasticity must be included

in cross-bridge models to accurately capture stretch-activation.

3.5.3. Strongly and weakly-bound cross-bridges contribute to force-velocity cur-

vature. It is generally thought that the curvature of the force-velocity relationship is due to the

force-dependent chemistry of myosin molecules [e.g. Newhard et al., 2019]. In particular, it has
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been shown experimentally that ADP release rate and myosin detachment are dependent on the

load the molecule experiences [Veigel et al., 2003, Kad et al., 2007], and that even small ensembles

of myosin molecules can produce force-velocity curves that are similar to those from entire muscle

fibers [Debold et al., 2005]. Additionally, muscle models that include force-dependent ADP release

produce force-velocity relationships with appropriate curvature both at the molecular scale [Walcott

et al., 2012], and at the fiber scale [Newhard et al., 2019]. Quantitatively, this force-dependence can

be described by a single non-dimensional parameter, E (see Sec.3.3.1), generally ranging between

0.7-1.9 for skeletal muscle [Veigel et al., 2003, Kad et al., 2007, Walcott et al., 2012, Newhard et al.,

2019]. Thus, it is at least a plausible hypothesis that the curvature of the force-velocity relationship

is determined by the force-dependence of ADP release. While other steps in myosin’s cross-bridge

cycle have also been measured to be force-dependent [Capitanio et al., 2012], the contribution of

these states to force production is unclear.

Our fits to Fenn’s [Fenn, 1923] and Hill’s [Hill, 1938] data required, in addition to force-

dependent ADP release, force-independent weakly-bound cross-bridges that act as a viscous drag

(Figs. 3.1C, D). While the viscous drag has little impact on the Fenn effect, overall force-velocity

curvature is a combination of the curved force from the force-dependent strongly-bound cross-

bridges, and the linear drag from the force-independent weakly-bound cross-bridges. In effect, the

weakly-bound cross-bridges are masking the force-dependence that would be predicted from strong

binding alone.

In contrast, fits to our measurements of force transients and force-velocity were possible only

with significant force-dependence in unbinding of the weakly-bound state, and minimal force-

dependence in unbinding of the strongly-bound state (Fig. 3.4D). Our best fit has a non-dimensional

force-dependence of E = 0.36 for strongly-bound cross-bridges, a bit smaller than previously re-

ported values [Veigel et al., 2003, Kad et al., 2007, Walcott et al., 2012, Newhard et al., 2019].

The model also includes a single non-dimensional parameter that describes the force-dependence of

weakly-bound cross-bridges, Ewb. By non-dimensionalizing these two force-dependencies, they are

directly comparable (note, however, that while an increase in force slows the rate of detachment

for strongly-bound cross-bridges, it increases the detachment rate of weakly-bound cross-bridges,

so they have opposite sign). The large best-fit force-dependence for weakly-bound cross-bridges,
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Ewb = 20, indicates that the curvature of the force-velocity relationship in the model is largely due

to the force-dependence of the weakly-bound state.

In fitting both of our data sets, we find that the curvature of the force-velocity relationship

represents a combination of the force-dependence of the weakly- and strongly-bound states. There-

fore, in interpreting force-velocity curvature, it is critical to consider the contributions and force-

dependencies of both weakly- and strongly-bound cross-bridges.

3.6. Conclusion

Over the past two decades, the molecular picture of muscle contraction has been brought sharply

into focus by single molecule techniques. However, a gap remains between that molecular picture

and the behavior of muscle at the cellular and larger scale. Modeling approaches are critical in

bridging this gap. We have demonstrated that the addition of a weakly-bound state allows a cross-

bridge model, extensively validated with molecular-scale data, to describe several whole muscle

experiments. Further, we show that this model, even with a weakly-bound state, cannot explain

our own measurements on Drosophila jump muscle fibers. However, if both elastic elements in se-

ries with the cross-bridges and force-dependent unbinding from a weakly-bound state are included

in the model, it is able to simultaneously fit our measurements. Taken together, the successes and

failures of our cross-bridge models in describing fiber level measurements provide insight into the

molecular mechanism of stretch-activation, demonstrate a lack of a direct connection between the

force transient response and kinetic steps in the cross-bridge cycle, and suggest that the curvature

of the classic force-velocity relationship results from a combination of the force-dependencies (or

lack thereof) of weakly- and strongly-bound cross-bridges. This work represents a step toward a

minimal cross-bridge model that has predictive power at the fiber level.

3.7. Materials and Methods

3.7.1. Experiments. We used jump muscles from the Drosophila line pwMhc2 [Swank et al.,

2000], which we have used as a control line in all of our previous jump muscles experiments.

This provided us with a large data pool with which to compare our current results and enabled
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accurate determination of the quality of our current experimental results. Skinned jump muscle

fiber bundles were prepared as previously described [Newhard et al., 2019, Eldred et al., 2010,

Swank, 2012]. Briefly, jump muscles were removed from three-day-old female flies and chemically

demembranated (skinned) for one hour. Muscles were pared down to 6 - 8 fibers and aluminum

T-clips were attached to either end resulting in a fiber bundle of approximately 150 µm in length,

100 µm width, and 50 µm depth. The bundle was mounted on a muscle mechanics apparatus and

attached to a force transducer and a piezo motor while bathed in relaxing solution (pCa 8.0, 12 mM

MgATP, 30 mM creatine phosphate, 600 U/ml creatine phosphokinase, 1 mM free Mg2+, 5 mM

EGTA, 20 mM BES (pH 7.0), 200 mM ionic strength, adjusted with Na methane sulfonate, 1 mM

DTT) at 15◦C. Starting sarcomere length was set to 3.6 µm by lengthening the fiber bundle. The

fiber bundle was transferred to pre-activating solution (same as relaxing solution, but no EGTA) for

two minutes and then into activating solution (same as relaxing solution, but pCa 5.0). Isometric

tension was measured once force reached a steady-state maximum level.

To obtain force transients in response to rapid length increases, fiber bundles were first activated

as described above and then rapidly lengthened over 0.5 ms and held at the increased length for

500 ms before returning to the starting fiber length. The length increases tested ranged from 0.25%

to 2% fiber length. The same length increases were performed at pCa 8.0 to determine if passive

properties contributed significantly to force amplitudes (see Appendix B).

Separate jump muscle fiber bundles were used to obtain force-velocity curves. Force-velocity

curves were performed using the force-clamp technique as previously described [Newhard et al.,

2019, Eldred et al., 2010, Swank, 2012]. Briefly, after the fiber reached its maximum activated

tension level the fiber bundle was initially rapidly shortened for 0.5 ms and then the velocity

of shortening adjusted until the velocity of shortening produced the desired tension level based on

feedback from the force transducer. 14 different tension levels were chosen starting with low tension

loads, and increased load in each subsequent force clamp. To produce a force-velocity data point

from each force-clamp, the average velocity and tension between 5 ms and 13 ms was calculated,

the earliest time following the initiation of shortening that tension was consistently clamped.

3.7.2. Modeling Details. We model the interaction between actin and myosin with the ki-

netic schemes detailed in Fig. 3.1A and B. In the five-state model, myosin and actin interact in the
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following consecutive steps: (1) myosin binds to actin in a pre-power-stroke state with inorganic

phosphate (Pi) and ADP in its active site, (2) in some order, Pi is released and myosin undergoes

a conformational change, transitioning into a strongly-bound, post-power-stroke state, (3) ADP is

released and myosin stays strongly-bound to actin in a rigor state, (4) ATP binds to the empty

active site of myosin, causing dissociation of myosin from actin, (5) ATP is hydrolyzed into Pi and

ADP, and the cycle repeats. The four-state model is identical to the five-state, with the exception

that it does not include a weakly-bound state.

To quantitatively compare the models to cellular level data, we express each kinetic scheme as a

system of integro-PDEs. Each equation corresponds to a particular state in the model, and describes

the dynamics of myosin in that state. For unbound states, myosin and actin do not interact, and

thus the probability of being in one of these states is simply a function of time. However, when

myosin is bound to actin, it is bound with a particular extension, which determines the force on

the molecule. Thus, the equations corresponding to bound states describe the probability density

that myosin is in a bound state with a particular extension. Transitions between states are defined

by constant rates except for: (1) the transition between a bound and unbound state is defined as

a rate density, since this is dependent on the extension with which myosin binds, and (2) ADP

release rate is force-dependent with the following form based on Bell’s approximation [Veigel et al.,

2003, Kad et al., 2007, Bell, 1978]:

(3.2) kD(F ) = k0
D exp

(
− δF

kBT

)

where δ is a parameter that describes myosin’s force-dependent chemistry, kBT is Boltzmann’s

constant times temperature and k0
D is the reaction rate in the absence of force. All other transition

rates in the model are independent of force.

To compare the model to experimental measurements, we solve the system using a variety of

numerical and analytical techniques. Numerically, we implement a standard ODE solver, together

with a root find for the integral constraint, to solve the system under steady-state conditions (as

in force-velocity and heat measurements). To solve the system without a steady-state assumption

(as in force transients), we use a method of characteristics to transform the system of PDEs into

one of ODEs. These ODEs are then solved along the characteristics using another standard ODE
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solver, e.g. fourth-order Runge-Kutta. To simulate the quick stretch of the force transient protocol,

we solve the ODEs using an initial condition of steady-state shifted by the half-sarcomere stretch

amplitude.

While these numerical techniques provide accurate solutions, they are too inefficient to perform

global parameter optimization. Thus, in order to fit the model to experimental data, we addi-

tionally need analytical solutions. We implement a matched asymptotic expansion to solve the

system analytically under steady-state conditions. Without the steady-state assumption, we use

a separation of time scales and a moment approximation to reduce the system to a set of ODEs

[Zahalak, 1981]. While this does not allow for an explicit analytical solution, it does result in a

system that is efficient enough to optimize with standard techniques.

Once the system is solved, we have expressions for the probability that myosin is in each state.

This lends to a calculation for force, given that the force produced per myosin molecule is the

probability that myosin is bound times the force produced when it is. With this, the model re-

sults can be related back to measurements from a variety of experimental protocols. Thus, with

this mathematical formulation of the kinetic schemes in Fig. 3.1A and B, we have connected the

molecular interactions to cellular behavior in a way that is robust enough to optimize parameters

and fit the model to experimental measurements. (See Appendix B for a detailed discussion of the

modeling techniques used.)
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4.1. Introduction

Muscle contraction results in a diverse array of physiological functions, each of which is a con-

sequence of a combination of muscle shortening (i.e. concentric contraction), isometric contraction

(i.e. fixed length contraction), or muscle lengthening (i.e. eccentric contraction). While each type

of contraction is essential, eccentric contraction is particularly important for human movement and

exercise. Eccentric contraction occurs when the magnitude of force that is applied to the muscle is

greater than the force produced by the muscle, and thus lengthening of the muscle results [Katz,

1939, Lindstedt et al., 2001, Hody et al., 2019]. In this process, a muscle performs negative work

as it absorbs energy and dissipates it as heat [Hody et al., 2019, Katz, 1939].

Skeletal muscle lengthening is crucial for locomotion. Walking downhill, for example, relies

on the eccentric contraction of extensor muscles in the knee [Hody et al., 2019, Proske and Mor-

gan, 2001], and running is a result of muscle undergoing a stretch-shortening cycle, in which both

eccentric and concentric contraction are necessary [Lindstedt et al., 2001]. Additionally, eccen-

tric contraction has been shown to result in greater muscle force and power, while requiring less

metabolic cost than other contraction types [Hody et al., 2019].

A notable feature unique to eccentric contraction is that it results in stretch-induced muscle

damage, followed by a recovery and fortification period [Proske and Morgan, 2001, Clarkson and

Hubal, 2002, Morgan and Allen, 1999, McHugh et al., 1999]. After an intense or new eccentric

movement, muscle pain and soreness are experienced, and this is thought to be due to muscle

damage [Morgan and Allen, 1999, Friden et al., 1981]. However, it has been shown experimentally

that muscle can recover from such an injury in a way in which it is strengthened against further

muscle damage from similar eccentric contractions [Schwane and Armstrong, 1983, Brown et al.,

1997, McHugh et al., 1999]. This phenomenon, known as the “repeated bout effect”, suggests

that muscle can be fortified against injury with proper tuning of eccentric contraction, and has

implications for sports medicine training and for restoring or maintaining function to aged or

injured muscle [Hody et al., 2019, Brown et al., 1997, Schwane and Armstrong, 1983].

While the physiological importance of eccentric contraction and general details of the repeated

bout effect are established, the exact mechanisms behind stretch-induced damage and subsequent

muscle strengthening are unknown [McHugh et al., 1999, Schwane and Armstrong, 1983, Brown
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et al., 1997]. Experimental results and corresponding theories have proposed a variety of ex-

planations for what occurs at the cellular and molecular levels during eccentric-induced damage.

One common hypothesis is that eccentric contraction causes disruption in excitation-contraction

coupling that ultimately results in muscle weakness and injury [Morgan and Allen, 1999, Proske

and Morgan, 2001, Clarkson and Hubal, 2002]. This can be attributed to various steps in the

excitation-contraction process, including modifications to the neuromuscular junction, changes in

motor neuron recruitment, or decreases in the concentration of calcium released [Morgan and Allen,

1999, Proske and Morgan, 2001, Clarkson and Hubal, 2002]. Other possible explanations for the

mechanisms causing eccentric muscle damage focus on structural changes at the sarcomere and

myofibril levels. Experimental work shows that this occurs in various ways, including disruption

in the Z-lines of the myofibril, called Z-line streaming [Clarkson and Hubal, 2002, Friden et al.,

1981], overextension and disorganization of sarcomeres [Proske and Morgan, 2001, Brown and Hill,

1991, Wood et al., 1993], and non-uniform lengthening of sarcomeres [Wood et al., 1993, Proske

and Morgan, 2001]. Mostly likely, the stretch-induced muscle injury following eccentric contraction

is due to a combination of the above factors [McHugh et al., 1999].

While there is interest in experimentally studying eccentric contraction, the majority of muscle

theories (including our own) focus on describing isometric or shortening regimes, where length-

ening does not occur. Additionally, for computational feasibility, many existing theories assume

sarcomere uniformity, and scale the behavior of a single half-sarcomere to the fiber level [e.g. Wal-

cott et al., 2012, Jarvis et al., 2021, Campbell, 2014, Duke, 1999, Månsson, 2010]. Models of this

form are unable to capture multi-sarcomere behavior observed during eccentric contraction, like

Z-line streaming and non-uniform sarcomere lengthening, which may result from instabilities and

(small) inherent non-uniformities among sarcomeres. In fact, to the best of our knowledge, there

is no molecular-based model that describes the details of muscle mechanisms during all regimes of

lengthening.

However, given that eccentric contraction is both essential and advantageous to human move-

ment, it is vital to understand how molecular mechanisms scale up to result in muscle lengthening.

Developing a theory of eccentric contraction would provide insight into how muscles function under

physiological conditions, and also how muscle is damaged after stretch. With this work, we are
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motivated by these unknown features of eccentric contraction, and are interested in exploring mus-

cle lengthening in a quantitative way. To do so, we develop a cross-bridge theory to successfully

replicate two complementary lengthening muscle measurements: force transients after rapid stretch

and force at constant lengthening velocities. Analysis of our cross-bridge model suggests that both

forcible detachment of myosin from actin as well as multiple-sarcomere systems are necessary to

describe lengthening muscle measurements.

4.2. Motivation

The first question we must address in modeling eccentric muscle contraction with a cross-bridge

model is what modifications, if any, are necessary to replicate experiments. In this section, we show

that the exponential slowing of ADP release from the strongly-bound state [Veigel et al., 2003, Kad

et al., 2007, Sung et al., 2015, Greenberg et al., 2014] results in non-physical behavior during muscle

lengthening, where myosin cross-bridges become stuck to actin and lengthen indefinitely. To resolve

this issue, some mechanism must be incorporated to allow for forcible detachment of myosin from

actin.

4.2.1. Muscle measurements result in yielding behavior for lengthened muscle. To

explore the essential molecular details to include in a cross-bridge model, we focus on two experi-

mental measurements of muscle lengthening that display unexplained behavior. First, we consider

measurements of the force response of a muscle fiber after a rapid lengthening. Experimentally, a

muscle fiber is activated and then held at an isometric length. At a particular time, the fiber is

quickly (∼ 0.5 ms) stretched a percentage of its length (∼ 0.2 - 2.5 % muscle length), and then held

isometrically again. The response of the fiber to stretch is a peak in force at the time of lengthening,

followed by a rapid decay in force, a delayed increase in force, and finally a recovery period (see

Fig. 3.1E). We are particularly interested in the relationship between the peak force obtained with

rapid lengthening and the amplitude of the imposed stretch. This relationship is linear for small

amplitude stretches, but becomes non-linear with decreasing force for larger amplitude stretches

(see Fig. 3.2B, Jarvis et al. [2021]).
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In addition to force transient measurements, we consider the behavior of the lengthening side

of the force-velocity relationship. Experiments of this relationship show that slow lengthening

results in an increase in force above isometric. However, for faster velocities, a yielding behavior is

observed, and the force produced plateaus so that further increasing velocity does not additionally

increase force [Morgan and Allen, 1999, Harry et al., 1990, Joyce et al., 1969, Katz, 1939].

In both measurements, muscle lengthening results in yielding behavior. The exact mechanism(s)

underlying this phenomenon are unknown. Understanding this change in regime is crucial to

developing a comprehensive theory of eccentric contraction, and thus force transient and force-

velocity measurements provide a basis for our model development.
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Figure 4.1. Adapted from Jarvis et al. [2021] A simple
four-state kinetic scheme describes the interaction between
actin and myosin, including two bound states (states 2 and
3) and two unbound states (states 1 and 4).

4.2.2. Minimal model requires forcible

detachment of myosin from actin to re-

produce yielding behavior. To understand

the implication of the experimentally observed

yielding behavior during muscle lengthening, we

used a simple cross-bridge model to simulate

these experiments (Fig. 4.1). In brief, myosin

begins unbound from the actin filament, with

ADP and inorganic phosphate (Pi) in its ac-

tive site (state 1, Fig. 4.1). In some order, Pi

is released, myosin binds to actin, and myosin

undergoes a conformational change called the

power-stroke. In this state (state 2, Fig. 4.1),

the myosin molecule is strongly-bound to actin

and therefore producing force. ADP is then released in a force-dependent manner, and myosin

and actin stay bound in a rigor conformation (state 3, Fig. 4.1). ATP can then bind to myosin,

resulting in the dissociation of myosin from actin (state 4, Fig. 4.1). Finally, ATP is hydrolyzed

into products ADP and Pi (state 1, Fig. 4.1), which re-primes the cycle to begin again. With

this mechanochemical description of the interaction between actin and myosin, we then use a col-

lection of mathematical tools to connect this molecular behavior to larger scales (see section 4.6
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for details), and simulating force transient and force-velocity protocols, the final model results are

directly comparable to experimental measurements.

Single-molecule measurements of the actomyosin interaction provide information on the details

of the kinetic scheme. For example, the bond that myosin forms with actin is dependent on the

force a molecule experiences, with assistive loads decreasing, and resistive loads increasing, the

lifetime of the bond. In smooth and cardiac muscle, bond lifetime depends exponentially on the

force a molecule experiences [Veigel et al., 2003, Kad et al., 2007, Greenberg et al., 2014, Sung et al.,

2015]. Thus, given that myosin acts as a linear spring (and so force is proportional to extension,

x), we model ADP release rate as:

(4.1) kD(x) = k0
D exp

(
− κδ(x+ d)

kBT

)

where κ is the stiffness of myosin, kBT is Boltzmann’s constant times temperature, k0
D is ADP

release rate in the absence of force, and δ is a parameter that describes myosin’s force-dependence.

In previous work (i.e. Chapter 2 and 3), we have used this functional form for ADP release rate to

successfully model isometric, shortening, and small-amplitude lengthening protocols [Jarvis et al.,

2018, 2021].

Comparing the model results to equivalent experimental measurements (see section 4.6 for

more details), we find that our cross-bridge model is unable to capture the qualitative behavior of

lengthening. In particular, it is lacking the yielding behavior observed in lengthening measurements.

In experimentally measured force transients, the relationship between peak force after rapid stretch

and stretch amplitude is linear for small stretch amplitudes (< 1% muscle length), but becomes

nonlinear and decreases for larger amplitudes (> 1% muscle length). The four-state model is unable

to replicate this, resulting in a strictly linear relationship between peak force post-stretch and

stretch amplitude (Fig. 4.2A, gray circles). Similarly, experimental measurements of force-velocity

in lengthening show an increase in force for small velocities that quickly plateaus as lengthening

velocity increases. The model, however, results in molecules with huge extensions for even small

lengthening velocities (Fig. 4.2B inset, dashed gray line), resulting in a force-velocity curve that

increases rapidly with no yielding behavior (Fig. 4.2B, dashed gray line).
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Figure 4.2. Single half-sarcomere model requires forcible detachment of myosin to capture yielding
behavior in lengthening muscle. A) Model predicted relationship for peak force after rapid stretch
as a function of stretch amplitude for a single half-sarcomere model without forcible detachment
of myosin (gray circles) and with forcible detachment of myosin (black circles). B) Model pre-
dicted force-velocity relationship for single half-sarcomere model without forcible detachment (gray
dashed line) and with forcible detachment of myosin (solid black line). Inset plots myosin binding
probability as a function of molecule extension, illustrating that myosin molecules stay bound for
unreasonably large extensions in a model without forcible detachment (gray dashed line), but do
not for a model with forcible detachment (black solid line).

The disagreement between the model and measurements arises from the functional form of

the force-dependence of myosin’s detachment from actin. Intuitively, it is plausible that including

forcible detachment of myosin, whereby myosin is ripped off the actin filament at large extensions

resulting in a decrease in force production, may result in the yielding behavior of lengthening

muscle that is absent in the preliminary simulations from the cross-bridge model. To test this idea,

we adjusted the functional form of ADP release rate to include both the experimentally observed

force-induced decrease (a catch component) and also a force-induced increase at larger forces (a

slip component). ADP release rate is then modeled with the equation,

(4.2) kD(x) = k0
D exp

(
− κδ(x+ d)

kBT

)
+ kFD exp

(
κδF (x+ d)

kBT

)

where kFD and δF are parameters that describe the slip component of the bond.

Upon inclusion of forcible detachment of myosin, the cross-bridge model captures the yielding

behavior observed in both measurements. The adjusted model produces a peak force as a func-

tion of stretch amplitude curve that is linear for small amplitudes and turns over as lengthening
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amplitude becomes large (Fig. 4.2A, black circles). Additionally, the model now predicts that force-

velocity will yield for large lengthening velocities, qualitatively replicating the behavior observed

in experimental measurements (Fig. 4.2B, black curve). We therefore conclude that cross-bridge

models must include forcible detachment of myosin from actin to accurately capture features of

eccentric muscle contraction.

Additionally, forcible detachment of myosin from actin suggests another potential issue with

modeling eccentric contraction. In particular, we hypothesize that when we are in a lengthening

regime where forcible detachment of myosin is significant, sarcomere instabilities will arise, and it

will be necessary to explicitly model multi-sarcomere systems. The intuition is as follows. When

myosin can be forcibly detached from actin, cross-bridges begin to fail when they are stretched

to large extensions. Failure of a few myosin molecules results in the same amount of force spread

over a smaller population of cross-bridges, leading to more failure. Within a larger myofibril, the

failure of all cross-bridges in a particular sarcomere would then result in more force on the next

sarcomere, causing failure here as well. Thus, we expect forcible detachment of myosin to work as a

positive feedback system, where cross-bridge failure propagates throughout a sarcomere, eventually

spreading to other sarcomeres, and ultimately causing catastrophic failure.

We therefore propose that muscle models must include forcible detachment of myosin to ac-

curately capture the yielding behavior of lengthening muscle, and when such cross-bridge failure

occurs, sarcomere instabilities will arise, resulting in the need for multi-sarcomere models. To in-

vestigate this hypothesis, we expand our modeling framework to explicitly model multi-sarcomere

systems. By adding sarcomeres in both series and parallel, we explore the distinct model results of

single and multi-sarcomere theories, and examine the effect of the elasticity of parallel connections.

4.3. Results

To test the hypothesis that forcible cross-bridge detachment leads to sarcomere instabilities

during muscle lengthening, we developed a collection of single and multi-sarcomere models (see

section 4.6 for details). With each model, we simulate force transients and force-velocity in length-

ening, and compare the results. We find that multi-sarcomere systems produce lengthening behavior
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that is different than that produced by a single half-sarcomere. The multi-sarcomere results are

dependent on the number of sarcomeres in series and parallel as well as the elasticity of the connec-

tions. These findings have implications for developing a theory of lengthening muscle, and justify

the need for accurately modeling multi-sarcomere systems.

4.3.1. Multiple sarcomeres in series results in different lengthening behavior than

a single half-sarcomere. To provide preliminary insight into the effect of modeling multiple-

sarcomere systems, we first connect multiple half-sarcomeres in series. To account for non-uniformity

among sarcomeres, we include variation in the number of cross-bridges in each half-sarcomere by

selecting the amount of molecules in each from a normal distribution with a mean of 350 and a stan-

dard deviation of 30 (see inset, Fig. 4.3A). Then, by accounting for the necessary force and length

requirements of sarcomeres in series, we can simulate force transient and force-velocity experimental

protocols and analyze the results (see section 4.6 for more detail).

4.3.1.1. Sarcomeres in series result in catastrophic failure in force transients. First, we employ

our force transient simulations to consider the peak force obtained post-stretch as a function of the

stretch amplitude. In the case of a single half-sarcomere with forcible detachment, we observed a

linear relationship that gradually yields for large stretch amplitudes (Fig. 4.3A, black circles). In-

cluding any number of sarcomeres in series, however, results in different behavior, with catastrophic

failure occurring for large amplitude stretches (Fig. 4.3A, colored symbols). The exact extension

that causes failure is dependent on the number of sarcomeres in series (Fig. 4.3A).

In our simulations, the total failure we observe in the multi-sarcomere case is dictated by the

sarcomere with the smallest number of cross-bridges, i.e. the “weakest” half-sarcomere (Fig. 4.3A,

inset). For example, in 500 simulations of 3 half-sarcomeres in series, failure always began in the

half-sarcomere with the smallest number of cross-bridges (Fig. 4.3A, inset). In these simulations,

each sarcomere experiences the same force because they are arranged in series and are in mechanical

equilibrium. The half-sarcomere that has the smallest number of cross-bridges therefore experiences

the most force per cross-bridge, and is where cross-bridge failure begins. As cross-bridges fail

within this half-sarcomere, force drops (Fig. 4.3C, top). The remaining half-sarcomeres must adjust

by shortening, which causes the weakest half-sarcomere to lengthen (Fig. 4.3C, bottom). This
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lengthening leads to more cross-bridge failure and ultimately to catastrophic failure of this half-

sarcomere (Fig. 4.3A, C).

However, this behavior is distinct from the single half-sarcomere system because, in these

simulations, the length of the single half-sarcomere is fixed. That is, as the half-sarcomere is

stretched and cross-bridges begin to fail, there is no additional lengthening to initiate the positive

feedback resulting in catastrophic failure. We consequently observe a gradual drop in force at large

stretch amplitudes for the single half-sarcomere case.

4.3.1.2. Sarcomeres in series result in fluctuation in the force-velocity relationship. Next, we

consider the effect of adding sarcomeres in series on the force-velocity relationship. To do so, we

begin with a set of sarcomeres in series, each with a variable numbers of cross-bridges (see above),

and impose a constant velocity stretch. After a period of time, the cross-bridges will have reached

steady-state, and we can extract the force value that corresponds to the imposed velocity (i.e. the

final force value at t = 0.08 sec in the insets of Fig. 4.3B corresponds to points on the force-velocity

curve for each velocity value, see section 4.6 for more details). Repeating for various velocity values,

we obtain a force-velocity curve for lengthening muscle.

Comparing our multi-sarcomere results to the model with a single half-sarcomere, we see simi-

lar results for small lengthening velocities, but very different behavior for larger velocities. In the

multi-sarcomere case, force smoothly increases for small lengthening velocities, because the individ-

ual force traces smoothly approach steady-state in time (Fig. 4.3B, right inset). However, beyond

a critical lengthening velocity there is a significant amount of variability in the force-velocity re-

lationship (Fig. 4.3B, green line). The apparent variation is due to an oscillatory behavior of the

cross-bridges in the weakest half-sarcomere, which leads to an oscillatory force trace for a given

velocity, and thus significant variation in the force-velocity relationship (Fig. 4.3B, left inset). In

more detail, cross-bridges in the weakest half-sarcomere undergo a cyclical pattern which begins

when they are lengthened to large extensions and fail due to forcible detachment. After this pre-

liminary detachment, cross-bridges rebind and go through the cross-bridge cycle again, until they

are extended beyond a threshold and forcible detachment occurs once more. Thus, cross-bridges
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Figure 4.3. A multi-sarcomere model consisting of sarcomeres in series results in catastrophic
failure that is distinct from a single half-sarcomere model. A) Relationship of peak force after
rapid stretch as a function of stretch amplitude for a single half-sarcomere (gray and black circles)
compared to a model with 1.5 (yellow squares) or 3 (green diamonds) sarcomeres in series. B) Force-
velocity in lengthening for a single half-sarcomere (gray dashed and solid black lines) compared to
a model with 3 sarcomeres in series (green solid line). Insets shows force as a function of time
for fixed lengthening velocities, illustrating the smooth results for small lengthening velocities (red
solid line is v = −0.3µm/sec) and the oscillations in force for large lengthening velocities (blue and
yellow solid lines are v = −0.83µm/sec and v = −1µm/sec, respectively) that result in the observed
variability in the force-velocity curve. C, D) Normalized force (top) and change in half-sarcomere
length (bottom) throughout time. When force fails, the half-sarcomere with the smallest number
of cross-bridges lengthens, while the rest shorten.
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fail, rebind, and fail in a repeated pattern, leading to an oscillatory force trace (Fig. 4.3B, left in-

set), and ultimately resulting in irregularities in the lengthening portion of the force-velocity curve

(Fig. 4.3B, green curve).

Together, model simulations of both force transient and force-velocity measurements demon-

strate that including sarcomeres in series results in behavior that is unique compared to a single

half-sarcomere model, ultimately resulting in catastrophic failure that is dictated by the weakest

half-sarcomere.

4.3.2. A system of sarcomeres in series and parallel results in unique behavior

dependent on the elasticity of the connections. While exploring sarcomeres solely in series

provides insight into the effect of horizontal connections among sarcomeres, in physiological muscle,

sarcomeres are connected in both series and parallel. Thus, to extend our study, we additionally

include parallel rows of sarcomeres connected in series. These parallel connections are a composition

of a variety of interfilamentary links (e.g. Z-disks connecting actin filaments, the protein titin, inter-

myofibril linkages, inter-fiber connections, etc). For computational feasibility, we combine these

potential parallel linkages, and therefore there is some variability in the elasticity of the parallel

connections we model. However, given the complexity and computational inefficiencies associated

with modeling large systems of sarcomeres in series and parallel (see section 4.6 for details), it is

challenging to do an exhaustive study into different elasticities. Thus, we choose to consider two

extremes of the elasticity of parallel connections: 1) extremely rigid vertical connections, and 2)

weak or no vertical connections (see section 4.6 for modeling details). In doing so, we provide

preliminary insight into the effects of lateral coupling and suggest areas for further exploration.

4.3.2.1. Rigid vertical connections result in catastrophic failure. First, we consider adding par-

allel sets of sarcomeres in series with rigid vertical connections, and simulate our two experimental

protocols (see section 4.6 for details). Implementing stiff connections in our force transient simula-

tions, we again observe catastrophic failure in the relationship of peak force as a function of stretch

amplitude. However as the number in parallel increases, the peak force tends towards that of a

single half-sarcomere (Fig. 4.4A). This behavior results because adding rigid parallel connections de-

creases the relative variability among sarcomeres. As the number of sarcomeres in parallel increases,
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Figure 4.4. A multiple-sarcomere model with sarcomeres in series and parallel exhibits emergent
behavior dependent on the elasticity of the parallel connections. A) A model with sarcomeres
connected in parallel with rigid elasticity results in catastrophic failure in peak force after rapid
stretch (green, blue, and red symbols). Inset plots mean ± standard deviation of numbers of cross-
bridges in half-sarcomeres from simulations with sarcomeres solely in series (green) and simulations
with 25 rigidly connected parallel sets of sarcomeres in series. Circles represent mean number
of cross-bridges in all half-sarcomeres, and stars represent mean number of cross-bridges in the
half-sarcomeres that resulted in failure, normalized to the appropriate mean number from all half-
sarcomeres. B) The same model produces oscillations in force throughout time (inset) that result in
fluctuations in the force-velocity relationship, but as the number of parallel connections increases,
the oscillations begin at increasingly large lengthening velocities. Inset illustrates force traces for
a fixed velocity of v = −0.75µm/sec. The model without connections in parallel results in force
oscillations (green curve), while the model with 75 rigid parallel connections does not (red curve).
C) A model with sarcomeres connected in parallel with weak elasticity results in gradual failure
in peak force after rapid stretch (green, blue, and red symbols). D) The same model results in a
force-velocity curve (red and blue solid lines) with less variation than the model with sarcomeres
in series only (green solid line).

the standard deviation of the number of cross-bridges in each half-sarcomere decreases, resulting in

the weakest half-sarcomere becoming more similar to the average half-sarcomere (Fig. 4.4A, inset).
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Thus, the weakest half-sarcomere effectively becomes stronger, resulting in an overall peak force

curve that is more robust, with failure resulting from only large stretches (Fig. 4.4A).

Similarly, simulating the force-velocity relationship with stiff parallel connections results in a

more robust curve (Fig. 4.4B). In this case, while we still observe fluctuations in force leading to an

irregular force-velocity relationship, as we add sarcomeres in parallel the magnitude of the critical

velocity value at which the oscillations begin increases, due to the decrease in sarcomere variability

(Fig. 4.4B, inset). This results in a force-velocity curve that is smoother and approaches that of

the single half-sarcomere case (Fig. 4.4B, red line).

4.3.2.2. Weak vertical connections result in gradual failure. On the other extreme, sarcomeres

could be connected in parallel by very weak interfilamentary connections. To explore such a system,

we adjusted our simulations to include sets of laterally connected sarcomeres in parallel with no

vertical connections (see section 4.6 for more detail). In this case, we observe very different force

transient behavior that no longer includes complete failure, but instead results in gradual failure

as extension becomes large (Fig. 4.4C). This behavior occurs because, while the weakest half-

sarcomeres are still failing as before (see section 4.3.1.1), the weak parallel connections average out

the behavior of sets of sarcomeres in series, preventing catastrophic failure and resulting in gradual

decline (Fig. 4.4C).

In force-velocity simulations of weak connections, a similar averaging occurs. In this case,

while fluctuations in the force-velocity curve begin around the same critical lengthening velocity,

the oscillations in the individual force traces are averaged with those from all other sarcomeres in

parallel, resulting in a smoother force-velocity curve (Fig. 4.4D).

Taken together, our results illustrate that the behavior of a system of sarcomeres in series and

parallel is dependent on the elasticity of the parallel connections, with rigid elasticity resulting in

catastrophic failure, and weak elasticity stabilizing this effect and causing gradual decline. These

distinct regimes, contingent upon the elastic connections within the network, have implications for

modeling lengthening muscle and for our greater understanding of contraction across scales.
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4.4. Discussion

Given the necessity of eccentric contraction in human locomotion, and the potential for muscle

strengthening with the repeated bout effect, it is crucial to develop theories to describe lengthening

muscle in order to connect molecular mechanisms with larger-scale eccentric phenomena. With

this work, we aim to take a step towards developing a theory of lengthening muscle. We begin

with a minimal cross-bridge model, and build upon it as necessary to replicate behavior observed

in experimental measurements. Our results suggest that a cross-bridge model must include the

forcible detachment of myosin from actin at large extensions, and when muscle is in a regime where

this is occurring, sarcomere instabilities will arise and dictate the overall dynamics. Together,

these findings demonstrate the need for the characterization of forcible detachment of myosin, and

highlight the opportunity to improve upon muscle models by explicitly modeling multi-sarcomere

systems to capture emergent behavior in measurements of eccentric contraction.

4.4.1. Muscle models require accurate characterization of forcible detachment. By

theoretically investigating the features of eccentric contraction, we have determined that a math-

ematical model of muscle must include forcible detachment of myosin to accurately capture the

yielding behavior observed in experimental measurements of rapid muscle lengthening. Intuitively,

the need for forcible detachment is reasonable, since any bond will eventually break given enough

applied force. Additionally, various experimental studies have demonstrated that such a behav-

ior occurs when large forces are applied to bound myosin molecules [e.g. Guo and Guilford, 2006,

Nishizaka et al., 1995, Reconditi et al., 2004]. However, the kinetic details of this detachment are

unknown.

Experimental studies exploring the bond that myosin forms with actin have established key

molecular details that have advanced the way we model shortening muscle. In particular, experi-

ments measuring the force-dependence of this bond, and the finding that resistive force on a mol-

ecule increases bond lifetime, allow theorists to accurately depict molecular kinetics of shortening

and small amplitude lengthening. However, measuring this force-dependence under physiological

conditions is challenging, and there are limited experimental results on this force-dependence for

myosin stretched to large extensions. To measure force-dependence, experimentalists must detect
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when a single myosin molecule binds to actin, apply a force of known magnitude to the bond that

forms, and measure the lifetime of attachment. Under physiological conditions for skeletal muscle,

this process is unattainable with a standard optical trap, since myosin is bound for ∼ 3ms and the

resolution of the trap is ∼ 8ms. Thus, most measurements of myosin’s force-dependence have been

performed with cardiac and smooth muscle because of their slower kinetics [Veigel et al., 2003, Kad

et al., 2007, Greenberg et al., 2014, Sung et al., 2015], and the ADP release rate of skeletal muscle

has been presumed from these findings.

In addition to the challenge of simply measuring force-dependence, another challenge arises

when we want to separate myosin’s strongly-bound and rigor states. Experimentally, the lifetime

of attachment can be increased by decreasing the ATP concentration, which slows the rate at which

ATP binds and myosin detaches from actin. However, in doing so, the rate-limiting step of the

cross-bridge cycle becomes the transition from the rigor state to an unbound state, resulting in

most cross-bridges populating the rigor state. Decreasing ATP concentration is advantageous in

that it can increase myosin’s attachment time beyond the resolution of the optical trap, making

force-dependent measurements more feasible. In fact, some experimental studies have investigated

the forcible detachment of myosin in this way [Nishizaka et al., 1995]. However, these experiments

ultimately measure the forcible detachment of myosin from a rigor state, not the forcible detachment

of strongly-bound myosin, and therefore do not directly inform upon our unknown model parameters

(Eq. 4.2).

Given the necessity of including the forcible detachment of myosin in ADP release rate, we

must develop methods to fully characterize the details of myosin detachment. Working with slower

cardiac or smooth muscle myosin, or implementing a combination of experimental and theoretical

techniques, may make obtaining kinetic information on forcible detachment more feasible. Develop-

ing such methods would deepen our understanding of the biochemistry of the interaction between

actin and myosin, allow us to more accurately model actomyosin kinetics, and would ultimately

lead to models that capture lengthening behavior of muscle.

4.4.2. Non-uniformity observed during rapid lengthening in a multi-sarcomere model

is stable. Non-uniformities in sarcomere lengthening and potentially associated instabilities have
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led to a variety of hypotheses regarding the effects of sarcomere variation, including the concept of

sarcomere popping. “Sarcomere popping” has been proposed to arise during lengthening regimes,

during which variation in individual sarcomere lengths causes non-uniform lengthening. Stronger

sarcomeres shorten, while weaker sarcomeres lengthen to extensions where there is no myofilament

overlap, and thus they have “popped” [Morgan, 1990, 1994, Rassier and Herzog, 2004]. This in-

stability in lengthening has been attributed to the negative slope of the descending limb of the

force-length relationship, since any sarcomeres with lengths in this unstable region would continue

to lengthen, eventually reaching a point of no filament overlap [Allinger et al., 1996, Morgan, 1990].

Such non-uniformities with stretch have been observed experimentally [e.g. Talbot and Morgan,

1996, Brown and Hill, 1991], and the sarcomere popping hypothesis has been used to explain mus-

cle phenomena such as residual force enhancement [Morgan, 1990, 1994]. However, in contrast to

these hypotheses, there is a significant amount of both experimental and theoretical evidence to

suggest that muscle is potentially stable on the descending limb of the force-length relationship

[Rassier and Herzog, 2004, Allinger et al., 1996]. In one such study, Rassier and Herzog [2004] ac-

tively stretched sarcomeres in series, and found that while sarcomeres did lengthen by non-uniform

amounts, they remained at constant lengths, and therefore stable, under isometric conditions after

stretch.

Our findings strengthen this idea of stable non-uniformities in lengthening. The concept of

sarcomere popping hinges on the presence of instabilities in lengthening, and while we also see a

form of failure, the instabilities we observe are distinct from a popping mechanism. While a popping

hypothesis predicts large, non-uniform changes in length with passive elements eventually producing

all force [Rassier and Herzog, 2004], our results show minimal changes in length that are a result of

changes in force (Fig. 4.3D). We observe a stick-slip pattern of force production during which force

is lost as cross-bridges in the weakest half-sarcomere detach, but can be regained as these cross-

bridges rebind (Fig. 4.3D, top). During this cycle, the weakest half-sarcomere experiences small

slips in length when failure occurs, and the other half-sarcomeres adjust by shortening (Fig. 4.3D,

bottom). Additionally, unlike in a popping regime, in our model, failure is not permanent, and

when stretch is stopped, force and length are appropriately recovered. Thus, while our findings do

suggest non-uniformities among sarcomeres during lengthening, with the weakest half-sarcomere
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dictating overall dynamics, the changes we observe are stable and temporary, providing further

evidence of stable non-uniformities during muscle lengthening.

4.4.3. Emergent behavior in multi-sarcomere systems: Implications for modeling

lengthening muscle. While theoretical modeling of muscle contraction has been a subject of

study for many years, the majority of muscle models focus on shortening muscle or isometric

contraction without consideration of eccentric measurements. Thus, the theory behind lengthening

muscle is more limited, and because of the unique and unexplained behaviors of lengthening muscle,

exactly how to develop such a theory is still unknown. Through investigation of single and multi-

sarcomere models, we propose that explicitly modeling multi-sarcomere systems is necessary to

capture lengthening muscle regimes, and results in emergent behavior dependent on the details of

the connections among sarcomeres.

The suggestion of emergent behavior in multiple-sarcomere models is not new to muscle lit-

erature. While the majority of muscle models take a reductionist approach, modeling fiber-level

dynamics with the behavior of a single half-sarcomere scaled upward [e.g. Walcott et al., 2012, Jarvis

et al., 2018, Campbell, 2014, Duke, 1999, Geeves et al., 2011, Månsson, 2010], a collection of other

models do consider multiple-sarcomere networks [e.g. Denoth et al., 2002, Telley and Denoth, 2007,

Stoecker et al., 2009, Campbell, 2009]. In these models, simulations of multi-sarcomere systems

result in complex dynamics that shed light on phenomena, such as sarcomere non-uniformities, that

would not be possible to describe with single-sarcomere models. However, while these models do

provide insight into emergent behavior of multi-sarcomere systems, many only consider sarcomeres

in series and thus would not see additional emergent behavior from sarcomeres in parallel (as in

[Stoecker et al., 2009, Denoth et al., 2002]). Additionally, these models generally lack key molecular

details, including a lack of explicit formulation of cross-bridge kinetics (as in [Denoth et al., 2002]),

or when such kinetics are incorporated, a lack of molecularly accurate rate constants (as in [Stoecker

et al., 2009, Campbell, 2009, Tanner et al., 2007]). Further, the experimental measurements these

models consider are limited. To the best of our knowledge, no multi-sarcomere model investigates

a rapid-lengthening regime, and in particular, none explore the yielding behavior fundamental to

lengthening measurements that we seek to model.
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The findings from our modeling work enhance our understanding of emergent behavior in multi-

sarcomere models beyond that of the current literature. First, we contribute the finding that

the specific emergent behavior observed depends on the size of the matrix of sarcomeres and the

elasticity of the connections in the network. When we preliminarily connect sarcomeres in series,

we observe catastrophic failure that could not result from the dynamics of a single half-sarcomere

alone. Then, extending our model to additionally include sarcomeres in parallel, distinct emergent

behavior develops, and the results are dependent on the elasticity of the parallel connections. Rigid

connections in parallel result in a system that displays sudden failure, similar to a material that is

brittle, while weak parallel connections stabilize this effect, resulting in smoother and more gradual

failure that is analogous to a ductile material. Our findings suggest a potential connection between

the behavior of a network of sarcomeres during stretch and the properties of deformed materials.

Additionally, by using our models to specifically describe muscle measurements of force tran-

sients after rapid stretch and force for large lengthening velocities, we are able to explore emergent

behavior that is particular to the regime of rapid-lengthening muscle. We can propose, for example,

that the emergent behavior observed for sarcomeres in series only is insufficient to describe such

a contractile regime, but that sarcomeres connected weakly in parallel may provide stability that

is present in physiological muscle. Together, our findings highlight an opportunity within muscle

literature to more precisely develop models of eccentric contraction, and to extend current theories

to describe rapid-lengthening muscle.

4.5. Conclusion

Eccentric contraction results in a variety of unique and essential functions, ranging from human

locomotion to potential mechanisms for rehabilitating and strengthening damaged muscle. Our

findings indicate that in order to accurately model rapid lengthening muscle, theories must explicitly

model multi-sarcomere systems and include forcible detachment of myosin, and that tuning the

elasticity of the connections between sarcomeres results in unique emergent behavior. These results

suggest potential connections between molecular mechanisms and cellular phenomenon of eccentric

contraction. For example, lengthening a muscle fiber that is composed of many interfilamentary
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links of different elasticities could result in inconsistent structural changes in the myofibril, like non-

uniform lengthening of sarcomeres or Z-line streaming. Additionally, the vastly different behavior

observed for sarcomeres connected stiffly or weakly, and in particular the potential for catastrophic

failure, may have implications for genetic muscle diseases. The suggestion of potential mechanisms

for these experimentally observed behaviors can inform upon future studies. Taken together, the

results of our modeling work highlight important details in modeling lengthening muscle, and

ultimately work towards a more comprehensive theory of contraction across scales.

4.6. Methods

To explore the mechanisms of muscle lengthening, we model the interaction between actin

and myosin using a simple kinetic scheme and scale this behavior to the larger fiber level using

a variety of mathematical tools. The mathematical methods we employ fall into two categories

(described in detail below): 1) We simulate the interaction between actin and myosin using Monte

Carlo methods, and by simulating the dynamics of a large ensemble of myosin molecules, the

results are comparable to fiber-level measurements. 2) We use a system of integro-PDEs to scale

the molecular interactions of actin and myosin to the fiber level. With each method, the final

model results are directly comparable to experimental measurements, allowing for exploration into

lengthening muscle.

4.6.1. Monte Carlo Simulations.

4.6.1.1. Single Half-Sarcomere: One way in which we simulate cross-bridge dynamics to explore

muscle lengthening is through Monte Carlo simulations. To model the behavior of a single half-

sarcomere, we simulate an ensemble of about ∼ 350 myosin molecules using a modified Gillespie

algorithm. Throughout time, we keep track of the state of each molecule, the extension of a molecule

when bound, and each molecule’s reaction time for transition to the next state of the cross-bridge

cycle. The reaction time of each molecule is chosen by sampling from an appropriate distribution,

dependent on the rate constant that dictates each molecule’s rate of transition to the next state.

At each iteration, the molecule with the smallest transition time iterates to the next cross-bridge

state, time is increased by the appropriate transition time, and the overall force is saved.
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Our method is a “modified” Gillespie algorithm because we must adjust for the force-dependence

in the system. When myosin molecules are bound, they are bound with a particular extension

and, given that they act as linear springs, experience a proportional force. Since ADP release is

dependent on force, each molecule experiences a slightly variable ADP release rate given the current

extensions. Thus, throughout time, we must save ADP release rate values for each molecule, and

update each value whenever the overall force on the system changes. Simulating our modified

Gillespie algorithm in this way, the final result is half-sarcomere force as a function of time, where

the force produced by a single molecule is its extension times the stiffness of myosin, and total

half-sarcomere force is the sum of the forces from all bound myosin, or

FHS =

Ncb∑

i=1

κxi

where κ is the stiffness of myosin, Ncb is the number of bound cross-bridges, and xi is the extension

of each bound molecule.

We can use Monte Carlo simulations of this form to replicate force transient measurements. To

do so, we begin by simulating the actomyosin interaction from a given initial distribution. Once

steady-state has been achieved, we apply the stretch by lengthening all bound cross-bridges at a

specific point in time, and then continue to iterate the ensemble throughout time. The final sim-

ulated force trace is directly comparable to muscle fiber measurements for force transients after a

rapid, small amplitude stretch.

4.6.1.2. Multiple Half-Sarcomeres: These Monte Carlo simulations become more complex when

we explicitly simulate a multi-sarcomere system. To model this, we simulate the dynamics of

multiple half-sarcomere units in series. We account for any slight non-uniformities among half-

sarcomeres by including variation in the number of cross-bridges in each half-sarcomere. To do so,

for each half-sarcomere we pick the number of cross-bridges from a normal distribution with mean

of 350 and standard deviation of 30. Since the half-sarcomeres are in series, they must have equal

forces at any point in time. In order to achieve this, the model must include an elastic element

in parallel with each half-sarcomere. The necessity of a parallel elastic element comes from the

constraint of force equality at steady-state. At steady-state, individual half-sarcomeres all have the
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same distributions, however, because each half-sarcomere has a variable number of cross-bridges,

the steady-state force produced by each half-sarcomere is slightly variable. In order to obtain equal

forces, we must include a parallel elastic element to account for the slight differences between the

half-sarcomeres at steady-state.

Thus, the model consists of half-sarcomere units (half-sarcomere plus parallel elastic element) in

series. The force from each unit, which must be equal throughout time, is the sum of the force from

the half-sarcomere and the force from the parallel spring. The system is additionally constrained

by the fact that we are simulating an isometric experimental protocol, so the overall length of the

fiber must be constant.

As in the single half-sarcomere case, throughout the simulation we keep track of the extension

of any bound myosin and the transition times for all molecules. At each step in time, the molecule

with the overall smallest transition time among molecules in all half-sarcomeres transitions to the

next state. When any molecule binds or unbinds, the force in the corresponding half-sarcomere

changes, and we must impose a force balance to ensure that the force is equal across all half-

sarcomere units. This force balance is achieved by calculating the necessary shift to each unit, sj ,

such that the total length change is zero, and the force per unit is equal. This gives,

N1
cb∑

i=1

κ(xi,1 − s1) + κ̂(L1 − s1) = . . . =

Nm
cb∑

i=1

κ(xi,m − sm) + κ̂(Lm − sm)

with
m∑

i=1

si = 0

where m is the number of units in series, N j
cb is the number of bound cross-bridges in the j-th

half-sarcomere, xi,j is the extension of the i-th bound myosin in the j-th half-sarcomere, Lj is the

length of the parallel elastic element in the j-th unit, and κ and κ̂ are the stiffnesses of myosin and

the parallel spring, respectively. Simulating the system in this way, the result of the Monte Carlo

simulations is total fiber force as a function of time.

As in the single half-sarcomere case, we can adjust this multi-sarcomere simulation to simu-

late a force transient protocol. To do so, we begin with initial cross-bridge distributions for each

half-sarcomere, and iterate the system throughout time. When steady-state is reached, we impose
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a stretch to any bound cross-bridges. At the instance of stretch, we first calculate the individual

stretch amplitudes that must be imposed to each half-sarcomere so that the force in each unit is

equal and the overall length change is equal to the experimental stretch amplitude. Once stretch is

imposed, we iterate through time as above, resulting in a final force transient including rapid stretch.

4.6.1.3. Modeling with Monte Carlo Simulations: While Monte Carlo simulations are an ac-

curate way of describing the interactions between actin and myosin at a small scale, they are

computationally inefficient for large ensembles of myosin. Thus, the usefulness of such simulations

is limited when we are interested in simulating multiple half-sarcomeres in series, which requires

very large ensembles of myosin molecules coupled together (i.e. ∼ 350 molecules per half-sarcomere

and ∼ 2 − 6 half-sarcomeres in series). Thus, in addition to our MC simulations, we develop a

system of partial differential equations (PDEs) to describe cross-bridge dynamics at larger scales

(see section 4.6.2). Our Monte Carlo simulations are still useful, however, in that they can verify

that our PDE solutions. While the PDE results are an approximation, the two simulation methods

are comparable (Fig. 4.5).
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Figure 4.5. Monte Carlo simulations and PDE solutions are comparable. Simulation of three
half-sarcomeres in series, stretch amplitude of ∆s = 6 nm per half-sarcomere, and model including
forcible detachment.
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4.6.2. Differential Equations Model.

4.6.2.1. Single Half-Sarcomere: Another way in which we connect cross-bridge dynamics to

fiber muscle function is through a system of integro-PDEs. For this method, we express the kinetic

scheme using chemical kinetics, taking care to appropriately account for the force-dependence within

the system (see Mathematical Framework for details). Note that under physiological conditions,

ATP concentration is high enough that the ATP-dependent transition from a rigor state to an

unbound state occurs very quickly (i.e. transition from state 3 to 4 in Fig. 4.1), and the rigor state

is negligibly populated. Thus, since the experimental measurements we consider are performed

for high [ATP], our four-state model can be approximated with a three-state model, in which

the strongly-bound configuration transitions directly to an unbound state (i.e. state 2 transitions

directly to state 4 with a transition rate of kD(x) in Fig. 4.1).

With this simplification, we use chemical kinetics to express our kinetic scheme as the following

set of integro-PDEs:

dN1

dt
= k+

hN4 −
(
k−h +

∫ ∞

−∞
κa(x)dx

)
N1

∂η2

∂t
+ v

∂η2

∂x
= κa(x)N1 − kD(x)η2

(4.3)

dN4

dt
= k−hN1 +

∫ ∞

−∞
kD(x)η2dx− k+

hN4

1 = N1 +N2 +N4

where ηi(x, t) is the probability density function that myosin is strongly-bound in state i with

extension x, Ni is the probability that myosin is in state i, κa(x) and kD(x) are myosin’s attachment

and detachment rates, respectively, and k+
h , k−h are transition rates between states defined in

Fig. 4.1.

We can solve this system under various assumptions to compare the model to experimental

measurements of force transients after rapid stretch and the force-velocity relationship. First, to
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solve this system under conditions that are comparable to force transient measurements, we solve

for isometric conditions. This means that v = 0, reducing the system to:

dN1

dt
= k+

h (1−N2)− (k+
h + k−h + ka)N1

∂η2

∂t
= κa(x)N1 − kD(x)η2

This simplified system can be solved numerically by implementing 4th-order Runge-Kutta to

iterate through time, solving the system for all x at each t. In the force transient measurements, the

fiber is activated and allowed to come to isometric steady-state before the stretch is instantaneously

imposed. Thus, to accurately model this protocol, we first solve for steady-state distributions and

then shift these by the given stretch amplitude, ∆s. We use these stretched distributions as the

initial condition to our simulation, and iterate through time using RK4.

The result is the distribution of strongly-bound cross-bridges, η2(x, t). Assuming that cross-

bridges act as a linear spring with stiffness κ, we can use the distribution of strongly-bound (and

thus force-producing) cross-bridges to calculate force per cross-bridge. Multiplying this value by

the number of cross-bridges in the half-sarcomere, N , we obtain force as a function of time:

F (t) = N

∫ ∞

−∞
κ · η2 · (x+ d)dx

This force as a function of time is then directly comparable to our force transient measurements

from the instance of stretch onward.

Additionally, we can solve the system to generate a force-velocity relationship. Force-velocity

measurements involve fibers that are not isometric (since v 6= 0) but are in steady-state. Thus, the

system of equations (Eq. 4.3) simplifies to a single ODE in terms of η2:

(4.4)
dη2

dx
=

1

v

(
Cκa(x)(1−N2)− kD(x)η2

)

where C = k+
h /(k

+
h + k−h + ka). This can be solved using a standard ODE solver in Matlab with a

root find to solve the integral constraint. Solving Eq. 4.4 for η2 for a given velocity value allows us
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to solve for force,

F (v) = N

∫ ∞

−∞
κ · η2 · (x+ d)dx

Solving for force for a variety of imposed velocity values results in a force-velocity relationship that

is comparable to experimental measurements.

4.6.2.2. Multiple Half-Sarcomeres in Series: To extend our differential equation model to explic-

itly model a multi-sarcomere system, we describe each half-sarcomere using the system of integro-

PDEs derived from our kinetic scheme (Eq. 4.3), and couple these sets of integro-PDEs together

based on force and length constraints (described below). Again, we are interested in simulating a

force transient after stretch and the force-velocity relationship.

Beginning with force transients, this experimental protocol is performed under isometric con-

ditions. In the single half-sarcomere case, this means that v = 0. In the multi-half-sarcomere case

however, while the overall fiber velocity is zero, the individual half-sarcomere velocities are not

necessarily zero. Simplifying the system of integro-PDEs (Eq. 4.3) without this assumption, each

half-sarcomere is described by a system of the form:

dN1

dt
= k+

h (1−N2)− (k+
h + k−h + ka)N1

(4.5)

∂η2

∂t
+ v

∂η2

∂x
= κa(x)N1 − kD(x)η2

To solve each system of this form, we use the method of characteristics to reduce the PDEs to

be a system of ODEs. This transformation occurs as follows. Let

ξ = x− u(t)

du

dt
= v(t)
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Then the system of integro-PDEs in Eq. 4.5 becomes,

dN1

dt
= k+

h (1−N2)− (k+
h + k−h + ka)N1

∂η2

∂t
= κa(ξ + u(t))N1 − kD(ξ + u(t))η2(4.6)

du

dt
= v(t)

Since the half-sarcomeres are in series, they must have equal forces at any point in time. In order

to achieve this, the model must include a parallel elastic element in series with each half-sarcomere

(see section 4.6.1.2 for justification). Thus, the force produced by the ith unit (half-sarcomere plus

parallel elastic element) is given by:

(4.7) F itot = F iHS + κ̂ûi = N i
cb

∫ ∞

−∞
κ · ηi2 · (ξ + ui + d)dξ + κ̂ûi

where N i
cb is the number of cross-bridges in the ith half-sarcomere, κ is myosin’s stiffness, κ̂ is the

stiffness of the parallel elastic element, and ûi is the current length of the ith spring. At any point

in time, the overall length of the ith spring is ûi = Li0 + ui where Li0 is the initial length of the ith

spring and ui is the value from the integro-PDEs.

Finally, the isometric conditions require that overall fiber velocity is zero, and thus total fiber

length is constant throughout time. Putting all of this together, a system of three half-sarcomeres
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in series (labeled a, b, c) are described by the following system of ODEs:

dNa
1

dt
= k+

h (1−Na
2 )− (k+

h + k−h + ka)N
a
1

∂ηa2
∂t

= κa(ξ
a + ua(t))Na

1 − kD(ξa + ua(t))ηa2

dua

dt
= va(t)

dN b
1

dt
= k+

h (1−N b
2)− (k+

h + k−h + ka)N
b
1

∂ηb2
∂t

= κa(ξ
b + ub(t))N b

1 − kD(ξb + ub(t))ηb2

dub

dt
= vb(t)

dN c
1

dt
= k+

h (1−N c
2)− (k+

h + k−h + ka)N
c
1

∂ηc2
∂t

= κa(ξ
c + uc(t))N c

1 − kD(ξc + uc(t))ηc2

duc

dt
= vc(t)

Force constraint: F atot = F btot = F ctot

Length constraint: 0 = va(t) + vb(t) + vc(t)

To solve this system, we implement a hand-written 4th order Runge-Kutta method. At the

start of each time step, a root find must be solved to determine the individual velocity values for

each half-sarcomere that satisfy the constraints of equal force and constant fiber length. Once

satisfied, an RK4 step is iterated. The initial condition for our simulations is the system at the

instance of stretch. To calculate this, we solve the system explicitly in isometric steady-state, and

then we calculate the necessary lengths to shift each half-sarcomere unit so that the overall change

in fiber length is equal to the stretch amplitude, and the forces between half-sarcomere units are
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equal. With this initial condition, we can iterate throughout time to result in a force transient

trace that is directly comparable to measurements of fiber force after rapid stretch.

In addition to force transient measurements, we use this basic multi-sarcomere framework to

get a model prediction for the force-velocity relationship. In this case, we begin with an initial

condition of isometric steady-state for each half-sarcomere. We then impose a constant velocity

stretch by defining overall fiber velocity to be a particular value. Again, the individual half-

sarcomere velocities vary, but the overall velocity is fixed (now at a non-zero value). We solve

the system using the method of characteristics and RK4, with the constraint that half-sarcomere

forces are equal and velocity is fixed. The simulation result is fiber force throughout time given an

imposed constant velocity. After ≈ 0.08 seconds, the cross-bridges have reached steady-state, and

the force at this time is the value that corresponds to the fixed velocity value. Repeating for many

velocities, we get a force-velocity relationship for our multi-sarcomere integro-PDE model.

4.6.3. Multiple Half-Sarcomeres in Series and Parallel: In addition to connecting half-

sarcomeres in series, we are interested in the dynamics of a system where half-sarcomeres are also

connected in parallel. With a network of sarcomeres in series and parallel, we can use the math-

ematical techniques above to compare the model results to both force transient and force-velocity

measurements. To add sarcomeres in parallel, we must define the elasticity of the parallel connec-

tions, and to extensively explore this, we consider two extreme regimes for the vertical connections:

1) rigid vertical connections and 2) weak vertical connections.

4.6.3.1. Parallel Sarcomeres Connected with Rigid Stiffness: To study a system of sarcomeres

that has vertical connections that are very rigid, we simulate our integro-PDE system for multiple

half-sarcomeres in series many times, each time increasing the amount of cross-bridges in each

half-sarcomere. Specifically, at the start of each simulation, we pick the number of cross-bridges for

each half-sarcomere in series from a normal distribution with a mean of 350 and standard deviation

of 30. With each subsequent run, we increase the amount of cross-bridge values we pull from this

distribution and sum the values. For example, in the first simulation, the number of cross-bridges

in each half-sarcomere is defined by picking a value from the distribution. In the second run, the
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number of cross-bridges in each half-sarcomere is defined as the sum of two values picked from the

distribution, and so on. As we increase the number of values picked from the distribution that de-

fines the cross-bridges in each half-sarcomere, by the central limit theorem, the standard deviation

will scale with
√
N , where N is the number in parallel. Thus, the variability gets smaller and the

solutions become more robust.

4.6.3.2. Parallel Sarcomeres Connected with Weak Stiffness: To simulate a system of sarcom-

eres that has very weak or no vertical connections, we repeatedly solve our integro-PDE system for

a fixed number of half-sarcomeres in series, and average the results of these simulations.
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A.1. Mathematical Implementation of the Model

To model myosin’s interaction with actin in the presence and absence of phosphate (Pi), we use

the branched pathway model of Debold et al. [2013] (see Fig. 2.5A, and Fig. A.1). Here, we discuss

how to write this kinetic scheme as a set of integro-partial differential equations (integro-PDEs),

how to solve them under simplifying conditions, and how these results can help us understand

experimental measurements at the level of muscle fibers.

TDP
3a

4a
P

P

P3

TT

3b

D
2

P

DP
1

D,P

P

D

To state 4 To state 1

35

72

6

1

4 4

T

Figure A.1. The branched pathway model. This figure is identical to Fig. 2.5A of the main text,
except for the numbering of states. In this supplement, we use this numbering convention.

A.1.1. Derivation of integro-PDEs. To express this model mathematically, we must keep

track of the force on myosin since at least one of the rate constants in Fig. A.1 depends on force.

Naturally, a myosin molecule in a state unbound from actin (states 3, 4, 5, and 6) experiences no

force, and therefore the probability of being in one of these states is simply a function of time, Ni(t)

(where i = 3, 4, 5, 6). However, when myosin molecules are bound to actin, they are bound with a

particular extension, which determines the force on the molecule. Thus, for bound states (states

1, 2, and 7), we must consider the probability of being in that state with a particular extension, x.

For continuous random variables, the probability that the random variable takes on any particular

value is zero. The realization of the random variable is instead defined in terms of a particular

interval in which the random variable might fall, and calculated as the integral of the probability

density function of the random variable over the interval. Similarly, the probability that myosin

binds with a particular extension x is 0, but the probability that myosin binds somewhere between

x and x+ ∆x on the actin filament is given by
∫ x+∆x
x ηi(s, t)ds (where i = 1, 2, 7). Thus, we define
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this probability density of a myosin molecule being bound with an extension x as ηi(x, t), and the

probability of being in this bound state is then Ni(t) =
∫∞
−∞ ηi(x, t)dx.

We must also consider the force dependence in the transition rates between states. In particular,

ADP release, and the transition from state 1 to state 2, is dependent on force, and therefore this rate

is a function of molecular extension, kD(x). Additionally, we must consider the rate of transition

from an unbound to bound state as a rate density, because this transition is dependent on the

particular extension, x, with which the myosin molecule binds. Thus, κa(x) is the rate density of

this transition, and the overall weak-to-strong binding rate is ka =
∫∞
−∞ κa(x)dx. Similarly, κR(x) is

the rate density of rebinding to the rigor state with a particular extension x, and kR =
∫∞
−∞ κR(x)dx

is the overall rigor rebinding rate.

Thus, given that Ni(t) and ηi(x, t) are probabilities and probability densities respectively, and ki

and κi(x) are rate constants and rate densities respectively, our model is governed by the following

system of coupled integro-PDEs:

∂η1

∂t
+ v

∂η1

∂x
= κa(x)N4 −

(
koff [Pi] + kD(x)

)
η1

∂η2

∂t
+ v

∂η2

∂x
= kD(x)η1 + κR(x)N3 + k−P η7 −

(
k+
P [Pi] + kT [T ]

)
η2

dN3

dt
=

∫ ∞

−∞
kT [T ]η2(x)dx+ kT [T ]N6 + k−hN4 −

(∫ ∞

−∞
κR(x)dx+ k+

h

)
N3

dN4

dt
= k+

hN3 −
(∫ ∞

−∞
κa(x)dx+ k−h

)
N4(A.1)

dN5

dt
=

∫ ∞

−∞
koff [Pi]η1(x)dx− kDPN5

dN6

dt
= kDPN5 − kT [T ]N6

∂η7

∂t
+ v

∂η7

dx
= k+

P [Pi]η2 − k−P η7

subject to the constraint that mass is conserved:

(A.2)

∫ ∞

−∞
η1(x, t)dx+

∫ ∞

−∞
η2(x, t)dx+N3(t) +N4(t) +N5(t) +N6(t) +

∫ ∞

−∞
η7(x, t)dx = 1
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ADP release rate is force dependent, well-fit by Bell’s approximation [Bell, 1978, Veigel et al.,

2003, Kad et al., 2007], and can be expressed as,

(A.3) kD(x) = k0
D exp

(
− κ(x+ d)δ

kBT

)

where we have assumed a linear force extension relationship (F = −κ(x+ d)) with κ = 0.3 pN/nm

is the stiffness of myosin (not to be confused with a rate density), k0
D is the reaction rate in the

absence of force, kBT is Boltzmann’s constant times temperature, d is myosin’s step size, and

δ = 1.86 nm (see Table 2.2).

Additionally we define the rate density of the transition from weak to strong binding as,

(A.4) κa(x) = ka

√
κ

2πkBT
exp

(
− κx2

2kBT

)

and the rate density of rigor rebinding as,

(A.5) κR(x) = kR

√
κ

2πkBT
exp

(
− κx2

2kBT

)

which follow from assuming that attachment rate varies exponentially with the energy required to

achieve a particular extension (see Walcott et al. [2012] for more details of this assumption).

A.1.2. Steady-State Solution. Solving the system of integro-PDEs in steady-state reduces

the system to a set of coupled integro ordinary differential equations (integro-ODEs) plus a prob-

ability constraint:

v
dη1

dx
= κa(x)N4 −

(
koff [Pi] + kD(x)

)
η1

v
dη2

dx
= kD(x)η1 + k−P η7 −

(
k+
P [Pi] + kT [T ]

)
η2 + kT [T ]N2 + koff [Pi]N1 − kaN4(A.6)

v
dη7

dx
= k+

P [Pi]η2 − k−P η7

1 =

(
1 +

koff [Pi]

kDP
+
koff [Pi]

kTT

)
N1 +N2 +N7 +

k+
h + ka + k−h

k+
h

N4

where

Ni =

∫ ∞

−∞
ηi(x)dx, for i = 1, 2, 7
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To numerically solve this, for a given velocity value, v, we perform a numerical root find (using

Matlab’s fsolve function) to find the values of N1, N2, and N7. With the best values for these

integrals, we then numerically solve the system of ODEs (using Matlab’s ode15s function), and we

can calculate the resulting force, by numerically approximating the following integrals

F =

∫ ∞

−∞
κ(x+ d)η1(x)dx+

∫ ∞

−∞
κ(x+ d)η2(x)dx+

∫ ∞

−∞
κ(x+ d)η7(x)dx

Repeating this process for various velocity values gives a force-velocity relationship (Fig. 2.6B,

dashed lines).

A.1.3. Isometric Force. At high ATP concentrations, we can analytically solve the system

of equations for isometric force. When there is a sufficient amount of ATP in solution, the transition

from the rigor/AM state (state 2 in Fig. A.1) to the A+MT state (state 3) is so fast that the force

resulting from the rigor state is negligible. Therefore we can simplify the system by having the

AMD state (state 1) transition directly to the A+MT state (state 3) at a rate of kD(x). Similarly,

the MDP (state 5) transitions directly to the A+MT state (state 3) at a rate of kDP . With this

simplification, our system becomes a set of 4 integro-PDEs plus a probability constraint.

∂η1

∂t
+ v

∂η1

∂x
= κa(x)N4 − (koff [Pi] + kD(x))η1

dN3

dt
=

∫ ∞

−∞
kD(x)η1(x)dx+ kDPN5 + k−hN4 − k+

hN3

dN4

dt
= k+

hN3 −
(∫ ∞

−∞
κa(x)dx+ k−h

)
N4(A.7)

dN5

dt
=

∫ ∞

−∞
koff [Pi]η1(x)dx− kDPN5

1 =

∫ ∞

−∞
η1(x)dx+N3 +N4 +N5

Solving for steady-state and isometric force (v = 0), the system reduces to one integro-algebraic

equation, for η1 in terms of N1 =
∫∞
−∞ η1(x)dx. Integrating both sides, we obtain an expression for

N1, which then gives an analytical expression for η1:

η1(x) =
κa(x)c(1− bN1)

koff [Pi] + kD(x)
, and N1 =

cI

1 + cbI
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where

I =

∫ ∞

−∞

κa(x)

koff [Pi] + kD(x)
dx , c =

k+
h

ka + k−h + k+
h

, and b = 1 +
koff [Pi]

kDP

With this, we get the following expression for force,

F =

∫ ∞

−∞
η1(x)κ(x+ d)dx

=

∫ ∞

−∞

κa(x)c(1− bN1)

koff [Pi] + kD(x)
κ(x+ d)dx

= κc(1− bN1)

∫ ∞

−∞

κa(x)

koff [Pi] + kD(x)
(x+ d)dx

In the absence of Pi, this expression is simplified (since koff [Pi] = 0), and becomes,

(A.8) F = κc(1−N1)

∫ ∞

−∞

κa(x)

kD(x)
(x+ d)dx

With this expression, we can make a simple comparison between the forces achieved at neutral

and low pH values. Using Eq. A.8, at pH 7.4, force is calculated as,

F7.4 = κc(1−N1)

∫ ∞

−∞

κa(x)

kD(x)
(x+ d)dx

with N1 = cI/(1 + cI), c = k+
h /(k

7.4
a + k−h + k+

h ), and I is expressed above.

Our findings suggest (see parameter justification below) that as pH is decreased, both attach-

ment rate, κa(x), and ADP release rate, kD(x), are decreased. Assuming that attachment rate is

scaled by ψ (κ6.5
a (x) = ψκ7.4

a (x)), and ADP release rate is scaled by φ (k6.5
D (x) = φk7.4

D (x)), force at

pH 6.5 is calculated as,

(A.9) F6.5 =
κψc̃

φ
(1− Ñ1)

∫ ∞

−∞

κa(x)

kD(x)
(x+ d)dx

where Ñ1 = (c̃ψI/φ)/(1 + c̃ψI/φ), c̃ = k+
h /(k

6.5
a + k−h + k+

h ), and I is expressed above.
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Comparing these two results, we find that the ratio of the forces is equal to the ratio of the

duty ratios, since

F6.5

F7.4
=

κc̃ψ
φ (1− Ñ1)

κc(1−N1)

=
Ñ1

N1

or expressing this ratio in terms of the changing parameters,

(A.10)
F6.5

F7.4
=
c̃ψ + cc̃ψI

cφ+ cc̃ψI
=

1 + cI

α+ cI

where, defining K = (k−h + k+
h )/k7.4

a , the parameter

α =
φ

ψ

c

c̃
=
φ

ψ

ψk7.4
a + k−h + k+

h

k7.4
a + k−h + k+

h

=
φ

ψ

ψ +K

1 +K

Note that if α < 1, then a drop in pH causes an increase in isometric force; if α > 1, then a drop

in pH causes a decrease in isometric force; and if α = 1, then a drop in pH causes no change in

isometric force. Any of these results is possible for 0 < φ,ψ < 1, depending on their values (see

Fig. A.2).

A.1.4. Unloaded Shortening Velocity. We begin this section with an asymptotic approxi-

mation for unloaded shortening velocity. This result is similar to the result of Walcott et al. 2012,

but is a little more mathematically precise (here we use matched asymptotics instead of a delta

function approximation of κa(x)), and we non-dimensionalize with a different length scale (v/k0
D,

as opposed to d). We end the section by showing that unloaded shortening velocity scales linearly

with φ (which is defined by k6.5
D (x) = φk7.4

D (x)).

A.1.4.1. Asymptotic approximation of unloaded shortening. To find an analytical approxima-

tion for unloaded shortening velocity, we begin with the assumption of high ATP, resulting in

the simplified system of 4 integro-PDEs in Eq. A.7. Solving in steady-state, this reduces to one

integro-ODE,

v
dη1

dx
= κa(x)c

[
1−

(
1 +

koff [Pi]

kDP

)
N1

]
−
(
koff [Pi] + kD(x)

)
η1
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where N1 =
∫∞
−∞ η1(x)dx, and kD(x) and κa(x) are expressed in Eq. A.3 and A.4 respectively.

It is convenient to introduce the following non-dimensional parameters,

X =
xk0

D

v
, ε =

k0
D

v

√
kBT

κ
, β =

δκv

kBTk0
D

, γ =
dk0

D

v
, and α =

cka

k0
D

√
2π

where c = (k+
h )/(ka + k−h + k+

h ). Then a non-dimensionalized version of the system is,

(A.11)

dη̃

dX
=
α

ε
exp

{(
− 1

2

(
X

ε

)2)}[
1−

(
1 +

koff [Pi]

kDP

)
N

]
−
[
koff [Pi]

k0
D

+ exp
{(
− β(X + γ)

)}]
η̃

where η̃ = ηv/k0
D and N =

∫∞
−∞ η̃dX.

Using a matched asymptotic expansion, we can construct an approximate solution in the fol-

lowing way. Away from 0, the first term in Eq. A.11 will be O(ε). Therefore, for the solution away

from zero, which we denote as the outer solution, we can neglect the first term in the Eq. A.11.

Integrating and solving for this outer solution, we get the result

(A.12) ηout

(
X
)

= ηout(0) exp

(
− koff [Pi]

k0
D

X +
e−βγ

β

(
e−βX − 1

))

To solve for the solution of Eq. A.11 near 0, we define a layer coordinate, and re-scale the

problem as follows. Note that, for large velocity values (as is the case for unloaded shortening

velocity), the non-dimensional parameter ε is small (for our parameters, we estimate ε ≈ 0.15).

Letting X̂ = X/ε, Eq. A.11 becomes,

(A.13)
dη̂

dX̂
= α exp

(
− 1

2
X̂2

)[
1−

(
1 +

koff [Pi]

kDP

)
N

]
− ε
[
koff [Pi]

k0
D

+ exp
(
− β(εX̂ + γ)

)]
η̂

For the case of the solution near 0, which we denote as the inner solution, we can neglect higher

order terms, and therefore we only need to consider the first term in Eq. A.13, since the second

term is now O(ε). Integrating and solving this, we get,

(A.14) η̂in

(
X̂
)

= η̂in(0) + α

[
1−

(
1 +

koff [Pi]

kDP

)
N

]√
π

2
erf

(
X̂√

2

)
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Appropriately matching these solutions, we get a composite solution of,

(A.15)

ηcomp =





α̃(1− bN)

[
erf

(
X√
2ε

)
− 1 + 2 exp

(
− koff [Pi]

k0D
X + e−βγ

β

(
e−βX − 1

))]
: X > 0

α̃(1− bN)

[
erf

(
X√
2ε

)
+ 1

]
: X < 0

where α̃ = α
√
π/2. This result is still in terms of N =

∫∞
−∞ η̃(X)dX. To solve for N , we

approximate the solution to η̃ by neglecting the inner solution, since it is only valid within ε of

zero, and is consequently of order ε. Therefore, we approximate N as,

N =

∫ ∞

−∞
η̃(X)dX

=

∫ ∞

0
2α̃(1− bN) exp

(
− koff [Pi]

k0
D

X +
e−βγ

β

(
e−βX − 1

))
dX +O(ε)(A.16)

In the absence of Pi, we can analytically solve this integral using the exponential integral

function, E1(x) =
∫∞

1

(
exp(−xt)/t

)
dt, to get (neglecting O(ε) terms)

N ∼
2α̃
β

[
e
−e−βγ

β E1

(
e−βγ

β

)]

−1 + 2α̃b
β

[
e
−e−βγ

β E1

(
e−βγ

β

)]

Substituting this expression into the composite solution in Eq. A.15 gives a semi-analytical expres-

sion for the solution.

A.1.4.2. Unloaded shortening rate scales with φ. With this result, we are particularly interested

in the unloaded shortening velocity of the system, where the force is zero, i.e. we find v such that,

(A.17) 0 =

∫ ∞

−∞
ηcomp(x)κ(x+ d)dx

This equation can be simplified and rewritten in dimensional form, given Pi = 0, and implementing

the effect of pH by scaling attachment and detachment rates by ψ and φ, respectively, (κ6.5
a (x) =

ψκ7.4
a (x), k6.5

D (x) = φk7.4
D (x)):

(A.18) 0 ∼
∫ ∞

0

[
exp

((
φ

v

)
kBTk

0
De
− κdδ
kBT

κδ

(
e
− κδx
kBT − 1

))]
(x+ d)dx
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Eq. A.18 gives the result that unloaded shortening speed is proportional to the unloaded ADP

release rate. In particular, suppose that the solution of Eq. A.18 when φ = 1 is defined as V 1
0 .

Then, since φ and v appear only as a ratio, v = φV 1
0 solves Eq. A.18.

A.1.5. Effect of Parameters on Fiber Level Measurements. We have shown that iso-

metric force depends both on attachment rate and detachment rate. Specifically, isometric force

can increase or decrease depending on whether φ is greater than or less than 1+K
1+(K/ψ) . Conversely,

unloaded shortening rate is proportional to φ. Thus, by tuning both φ and ψ, isometric force and

unloaded shortening rate can be adjusted independently.

Muscle fiber experiments suggest that a drop in pH causes a drop in isometric force and un-

loaded shortening rate at low temperature, but a much smaller reduction in isometric force at

physiological temperature [e.g. Knuth et al., 2006]. Our model, and the analysis above, suggests

that this result can be explained by differential temperature sensitivity between attachment scaling

(ψ) and detachment scaling (φ). In particular, if a drop in pH causes a 20-30% drop in unloaded

shortening rate regardless of temperature, then the model predicts a 20-30% drop in ADP release

rate. However, if that drop in pH decreases attachment more at low temperature (65-70%) than at

high temperature (35-55%), then isometric force will drop significantly at low temperature (40-50%)

but only modestly (10-20%) at high temperature, in agreement with fiber measurements (Fig. A.2).

A.2. Simulation Details

Our approach for simulating mini-ensemble experiments in the laser trap are detailed in sec-

tion 2.3 of the main text. To generate the plots in Fig. 2.5 of the main text, in addition to simulating

mini-ensemble experiments, we also simulated single molecule and motility experiments. Here, we

describe how we modified the approach outlined in section 2.3 of the main text to describe these

experiments.

A.2.1. Mini-Ensemble Simulation. The approach is identical to section 2.3 of the main

text, except we use the kinetic scheme for the branched pathway model (Fig. 2.5A of the main

text).
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Figure A.2. pH-dependent changes in isometric force (F0) and unloaded shortening speed (Vmax)
can be adjusted independently in the model. A drop in pH scales ADP release rate by φ, which
then scales Vmax (Eq. A.18). A drop in pH scales the weak to strong binding transition (ka) by
ψ, which leads to the contour lines (Eq. A.10). With different choices of φ and ψ, experimental
measurements on skinned muscle fibers (Knuth et al. [2006], shaded regions) can be replicated.
The set of φ, ψ values representing no change in F0 is shown as a dashed line. Note that we use
Vmax to refer to generic unloaded shortening speed, and not simply the unloaded shortening speed
estimated with a Hill fit. Also note that Knuth et al. [2006] reduced pH from 7.0 to 6.2.

A.2.2. Single Molecule Laser Trap. The approach is identical to section 2.3 of the main

text, except we use the kinetic scheme for the branched pathway model (Fig. 2.5A of the main text),

and only one molecule. To compare our simulations to experimental measurements, we analyzed

our simulated data using mean-variance analysis outlined in Patlak [1993], Guilford et al. [1997].

Event lifetime (used in section A.4.4 of this supplement) was determined with window widths of

10, 20, 40, 80, 160, 320, 640, 1280, and 2560 ms. A representative example is shown in Fig. A.3.

A.2.3. Motility Assay. The approach is identical to section 2.3 of the main text, except

we use the kinetic scheme for the branched pathway model (Fig. 2.5A of the main text), and

50 independent myosin heads. The assumption that mechanical equilibrium occurs immediately

requires an equilibration of forces on myosin molecules, since no force is being applied to the actin

filament. In this assay, the effective actin concentration is assumed saturating, so that all myosin

bind at the same rate of ka.

For a given ATP concentration, the result of this simulation is the position of the actin filament

as a function of time. A linear curve is fit to this result, and the resulting slope is the speed of the
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Figure A.3. Mean variance analysis, applied to simulated single molecule data. A) 2D histograms
of mean and variance from simulated single molecule data under Control (pH 7.4) and Acidic (pH
6.5) conditions at low ATP (T = 1µM). The center of the distributions for the baseline (B) and
event (E) populations are labeled, and a clear pH-dependent reduction in the mean position of the
event population is observed [c.f. Debold et al., 2008]. A region of this distribution that contains
only the event population is then selected for lifetime measurements (shaded region at lower right).
Lifetime estimate from fits of number of data points as a function of window width.

actin filament for a given [ATP]. The simulation is repeated for various ATP concentrations, and

the result is actin velocity as a function of [ATP].

A.2.4. Fiber Level. The approach is identical to section 2.3 of the main text, except we

use the kinetic scheme for the branched pathway model (Fig. 2.5A of the main text), and 300

independent myosin heads [e.g. Longyear et al., 2017]. We use an ATP concentration of 3 mM.

Additionally, in the process of equilibrating forces, instead of summing forces to be 0 to reach

mechanical equilibrium, as we do in our motility simulations (section A.2.3), we now sum to various

force values, to simulate a constant force being applied to the system. The result of the motility

simulation is actin speed, so by repeating this for various force values, the result is a relationship

between force and velocity.

These simulations provide relationships between force-velocity and force-power, the same results

as the steady-state solution of the integro-PDE model (section A.1.2). However, it is possible (see
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section A.5) that details of the experimental protocol will introduce deviations from the integro-

PDE simulations. Thus, the purpose of these simulations is to more closely follow a particular

experimental protocol in order to generate force-velocity curves. Following Pate et al. [1995], we

only simulate force-velocity data for intermediate force values, and then fit these values with a Hill

curve to generate the force-velocity and power-velocity relations (solid lines in Fig. 2.6B of the main

text). To do so, we randomly pick values between a minimum force of 15 pN and maximum forces

of 120, 100 and 35 pN for the cases of neutral pH + No Pi, acidic pH + No Pi, and acidic pH +

high Pi respectively. Though there are differences between these curves and the curves generated

from solving the integro-PDEs, they agree qualitatively.

A.3. Estimating Parameters for low pH

Here we discuss additional details of the simulation results discussed in sections 2.4.1 and 2.4.2

of the main text.

A.3.1. Estimating N and k2
a in the mini-ensemble measurements. These are details

of the simulations underlying our estimates of N = 12 and k2
a = 2.2s−1 in Table 2.2 of the main

text. To determine N and k2
a we fit the mini-ensemble measurements for pH 7.4 [Woodward

and Debold, 2018]. Using the methods described in section 2.3 of the main text, we simulated

mini ensemble experiments for ensemble sizes between 5 and 21 myosin heads, and for second

myosin attachment rates of k2
a = 2.2, 5, 7, 10, 15, 20, and 30s−1. Error was defined as the sum of

the squared difference between simulated and experimental cumulative probability distributions of

event duration and maximum force. Due to the stochasticity of the simulations, we averaged the

results of five simulations to determine the best values (see Fig. A.4). These fits identify a range

of ensemble sizes and second myosin attachment rates that give good agreement between model

and data (the blue region in Fig. A.4a). Previous estimates of k2
a have been similar to the single

molecule binding rate k1
a [Walcott et al., 2012, Debold et al., 2013], so we chose k2

a = 2.2s−1. At

this value, the ensemble size is predicted to be N = 14 ± 2 (Fig. A.4b). We chose a value at the

bottom of this range (N = 12), based on exploratory simulations that suggested we would get
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Figure A.4. Estimating ensemble size (N) and cooperative attachment (k2a) in the mini-ensemble
assay at neutral pH. A) Contour of error (sum of squared difference between modeled and measured
cumulative probability distribution) as a function of the two parameters. A region of low error (blue)
identifies a set of N, k2a combinations that are consistent with the data. We chose parameters near
to, but not exactly at, the fitting minimum (hollow dot). B) Fixing k2a = 2.2s−1 identifies a range
of ensemble sizes that are consistent with the data (shaded region). We chose an ensemble size at
the lower boundary of this region (N = 12), based on exploratory simulations suggesting that the
model would fit the low pH measurements better.

better agreement with the low pH data. Note that, as we will show, our results do not depend on

these choices.

A.3.2. Changing k0
D and kR does not reproduce low pH data. These are details of the

simulations underlying Fig. 2.3B of the main text. To determine whether a decrease in kD and

and increase in kR could reproduce the measurements of Woodward and Debold [2018] at pH 6.5,

we ran mini-ensemble simulations for various combinations of ADP release and rebinding rates (all

combinations of k0
D = 150, 200, 250, 300, and 350 s−1, kR = 0, 50, 100, and 200 s−1, a total of 20

different conditions), and compared the results to the measurements. Error was defined as the sum

of the squared difference between simulated and experimental cumulative probability distributions

of the force and lifetime of events. Due to the stochasticity of the simulations, we averaged the

results of five simulations to determine the best values.

A.3.3. Changing k0
D, kR and ka does reproduce low pH data. These are details of

the simulations underlying Fig. 2.3C of the main text. We performed the same simulations as

before (section A.3.2), using the same combinations of ADP release and rebinding rates, for three
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Figure A.5. First simulations: fitting mini-ensemble data at pH 6.5 requires a decrease in ka and
k0D and an increase in kR. This is a more detailed version of Figs. 2.3B and C of the main text,
including contour plots for ka = 30 and 10s−1. A, B, C and D) all show fitting error as a function
of kR and k0D for different attachment rates (ka = 40, 30, 20 and 10s−1, respectively). E) shows
the minimum obtained over all values of kR and k0D for the four different ka values. This minimum
fitting error comes from running simulations on a refined grid about the minima in A-D.

different attachment rates (ka = 30, 20, and 10s−1, 20 simulations at each ka, replicated five times

to minimize stochasticity, see Fig. A.5B, C and D, respectively).

A.3.4. These results are generic. We assume that (1) N = 12 and k2
a = 2.2s−1; and (2) the

relative scaling of k1
R, k2

R and kR is the same as the scaling of k1
a, k

2
a and ka (i.e. k1

R = k2
R = 0.055kR).

In order to show that our conclusions do not depend on these assumptions, we ran a series of

additional simulations.

To show that our results do not depend on our estimates of N , we re-ran the simulations shown

in Fig. A.5 (and Figs. 2.3B, C of the main text) with two different ensemble sizes N = 11 and

N = 7, with k2
a picked to minimize error between the model and mini ensemble measurements at

pH 7.4, k2
a = 7 and k2

a = 30s−1, respectively (see Fig. A.4A for fitting error between model and mini

ensemble measurements at pH 7.4 as a function of N and k2
a). These simulations are qualitatively

identical to the simulations in Fig. A.5 (and Figs. 2.3B, C of the main text), with lower ka values

giving a much better fit to the experimental data, and predicting best-fit parameters with a decrease

in k0
D and increase in kR (Fig. A.6A and B).
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Figure A.6. A reduction in ka is necessary to reproduce low pH measurements, independent of
ensemble size estimates or rebinding cooperativity. A and B) show comparisons between the model
and our mini ensemble measurements at low pH for N = 7, k2a = 30s−1 (A) and N = 11, k2a = 7s−1

(B). Both plots are qualitatively the same as for the parameter set, N = 12, k2a = 2.2s−1 (shown
in gray, for reference). Inset at lower right shows a reproduction of Fig. A.4 with parameters for
the given simulation shown as a hollow dot, and the parameter set, N = 12, k2a = 2.2s−1 shown as
a gray dot. C) shows the effect of different rebinding cooperativity, i.e. different scaling of k1R, k2R
and kR. In section A.4.3 we argue that rebinding scales differently with actin concentration than
attachment. This plot shows comparisons between the model and our mini ensemble simulations
for this different scaling. The qualitative results are the same whether rebinding scales the same
way (gray) or differently than attachment. Inset at lower right shows a reproduction of Fig. A.9
with the two different scaling assumptions. Data from Woodward and Debold [2018].
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To show that our results do not depend on our assumption of k1
R, k2

R, and kR scaling (i.e.

k1
R = k2

R = 0.055kR), we re-ran the simulations shown in Fig. A.5 (and Figs. 2.3B, C of the main

text) with a different scaling relationship. Specifically, in section A.4.3, we show that single mol-

ecule data suggests that the scaling of k1
R, k2

R and kR is different from the scaling of k1
a, k

2
a and

ka. Simulations with this different scaling (k1
R = k2

R = 0.88kR) are qualitatively identical to the

simulations in Fig. A.5 (and Figs. 2.3B, C of the main text), with lower ka values giving a much

better fit to the experimental data, and predicting best-fit parameters with a decrease in k0
D and

increase in kR (Fig. A.6C).

A.4. Estimating parameters in the presence of Pi

This section discussed how we determined the best-fit parameters for the branched pathway

model at pH 6.5 (Tables 2.2 and 2.3 of the main text).

A.4.1. Estimating ka and k0
D. The fits to mini-ensemble measurements in Fig. A.5 suggest

that attachment rate at low pH (ka) should be ∼ 25% of the attachment rate at neutral pH, i.e. ka =

10s−1. With this estimate of ka, we can then estimate the best values of k0
D and kR. To determine

these values, we ran motility simulations as described in section A.2.3, varying ADP release and

rebinding rates (k0
D = 50, 100, 150, 200, 250, 200, and 250s−1, and kR = 0, 10, 50, 100, and 200s−1,

35 different conditions), and fixing attachment rate of ka = 10s−1. Error is defined as the sum of the

squared difference between measured and simulated velocity, scaled by the 95% confidence interval

(data and 95% confidence intervals imported from a PDF of Debold et al. [2011], using customized

Matlab code). Due to the stochasticity in our simulations, we average over 3 simulations. There

is a narrow range of ADP release rates that result in best fits (Fig. A.7A). To minimize error, we

estimate k0
D = 100s−1. The fitting error is largely insensitive to rebinding rate (kR).

A.4.2. Estimating kR and koff . Motility speed at pH 6.5 is accelerated by the presence

of 30mM Pi. A non-zero value of koff is required to describe this acceleration. Additionally, the

agreement between the model and the data is highly sensitive to the rebinding rate, kR. We therefore

ran a series of simulations of these motility experiments with ka = 10s−1, k0
D = 100s−1, kR =
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Figure A.7. Motility data at low pH [Debold et al., 2011] provide estimates of model parameters
k0D, kR and koff . A) Comparison between model and data at low pH and in the absence of Pi

provide an estimate of k0D = 100s−1, but are largely insensitive to kR. B) Comparison between
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of kR = 10s−1 and koff = 100s−1. Curve at right shows fitting error vs. koff along dashed line in
contour plot at left. In all plots, ka = 10s−1.

0, 10, 50, 100, and 200s−1 and koff = 0.5, 1, 10, 30, 100, 150, and 200mM−1s
−1

(35 simulations). To

minimize stochasticity, we averaged three sets of these simulations. Error for these simulations

(defined as the sum of squared error between model and simulation, scaled by 95% confidence

interval) allows us to estimate kR = 10s−1, and is relatively insensitive to koff , provided that it is

higher than ∼ 100mM−1s−1 (Fig. A.7b). We therefore choose koff = 100mM−1s
−1

.

A.4.3. Cooperativity in rebinding. The motility measurements in the presence of Pi are

dependent on a low rebinding rate (kR = 10s−1); however, single molecule measurements require a

higher rebinding rate in order to fit the decreased step size seen at low pH [Debold et al., 2008]. This

apparent contradiction can be reconciled if myosin has a different affinity for actin when rebinding

than when binding.

More specifically, cooperativity arises in the laser trap because myosin binding restricts vertical

fluctuations of the actin filament. We model this cooperativity with different attachment rates when

zero, one or more myosin are bound to actin (k1
a, k

2
a, and ka, respectively). From our measurements

of ATP hydrolysis in solution, and assuming that ATP hydrolysis rate scales linearly with ka, the

measurement of k1
a = 2.2s−1 [Longyear et al., 2017] corresponds to an actin concentration of ∼ 1µM

in the laser trap (see Fig. A.8, blue line).

The relative scaling of k1
a, k

2
a and ka depends on how binding rate varies with actin concentra-

tion. If rebinding has a different relationship than binding, then k1
R, k

2
R and kR would not scale in
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Figure A.8. The different scaling of attachment (blue) and rebinding (red) with actin concentra-
tion suggested by single molecule data. If ATP hydrolysis rate is limited by, and therefore scales
linearly with, the weak to strong binding transition, then measurements of MgATP hydrolysis from
Woodward and Debold [2018] (blue dots) show how ka scales with actin concentration (axes at
right). Given an attachment rate of 2.2s−1 [Longyear et al., 2017] the effective actin concentration
in the single molecule laser trap is ∼ 1µM (dashed lines). To fit the ATP-dependent reduction in
myosin step size observed in the laser trap [Debold et al., 2008], we predict a different relationship
between actin concentration and rebinding rate, kR (red curve). Note, for clarity, we have removed
some of the data points at low actin concentration.

the same manner. In order to reconcile the differences in rebinding needed to fit our motility and

single molecule measurements, we predict that myosin has a greater affinity for actin in rebinding,

so that even at the low actin concentration of the laser trap (∼ 1µM) the rebinding rate is only

slightly less than saturating (k1
R = 8.8s−1 vs. kR = 10s−1, see Fig. A.8, red line).

A.4.3.1. Theoretical model for apparent step size variation with ATP. We estimated this value

of k1
R as follows: given the relatively weak stiffness of the laser trap (∼ 0.02pN/nm), myosin’s

power-stroke generates only a small amount of force (∼ 0.2pN). Therefore, any attached myosin

experiences little force, other than the forces due to thermal motion. If we neglect the force depen-

dent rate constants, assume [Pi] = 0 in Eq. A.1, and consider steady-state, then the probability of

a myosin molecule being in one of the four available states can be found from solving the following
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equations:

0 = −kDN1 + k1
aN4

0 = kDN1 − kT [T ]N2 + kRN3

0 = kT [T ]N2 − (k1
R + k+

h )N3 + k−hN4

0 = k+
hN3 − (k1

a + k−h )N4(A.19)

with the numbering as in Fig. A.1 and, from top to bottom, each equation representing the time

rate of change of N1 to N4, respectively. Note that, since we are modeling the behavior of a single

molecule in the laser trap, the rebinding and attachment rates are k1
R and k1

a, respectively.

The attachment flux from state 4, via the weak to strong binding transition, is given by kaN4

and the attachment flux from state 3, via rebinding, is given by kRN3. Thus, the probability

of binding through the weak to strong binding transition (and taking a 10nm step) is given by

P10 = k1
aN4/(k

1
aN4 + k1

RN3), while the probability of rebinding (and taking a 0nm step) is given

by P0 = k1
RN3/(k

1
aN4 + k1

RN3). Solving Eq. A.19 gives the following expressions for these values in

terms of the rate constants

P10 =
k+
h k

1
a

k+
h k

1
a + (k1

a + k−h )k1
R

P0 =
(k1
a + k−h )k1

R

k+
h k

1
a + (k1

a + k−h )k1
R

(A.20)

When calculating step size via mean-variance analysis ([Patlak, 1993, Guilford et al., 1997]),

the average of the binding events is taken, weighted by the total time attached. Thus, given

expressions for the probability density of binding lifetime via the binding and rebinding pathways,

ρ10 and ρ0 respectively, the total time of 10nm and 0nm events is proportional to P10

∫∞
0 tρ10dt

and P0

∫∞
0 tρ0dt, and the average step size, 〈d〉, is then

(A.21) 〈d〉 =
10P10

∫∞
0 tρ10dt

P10

∫∞
0 tρ10dt+ P0

∫∞
0 tρ0dt
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Figure A.9. Fitting single molecule measurements [Debold et al., 2008] requires a rebind-
ing rate k1R > 6.6s−1. Plots shows different theoretical step size predictions (Eq. A.24) for
k1R = 0, 1, . . . , 10s−1 (top to bottom). Curves significantly different from the data are shown in
dashed lines. Inset shows the χ2 error between model and data, with significance (p < 0.05) shown
as the dashed line. When k1R > 6.6s−1, the model is not different from the data (shaded region).

Events that proceed through the binding pathway detach through two sequential steps (ADP re-

lease, ATP binding), so that

(A.22) ρ10 =
kDkT [T ]

kD − kT [T ]

(
e−kT [T ]t − e−kDt

)

while events that proceed through the rebinding pathway detach a single step (ATP binding), so

that

(A.23) ρ0 = kT [T ]e−kT [T ]t

There is presumably some minimal resolution of the laser trap, below which events cannot be

detected tmin, as well as some maximal event lifetime beyond which events cannot be conveniently

measured tmax. We can substitute these values for 0 and ∞, respectively, in Eq. A.21 and then
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solve to get

(A.24) 〈d〉 =
10

(k+h k
1
a)kD

kT [T ]−kD I10

(k1
a + k−h )k1

RI0 +
(k+h k

1
a)kD

kT [T ]−kD I10

where

I10 =

(
t

kT [T ]
+

1

(kT [T ])2

)
e−kT [T ]t

∣∣∣∣
tmax

tmin

−
(
t

kD
+

1

(kD)2

)
e−kDt

∣∣∣∣
tmax

tmin

I0 =

(
t

kT [T ]
+

1

(kT [T ])2

)
e−kT [T ]t

∣∣∣∣
tmax

tmin

Evaluating Eq. A.24 for different choices of k1
R (using tmin = 0.01s, and tmax = 2s) and comparing

it to the measurements of Debold et al. [2008], we find that k1
R < 6.6s−1 generates curves that are

significantly different from the data (Fig. A.9, significance set at p < 0.05, χ2 test). Thus, we must

pick 6.6s−1 < k1
R < kR = 10s−1., which motivates our choice of k1

R = 8.8s−1. As shown in Fig. 2.5A

of the main text, our detailed simulations of the laser trap (described in section A.2.2) agree with

the theoretical model in Eq. A.24.

A.4.4. Validation of parameters. To define all of the parameters at low pH, we used mini-

ensemble data [Woodward and Debold, 2018] at pH 7.4 (to estimate N and k2
a) and pH 6.5 (to

estimate ka), motility data [Debold et al., 2011] at pH 6.5 and with 0 mM Pi (to estimate k0
D) and

with 30 mM Pi (to estimate koff and kR) and single molecule data [Debold et al., 2008] at pH 6.5

(to estimate k1
R). Note that the estimates of k0

D, koff , kR and k1
R were all made without using the

mini ensemble measurements at pH 6.5 and 15mM Pi [Woodward and Debold, 2018]. It is therefore

possible that, with these values, the model is no longer consistent with the measurements.

We ran mini ensemble simulations as described in section A.2.1, varying ADP release and

rebinding rates (k0
D = 50, 100, 150, 200, 250, 200, and 250s−1, and kR = 0, 10, 50, 100, and 200s−1,

35 different conditions), and fixing attachment rate of ka = 10s−1 and the relative scaling of kR,

k1
R and k2

R. Error is defined as the sum of the squared difference between measured and modeled

cumulative probability distributions for both force and duration of events. Due to the stochasticity

in our simulations, we average over 3 simulations. In good agreement with the comparison between
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Figure A.10. Our mini ensemble measurements independently support our estimate of k0D =
100s−1. A contour plot of the error between model and our measurements at pH 6.5 and in the
absence of Pi shows a minimum (blue region) near k0D = 100s−1 and is largely insensitive to
kR, consistent with our estimates of these parameters from the motility assay (c.f. Fig. A.7a).
Parameters used in the simulation, other than k0D and kR, are given in Table 2.2 of the main text.

the model and the motility experiments (Fig. A.7a), we see a clear minimum near k0
D = 100s−1

(Fig. A.10). The fitting error is largely insensitive to rebinding rate (kR).

As additional validation, when we simulate the mini ensemble measurements at pH 6.5 with

15mM Pi, we obtain histograms that are consistent with the measurements Woodward and Debold

[2018]. Since these measurements were not used to specify any of the model parameters, the

histograms shown in Fig. 2.5C and summarized in Table 2.4 of the main text are predictions of the

model. Therefore, the mini ensemble measurements provide independent support for our parameter

estimates.

Finally, Debold et al. [2008] observed a pH-dependent increase in single molecule binding lifetime

at 1mM ATP. In particular, at pH 7.4, event lifetime was so short that an event population could

not be identified nor a lifetime determined; while at pH 6.5, event lifetime was ton = 0.031±0.009s.

Consistent with these measurements, our model also does not generate an event population at pH

7.4; while at pH 6.5, event lifetime is ton = 0.013 ± 0.005. It is likely that the model would give

better agreement with the data if we introduced a more realistic model for the noise in the laser trap

[e.g. Longyear et al., 2017]. But even with uncorrelated noise, the model gives reasonable agreement

with these single molecule event lifetimes, which depend on ADP release rate, despite the fact that

this parameter was determined from comparing the model to a different experimental system: in

vitro motility (and then subsequently validated, in Fig. A.10, with mini-ensemble measurements).
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A.5. Unloaded velocity at low pH and high Pi

There is a discrepancy between measurements in the in vitro motility assay at low pH (pH 6.5),

where the addition of 30mM Pi leads to a roughly two-fold increase in velocity [Debold et al., 2011],

and measurements in muscle fibers at low pH (pH 6.2), where the addition of 30 mM Pi leads to

a 20% drop in Vmax [Knuth et al., 2006, Nelson et al., 2014]. Here we present simulation results

aimed at investigating this discrepancy.

A.5.1. Extrapolation errors from Hill fits. Unloaded shortening velocity of a muscle fiber

is generally estimated from measurements of shortening velocity at a series of constant force values.

These data are then fit will a Hill curve, an equation of the form

V = Vmax
(F0 − F )

(F0 + cF )

Generally, measurements are not made at precisely zero force. Thus, since force velocity data are

not precisely described by a Hill curve, estimates of Vmax might differ from the actual unloaded

shortening velocity. It is possible that extrapolation errors could account for the differences between

the motility assay and the muscle fiber measurements.

To investigate this idea, we performed a series of simulations of the model at pH 6.5. We

simulated an experimental protocol where force was measured at regular intervals between 7% and

90% of the isometric force (calculated from the PDEs, see section A.1.2). We then fit the resulting

simulated data with a Hill curve (using Matlab’s fminsearch function to minimize mean squared

error).

The resulting Vmax as a function of Pi displays biphasic behavior (Fig. A.11A). Initially, it

decreases before reaching a minimum of a ∼ 3% decrease around 0.1mM Pi. Under these same

conditions, the model predicts an increase of ∼ 3% (calculated from the PDEs, see section A.1.2).

Thus, there are at least some conditions where the model predicts that extrapolation errors could

account for a discrepancy between Vmax estimated from Hill fits and true unloaded shortening

velocity. The exact amount of this error, and its dependence on Pi, depends on the number of data

points, their force values, the noise in the data, and how the Hill model is fit to the data. Note

that, although 1mM Pi is well below the concentrations used in muscle experiments, it nevertheless
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Figure A.11. Possible explanations of the discrepancy between in vitro motility and fiber mea-
surements of unloaded shortening at low pH and in the presence of Pi. A) Three estimates of
unloaded shortening velocity as a function of Pi. The PDE solutions (blue circles) show an increase
in velocity with Pi, as observed in the in vitro motility assay. Estimates of Vmax from Hill fits
to model simulations (hollow circles) initially show a decrease in velocity with Pi, as observed in
fiber experiments. Model simulations, even in the presence of a small force (green circles), show
decreasing velocity with Pi. Each point represents the average of three simulations. B) Simulated
force-velocity curves, demonstrating a Pi-induced decrease in Vmax. The region near zero force is
expanded to show the small decrease. Inset shows the same curves, rescaled to show that the same
relative force values were used to generate the Hill fits.

causes a ∼ 40% drop in isometric force (Fig. A.11B), similar to what is seen experimentally [Nelson

et al., 2014].

A.5.2. Errors from resistive force. In in vitro motility experiments, actin filaments are

propelled by myosin molecules through solution, and therefore experience negligible resistive drag.

In a skeletal muscle fiber, there may be sources of drag, including myosin binding protein c [Previs

et al., 2012]. Due to the hyperbolic nature of force-velocity relationships, even a modest resistive

force could have a profound impact on velocity measurements. To demonstrate this point, we

performed a series of simulations of the model at pH 6.5. We simulated an experimental protocol

where a 30pN force was applied to actin (9% isometric). These simulated velocities decrease

monotonically with Pi (Fig. A.11A). Indeed, since the addition of Pi causes a reduction in isometric

force combined with an increase in unloaded shortening speed in the model, there is a cross-over

point where the addition of Pi has no effect. This point occurs at around 4% isometric force.
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B.1. Modeling

B.1.1. Variable Definitions.

Notation Description

d Power-stroke size

x Extension of myosin molecule

κ Stiffness of myosin

kBT Boltzmann’s constant times temperature

δ Parameter describing myosin’s force-dependent chemistry

E = κδd/kBT Non-dimensional parameter describing myosin’s force-dependent

chemistry

vmax Unloaded shortening velocity

kD(x) ADP release rate

k0
D Unloaded ADP release rate

S Length of stretch of half-sarcomere (nm) in a force-transient protocol

F0 Isometric force

Fp Force produced by a cross-bridge post-stretch in force-transient protocol

Fnc Non-cross-bridge force present in force-transient measurement

(same as F 0
nc in section B.6.2 )

ηi(x, t) Probability density that myosin is bound in state i with an extension x

Ni(t) Probability that myosin is in state i

κ+
w(x) Rate density for transition from unbound to bound states 5 to 1

k+
w0

Overall attachment rate

ka, kT , k+
h , k−h Rate constants for transition between states in kinetic scheme

[ATP] ATP concentration
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Notation Description

l, τ , V , x̂, η̂, L Non-dimensional parameters for steady-state analytical solution

(see section B.1.3.2)

G(x, µ) Normalized Gaussian function in terms of x with mean µ

(see section B.1.4.2)

αi(t), µ
j
i (t), A(t), bi(t) Parameters for solving non-steady-state approximation

(see section B.1.4.2)

F 0
xb, F

p
xb Cross-bridge forces pre- and post-stretch, respectively, in force

transients (see section B.6.2)

F 0
nc, F

p
nc Non-cross-bridge forces pre- and post-stretch, respectively, in force

transients (see section B.6.2)

V (x) Potential energy function

Pi
ADP

ADP

ATP

Pi ADP

ATP(Force Dependent)

Pi
ADP

Weakly-Bound/
Pre-powerstroke State Strongly-Bound Rigor State 

Unbound State
(ATP Bound)

Unbound State
(ATP Hydrolyzed)

kT[ATP]

1
2 3

45

w
+(x) kw

-

ka
kD(x)

kh
+

kh
-

κ

Figure B.1. Five-state kinetic scheme detailing myosin’s interaction with actin, including a
weakly-bound state labeled in blue.

B.1.2. Mathematical Formulation of Model. In this section, we describe the mathemat-

ical implementation of the five-state model in Fig. 3.1B in the main text, and reproduced here in

Fig. B.1. The specific details of the four-state model are similar (see Walcott et al. [2012] for more
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detail). Myosin and actin interact in the cyclical pattern described by the kinetic scheme. Begin-

ning with state 1, myosin is bound to actin in a pre-power-stroke form with ADP and inorganic

phosphate (Pi) in its nucleotide binding site. In some order, myosin releases Pi and undergoes a

conformational change, shifting to a post-power-stroke form with ADP still in the active site (state

2). ADP is released in a force-dependent manner and actin and myosin stay bound in a post-

power-stroke rigor state (state 3). ATP can then bind to the empty active site on myosin, causing

dissociation of myosin from actin (state 4). Finally, ATP is hydrolyzed and myosin is unbound

with ADP and Pi in the active site (state 5), and the cycle can begin again.

To transform this model into a system of equations, we must consider the force-dependence in

the system. We use x to denote the molecular extension of a myosin molecule. When myosin is in

an unbound state (states 4 and 5), it is not attached to actin, so there is no force on the molecule.

Thus, the probability of being in one of these states is simply a function of time, denoted Ni(t).

However, when myosin is bound to actin, it is bound with a particular extension, x. Thus, for

bound states (states 1, 2, and 3), we must define the probability density of myosin being bound

in state i with an extension x as ηi(x, t). The probability of being in one of the bound states is

therefore Ni(t) =
∫∞
−∞ ηi(x, t)dx.

We also must consider molecular extension when defining transitions between states. When

myosin binds to actin, it does so with a particular extension. Thus, the transition from unbound

to weakly bound (state 5 to state 1) must be defined as a rate density, κ+
w(x), giving an overall

attachment rate of k+
w0

=
∫∞
−∞ κ

+
w(x)dx. Additionally, ADP release rate (transition from state 2 to

state 3) is dependent on force, and is therefore a function of molecular extension, kD(x).

Assuming a dense binding limit (i.e. that myosin can bind anywhere on the actin filament), a

large number of cross-bridges, and the above notation, the five-state kinetic scheme can be expressed
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by the following system of integro-PDEs:

∂η1

∂t
+ v

∂η1

∂x
= κ+

w(x)N5 − (k−w + ka)η1

∂η2

∂t
+ v

∂η2

∂x
= kaη1 − kD(x)η2

∂η3

∂t
+ v

∂η3

∂x
= kD(x)η2 − kT [ATP ]η3

dN4

dt
= kT [ATP ]

∫ ∞

−∞
η3dx+ k−hN5 − k+

hN4

dN5

dt
=

∫ ∞

−∞
k−wη1dx+ k+

hN4 −
(
k−h +

∫ ∞

−∞
κ+
w(x)dx

)
N5

1 =

∫ ∞

−∞
η1dx+

∫ ∞

−∞
η2dx+

∫ ∞

−∞
η3dx+N4 +N5

(B.1)

where the final equation gives conservation of mass.

ADP release is dependent on molecular extension and, based on experimental measurements

[Veigel et al., 2003, Kad et al., 2007, Bell, 1978], we use the form:

kD(x) = k0
D exp

(
− κ(x+ d)δ

kBT

)

where k0
D is ADP release rate in the absence of force, κ is myosin’s stiffness (assuming myosin acts

as a linear spring), d is myosin’s power-stroke size, kBT is Boltzmann’s constant times temperature,

and δ is a parameter, with units of distance, that describes myosin’s force-dependent properties.

Additionally, assuming that myosin’s attachment probability varies exponentially with the energy

required for myosin to bind with a given extension, we define the following rate density:

κ+
w(x) = k+

w0

√
κ

2πkBT
exp

(
− κx2

2kBT

)

All other rate constants (denoted k−w , ka, kT , k−h , k+
h ) are constant values.

With this, the mathematical model is described in full. Below, we detail the techniques used

to solve this system under various conditions, resulting in expressions for ηi(x, t) and Ni(t). We

can then calculate an expression for force. Force per myosin molecule is defined as the probability
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that myosin is in a force-producing state (states 1, 2, and 3), times the force it produces when

bound. Noting that myosin has bound but has not undergone a power-stroke in state 1 (i.e. it has

extension x), and has undergone a power-stroke of step size d in states 2 and 3 (i.e. it has extension

(x+ d)), we get the following calculation for force:

F =

∫ ∞

−∞
κη1(x, t)xdx+

∫ ∞

−∞
κη2(x, t)(x+ d)dx+

∫ ∞

−∞
κη3(x, t)(x+ d)dx(B.2)

In the following sections, we present both numerical solutions and analytical approximations for

the system under various conditions. The numerical methods are important because they provide

accurate and robust solutions to the system. However, they are often computationally expensive and

inefficient. This makes optimization without a good initial guess time consuming, and sometimes

impossible.

We develop analytical approximations to improve the optimization process. While less accurate,

our approximations have two advantages. First, they give an efficient way to search parameter

space. This allows us to quickly determine a good initial guess of best-fit parameters that can then

be used with the less efficient, but more accurate, numerical solutions. Additionally, our analytical

approximations provide intuition about our system, which is particularly useful when implementing

the full model solutions.

B.1.3. Steady-State Solutions. To compare the model to force-velocity and energetics mea-

surements, we must solve the system under steady-state conditions. First, we note that all of the

experimental measurements we consider are done for conditions of high ATP concentration, [ATP ].

The transition rate from state 3 to state 4 is dependent on this concentration, and thus, high con-

centrations of ATP results in a negligible population of cross-bridges in rigor. This allows us to

simplify the system by assuming that myosin transitions directly from state 2 to state 4 at a rate of

kD(x). With this simplification and the assumption of steady-state, the system in Eq. B.1 becomes:
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v
dη1

dx
= −(k−w + ka)η1 +

(
k−w + ka

k+
w0

)
κ+
w(x)N1(B.3)

v
dη2

dx
= kaη1 − kD(x)η2

B.1.3.1. Numerical Solution for Steady-State. To numerically solve the system of ordinary dif-

ferential equations (ODEs) in Eq. B.3 for a given velocity value, v, we simultaneously implement

a root find using Matlab’s fsolve function and an ODE solver using Matlab’s ode15s. We use the

root find to determine the value of N1 by solving N1 −
∫∞
−∞ η1(x)dx = 0, and the ODE solver to

find η1(x) and η2(x). We use a solver specialized for stiff ODEs because of the exponential term

(kD(x)), which becomes large at the boundary. We can then calculate the force using Eq. B.2,

resulting in a relationship for force as a function of velocity.

B.1.3.2. Analytical Solution for Steady-State. To solve for an analytical solution under steady-

state conditions, it is most convenient to non-dimensionalize the system in Eq. B.3. To do so,

we define the following non-dimensional parameters: ` =
√

2kBT/κ, τ = 1/(k−w + ka), V = vτ/`,

x̂ = x/`, η̂ = η`, E = κδd/kBT , L = `/d.

With this notation, the equation for η1 becomes,

V
∂η̂1

∂x̂
= −η̂1 +

1√
π
e−x̂

2
N1(B.4)

This can be analytically solved using an integrating factor. Using the convention that v < 0 for

shortening, which therefore gives the boundary condition that η̂1(∞) = 0, we get the solution,

η̂1 =
N1

2V
e1/(4V 2)e−x̂/V

[
− 1 + erf

(
x̂− 1

2V

)]
(B.5)

Next, we must solve for η2. We implement the η1 solution with the equation for η2 in Eq. B.3

to get,

v
∂η2

∂x
= −k0

D exp

(
− ELx̂− E

)
η2 +

kaN1

2V l
e1/(4V 2)e−x̂/V

[
− 1 + erf

(
x̂− 1

2V

)]
(B.6)
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To solve, we introduce a new non-dimensional length scale and rescale with x = x/d and η2 = dη2.

Note that ` is small compared to d, so we can also define L = `/d = ε.

Finally, we define two non-dimensional parameters, Ta = kaτ/ε and Td = k0
Dτ/ε. Both of these

parameters include τ , the time scale of weak binding, which is assumed to be fast compared to

strong binding. Thus, τ is O(ε), and Ta and Td are both O(1). We can therefore simplify Eq. B.6

to be,

∂η2

∂x
=
−Td
V

exp
(
− Ex− E

)
η2 +

TaN1

V

[
1

2εV
e1/(4V 2)e−x/(εV )

(
− 1 + erf

(
x

ε
− 1

2V

))]
(B.7)

We solve for η2 using a matched asymptotic expansion. First, we construct the outer solution

away from zero. In this region, we must solve,

∂η2

∂x
=
−Td
V

exp(−Ex− E)η2(B.8)

which gives the solution,

η2
out = A exp

(
Tde
−Ex−E

EV

)
(B.9)

Next, for the inner solution near zero, we must solve,

∂η2

∂x
=
TaN1

V

[
1

2εV
e1/(4V 2)e−x/(εV )

(
− 1 + erf

(
x

ε
− 1

2V

))]
(B.10)

To solve, we must first define a layer coordinate to rescale into the layer. We divide the length

parameter by ε, which we can write using our original notation: x/ε = x̂. Rescaling Eq. B.10

allows us to solve for the inner solution with an arbitrary constant. Noting that η2
in(∞) = 0, we

can solve for this constant to get the solution

η2
in =

TaN1

2V

(
erf(x̂) + e1/(4V 2)e−x̂/V

(
1 + erf

(
1

2V
− x̂
))
− 1

)
(B.11)

Matching these solutions near zero, we get the following composite solution:

ηcomp
2 =




ηin

2 ∀x, x̂, x

ηin
2 + ηout

2 − ηmatch
2 for x, x̂, x < 0
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where

ηout
2 =

−TaN1

V
exp

(−Tde−E
EV

)
exp

(
Tde
−Ex−E

EV

)

ηin
2 =

TaN1

2V

(
erf(x̂) + e1/(4V 2)e−x̂/V

(
1 + erf

(
1

2V
− x̂
))
− 1

)
(B.12)

ηmatch
2 =

−TaN1

V

This expression for η2 can be integrated to solve for N2, since N2 =
∫∞
−∞ η2(x, t)dx. A value for N2

then allows us to solve for N1.

Combining all of the above, we have fully defined analytical expressions for η1 and η2. As a

final step, we can use Eq. B.2 to solve for force as a function of shortening velocity.

B.1.4. Non-Steady-State Solutions. In the force transient experiments, the muscle fiber is

activated and held isometrically, stretched on a very rapid time scale, and then held isometrically

again. Therefore, to compare the model to these measurements, we assume isometric conditions

and solve for force as a function of time.

Again, we assume conditions of high ATP, reducing our five-state model to not include the

negligibly populated state 3. Additionally assuming isometric conditions (i.e. v = 0), the system

(Eq. B.1) reduces to the following:

∂η1

∂t
= κ+

w(x)N5 − (k−w + ka)η1

∂η2

∂t
= kaη1 − kD(x)η2(B.13)

dN5

dt
= k−wN1 + k+

h (1−N1 −N2 −N5)− (k−h + k+
w0

)N5

B.1.4.1. Numerical Solution for Non-Steady-State. To numerically solve the system, we use the

method of characteristics to convert these partial differential equations (PDEs) to a system of ODEs

at each x. We then implement a fourth-order Runge-Kutta algorithm (RK4) in Matlab to solve
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the system of ODEs. We implement our own RK4 instead of using one of Matlab’s suite of ODE

solvers because of the integral constraint, Ni =
∫∞
−∞ ηi(x, t)dx. This constraint results in coupling

between the characteristics, so that the ODEs are coupled and cannot be solved individually.

To implement RK4, we first solve the system analytically in steady-state (t = 0). Our simulation

begins at the time of stretch, and so the initial condition is the steady-state distributions shifted by

the stretch amplitude. For each value of x, we have a system of ODEs. We use the RK4 algorithm

to take a step forward in time, using the values of η1, η2, N1, N2 and N5 at the previous time step,

to solve for the values of η1, η2 and N5 at the next point in time. After the time step, we integrate

the new distributions for η1 and η2 to get the new N1 and N2 values. Repeating this process, our

final result is η1(x, t) and η2(x, t), and we can use Eq. B.2 to solve for F (t).

B.1.4.2. Analytical Approximation for Non-Steady-State. Given both the x and t-dependence

in the non-steady-state system (Eq. B.13), this system cannot be solved analytically. Instead, we

develop the following moment approximation [Zahalak, 1981], which allows us to approximate the

system of PDEs as a set of ODEs, which we can then optimize with greater efficiency.

Recall that η1(x, t) and η2(x, t) are the probability densities that myosin is weakly or strongly-

bound, respectively, with a particular extension, x at time t. We assume the attachment rate

varies exponentially with the energy required for myosin to bind with a particular extension, which

means that the attachment rate is a normalized Gaussian function centered at 0. Thus, myosin

molecules attach into a weakly-bound state based on this function, and so we approximate the η1

distribution as a Gaussian function. For the strongly-bound cross-bridges, transition into this state

occurs in the same manner, but detachment is force-dependent and favors smaller extensions, so we

approximate the η2 distribution with a Gaussian centered slightly to the right of 0. Throughout our

approximation, we allow these means to vary when appropriate, but assume that their standard

deviations are constant (this is equivalent to truncating our moment approximation).

Next, we implement a separation of time scales and solve the system on each interval. The

force transient response suggests three time scales: 1) Pre-stretch: the muscle is activated and has

reached steady-state, 2) Fast time: the stretch occurs at the start of this interval, all bound cross-

bridges are stretched, and the fast weakly-bound cross-bridges re-adjust, and 3) Slow time: the
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weakly-bound cross-bridges are in steady-state and the strongly-bound cross-bridges slowly adjust

back from the stretched position.

We solve each time scale individually below. In the following, we use G to denote normalized

Gaussian functions with mean µ so that
∫∞
−∞G(x, µ)dx = 1.

Pre-Stretch/Isometric: Pre-stretch the muscle has been activated and allowed enough time to reach

steady-state. We approximate the pre-stretch η distributions as described above,

η1 = α1(t)G1(x, 0)(B.14)

η2 = α2(t)G2(x, µa2(t))

Using these approximations, we can transform our system in Eq. B.13 into a system of ordinary

differential equations:

dα1

dt
= k+

w0
N5 − (k−w + ka)α1

dα2

dt
= kaα1 − α2

∫ ∞

−∞
kD(x)G2(x, µa2(t))dx

(B.15)

dµa2
dt

=

−σ2

[
µa2

(
kaα1 − α2

∫∞
−∞ kD(x)G2(x, µa2)dx

)
+ α2

∫∞
−∞ xkD(x)G2(x, µa2)dx

]

α2

(∫∞
−∞ x

2G2(x, µa2)dx− (µa2)2

)

dN5

dt
= k−wα1 + k+

h (1− α1 − α2 −N5)− (k−h + k+
w0

)N5

For the purposes of our calculation, we are only interested in the pre-stretch steady-state force.

We solve the above system under steady-state conditions by implementing a non-linear root find

and using Matlab’s fsolve function. This gives steady-state values for αss1 , αss2 , µa,ss2 and N ss
5 .

Finally Eq. B.2 can be used to calculate pre-stretch isometric force.
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Fast Time: We assume that the stretch occurs at the start of this time scale. This means that

the steady-state distributions of η1 and η2 are shifted by the amplitude of the stretch imposed,

s. Throughout this fast time scale, the weakly-bound cross-bridges adjust back to steady-state,

so the η1 distribution adjusts from the stretched position back to be centered at 0. The strongly-

bound cross-bridges act on a much slower time scale, and so we assume they are constant and are

well-approximated by the Gaussian in the shifted position.

Under these conditions, our distributions become:

η1 = A(t)G1(x, µb1(t)) + (αss1 −A(t))G1(x, 0)(B.16)

η2 = αss2 G2(x, µB2 )

with A(0) = αss1 , µb1(0) = s, µB2 = µa,ss2 + s. Note that here, αss1 , αss2 , and µa,ss2 are the respective

steady-state values from the previous solution for pre-stretch conditions.

On this fast time scale, we additionally assume that N5 is in steady-state. This allows us to

solve the system, and using the initial condition that η1(x, 0) = αss1 G1(x, s), we get an expression

for η1,

η1 = αss1 G1(x, s)e−(k−w+ka)t +
k+
w (x)N ss

5

k−w + ka

(
1− e−(k−w+ka)t

)
(B.17)

And finally, we can again use Eq. B.2 to solve for F (t) on this time scale.

Slow Time: On the final time scale, we assume that the weakly-bound cross-bridges have re-

adjusted, and now the strongly-bound cross-bridges are adjusting from the stretched distribution

back to steady-state. Thus, the η1 distribution stays centered near 0, and the η2 distribution begins

in a shifted position and adjusts back to be centered near 0, as follows:

η1 = a1(t)G1(x, 0)(B.18)

η2 = a2(t)G2(x, µa2(t)) + b2(t)G2(x, µb2(t))

with a1(0) = αss1 , a2(0) = 0, b2(0) = αss2 , µa2(0) = 0, and µb2(0) = µa,ss2 + s. Again, note that

steady-state values refer to pre-stretch steady-state.
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To solve this, we must assume that µa2 << µb2, i.e. that the means of the two Gaussians for

the stretched and un-stretched positions are far apart. This allows us to assume that there are

neighborhoods around both µa2 and µb2 where they are separate, and can therefore be integrated

independently.

We use these approximations in Eq. B.18 to transform the system of PDEs in B.13 into the

following set of ODEs:

da1

dt
= k+

w0
N5 − (k−w + ka)a1

da2

dt
= kaa1 − a2

∫ ∞

−∞
kD(x)G2(x, µa2)dx

db2
dt

= −b2
∫ ∞

−∞
kD(x)G2(x, µb2)dx

(B.19)

dµa2
dt

=

−σ2

[
µa2(t)

(
kaa1 − a2

∫∞
−∞ kD(x)G2(x, µa2)dx

)
+ a2

∫∞
−∞ xkD(x)G2(x, µa2)dx

]

a2

[ ∫∞
−∞ x

2G2(x, µa2)dx− (µa2)2

]

dµb2
dt

=

−σ2

[
− µb2

∫∞
−∞ kD(x)G2(x, µb2)dx+

∫∞
−∞ xkD(x)G2(x, µb2)dx

]

∫∞
−∞ x

2G2(x, µb2)dx− (µb2)2

dN5

dt
= k−wa1 + k+

h (1− a1 − a2 − b2 −N5)− (k−h + k+
w0

)N5

This system of ODEs is much faster to solve numerically than our original system of PDEs.

Thus, with the above approximation, we have separated the force transient behavior into three

time scales, approximated the system of PDEs with a system of ODEs, solved numerically, and

156



calculated the resulting force. In total, we have an efficient method for approximating F (t). Ad-

ditionally, we find that this approximate solution is very close to the more accurate full numerical

solution (Fig. B.2). Thus, this approximation is advantageous because it can be used to preliminar-

ily fit force transient measurements, resulting in a very good approximation of best-fit parameters,

which can then be used as an initial condition to optimizing the more accurate full RK4 numerical

solution.

1
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Figure B.2. Model simulation of a force transient response to a quick stretch: The model can
be solved numerically using fourth-order Runge-Kutta (see section B.1.4.1) to provide an accurate
result for force as a function of time (gray, dotted line). For efficiency, the model can additionally
be approximated using separation of time scales and a modified moment approximation (see section
B.1.4.2), resulting in a method of solving the system that is both a very good approximation to
the numerical solution (red, solid line), and efficient enough to perform preliminary parameter
optimizations.

B.2. Four-State Model + Viscous Drag

B.2.1. Weak binding acts as a viscous drag. In the motivation section of the main text,

we begin by introducing a four-state model (Fig. 3.1A of main text) which has been previously

shown to describe molecular muscle measurements and force-velocity measurements from muscle

fibers [Walcott et al., 2012, Newhard et al., 2019]. Based on experimental evidence [Eisenberg and

Hill, 1985, Brenner, 1987, Cooke and Holmes, 1986, Stein et al., 1979, Brenner et al., 1982, 1984], we

hypothesize that this model must additionally include a weakly-bound interaction between actin

and myosin, leading to the five-state model (Fig. B.1 and Fig. 3.1B of the main text). Given

that weakly-bound myosin molecules rapidly bind and unbind from the actin filament without
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undergoing a power-stroke [Brenner, 1987, Stein et al., 1979], and given that the rate constants

for weak binding (k−w and ka) do not depend on force, these cross-bridges act as a viscous drag on

the system [Srinivasan and Walcott, 2009] (Fig. B.3). This provides us with another method of

efficiently approximating the five-state model in force-velocity measurements: we can add a viscous

drag to the four-state model.
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Figure B.3. Weakly-bound cross-bridges act as a viscous drag. The five-state model fits force-
velocity measurements (red line, data from Hill [1938]). This total force is comprised of the force
from strongly-bound cross-bridges (gray, solid line) and force from weakly-bound cross-bridges
(black, dotted line). The linear relationship between force and velocity generated by the weakly-
bound cross-bridges demonstrates that they act as a viscous drag on the system.

We initially use this method to fit the force-velocity data of A. V. Hill and the energetics data

of W. O. Fenn, and to motivate the necessity of a weakly-bound state in the main text. To do so,

we solve the four-state model to get force as a function of shortening velocity, and then subtract a

linear function from this result. The slope of this line determines the amount of viscous drag, or

equivalently, the amount of weakly-bound cross-bridges. With this force-velocity relationship, we

can also calculate total energy as a function of force. We find that the four-state model with viscous

drag is able to simultaneously fit Hill’s force-velocity and Fenn’s energetics data, motivating our

hypothesis that weak binding is necessary to consistently model muscle measurements.

B.2.2. Parameter optimization and the four-state model. In addition to motivating our

hypothesis, we used the four-state model with drag to identify parameters that can describe our

own force-velocity measurements (Figs. 3.2D and 3.3B of the main text, and B.13B) because it has

fewer parameters and is more computationally efficient than the five-state model. The parameter
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combinations for the four-state model with drag were identified by fixing a particular amount of

drag (i.e. amount of weakly-bound cross-bridges), and performing an optimization to determine the

best fit ADP release rate (k0
D) and force-dependent parameter (E). We use a matched asymptotic

analytical solution to the four-state model to get close to the best-fit parameters, and then perform

the final optimization using a numerical solution to the four-state model. We optimize using

Matlab’s fminsearch, and define the error as the sum of the squared difference between the model

and measurements divided by the number of data points. In the four-state model at steady-state, E

and k0
D are the only two unknown parameters. Our results are plotted as gray squares in Fig. B.4A.

This parameter optimization is much simpler than the equivalent optimization with the five-

state model, which includes three additional unknown parameters (k−w , ka, and k+
w0

), which deter-

mine the time scale and amount of weak binding. In fact, the combinations of E and k0
D that fit the

five-state model to force-velocity measurements are not unique, but are dependent on the time scale

of weak-binding. Thus, to fit the five-state model, we must fix one of the weak-binding parameters

(either k−w or ka), which specified the time scale of weak binding, and then fit the other unknown

parameters. By fixing E at different values, we get combinations of E and k0
D that result in good

fits of the five-state model to the force-velocity measurements (colored symbols in Fig. B.4a).

These fits demonstrate two important results. First, we find that as the time scale of weak

binding increases, the five-state model results approach those of the four-state plus drag (Fig. B.4).

Second, when we violate the assumption that weak binding is fast compared to strong binding, the

four-state model plus drag underestimates the ADP release rate necessary to fit our measurements,

i.e. the k0
D values predicted from the the four-state model plus drag are a lower bound to those

predicted by the five-state model. This latter fact is useful when we compare the five-state model

fits to our force-velocity and force transient measurements. Because the best-fit k0
D value at a given

E for the force transient measurements are always less than the equivalent k0
D value for our force-

velocity measurements, the five-state model force-velocity fits will give parameters equivalent to,

or worse than, those from the four-state plus drag. Therefore, for simplicity, we use the four-state

plus drag force-velocity parameters (Figs. 3.2D and 3.3B of the main text, and B.13B) to compare

to force transient results.
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Figure B.4. As the time scale of weak-binding increases, the five-state model approaches the
four-state model plus drag. A: Best-fit combinations of unloaded ADP release rate (k0D) and the
force-dependent parameter (E) for the four-state model plus various amounts of drag (gray squares)
and the five-state model with various weak-binding time scales (colored symbols). For each colored
symbol, one of the weak binding parameters (k−w or ka) was fixed along with the force-dependent
parameter (E), and the other parameters were optimized. The four-state model parameters are
a lower bound to the five-state results. B: This panel illustrates the weak-binding time scale
corresponding to each colored symbol in panel A. As the time scale of weak binding increases, the
five-state predictions in panel A approach those of the four-state model.

B.3. Weak Binding is Necessary for Consistent Force-Dependence: Modeling Classic

Measurements of the Energetics of Muscle (Fenn 1923) and the Force-Velocity

Relationship (Hill 1938)

In the main text, we motivate the necessity of a weakly-bound state in modeling the interaction

between actin and myosin by fitting the four- and five-state models to classic measurements from

W.O. Fenn (1923) and A.V. Hill (1938). Here, we discuss how we model these measurements, the

details of the optimization, and the statistical significance of our results.

B.3.1. Modeling the energetics of muscle. In his work, W.O. Fenn measured energy

liberation during muscle contraction. Experimentally, a muscle was maximally stimulated for a

fixed time and allowed to shorten a fixed distance. Fenn measured the work done by the muscle

and the heat produced as a function of the load imposed [Fenn, 1923].

To model this relationship, we first note that due to conservation of energy, total energy is

equal to work done plus heat released. In our case, ATP hydrolysis fuels the cyclical interaction
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between actin and myosin, so total energy is equivalent to the energy of ATP hydrolysis, which

we call EATP . One molecule of ATP is hydrolyzed each time a myosin molecule completes the

actomyosin cycle. Thus, the flux through an irreversible step of the cycle gives the rate of ATP

consumption, which is proportional to the time derivative of EATP (the proportionality constant

is the energy of ATP hydrolysis). We integrate this expression to get EATP (v) where v is velocity.

Additionally using our calculated force-velocity relationship, we have an expression for total energy

as a function of force, which directly relates to Fenn’s measurements.

Implementing the above with the five-state model, we find that weak binding has a minimal

effect on this calculation. With the addition of weakly-bound cross-bridges, the muscle must do

more work to overcome the resistive force of these cross-bridges. However, we find that the magni-

tude of this work is small compared to the work necessary for the muscle to raise the weight (Fig.

B.5). Additionally, the magnitude of the overall work is small compared to the heat produced by

the muscle. In Fenn’s original measurements, the heat produced was an order of magnitude larger

than the work done by the muscle [Fenn, 1923].

0.5 1
Force/F0

0

-1

1

2

3

4

5

W
or

k 
(p

N
 n

m
) 

Work to lift weight
Work to overcome viscous drag

x 104

Figure B.5. Weak binding has a minimal effect on work done by a muscle. Simulating Fenn’s
experimental protocol using the five-state model results in work done by the muscle to lift the
weight (red solid line) that is much larger than the work done to overcome resistive force from
weakly-bound cross-bridges (dotted red line).

B.3.2. Fitting model to energetics and force-velocity data. To compare the model

to Hill’s force-velocity and Fenn’s energetics data, we first solve for the model’s force-velocity

relationship (see section B.1). This is directly comparable to Hill’s measurements. Next, based
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on the above calculation, we solve for total energy as a function of force, which is comparable to

Fenn’s measurements.

We fit the four- and five-state models to the data [Hill, 1938, Fenn, 1923]. In the case of the

energetics data, we multiply the normalized force data by 0.9. This gives a better fit between

model and data, and we justify it by the fact that true isometric force of a muscle is extremely

challenging to measure and is not directly reported in Fenn’s paper. We perform fits to the data

by simulating the model for a given parameter set, calculating the error as the sum of the squared

difference between model and data divided by the number of data points, and optimizing using

Matlab’s fminsearch. When simultaneously fitting energetics and force-velocity data, we define

the error as the sum of the individual errors, with the force-velocity error weighted slightly higher.

Because the four- and five-state models have two and four unknown parameters respectively,

we tested whether the five-state model was a better fit with an F-test, which yields p < 0.05. We

therefore conclude the five-state model gives a significantly better fit than the four-state. Addition-

ally, we find that the five-state model fits are insensitive to one of the unknown parameters. Thus,

if the five-state model differs from the four-state model by only one extra parameter, the difference

between the two models is more significant.

B.4. Mismatch Between Force Transient Data and Model is not Unique to

Drosophila Jump Muscle

In section 3.4.1 of the main text, we describe a discrepancy between our model predictions

and our force transient measurements. In particular, our model predicts a peak force post-stretch

(phase I) that is at least twice what we measure in Drosophila jump muscle. Importantly, the model

prediction is a lower bound, since the calculation accounts only for force from strongly-bound cross-

bridges that have undergone a power-stroke. Thus, if weakly-bound cross-bridges are also present,

they will produce additional force once stretched, leading to an even larger discrepancy between

model and measurements.

This difference is not unique to Drosophila jump muscle. In fact, measurements from a variety

of vertebrates and a range of muscle fiber types result in peak forces that are similar to our
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measurements (Fig. B.6, Galler et al. [1994, 1997], Straight et al. [2019], Ochala et al. [2006]).

While some of the experimental measurements are above our predicted line, the majority are not.

Additionally, since the predicted line is a lower bound, measurements must be well above this

prediction to be fit by the model. If the weakly-bound state is significantly populated, we would

expect peak forces to be higher than the predicted lower bound by a factor of 2 or more. Thus,

of the fifteen measurements considered here, only four have the potential to be fit by the model

(Vanzi et al. [1995], Piazzesi et al. [1997] and fiber types I and IIA from Galler et al. [1996]).
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Figure B.6. Peak force above isometric force in transient response after rapid stretch (phase I)
as a function of stretch size. Measurements from a variety of muscle fiber types are at or below the
model’s prediction.

B.5. Explanation 1: Overestimated Stretch Amplitude

In the main text, we discuss how our model, with the assumption of linear cross-bridge elas-

ticity, is inconsistent with force transient measurements because the model predicts a peak force

post-stretch that is significantly larger than that measured (Fig. 3.2B main text). In section 3.4.2,

we present an argument against the possibility that this discrepancy is caused by an overestimated

stretch amplitude at the sarcomere level due to series elasticity. Here, we provide further details

on the computation that led to this conclusion.
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B.5.1. Fitting model with decreased stretch amplitude. To fit the model to force tran-

sient measurements for the case of overestimated stretch amplitude, we allow the unknown model

parameters to vary (k−w , ka, k
0
D, E), and additionally include the stretch amplitude, ∆s, as an

unknown parameter. Note that in the force transient measurements, the force does not return to

steady-state for long time, but instead remains slightly higher than the pre-stretch isometric value.

Our model does not account for this residual force enhancement. Thus, in order to compare the

model to the data, we must shift the force transient measurements so that the force returns to

steady-state. To simulate the force transient, we solve the system numerically using RK4. To com-

pare the results to our measurements, we define error as the sum of the squared difference between

the model results and the shifted data divided by the number of data points, and optimize using

Matlab’s fminsearch.

We fit the model to a force transient measurement with a stretch amplitude of 0.5% muscle

length (main text Fig. 3.2A). Assuming there is no effect of series elasticity, this corresponds to

a 9 nm stretch at the half-sarcomere level. Our optimization results in a set of best-fit parame-

ters, including a single best-fit value for the reduced stretch amplitude of ∆s = 0.437 nm. The

corresponding model fit is illustrated in Fig. 3.3A of the main text.

To estimate the range of ∆s values that result in good fits to the data, we assume that the

best-fit parameters give a perfect fit, and calculate the error in this case. We define the maximum

acceptable error as
√

2 · Eb, where Eb is the error from the best-fit parameters. This gives us an

estimate of the standard deviation of the best fit, and provides a benchmark for when the model is

different from the data. We find that only a small range of significantly decreased stretch amplitudes

(∆s = 0.4− 0.55 nm) result in good fits to the force transient measurements (Fig. B.7).

B.5.2. Comparing parameter fits from force transient and force-velocity measure-

ments. Next, to compare the model fits of force transient measurements to fits of force-velocity

measurements, we consider combinations of two model parameters, unloaded ADP release rate

(k0
D) and the force-dependent parameter (E) (Fig. 3.3B of the main text). To determine the force

transient parameters, we perform the same fits as above, but with the stretch amplitude fixed at

the best fit value of ∆s = 0.437 nm. For the force-velocity parameters, we perform fits to the
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Figure B.7. Sum of the squared error as a function of the half-sarcomere stretch size. For each
point, the stretch amplitude was fixed and the other parameters were optimized to fit the model to
a measurement from a 0.5% muscle length stretch. Values within the shaded region are considered
acceptable fits, and represent error that is within one standard deviation of the error produced by
the best-fit parameters.

four-state model with various amounts of weak binding (see section B.2.2 for justification). In each

case, error is defined as the sum of the squared difference between model and data divided by the

number of data points, and Matlab’s fminsearch is used for optimization.

We determine the variability in these parameters by optimizing the model to determine the best-

fit parameters at a given E, and use this result to define an upper bound on the acceptable error

(see section B.5.1). We sweep through k0
D values to determine a range that provides satisfactory fits

to the data for the given E value. We perform this sensitivity analysis for both the force transient

fits and the force-velocity fits (Fig. B.8).

B.5.3. Explanation 1 Extended: Strong binding cannot cause phase I and II of

force transient response. In most of our analysis, we assume that phase I and II in the force

transient response are attributed to weakly-bound cross-bridges that rapidly re-equilibrate post-

stretch (Fig. 3.1F main text). However, it is also possible that the weakly-bound cross-bridges act

on a faster time scale than the temporal resolution of the force transient measurements (i.e. the

time between data points, ∆t = 0.125 ms). In this case, weakly-bound cross-bridges re-equilibrate

before the first measurement post-stretch, and phase I and II of the force transient response are

165



0
2

4

6

3

5

7
Su

m
 o

f S
qu

ar
ed

 E
rr

or

20 60 100 140
ADP Release Rate (s-1)

E = 1

50 100 150 200 2500
2

4

6

3

5

7

Su
m

 o
f S

qu
ar

ed
 E

rr
or

ADP Release Rate (s-1)

E = 1.3

2

4

6

3

5

7

Su
m

 o
f S

qu
ar

ed
 E

rr
or

0 100 200 300 400
ADP Release Rate (s-1)

E = 1.6

2

4

6

3

5

7

Su
m

 o
f S

qu
ar

ed
 E

rr
or

100 300 500 700
ADP Release Rate (s-1)

E = 1.9

2

4

6

3

5

7 E = 2.2

100 300 500 700 900 1100
ADP Release Rate (s-1)

Su
m

 o
f S

qu
ar

ed
 E

rr
or

A x 10-5 x 10-5 x 10-5

x 10-5 x 10-5

B

580 620 660 700

2

4

6 x 10-4

E = 0.7

Su
m

 o
f S

qu
ar

ed
 E

rr
or

ADP Release Rate (s-1)

3

5

7
x 10-4

900 1000 1100

Su
m

 o
f S

qu
ar

ed
 E

rr
or

ADP Release Rate (s-1)

E = 1

0

1

2

x 10-3

1300 1600 1900 2200

Su
m

 o
f S

qu
ar

ed
 E

rr
or

ADP Release Rate (s-1)

E = 1.3

Figure B.8. Sensitivity analysis for fitting model to data. In each, the gray shaded regions denote
acceptable error, and represent error that is within one standard deviation from the error produced
by each best-fit. These results are used to determine the error bars in Figs. 3.2D and 3.3B of the
main text, and Fig. B.13B. A) Sum of the squared error in fitting force transient measurements as
a function of ADP release rate for a fixed force-dependence. For each panel, the five-state model
(including ∆s as an unknown parameter) is fit to the force transient measurement from a 0.5%
muscle length stretch. B) Sum of the squared error in fitting force-velocity measurements as a
function of ADP release rate for fixed force-dependence. For each panel, the four-state model plus
drag was fit to force-velocity measurements.

solely due to strongly-bound cross-bridges. Then, phase III and IV would arise from some other

mechanism that is not included in our model.

To test our assumption that phase I and II are due to weakly-bound cross-bridges, we tested

the viability of the model as described above, with weakly-bound cross-bridges acting on a time

scale faster that the resolution of the measurements. To do so, we implemented two fourth-order

Runge-Kutta algorithms to solve for force as a function of time. The first begins at the instant of
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stretch and iterates through time using a small time step (∆t = 0.00625 ms) until it reaches the first

point in time post-stretch from our measurements, t = 0.125 ms. The second RK4 algorithm begins

at this time point and iterates through time using a larger step size (∆t = 0.05 ms). In this way,

we can capture the rapid response of the weak-binding cross-bridges without having to maintain a

short, and computationally inefficient, time step. We fix two of the weak binding parameters (k−w

and k+
w0

) to be large enough so that the weakly-bound cross-bridges have re-equilibrated by the end

of our first RK4 simulation. We can then compare the result of the second RK4 simulation with our

force transient measurement, ensuring that the peak is solely due to strongly-bound cross-bridges.
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Figure B.9. The model cannot simultaneously fit the force transient and force-velocity measure-
ments with the assumption that the peak in force post-stretch is solely attributable to strongly-
bound cross-bridges. A) Assuming strong-binding causes the peak in force post-stretch, the five-
state model can fit the derivative of the force transient trace for a 0.5% muscle length stretch. The
corresponding force trace is reproduced here. The model result has been shifted to account for
an offset in the result due to fitting the derivative. The best-fit parameters suggest a decreased
stretch amplitude (∆s = 3.61) and a negligible force-dependence (E = 0.01). B) Combinations of
unloaded ADP release rate and the force-dependent parameter that fit the force transient measure-
ments under these conditions (black circles) are inconsistent with those required to fit force-velocity
measurements (gray squares). To fit model to data, the weak binding parameters k−w and k+w0

were
fixed to be large, and the five-state model was fit to both the force-velocity and force transient
measurements.

As with our other models, this model is inconsistent with the measured peak force from our

force transient traces (main text Fig. 3.2B). We must therefore adjust for this discrepancy, and

we do so by letting the stretch amplitude be a parameter of fit (see section 3.4.2 of the main text
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for justification). Additionally, because phase III and IV of the force transient response would not

be described by this model, we fit the derivative of the force transient trace. The advantage of

this approach is that the derivative is invariant to the addition of a constant value being added to

the force trace. Since phase III and IV act on a longer time scale that phase I and II, they are

reasonably well approximated by a constant in this model.

With these assumptions and with this implementation, the model is able to fit our force tran-

sient measurements (Fig. B.9A). However, it requires a small force-dependence and large unloaded

ADP release rate (best-fit gives E = 0.01 and k0
D = 830.07 s−1) to be able to reproduce the

timescale of phase I and II. As we fix E and optimize the fit to the data, we find that the predicted

ADP release rate is too large to be consistent with the fits to our force-velocity measurements

(Fig. B.9B). Thus, phase I and II are too fast to be due to strongly-bound cross-bridges, and we

conclude that the peak force cannot be attributed to detachment of strongly bound cross-bridges

in this manner.

B.6. Explanation 2: Unexplained Force

In section 3.4.3 of the main text, we briefly present an argument against the presence of an

additional force, not due to actin and myosin, in the force transient measurements. Here, we discuss

our methods (sections B.6.1, B.6.2, B.6.3, B.6.4) and findings (section B.6.5) in more detail.

B.6.1. Passive force in force transient measurements. When we consider that the force

transient measurements may include additional non-cross-bridge forces, one possibility is that pas-

sive elements in the muscle fiber are contributing to the measured force. Our model only accounts

for force from cross-bridge interactions, and therefore would not reproduce passive force.

To control for this, we perform the force transient measurements at low calcium concentrations

(pCa 8.0). At this low calcium concentration, there is very little cross-bridge cycling, and thus any

force produced can be attributed to passive elements. We find that the force produced for pCa 8.0 is

negligible compared to that produced at a saturating calcium concentration of pCa 5.0 (Figs. B.10A,

B). In particular, we find that the pre-stretch isometric stress value for pCa 5.0 is 15 - 20 times

greater than the pre-stretch isometric stress value for pCa 8.0 (Fig. B.10C). Notably, this difference
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Figure B.10. Passive stress produced for pCa 8.0 is negligible compared to active stress produced
at pCa 5.0. A, B) Stress (mN/mm2) as a function of time (sec) for muscle fibers quickly stretched
a small percentage of their length (A: 0.75% ML, B: 1% ML) at saturating calcium concentration
of pCa 5.0 (blue) and low calcium concentration of pCa 8.0 (red). C) Ratio of pre-stretch isometric
stress at pCa 5.0 compared to that at pCa 8.0 at various stretch amplitudes. Each data point
includes values from two fibers. Together, these plots illustrate that the passive force produced at
low calcium concentrations is negligible, and about 15 times less than that produced at saturating
concentrations.

in magnitude is present for all of the fibers and at every stretch amplitude we considered, confirming

that the force from passive elements is negligible across all of our experimental conditions.

B.6.2. Adjusting model to include non-cross-bridge force. While the above experi-

ments show that purely passive elements are not contributing significantly to force, there is evi-

dence that some elastic elements in muscle stiffen in the presence of calcium [Labeit et al., 2003] or

that non-cross-bridge elements can contribute to force [Leonard and Herzog, 2010]. It is possible,

then, that the contribution of these elements to muscle force underlie the discrepancy between our

measurement of peak force, and that predicted by Eq. 3.1 of the main text, reproduced below:

(B.20)
Fp
F0

=
(S + d)κ

dκ
=
S
d

+ 1 =
1800 · s%

d
+ 1

where κ is myosin’s stiffness, d is myosin’s step size, Fp is peak force post-stretch, F0 is pre-stretch

isometric force, and S is stretch length:

We call the force produced by these non-cross-bridge elements an “unexplained force”. To

account for this, we let it be a parameter in the model. Additionally, we let this value be different
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pre- and post-stretch. Thus, the force calculation in Eq. B.20 becomes,

(B.21)
Fp
F0

=
F pxb + F pnc

F 0
xb + F 0

nc

where F 0
xb and F pxb are the cross-bridge forces pre- and post-stretch, and F 0

nc and F pnc are the

non-cross-bridge forces pre- and post-stretch, respectively. While this initially introduces two new

parameters to the model, we can use the following calculation to reduce it to just one new parameter.

The model predicts that for long time after stretch, the force from cross-bridges will be equal to

the pre-stretch cross-bridge isometric force. In the force transient data, however, the post-stretch

steady-state value is slightly higher than the pre-stretch value. We must account for this residual

force enhancement [Koppes et al., 2015], which would not be reproduced by these models [Walcott

and Herzog, 2008] and would therefore lead to inaccurate parameter estimation. We account for

this, and reduce the number of parameters-of-fit, with the following calculation, where F ∗ denotes

the post-stretch steady-state value normalized to the pre-stretch steady-state in the data:

(B.22) lim
t→∞

Fp
F0

=
F 0
xb + F pnc

F 0
xb + F 0

nc

= F ∗

The force transient measurements determine the F ∗ value, and thus we can solve for F pnc in terms

of F 0
nc. Thus, to account for this non-cross-bridge force, we fit the force transient measurements to,

(B.23)
Fp
F0

=
F pxb + F ∗(F 0

nc + F 0
xb)− F 0

xb

F 0
xb + F 0

nc

where the cross-bridges forces are determined from the five-state model and F 0
nc is an additional

parameter of fit that determines the amount of unexplained force due to non-cross-bridge effects.

B.6.3. Fitting model with unexplained force. To fit the model to the force transient

measurements for the case of unexplained force, we allow the unknown model parameters to vary

(which now includes the parameter for additional unexplained force, F 0
nc). Note that in this case,

we fix the stretch amplitude to be at the true experimental value. We use RK4 to solve the system

for force as a function of time, define error as the sum of the squared difference between model

and data divided by the number of data points, and use Matlab’s fminsearch to optimize the

parameters.
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The optimization results in a set of best-fit parameters, including a best-fit value for F 0
nc. To

determine the range of F 0
nc values that can result in good fits to the data, we bound the error by

√
2 ·Eb, where Eb is the best-fit error (see section B.5.1). We find that only a small range of values

for F 0
nc result in acceptable errors (Fig. B.11A).

Additionally, to consider the plausibility of these results, we compared the unexplained force

values, F 0
nc, to the isometric force from cross-bridges, F 0

xb (Fig. B.11B). Note that the isometric

cross-bridge force changes for different amounts of unexplained force. Thus, normalizing F 0
nc by

F 0
xb results in multiple error values for the same ratio of unexplained force to cross-bridge force

(Fig. B.11B). However, there is a clear minimum and a single error value for each choice of un-

explained force (Fig. B.11A). This best-fit unexplained force is 28.07 times that of isometric force

from cross-bridges, and that parameters that result in acceptable error predict an unexplained force

that is 27 - 28.3 times that of isometric. We conclude that it is unreasonable to expect that force

transient measurements include an unexplained force of this magnitude.
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Figure B.11. Sum of the squared error as a function of: A) the unexplained force value, F 0
nc,

and B) the unexplained force value normalized to pre-stretch isometric cross-bridge force, F 0
nc/F

0
xb.

For each point, the F 0
nc value was fixed, and the five-state model was fit to the force transient

measurement. Values of F 0
nc that result in acceptable error lie in the shaded box, which denotes

error that is within one standard deviation of the best fit. The best-fit values suggest that the
non-cross-bridge forces are around 28 times that of isometric cross-bridge force.
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B.6.4. Comparing parameter fits from force transient and force-velocity measure-

ments. We also compared the force transient fits to the force-velocity fits under these conditions.

For the force transient measurements, we let the unknown parameters (including F 0
nc) vary, and

determine the best-fit combinations of ADP release rate and force-dependence. The force-velocity

parameters are based on the four-state plus drag fits (see section B.2.2 for justification). In both

cases, error is defined as the sum of the squared difference between model and data divided by

the number of data points, and Matlab’s fminsearch is implemented for optimization. Addition-

ally, we perform a sensitivity analysis (see section B.5.1) to consider the variability in acceptable

parameters due to noise in the data (Fig. B.12).
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Figure B.12. Sum of the squared error in fitting force transient measurements as a function of
ADP release rate for a fixed force-dependence. For each panel, the five-state model (including F 0

nc

as an unknown parameter) is fit to the force transient measurement from a 0.5% muscle length
stretch. The gray shaded regions denote acceptable error, and represent error that is within one
standard deviation from the error produced by each best-fit. This sensitivity analysis leads to the
error bars on the force transient measurements in Fig. B.13B.
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B.6.5. Rejection of unexplained force as explanation for model and measurement

discrepancy. Comparing the five-state model with an unexplained force to our force transient

measurements, we find that the optimization converges to a good fit to the entire force transient

measurement, reproducing all parts of the force response (i.e., phases I-IV, Fig. B.13A). However,

we reject this explanation for two reasons. The first is that the best-fit predicts an implausibly large

unexplained force of about 28 times that of the isometric force from cross-bridges (Fig. B.11B).

The second reason we reject unexplained force as the source of the discrepancy between simula-

tion and measurement is that the force-dependence required for the force transient fits is inconsistent

with the force-dependence required for the force-velocity fits (Fig. B.13B). In particular, the force

transients require a large force-dependence that results in a force-velocity relationship that is too

curved (Fig. B.13C). This result is similar to our fits with decreased stretch amplitude due to series

elasticity (main text Fig. 3.3B). In that case, the model required an increased force-dependence

(i.e. larger E) to counteract the decreased stretch amplitude and to produce phase III of the force

transient response (see main text, section 3.4.2). However, in the case of unexplained force, our

fits have the full stretch amplitude, so we expected to see a leftward shift (toward smaller values of

E) in the best-fit parameters for our force transient measurements, and therefore better agreement
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with the best-fit parameters for our force-velocity measurements. Indeed, we observed such a shift

(compare main text Fig. 3.3B to Fig. B.13B), but it is modest and insufficient to allow us to find

a single parameter set to fit both of our measurements.

These fits still require a large force-dependence because of the large magnitude of the unex-

plained force. In the normalized force transient response, the amplitude of force increases (phase I

and III) is measured relative to the total isometric force. Thus, if isometric cross-bridge force makes

up less of the total isometric force, the amplitude of phases I and III relative to the isometric cross-

bridge force increases. For example, we measured a peak force (phase I) of ∼ 1.4 times isometric,

which is ∼ 40% above isometric force (main text Fig. 3.2A). If all force arises from cross-bridges,

then this peak force results in a ∼ 40% increase in cross-bridge force. However, suppose that

isometric force is half due to cross-bridges and half due to an unexplained force. In this case, the

increase in force due to cross-bridges will still be ∼ 40% of the total isometric force but, since cross-

bridges only account for half of the isometric force, this would correspond to an ∼ 80% increase in

cross-bridge force, and a peak force of ∼ 1.8. A similar amplification occurs with phase III. This

latter effect is particularly important, because for the model to fit a larger phase III, it requires a

larger decrease in ADP release rate, and an increase in force-dependence (i.e. a larger E). Thus,

while the full stretch amplitude in these fits results in a smaller force-dependence compared to our

fits with decreased stretch amplitude (compare main text Fig. 3.3B to Fig. B.13B), this effect is

mostly opposed by the large amount of unexplained force which requires larger force-dependence to

fit the increased amplitude of phase III relative to isometric cross-bridge force (Fig. B.13B). Thus,

we reject the explanation that including an unexplained force due to non-cross-bridge effects is the

sole reason for the discrepancy we see between model and measurement.

B.7. Alternative Model Assumptions

Given the inconsistency between our measurements and our four- and five-state models, we

conclude that at least one of the model assumptions is wrong. Thus, we considered the model

assumptions to see if adjusting any would provide a solution to the discrepancy between model and

data. We discuss these assumptions below, including the effects of non-linear elasticity of myosin,
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force-dependence of weak-binding kinetics and thin-filament activation. Notably, we found that

none of these effects is likely to explain the discrepancy.

B.7.1. Non-linear elasticity. One of the key model assumptions is that myosin acts as a

linear spring with constant stiffness, κ, leading to a linear force-displacement relationship, F (x) =

κx. While there is some experimental evidence to support this assumption [Linari et al., 2020], there

is also evidence to suggest that myosin’s stiffness may be significantly lower when the molecule is

compressed [Kaya and Higuchi, 2010], leading to a non-linear force-displacement curve for myosin.

We expected that such non-linear elasticity might improve the agreement between the model and

our measurements. In particular, the decreased stiffness during compression would decrease resistive

drag during shortening [Brizendine et al., 2015], leading to higher shortening velocities. Thus, at

a given value of E, this model would need a smaller ADP release rate to counteract the increase

in velocity. This would result in a downward shift in the best-fit parameters of the force-velocity

fits (Fig. 3.3B main text and Fig. B.13B). Because cross-bridge stiffness during lengthening does

not change, we expected drag during lengthening to remain largely unaffected, and therefore the

best-fit parameters of the force transient fits to remain the same. To test this idea, we implemented

non-linear myosin elasticity in our model.

To include non-linear elasticity in the model, we defined myosin’s force-displacement curve to be

piecewise linear, with a much smaller slope (i.e. lower myosin stiffness) for negative displacements

compared to positive displacements (Fig. B.14B inset). Thus, with myosin’s stiffness given by

κ(x), we get a force-displacement relationship of F (x) = κ(x) · x. Additionally, in the model,

myosin’s probability of binding to actin with a given initial displacement depends on the negative

exponential of the potential energy required to achieve that displacement (see [Walcott et al., 2012]

for a discussion of this assumption). Therefore, since the force-extension function and the potential

energy-extension function are related (the former is the negative derivative of the latter), when we

modify the force-extension function to be non-linear, we must also modify the attachment rate as

a function of extension.

175



We implement this as follows. Let V (x) denote the potential energy. Since force is the negative

derivative of the potential energy, we have

F (x) = −dV
dx

⇒ V (x) = −
∫
F (x)dx

We assume that the attachment rate is the negative exponential of the potential energy. Therefore,

we get the following expression for attachment rate:

κ+
w(x) = k+

w0
C exp

(
− V (x)

)

= k+
w0
C exp

(∫
F (x)dx

)
(B.24)

= k+
w0
C exp

(∫
κ(x) x dx

)

where C is chosen so that
∫∞
−∞ κ

+
w(x)dx = k+

w0
.

With addition of this non-linearity, the system cannot be solved analytically. Instead, we solve

the system numerically, taking care to appropriately define the non-linearity as described above. To

solve for the force-velocity relationship, we implement an ODE solver in Matlab (ode15s) and solve

the system under steady-state conditions. To solve for the force transient response with stretch,

we implement fourth-order Runge-Kutta to solve the system for all x, at each point in time.

Surprisingly, we found that non-linear elasticity did not improve the agreement between our

model and the measurements. This lack of agreement arises from the interaction of two competing

effects, 1) the expected decrease in drag, and 2) an unexpected decrease in effective power-stroke

size. This latter effect arises because, when myosin’s stiffness in compression is decreased, the

amplitude of the thermal excursions due to Brownian motion increase. Because myosin’s stiffness

is asymmetric, these thermal excursions are asymmetric, making it more likely for myosin to bind

with non-zero compression. Then, when the myosin molecule undergoes its power-stroke, this initial

compression decreases the effective power-stroke size.

The competition between these two effects is apparent in our simulated force-velocity curves.

When the decrease in stiffness for compressed myosin is small, the decrease in drag is the dominant

effect. We see this as both an increase in force for a given velocity value and an increase in

unloaded shortening velocity, vmax, as we expected (Fig. B.14A and inset, respectively). However,
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when myosin’s stiffness is decreased more significantly in compression, the reduction in effective

power-stroke size becomes the dominant effect. We see this as a decrease in force and unloaded

shortening velocity, vmax, compared to the previous case (Fig. B.14A and inset, respectively). Thus,

while non-linear myosin stiffness increases shortening rate for a given E, this effect is limited.

Additionally, although we had anticipated a minimal effect of non-linear myosin stiffness on

the force transient after stretch, we observed a large effect. Non-linear myosin elasticity shifts the

best-fit parameters toward a larger force-dependence at a given ADP release rate, resulting in a

rightward shift in the best-fit parameters (Fig. B.14B) and thus worse agreement with the best-fit

force-velocity parameters. This result is due to the decrease in effective power-stroke size, which has

a similar effect as decreased stretch amplitude due to series elasticity discussed earlier (section 3.4.2

in main text). In particular, in the model the delayed increase in force in the force transient response

(phase III), arises from strongly-bound cross-bridges detaching more slowly post-stretch, due to the

force-dependence of ADP release. The effective reduction in power-stroke size decreases the force

each myosin molecule exerts and, therefore, to maintain the phase III response for non-linear elastic

cross-bridges, the force dependence of ADP release must increase. We therefore conclude that non-

linear myosin elasticity is unlikely to explain the difference we observe between our model and

measurements.

B.7.2. Force-dependent detachment of weakly-bound cross-bridges. In our original

four- and five-state models, we assume that the only force-dependent rate constant is the ADP

release rate. We make this assumption because the force-dependence in this transition has been

directly observed and characterized [e.g. Veigel et al., 2003, Kad et al., 2007]. However, measure-

ments with an ultra-fast optical trap suggest additional force-dependence in the transition from a

weakly-bound state to an unbound state (i.e. state 1 to state 5 in Fig. B.1) [Capitanio et al., 2012].

To understand whether this force-dependence could explain the discrepancy between model and

measurement, we explored its effect on the model.

We can gain an intuition for the effect of force-dependent detachment of weakly-bound cross-

bridges by looking at a simplification of the five-state model. If weak binding is fast compared to

the other state transitions, then the original five-state model (without force-dependent detachment
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Figure B.14. Non-linear elasticity of myosin does not explain the discrepancy between model and
data. A) Force-velocity relationship for linear (dashed line) and non-linear (solid lines) cross-bridge
elasticity. Inset: unloaded shortening velocity vmax, as a function of non-linear stiffness, illustrating
that vmax increases and then decreases as the non-linear stiffness of myosin becomes more significant.
B) Combinations of unloaded ADP release rate and the force-dependent parameter for linear (solid
circles) and non-linear (open colored circles) cross-bridge elasticity. Inset: Force as a function of
displacement for linear (dashed line) and non-linear (solid lines) cross-bridge elasticity with varying
degrees of non-linearity.

of weakly bound cross-bridges) reduces to the four-state model with an additional viscous drag

from the weakly-bound cross-bridges (Fig. B.15A, see section B.2). If weakly-bound cross-bridges

detach more rapidly with increasing force [Capitanio et al., 2012], then the weakly-bound cross-

bridges display shear-thinning behavior [Srinivasan and Walcott, 2009]. That is, the viscous drag

constant decreases as shortening rate increases, leading to less drag force at higher shortening

velocities (Fig. B.15B).

Rather than decreasing the disparity between the model parameters that generate good fits

to our force-velocity and force transient measurements, such shear-thinning behavior has the op-

posite effect. Specifically, shear-thinning drag increases the slope of the best-fit parameters for

the force-velocity data, shifting them further from the best-fit parameters for the force transient

data (Fig. 3.3B in main text and Fig. B.13B). This is because, as discussed in our model fits

to Hill’s measurements (Section B.2.1), weakly-bound cross-bridges decrease the curvature of the

force-velocity relationship. Thus, as we increase the amount of weak binding, we can generate

good fits to force-velocity data with an increasing amount of force dependence (Fig. 3.2C in main
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text). Shear-thinning drag, however, is less effective in decreasing the curvature of the force-

velocity curve, since the decrease in force at higher shortening velocities introduces additional

curvature (Fig. B.15B). Thus, fitting our force-velocity measurements with a model that includes

force-dependent detachment requires less force dependence and a smaller unloaded ADP release

rate, which ultimately shifts the best-fit parameters up and left, further away from the best-fit

parameters for our force-transient measurements (Fig. 3.3B in main text and Fig. B.13B). We

therefore conclude that force-dependent detachment of weakly-bound cross-bridges is unlikely to

explain the difference we observe between our model and measurements.

B.7.3. Thin-filament activation. Our cross-bridge models assume that one myosin’s rate

of strong binding (the transition from state 1 to state 2 in Fig. B.1) does not depend on whether

neighboring myosin are bound. This assumption would be violated if thin-filament activation

contributes to the force transient response [e.g. Greene and Eisenberg, 1980]. This mechanism is

thought to occur in cardiac muscle [Campbell and Chandra, 2006, Stelzer et al., 2006]. Once a

myosin molecule binds strongly to actin, it locally deforms the tropomyosin filament and facilitates

the binding of nearby myosin (e.g. [Longyear et al., 2017, Craig and Lehman, 2001, McKillop and
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Geeves, 1993]). The longer myosin is strongly bound to actin, the greater this effect, so that under

conditions of low ATP (which extends myosin’s strong binding lifetime), thin filaments can be

activated at low calcium [Bremel and Weber, 1972, Kad et al., 2005]. If, as predicted by the model,

phase III of the force transient response arises from strongly bound myosin whose attachment

lifetime is prolonged due to the stretch imposed on the muscle fiber, this activation effect would

amplify the response and increase phase III. In other words, if thin-filament activation contributed to

phase III, then the model may be able to fit the data with a smaller force-dependence, which would

then be more consistent with the force-dependence needed to fit our force-velocity measurements.

It is therefore possible that the lack of this effect in the models is responsible for their inability to

simultaneously fit our force-velocity and force transient measurements.

To test this idea, we implemented our five-state cross-bridge model with a previously developed

model that includes thin-filament activation through local coupling of myosin molecules [Longyear

et al., 2017]. This model includes one key parameter, ε, that describes the rate at which a single

myosin molecule binds divided by the rate at which it binds in the absence of regulation. By

tuning this parameter, we can effectively change the amount of local coupling between neighboring
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myosin molecules. Intuitively, we expected that increasing the amount of thin-filament activation

(i.e. decreasing ε) should increase the magnitude of phase III.

Unlike the differential equation simulations presented thus far, we now use a Monte Carlo simu-

lation to implement both the activation model and our five-state cross-bridge model. In particular,

we use a modified Gillespie algorithm to iterate the system throughout time, keeping track of the

force produced by the myosin molecules as a function of time. We use the parameters from our

five-state model best-fit to the force transient assuming the presence of an unexplained force (as

in Fig. B.13a), and adjust the force result to account for the non-cross-bridge force. We find that,

even with an unreasonable amount of myosin coupling (ε = 0.1), the model gives nearly the same

result with and without thin-filament activation (Fig. B.16). Thus, we conclude that thin-filament

activation does not play a large enough role in the force transient response to solve the disparity

between fitting our two measurements.

B.8. Model with Force-Dependent Detachment of Weakly-Bound Cross-Bridges and

Series Elastic Element

To compare this model to our force transient measurements, we must numerically solve the

full PDE system (Eq. B.1), modified to include force-dependent unbinding from the weakly bound

state, of the form

k−w = k−w0e
Ewb|x|/d

where Ewb is a non-dimensional constant that determines the force-dependence of this state. The

non-dimensional parameter Ewb is comparable to the non-dimensional parameter E, which deter-

mines the force-dependence of ADP release. However, the sign of the x dependence for this rate

constant is different from the equivalent expression for kD, since a resisting force slows, and an as-

sisting load accelerates ADP release, while a resisting or assisting load accelerates the detachment

of weakly bound cross-bridges.

The velocity, v(t), in Eq. B.1 represents the velocity of actin relative to myosin. We model the

series elastic element as being in series with actin. Therefore, we keep track of actin’s position,
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xactin by solving the following equation

xactin(t) = xactin(0) +

∫ t

0
v(τ)dτ

Then, the series elastic element applies a force FSE = κSE(S + L0 − xactin), where S is the

stretch applied to the system, and L0 is the initial length of the series elastic element (such that

κSEL0 = Fiso). Since the spring is in series with the cross-bridges, we require that FSE = F , where

F is the force from the cross-bridges as defined by Eq. B.2.

We numerically solve these equations as described in section B.1.4.1 (i.e., we use the method

of characteristics, and our own RK4 solver), but we must do an additional root find to find the

v(t) at each time step that satisfies the equation FSE = F . We start from the initial condition

described in that section, though the calculation of isometric steady state is adjusted to reflect the

force-dependence of k−w .

To make the simulations more robust, we cutoff the value of k−w at 100, 000 s−1. That is, at

x values where k−w (x) > 100, 000, we set k−w (x) = 100, 000. Without this, the equations become

stiff and the numerical solution unreliable. With this cutoff, the simulations were faster and more

reliable. We ensured that this cutoff did not affect our simulations by doubling the cutoff (to

200, 000 s−1), and ensuring that our results did not change.

We used a wide grid in x, from −20 to 20 nm, with 20,000 evenly spaced points. We simulated

the model for 0.01 s, with 800 evenly spaced points. Increasing the number of points or the width

of the grid did not affect our results. Increasing the time of the simulations has only a minor affect

on our results and increases computational expense.

To compare this model to our force-velocity measurements, we follow the procedure described

in section B.1.3.1, modified to account for the force-dependence of k−w . The spring in series with

actin does not affect these steady-state measurements.

B.8.1. The fits to the data. The unknown parameters in the model are the unloaded ADP

release rate (k0
D), the unloaded weak-binding detachment rate (k−w0), the weak-binding attachment

rate (k+
w ), the stiffness of the series elastic element (κser), the force-dependence of the detachment

rate from the weakly-bound state (Ewb), and the force dependence of the detachment rate from the
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strongly-bound state (E). We performed fits to the data by minimizing the mean squared error

to our force transient (Et) and force-velocity (Ef ) measurements. The objective function that we

minimized was Et+ 10Ef . We weighted the error from the force-velocity measurements by a factor

of 10, because in preliminary simulations where we only fit the force transient or the force-velocity

measurements, the mean squared error of the best-fit to the force-velocity measurements was about

10 fold less than the mean squared error of the best-fit to the force transient measurements.

We fixed the parameters Ewb and E, which determine the force-dependence of unbinding from

the weakly- and strongly-bound states, respectively. We then used Matlab’s fminsearch function

to determine the values of the other four parameters (k0
D, k

−
w0, k

+
w , κser) that optimized the fit to

the data. We fixed Ewb and E at a several difference values (see Fig. 3.4D of the main text). We

did not include Ewb and E in the optimization because the reaction rates depend exponentially on

these values. Therefore, if these values are not constrained, the equations can become stiff and the

numerical solutions unreliable.

The optimization converged at each E,Ewb pair we considered. We ensured that it converged

by starting each optimization from a random seed, and ensuring that each optimum discovered by

the optimization was reached from at least two of these random seeds. The best-fit parameters, for

Ewb = 20 and E = 0.5, were k0
D = 1375s−1, k−w0 = 505.9s−1, k+

w − 143.3s−1 and κSE = 0.000732.
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Stéphanie Hody, Jean-Louis Croisier, Thierry Bury, Bernard Rogister, and Pierre Leprince. Eccen-

tric muscle contractions: risks and benefits. Frontiers in physiology, 10:536, 2019.

Earl Homsher, F Wang, and James R Sellers. Factors affecting movement of f-actin filaments

propelled by skeletal muscle heavy meromyosin. American Journal of Physiology-Cell Physiology,

262(3):C714–C723, 1992.

A.F. Huxley. Muscle structure and theories of contraction. Progress in Biophysics and Biophysical

Chemistry, 7, 1957.

AF Huxley and Sl Tideswell. Filament compliance and tension transients in muscle. Journal of

Muscle Research & Cell Motility, 17(4):507–511, 1996.

Andrew F Huxley and R Niedergerke. Structural changes in muscle during contraction: interference

microscopy of living muscle fibres. Nature, 173(4412):971–973, 1954.

Andrew F Huxley and Ro M Simmons. Proposed mechanism of force generation in striated muscle.

Nature, 233(5321):533–538, 1971.

Hugh Huxley and Jean Hanson. Changes in the cross-striations of muscle during contraction and

stretch and their structural interpretation. Nature, 173(4412):973–976, 1954.

Akihiko Ishijima, Yoshie Harada, Hiroaki Kojima, Takashi Funatsu, Hideo Higuchi, and Toshio

Yanagida. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem-

ical and biophysical research communications, 199(2):1057–1063, 1994.

Katelyn Jarvis, Mike Woodward, Edward P Debold, and Sam Walcott. Acidosis affects muscle

contraction by slowing the rates myosin attaches to and detaches from actin. Journal of muscle

research and cell motility, 39(3-4):135–147, 2018.

Katelyn J Jarvis, Kaylyn M Bell, Amy K Loya, Douglas M Swank, and Sam Walcott. Force-velocity

and tension transient measurements from drosophila jump muscle reveal the necessity of both

192



weakly-bound cross-bridges and series elasticity in models of muscle contraction. Archives of

Biochemistry and Biophysics, 701:108809, 2021.

Robert K Josephson, Jean G Malamud, and Darrell R Stokes. Asynchronous muscle: a primer.

Journal of Experimental Biology, 203(18):2713–2722, 2000.

GC Joyce, PMH Rack, and DR Westbury. The mechanical properties of cat soleus muscle during

controlled lengthening and shortening movements. The Journal of physiology, 204(2):461–474,

1969.

Neil M Kad, Scott Kim, David M Warshaw, Peter VanBuren, and Josh E Baker. Single-myosin

crossbridge interactions with actin filaments regulated by troponin-tropomyosin. Proceedings of

the National Academy of Sciences, 102(47):16990–16995, 2005.

Neil M Kad, Joseph B Patlak, Patricia M Fagnant, Kathleen M Trybus, and David M Warshaw.

Mutation of a conserved glycine in the sh1-sh2 helix affects the load-dependent kinetics of myosin.

Biophysical journal, 92(5):1623–1631, 2007.

Christina Karatzaferi, Kathleen Franks-Skiba, and Roger Cooke. Inhibition of shortening velocity of

skinned skeletal muscle fibers in conditions that mimic fatigue. American Journal of Physiology-

Regulatory, Integrative and Comparative Physiology, 294(3):R948–R955, 2008.

Christina Karatzaferi, Nancy Adamek, and Michael A Geeves. Modulators of actin-myosin dissocia-

tion: basis for muscle type functional differences during fatigue. American Journal of Physiology-

Cell Physiology, 313(6):C644–C654, 2017.

Bernhard Katz. The relation between force and speed in muscular contraction. The Journal of

Physiology, 96(1):45–64, 1939.

Masataka Kawai and Herbert R Halvorson. Force transients and minimum cross-bridge models in

muscular contraction. Journal of muscle research and cell motility, 28(7-8):371, 2007.

Motoshi Kaya and Hideo Higuchi. Nonlinear elasticity and an 8-nm working stroke of single myosin

molecules in myofilaments. Science, 329(5992):686–689, 2010.

Shannon T Knuth, H Dave, Jim R Peters, and RH Fitts. Low cell ph depresses peak power in

rat skeletal muscle fibres at both 30 c and 15 c: implications for muscle fatigue. The Journal of

physiology, 575(3):887–899, 2006.

193



Ryan A Koppes, Douglas M Swank, and David T Corr. A new experimental model for force

enhancement: steady-state and transient observations of the drosophila jump muscle. American

Journal of Physiology-Cell Physiology, 309(8):C551–C557, 2015.
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