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ABSTRACT OF THE DISSERTATION

Intrinsic harmonic analysis on manifolds with boundary, and Onsager’s conjecture

by

Manh Khang Huynh

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Terence Chi-Shen Tao, Chair

We use Hodge theory and functional analysis to develop a clean approach to heat flows and

intrinsic harmonic analysis on Riemannian manifolds with boundary. We also introduce heat-

able currents as the natural analogue to tempered distributions and justify their importance

in Hodge theory. As an application, we prove Onsager’s conjecture (energy conservation of

ideal fluids), where the weak solution lies in the trace-critical Besov space B
1
3
3,1.

In the second half of the thesis, by applying techniques from geometric microlocal analysis to

construct the Hodge-Neumann heat kernel, we obtain off-diagonal decay and local Bernstein

estimates, and then use them to extend the result to the Besov space B̂
1
3
3,V , which generalizes

both the space B̂
1/3
3,c(N) from [IO14] and the space B

1/3
3,VMO from [Bar+19b; NNT20] — the

best known function space where Onsager’s conjecture holds on flat backgrounds.
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CHAPTER 1

Introduction

1.1 History and motivation

It is a well-known fact that the methods of harmonic analysis can be profitably used to handle

dispersive PDEs (e.g. non-linear Schrodinger, nonlinear wave) and the fluid equations (e.g.

Navier-Stokes, Euler) (cf. [Tao13; Tao09; Tao06]). For fluid dynamics in particular, the

central problem of turbulence underlying the quest for global regularity of 3D Navier-Stokes,

can be characterized via harmonic analysis as the transfer of energy towards ever higher

frequencies.

In harmonic analysis, we often work on simple geometric settings such as Rn, Tn or locally

compact abelian groups, where we have the Fourier transform. But in applications, the

geometric settings are rarely so ideal, and there are challenging problems in fluid dynamics

which arise from the boundary or curvature in aerodynamic designs, atmospheric models,

etc. Consequently, it is profitable to understand how harmonic analysis techniques can work

in different geometric settings.

This turned out to be a very rich and diverse field, with various ideas and approaches.1

For instance, in [Str83], Strichartz introduced harmonic analysis (and the Riesz transform) in

the setting of complete Riemannian manifolds. Then in [KR06], Klainerman and Rodnianski

defined the L2-heat flow by the spectral theorem and used it to obtain the Littlewood-Paley

projection on compact 2-surfaces. In [IO14], Isett and Oh tackled Onsager’s conjecture on

1For scalar functions, much more is known due to the very precise estimates of scalar heat kernels. See,
for instance, [KVZ14; Duo90; CD03].
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Riemannian manifolds without boundary by using Strichartz’s heat flow. All these in turn

suggest there should be a workable theory of harmonic analysis for vector fields on a manifold

with boundary.

1.2 Hodge theory and functional analysis

There are three main characteristics in our setting: vector fields, curvature and boundary.2

By necessity, our theory of harmonic analysis will feature much more interplay between

analysis and geometry than usual.

An oversimplified description of harmonic analysis on Rn would be “the spectral theory

of the Laplacian” [Str89], where the heat kernel is the Gaussian function. It is only natural

then for us to look into Hodge theory, which studies the de Rham cohomology of a manifold

via the Laplacian. For an analyst, Hodge theory provides the key information regarding the

frequency zero (the kernel of the Laplacian), and how it interacts with the boundary. We

also can not forget to mention that the Helmholtz decomposition, originally discovered in a

hydrodynamic context, turned out to be a part of Hodge theory.

By assuming standard results such as elliptic regularity, and using tools from functional

analysis, the development of harmonic analysis in this thesis can be broken down into certain

key steps:

1. Defining the frequency zero as the kernel of the Hodge-Neumann Laplacian. By remov-

ing the frequency zero, we obtain the inverse Laplacian and the Poincaré inequality for

Sobolev spaces.

2. The heat flow generated by the Hodge-Neumann Laplacian is analytic on L2 (i.e. the

time variable t in et∆ can be analytically extended to z ∈ C where arg (z) is small). By

2There is a lot of literature out there dealing with heat kernels and harmonic analysis, but when filtered
by these three characteristics, there was very little one could cite, and for other technical reasons, it was
simpler to re-develop everything and modify them to suit the author’s own needs. During the process, the
author was able to simplify certain steps substantially and discover new results.
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the theory of sectorial operators, all we need for this is that the Laplacian is self-adjoint

and negative (trivial to show).

3. The L2-analyticity of the heat flow is extrapolated to Lp-analyticity for p ∈ (1,∞), by

a simplified version of Kato-Beurling extrapolation. This step is substantially simpler

than traditional developments of the heat flow, since it does not involve establishing

the resolvent estimate in Yosida’s half-plane criterion.3

4. The Lp-analyticity implies the W 1,p-analyticity of the heat flow via the Poincaré in-

equality, and some abstract tools from functional analysis such as Krein-Smulian and

the Vitali holomorphic convergence theorem.4

By a simple analogy P≤ 1√
t
f ≈ et∆f where P≤N is the Littlewood-Paley projection, the

analyticity of the heat flow on Lp and W 1,p implies the all-important Bernstein estimates in

harmonic analysis, as can be found in [Tao06, Appendix A]. As a bonus, the Hodge heat

flow also commutes with all the important operators in Hodge theory such as the exterior

derivative and the codifferential, so it will preserve the incompressibility of the fluid in the

Euler equation.

One attractive feature of the approach is that it does not require heat kernel estimates

or resolvent estimates, both of which can be highly non-trivial depending on the geometric

setting. Besides elliptic regularity (which can be shown in various ways, and is part of

standard Hodge theory), the approach is purely functional-analytic.

1.3 Heatable currents and a global approach to Onsager’s conjec-

ture

Recall the incompressible Euler equation in fluid dynamics:

3Either via “Agmon’s trick” [Agm62] as done in [Miy80] or manual estimates as in [BAE16].

4The author is not aware of whether this has ever been done for vector fields on manifolds with boundary.
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
∂tV +∇VV = − grad p in M

divV = 0 in M (incompressibility)

〈V , ν〉 = 0 on ∂M (impermeability)

(1.1)

where


(M, g) is an oriented, compact smooth Riemannian manifold with boundary

ν is the outwards unit normal vector field on ∂M .

I ⊂ R is an open interval, V : I → XM , p : I ×M → R.

Roughly speaking, Onsager’s conjecture says that the energy ‖V(t, ·)‖L2(M) is a.e. con-

stant in time when V is a weak solution whose regularity is at least 1
3
. Making that statement

precise is part of the challenge. This problem is interesting because the failure of energy con-

servation comes from the transfer of energy towards higher frequencies (eventually running

off to infinity), and learning how regularity can prevent this sort of energy cascade gives us

a better understanding of the problem of turbulence.

In the flat and boundaryless case, the “positive direction” (conservation when regularity

is at least 1
3
) has been known for a long time [Eyi94; CET94; Che+08]. The “negative

direction” (failure of energy conservation when regularity is less than 1
3
) is substantially

harder [DS14; DS13], and was finally settled by Isett in his seminal paper [Ise18a] for 3D

Euler on the torus (see the survey in [DS19] for more details and references). Since then, for

the positive direction, more attention has been directed towards the case with boundary on

flat backgrounds [BT18; DN18; BTW19; NN19; Bar+19b; Bar+19a]. The case of manifolds

without boundary was first handled via a heat-flow approach in [IO14].

Consequently, this thesis is an effort to extend the positive side of Onsager’s conjecture

to manifolds with boundary, hopefully recovering the best results from both the flat case

and the boundaryless case.

A conceptual problem now arises: how can we apply the heat flow to the convective term

∇VV , which is a distribution? As the heat flow does not preserve compact supports in the

interior of M , it is not defined on distributions.

4



If we recall harmonic analysis on Rn, the same problem appears when we try to apply the

Fourier transform to distributions. It is impossible, and we have to restrict to a subclass of

distributions called tempered distributions, which then becomes the general setting for har-

monic analysis, in which we can define different function spaces such as Sobolev spaces W s,p

(via the Bessel potential 〈∇〉s) and Besov spaces Bs
p,q, which are essentially the real interpo-

lation spaces between Sobolev spaces (thus allowing us to capture more subtle information

regarding regularity and integrability).

This inspired the author to define the notion of (Neumann) heatable currents in Part I:

• Let DNΩk := {ω ∈ Ωk : n∆mω = 0,nd∆mω = 0 ∀m ∈ N0} be the space of heated

k-forms with the Frechet C∞ topology. Here n denotes the normal part; ∆ is the

Hodge Laplacian, and d is the exterior derivative (like the gradient). In simpler words,

all Neumann conditions are satisfied.

• Let D ′NΩk :=
(
DNΩk

)∗
be the space of heatable k-currents with the weak* topology.

We could then show that this is the correct generalization of Schwartz functions and tempered

distributions.5 In particular, if w ∈ D ′NΩk then for any t > 0 : et∆w ∈ DNΩk. It can also

be showed that the associated Sobolev spaces, defined by the Hodge-Neumann Laplacian

within the space of heatable currents, have the same topology as the classical Sobolev spaces

(defined by partitions of unity and local coordinates).

With this theory of harmonic analysis based purely on functional analysis, and the def-

inition of heatable currents, the author was then able to prove Onsager’s conjecture in the

Besov space B
1/3
3,1 —the largest Besov space where the trace theorem applies. This is the main

goal of Part I. Here is the full technical statement:

Theorem 1 (Onsager’s conjecture, 1st version). Let M be a compact, oriented Riemannian

manifold with no or smooth boundary. Let P be the Leray projection, enforcing incompress-

5The author is not aware of whether vector-valued tempered distributions on manifolds with boundary
have ever been defined or used for PDEs.

5



ibility and impermeability (to be defined later). Let X = XM be the space of vector fields on

M .

Let V ∈ L3
tPB

1
3
3,1X be such that ∀X ∈ C∞c (I,PX) :

∫∫
I×M 〈V , ∂tX〉 + 〈V ⊗ V ,∇X〉 = 0

(Hodge-Leray weak solution).

Then we can show

∫
I

η′(t) 〈〈V(t),V(t)〉〉 dt = 0 ∀η ∈ C∞c (I)

Consequently, 〈〈V(t),V(t)〉〉 is constant for a.e. t ∈ I.

A very curious fact is that no “strip decay” condition involving the pressure p (which

is present in different forms for the results on flat spaces) seems to be necessary. This is

because our approach is global in nature, without any spatial cut-offs. The trade-off for this

improvement is that the Besov space B
1/3
3,1 is a bit smaller than the Besov spaces featured

in the best results on flat spaces (typically subspaces of B
1/3
3,∞,loc). Still, it is a unique result

that does not require assumptions on p, and more details can be found in [Huy19].

1.4 A local approach to Onsager’s conjecture

Following [Huy19], the natural question to ask is whether our theory of harmonic analysis can

also facilitate a local approach to Onsager’s conjecture, using spatial cut-offs and assuming a

“strip decay” condition involving the pressure p. Ideally, we want to recover the best results

on flat spaces, with B
1/3
3,VMO−spatial regularity, as in [Bar+19b; NNT20].6 We also want to

recover the space B̂
1/3
3,c(N) from [IO14] (the best result on manifolds without boundary).7 Is

there a possible generalization for both, on manifolds with boundary? The answer is yes

[Huy20], and detailed in Part II.

6B
1/3
3,VMO is a VMO-type subspace of L3 ∩B1/3

3,∞,loc and can be defined by local convolutions.

7B̂
1/3
3,c(N) is the closure of C∞c in the B

1/3
3,∞ topology.

6



In essence, the absolute Neumann heat flow, created via functional analysis, is a replace-

ment for the usual convolution on flat spaces, with special properties like commutativity with

divergence. However, obtaining a pointwise profile of heat kernels for differential forms (let

alone their derivatives) is a difficult problem, so it was hard to reconcile the global heat-flow

approach on manifolds with local-type convolution arguments as on flat backgrounds. Even

the definition of B
1
3
3,VMO itself is local, and it was not immediately obvious that the heat-flow

approach could handle such function spaces.

Construction of the Hodge-Neumann heat kernel

The solution to this is a manual construction of the Hodge-Neumann heat kernel, using

techniques from microlocal analysis and index theory (in particular, Melrose’s calculus on

manifolds with corners [Mel18; Mel92]). The theory mimics the development of pseudodiffer-

ential operators, in creating a filtered algebra that quantifies how “nonsingular” an operator

is as we approach the edges. In particular, much like the pseudolocality of ΨDOs, the con-

struction yields a precise description near the diagonal, as well as rapid decay away from the

diagonal. This enables the use of the heat flow as local convolution, and we obtain local

Bernstein estimates, which allow us to handle VMO-type function spaces.

The construction is arguably the most technical step of the thesis, and is adapted from

the work in [MV13].8 Initial attempts to stay within the space of smooth kernels would

fail due to the boundary. At the root of the problem was Brüning and Seeley’s Singular

Asymptotics Lemma [GG00; BS85], which warns that logarithmic singularities can develop

at the boundary, destroying the smoothness. One needs to step into the space of singular

kernels, and this is where Melrose’s calculus (dealing with singular functions on manifolds

with corners) comes into the picture. We can still construct a singular heat kernel, which

can then become smooth by functional-analytic arguments.

8The decision was made after discussions involving Daniel Grieser, András Vasy and Rafe Mazzeo. The
original plan was to follow the note [Gri04] which is more elementary, but we have decided to clean up the
note, modify some steps and publish it at a later date.
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1.4.0.1 Technical statement of the main result

For r > 0, we define M>r := {x ∈M : dist(x, ∂M) > r}. For p ∈ (1,∞), we say X ∈

Lpt B̂
1/p
p,VX (M) if X ∈ LptLpX (M) and ∀r > 0 :

(
1√
s

) 1
p ∥∥X − es∆X∥∥

LptL
p(M>r)

s→0−−→ 0.

L3
t B̂

1/3
3,V contains the space L3

t B̂
1/3
3,c(N) from [IO14] (with equality when there is no bound-

ary). While on flat backgrounds, L3
t B̂

1/3
3,V coincides with L3

tB
1/3
3,VMO from [Bar+19b; NNT20;

Wie20].

The replacement for the trace theorem is the following “strip decay” hypothesis near the

boundary:∥∥∥( |V|22
+ p
)
〈V , ν̃〉

∥∥∥
L1
tL

1
(
M[ r2 ,r]

,avg
) r↓0−−→ 0,

where


ν̃: the extension of ν near the boundary.

M[r/2,r] := {x ∈M : dist(x, ∂M) ∈ [r/2, r]}.

avg: the measure is normalized to become a probability measure.

Theorem 2. Let M be as in (1.1). Then ‖V(t, ·)‖L2(M) is a.e. constant in time if (V , p) is

a weak solution with V ∈ L3
tPL3X ∩ L3

t B̂
1
3
3,VX and the “strip decay” condition holds true.

1.5 General outline of the thesis

The global approach to Onsager’s conjecture, and the fundamental tools of intrinsic harmonic

analysis on manifolds with boundary, are contained in Part I, which is functionally identical

to [Huy19] (with necessary modifications for a thesis).

The local approach to Onsager’s conjecture (offering the best result in terms of regularity),

and the construction of the Neumann heat kernel by geometric microlocal analysis, are

contained in Part II, which is functionally identical to [Huy20] (with necessary modifications).
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Part I

Hodge-theoretic analysis on manifolds

with boundary, heatable currents, and

a global approach to Onsager’s

conjecture in fluid dynamics
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CHAPTER 2

Introduction

2.1 Onsager’s conjecture

Recall the incompressible Euler equation in fluid dynamics:


∂tV + div (V ⊗ V ) = − grad p in M

div V = 0 in M

〈V, ν〉 = 0 on ∂M

(2.1)

where


(M, g) is an oriented, compact smooth Riemannian manifold with smooth boundary

ν is the outwards unit normal vector field on ∂M .

I ⊂ R is an open interval, V : I → XM , p : I ×M → R.

Observe that the Neumann condition 〈V, ν〉 = 0 means V ∈ XN , where XN is the set

of vector fields on M which are tangent to the boundary. Note that when V is not smooth,

we need the trace theorem to define the condition (see Section 6.2).

Roughly speaking, Onsager’s conjecture says that the energy ‖V (t, ·)‖L2 is a.e. constant

in time when V is a weak solution whose regularity is at least 1
3
. Making that statement

precise is part of the challenge.

In the boundaryless case, the “positive direction” (conservation when regularity is at

least 1
3
) has been known for a long time [Eyi94; CET94; Che+08]. The “negative direction”

(failure of energy conservation when regularity is less than 1
3
) is substantially harder [DS13;

DS14], and was finally settled by Isett in his seminal paper [Ise18b] (see the survey in [DS19]

10



for more details and references).

Since then more attention has been directed towards the case with boundary, and its

effects in the generation of turbulence. In [BT18], the “positive direction” was proven in

the case M is a bounded domain in Rn and V ∈ L3
tC

0,αXN (α > 1
3
). The result was then

improved in various ways [DN18; Bar+19a; BTW19]. In [NN19], the conjecture was proven

for V in L3
tB

α
3,∞X (α > 1

3
) along with some “strip decay” conditions for V and p near the

boundary (more details in Section 4.2). Most recently, the conjecture was proven as part

of a more general conservation of entropy law in [Bar+19b], where M is a domain in Rn,

V ∈ L3
tB

1/3
3,VMOX (where B

1/3
3,VMOX is a VMO-type subspace of B

1/3
3,∞X), along with a “strip

decay” condition involving both V and p near the boundary (see Section 4.2).

Much less is known about the conjecture on general Riemannian manifolds. The key

arguments on flat spaces rely on the nice properties of convolution, such as div (T ∗ φε) =

div (T ) ∗ φε where T is a tensor field and φε
ε↓0−−→ δ0 is a mollifier, or that mollification is

essentially local. This “local approach” by convolution does not generalize well to Rieman-

nian manifolds. In [IO14] – the main inspiration for this thesis – Isett and Oh used the

heat flow to prove the conjecture on compact Riemannian manifolds without boundary, for

V ∈ L3
tB

1
3

3,c(N)X (where B
1
3

3,c(N)X is the B
1
3
3,∞-closure of compactly supported smooth vector

fields). The situation becomes more complicated when the boundary is involved. Most no-

tably, the covariant derivative behaves badly on the boundary (e.g. the second fundamental

form), and it is difficult to avoid boundary terms that come from integration by parts. Even

applying the heat flow to a distribution might no longer be well-defined. This requires a

finer understanding of analysis involving the boundary, as well as the properties of the heat

flow.

In this part of the thesis, we will see how we can resolve these issues, and that the

conjecture still holds true with the boundary:

Fact. Assuming M as in Equation (2.1), conservation of energy is true when (V, p) is a

weak solution with V ∈ L3
tB

1
3
3,1XN .

11



It is not a coincidence that this is also the lowest regularity where the trace theorem

holds. We also note a very curious fact that no “strip decay” condition involving p (which

is present in different forms for the results on flat spaces) seems to be necessary, and we

only need p ∈ L1
loc (I ×M) (see Section 4.3 for details). One way to explain this minor

improvement is that the “strip decay” condition involving V naturally originates from the

trace theorem (see Section 4.3), and is therefore included in the condition V ∈ L3
tB

1
3
3,1XN ,

while the presence of p is more of a technical artifact arising from localization (see [Bar+19b,

Section 4]), which typically does not respect the Leray projection. By using the trace theorem

and the heat flow, our approach becomes global in nature, and thus avoids the artifact.

Another approach is to formulate the conjecture in terms of Leray weak solutions like in

[RRS18], without mentioning p at all, and we justify how this is possible in Section 4.3.

A more local approach, where we assume V ∈ L3
tB

1
3

3,c(N)X as in [IO14], and the “strip

decay” condition as in [Bar+19b, Equation 4.9], is the topic of Part II. Nevertheless, B
1
3
3,1XN

is an interesting space with its own unique results, which keep the exposition simple and

allow the boundary condition to be natural.

2.2 Modularity

This part of the thesis is intended to be modular: the chapter dealing with Onsager’s conjec-

ture (Chapter 4) is relatively short, while the rest is to detail the tools for harmonic analysis

on manifolds we will need (and more). As we will summarize the tools in Chapter 4, they

can be read independently.

2.3 Motivation behind the approach

Riemannian manifolds (and their semi-Riemannian counterparts) are among the most impor-

tant natural settings for modern geometric PDEs and physics, where the objects for analysis

are often vector bundles and differential forms. The two fundamental tools for a harmonic
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analyst – mollification and Littlewood-Paley projection via the Fourier transform – do

not straightforwardly carry over to this setting, especially when the boundary is involved.

Even in the case of scalar functions on bounded domains in Rn, mollification arguments

often need to stay away from the boundary, which can present a problem when the trace

is nonzero. Consider, however, the idea of a special kind of Littlewood-Paley projection

which preserves the boundary conditions and commutes with important operators such as

divergence and the Leray projection, or using the principles of harmonic analysis without

translation invariance. It is one among a vast constellation of ideas which have steadily be-

come more popular over the years, with various approaches proposed (and we can not hope

to fully recount here).

For our discussion, the starting point of interest is perhaps [Str83], in which Strichartz

introduced to analysts what had long been known to geometers, the rich setting of complete

Riemannian manifolds, where harmonic analysis (and the Riesz transform in particular)

can be done via the Laplacian and the heat semigroup et∆, constructed by dissipative

operators and Yau’s lemma. Then in [KR06], Klainerman and Rodnianski defined the

L2-heat flow by the spectral theorem and used it to get the Littlewood-Paley projection

on compact 2-surfaces. In [IO14], Isett and Oh successfully tackled Onsager’s conjecture on

Riemannian manifolds without boundary by using Strichartz’s heat flow. These results hint

at the central importance of the heat flow for analysis on manifolds. But it is not enough to

settle the case with boundary, especially when derivatives are involved. Some pieces of the

puzzle are still missing.

To paraphrase James Arthur (in his introduction to the trace formula and the Langlands

program), there is an intimate link between geometric objects and “spectral” phenomena,

much like how the shape of a drum affects its sounds. For a Riemannian manifold, that

link is better known as the Laplacian – the generator of the heat flow – and Hodge the-

ory is the study of how the Laplacian governs the cohomology of a Riemannian manifold.

An oversimplified description of Fourier analysis on Rn would be “the spectral theory of
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the Laplacian” [Str89], where the heat kernel is the Gaussian function, invariant under the

Fourier transform and a possible choice of mollifier. Additionally, the Helmholtz decom-

position, originally discovered in a hydrodynamic context, turned out to be a part of Hodge

theory. It should therefore be no surprise that Hodge theory is the natural framework in

which we formulate harmonic analysis on manifolds, heat flows and Onsager’s conjecture.

Wherever there is the Laplacian, there is harmonic analysis. Historically, Milgram managed

to establish a subset of Hodge theory by heat flow methods [MR51]. Here, however, we will

establish Hodge theory by standard elliptic estimates, from which we develop analysis on

manifolds and construct the heat flow. Most notably, Hodge theory greatly simplifies some

crucial approximation steps involving the boundary (Corollary 72), and helps predict some

key results Onsager’s conjecture would require (Theorem 17, Section 8.4, Section 9.3). That

such leaps of faith turn out to be true only further underscore how well-made the conjecture

is in its anticipation of undiscovered mathematics.

For those familiar with the smoothing properties of Littlewood-Paley projection as well

as Bernstein inequalities [Tao06, Appendix A], the rough picture is that et∆ ≈ P≤ 1√
t
.

While the introduction of curvature necessitates the change of constants in estimates, and

the boundary requires its own considerations, it is remarkable how far we can go with this

analogy. Regarding the properties we will need for Onsager’s conjecture, there is a satisfying

explanation: the theory of sectorial operators in functional analysis. This, together with

Hodge theory, the theory of Besov spaces and interpolation theory, allows us to build a

basic foundation for global analysis on Riemannian manifolds in general, which will be more

than enough to handle Onsager’s conjecture.

Hodge theory and sectorial operators, in their various forms, have been used in fluid

dynamics for a long time by Fujita, Kato, Giga, Miyakawa et al. (cf. [FK64; Miy80; Gig81;

GM85; BAE16] and their references). Although we will not use them for this thesis, we

also ought to mention the results regarding bisectorial operators, H∞ functional calculus,

and Hodge theory on rough domains developed by Alan McIntosh, Marius Mitrea, Sylvie
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Monniaux et al. (cf. [McI86; DM96; FMM98; AM04; MM08; MM09a; MM09b; GMM10;

She12; MM18] and their references), which generalize many Hodge-theoretic results in this

thesis. Alternative formalizations of Littlewood-Paley theory also exist (cf. [HMY08; KP14;

FFP16; KW16; BBD18; Tan18] and their references). Here, we are mainly focused on

the analogy between the heat flow and the Littlewood-Paley projection on Lp spaces of

differential forms (over manifolds with boundary), as well as the interplay with Hodge theory.

Lastly, we also introduce heatable currents – the largest space on which the heat flow

can be profitably defined – as the analogue to tempered distributions on manifolds (Sec-

tion 8.4). In doing so, we will realize that the energy-conserving weak solution in Onsager’s

conjecture solves the Euler equation in the sense of heatable currents. This is an elegant

insight that helps show how interconnected these subjects are. For the sake of accessibility,

besides providing a gentle introduction to the theory with copious references, this thesis also

hopes to convince the reader of the naturality behind the formalism.

2.4 Blackboxes

Since we draw upon many areas, the thesis is intended to be as self-contained as possible, but

we will assume familiarity with basic elements of functional analysis, harmonic analysis and

complex analysis. Some familiarity with differential and Riemannian geometry is certainly

needed (cf. [Lee09; Cha06]), as well as Penrose notation (cf. [Wal84, Section 2.4]). In

addition, a number of blackbox theorems will be borrowed from the following sources:

1. For interpolation theory: Interpolation Spaces [BL76] and “Abstract Stein Interpola-

tion” [Voi92]

2. For harmonic analysis and elements of functional analysis:

• Singular Integrals and Differentiability Properties of Functions. (PMS-30) [Ste71]

• Partial Differential Equations I [Tay11a]
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• Recent Developments in the Navier-Stokes Problem (Chapman & Hall/CRC Re-

search Notes in Mathematics Series) [Lem02b]

3. For Besov spaces: Theory of Function Spaces ; Theory of Function Spaces II [Tri10;

Tri92]

4. For Hodge theory: Hodge Decomposition—A Method for Solving Boundary Value Prob-

lems [Sch95]

5. For semigroups and sectorial operators: One-Parameter Semigroups for Linear Evolu-

tion Equations [Eng00] and Vector-Valued Laplace Transforms and Cauchy Problems:

Second Edition (Monographs in Mathematics) [Are+11]

The first three categories should be familiar with harmonic analysts.

2.5 For the specialists

Some noteworthy characteristics of our approach:

• An alternative development of the (absolute Neumann) heat flow. In particular, the

extrapolation of analyticity to Lp spaces does not involve establishing the resolvent

estimate in Yosida’s half-plane criterion (Theorem 41), either via “Agmon’s trick”

[Agm62] as done in [Miy80] or manual estimates as in [BAE16]. Instead, by abstract

Stein interpolation, we only need the local boundedness of the heat flow on Lp, which

can follow cleanly from Gronwall and integration by parts (Theorem 73). In short,

functional analysis does the heavy lifting. We also managed to attain W 1,p-analyticity

assuming the Neumann condition (Section 8.3), and B
1
p

p,1-analyticity via the Leray

projection (Section 9.3).

• We do not focus on the Stokes operator in this thesis, but our results (Section 8.3,

Section 9.3) do contain the case of the Stokes operator corresponding to the “Navier-

type” / “free” boundary condition, as discussed in [Miy80; Gig82; MM09a; MM09b;
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BAE16] and others. This should not be confused with the Stokes operator correspond-

ing to the “no-slip” boundary condition, as discussed in [FK64; GM85; MM08] and

others. See [HS18] for more references.

• For simplicity, we stay within the smooth and compact setting, which, as Hilbert

would say, is that special case containing all the germs of generality. An effort has also

been made to keep the material concrete (as opposed to, for instance, using Hilbert

complexes).

• Heatable currents are introduced as the analogue to tempered distributions, and we

show how they naturally appear in the characterization of the adjoints of d and δ

(Section 8.4).

• A refinement of a special case of the fractional Leibniz rule, with the supports of

functions taken into account, is given in Theorem 56.

• For the proof of Onsager’s conjecture, there are some subtle, but substantial differences

with [IO14]:

– In [IO14], Besov spaces are defined by the heat flow, and compatibility with the

usual scalar Besov spaces is proven when M is Rn or Tn. Here we will use the

standard scalar Besov spaces as defined by Triebel in [Tri10; Tri92], and prove

the appropriate estimates for the heat flow by interpolation.

– The heat flow used by Isett & Oh (constructed by Strichartz using dissipative

operators) is generated by the Hodge Laplacian, which is self-adjoint in the

no-boundary case. In the case with boundary, there are four different self-adjoint

versions for the Hodge Laplacian (see Theorem 63), and we choose the absolute

Neumann version. There are also heat flows generated by the connection

Laplacian, but we do not use them in this thesis since the connection Laplacian

does not commute with the exterior derivative and the Leray projection etc.

The theory of dissipative operators is also not sufficient to establish Lp-analyticity
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and W 1,p-analyticity for all p ∈ (1,∞), so we instead use the theory of sectorial

operators, which is made for this purpose.

– The commutator we will use is a bit different from that in [IO14]. This will help

us eliminate some boundary terms. We will also avoid the explicit formula and

computations in [IO14, Lemma 4.4], as they also lead to various boundary terms.

Generally speaking, the covariant derivative behaves badly on the boundary.

• A calculation of the pressure by negative-order Hodge-Sobolev spaces (Section 9.2).

• More results will be proven for analysis on manifolds than needed for Onsager’s con-

jecture, as they are of independent interest. For the sake of accessibility, we will also

review most of the relevant background material, with the assumption that the reader

is a harmonic analyst who knows some differential geometry.

It is hard to overstate our indebtedness to all the mathematicians whose work our theory

will build upon, from harmonic analysis to Hodge theory and sectorial operators, and yet

hopefully each will be able to find within this thesis something new and interesting.
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CHAPTER 3

Common notation

It might not be an exaggeration to say the main difficulty in reading a manuscript dealing

with Hodge theory is understanding the notation, and an effort has been made to keep our

notation as standard and self-explanatory as possible.

Some common notation we use:

• A .x,¬y B means A ≤ CB where C > 0 depends on x and not y. Similarly, A ∼x,¬y B

means A .x,¬y B and B .x,¬y A. When the dependencies are obvious by context, we

do not need to make them explicit.

• N0,N1 : the set of natural numbers, starting with 0 and 1 respectively.

• DCT: dominated convergence theorem, FTC: fundamental theorem of calculus, PTAS:

passing to a subsequence, WLOG: without loss of generality.

• TVS: topological vector space, NVS: normed vector space, SOT: strong operator topol-

ogy.

• For TVS X, Y ≤ X means Y is a subspace of X.

• L(X, Y ) : the space of continuous linear maps from TVS X to Y . Also L(X) =

L(X,X).

• C0(S → Y ): the space of bounded, continuous functions from metric space S to normed

vector space Y . Not to be confused with C0
loc(S → Y ), which is the space of locally

bounded, continuous functions.
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• ‖x‖D(A) = ‖x‖X + ‖Ax‖X and ‖x‖∗D(A) = ‖Ax‖X where A is an unbounded operator

on (real/complex) Banach space X and x ∈ D(A). Note that ‖·‖∗D(A) is not always a

norm. Also define D(A∞) = ∩k∈N1D(Ak).

• For δ ∈ (0, π], define the open sector Σ+
δ = {z ∈ C\{0} : | arg z| < δ}, Σ−δ = −Σ+

δ ,

D = {z ∈ C : |z| < 1}. Also define Σ+
0 = (0,∞) and Σ−0 = −Σ+

0 .

• B(x, r): the open ball of radius r centered at x in a metric space.

• S(Rn): the space of Schwartz functions on Rn, S(Ω): restrictions of Schwartz functions

to the domain Ω ⊂ Rn.

There is also a list of other symbols we will use at the end of Part I.
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CHAPTER 4

Onsager’s conjecture

4.1 Summary of preliminaries

At the cost of some slight duplication of exposition, we will quickly summarize the key tools

we need for the proof, and leave the development of such tools for the rest of the Part I.

Alternatively, the reader can read the theory first and come back to this section later.

Definition 3. For the rest of Part I, unless otherwise stated, let M be a compact, smooth,

Riemannian n-dimensional manifold, with no or smooth boundary. We also let I ⊂ R be an

open time interval. We write M<r = {x ∈ M : dist(x, ∂M) < r} for r > 0 small. Similarly

define M≥r,M<r,M[r1,r2] etc. Let
◦
M denote the interior of M .

By musical isomorphism, we can consider XM (the space of smooth vector fields)

mostly the same as Ω1(M) (the space of smooth 1-forms), mutatis mutandis. We note that

XM , X (∂M) and XM
∣∣
∂M

are different. Unless otherwise stated, let the implicit domain be

M , so X stands for XM , and similarly Ωk for ΩkM . For X ∈ X, we write X[ as its dual

1-form. For ω ∈ Ω1, we write ω] as its dual vector field.

Let X00 (M) denote the set of smooth vector fields of compact support in
◦
M . Define

Ωk
00 (M) similarly (smooth differential forms with compact support in

◦
M).

Let ν denote the outwards unit normal vector field on ∂M . ν can be extended via

geodesics to a smooth vector field ν̃ which is of unit length near the boundary (and cut off

at some point away from the boundary).

For X ∈ XM, define nX = 〈X, ν〉 ν ∈ XM |∂M (the normal part) and tX = X|∂M−nX
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(the tangential part). We note that tX and nX only depend on X
∣∣
∂M

, so t and n can be

defined on XM
∣∣
∂M

, and t (XM |∂M) ∼−→ X(∂M).

For ω ∈ Ωk (M) , define tω and nω by

tω(X1, ..., Xk) := ω(tX1, ..., tXk) ∀Xj ∈ XM, j = 1, ..., k

and nω = ω|∂M − tω. Note that (nX)[ = nX[ ∀X ∈ X.

Let ∇ denote the Levi-Civita connection, d the exterior derivative, δ the codif-

ferential, and ∆ = − (dδ + δd) the Hodge-Laplacian, which is defined on vector fields by

the musical isomorphism.

Familiar scalar function spaces such as Lp,Wm,p (Lebesgue-Sobolev spaces), Bs
p,q

(Besov spaces), C0,α (Holder spaces) (see Chapter 6 for precise definitions) can be defined

on M by partitions of unity and given a unique topology (Section 6.2, Subsection 7.1.2).

Similarly, we define such function spaces for tensor fields and differential forms on M

by partitions of unity and local coordinates (see subsection 7.1). For instance, we can define

L2X or B
1
3
3,1X.

Fact 4. ∀α ∈
(

1
3
, 1
)
,∀p ∈ (1,∞) : W 1,pX ↪→ B

1
p

p,1X ↪→LpX and C0,αX = Bα
∞,∞X ↪→

Bα
3,∞X ↪→ B

1
3
3,1X (cf. Section 6.2, Section 6.4)

Definition 5. We write 〈·, ·〉 to denote the Riemannian fiber metric for tensor fields on

M . We also define the dot product

〈〈σ, θ〉〉 =

∫
M

〈σ, θ〉 vol

where σ and θ are tensor fields of the same type, while vol is the Riemannian volume

form. When there is no possible confusion, we will omit writing vol.

We define XN = {X ∈ X : nX = 0 } (Neumann condition). Similarly, we can define

Ωk
N . In order to define the Neumann condition for less regular vector fields (and differential
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forms), we need to use the trace theorem.

Fact 6. (Section 6.2, Subsection 7.1.2) Let p ∈ [1,∞). Then

• B
1
p

p,1 (M)� Lp (∂M) and B
1
p

p,1XM � LpXM
∣∣
∂M

are continuous surjections.

• ∀m ∈ N1 : B
m+ 1

p

p,1 XM � Bm
p,1XM

∣∣
∂M

↪→ Wm,pXM
∣∣
∂M

is continuous.

Also closely related is the coarea formula:

Fact 7. (Theorem 55) Let p ∈ [1,∞), r > 0 be small and f be in B
1
p

p,1(M):

1.
(

[0, r)→ R, ρ 7→ ‖f‖Lp(∂M>ρ)

)
is continuous and bounded by C ‖f‖

B
1
p
p,1

for some C > 0.

2. |M<r| ∼M,¬r |∂M | r and ‖f‖Lp(M≤r)
∼¬r

∥∥∥‖f‖Lp(∂M>ρ)

∥∥∥
Lpρ((0,r))

.

3. ‖f‖Lp(M≤r,avg) .¬r ‖f‖
B

1
p
p,1(M)

and ‖f‖Lp(M≤r,avg)

r↓0−−→ ‖f‖Lp(∂M,avg), where avg means

normalizing the measure to make it a probability measure.

4. Let f ∈ Lp(I → B
1
p

p,1(M)), then ‖f‖
LptB

1
p
p,1(M)

&¬r ‖f‖LptLp(M≤r,avg)

r↓0−−→ ‖f‖LptLp(∂M,avg).

Analogous results hold if f ∈ B
1
p

p,1X. (Subsection 7.1.2)

Therefore, we can define spaces such as B
1
3
3,1XN = {X ∈ B

1
3
3,1X : nX = 0 } and W 1,3XN .

However, something like L2XN would not make sense since the trace map does not continu-

ously extend to L2X.

Definition 8. We define P as the Leray projection (constructed in Theorem 70), which

projects X onto Ker
(

div
∣∣
XN

)
. Note that the Neumann condition is enforced by P.

Fact 9. ∀m ∈ N0,∀p ∈ (1,∞), P is continuous on Wm,pX and P (Wm,pX) = Wm,p-cl
(

Ker
(

div
∣∣
XN

))
(closure in the Wm,p-topology). (Section 7.4)

We collect some results regarding our heat flow in one place:
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Fact 10 (Absolute Neumann heat flow). There exists a semigroup of operators (S(t))t≥0

acting on ∪p∈(1,∞)L
pX such that

1. S (t1)S (t2) = S (t1 + t2) ∀t1, t2 ≥ 0 and S (0) = 1.

2. (Section 8.2) ∀p ∈ (1,∞) , ∀X ∈ LpX :

(a) S(t)X ∈ XN and ∂t (S(t)X) = ∆S(t)X ∀t > 0.

(b) S(t)X
C∞−−−→
t→t0

S (t0)X ∀t0 > 0.

(c) ‖S(t)X‖Wm,p .m,p
(

1
t

)m
2 ‖X‖Lp ∀m ∈ N0,∀t ∈ (0, 1).

(d) S(t)X
Lp−−→
t→0

X.

3. (Section 8.3) ∀p ∈ (1,∞) , ∀X ∈ W 1,pXN :

(a) ‖S(t)X‖Wm+1,p .m,p
(

1
t

)m
2 ‖X‖W 1,p ∀m ∈ N0,∀t ∈ (0, 1).

(b) S(t)X
W 1,p

−−−→
t→0

X.

4. (Theorem 78) S (t)P = PS (t) on Wm,pX ∀m ∈ N0,∀p ∈ (1,∞) , ∀t ≥ 0.

5. (Section 8.2) 〈〈S(t)X, Y 〉〉 = 〈〈X,S(t)Y 〉〉 ∀t ≥ 0,∀p ∈ (1,∞) ,∀X ∈ LpX, ∀Y ∈ Lp′X.

These estimates precisely fit the analogy et∆ ≈ P≤ 1√
t

where P is the Littlewood-Paley

projection. We also stress that the heat flow preserves the space of tangential, divergence-

free vector fields (the range of P), and is intrinsic (with no dependence on choices of local

coordinates).

Analogous results hold for scalar functions and differential forms (Chapter 8). We also

have commutativity with the exterior derivative and codifferential in the case of differential

forms (Theorem 75). Loosely speaking, this allows the heat flow to preserve the overall

Hodge structure on the manifold. All these properties would not be possible under standard

mollification via partitions of unity.

Note that for X ∈ X, X ⊗ X is not dual to a differential form. As our heat flow is

generated by the Hodge Laplacian, it is less useful in mollifying general tensor fields (for
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which the connection Laplacian is better suited). Fortunately, we will never actually have

to do so in this thesis.

We observe some basic identities (cf. Theorem 60):

• Using Penrose abstract index notation (see Section 7.2), for any smooth tensors

Ta1...ak , we define (∇T )ia1...ak
= ∇iTa1...ak and div T = ∇iTia2...ak .

• For all smooth tensors Ta1...ak and Qa1...ak+1
:

∫
M

∇i

(
Ta1...akQ

ia1...ak
)

=

∫
M

∇iTa1...akQ
ia1...ak+

∫
M

Ta1...ak∇iQ
ia1...ak =

∫
∂M

νiTa1...akQ
ia1...ak

• For X ∈ XN , Y ∈ X, f ∈ C∞(M) :

1.
∫
M
Xf =

∫
M

div (fX)−
∫
M
fdiv (X) =

∫
∂M
〈fX, ν〉 −

∫
M
fdivX = −

∫
M
fdivX

2.
∫
M
〈div(X ⊗X), Y 〉 = −

∫
M
〈X ⊗X,∇Y 〉

• (∇a∇b −∇b∇a)T
ij
kl = −Rabσ

iT σjkl − Rabσ
jT iσkl + Rabk

σT ijσl + Rabl
σT ijkσ for any

tensor T ijkl, where R is the Riemann curvature tensor. Similar identities hold for

other types of tensors. When we do not care about the exact indices and how they

contract, we can just write the schematic identity (∇a∇b −∇b∇a)T
ij
kl = R ∗T. As

R is bounded on compact M , interchanging derivatives is a zeroth-order operation on

M . In particular, we have the Weitzenbock formula:

∆X = ∇i∇iX +R ∗X ∀X ∈ XM (4.1)

• For X ∈ PL2X, Y ∈ X, Z ∈ X, f ∈ C∞ (M) :

1.
∫
M
Xf = 0

2.
∫
M
〈∇XY, Z〉 = −

∫
M
〈Y,∇XZ〉 .

There is an elementary lemma which is useful for convergence (the proof is straightforward

and omitted):
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Lemma 11 (Dense convergence). Let X, Y be (real/complex) Banach spaces and X0 ≤ X

be norm-dense. Let (Tj)j∈N be bounded in L(X, Y ) and T ∈ L(X, Y ).

If Tjx0 → Tx0 ∀x0 ∈ X0 then Tjx→ Tx ∀x ∈ X.

Definition 12 (Heatable currents). As the heat flow does not preserve compact supports in
◦
M , it is not defined on distributions. This inspires the formulation of heatable currents.

Define:

• DΩk = Ωk
00 = colim{

(
Ωk

00 (K) , C∞ topo
)

: K ⊂
◦
M compact} as the space of test

k-forms with Schwartz’s topology1 (colimit in the category of locally convex TVS).

• D ′Ωk =
(
DΩk

)∗
as the space of k-currents (or distributional k-forms), equipped

with the weak* topology.

• DNΩk = {ω ∈ Ωk : n∆mω = 0,nd∆mω = 0 ∀m ∈ N0} as the space of heated k-

forms with the Frechet C∞ topology and D ′NΩk =
(
DNΩk

)∗
as the space of heatable

k-currents (or heatable distributional k-forms) with the weak* topology.

• Spacetime test forms: D
(
I,Ωk

)
= C∞c

(
I,Ωk

00

)
= colim{

(
C∞c

(
I1,Ω

k
00(K)

)
, C∞ topo

)
:

I1×K ⊂ I ×
◦
M compact} and DN

(
I,Ωk

)
= colim{

(
C∞c

(
I1,DNΩk

)
, C∞ topo

)
: I1 ⊂

I compact}.

• Spacetime distributions D ′
(
I,Ωk

)
= D

(
I,Ωk

)∗
, D ′N

(
I,Ωk

)
= DN

(
I,Ωk

)∗
.

In particular, DNX is defined from DNΩ1 by the musical isomorphism, and it is invariant

under our heat flow (much like how the space of Schwartz functions S(Rn) is invariant

under the Littlewood-Paley projection). By that analogy, heatable currents are tempered

distributions on manifolds, and we can write

〈〈S(t)Λ, X〉〉 = 〈〈Λ, S (t)X〉〉 ∀Λ ∈ D ′NX, ∀X ∈ DNX,∀t ≥ 0

1Confusingly enough, “Schwartz’s topology” refers to the topology on the space of distributions, not the
topology for Schwartz functions.
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where the dot product 〈〈·, ·〉〉 is simply abuse of notation.

Fact 13. Some basic properties of DNX and D ′NX:

• 〈〈∆X, Y 〉〉 = 〈〈X,∆Y 〉〉 ∀X, Y ∈ DNX. (Theorem 60)

• S(t)Λ ∈ DNX ∀t > 0,∀Λ ∈ D ′NX. (Section 8.4, a heatable current becomes heated once

the heat flow is applied)

• X00 ⊂ DNX and is dense in LpX ∀p ∈ [1,∞). Also, LpX ↪→ D ′NX is continuous

∀p ∈ [1,∞].

• PB
1
3
3,1X = PB

1
3
3,1XN , PW 1,pX = PW 1,pXN and PDNX ≤ DNX. (Section 7.4)

• W 1,p-cl (DNX) = W 1,pXN ∀p ∈ (1,∞) (Section 8.3), B
1
3
3,1-cl (PDNX) = PB

1
3
3,1XN (Sec-

tion 9.3)

• ∀X ∈ DNX : S(t)X
C∞−−→
t↓0

X and ∂t (S(t)X) = ∆S(t)X = S(t)∆X ∀t ≥ 0. (Theo-

rem 34, Section 8.2)

• (Section 8.2, Section 9.3) ∀t ∈ (0, 1), ∀m,m′ ∈ N0,∀p ∈ (1,∞), ∀X ∈ DNX :

1. ‖S(t)X‖Wm+m′,p .
(

1
t

)m′
2 ‖X‖Wm,p.

2. ‖S(t)X‖
B
m+m′+ 1

p
p,1

.
(

1
t

) 1
2p

+m′
2 ‖X‖Wm,p.

3. t
1
2(m− 1

p) ‖S(t)X‖Wm,p + ‖S(t)X‖
B

1
p
p,1

. ‖X‖
B

1
p
p,1

when m ≥ 1 and X ∈ PDNX.

By dense convergence (Lemma 11), this means S(t)X
B

1
3
3,1−−→
t↓0

X ∀X ∈ PB
1
3
3,1XN .

Corollary 14 (Vanishing). ∀X ∈ PB
1
3
3,1XN : s

1
3 ‖S(s)X‖W 1,3

s↓0−−→ 0.

Remark. So, for U ∈ L3
tPB

1
3
3,1XN : ‖U(t)‖

L3
tB

1
3
3,1

&

∥∥∥∥∥∥∥σ 1
3 ‖S(σ)U(t)‖W 1,3

∥∥∥
L∞σ ([0,s])

∥∥∥∥
L3
t

s↓0−−−→
DCT

0.

This pointwise vanishing property becomes important for the commutator estimate in On-

sager’s conjecture at the critical regularity level 1
3
, while higher regularity levels have enough

room for vanishing in norm (which is better).
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Proof. For Y ∈ PDNX, as s > 0 small: s
1
3 ‖S(s)Y ‖W 1,3 . s

1
3 ‖Y ‖W 1,3

s↓0−−→ 0. Then

note s
1
3 ‖S(s)X‖W 1,3 . ‖X‖

B
1
3
3,1

∀X ∈ PB
1
3
3,1XN , so we can apply dense convergence

(Lemma 11).

4.2 Searching for the proper formulation

Onsager’s conjecture states that energy is conserved when V has enough regularity, with

appropriate conditions near the boundary. But making this statement precise is half of the

challenge.

Definition 15. We say (V , p) is a weak solution to the Euler equation when

• V ∈ L2
loc (I,PL2X), p ∈ L1

loc(I ×M)

• ∀X ∈ C∞c (I,X00) :
∫∫

I×M 〈V , ∂tX〉+ 〈V ⊗ V ,∇X〉+ p divX = 0.

The last condition means ∂tV + div(V ⊗V) + grad p = 0 as spacetime distributions. Note

that V ⊗ V ∈ L1
loc (I, L1X) so it is a distribution.

The keen reader should notice we use a different font for time-dependent vector fields.

There is not enough time-regularity for FTC, and we cannot say

〈〈V (t1) , X〉〉 − 〈〈V (t0) , X〉〉 =

∫ t1

t0

〈〈V ⊗ V ,∇X〉〉+

∫ t1

t0

∫
M

p divX ∀X ∈ X00

But we can still use approximation to the identity (in the time variable) near t0,t1, as

well as Lebesgue differentiation to get something similar for a.e. t0, t1. By using dense

convergence (Lemma 11) and modifying I into I0 ⊂ I such that |I\I0| = 0, we can say

V ∈ C0
loc (I0, (L

2X,weak)) ≤ L∞loc (I, L2X) .

We do not have V ∈ C0
loc (I, L2X), so energy conservation only means ∂t

(
‖V(t)‖2

L2X

)
= 0
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as a distribution. In other words, the goal is to show

∫
I

η′(t) 〈〈V(t),V(t)〉〉 dt = 0 ∀η ∈ C∞c (I)

Next, having the test vector field X ∈ C∞c (I,X00) can be quite restrictive, since the heat

flow (much like the Littlewood-Paley projection) does not preserve compact supports in
◦
M .

We need a notion that is more in tune with our theory.

Definition 16. We say (V , p) is a Hodge weak solution to the Euler equation when

V ∈ L2
loc (I,PL2X), p ∈ L1

loc(I ×M) and

∀X ∈ C∞c (I,XN) :

∫∫
I×M
〈V , ∂tX〉+ 〈V ⊗ V ,∇X〉+ p divX = 0

Now this looks better, since XN is invariant under the heat flow. However, this is a leap of

faith we will need to justify later (cf. Section 4.3).

As PX ≤ XN , we can go further and say V is a Hodge-Leray weak solution to the

Euler equation when V ∈ L2
loc (I,PL2X) and

∀X ∈ C∞c (I,PX) :

∫∫
I×M
〈V , ∂tX〉+ 〈V ⊗ V ,∇X〉 = 0

This would help give a formulation of Onsager’s conjecture that does not depend on the

pressure, similar to [RRS18].

Next, we look at the conditions for V and p near ∂M . In [BT18], they assumed V ∈

L3
tC

0,αXN with α ∈
(

1
3
, 1
)
. In [NN19], they assumed V ∈ L3

tB
α
3,∞X (α ∈

(
1
3
, 1
)
) with a more

general “strip decay” condition:

• ‖V‖2
L3
tL

3(M<r,avg) ‖〈V , ν̃〉‖L3
tL

3(M<r,avg)

r↓0−−→ 0

• ‖p‖
L

3
2
t L

3
2 (M<r,avg)

‖〈V , ν̃〉‖L3
tL

3(M<r,avg)

r↓0−−→ 0.
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In [Bar+19b] (the most recent result), they assumed V ∈ L3
tB

1/3
3,VMOX (see the paper for the

full definition), along with a minor relaxation for the “strip decay” condition:

∥∥∥∥∥
(
|V|2

2
+ p

)
〈V , ν̃〉

∥∥∥∥∥
L1
tL

1
(
M[ r4 ,

r
2 ],avg

) r↓0−−→ 0

When V ∈ L3
tB

1
3
3,1X, ‖〈V , ν̃〉‖L3

tL
3(M<r,avg)

r↓0−−→ ‖〈V , ν〉‖L3
tL

3(∂M,avg) by Fact 7. This moti-

vates our formulation later in Section 4.5, where we put V ∈ L3
tPB

1
3
3,1XN .

4.3 Justification of formulation

We define the cutoffs

ψr(x) = Ψr (dist (x, ∂M)) (4.2)

where r > 0 small, Ψr ∈ C∞([0,∞), [0,∞)) such that 1[0, 3
4
r) ≥ Ψr ≥ 1[0, r

2
] and ‖Ψ′r‖∞ .

1
r
.

Then ∇ψr(x) = fr(x)ν̃(x) where |fr(x)| . 1
r

and suppψr ⊂M<r.

Let (V , p) be a weak solution to the Euler equation and α ∈ (1
3
, 1). Define different

conditions:

1. V ∈ L3
tC

0,αXN .

2. V ∈ L3
tB

α
3,∞X and ‖V‖2

L3
tL

3(M<r,avg) ‖〈V , ν̃〉‖L3
tL

3(M<r,avg)

r↓0−−→ 0.

3. V ∈ L3
tB

1
3
3,1XN .

4. (V , p) is a Hodge weak solution.

5. V is a Hodge-Leray weak solution.

Theorem 17. We have (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5).

30



Proof. By Fact 4, C0,αXN = Bα
∞,∞XN ↪→ Bα

3,∞XN ↪→ B
1
3
3,1XN . Then by the coarea

formula,

‖〈V , ν̃〉‖3
L3
tL

3(M<r,avg) . ‖V‖
2
L3
tL

3(M<r,avg) ‖〈V , ν̃〉‖L3
tL

3(M<r,avg)

. ‖V‖2

L3
tB

1
3
3,1X
‖〈V , ν̃〉‖L3

tL
3(M<r,avg)

So for V ∈ L3
tB

1
3
3,1X:

‖V‖2
L3
tL

3(M<r,avg) ‖〈V , ν̃〉‖L3
tL

3(M<r,avg)

r↓0−−→ 0 ⇐⇒ ‖〈V , ν〉‖L3
tL

3(∂M) = 0

⇐⇒ nV = 0

As (4) =⇒ (5) is obvious, the only thing left is to show (3) =⇒ (4). Recall the

cutoffs ψr from Equation (4.2).

Let I1 ⊂ I be bounded and X ∈ C∞c (I1,XN), then (1− ψr)X ∈ C∞c (I,X00), and

so by the definition of weak solution:

0 =

∫∫
I×M

(1− ψr) 〈V , ∂tX〉+ 〈V ,∇V ((1− ψr)X )〉+ p div ((1− ψr)X )

=

∫∫
I×M

(1− ψr) (〈V , ∂tX〉+ 〈V ,∇VX〉+ p divX )

−
∫∫

I×M
(〈V ,∇ψr〉 〈V ,X〉+ p 〈X ,∇ψr〉)

We are done if the first term goes to zero as r ↓ 0 . So we only need to show the

second term goes to zero. Since ∇ψr = frν̃ and suppψr ⊂ M<r, we only need to

bound

∣∣∣∣∫∫
I1×M<r

fr 〈V , ν̃〉 〈V ,X〉+ pfr 〈X , ν̃〉
∣∣∣∣

.
1

r
‖V‖L3

tL
3(M<r)

‖〈V , ν̃〉‖L3
tL

3(M<r)
‖X‖L3

tL
3(M<r)
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+
1

r
‖p‖L1(I1×M<r)

‖〈X , ν̃〉‖L∞t L∞(M<r)

. ‖V‖L3
tL

3(M<r,avg) ‖〈V , ν̃〉‖L3
tL

3(M<r,avg) ‖X‖L3
tL

3(M<r,avg)

+ ‖p‖L1(I1×M<r)
‖〈X , ν̃〉‖L∞t C0,1(M<r)

. ‖V‖
L3
tB

1
3
3,1X
‖〈V , ν̃〉‖L3

tL
3(M<r,avg) ‖X‖

L3
tB

1
3
3,1X

+ ‖p‖L1(I1×M<r)
‖〈X , ν̃〉‖L∞t C0,1(M<r)

r↓0−−→ 0

We used the estimate ‖〈X , ν̃〉‖L∞(M<r)
. r ‖〈X , ν̃〉‖C0,1(M<r)

since 〈X , ν〉 = 0 on

∂M .

Remark. Interestingly, as Section 4.5 will show, no “strip decay” condition involving p seems

to be necessary. See the end of Section 2.1 for a discussion of this minor improvement.

We briefly note that when ∂M = ∅, it is customary to set dist (x, ∂M) =∞, and ψr = 0,

M>r = M =
◦
M , M<r = ∅, and DNXM = DXM = XM .

4.4 Heating the nonlinear term

Let U, V ∈ B
1
3
3,1X. Then U⊗V ∈ L1X and div (U ⊗ V ) is defined as a distribution. To apply

the heat flow to div (U ⊗ V ), we need to define (div (U ⊗ V ))[ so that it is heatable.

Recall integration by parts:

〈〈div (Y ⊗ Z) , X〉〉 = −〈〈Y ⊗ Z,∇X〉〉+

∫
∂M

〈ν, Y 〉 〈Z,X〉 ∀X, Y, Z ∈ X (M)

Observe that for X ∈ X, even though 〈〈div (U ⊗ V ) , X〉〉 is not defined,
∫
∂M
〈ν, U〉 〈V,X〉 −

〈〈U ⊗ V,∇X〉〉 is well-defined by the trace theorem. So we will define the heatable 1-current

(div (U ⊗ V ))[ by

〈〈div (U ⊗ V ) , X〉〉 = −〈〈U ⊗ V,∇X〉〉+

∫
∂M

〈ν, U〉 〈V,X〉 ∀X ∈ DNX (X is heated)
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It is continuous on DNX since

|〈〈div (U ⊗ V ) , X〉〉| . ‖U‖
B

1
3
3,1

‖V ‖
B

1
3
3,1

‖X‖
B

1
3
3,1

+ ‖U‖L3 ‖V ‖L3 ‖∇X‖L3 .

By the same formula and reasoning, we see that (div (U ⊗ V ))[ is not just heatable, but also

a continuous linear functional on (X (M) , C∞ topo).

On the other hand, we can get away with less regularity by assuming U ∈ PL2X. Then

we simply need to define 〈〈div (U ⊗ V ) , X〉〉 = −〈〈U ⊗ V,∇X〉〉 ∀X ∈ X.

In short, (div (U ⊗ V ))[ is heatable when U ∈ PL2X and V ∈ L2X. Consequently, by

Theorem 17, when (V , p) is a weak solution to the Euler equation and V ∈ L3
tB

1
3
3,1XN : (V , p)

is a Hodge weak solution and

∂tV + div(V ⊗ V) + grad p = 0 in D ′N (I,X) . (4.3)

4.5 Proof of Onsager’s conjecture

For the rest of the proof, we will write et∆ for S(t), as we will not need another heat flow.

For ε > 0 and vector field X, we will write Xε for eε∆X.

We opt to formulate the conjecture without mentioning the pressure (see Section 4.3 for

the justification).

Theorem 18 (Onsager’s conjecture). Let M be a compact, oriented Riemannian manifold

with no or smooth boundary. Let V ∈ L3
tPB

1
3
3,1XN such that ∀X ∈ C∞c (I,PX) :

∫∫
I×M 〈V , ∂tX〉+

〈V ⊗ V ,∇X〉 = 0 (Hodge-Leray weak solution).

Then we can show

∫
I

η′(t) 〈〈V(t),V(t)〉〉 dt = 0 ∀η ∈ C∞c (I)

Consequently, 〈〈V(t),V(t)〉〉 is constant for a.e. t ∈ I.
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As usual, there is a commutator estimate which we will leave for later:

∫
I

η
〈〈

div (U ⊗ U)2ε ,U2ε
〉〉
−
∫
I

η
〈〈

div
(
U2ε ⊗ U2ε

)
,U2ε

〉〉
=

∫
I

η
〈〈

div (U ⊗ U)3ε ,U ε
〉〉
−
∫
I

η
〈〈

div
(
U2ε ⊗ U2ε

)ε
,U ε
〉〉 ε↓0−−→ 0 (4.4)

for all U ∈ L3
tPB

1
3
3,1XN , η ∈ C∞c (I).

Notation: we write div (U ⊗ U)ε for (div (U ⊗ U))ε and ∇U ε for ∇ (U ε) (recall that the

heat flow does not work on tensors U ⊗U and ∇U). Compared with [IO14], our commutator

estimate looks a bit different, to ease some integration by parts procedures down the line.

Remark. For any U in PL2X, div (U ⊗ U)[ is a heatable 1-current (see Section 4.4). In

particular, for ε > 0, div (U ⊗ U)ε is smooth and

〈〈div (U ⊗ U)ε , Y 〉〉 = −〈〈U ⊗ U,∇ (Y ε)〉〉 ∀Y ∈ X (4.5)

Consequently, Equation (4.4) is well-defined.

Theorem 19 (Onsager). Assume Equation (4.4) is true. Then
∫
I
η′(t) 〈〈V(t),V(t)〉〉 dt = 0.

Proof. Let Φ ∈ C∞c (R) and Φτ
τ↓0−−→ δ0 be a radially symmetric mollifier. Write Vε

for eε∆V (spatial mollification) and Vτ for Φτ ∗ V (temporal mollification). First, we

mollify in time and space

1

2

∫
I

η′ 〈〈V ,V〉〉 DCT
= lim

ε↓0
lim
τ↓0

1

2

∫
I

η′ 〈〈Vετ ,Vετ 〉〉

Then we want to get rid of the time derivative:

1

2

∫
I

η′ 〈〈Vετ ,Vετ 〉〉 = −
∫
I

η 〈〈∂tVετ ,Vετ 〉〉 = −
∫
I

〈〈∂t (ηVετ ) ,Vετ 〉〉+

∫
I

η′ 〈〈Vετ ,Vετ 〉〉

Then we use the definition of Hodge-Leray weak solution, and exploit the commuta-
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tivity between spatial and temporal operators:

1

2

∫
I

η′ 〈〈Vετ ,Vετ 〉〉 =

∫
I

〈〈∂t (ηVετ ) ,Vετ 〉〉 =

∫
I

〈〈
∂t
[(
ηV2ε

τ

)
τ

]
,V
〉〉

= −
∫
I

〈〈
∇
[(
ηV2ε

τ

)
τ

]
,V ⊗ V

〉〉
= −

∫
I

〈〈[
η
(
∇V2ε

τ

)]
τ
,V ⊗ V

〉〉
= −

∫
I

η
〈〈(
∇V2ε

)
τ
, (V ⊗ V)τ

〉〉
where we used the fact that (ηV2ε

τ )τ ∈ C∞c (I,PX) to pass to the second line.

As there is no longer a time derivative on V , we get rid of τ by letting τ ↓ 0 (fine

as V is L3 in time). Recall Equation (4.5):

1

2

∫
I

η′ 〈〈Vε,Vε〉〉 = −
∫
I

η
〈〈
∇
(
V2ε
)
,V ⊗ V

〉〉
=

∫
I

η 〈〈Vε, div (V ⊗ V)ε〉〉

=

∫
I

η 〈〈Vε, div (Vε ⊗ Vε)〉〉+ oε(1)

=

∫
I

η 〈〈Vε,∇VεVε〉〉+ oε(1) =

∫
I

η

∫
M

Vε
(
|Vε|2

2

)
+ oε(1) = oε(1)

where we used the commutator estimate to pass to the second line, and the fact that

Vε ∈ PX to make the integral vanish.

So 1
2

∫
I
η′ 〈〈V ,V〉〉 = limε↓0 limτ↓0

1
2

∫
I
η′ 〈〈Vετ ,Vετ 〉〉 = limε↓0

1
2

∫
I
η′ 〈〈Vε,Vε〉〉 = 0.

The proof is short and did not much use the Besov regularity of V . It is the commutator

estimate that presents the main difficulty. We proceed similarly as in [IO14].

Let U ∈ L3
tPB

1
3
3,1XN . By setting U(t) to 0 for t in a null set, WLOG U(t) ∈ PB

1
3
3,1XN ∀t ∈

I. Define the commutator

W(t, s) = div (U(t)⊗ U(t))3s − div
(
U (t)2s ⊗ U (t)2s)s
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When t and s are implicitly understood, we will not write them. As div (U(t)⊗ U(t))3s

solves (∂s − 3∆)X = 0, we define N = (∂s − 3∆)W . Then W and N obey the Duhamel

formula:

Lemma 20 (Duhamel formulas).

1. W(t, s)
s↓0−−→ 0 in D ′NX and therefore in D ′X. Furthermore, W(·, s) s↓0−−→ 0 in D ′N (I,X)

and therefore in D ′ (I,X) (spacetime distribution).

2. For fixed t0 ∈ I and s > 0:
∫ s
ε
N (t0, σ)3(s−σ) dσ

ε↓0−−→W (t0, s) in D ′NX.

Proof.

1. Let X ∈ DNX,X ∈ C∞c (I,DNX) . It is trivial to check (with DCT)

〈〈
U(t)⊗ U(t),∇

(
X3s

)〉〉
−
〈〈
U(t)2s ⊗ U(t)2s,∇ (Xs)

〉〉 s↓0−−→ 0∫
I

〈〈
U ⊗ U ,∇

(
X 3s
)〉〉
−
∫
I

〈〈
U2s ⊗ U2s,∇ (X s)

〉〉 s↓0−−→ 0

2. Let ε > 0. By the smoothing effect of es∆, W(t0, ·) and N (t0, ·) are in

C0
loc ((0, 1],DNX). As

(
es∆
)
s≥0

is a C0 semigroup on (Hm-cl (DNX) , ‖·‖Hm)

∀m ∈ N0, and a semigroup basically corresponds to an ODE (cf. [Tay11a, Ap-

pendix A, Proposition 9.10 & 9.11]), from ∂sW = 3∆W +N for s ≥ ε we get

the Duhamel formula

∀s > ε :W(t0, s) =W (t0, ε)
3(s−ε) +

∫ s

ε

N (t0, σ)3(s−σ) dσ

So we only need to show W (t0, ε)
3(s−ε) D ′NX

−−−→
ε↓0

0. Let X ∈ DNX.

〈〈
X,W (t0, ε)

3(s−ε)
〉〉

=
〈〈
X3(s−ε), div (U (t0)⊗ U (t0))3ε〉〉
−
〈〈
X3(s−ε), div

(
U (t0)2ε ⊗ U (t0)2ε)ε〉〉
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= −
〈〈
∇
(
X3s

)
,U (t0)⊗ U (t0)

〉〉
+
〈〈
∇
(
X3s−2ε

)
,U (t0)2ε ⊗ U (t0)2ε〉〉 ε↓0−−→ 0.

From now on, we write
∫ s

0+
for limε↓0

∫ s
ε

. Then

∫
I

dt η (t) 〈〈W (t, s) ,U (t)s〉〉 =

∫
I

dt η (t)

∫ s

0+

dσ
〈〈
N (t, σ)3(s−σ) ,U (t)s

〉〉

To clean up the algebra, we will classify the terms that are going to appear but are actually

negligible in the end. The following estimates lie at the heart of the problem, showing why

the regularity needs to be at least 1
3
, and that our argument barely holds thanks to the

pointwise vanishing property (Corollary 14).

Lemma 21 (3 error estimates). Define the k-jet fiber norm |X|Jk =

(
k∑
j=0

∣∣∇(j)X
∣∣2) 1

2

∀X ∈

X (more details in Subsection 7.1.1). Then we have

1.
∫
I
|η|
∫ s

0+
dσ
∫
M
|U2σ|2J1 |U4s−2σ|J1

s↓0−−→ 0

2.
∫
I
|η|
∫ s

0+
dσ
∫
∂M
|U2σ|2 |U4s−2σ|J2

s↓0−−→ 0

3.
∫
I
|η|
∫ s

0+
dσ
∫
∂M
|U2σ| |U2σ|J1 |U4s−2σ|J1

s↓0−−→ 0

Proof. Define A (t, s) = s
1
3

∥∥∥U (t)
s
2

∥∥∥
W 1,3

. Then for s > 0 small: ‖U (t)s‖
B

1+ 1
3

3,1

.(
1
s

) 1
6

∥∥∥U (t)
s
2

∥∥∥
W 1,3
.
(

1
s

) 1
2 A (t, s) and

∥∥∥‖A (t, σ)‖L∞σ≤s
∥∥∥
L3
t

s↓0−−→ 0 by Corollary 14. We

also note that ‖U (t)s‖
B

2+ 1
3

3,1

.
(

1
s

) 2
3

∥∥∥U (t)
s
2

∥∥∥
W 1,3
.
(

1
s

)
A (t, s).

Now we can prove the error estimates go to 0:
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1.

∫
I

|η|
∫ s

0+

dσ

∫
M

∣∣U2σ
∣∣2
J1

∣∣U4s−2σ
∣∣
J1 .

∫
I

|η|
∫ s

0+

dσ
∥∥U2σ

∥∥2

W 1,3

∥∥U4s−2σ
∥∥
W 1,3

.
∫
I

dt |η(t)|
∫ s

0+

dσ

(
1

σ

) 2
3
(

1

2s− σ

) 1
3

A (t, 2σ)2A (t, 4s− 2σ)

σ 7→sσ
=

∫
I

dt |η(t)|
∫ 1

0+

dσ

(
1

σ

) 2
3
(

1

2− σ

) 1
3

A (t, 2sσ)2A (t, 4s− 2sσ)

.
∫
I

dt |η(t)| ‖A (t, σ)‖3
L∞σ≤4s

s↓0−−→ 0.

2.

∫
I

|η|
∫ s

0+

dσ

∫
∂M

∣∣U2σ
∣∣2 ∣∣U4s−2σ

∣∣
J2

.
∫
I

|η|
∫ s

0+

dσ
∥∥U2σ

∥∥2

L3XM |∂M

∥∥U4s−2σ
∥∥
W 2,3XM |∂M

Trace

.
∫
I

|η|
∫ s

0+

dσ
∥∥U2σ

∥∥2

B
1
3
3,1XM

∥∥U4s−2σ
∥∥
B

2+ 1
3

3,1 XM

.
∫
I

dt |η (t)| ‖U (t)‖2

B
1
3
3,1XM

∫ s

0+

dσ

(
1

2s− σ

)
A (t, 4s− 2σ)

σ 7→sσ
=

∫
I

dt |η (t)| ‖U (t)‖2

B
1
3
3,1XM

∫ 1

0+

dσ

(
1

2− σ

)
A (t, 4s− 2sσ)

.
∫
I

dt |η (t)| ‖U (t)‖2

B
1
3
3,1XM

‖A (t, σ)‖L∞σ≤4s

. ‖U‖2

L3
tB

1
3
3,1(M)

∥∥∥‖A (t, σ)‖L∞σ≤4s

∥∥∥
L3
t

s↓0−−→ 0

3.

∫
I

|η|
∫ s

0+

dσ

∫
∂M

∣∣U2σ
∣∣ ∣∣U2σ

∣∣
J1

∣∣U4s−2σ
∣∣
J1

Trace

.
∫
I

|η|
∫ s

0+

dσ
∥∥U2σ

∥∥
B

1
3
3,1XM

∥∥U2σ
∥∥
B

1+ 1
3

3,1 XM

∥∥U4s−2σ
∥∥
B

1+ 1
3

3,1 XM

.
∫
I

dt |η (t)| ‖U (t)‖
B

1
3
3,1

∫ s

0+

dσ

(
1

σ

) 1
2
(

1

2s− σ

) 1
2

A (t, 2σ)A (t, 4s− 2σ)
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σ 7→sσ
=

∫
I

dt |η (t)| ‖U (t)‖
B

1
3
3,1

∫ 1

0+

dσ

(
1

σ

) 1
2
(

1

2− σ

) 1
2

A (t, 2sσ)A (t, 4s− 2sσ)

.
∫
I

dt |η (t)| ‖U (t)‖
B

1
3
3,1

‖A (t, σ)‖2
L∞σ≤4s

. ‖U‖
L3
tB

1
3
3,1

∥∥∥‖A (t, σ)‖L∞σ≤4s

∥∥∥2

L3
t

s↓0−−→ 0

Note that

N (t, σ) = (∂σ − 3∆)
(
− div

(
U2σ ⊗ U2σ

)σ)
= −2 div

(
∆U2σ ⊗ U2σ

)σ − 2 div
(
U2σ ⊗∆U2σ

)σ
+ 2∆ div

(
U2σ ⊗ U2σ

)σ
Finally, we will show

∫
I

η 〈〈W(s),U s〉〉 =

∫
I

dt η (t) 〈〈W(t, s),U (t)s〉〉 s↓0−−→ 0

Proof. Integrate by parts into 3 components:

∫
I

η 〈〈W(s),U s〉〉 =

∫
I

dt η (t)

∫ s

0+

dσ
〈〈
N (t, σ)3(s−σ) ,U (t)s

〉〉
=

∫
I

dt η (t)

∫ s

0+

dσ
〈〈
N (t, σ) ,U (t)4s−3σ〉〉

= 2

∫
I

η

∫ s

0+

dσ
〈〈

∆U2σ ⊗ U2σ,∇
(
U4s−2σ

)〉〉
+ 2

∫
I

η

∫ s

0+

dσ
〈〈
U2σ ⊗∆U2σ,∇

(
U4s−2σ

)〉〉
− 2

∫
I

η

∫ s

0+

dσ
〈〈
U2σ ⊗ U2σ,∇

(
∆U4s−2σ

)〉〉
Note that for the third component, we used some properties from Fact 13 to move

the Laplacian. It also explains our choice of W .
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We now use Penrose notation to estimate the 3 components. To clean up the

notation, we only focus on the integral on M , with the other integrals 2
∫
I
η
∫ s

0+
dσ (·)

in variables t and σ implicitly understood. We also use schematic identities for

linear combinations of similar-looking tensor terms where we do not care how the

indices contract (recall Equation (4.1)). By the error estimates above, all the terms

with R or ν will be negligible as s ↓ 0, and interchanging derivatives will be a free

action. We write ≈ to throw the negligible error terms away. Also, when we write

(∇jUl)4s−2σ , we mean the heat flow is applied to U , not ∇U (which is not possible

anyway).

First component:

∫
M

〈
∆U2σ ⊗ U2σ,∇

(
U4s−2σ

)〉
=
((((((((((((((((∫
M

R ∗ U2σ ∗ U2σ ∗ ∇
(
U4s−2σ

)
+

∫
M

(∇i∇iU j)2σ (U l)2σ
(∇jUl)4s−2σ

≈
((((((((((((((((((∫
∂M

(
νi∇iU j

)2σ (U l)2σ
(∇jUl)4s−2σ −

(((((((((((((((((((∫
M

(∇iU j)2σ (∇iU l
)2σ

(∇jUl)4s−2σ

−
∫
M

(∇iU j)2σ (U l)2σ
(∇i∇jUl)4s−2σ

Second component:

∫
M

〈
U2σ ⊗∆U2σ,∇

(
U4s−2σ

)〉
=
((((((((((((((((∫
M

U2σ ∗R ∗ U2σ ∗ ∇
(
U4s−2σ

)
+

∫
M

(U j)2σ (∇i∇iU l
)2σ

(∇jUl)4s−2σ

≈
((((((((((((((((((∫
∂M

(
U j
)2σ (

νi∇iU l
)2σ

(∇jUl)4s−2σ −
(((((((((((((((((((∫
M

(∇iU j)
2σ (∇iU l

)2σ
(∇jUl)4s−2σ

−
∫
M

(U j)2σ (∇iU l
)2σ

(∇i∇jUl)4s−2σ
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For the third component, note ∇ (R ∗ U) = ∇R ∗ U +R ∗ ∇U

−
∫
M

〈
U2σ ⊗ U2σ,∇

(
∆U4s−2σ

)〉
=−

((((((((((((((((∫
M

U2σ ∗ U2σ ∗ ∇
(
R ∗ U4s−2σ

)
−
∫
M

(U j)2σ (U l)2σ
(∇j∇i∇iUl)

4s−2σ

≈−
∫
M

(U j)2σ (U l)2σ (
((((((((
R ∗ ∇ (U4s−2σ) +∇i∇j∇iU4s−2σ

l

)
≈−

∫
M

(U j)2σ (U l)2σ (
((((((((∇ (R ∗ U4s−2σ) +∇i∇i∇jU4s−2σ

l

)
≈−

((((((((((((((((((∫
∂M

(
U j
)2σ (U l)2σ (

νi∇i∇jUl
)4s−2σ

+

∫
M

(∇iU j)2σ (U l)2σ
(∇i∇jUl)4s−2σ

+

∫
M

(U j)2σ (∇iU l
)2σ

(∇i∇jUl)4s−2σ

Add them up, and we get 0 as 2
∫
I
η
∫ s

0+
dσ (·) s↓0−−→ 0.

So we are done and the rest of Part I is to develop the tools we have borrowed for the proof.
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CHAPTER 5

Functional analysis

5.1 Common tools

We note a useful inequality:

Theorem 22 (Ehrling’s inequality). Let X, Y, X̃ be (real/complex) Banach spaces such that

X is reflexive and X ↪→ X̃ is a continuous injection. Let T : X → Y be a linear compact

operator. Then ∀ε > 0,∃Cε > 0:

‖Tx‖Y ≤ ε ‖x‖X + Cε ‖x‖X̃ ∀x ∈ X

Remark. Usually, X is some higher-regularity space than X̃ (e.g. H1 and L2). The in-

equality is useful when the higher-regularity norm is expensive. We will need this for the

Lp-analyticity of the heat flow (Theorem 73).

Proof. Proof by contradiction: Assume ε > 0 and there is (xj)j∈N such that ‖xj‖X = 1

and ‖Txj‖Y > ε + j ‖xj‖X̃ . Since X is reflexive, by Banach-Alaoglu and PTAS,

WLOG assume xj
X−⇀ x∞. Then Txj

Y−⇀ Tx∞ and xj
X̃−⇀ x∞. As T is compact,

PTAS, WLOG Txj → Tx∞. So ‖Tx∞‖Y ≥ lim supj→∞
(
ε+ j ‖xj‖X̃

)
> 0 and

xj
X̃−→ 0. Then xj

X̃−⇀ 0 and x∞ = 0, contradicting ‖Tx∞‖Y > 0.

Definition 23 (Banach-valued holomorphic functions). Let Ω ⊂ C be an open set and X

be a complex Banach space. Then a function f : Ω → X is said to be holomorphic (or

analytic) when ∀z ∈ Ω : f ′(z) := lim|h|→0
f(z+h)−f(z)

h
exists. The words “holomorphic” and
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“analytic” are mostly interchangeable, but “analytic” stresses the existence of power series

expansion and can also describe functions on R for which analytic continuation into the

complex plane exists.

Theorem 24 (Identity theorem). Let X be a complex Banach space and X0 ≤ X closed.

Let Ω ⊂ C be connected, open and f : Ω → X holomorphic. Assume there is a sequence

(zj)j∈N such that zj → z ∈ Ω and f(zj) ∈ X0 ∀j. Then f(Ω) ⊂ X0.

Proof. Let Λ ∈ X∗ such that Λ(X0) = 0. Reduce this to the scalar version in complex

analysis.

In fact, many theorems from scalar complex analysis similarly carry over via linear functionals

(cf. [Rud91, Theorem 3.31]).

5.2 Interpolation theory

We will quickly review the theory of complex and real interpolation, and state the abstract

Stein interpolation theorem. Interpolation theory can be seen as vast generalizations of the

Marcinkiewicz and Riesz-Thorin interpolation theorems.

Definition 25. An interpolation couple of (real/complex) Banach spaces is a pair (X0, X1)

of Banach spaces with a Hausdorff TVS X such that X0 ↪→ X , X1 ↪→ X are continuous in-

jections. Then X0 ∩X1 and X0 +X1 are Banach spaces under the norms

‖x‖X0∩X1
= max

(
‖x‖X0

, ‖x‖X1

)
and ‖x‖X0+X1

= inf
x=x0+x1,xj∈Xj

‖x0‖X0
+ ‖x1‖X1

Let (Y0, Y1) be another interpolation couple. We say T : (X0, X1) → (Y0, Y1) is a mor-

phism when T ∈ L (X0 +X1, Y0 + Y1) and T ∈ L (Xj, Yj) for j = 0, 1 under domain

restriction. That implies T ∈ L (X0 ∩X1, Y0 ∩ Y1) and we write T ∈ L ((X0, X1) , (Y0, Y1)).

We also write L ((X0, X1)) = L ((X0, X1) , (X0, X1)).
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Let P ∈ L((X0, X1)) such that P 2 = P . Then we call P a projection on the interpola-

tion couple (X0, X1).

Definition 26. Let (X0, X1) be an interpolation couple of (real/complex) Banach spaces.

Then define the J-functional:

J : (0,∞)×X0 ∩X1 −→ R

(t, x) 7−→ ‖x‖X0
+ t ‖x‖X1

For θ ∈ (0, 1), q ∈ [1,∞], define the real interpolation space

(X0, X1) θ,q =

{∑
j∈Z

uj : uj ∈ X0 ∩X1,
(
2−jθJ(2j, uj)

)
j∈Z ∈ l

q
j (Z)

}

which is Banach under the norm ‖x‖(X0,X1)θ,q
= inf

x=
∑
j∈Z

uj

∥∥2−jθJ(2j, uj)
∥∥
lqj

. Note that
∑

j∈Z uj

denotes a series that converges in X0 +X1.

• When q ∈ [1,∞] and x ∈ X0 ∩X1, note that ∀j ∈ Z : x =
∑

k∈Z δkjx and

‖x‖(X0,X1)θ,q
≤ inf

j∈Z

∣∣2−jθJ(2j, x)
∣∣ = inf

j∈Z

∣∣2−jθ ‖x‖X0
+ 2j(1−θ) ‖x‖X1

∣∣ ∼¬θ,¬q ‖x‖1−θ
X0
‖x‖θX1

The last estimate comes from AM-GM and shifting j so that ‖x‖X0
∼ 2j ‖x‖X1

. Note

that the implied constants do not depend on θ and q.

• By considering the finite partial sums
∑
|j|<j0 uj, we conclude that X0 ∩X1 is dense in

(X0, X1)θ,q when q ∈ [1,∞).

• Let (Y0, Y1) be another interpolation couple and T ∈ L ((X0, X1) , (Y0, Y1)). For θ ∈

(0, 1), q ∈ [1,∞], define Xθ,q = (X0, X1)θ,q , Yθ,q = (Y0, Y1)θ,q. Then T ∈ L(Xθ,q, Yθ,q)

and

‖T‖L(Xθ,q ,Yθ,q)
.¬θ,¬q,¬T ‖T‖1−θ

L(X0,Y0) ‖T‖
θ
L(X1,Y1)
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where the implied constant does not depend on θ and q. This can be proved by a

simple shifting argument.

• If P is a projection on (X0, X1) then (PX0, PX1)θ,q = P (X0, X1)θ,q.

Remark. There is also an equivalent characterization by the K-functional, which we shall

omit. This theory can also be extended to quasi-Banach spaces. We refer to [BL76; Tri10]

for more details.

Definition 27. Let (X0, X1) be an interpolation couple of complex Banach spaces.

Let Ω = {z ∈ C : 0 < Re z < 1}. We then define the Banach space of vector-valued

holomorphic/analytic functions on the strip:

FX0,X1 = {f ∈ C0(Ω→ X0 +X1) : f holomorphic in Ω, ‖f(it)‖X0
+ ‖f(1 + it)‖X1

|t|→∞−−−→ 0}

with the norm ‖f‖FX0,X1
= max

(
supt∈R ‖f(it)‖X0

, supt∈R ‖f(1 + it)‖X1

)
.

For θ ∈ [0, 1], define the complex interpolation space [X0, X1]θ = {f(θ) : f ∈ FX0,X1},

which is Banach under the norm

‖x‖[X0,X1]θ
= inf

f∈FX0,X1
f(θ)=x

‖f‖FX0,X1

• When x ∈ X0 ∩ X1\{0} , θ ∈ [0, 1], ε > 0, define fε(z) = eε(z
2−θ2) x

‖x‖1−zX0
‖x‖zX1

. By the

freedom in choosing ε, we conclude

‖x‖[X0,X1]θ
≤ inf

ε>0
‖fε‖FX0,X1

‖x‖1−θ
X0
‖x‖θX1

≤ inf
ε>0

max
(
eε(1−θ

2), e−εθ
2
)
‖x‖1−θ

X0
‖x‖θX1

= ‖x‖1−θ
X0
‖x‖θX1
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• When θ ∈ [0, 1], by Poisson summation and Fourier series, we can prove that

F0
X0,X1

= {eCz2
N∑
j=1

eλjzxj : N ∈ N, C > 0, λj ∈ R, xj ∈ X0 ∩X1}

is dense in FX0,X1 (cf. [BL76, Lemma 4.2.3]). This implies X0∩X1 is dense in [X0, X1]θ.

There is a simple extension of the above density result. Let U be dense in X0∩X1 and

define A(Ω) = {φ ∈ C0(Ω→ C) : φ holomorphic in Ω}. Then

FUX0,X1
= {eCz2

N∑
j=1

φj(z)uj : N ∈ N, C > 0, φj ∈ A(Ω), uj ∈ U}

is dense in FX0,X1 . This will lead to the abstract Stein interpolation theorem.

• Let (Y0, Y1) be another interpolation couple and T ∈ L ((X0, X1) , (Y0, Y1)). Then for

θ ∈ [0, 1], almost by the definitions, we conclude

‖T‖L([X0,X1]θ,[Y0,Y1]θ) ≤ ‖T‖
1−θ
L(X0,Y0) ‖T‖

θ
L(X1,Y1)

• If P is a projection on (X0, X1) then [PX0, PX1] θ = P [X0, X1] θ

Remark. A keen reader would notice that we use square brackets for complex interpolation,

and parentheses for real interpolation. One reason is that the real interpolation methods

easily extend to quasi-Banach spaces, while the complex interpolation method does not.

There is a version of complex interpolation for special quasi-Banach spaces, which is denoted

by parentheses (cf. [Tri10, Section 2.4.4]), but we shall omit it for simplicity.

Blackbox 28 (Abstract Stein interpolation). Let (X0, X1) and (Y0, Y1) be interpolation cou-

ples of complex Banach spaces and U dense in X0∩X1. Let Ω = {z ∈ C : 0 < Re z < 1} and

(T (z))z∈Ω be a family of linear mappings T (z) : U → Y0 + Y1 such that

1. ∀u ∈ U :
(
Ω→ Y0 + Y1, z 7→ T (z)u

)
is continuous, bounded and analytic in Ω.
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2. For j = 0, 1 and u ∈ U : (R→ Yj, t 7→ T (j + it)u) is continuous and bounded by

Mj ‖u‖Xj for some Mj > 0.

Then for θ ∈ [0, 1], we can conclude

‖T (θ)u‖[Y0,Y1]θ
≤M1−θ

0 M θ
1 ‖u‖[X0,X1]θ

∀u ∈ U

Consequently, by unique extension, we have T (θ) ∈ L([X0, X1]θ , [Y0, Y1]θ).

Proof. See [Voi92], which is a very short read.

Remark. We will only use Stein interpolation in Section 5.3.

5.3 Stein extrapolation of analyticity of semigroups

We are inspired by [Fac15, Theorem 3.1.1] (Stein extrapolation) and [Fac15, Theorem 3.1.10]

(Kato-Beurling extrapolation), and wish to create variants for our own use. We will focus

on Stein extrapolation, since it is simpler to deal with.

There exists a subtle, but very important criterion to establish analyticity/holomorphicity:

Blackbox 29 (Holo on total). Let Ω ⊂ C be open and X complex Banach. Let f : Ω→ X

be a function. Assume N ≤ X∗ is total (separating points) and f is locally bounded.

Then f is analytic iff Λf is analytic ∀Λ ∈ N .

Proof. This is a consequence of Krein-Smulian and the Vitali holomorphic conver-

gence theorem, and we refer to [Are+11, Theorem A.7].

Remark. It will quickly become obvious how crucial this criterion is for the rest of the thesis.

Let us briefly note that an improvement has just been discovered by Arendt et al. [ABK19]

(the author thanks Stephan Fackler for bringing this news).
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Corollary 30 (Inheritance of analyticity). Let Ω ⊂ C be open and X, Y be complex Banach

spaces where j : X ↪→ Y is a continuous injection. Let f : Ω→ X be locally bounded. Then

f is analytic iff j ◦ f is analytic.

Proof. Im(j∗) is weak∗-dense, therefore total.

Corollary 31 (Evaluation on dense set). Let X, Y be complex Banach spaces with X0 ≤ X.

Let Ω ⊂ C be open and f : Ω → L(X, Y ) be a function. Assume X0 ≤ X is weakly dense

and f is locally bounded.

Then f is analytic ⇐⇒ ∀x0 ∈ X0, f(·)x0 : Ω→ Y is analytic.

Proof. Consider NX0 = span{y∗ ◦ evx0 : x0 ∈ X0, y
∗ ∈ Y ∗} ≤ L(X, Y )∗. It is total as

X0 is weakly dense. Use Blackbox 29.

5.3.1 Semigroup definitions

As mentioned before, we assume the reader is familiar with basic elements of functional

analysis, including semigroup theory as covered in [Tay11a, Appendix A.9].

Unfortunately, definitions vary depending on the authors, so we need to be careful about

which ones we are using.

Definition 32. For δ ∈ (0, π], define Σ+
δ = {z ∈ C\{0} : | arg z| < δ}, Σ−δ = −Σ+

δ ,

D = {z ∈ C : |z| < 1}. Also define Σ+
0 = (0,∞) and Σ−0 = −Σ+

0 .

Let X be a complex Banach space.

(T (t))t≥0 ⊂ L(X) is called:

• a semigroup when T : [0,∞)→ L(X) is a monoid homomorphism (T (0) = 1, T (t1 +

t2) = T (t1)T (t2))

• degenerate when T : (0,∞) → L(X) is continuous in the SOT (strong operator

topology).
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• immediately norm-continuous when T : (0,∞)→ L(X) is norm-continuous.

• C0 (strongly continuous) when T : [0,∞)→ L(X) is continuous in the SOT.

• bounded when T ([0,∞)) is bounded in L(X), and locally bounded when T (K)

is bounded ∀K ⊂ [0,∞) bounded. (so C0 implies local boundedness by Banach-

Steinhaus, and the semigroup property implies we just need to test K ⊂ [0, 1))

(T (z))z∈Σ+
δ ∪{0}

⊂ L(X) is called

• a semigroup when T : Σ+
δ ∪ {0} → L(X) is a monoid homomorphism.

• C0 when ∀δ′ ∈ (0, δ), T : Σ+
δ′ ∪ {0} → L(X) is continuous in the SOT.

• bounded when T
(
Σ+
δ′

)
is bounded ∀δ′ ∈ (0, δ) and locally bounded when T (K) is

bounded ∀K ⊂ Σ+
δ′ bounded. (so C0 implies local boundedness, and the semigroup

property implies we just need to test K ⊂ D ∩ Σ+
δ′)

• analytic when T : Σ+
δ → L(X) is analytic

We say (T (t))t≥0 is analytic of angle δ ∈ (0, π
2
] if there is an extension (T (z))z∈Σ+

δ ∪{0}
⊂ L(X)

which is analytic and locally bounded. If furthermore (T (z))z∈Σ+
δ ∪{0}

is bounded, we say

(T (t))t≥0 is boundedly analytic of angle δ.

Remark. A subtle problem is that when (T (t))t≥0 is bounded and analytic, we cannot con-

clude (T (t))t≥0 is boundedly analytic (cf. [Are+11, Definition 3.7.3]).

Blackbox 33. If (T (t))t≥0 is a C0 semigroup which is (boundedly) analytic of angle δ ∈

(0, π
2
], then (T (z))z∈Σ+

δ ∪{0}
is a C0, (bounded) semigroup.

Proof. The semigroup property comes from the identity theorem, and C0 comes from

the Vitali holomorphic convergence theorem. We refer to [Are+11, Proposition 3.7.2].
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Theorem 34 (Sobolev tower). Let (etA)t≥0 be a C0 semigroup on a (real/complex) Banach

space X with generator A (implying A is closed and densely defined). Then ∀m ∈ N1, D(Am)

is a Banach space under the norm ‖x‖D(Am) = ‖x‖X +
∑m

k=1

∥∥Akx∥∥
X

, and D(Am) is dense

in X.

As etA and A commute on D(A), we conclude that
(
etA
)
t≥0

, after domain restriction, is

also a C0 semigroup on D(Am) and
∥∥etA∥∥L(D(Am))

≤
∥∥etA∥∥L(X)

∀t ≥ 0.

Lastly, if X is a complex Banach space and
(
etA
)
t≥0

is (boundedly) analytic on X,
(
etA
)
t≥0

is also (boundedly) analytic on D(Am) after domain restriction.

Proof. Most are just the basics of semigroup theory (cf. [Tay11a, Appendix A.9]). We

only prove the last assertion. All we need is commutativity: if
(
etA
)
t≥0

is extended

to (ezA)z∈Σ+
δ ∪{0}

, we want to show ezAA = AezA on D(A).

By Blackbox 33, (ezA)z∈Σ+
δ ∪{0}

is a C0 semigroup. Therefore ∀x ∈ D(A),∀z ∈ Σ+
δ :

ezAAx = ezA
(
X- lim

t↓0

etA − 1

t
x

)
= X- lim

t↓0
ezA

etA − 1

t
x = X- lim

t↓0

etA − 1

t
ezAx

The last term implies ezAx ∈ D (A) and ezAAx = AezAx. Then use Corollary 30 and

Corollary 31 to get analyticity.

5.3.2 Simple extrapolation (with core)

Lemma 35. Let U , X be complex Banach spaces and U ↪→ X be a continuous injection with

dense image.

1. Let (T (t))t≥0 ⊂ L(X) be locally bounded and T (t)U ≤ U ∀t ≥ 0. Assume (T (t))t≥0 is

a C0 semigroup on U . Then (T (t))t≥0 on X is also a C0 semigroup.

2. Let (T (z))z∈Σ+
δ ∪{0}

⊂ L(X) (where δ ∈ (0, π
2
]) be locally bounded and T (z)U ≤ U ∀z ∈

Σ+
δ . Assume (T (z))z∈Σ+

δ ∪{0}
is a C0, analytic semigroup on U . Then (T (z))z∈Σ+

δ ∪{0}

on X is also a C0, analytic semigroup.

50



Remark. The assumption of local boundedness on X is important. We will also use this

result in Section 8.3 to establish the W 1,p-analyticity of the heat flow.

Proof. The semigroup property comes from the density of U in X.

To get C0 onX, use the local boundedness onX and dense convergence (Lemma 11).

For analyticity in (2), use Corollary 31.

Lemma 36 (Core). Let A be an unbounded linear operator on a (real/complex) Banach

space X and E ≤ D(A). E is called a core when E is dense in
(
D(A), ‖·‖D(A)

)
.

If A is the generator of a C0 semigroup on X, E is dense in X and etAE ≤ E, then E is

a core.

Proof. Let x ∈ D(A). Then there is (xj)j∈N in E such that xj
X−→ x. It is trivial to

check
1

t

∫ t

0

esAxj ds
‖·‖D(A)−−−−→
j→∞

1

t

∫ t

0

esAx ds
‖·‖D(A)−−−−→
t↓0

x

as
(
esA
∣∣
D(A)

)
s≥0

is ‖·‖D(A)-continuous. Note that
∫ t

0
esAxj ds is in the ‖·‖D(A)-closure

of E by the Riemann integral.

Theorem 37 (Simple extrapolation with core). Let (X0, X1) be an interpolation couple of

complex Banach spaces and Xθ = [X0, X1]θ for θ ∈ (0, 1].

Let (T (t))t≥0 ⊂ L ((X0, X1)) . Assume that on X0, (T (t))t≥0 is bounded.

Assume that on X1, (T (t))t≥0 is a C0 semigroup, boundedly analytic of angle δ ∈ (0, π
2
]

with generator A1.

Assume ∃m ∈ N1 :
(
D(Am1 ), ‖·‖D(Am1 )

)
↪→
(
X0 ∩X1, ‖·‖X0∩X1

)
↪→ X0 are continuous

injections with dense images.

Then on Xθ, (T (t))t≥0 is a C0 semigroup, and boundedly analytic of angle θδ.

Remark. The existence of a convenient core like D(Am1 ) is usually a trivial consequence of

Sobolev embedding. We can replace bounded analyticity on X1 and Xθ with analyticity, and
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boundedness on X0 with local boundedness via the usual rescaling argument (∀δ′ ∈ (0, δ) ⊂

(0, π
2
),∃Cδ′ > 0 :

∥∥e−Cδ′zT (z)
∥∥
L(X1)

.δ′ 1 ∀z ∈ Σ+
δ′).

The existence of a core allows conditions on X0 and X1 to be more general than those

in [Fac15, Theorem 3.1.1] (which requires immediate norm-continuity on X0), and actually

be equivalent to those in [Fac15, Theorem 3.1.10] (though Kato-Beurling covers more than

just complex interpolation). Once again, the assumption of (local) boundedness on X0 is

important.

We will use this result to establish the Lp-analyticity of the heat flow in Section 8.2.

Proof. Let U = D(Am1 ). Then U is Banach as A1 is closed. Obviously U ↪→ Xθ is a

continuous injection with dense image, and (T (z))z∈Σ+
δ ∪{0}

is a C0, bounded, analytic

semigroup on U (via Sobolev tower).

By Lemma 35, (T (t))t≥0 is a C0, bounded semigroup on X0. Also by Lemma 35,

to get the desired conclusion, we only need to show (T (z))z∈Σ+
θδ∪{0}

is locally bounded

in L(Xθ).

Fix δ′ ∈ (0, δ). We use abstract Stein interpolation. Define the strip Ω = {0 <

Re < 1}. Let α ∈ (−δ′, δ′), ρ > 0, u ∈ U and

L(z) = T (ρeiαz)u ∀z ∈ Ω

Note that U ≤ X0∩X1 is dense. We check the other conditions for interpolation:

• As U ↪→ X0 and U ↪→ X1 are continuous, (Ω → X0 + X1, z 7→ L(z)u) is

continuous, bounded on Ω and analytic on Ω (as L(z)u ∈ X1 ↪→ X0 +X1).

• For j = 0, 1 (R→ Xj, s 7→ L(j + is)u) is

– continuous since U ↪→ Xj is continuous.

– bounded by Cj,T ‖u‖Xj for some Cj,T > 0 since (T (t))t≥0 is bounded on
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X0 and (T (teiα))t≥0 is bounded on X1.

Then by Stein interpolation, we conclude {T (ρeiθα) : ρ > 0, α ∈ (−δ′, δ′)} =

T (Σ+
θδ′) ⊂ L(Xθ) is bounded.

5.3.3 Coreless version

There is an alternative version which we will not use, but is of independent interest:

Theorem 38 (Coreless extrapolation). Let (X0, X1) be an interpolation couple of complex

Banach spaces and Xθ = [X0, X1]θ for θ ∈ (0, 1].

Let (T (t))t≥0 ⊂ L ((X0, X1)) be a semigroup. Assume that on X0, (T (t))t≥0 is bounded

and degenerate.

Assume that on X1, (T (t))t≥0 is a C0 semigroup, boundedly analytic of angle δ ∈ (0, π
2
]

with generator A1.

Then on Xθ, (T (t))t≥0 is a C0 semigroup, boundedly analytic of angle θδ.

Remark. The differences with the previous version are underlined. Again, via rescaling we

can replace bounded analyticity on X1 and Xθ with analyticity, and boundedness on X0

with local boundedness. The conditions on X0 and X1 are still a bit more general than those

in [Fac15, Theorem 3.1.1], which requires immediate norm-continuity on X0. In practice

local boundedness on X0 can usually come from global analysis, while degeneracy can come

from Sobolev embedding and dense convergence (Lemma 11). Immediate norm-continuity

is harder to establish.

Note that Theorem 38 is not as general as [Fac15, Theorem 3.1.10] (which removes the

need for degeneracy and covers more than just complex interpolation), though it is markedly

easier to prove.

Proof. By interpolation, (T (t))t≥0 is a bounded semigroup on Xθ.

Let U = X0 ∩X1. Obviously (T (t))t≥0 is a bounded semigroup on U .
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Then observe that ∀u ∈ U,∀t, t0 ≥ 0 :

‖(T (t)− T (t0))u‖Xθ ≤ ‖(T (t)− T (t0))u‖1−θ
X0
‖(T (t)− T (t0))u‖θX1

. ‖(T (t)− T (t0))u‖θX1

Since θ 6= 0, we have T (t)u
Xθ−−−→
t→t0

T (t0)u. As (T (t))t≥0 is bounded on Xθ and U is

dense in Xθ, we conclude (T (t))t≥0 is C0 on Xθ by dense convergence (Lemma 11).

Fix δ′ ∈ (0, δ). We use abstract Stein interpolation. Define the strip Ω = {0 <

Re < 1}. Let α ∈ (−δ′, δ′), ρ > 0, u ∈ U and

L(z) = T (ρeiαz)u ∀z ∈ Ω

Note that U = X0 ∩X1. We check the other conditions for interpolation:

• As U ↪→ X0 and U ↪→ X1 are continuous, (Ω → X0 + X1, z 7→ L(z)u) is

continuous, bounded on Ω and analytic on Ω (as L(z)u ∈ X1 ↪→ X0 +X1).

• For j = 0, 1 (R→ Xj, s 7→ L(j + is)u) is

– continuous since (T (t))t≥0 is degenerate on X0 and (T (teiα))t≥0 is C0 on

X1.

– bounded by Cj,T ‖u‖Xj for some Cj,T > 0 since (T (t))t≥0 is bounded on

X0 and (T (teiα))t≥0 is bounded on X1.

By Stein interpolation, {T (ρeiθα) : ρ > 0, α ∈ (−δ′, δ′)} = T (Σ+
θδ′) ⊂ L(Xθ) is

bounded.

Finally, we just need to show (T (z))z∈Σ+
θδ∪{0}

is analytic on Xθ. Let u ∈ U . Then

(
Σ+
δ → X1 ↪→ X0 +X1, z 7→ T (z)u

)
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is analytic. Therefore
(
Σ+
θδ → Xθ ↪→ X0 +X1, z 7→ T (z)u

)
is analytic. On the other

hand,
(
Σ+
θδ → Xθ, z 7→ T (z)u

)
is locally bounded, so we can use Corollary 30 to

conclude
(
Σ+
θδ → Xθ, z 7→ T (z)u

)
is analytic. As U is dense in Xθ, by corollary 31,

we conclude
(
Σ+
θδ → L (Xθ) , z 7→ T (z)

)
is analytic.

5.4 Sectorial operators

Recall that if (T (t))t≥0 is a C0 semigroup on a complex Banach space X, then it has a closed,

densely defined generator A, and T (t) = etA is exponentially bounded:
∥∥etA∥∥ .¬t eCt for

some C > 0. Then ∀ζ ∈ {Re > C} : ζ ∈ ρ(A) and

1

ζ − A
x =

∫ ∞
0

e−ζtetAx dt ∀x ∈ X

(cf. [Tay11a, Appendix A, Proposition 9.2])

This means that the resolvent 1
ζ−A is the Laplace transform of the semigroup etA. This

naturally leads to the question when we can perform the inverse Laplace transform, to recover

the semigroup from the resolvent. This motivates the definition of sectorial operators, which

includes the Laplacian.

Unfortunately, there are wildly different definitions currently in use by authors. The

reader should study the definitions closely whenever they consult any literature on sectorial

operators (e.g. [Lun95; Haa06; Are+11; Eng00]).

Definition 39. Let A be an unbounded operator on a complex Banach space X. For

θ ∈ [0, π), we say A is

• sectorial of angle θ (A ∈ Sect(θ)) when


σ(A) ⊂ Σ−θ

∀ω ∈ [0, π − θ) : M(A, ω) := sup
λ∈Σ+

ω

∥∥ λ
λ−A

∥∥ <∞
• quasi-sectorial when ∃a ∈ R : A− a is sectorial.

• acutely sectorial when A ∈ Sect(θ) for some θ ∈ [0, π
2
)
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• acutely quasi-sectorial when ∃a ∈ R : A− a is acutely sectorial.

For r > 0, η ∈ (π
2
, π), we define the (counterclockwise-oriented) Mellin curve

γr,η = eiη[r,∞) ∪ e−iη[r,∞) ∪ rei[−η,η]

Remark. Depending on the author, “sectorial” can mean any of those four, and that is not

taking sign conventions into account (some authors want −∆ to be sectorial), as well as

whether A should be densely defined. The term “quasi-sectorial” is taken from [Haa06].

In particular, letting the spectrum be in the left half-plane means we agree with [Eng00;

Lun95] and disagree with [Are+11; McI86; Haa06]. This is simply a personal preference,

of being able to say “the Laplacian is sectorial”, or “generators of C0 analytic semigroups

are acutely sectorial”. Also, for bounded holomorphic calculus, et∆ morally comes from

(etz)z∈σ(∆) which is bounded in the left half-plane.

In keeping with tradition, here is the usual visualization:

Figure 5.1: Acutely sectorial operators
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Blackbox 40. A generates a C0, boundedly analytic semigroup on complex Banach space X

if and only if A is densely defined and acutely sectorial.

When that happens, ∃δ ∈
(
0, π

2

)
and η ∈ (π

2
, π) such that

(
etA
)
t≥0

extends to
(
eζA
)
ζ∈Σ+

δ ∪{0}

and

eζA =
1

2πi

∫
γr,η

eζz
1

z − A
dz ∀ζ ∈ Σ+

δ ,∀r > 0

Also ∀t > 0,∀k ∈ N1 : etA(X) ≤ D(A∞),
∥∥AketA∥∥ .¬t,¬k kk

tk
and ∂kt (etAx) = AketAx ∀x ∈

X.

Remark. This is the aforementioned inverse Laplace transform. The Mellin curve and the

resolvent estimate in the definition of sectoriality ensure sufficient decay for the integral to

make sense. As it is a complex line integral and the resolvent is analytic, the semigroup

becomes analytic.

A trivial consequence is that D(A∞) is dense in X and therefore a core.

When A is densely defined and acutely quasi-sectorial, a simple rescaling et(A−a) = e−taetA

implies
(
etA
)
t≥0

is a C0, analytic semigroup.

Proof. See [Eng00, Section II.4.a]. The curious figure kk

tk
comes from AketA =(

Ae
t
k
A
)k

.

Theorem 41 (Yosida’s half-plane criterion). A is acutely quasi-sectorial if and only if ∃C >

0 such that

• {Re > C} ⊂ ρ(A)

• sup
λ∈{Re>C}

∥∥ λ
λ−A

∥∥ <∞
Remark. This is how the Lp-analyticity of the heat flow is traditionally established. Yet

proving the resolvent estimate is nontrivial, as it is quite a refinement of elliptic estimates,
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so we choose not to do so. Interestingly, we will instead use this for the B
1
3
3,1-analyticity

of the heat flow in Section 9.3, though that case is especially easy since we already have

analyticity at the two endpoints L3 and W 1,3.

Proof. We only need to prove ⇐. Recall the proof of how ρ(A) is open: ∀λ ∈

ρ(A), B
(
λ,
∥∥ 1
λ−A

∥∥−1
)
⊂ ρ(A). Applying this allows us to open up {Re > C} and

get C+ Σ+
η ⊂ ρ(A) for some η ∈ (π

2
, π). By choosing η near π

2
, the resolvent estimate

is retained.

Definition 42. Let A be an unbounded operator on a Hilbert space X. Then A is called

• symmetric when 〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ D(A), or equivalently, A ⊂ A∗ (where A

and A∗ are identified with their graphs).

• self-adjoint when A = A∗. This implies σ(A) ⊂ R (cf. [Tay11a, Appendix A,

Proposition 8.5]).

• dissipative when Re 〈Ax, x〉 ≤ 0 ∀x ∈ D(A).

When A is dissipative, ∀λ ∈ {Re > 0},∀x ∈ D(A) : Re 〈(λ− A)x, x〉 ≥ Re 〈λx, x〉 so

‖(λ− A)x‖ ≥ Reλ ‖x‖.

Recall how ρ(A) is proved to be open: ∀λ ∈ ρ(A), B
(
λ,
∥∥ 1
λ−A

∥∥−1
)
⊂ ρ(A). Consequently,

if A is dissipative and ∃λ0 ∈ {Re > 0} ∩ ρ(A), we can conclude {Re > 0} ⊂ ρ(A).

Theorem 43 (Dissipative sectoriality). Assume X is a complex Hilbert space and A is an

unbounded, self-adjoint, dissipative operator on X. Then A is acutely sectorial of angle 0.

Remark. Though standard, this might be the most elegant theorem in the theory, and later

on will instantly imply the L2-analyticity of the heat flow in Section 8.1. The theorem can

also be proved by Euclidean geometry. When X is separable, we can also use the spectral

theorem for unbounded operators.
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Proof. As A is self-adjoint, C\R ⊂ ρ(A). By dissipativity, we conclude σ(A) ⊂

(−∞, 0]. Also by self-adjointness, Re 〈Ax, x〉 = 〈Ax, x〉 ≤ 0 ∀x ∈ D(A).

Arbitrarily pick θ ∈ (π
2
, π). We want to show

∥∥ z
z−A

∥∥ .θ 1 ∀z ∈ Σ+
θ .

Let x ∈ X and u = 1
z−Ax. As |〈u, x〉| ≤ ‖u‖X ‖x‖X , we want to show ‖u‖2

X .θ∣∣1
z
〈u, x〉

∣∣. Note that

1

z
〈u, x〉 =

1

z
〈u, (z − A)u〉 = 〈u, u〉 − 1

z
〈Au, u〉

WLOG assume ‖u‖X = 1. Then we want 1 .θ
∣∣1− 1

z
〈Au, u〉

∣∣. Note that

−〈Au, u〉 ≥ 0 and −1
z
〈Au, u〉 ∈ Σ+

θ . Then we are done since

∣∣∣∣1− 1

z
〈Au, u〉

∣∣∣∣ ≥ dist(0, 1 + Σ+
θ ) > 0.

By Euclidean geometry, we can even calculate dist(0, 1 + Σ+
θ ). We will not need

it though.
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CHAPTER 6

Scalar function spaces

Throughout this chapter, we work with complex-valued functions.

6.1 On Rn

Definition 44. Here we recall the various (inhomogeneous) function spaces which are par-

ticularly suitable for interpolation. They are defined as subspaces of S ′(Rn) with certain

norms being finite:

1. Lebesgue-Sobolev spaces: for m ∈ N0, p ∈ [1,∞]: ‖f‖Wm,p(Rn) ∼
∑m

k=0

∥∥∇kf
∥∥
p

where ∇kf ∈ Lp are tensors defined by distributions. It is customary to write Hm for

Wm,2.

2. Bessel potential spaces: for s ∈ R, p ∈ [1,∞]: ‖f‖Hs,p(Rn) ∼ ‖〈∇〉
s f‖p where

〈∇〉s = (1−∆)
s
2 is the Bessel potential.

3. Besov spaces: for s ∈ R, p ∈ [1,∞], q ∈ [1,∞]:

‖f‖Bsp,q(Rn) ∼ ‖P≤1f‖p +
∥∥∥N s ‖PNf‖p

∥∥∥
lqN>1

where PN and P≤N (for N ∈ 2Z) are the standard Littlewood-Paley projections (cf.

[Tao06, Appendix A]).

4. Triebel-Lizorkin spaces: for s ∈ R, p ∈ [1,∞), q ∈ [1,∞]: ‖f‖F sp,q(Rn) ∼ ‖P≤1f‖p +∥∥∥N s ‖PNf‖lqN>1

∥∥∥
p
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Remark. As there are multiple characterizations for the same spaces, we only define up to

equivalent norms. Of course, the topologies induced by equivalent norms are the same.

In the literature, “Fractional Sobolev spaces” likeW s,p could either refer toBs
p,p (Sobolev–

Slobodeckij spaces) or Hs,p. We shall avoid using the term at all. There are also some

delicate issues with F s
∞,q which we do not need to discuss here (cf. [Tri10, Section 2.3.4]).

Blackbox 45. Recall from harmonic analysis (cf.[Tri10, Section 2.5.6, 2.3.3, 2.11.2] and

[Lem02b, Part 1, Chapter 3.1]):

• Wm,p(Rn) = Hm,p(Rn) for m ∈ N0, p ∈ (1,∞).

• F s
p,2(Rn) = Hs,p(Rn) for s ∈ R, p ∈ (1,∞).

• Bm
p,1(Rn) ↪→ Wm,p(Rn) ↪→ Bm

p,∞(Rn) for m ∈ N0, p ∈ [1,∞].

• S(Rn) is dense in Wm,p(Rn), Bs
p,q(Rn) and F s

p,q(Rn) for m ∈ N0, s ∈ R, p ∈ [1,∞), q ∈

[1,∞).

• Bs
p,min(p,q)(Rn) ↪→ F s

p,q(Rn) ↪→ Bs
p,max(p,q)(Rn) for s ∈ R, p ∈ [1,∞), q ∈ [1,∞].

•
(
Bs
p,q (Rn)

)∗
= B−sp′,q′ (Rn) for s ∈ R, p ∈ [1,∞), q ∈ [1,∞).(

F s
p,q (Rn)

)∗
= F−sp′,q′ (Rn) for s ∈ R, p ∈ (1,∞), q ∈ (1,∞).

6.2 On domains

Definition 46. A C∞ domain Ω in Rn is defined as an open subset of Rn with smooth

boundary, and scalar function spaces are then defined on Ω. If Ω ⊂ S ⊂ Ω, let function

spaces on S implicitly refer to function spaces on Ω. This will make it possible to discuss

function spaces on, for example, Rn
+ ∩ BRn(0, 1), or compact Riemannian manifolds with

boundary.

Obviously, Sobolev spaces are still defined on domains by distributions. The big question

is finding a good characterization for Bs
p,q and F s

p,q on domains, when the Fourier transform
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is no longer available. This is among the main topics of Triebel’s seminal books. Let us

review the results:

Definition 47. Let Ω be either Rn, or the half-space Rn
+, or a bounded C∞ domain in Rn.

Then Bs
p,q(Ω) and F s

p,q(Ω) can simply be defined as the restrictions of Bs
p,q(Rn) and

F s
p,q(Rn) to Ω and

‖f‖Bsp,q(Ω) = inf{‖F‖Bsp,q(Rn) : F ∈ Bs
p,q(Rn), F |Ω = f} for s ∈ R; p, q ∈ [1,∞]

‖f‖F sp,q(Ω) = inf{‖F‖F sp,q(Rn) : F ∈ F s
p,q(Rn), F |Ω = f} for s ∈ R, p ∈ [1,∞), q ∈ [1,∞]

A more useful characterization is via BMD (ball mean difference). Let τhf(x) = f(x+h)

be the translation operator and ∆hf = τhf −f be the difference operator. Then for m ∈ N1,

we can define ∆m
h = (∆h)

m as the m-th difference operator. As we need to stay on the

domain Ω, define

V m(x, t) =
1

m
(B(x,mt) ∩ Ω− x) for x ∈ Ω, t > 0,m ∈ N1

So V m(x, t) ⊂ B(0, t), x + mV m(x, t) ⊂ Ω and ∆l
hf(x) is well-defined when h ∈ V m(x, t).

Also note for t ∈ (0, 1): |V m(x, t)| ∼Ω,m tn. Then by [Tri92, Section 3.5.3, 5.2.2]:

1. For m ∈ N1, p ∈ [1,∞], q ∈ [1,∞], s ∈ (0,m), r ∈ [1, p] :

‖f‖Bsp,q(Ω) ∼ ‖f‖p +

∥∥∥∥t−s ∥∥∥‖∆m
h f(x)‖Lrh( 1

tn
dh,Vm(x,t))

∥∥∥
Lpx(Ω)

∥∥∥∥
Lq( 1

t
dt,(0,1))

(6.1)

We carefully note here that m > s (the difference operator must be strictly higher-

order than the regularity), and that the variable t is small, which will play a big role

in Theorem 56. We also note that this is different from the classical characterization

via differences ([Tri10, Section 3.4.2], [Tri92, Section 1.10.3]) which analysts might be
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more familiar with:

‖f‖Bsp,q(Ω) ∼ ‖f‖p +
∥∥∥|h|−s ∥∥∆m

h,Ωf(x)
∥∥
Lpx(Ω)

∥∥∥
Lq( dh

|h|n ,B(0,1))

where ∆m
h,Ωf(x) is the same as ∆m

h f(x), but zero wherever undefined, and m ∈ N1, p ∈

(1,∞), q ∈ [1,∞], s ∈ (0,m).

2. For m ∈ N1, p ∈ [1,∞), q ∈ [1,∞], s ∈ (0,m), r ∈ [1, p] :

‖f‖F sp,q(Ω) ∼ ‖f‖p +

∥∥∥∥t−s ∥∥∥‖∆m
h f(x)‖Lrh(dh

tn
,Vm(x,t))

∥∥∥
Lq(dt

t
,(0,1))

∥∥∥∥
Lpx(Ω)

Blackbox 48 (Diffeomorphisms and smooth multipliers). Every diffeomorphism on Rn pre-

serves (under pullback) the topology of

• W k,p(Rn) for k ∈ N0, p ∈ [1,∞]

• Bs
p,q(Rn) for s ∈ R, p ∈ [1,∞], q ∈ [1,∞]

• F s
p,q(Rn) for s ∈ R, p ∈ [1,∞), q ∈ [1,∞]

Also on the same spaces, for φ ∈ C∞c (Rn), f 7→ φf is a bounded linear map .

Remark. This allows us to trivially define function spaces on compact Riemannian manifolds

with boundary via partitions of unity and give them unique topologies.

Proof. For W k,p it is trivial. For Bs
p,q and F s

p,q, see [Tri92, Section 4.3, 4.2.2] and

[Tri10, Section 2.8.2].

Blackbox 49 (Extension and trace). Let Ω be either the half-space Rn
+ or a bounded C∞

domain in Rn.

1. Stein extension: There exists a common (continuous linear) extension operator E :

W k,p(Ω) ↪→ W k,p(Rn) for all k ∈ N0, p ∈ [1,∞]
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2. Triebel extension: For any N ∈ N1, there exists a common (continuous linear)

extension operator EN such that

(a) EN : Bs
p,q(Ω) ↪→ Bs

p,q(Rn) for all |s| < N, p ∈ [1,∞], q ∈ [1,∞]

(b) EN : F s
p,q(Ω) ↪→ F s

p,q(Rn) for all |s| < N, p ∈ [1,∞), q ∈ [1,∞]

3. Trace theorems: Let n ≥ 2.

(a) For p ∈ [1,∞], q ∈ [1,∞], s > 1
p

: Bs
p,q(Ω) � B

s− 1
p

p,q (∂Ω) is a retraction (contin-

uous surjection with a bounded linear section as a right inverse).

(b) For p ∈ [1,∞), q ∈ [1,∞], s > 1
p

: F s
p,q(Ω)� B

s− 1
p

p,p (∂Ω) is a retraction.

(c) (Limiting case) For p ∈ [1,∞), B
1
p

p,1(Ω) � Lp(∂Ω) and W 1,1(Ω) � L1(∂Ω) are

continuous surjections.

Remark. It is important to note that we do not have the trace theorem for, say, B
1
3
3,2(Ω) (cf.

[Sch11, Section 3])

Proof.

1. See [Ste71, Section VI.3].

2. See [Tri92, Section 4.5, 5.1.3].

3. See [Tri10, Section 2.7.2, 3.3.3] and the remarks.

Corollary 50. Let Ω be either the half-space Rn
+ or a bounded C∞ domain in Rn.

• Fm
p,2(Ω) = Wm,p(Ω) for m ∈ N0, p ∈ (1,∞).

• Bm
p,1(Ω) ↪→ Wm,p(Ω) ↪→ Bm

p,∞(Ω) for m ∈ N0, p ∈ [1,∞].

• S(Ω) is dense in Wm,p(Ω), F s
p,q(Ω) and Bs

p,q(Ω) for m ∈ N0, s ∈ R, p ∈ [1,∞), q ∈

[1,∞).
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• Bs
p,min(p,q)(Ω) ↪→ F s

p,q(Ω) ↪→ Bs
p,max(p,q)(Ω) for s ∈ R, p ∈ [1,∞), q ∈ [1,∞]

Remark. When Ω is a bounded C∞ domain, S(Ω) = C∞(Ω).

Proof. Use Triebel and Stein extensions.

6.3 Holder & Zygmund spaces

Definition 51. Let Ω be either Rn, the half-space Rn
+ or a bounded C∞ domain in Rn.

Recall some L∞ type spaces:

• Holder spaces: for k ∈ N0, α ∈ (0, 1],

‖f‖Ck,α(Ω) = ‖f‖Ck(Ω) + max
|β|=k

[
Dβf

]
C0,α(Ω)

where [g]C0,α(Ω) = supx 6=y
|g(x)−g(y)|
|x−y|α

• Zygmund spaces: for s > 0, define Cs(Ω) = Bs
∞,∞(Ω) . Then for m ∈ N1, s ∈ (0,m):

‖f‖Cs(Ω) ∼ ‖f‖L∞(Ω) +

∥∥∥∥t−s ∥∥∥‖∆m
h f(x)‖L∞h (Vm(x,t))

∥∥∥
L∞x (Ω)

∥∥∥∥
L∞t ((0,1))

∼ sup |f |+ sup
0<|h|≤1,x∈Ω

∣∣∆m
h,Ωf(x)

∣∣
|h|s

It is well-known (cf. [Tri10, Section 2.2.2, 2.5.7, 2.5.12, 2.8.3]) that

• ‖f‖Ck+α(Ω) ∼ ‖f‖Ck + max|β|=k
∥∥Dβf

∥∥
Cα(Ω)

for k ∈ N0, α ∈ (0, 1]

• ‖f‖Ck+α(Ω) ∼ ‖f‖Ck,α for k ∈ N0, α ∈ (0, 1).

• ‖fg‖Cs(Ω) . ‖f‖Cs‖g‖Cs for s > 0.

Note that C0,1, C1 and C1 are different.
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6.4 Interpolation & embedding

Blackbox 52 (Interpolation). Let Ω be either Rn, the half-space Rn
+ or a bounded C∞

domain in Rn. Throughout the theorem, always assume θ ∈ (0, 1), sθ = (1− θ)s0 + θs1.

1.
(
Bs0
p,q0

(Ω), Bs1
p,q1

(Ω)
)
θ,q

= Bsθ
p,q(Ω) for s0 6= s1, sj ∈ R, p ∈ [1,∞], qj, q ∈ [1,∞].

(
F s0
p,q0

(Ω), F s1
p,q1

(Ω)
)
θ,q

= Bsθ
p,q(Ω) for s0 6= s1, sj ∈ R, p ∈ [1,∞), qj, q ∈ [1,∞].

2.
(
Bs0
p0,q0

(Ω), Bs1
p1,q1

(Ω)
)
θ,pθ

= Bsθ
pθ,pθ

(Ω) for s0 6= s1, sj ∈ R, pj ∈ [1,∞], qj ∈ [1,∞], 1
pθ

=

1−θ
p0

+ θ
p1

= 1−θ
q0

+ θ
q1

3.
[
Bs0
p0,q0

(Ω), Bs1
p1,q1

(Ω)
]
θ

= Bsθ
pθ,qθ

(Ω) and
[
F s0
p0,q0

(Ω), F s1
p1,q1

(Ω)
]
θ

= F sθ
pθ,qθ

(Ω)

for sj ∈ R, pj ∈ (1,∞), qj ∈ (1,∞), 1
pθ

= 1−θ
p0

+ θ
p1
, 1
qθ

= 1−θ
q0

+ θ
q1

.

4. [Lp0(Ω), Lp1(Ω)]θ = Lpθ(Ω) for pj ∈ [1,∞] , 1
pθ

= 1−θ
p0

+ θ
p1

.

5. (Wm0,p(Ω),Wm1,p(Ω))θ,q = Bmθ
p,q (Ω) for mj ∈ N0,m0 6= m1, p ∈ [1,∞], q ∈ [1,∞],

mθ = (1− θ)m0 + θm1.

Proof.

1. Extension operators and [Tri10, Section 2.4.2].

2. Extension operators and [BL76, Theorem 6.4.5].

3. Extension operators and [Tri10, Section 2.4.7].

4. Extension by zero and [BL76, Section 5.1.1]

5. Recall Bm
p,1(Ω) ↪→ Wm,p(Ω) ↪→ Bm

p,∞(Ω) for m ∈ N0, p ∈ [1,∞]. Then apply 1.
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Blackbox 53 (Embedding). Let Ω be a bounded C∞ domain in Rn. Assume ∞ > s0 >

s1 > −∞. Then

1. Bs0
p0,q0

(Ω) ↪→ Bs1
p1,q1

(Ω) is compact for pj ∈ [1,∞], qj ∈ [1,∞], 1
p1
> 1

p0
− s0−s1

n

F s0
p0,q0

(Ω) ↪→ F s1
p1,q1

(Ω) is compact for pj ∈ [1,∞), qj ∈ [1,∞], 1
p1
> 1

p0
− s0−s1

n

2. Bs0
p0,q

(Ω) ↪→ Bs1
p1,q

(Ω) is continuous for pj ∈ [1,∞], q ∈ [1,∞], 1
p1

= 1
p0
− s0−s1

n

F s0
p0,q0

(Ω) ↪→ F s1
p1,q1

(Ω) is continuous for pj ∈ [1,∞), qj ∈ [1,∞], 1
p1

= 1
p0
− s0−s1

n

Proof.

1. See [Tri10, Section 4.3.2, Remark 1] and [Tri10, Section 3.3.1].

2. See [Tri10, Section 3.3.1].

Corollary 54. Let Ω be a bounded C∞ domain in Rn. Then

1. For mj ∈ N0,m0 > m1, pj ∈ [1,∞], 1
p1
> 1

p0
− m0−m1

n
:

Wm0,p0(Ω) ↪→ Bm0
p0,∞(Ω) ↪→ Bm1

p1,1
(Ω) ↪→ Wm1,p1(Ω) is compact.

2. For mj ∈ N0,m0 > m1, p0 ∈ [1,∞], α ∈ (0, 1) , 0 > 1
p0
− m0−(m1+α)

n
:

Wm0,p0(Ω) ↪→ Bm0
p0,∞(Ω) ↪→ Bm1+α

∞,∞ (Ω) = Cm1,α(Ω) is compact.

3. For m ∈ N1, p ∈ (1,∞) : Wm,p(Ω) ↪→ Bm
p,∞(Ω) ↪→ B

1
p

p,1(Ω)� Lp(∂Ω) is compact.

Remark. These include the Rellich-Kondrachov embeddings found in [Ada03, Theorem 6.3],

so the Besov embeddings generalize Sobolev embeddings.
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6.5 Strip decay

Some notation first: let Ω be a C∞ domain in Rn or a compact Riemannian manifold with

or without boundary. Define Ω>r = {x ∈ Ω : dist(x, ∂Ω) > r} where dist(x, ∂Ω) = ∞ if

∂Ω = ∅. Similarly define Ω≥r,Ω<r,Ω[r1,r2].

When |Ω| <∞ and p ∈ [1,∞), we write

‖f‖Lp(Ω,avg) = ‖f(x)‖Lpx( dx
|Ω| ,Ω) =

(
−
∫

Ω

|f |p
) 1

p

=
1

|Ω|1/p

(∫
Ω

|f |p
) 1

p

By convention, we set ‖f‖L∞(Ω,avg) = ‖f(x)‖L∞x ( dx
|Ω| ,Ω) = ‖f‖L∞(Ω). The implicit measure is of

course the Riemannian measure. In such mean integrals, the domain becomes a probability

space.

Theorem 55 (Coarea formula).

1. For any h ∈ Rn, the translation semigroup (τth)t≥0 is a C0 semigroup on Wm,p(Rn),

Bs
p,q(Rn) and F s

p,q(Rn) for m ∈ N0, s ∈ R, p ∈ [1,∞), q ∈ [1,∞). Consequently, for

p ∈ [1,∞) and f ∈ B
1
p

p,1(Rn) ,

(
[0,∞)→ Lp(Rn−1), t 7→ τthf |Rn−1

)
is continuous and bounded by C ‖f‖

B
1
p
p,1(Rn)

for some C > 0.

2. Let Ω be a bounded C∞ domain in Rn (or a compact Riemannian manifold with bound-

ary). Let p ∈ [1,∞). Then for f ∈ B
1
p

p,1(Ω) and r > 0 small:

(a)
(

[0, r)→ R, ρ 7→ ‖f‖Lp(∂Ω>ρ)

)
is continuous and bounded by C ‖f‖

B
1
p
p,1(Ω)

for some

C > 0.

(b) ‖f‖Lp(Ω≤r)
∼¬r

∥∥∥‖f‖Lp(∂Ω>ρ)

∥∥∥
Lpρ((0,r))

(c) ‖f‖Lp(Ω≤r,avg) .¬r ‖f‖
B

1
p
p,1(Ω)

and ‖f‖Lp(Ω≤r,avg)

r↓0−−→ ‖f‖Lp(∂Ω,avg).
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(d) Let I ⊂ R be an open interval and f ∈ Lp(I → B
1
p

p,1(Ω)),then ‖f‖
LptB

1
p
p,1(Ω)

&¬r

‖f‖LptLp(Ω≤r,avg)

r↓0−−→ ‖f‖LptLp(∂Ω,avg).

3. Let p ∈ [1,∞), f ∈ W 1,p(Ω), show that ‖f‖Lp(Ω<r)
.¬r r ‖f‖W 1,p(Ω<r)

+ r
1
p ‖f‖Lp(∂Ω) for

r > 0 small.

Proof.

1. Use the density of S(Rn) and Lemma 11.

2.

(a) By partition of unity, geodesic normals, diffeomorphisms and the smallness

of r, reduce the problem to the half-space case, which is just 1).

(b) Approximate f in B
1
p

p,1 by C∞(Ω) functions. This is the well-known coarea

formula, which corresponds to Fubini’s theorem in the half-space case.

Note that ‖f‖Lp(∂Ω>ρ) is defined by the trace theorem. See [Cha06, Section

III.5] for more details.

(c) For r small, |Ω<r| ∼ |∂Ω| r and |∂Ω>r| ∼ |∂Ω|, so

‖f‖Lp(Ω≤r,avg) ∼
∥∥∥‖f‖Lp(∂Ω>ρ,avg)

∥∥∥
Lpρ((0,r),avg)

≤ sup
ρ<r
‖f‖Lp(∂Ω>ρ,avg)

and
∥∥∥‖f‖Lp(∂Ω>ρ,avg)

∥∥∥
Lpρ((0,r),avg)

r↓0−−→ ‖f‖Lp(∂Ω,avg) by continuity in a).

(d) Dominated convergence.

3. By the trace theorem, WLOG f ∈ C∞(Ω). By partition of unity and diffeo-

morphisms, WLOG Ω = Rn
+ = {(x, y) : x ∈ Rn−1, y ≥ 0}. Then

‖f‖Lp(Ω<r)
∼
∥∥∥‖f(x, y)‖Lpy([0,r])

∥∥∥
Lpx
.

∥∥∥∥∥∥∥‖∂yf(x, ρ)‖L1
ρ([0,y]) + |f(x, 0)|

∥∥∥
Lpy([0,r])

∥∥∥∥
Lpx

69



.

∥∥∥∥∥∥∥‖∂yf(x, ρ)‖Lpρ([0,y]) |y|
1
p′
∥∥∥
Lpy([0,r])

∥∥∥∥
Lpx

+ r
1
p ‖f(x, 0)‖Lpx

The first term .

∥∥∥∥‖∂yf(x, ρ)‖Lpρ([0,r])

∥∥∥|y| 1
p′
∥∥∥
Lpy([0,r])

∥∥∥∥
Lpx

. r ‖∂yf‖Lp(Ω<r)
. So we

are done.

Theorem 56 (Product estimate). Let M be a bounded C∞ domain in Rn (or a compact

Riemannian manifold with boundary). Assume r > 0 small, fr ∈ C∞(M) with support in

M<r. Then for p ∈ (1,∞), g ∈ B
1
p

p,1(M):

‖frg‖B1/p
p,1 (M)

.M,¬r ‖fr‖B1/p
∞,1(M)

‖g‖Lp(M<4r) + ‖fr‖L∞(M<r)‖g‖B1/p
p,1 (M)

Remark. The theory of product and commutator estimates (Kato-Ponce, Coifman-Meyer

etc.) has a long and rich history which we will not recount here (cf. [KP88; Tao07; GO14;

NT19]). However, for our intended application, fr has very small support and we want to use

‖g‖Lp(M<4r) instead of ‖g‖Lp(M) to control the product. Unfortunately there does not seem

to be much, if at all, literature on this issue. This theorem will only be used for Theorem 88,

and is not necessary for Onsager’s conjecture.

Proof. By diffeomorphisms, partition of unity, and geodesic normals, WLOG assume

M = Rn
+ with M<r = {x ∈ Rn : 0 ≤ xn < r}.

Recall ‖g‖Lp(xn=a) . ‖g‖B1/p
p,1 (Rn+)

∀0 ≤ a <∞ where ‖g‖Lp(xn=a) := ‖g‖Lp({x∈Rn:xn=a})

is defined by the trace theorem.

WLOG, assume ‖fr‖∞ ≤ 1. Recall the characterization of Besov spaces by ball

mean difference (BMD) and write V (x, t) for V 1(x, t) (see Equation (6.1)). Then

‖frg‖B1/p
p,1 (M)

∼ ‖frg‖Lp(M) +

∥∥∥∥t− 1
p
−n
∥∥∥‖∆h(frg)(x)‖L1

h(V (x,t))

∥∥∥
Lpx(M)

∥∥∥∥
L1
t (

dt
t
,(0,1))

The term ‖frg‖Lp(M) is easily bounded and thrown away. For the remaining term,

70



we use the identity ∆h(frg) = ∆hfrg + τhfr∆hg to bound it by

∥∥∥∥t− 1
p
−n
∥∥∥‖∆hfr(x)‖L1

h(V (x,t))g(x)
∥∥∥
Lpx(M)

∥∥∥∥
L1( dt

t
,(0,1))

+

∥∥∥∥t− 1
p
−n
∥∥∥‖fr‖∞ ‖∆hg(x)‖L1

h(V (x,t))

∥∥∥
Lpx(M)

∥∥∥∥
L1( dt

t
,(0,1))

The second term here is just ‖fr‖L∞‖g‖B1/p
p,1 (M)

, so throw it away. For the remaining

term, by using ‖·‖Lp(M) . ‖·‖Lp(M<4r)
+ ‖·‖Lp(M>4r)

and

∥∥∥‖∆hfr(x)‖L1
h(V (x,t))g(x)

∥∥∥
Lpx(M<4r)

.
∥∥∥‖∆hfr(x)‖L1

h(V (x,t))

∥∥∥
L∞x (M<4r)

‖g(x)‖Lpx(M<4r)

we are left with

‖fr‖B1/p
∞,1(M)

‖g‖Lp(M<4r) +

∥∥∥∥t− 1
p
−n
∥∥∥‖∆hfr(x)‖L1

h(V (x,t))g(x)
∥∥∥
Lpx(M>4r)

∥∥∥∥
L1( dt

t
,(0,1))

Throwing away the first term, we have arrived at the important estimate: what

happens on M>4r. It will turn out that the values of g on M>4r are well-controlled

by ‖g‖
B

1/p
p,1 (M)

. To begin, recall fr is supported on M<r and use the crude geometric

estimate

t−n‖∆hfr(x)‖L1
h(V (x,t)) =t−n‖fr(x+ h)‖L1

h(V (x,t))

.
|B(x, t) ∩M<r|
|B(x, t)|

.
r

xn
1t>xn−r ∀x ∈M>4r,∀t ∈ (3r, 1)

Note that t > 3r comes from t > xn − r > 4r − r. So we have used the “room” from

4r to get an O(r)-lower bound for t. By xn < r + t, we now only need to bound

∥∥∥∥∥t− 1
p

∥∥∥∥g(x)
r

xn

∥∥∥∥
Lpx(M[4r,r+t])

∥∥∥∥∥
L1( dt

t
,(3r,1))
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Obviously, we will integrate g on xn-slices (using p > 1):

∥∥∥∥g(x)
r

xn

∥∥∥∥
Lpx(M[4r,r+t])

= r

∥∥∥∥1

ρ
‖g‖Lp(xn=ρ)

∥∥∥∥
Lpρ([4r,r+t])

. ‖g‖
B

1/p
p,1 (M)

r

∥∥∥∥1

ρ

∥∥∥∥
Lpρ([4r,∞))

. r
1
p‖g‖

B
1/p
p,1 (M)

Then we are done (using p <∞):

r
1
p

∥∥∥t− 1
p

∥∥∥
L1( dt

t
,(3r,1))

=

∥∥∥∥(rt) 1
p

∥∥∥∥
L1( dt

t
,(3r,1))

=

∥∥∥∥∥
(

1

t

) 1
p

∥∥∥∥∥
L1( dt

t
,(3, 1

r
))

.¬r 1
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CHAPTER 7

Hodge theory

We stick closely to the terminology and symbols of [Sch95], with some careful exceptions.

7.1 The setting

Definition 57. Define a ∂-manifold as a paracompact, Hausdorff, metric-complete, ori-

ented, smooth manifold, with no or smooth boundary.

Note that this means BRn(0, 1) is not a ∂-manifold (as it is not complete), but BRn(0, 1)

is.

For the rest of this thesis, unless mentioned otherwise, we work on M which is a compact

Riemannian n-dimensional ∂-manifold (where n ≥ 2), and use ν to denote the outwards unit

normal vector field on ∂M .

As before, define M>r = {x ∈M : dist(x, ∂M) > r}, and similarly for M≥r,M<r,M[r1,r2]

etc.

For r > 0 small, the map (∂M × [0, r)→M<r, (x, t) 7→ expx(−tν)) is a diffeomorphism,

which we call a Riemannian collar. Then ν can be extended via geodesics to a smooth

vector field ν̃ which is of unit length near the boundary (cut off at some point away from

the boundary, but we only care about the area near the boundary).

Let vol stand for the Riemannian volume form orienting M and vol∂ for that of ∂M . Let

 : ∂M ↪→M be the smooth inclusion map and ι stand for interior product (contraction) of

differential forms. Note that for a smooth differential form ω, ∗ω only depends on ω
∣∣
∂M

, so

73



by abuse of notation, we can write

vol∂ = ∗(ιν vol)

where ιν vol ∈ Ωn−1 (M)
∣∣
∂M

. Additionally, the Stokes theorem reads
∫
M
dω =

∫
∂M

∗ω for

ω ∈ Ωn−1(M).

7.1.1 Vector bundles

Let F be a real vector bundle over M with a Riemannian fiber metric 〈·, ·〉F.

Define

• Γ(F) : the space of smooth sections of F

• Γc(F) : smooth sections with compact support (so Γc(F) = Γ(F) since M is compact)

• Γ00(F) : smooth sections with compact support in
◦
M (the interior of M).

Remark. We are following [Sch95], where Hodge theory is also formulated for non-compact

M . In the book, Γ0F is used instead of Γ00F to denote compact support in
◦
M . As that can

be confused with having zero trace, we opt to write Γ00F instead.

Then on Γc(F), define the dot product

〈〈σ, θ〉〉 =

∫
M

〈σ, θ〉F vol

and |σ|F =
√
〈σ, σ〉F. Then for p ∈ [1,∞), LpΓ(F) is the completion of Γc(F) under the

norm

‖σ‖LpΓ(F) = ‖|σ|F‖Lp(M)

Let ∇F be a connection on F. Then for σ ∈ Γ(F),∇Fσ ∈ Γ(T ∗M ⊗ F) and we can define
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the fiber metric

〈α⊗ σ, β ⊗ θ〉T ∗M⊗F = 〈α, β〉T ∗M 〈σ, θ〉F

In local coordinates (Einstein notation):

〈
∇Fσ,∇Fθ

〉
T ∗M⊗F =

〈
dxi ⊗∇F

i σ, dx
j ⊗∇F

jσ
〉
F =

〈
dxi, dxj

〉
T ∗M

〈
∇F
i σ,∇F

j θ
〉
F = gij

〈
∇F
i σ,∇F

j θ
〉
F

For higher derivatives, define the k-jet fiber metric

〈σ, θ〉JkF =
∑

0≤j≤k

〈(
∇F)(j)

σ,
(
∇F)(j)

θ
〉

(
⊗j T ∗M)⊗F

and |σ|JkF =
√
〈σ, σ〉JkF. Then we have Cauchy-Schwarz: |〈σ, θ〉JkF| ≤ |σ|JkF |θ|JkF .

Then for m ∈ N0, p ∈ [1,∞), we define the Sobolev space Wm,pΓ(F) as the completion

of Γc(F) under the norm

‖σ‖Wm,pΓ(F) = ‖|σ|JmF‖Lp(M)

It is worth noting that |σ|JmF, up to some constants, does not depend on ∇F. Indeed,

assume there is another connection ∇̃F, then ∇F − ∇̃F is tensorial:

(
∇F
X − ∇̃F

X

)
(fσ) = f

(
∇F
X − ∇̃F

X

)
(σ) =

(
∇F
fX − ∇̃F

fX

)
(σ)

for f ∈ C∞(M), σ ∈ Γ(F), X ∈ XM .

So there is a C∞(M)-multilinear map A : XM ⊗C∞(M) Γ(F)→ Γ(F) such that

(
∇F
X − ∇̃F

X

)
(σ) = A(X, σ).

By the compactness of M and the boundedness of A, we conclude |σ|JmF,∇F ∼ |σ|JmF,∇̃F .

Therefore the topology of Wm,pΓ(F) is uniquely defined.

Definition 58 (Distributions). Set DΓ (F) = Γ00 (F) as the space of test sections and
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D ′Γ (F) = (DΓ (F))∗ the space of distributional sections. As usual, in the category of

locally convex TVS, DΓ (F) is given Schwartz’s topology as the colimit of {Γ (F)K : K ⊂
◦
M compact}, where Γ (F)K := {σ ∈ Γ (F) : supp σ ⊂ K} has the Frechet C∞ topology.

7.1.2 Compatibility with scalar function spaces

We aim to show that the global definitions of Sobolev spaces in Subsection 7.1.1 are com-

patible with the definitions of Sobolev spaces by local coordinates.

Let (ψα, Uα)α be a finite partition of unity, where Uα is open in M and ψα is supported

in Uα. Normally in differential geometry, Uα is diffeomorphic to either Rn
+ ∩ BRn(0, 1) or

BRn(0, 1). However, it is problematic that the half-ball does not have C∞ boundary, so we

use some piecewise-linear functions and mollification to create a bounded C∞ domain.

Figure 7.1: Smoothing the corners

So WLOG, Uα is diffeomorphic to the closure of a bounded C∞ domain in Rn, and

scalar function spaces are well-defined on Uα (recall Definition 46). Note that suppψα might

intersect with ∂M .

For Uα chosen small enough, the bundle F on Uα is diffeomorphic to Uα×F (where F is

the typical fiber of F).
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Let
(
eαβ
)
β

be the coordinate sections on suppψα, and cut off such that suppψα ⊂
◦(

supp eαβ
)
⊂ supp eαβ ⊂ Uα. Let σ ∈ Γ (F) . Then there exist cαβ(σ) ∈ C∞c (Uα) such that

supp cαβ(σ) ⊂ suppψα, ψασ =
∑

β c
α
β(σ)eαβ and

σ =
∑
α,β

cαβ(σ)eαβ

Now, observe that |σ|F ∼
∑

α |ψασ|F and

|ψασ|F =

(∑
β,β′

cαβ(σ)cαβ′(σ)
〈
eαβ , e

α
β′

〉
F

) 1
2

∼

(∑
β

∣∣cαβ(σ)
∣∣2) 1

2

To see this, let x ∈ suppψα and
〈
eαβ , e

α
β′

〉
F (x) = Bββ′(x). ThenBx(u, v) :=

∑
β,β′ uβvβ′Bββ′(x)

is a positive-definite inner product, which induces a norm on a finite-dimensional vector

space, where all norms are equivalent. Then simply note Bx(u, u) is continuous in variable

x ∈ suppψα.

Also, in local coordinates, there are sγiβ ∈ C∞c (Uα) such that∇F
i e
α
β =

∑
γ s

γ
iβe

α
γ on suppψα.

Then

∇F
i (ψασ) =

∑
β

∂ic
α
β(σ)eαβ +

∑
β,γ

cαβ(σ)sγiβe
α
γ =

∑
β

dαiβ(σ)eαβ

where dαiβ(σ) = ∂ic
α
β(σ) +

∑
γ c

α
γ (σ)sβiγ.

So |σ|J1F ∼
∑

α,β |cαβ(σ)|+
∑

α,β,i |dαiβ(σ)| ∼
∑

α,β |cαβ(σ)|+
∑

α,β,i |∂icαβ(σ)|.

Similarly |σ|JmF ∼
∑

α,β

∑
k≤m

∣∣∇(k)cαβ(σ)
∣∣.

So for m ∈ N0, p ∈ [1,∞),

‖σ‖Wm,p ∼
∑
α,β

∥∥cαβ(σ)
∥∥
Wm,p(Uα,R)

Now define Sσ =
(
cαβ(σ)

)
α,β

and R
(
cαβ
)
α,β

=
∑

α,β c
α
βe

α
β . Then RS = 1 on Γ(F) and

P := SR is a projection on
∏

α,β C
∞(Uα). Note that P depends on the choice of partition
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of unity. By looking into the definitions of R and S, we can extend this to have P = SR as

a continuous projection on
∏

α,β L
1(Uα) and

∥∥∥P (cαβ)α,β∥∥∥∏
α,βW

m,p(Uα)
.
∑
α,β

∥∥cαβ∥∥Wm,p(Uα)
for m ∈ N0, p ∈ [1,∞] , cαβ ∈ Wm,p(Uα)

The keen reader should have noticed we never mentioned the case p = ∞ in Subsec-

tion 7.1.1 as we defined Wm,pΓ(F) by the completion of smooth sections, and C∞(M) is not

dense in Wm,∞(M). Now, however, by using local coordinates, we are justified in defining

Wm,pΓ(F) = {
∑

α,β c
α
βe

α
β : cαβ ∈ Wm,p(Uα)} for m ∈ N0, p ∈ [1,∞] with the norm defined (up

to equivalent norms) as

∥∥∥∥∥∑
α,β

cαβe
α
β

∥∥∥∥∥
Wm,pΓF

:=

∥∥∥∥∥S∑
α,β

cαβe
α
β

∥∥∥∥∥∏
α,βW

m,p(Uα)

Then Bs
p,qΓ (F) and F s

p,qΓ (F) can be defined similarly. In other words, for m ∈ N0, p ∈

[1,∞], q ∈ [1,∞], s ≥ 0:

• Wm,pΓ (F) ' P
∏

α,βW
m,p(Uα)

• Bs
p,qΓ (F) ' P

∏
α,β B

s
p,q(Uα)

• F s
p,qΓ (F) ' P

∏
α,β F

s
p,q(Uα), p 6=∞

By using Blackbox 48, we can show the Banach topologies of these spaces are uniquely defined

(independent of the choices of ψα, Uα). For convenience (such as working with Holder’s

inequality), we still use the Sobolev norms Wm,p (m ∈ N0, p ∈ [1,∞)) defined globally in

Subsection 7.1.1.

All theorems from chapter 6 that worked on bounded C∞ domains carry over to our

setting on M , mutatis mutandis. For instance, B
1
3
3,1Γ(F) � L3 Γ(F)|∂M is a continuous

surjection and

B
1
3
3,1Γ(F) =

(
L3Γ(F),W 1,3Γ(F)

)
1
3
,1
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Moreover, for p ∈ (1,∞), LpΓ(F) is reflexive. By Holder’s inequality, (LpΓ (F))∗ =

Lp
′
Γ (F) for p ∈ (1,∞).

7.1.3 Complexification issue

A small step which we omitted is complexification. As F is a real vector bundle, the previous

definitions only give Wm,pΓ (F) ' P
∏

α,βW
m,p(Uα,R) for m ∈ N0, p ∈ [1,∞]. In working

with real manifolds, differential forms/tensors and their dot products, we always assume real-

valued coefficients for sections, but whenever we need to use theorems involving complex

Banach spaces or the theory of function spaces, we assume an implicit complexification

step. Fortunately, no complications arise from complexification (see Chapter 10 for the full

reasoning), so for the rest of the thesis we can ignore this detail. When we want to be

explicit, we will specify the scalars we are using, e.g. RWm,pΓ(F) versus CWm,pΓ(F).

7.2 Differential forms & boundary

Unless mentioned otherwise, the metric is the Riemannian metric, and the connection is the

Levi-Civita connection.

For X ∈ XM, define nX = 〈X, ν〉 ν ∈ XM |∂M (the normal part) and tX = X|∂M−nX

(the tangential part). We note that tX and nX only depend on X
∣∣
∂M

, so t and n can be

defined on XM
∣∣
∂M

, and by abuse of notation, t (XM |∂M) ∼−→ X(∂M).

For ω ∈ Ωk (M) , define tω and nω by

tω(X1, ..., Xk) := ω(tX1, ..., tXk) ∀Xj ∈ XM, j = 1, ..., k

and nω = ω|∂M − tω. By abuse of notation, we similarly observe that t
(

Ωk (M)
∣∣
∂M

)
∼−→

Ωk(∂M) = ∗
(

Ωk (M)
∣∣
∂M

)
= ∗

(
Ωk (M)

)
.

Recall the musical isomorphism: X[
p(Yp) = 〈Xp, Yp〉 and

〈
ω]p, Yp

〉
= ωp(Yp) for p ∈
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M,ωp ∈ T ∗pM,Xp ∈ TpM,Yp ∈ TpM .

Recall the usual Hodge star operator ? : Ωk(M) ∼−→ Ωn−k(M), exterior derivative

d : Ωk(M) → Ωk+1(M), codifferential δ : Ωk(M) → Ωk−1(M), and Hodge Laplacian

∆ = − (dδ + δd) (cf. [Tay11a, Section 2.10] and [Sch95, Definition 1.2.2]).

We will often use Penrose abstract index notation (cf. [Wal84, Section 2.4]), which

should not be confused with the similar-looking Einstein notation for local coordinates,

or the similar-sounding Penrose graphical notation. In Penrose notation, we collect the

usual identities in differential geometry (cf. [Lee09]):

• For any tensor Ta1...ak , define (∇T )ia1...ak
= ∇iTa1...ak and div T = ∇iTia2...ak .

• (dω)ba1...ak
= (k + 1) ∇̃[bωa1...ak] ∀ω ∈ Ωk(M) where ∇̃ is any torsion-free connection.

• (δω)a1...ak−1
= −∇bωba1...ak−1

= −(divw)a1...ak−1
∀ω ∈ Ωk(M)

• (∇a∇b −∇b∇a)T
ij
kl = −Rabσ

iT σjkl − Rabσ
jT iσkl + Rabk

σT ijσl + Rabl
σT ijkσ for any

tensor T ijkl, where R is the Riemann curvature tensor and ∇ the Levi-Civita

connection. Similar identities hold for other types of tensors. When we do not care

about the exact indices and how they contract, we can just write the schematic

identity (∇a∇b −∇b∇a)T
ij
kl = R∗T. As R is bounded on compact M , interchanging

derivatives is a zeroth-order operation on M .

• For tensor Ta1...ak , define the Weitzenbock curvature operator

Ric(T )a1...ak = 2
k∑
j=1

∇[i∇aj ]Ta1...aj−1

i
aj+1...ak

=
∑
j

Raj
σTa1...aj−1σaj+1...ak −

∑
j 6=l

Raj
µ
al
σTa1...σ...µ...ak

where Rab = Raσb
σ is the Ricci tensor. The invariant form is

Ric(T )(X1, ...Xk) =
∑
a

(R(∂i, Xa)T ) (X1, ..., Xa−1, ∂
i, Xa+1, ..., Xk) ∀Xj ∈ XM
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where ∂i = gij∂j and R(∂i, ∂j) = ∇i∇j − ∇j∇i (Penrose notation). Note that

〈R(∂a, ∂b)∂d, ∂c〉 = Rabcd. Special cases include Ric(f) = 0 ∀f ∈ C∞(M) and Ric(X)a =

Ra
σXσ ∀X ∈ XM (justifying the notation Ric).

In local coordinates

Ric (ω) = dxj ∧
(
R(∂i, ∂j)ω · ∂i

)
∀ω ∈ Ωk(M),

where · stands for contraction (interior product). Then we have the Weitzenbock

formula:

∆ω = ∇i∇iω − Ric(ω) ∀ω ∈ Ωk(M)

where ∇i∇iω = tr(∇2ω) is also called the connection Laplacian, which differs from

the Hodge Laplacian by a zeroth-order term. The geometry of M and differential

forms are more easily handled by the Hodge Laplacian, while the connection Laplacian

is more useful in calculations with tensors and the Penrose notation.

• For tensors Ta1...ak and Qa1...ak , the tensor inner product is 〈T,Q〉 = Ta1...akQ
a1...ak .

But for ω, η ∈ Ωk(M), there is another dot product, called the Hodge inner product,

where

〈ω, η〉Λ =
1

k!
〈ω, η〉

So |ω|Λ =
√

1
k!
|ω| . Then we define 〈〈ω, η〉〉 =

∫
M
〈ω, η〉 vol and 〈〈ω, η〉〉Λ =

∫
M
〈ω, η〉Λ vol.

Recall that ω ∧ ?η = 〈ω, η〉Λ vol ∀ω ∈ Ωk(M),∀η ∈ Ωk(M). Also

〈〈dω, η〉〉Λ = 〈〈ω, δη〉〉Λ ∀ω ∈ Ωk
00(M), ∀η ∈ Ωk+1

00 (M)

So 〈·, ·〉Λ is more convenient for integration by parts and the Hodge star. Nevertheless,

as they only differ up to a constant factor, we can still define Wm,pΩk(M) (m ∈ N0, p ∈

[1,∞)) by 〈·, ·〉 as in Subsection 7.1. Finally, by the Weitzenbock formula and Penrose
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notation, we easily get the Bochner formula:

1

2
∆
(
|ω|2

)
=

1

2
∇i∇i (〈ω, ω〉) = 〈∆ω, ω〉+ |∇ω|2 + 〈Ric (ω) , ω〉

Remark. In [Sch95], the conventions are a bit different, with

∆ = (dδ + δd) ,∆Λ = −∇i∇i, RW = −Ric

and N the inwards unit normal vector field. Also the difference between 〈〈·, ·〉〉 and 〈〈·, ·〉〉Λ
is not made explicit in the book. We will not use such notation.

Lemma 59. Some basic identities:

1. ∀ω ∈ Ωk (M) : tω = 0 ⇐⇒ ∗ω = 0 . Similarly, nω = 0 ⇐⇒ ινω = 0.

2. (tX)[ = t(X[) ∀X ∈ XM

3. ∗tω = ∗ω, tω = ιν(ν
[∧ω), nω = ν[∧ινω, t(ω∧η) = tω∧tη ∀ω ∈ Ωk(M),∀η ∈ Ωl(M)

4. 〈〈tω, η〉〉Λ = 〈〈tω, tη〉〉Λ = 〈〈ω, tη〉〉Λ ∀ω, η ∈ Ωk(M)

5. t (?ω) = ? (nω), n (?ω) = ? (tω), ?dω = (−1)k+1 δ ?ω, ?δω = (−1)k d?ω, ?∆ω = ∆?ω

∀ω ∈ Ωk(M)

6. ∗tdω = ∗dω = d∂M∗ω = d∂M∗tω ∀ω ∈ Ωk(M)

7. Let ω ∈ Ωk(M). If tω = 0 then tdω = 0. If nω = 0 then nδω = 0.

8. ινω = t (ινω) = ινnω ∀ω ∈ Ωk(M)

9. ∗ (ω ∧ ?η) = 〈∗ω, ∗ινη〉Λ vol∂ ∀ω ∈ Ωk(M), ∀η ∈ Ωk+1(M)

Proof. We will only prove the last assertion. Observe that ∗ (vol) = 0 so vol |∂M =

n vol = ν[ ∧ ιν vol. Recall vol∂ = ∗(ιν vol) and tΩk ∼−→ ∗Ωk, so the problem is
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equivalent to proving

ν[ ∧ tω ∧ t ? η = 〈tω, tινη〉Λ vol on ∂M

Simply observe that tινη = ινη and

ν[ ∧ tω ∧ t (?η) = ν[ ∧ tω ∧ ?nη =
〈
ν[ ∧ tω,nη

〉
Λ

vol

=
〈
ν[ ∧ tω, ν[ ∧ ινη

〉
Λ

vol = 〈tω, ινη〉Λ vol

Theorem 60 (Integration of tensors and forms by parts).

1. For tensors Ta1...ak and Qa1...ak+1
,

∫
M

∇i

(
Ta1...akQ

ia1...ak
)

=

∫
M

∇iTa1...akQ
ia1...ak +

∫
M

Ta1...ak∇iQ
ia1...ak

=

∫
∂M

νiTa1...akQ
ia1...ak

In other words,
∫
M
〈∇T,Q〉 vol +

∫
M
〈T, divQ〉 vol =

∫
∂M
〈ν ⊗ T,Q〉 vol∂.

2. For p ∈ (1,∞), ω ∈ RW 1,pΩk, η ∈ RW 1,p′Ωk+1 :

〈〈dω, η〉〉Λ = 〈〈ω, δη〉〉Λ + 〈〈∗ω, ∗ινη〉〉Λ (7.1)

where 〈〈∗ω, ∗ινη〉〉Λ =
∫
∂M
〈∗ω, ∗ινη〉Λ vol∂.

3. For p ∈ (1,∞), ω ∈ RW 2,pΩk(M), η ∈ RW 1,p′Ωk(M) :

D(ω, η) = 〈〈−∆ω, η〉〉Λ + 〈〈∗ινdω, ∗η〉〉Λ − 〈〈
∗δω, ∗ινη〉〉Λ (7.2)

where D(ω, η) := 〈〈dω, dη〉〉Λ + 〈〈δω, δη〉〉Λ is called the Dirichlet integral.
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Proof.

1. Let X i = Ta1...akQ
ia1...ak . Then it is just the divergence theorem.

2. By approximation, it is enough to prove the smooth case.

∫
∂M

〈∗ω, ∗ινη〉Λ vol∂ =

∫
∂M

∗ (ω ∧ ?η) =

∫
M

d (ω ∧ ?η)

=

∫
M

dω ∧ ?η + (−1)k
∫
M

ω ∧ d ? η = 〈〈dω, η〉〉Λ − 〈〈ω, δη〉〉Λ

3. Trivial.

7.3 Boundary conditions and potential theory

Definition 61. We define:

• Ωk
D(M) = {ω ∈ Ωk(M) : tω = 0} (Dirichlet boundary condition)

• Ωk
homD(M) = {ω ∈ Ωk(M) : tω = 0, tδω = 0} (relative Dirichlet boundary condi-

tion)

• Ωk
N(M) = {ω ∈ Ωk(M) : nω = 0} (Neumann boundary condition)

• Ωk
homN(M) = {ω ∈ Ωk(M) : nω = 0,ndω = 0} (absolute Neumann boundary

condition)

• Ωk
0 (M) = Ωk

D (M) ∩ Ωk
N (M) (trace-zero boundary condition)

• Hk(M) = {ω ∈ Ωk(M) : dω = 0, δω = 0} (harmonic fields)

• Hk
D(M) = Hk(M) ∩ Ωk

D(M) (Dirichlet fields)

• Hk
N(M) = Hk(M) ∩ Ωk

N(M) (Neumann fields)
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Remark. In writing the function spaces, we omit M when there is no possible confusion.

Note that Ωk
00 (compact support in

◦
M) is different from Ωk

0.

We can readily extend these definitions to less regular spaces by replacing ω ∈ Ωk with, for

example, ω ∈ B
1
3
3,1Ωk. Boundary conditions are defined via the trace theorem, and therefore

require some regularity. For example, B
1
3
3,1Ωk

N makes sense, while L2Ωk
N and H1Ωk

homN do

not make sense.

Observe that L2-cl
(
Ωk
N

)
(closure in the L2 norm) is just L2Ωk since Ωk

00 is dense in

L2Ωk.

Most of these symbols come from [Sch95]. Note that in [Sch95], the difference between

L2X and L2-cl(X) (where X is some space) is not made explicit.

Function spaces of type p =∞ are problematic since the smooth members are not dense

(see Corollary 50). For instance, Wm,∞Ωk 6= Wm,∞-cl(Ωk) in general.

A special case is when k = 0: Ω0
N(M) = Ω0(M) = C∞(M) and Ω0

homD(M) = Ω0
D(M).

Indeed, the conditions for Ω0
homD and Ω0

homN are what analysts often call “Dirichlet” and

“Neumann” boundary conditions respectively.

In fluid dynamics, the condition for Ω1
N is also called “impermeable”, while Ω1

0 is “no-

slip”. On the other hand, Ω1
homN is often given various names, such as “Navier-type”, “free

boundary” or “Hodge” [MM09a; Mon13; BAE16]. The consensus, however, seems to be that

Ω1
homN should be called the “absolute boundary condition” [Wu91; Hsu; COQ09; Bau17;

Ouy17], which explains our choice of naming.

Lemma 62. We have Hodge duality:

• ? : Ωk
D(M) ∼−→ Ωn−k

N (M), ? : Ωk
homD(M) ∼−→ Ωn−k

homN(M), ? : Hk
D(M) ∼−→ Hn−k

N (M).

• ∇X(?ω) = ? (∇Xω), |?ω|Λ = |ω|Λ for ω ∈ Ωk, X ∈ XM .

• For m ∈ N0, p ∈ [1,∞), we have ? : Wm,pΩk
D(M) ∼−→ Wm,pΩn−k

N (M),

? : Wm,pΩk
homD(M) ∼−→ Wm,pΩn−k

homN(M).
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We stress that harmonic fields are harmonic forms, i.e. ∆ω = 0, but the converse is

not true in general.

Theorem 63 (4 versions). Let ω ∈ Ωk(M) be a harmonic form. Then ω is a harmonic field

if either

1. tω = 0,nω = 0 (trace-zero)

2. tω = 0, tδω = 0 (relative Dirichlet)

3. nω = 0,ndω = 0 (absolute Neumann)

4. tδω = 0,ndω = 0 (Gaffney)

Proof. Trivial to show D(ω, ω) = 0 via integration by parts.

Remark. The four conditions correspond to four different versions of the Poisson equation

∆ω = η (cf. [Sch95, Section 3.4]), and four ways we can make ∆ self-adjoint. In this thesis,

we will just focus on the absolute Neumann Laplacian and the absolute Neumann heat flow.

Gaffney, one of the earliest figures in the field, showed that the Laplacian corresponding to

the 4th boundary condition is self-adjoint and called it the “Neumann problem” (cf. [Gaf54;

Con54]). We, however, feel the name “Neumann” should only be used when its Hodge dual

is Dirichlet-related (for instance, the Dirichlet potential vs the Neumann potential, to be

introduced shortly). Therefore, absent a better rationalization or convention, we see no

reason not to honor the name of the mathematician.

In the same vein, some authors consider the 1st condition to be the “Dirichlet boundary

condition” (following the intuition from the scalar case, where the trace and the tangential

part coincide). By the same reasoning as above, we choose not to do so in this thesis.

Blackbox 64 (Dirichlet/Neumann fields). Hk
D(M) and Hk

N(M) are finite-dimensional, and

therefore complemented in RWm,pΩk(M) ∀m ∈ N0, p ∈ [1,∞].
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Remark. All norms on Hk
N are equivalent, so we do not need to specify which norm on Hk

N

we are using at any time.

These are very nice spaces, yet they often prevent uniqueness for boundary value prob-

lems. We almost always want to work on their orthogonal complements, where Hodge theory

truly shines.

Proof. See [Sch95, Theorem 2.2.6].

Corollary 65. ∀m ∈ N0, p ∈ [1,∞], there is a continuous projection Pm,p : RWm,pΩk � Hk
N

such that

• it is compatible across different Sobolev spaces, i.e. Pm0,p0(ω) = Pm1,p1(ω) if ω ∈

Wm0,p0Ωk ∩Wm1,p1Ωk.

• 1 − Pm,p : RWm,pΩk � Wm,p
(
Hk
N

)⊥
:= {ω ∈ Wm,pΩk : 〈〈ω, φ〉〉Λ = 0 ∀φ ∈ Hk

N} is

also a compatible projection.

Proof. Define the continuous linear map Im,p : Wm,pΩk →
(
Hk
N

)∗
where

Im,pω(φ) = 〈〈ω, φ〉〉Λ ∀φ ∈ H
k
N ,∀ω ∈ Wm,pΩk

Then note that (φ1, φ2) 7→ 〈〈φ1, φ2〉〉Λ is a positive-definite inner product on Hk
N , so

Im,p
∣∣
HkN

: Hk
N
∼−→
(
Hk
N

)∗
. We also observe that Im,p

∣∣
HkN

does not depend on m, p,

so we can define the continuous inverse J :
(
Hk
N

)∗ ∼−→ Hk
N . Then we can just set

Pm,p = J ◦ Im,p. As we defined Im,p by 〈〈·, ·〉〉Λ, Pm,p is compatible across different

m, p.

Remark. From now on, for ω ∈ Wm,pΩk, we can decompose ω = PNω + PN⊥ω where

PNω = ωHkN ∈ H
k
N and PN⊥ω = ω

(HkN)
⊥ ∈ Wm,p

(
Hk
N

)⊥
. The decomposition is natural,

i.e. continuous and compatible across different Sobolev spaces. By Hodge duality, similarly

define PD and PD⊥ . Note PN⊥W 1,pΩk
N ≤ W 1,pΩk

N and PN⊥W 2,pΩk
homN ≤ W 2,pΩk

homN .
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Blackbox 66 (Potential theory). For m ∈ N0, p ∈ (1,∞), we define the injective Neu-

mann Laplacian

∆N : PN⊥Wm+2,pΩk
homN → PN⊥Wm,pΩk

as simply ∆ under domain restriction. Then (−∆N)−1 is called the Neumann potential,

which is bounded (and actually a Banach isomorphism). ∆N can also be thought of as an

unbounded operator on PN⊥Wm,pΩk.

By Hodge duality, we also define the Dirichlet counterparts ∆D and (−∆D)−1.

Proof. See [Sch95, Section 2.2, 2.3]

Remark. Because duality is involved, we stay away from p ∈ {1,∞}. Amazingly enough, this

is the only elliptic estimate we will need for the rest of the thesis. One could say the whole

theory is a functional analytic consequence of elliptic regularity (much like how the Nash

embedding theorem is a consequence of Schauder estimates, following Günther’s approach

[Tao16]).

There are many identities which might seem complicated, but are actually trivial to check

and helpful for grasping the intuition behind routine operations in Hodge theory, as well as

its rich algebraic structure.

Definition. We write dc as d restricted to W 1,pΩk
D and δc as δ restricted to W 1,pΩk

N for

p ∈ (1,∞). We will prove in Section 8.4 that they are essentially adjoints of δ and d. Let us

note that ∆N = − (dδc + δcd) on PN⊥W 2,pΩk
homN .

Corollary 67. Let p ∈ (1,∞). Some basic properties:

1. PD⊥δ = δ and PN⊥d = d on W 1,pΩk.

PN⊥δc = δc on W 1,pΩk
N and PD⊥dc = dc on W 1,pΩk

D.

2. (−∆D)−1 δ = δ (−∆D)−1 on PD⊥W 1,pΩk.

(−∆N)−1 d = d (−∆N)−1 on PN⊥W 1,pΩk.
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(−∆N)−1 δc = δc (−∆N)−1 on PN⊥W 1,pΩk
N .

(−∆D)−1 dc = dc (−∆D)−1 on PD⊥W 1,pΩk
D.

3. δ = δPD⊥ = δPN⊥ and d = dPD⊥ = dPN⊥ on W 1,pΩk.

4. dδd = d (δd+ dδ) = d (−∆).

δdδ (−∆D)−1 = δ on PD⊥W 1,pΩk and dδd(−∆N)−1 = d on PN⊥W 1,pΩk.

5. d
(
W 2,pΩk

homN

)
= d

(
W 2,pΩk

N

)
∩W 1,pΩk+1

N , δ
(
W 2,pΩk

homD

)
= δ

(
W 2,pΩk

D

)
∩W 1,pΩk−1

D .

d
(
W 3,pΩk

homN

)
≤ W 2,pΩk+1

homN , δ
(
W 3,pΩk

homD

)
≤ W 2,pΩk−1

homD.

Remark. A good mnemonic device is that ∆N is formed by d and δc, so (−∆N)−1 commutes

with d and δc.

Proof.

1. Integration by parts.

2. Just check that the expressions are well-defined by using 1).

3. This comes from 1 = PD + PD⊥ and so forth.

4. We simply note that dd = 0 and δδ = 0.

5. This follows from the definitions of W 2,pΩk
homN and W 2,pΩk

homD.

7.4 Hodge decomposition

We proceed differently from [Sch95], by using a more algebraic approach in order to derive

some results not found in the book. There will be a lot of identities gathered through

experience, so their appearances can seem unmotivated at first. Hence, as motivation, let’s

look at an example of a problem we will need Hodge theory for: is it true that W 2,pΩk
homN

is dense in W 1,pΩk
N for p ∈ (1,∞)? The problem is more subtle than it seems, and it is

89



true that the heat flow, once constructed, will imply the answer is yes. But we do not yet

have the heat flow, and it turns out this problem is needed for the W 1,p-analyticity of the

heat flow itself. This foundational approximation of boundary conditions can be done easily

once we understand Hodge theory and the myriad connections between different boundary

conditions.

Let ω ∈ Wm,pΩk (m ∈ N0, p ∈ (1,∞)). In one line, the Hodge-Morrey decomposition

algorithm is

ω = dcδ (−∆D)−1PD⊥ω + δcd (−∆N)−1PN⊥ω + ωHk

where PD⊥ω = ω
(HkD)

⊥ ,PN⊥ω = ω
(HkN)

⊥ are defined as in Corollary 65, and ωHk is sim-

ply defined by subtraction. This is the heart of the matter, and the rest is arguably just

bookkeeping.

Note that if ω ∈ W 1,pΩk, dω = dδd (−∆N)−1PN⊥ω+dωHk = dPN⊥ω+dωHk = dω+dωHk .

So dωHk = 0 and similarly δωHk = 0, justifying the notation. A mild warning is that we do

not yet have W 1,pHk = W 1,p-cl
(
Hk
)
.

As we will keep referring to this decomposition, let us define

• P1 = dcδ (−∆D)−1PD⊥. Then P1 = dc (−∆D)−1 δPD⊥ = dc (−∆D)−1 δ on W 1,pΩk.

• P2 = δcd (−∆N)−1PN⊥ Then P2 = δc (−∆N)−1 d on W 1,pΩk.

• P3 = 1− P1 − P2.

We observe that the decomposition 1 = P1 +P2 +P3 is natural (continuous and compatible

across different Sobolev spaces) since all the operations are natural. In particular, Pj (for

j ∈ {1, 2, 3}) is a zeroth-order operator, and if ω is smooth, so is Pjω by Sobolev embedding.

Recall that tω = 0 implies tdω = 0, while nω = 0 implies nδω = 0 (Lemma 59).

Theorem 68 (Smooth decomposition). Some basic properties of Pj on Ωk:

90



1. P1δ = 0 on Ωk+1 and P2d = 0 on Ωk−1.

P1 = P2 = 0 on Hk.

2. P3δc = 0 on Ωk+1
N and P3dc = 0 on Ωk−1

D .

3. PjPi = δijPi. Therefore Ωk =
⊕3

j=1Pj
(
Ωk
)
.

4. P1

(
Ωk
)

= dc
(
Ωk−1
D

)
= dcPD⊥

(
Ωk−1
D

)
= dcδPD⊥

(
Ωk

homD

)
≤ Ωk

D.

P2

(
Ωk
)

= δc
(
Ωk+1
N

)
= δcPN⊥

(
Ωk+1
N

)
= δcdPN⊥

(
Ωk

homN

)
≤ Ωk

N .

P3

(
Ωk
)

= Hk.

5. Ωk =
⊕3

j=1Pj
(
Ωk
)

is 〈〈·, ·〉〉Λ-orthogonal decomposition.

Proof.

1. On Ωk+1, P1δ = dc (−∆D)−1 δδ = 0.

Let η ∈ Hk. Then P1η = dc (−∆D)−1 δη = 0.

2. We just need P2δc = δc on Ωk+1
N . Indeed, P2δc = δcd (−∆N)−1 δcPN⊥ =

δcdδc (−∆N)−1PN⊥ = δcPN⊥ = δc.

3. By 1), P2P1 = P1P2 = P1P3 = P2P3 = 0. By 2), P3P2 = P3P1 = 0. Then

observe P2 = (P1 + P2 + P3)P2 = P2
2 . Similarly, P2

1 = P1 and P2
3 = P3.

4. Recall P3

(
Ωk
)
≤ Hk. It becomes an equality since P2

(
Hk
)

= P1

(
Hk
)

= 0.

Similarly, obviously P1

(
Ωk
)

= dcδPD⊥
(
Ωk

homD

)
≤ dc

(
Ωk−1
D

)
. It becomes an

equality since P2d = 0 and P3dc = 0.

5. Trivial.

To extend this to Sobolev spaces, we will need to use distributions and duality.

Corollary 69 (Sobolev version). Some basic properties of Pj on Wm,pΩk (m ∈ N0, p ∈

(1,∞)):
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1. 〈〈Pjω, φ〉〉Λ = 〈〈ω,Pjφ〉〉Λ ∀ω ∈ W
m,pΩk,∀φ ∈ Ωk

00, j = 1, 2, 3

2. P1δ = 0 on Wm+1,pΩk+1 and P2d = 0 on Wm+1,pΩk−1.

3. P1 = P2 = 0 on Wm+1,pHk and Wm,p-cl
(
Hk
)
.

4. P3δc = 0 on Wm+1,pΩk+1
N and P3dc = 0 on Wm+1,pΩk−1

D .

5. PjPi = δijPi. Therefore Wm,pΩk =
⊕3

j=1Pj
(
Wm,pΩk

)
.

6. P3

(
Wm,pΩk

)
= Wm,pHk for m ≥ 1 and Wm,p-cl

(
Hk
)

for m ≥ 0.

P2

(
Wm,pΩk

)
= δc

(
Wm+1,pΩk+1

N

)
= δcdPN⊥

(
Wm+2,pΩk

homN

)
.

P1

(
Wm,pΩk

)
= dc

(
Wm+1,pΩk−1

D

)
= dcδPD⊥

(
Wm+2,pΩk

homD

)
.

7. tP1 = 0 and nP2 = 0 on Wm+1,pΩk.

8. For p ≥ 2, Wm,pΩk =
⊕3

j=1Pj
(
Wm,pΩk

)
is 〈〈·, ·〉〉Λ-orthogonal decomposition.

9. Wm,p-cl
(
dc
(
Ωk−1
D

))
= dc

(
Wm+1,pΩk−1

D

)
.

Wm,p-cl
(
δc
(
Ωk+1
N

))
= δc

(
Wm+1,pΩk+1

N

)
.

Wm+1,p-cl
(
Hk
)

= Wm+1,pHk.

10. d = d (P1 + P2 + P3) = dP2 = dPN⊥ = PN⊥d on Wm+1,pΩk.

Consequently, ndP2

(
Wm+2,pΩk

homN

)
= nd

(
Wm+2,pΩk

homN

)
= 0, and

P2

(
Wm+2,pΩk

homN

)
≤ Wm+2,pΩk

homN .

We also have

d
(
Wm+1,pΩk−1

)
= dP2

(
Wm+1,pΩk−1

)
= d

(
Wm+1,pΩk−1

N

)
= dPN⊥

(
Wm+1,pΩk−1

N

)
.

11. δc = P2δc on Wm+1,pΩk
N and

P2

(
Wm+1,pΩk

)
= δc

(
Wm+2,pΩk+1

N

)
= δcdPN⊥

(
Wm+3,pΩk

homN

)
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= δcPN⊥
(
Wm+2,pΩk+1

homN

)
.

Remark. Note that Lp-cl
(
Hk
)

(p ∈ (1,∞)) is defined, while LpHk is not.

Proof.

1. Observe P1ω ∈ dc
(
Wm+1,pΩk−1

D

)
,P2ω ∈ δc

(
Wm+1,pΩk+1

N

)
,P3ω ∈ Wm,p-cl

(
Hk
)
.

Simply show dc
(
Wm+1,pΩk−1

D

)
⊥ δc

(
Ωk+1
N

)
, Wm,p-cl

(
Hk
)
⊥ dc

(
Ωk−1
D

)
, and so

forth via integration by parts.

2. Wm+1,pΩk+1 = Wm+1,p-cl
(
Ωk+1

)
.

3. The case Wm,p-cl
(
Hk
)

is trivial. For ω ∈ Wm+1,pHk,

〈〈P1ω, φ〉〉Λ = 〈〈ω,P1φ〉〉Λ = 0 ∀φ ∈ Ωk
00

since Wm+1,pHk ⊥ dc(Ω
k−1
D ) (integration by parts).

4. Let ω ∈ Wm+1,pΩk+1
N . Then 〈〈P3δcω, φ〉〉Λ = 〈〈δcω,P3φ〉〉Λ = 0 ∀φ ∈ Ωk

00 since

δc
(
Wm+1,pΩk+1

N

)
⊥ Hk.

The rest is trivial.

To connect Hodge decomposition to fluid dynamics, we will need the Friedrichs decom-

position:

P3 =
(
PN + PN⊥

)
P3 = PN3 + Pex

3

where

• PN3 := PNP3 = PN = P3PN (as PN⊥P1 = P1 and PN⊥P2 = P2)

• Pex
3 := PN⊥P3 = P3PN⊥

We similarly define PD3 ,Pco
3 via Hodge duality. Note that ex and co stand for “exact” and

“coexact” (and we will see why shortly).
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Then we define P := PN3 + P2 as the Leray projection. Then 1 = (Pex
3 + P1) +(

PN3 + P2

)
= (Pex

3 + P1) + P is called the Helmholtz decomposition.

Theorem 70 (Friedrichs decomposition). Basic properties of PN3 ,Pex
3 on Wm,pΩk (m ∈

N0, p ∈ (1,∞)):

1. Pex
3 = dδ(−∆N)−1Pex

3 on Wm,pΩk.

2. Pex
3

(
Wm,pΩk

)
= Wm,p-cl

(
Hk
)
∩ d
(
Wm+1,pΩk−1

)
.

3. (Pex
3 + P1)

(
Wm,pΩk

)
= d

(
Wm+1,pΩk−1

)
= d

(
Wm+1,pΩk−1

N

)
= dPN⊥

(
Wm+1,pΩk−1

N

)
.

4. P
(
Wm,pΩk

)
=
(
PN3 + P2

) (
Wm,pΩk

)
= Ker

(
δc
∣∣
Wm,qΩkN

)
when m ≥ 1 and Wm,p-cl

(
Ker

(
δc
∣∣
ΩkN

))
when m ≥ 0.

5. (P3 + P2)
(
Wm,pΩk

)
= Ker

(
δ
∣∣
Wm,qΩk

)
when m ≥ 1.

(P3 + P2)
(
Wm,pΩk

)
= Wm,p-cl

(
Ker

(
δ
∣∣
Ωk

))
when m ≥ 0.

6. PN⊥P = P2 = PPN⊥ on Wm,pΩk.

Therefore dP = dPN⊥P = dP2 = d = dPN⊥ = PN⊥d on Wm+1,pΩk.

7. P
(
Wm+2,pΩk

homN

)
≤ P2

(
Wm+2,pΩk

homN

)
⊕Hk

N ≤ Wm+2,pΩk
homN .

Proof.

1. On Ωk: δd(−∆N)−1Pex
3 = δ(−∆N)−1dPex

3 = 0, so Pex
3 = (−∆)(−∆N)−1Pex

3 =

dδ(−∆N)−1Pex
3 . Then we are done by density.

2. PN3 d = P3PNd = 0 as PN⊥d = d.

3. P2d = 0 and PN3 d = 0.

4. We first prove the smooth version. Let ω ∈ Ker
(
δc
∣∣
ΩkN

)
. Then 〈〈P1ω,P1ω〉〉Λ =

〈〈P1ω, ω〉〉Λ = 0 as Ker
(
δc
∣∣
ΩkN

)
⊥ d

(
Ωk−1

)
, so P1ω = 0. Similarly, Pex

3 ω = 0.

Then
(
PN3 + P2

)
Ωk = Ker

(
δc
∣∣
ΩkN

)
.
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For Wm,pΩk, the case Wm,p-cl
(

Ker
(
δc
∣∣
ΩkN

))
is trivial. Then assume m ≥ 1

and ω ∈ Ker
(
δc
∣∣
Wm,qΩkN

)
. We can show P1ω = Pex

3 ω = 0 as distributions since

Ker
(
δc
∣∣
Wm,qΩkN

)
⊥ d(Ωk−1).

5. Just note that Ker
(
δ
∣∣
Wm,qΩk

)
⊥ dc(Ω

k−1
D ) and argue similarly.

6. Easy to check that PN⊥PN3 = PN3 PN⊥ = 0 and PN⊥P2 = P2PN⊥ = P2.

7. Trivial.

Remark. Similar results for PD3 ,Pco
3 hold by Hodge duality. When M has no boundary,

Hk = Hk
D = Hk

N so P3 = PN3 = PD3 .

A simple consequence of the Hodge-Helmholtz decomposition is that

Ker
(
δc
∣∣
ΩkN

)
δc
(
Ωk+1
N

) =

(
PN3 + P2

) (
Ωk
)

P2 (Ωk)
= PN3

(
Ωk
)

=
(P3 + P1)

(
Ωk
)

(Pex
3 + P1) (Ωk)

=
Ker

(
d
∣∣
Ωk

)
d (Ωk−1)

This can be rewritten as Hk
a (M) = Hk

N (M) = Hk
dR (M,d) (Hodge isomorphism theo-

rem) where Hk
dR (M,d) :=

Ker

(
d

∣∣∣∣
Ωk

)
d(Ωk−1)

is called the k-th de Rham cohomology group,

and Hk
a (M) :=

Ker

(
δc

∣∣∣∣
Ωk
N

)
δc(Ωk+1

N )
is called the k-th absolute de Rham cohomology group. In

particular, βk (M) := dimHk
N (M) = dimHk

dR (M,d) is called the k-th Betti number of

M . Note that the Hodge dual of Hn−k
a (M) is Hk

r (M) :=

Ker

(
dc

∣∣∣∣
Ωk
D

)
dc(Ωk−1

D )
, the k-th relative de

Rham cohomology group.

We can also define right inverses (potentials) for d, δ, δc, dc (see Section 9.1).

In many ways, Hodge theory reduces otherwise complicated boundary value problems into

purely algebraic calculations. A standard Hodge-theoretic calculation related to the Euler

equation is given later in Section 9.2. We can also derive a general form of the Poincare
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inequality:

Corollary 71 (Poincare-Hodge-Dirac inequality). Let ω ∈ PN⊥Wm+1,pΩk
N (m ∈ N0, p ∈

(1,∞)). Then

‖ω‖Wm+1,p ∼ ‖dω‖Wm,p + ‖δcω‖Wm,p

and we have a bijection

PN⊥Wm+1,pΩk
N

d⊕δc−−→ d
(
Wm+1,pΩk

)
⊕ δc

(
Wm+1,pΩk

N

)
= (P1 + Pex

3 ) (Wm,pΩk+1)⊕ P2(Wm,pΩk−1)

In particular, (d⊕ δc)−1 (dη, δcυ) = P2 (η − υ) + υ ∀η, υ ∈ PN⊥Wm+1,pΩk
N .

Proof. Observe that

• PN⊥Wm+1,pΩk
N

d⊕δc−−→ dPN⊥
(
Wm+1,pΩk

N

)
⊕ δcPN⊥

(
Wm+1,pΩk

N

)
is a continuous

injection.

• dPN⊥
(
Wm+1,pΩk

N

)
= d

(
Wm+1,pΩk

)
= (P1 + Pex

3 ) (Wm,pΩk+1) by Corollary 69.

• δcPN⊥
(
Wm+1,pΩk

N

)
= δc

(
Wm+1,pΩk

N

)
= P2(Wm,pΩk−1) by Corollary 67 and

69.

By open mapping, we only need to prove d⊕ δc (the injective Hodge-Dirac oper-

ator) is surjective: let η, υ ∈ PN⊥Wm+1,pΩk
N . We want to find ω ∈ PN⊥Wm+1,pΩk

N

such that dω = dη, δcω = δcυ. By the restriction δcω = δcυ, the freedom is in choosing

ϑ := ω − υ ∈ PN⊥Ker
(
δc
∣∣
Wm+1,pΩkN

)
= PN⊥P(Wm+1,pΩk) = P2(Wm+1,pΩk)

such that dω = dυ + dϑ = dη. In other words, we want ϑ such that dϑ = d (η − υ)

and P2ϑ = ϑ. Then we are done by setting ϑ = P2 (η − υ).

Remark. We note that a less general version of the Poincare inequality was used in [Sch95]
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to establish the potential estimates in Blackbox 66 as well as Blackbox 64. A more general

version [Sch95, Lemma 2.4.10] deals with the case p ≥ 2. Our version here only requires

p ∈ (1,∞).

Among other things, the inequality allows the following approximation of boundary con-

ditions, which will play a crucial role for the W 1,p-analyticity of the heat flow in Section 8.3.

Corollary 72. Let p ∈ (1,∞) .

1. W 1,pΩk
N = d

(
W 2,pΩk−1

homN

)
⊕Ker

(
δc
∣∣
W 1,pΩkN

)
and Ωk

N = d
(
Ωk−1

homN

)
⊕Ker

(
δc
∣∣
ΩkN

)
.

2. Lp-cl
(
d
(
Ωk

homN

))
= d

(
W 1,pΩk

N

)
= d

(
W 1,pΩk

)
.

3. W 1,p-cl
(
W 2,pΩk

homN

)
= W 1,pΩk

N .

Proof.

1. Because PW 1,pΩk ≤ W 1,pΩk
N , we conclude PW 1,pΩk = PW 1,pΩk

N . Meanwhile,

(P1 + Pex
3 )W 1,pΩk

N = (1− P)W 1,pΩk
N ≤ W 1,pΩk

N , so (P1 + Pex
3 )W 1,pΩk

N ≤

d
(
W 2,pΩk−1

N

)
∩W 1,pΩk

N = d
(
W 2,pΩk−1

homN

)
.

2. Lp-cl
(
(P1 + Pex

3 ) Ωk+1
N

)
= (P1 + Pex

3 )Lp-cl
(
Ωk+1
N

)
= (P1 + Pex

3 )LpΩk+1.

3. We are done if W 1,p-cl
(
PN⊥Ωk

homN

)
= PN⊥W 1,pΩk

N .

Recall P2

(
Ωk

homN

)
≤ Ωk

homN and δc
(
Ωk
N

)
= δcPN⊥

(
Ωk

homN

)
by Corollary 69,

so by the formula of (d⊕ δc)−1 from Corollary 71:

(d⊕ δc)−1 [d (Ωk
homN

)
⊕ δc

(
Ωk
N

)]
= (d⊕ δc)−1 [dPN⊥ (Ωk

homN

)
⊕ δcPN⊥

(
Ωk

homN

)]
= PN⊥Ωk

homN

So

W 1,p-cl
(
PN⊥Ωk

homN

)
= (d⊕ δc)−1 [Lp-cl

(
d
(
Ωk

homN

))
⊕ Lp-cl

(
δc
(
Ωk
N

))]

97



= (d⊕ δc)−1 [d (W 1,pΩk
)
⊕ δc

(
W 1,pΩk

N

)]
= PN⊥W 1,pΩk

N

7.5 An easy mistake

Let p ∈ (1,∞) , ω ∈ Ωk
homN . In other words, nω = 0 and ndω = 0. Using intuition from

Euclidean space, it is tempting to conclude ∇νω = 0, but this is not true in general.

We will not use Penrose notation but work in local coordinates on ∂M , with ∂1, ...∂n−1

for directions on ∂M and ∂n for the direction of ν̃. Let {a1, ..., ak} ⊂ {1, ..., n− 1}. Observe

that ndω = 0 implies

0 = (dω)na1...ak
= ∂nωa1...ak +

∑
i

(±1)∂aiωna1...âi...ak = ∂nωa1...ak

since ωna1...âi...ak = 0 on ∂M . Then recall ∂nωa1...ak = (∇nω)a1...ak
+ Γ ∗ ω where Γ ∗ ω is

schematic for some terms with the Christoffel symbols. As Γ is bounded on M , we conclude

|t∇νω| . |ω| and |t∇νω|Λ . |ω|Λ on ∂M . Then

ινd
(
|ω|2

)
= ∇ν 〈ω, ω〉 = 2 〈∇νω, ω〉 = 2 〈t∇νω, ω〉

so |∇ν (|ω|2)| . |ω|2 on ∂M . This will be important in establishing the Lp-analyticity of the

heat flow in Section 8.2.
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CHAPTER 8

Heat flow

As promised, we now obtain a simple construction of the heat flow. We still work on the

same setting as in Subsection 7.1.

8.1 L2-analyticity

Recall that ∆N is an unbounded operator on RPN⊥L2Ωk and (−∆N)−1 is bounded. It is

trivial to check that (−∆N)−1 is symmetric, therefore self-adjoint. Then ∆N is also self-

adjoint. Then for ω ∈ D(∆N) = PN⊥H2Ωk
homN : 〈〈∆Nω, ω〉〉Λ = −D(ω, ω) ≤ 0. So ∆N is

dissipative. Therefore, by a complexification argument , ∆C
N is acutely sectorial of angle 0

by Theorem 43 and
(
et∆

C
N

)
t≥0

is a C0, analytic semigroup on CPN⊥L2Ωk. By Blackbox 40,

we can derive some basic facts about et∆N :

• For m ∈ N1, D(∆m
N) ≤ PN⊥H2mΩk and ‖∆m

Nω‖L2 ∼ ‖ω‖H2m ∼ ‖ω‖D(∆m
N) ∀ω ∈

D (∆m
N) by potential estimates. Recall that

(
et∆N

)
t≥0

on (D(∆m
N), ‖·‖H2m) is also a C0

semigroup by Sobolev tower (Theorem 34).

• For t > 0, by either the spectral theorem (with a complexification step) or semigroup

theory, et∆N is a self-adjoint contraction on RPN⊥L2Ωk, with image in D(∆∞N ) ≤

PN⊥Ωk by the analyticity of
(
es∆

C
N

)
s≥0

.

• ∀ω ∈ PN⊥L2Ωk,
(
(0,∞)→ PN⊥Ωk, t 7→ et∆Nω

)
is C∞-continuous by Sobolev tower.

Let m ∈ N1, then ∂mt
(
et∆Nω

)
= ∆m

Ne
t∆Nω and

∥∥et∆Nω
∥∥
H2m ∼

∥∥∆m
Ne

t∆Nω
∥∥
L2 .¬m,¬t

mm

tm
‖ω‖L2
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Next we define the non-injective Neumann Laplacian ∆̃N as an unbounded operator on

L2Ωk with D(∆̃N

m
) = D(∆m

N) ⊕ Hk
N and ∆̃N

m
= ∆m

N ⊕ 0 ∀m ∈ N1. By using either the

spectral theorem or checking the definitions manually, ∆̃N is also a self-adjoint, dissipative

operator. Then we also get an analytic heat flow, and ∆̃N = ∆N ⊕ 0HkN with et∆̃N =

et∆N ⊕ IdHkN .

Recall that for m ∈ N0, p ∈ (1,∞) , ω ∈ Wm,pΩk : ‖ω‖Wm,p ∼
∥∥PN⊥ω∥∥

Wm,p +
∥∥PNω∥∥HkN

where we do not need to specify the norm on Hk
N as they’re all equivalent. Then the previous

results for ∆N can easily be extended to ∆̃N :

• For m ∈ N1, D(∆̃N

m
) ≤ H2mΩk and ∀ω ∈ D(∆̃N

m
):
∥∥∥∆̃N

m
ω
∥∥∥
L2
∼
∥∥PN⊥ω∥∥

H2m

and ‖ω‖
D(∆̃N

m
)
∼ ‖ω‖H2m . Recall

(
et∆̃N

)
t≥0

on D(∆̃N

m
) is also an a C0 semigroup.

(Sobolev tower)

• For t > 0, by either the spectral theorem (with a complexification step) or semigroup

theory, et∆̃N is a self-adjoint contraction on RL2Ωk, with image in D
(

∆̃N

∞)
≤ Ωk.

• ∀ω ∈ L2Ωk,
(

(0,∞)→ Ωk, t 7→ et∆̃Nω
)

is C∞-continuous by Sobolev tower. Let m ∈

N1, then ∂mt

(
et∆̃Nω

)
= ∆̃N

m
et∆̃Nω and

∥∥∥et∆̃Nω
∥∥∥
H2m
∼
∥∥∥et∆̃NPN⊥ω

∥∥∥
H2m

+
∥∥PNω∥∥HkN .¬m,¬t mm

tm
∥∥PN⊥ω∥∥

L2 +
∥∥PNω∥∥HkN

By these estimates, we conclude that et∆̃N
t→∞−−−→ PN in L

(
L2Ωk

)
(Kodaira projection).

In fact, this is how Hodge decomposition was done historically.

8.2 Lp-analyticity

Though we could use the same symbols ∆N and ∆̃N for the Neumann Laplacian on Lp, that

can create confusion regarding the domains. Let them still refer to the unbounded operators

on RPN⊥L2Ωk and RL2Ωk as before. However, et∆N and et∆̃N are compatible across all Lp

spaces (as we will see).
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First we note that Ωk
00 ≤ D

(
∆̃N

∞)
so D

(
∆̃N

∞)
is dense in Lp ∀p ∈ (1,∞).

Then for Lp-analyticity, we make a Gronwall-type argument (adapted from [IO14, Ap-

pendix A] to handle the boundary).

Theorem 73 (Local boundedness). For p ∈ (1,∞) , s ∈ (0, 1) and u ∈ D
(

∆̃N

∞)
:

∥∥∥es∆̃Nu
∥∥∥
p
.p ‖u‖p

Proof. By duality and the density of D
(

∆̃N

∞)
in L2∩Lp, WLOG assume p ≥ 2. By

complex interpolation (with a complexification step), WLOG assume p = 4K where

K is a large natural number.

Let U(s) = es∆Nu, so ∂sU = ∆U and

∂s
(
|U |4K

)
= 2K|U |4K−2 〈2∆U,U〉
Bochner

= 2K|U |4K−2
(
∆
(
|U |2

)
− 2 |∇U |2 − 2 〈Ric (U) , U〉

)
So

∂s

∫
M

|U |4K ≤ 2K

∫
M

|U |4K−2∆
(
|U |2

)
+OM,K

(∫
M

|U |4K
)

Let f = |U |2. As U ∈ D
(

∆̃N

∞)
≤ Ωk

homN , |∇νf | . f on ∂M by Section 7.5.

By Gronwall, we just need
∫
M
f 2K−1∆f .

∫
M
f 2K (pseudo-dissipativity). Simply

integrate by parts:

〈〈
∆f, f 2K−1

〉〉
= −

〈〈
df, d

(
f 2K−1

)〉〉
+
〈〈
∇νf, f

2K−1
〉〉

= −(2K − 1)

∫
M

|df |2 f 2K−2 +OM
(∫

∂M

f 2K

)
= −2K − 1

K2

∫
M

∣∣d (fK)∣∣2 +OM
(∫

∂M

f 2K

)
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Let F = |f |K . So for any ε > 0, we want Cε > 0 such that
∫
∂M

F 2 ≤ ε
∫
M
|dF |2 +

Cε
∫
M
F 2. This follows from Ehrling’s inequality, and the fact thatH1(M)→ L2(∂M)

is compact.

So
(
et∆̃N

)
t≥0

can be uniquely extended by density to L2Ωk+LpΩk and et∆̃N

∣∣∣
LpΩk

∈ L
(
LpΩk

)
.

With a complexification step and an appropriate core chosen by Sobolev embedding, local

boundedness on Lp implies Lp-analyticity for all p ∈ (1,∞) by Theorem 37.

Let Ap be the generator of
(
et∆̃N

)
t≥0

on LpΩk. By the definition of generator, Ap = ∆̃N on

D
(

∆̃N

∞)
. In our terminology, AC

p is acutely quasi-sectorial. But we want a more concrete

description of D(Ap).

Lemma 74. Let p ∈ (1,∞). Then
(
D(Ap), ‖·‖D(Ap)

)
∼
(
W 2,pΩk

homN , ‖·‖W 2,p

)
and

W 2,p-cl
(
D
(

∆̃N

∞))
= W 2,pΩk

homN

Proof. Observe that ∀u ∈ D
(

∆̃N

∞)
: PN⊥u ∈ D(∆∞N ) and

‖u‖D(Ap) = ‖u‖p +
∥∥∥∆̃Nu

∥∥∥
p
∼
∥∥PNu∥∥HkN +

∥∥PN⊥u∥∥
p

+
∥∥∆NPN⊥u

∥∥
p

∼
∥∥PNu∥∥HkN +

∥∥PN⊥u∥∥
W 2,p ∼ ‖u‖W 2,p

Then ‖·‖D(Ap) ∼ ‖·‖W 2,p since D
(

∆̃N

∞)
is a dense core in

(
D(Ap), ‖·‖D(Ap)

)
(see

Lemma 36). This also implies D(Ap) = W 2,p-cl
(
D
(

∆̃N

∞))
= W 2,p-cl (D (∆∞N )) ⊕

Hk
N .

Recall that D (∆∞N ) ≤
(
PN⊥W 2,pΩk

homN , ‖·‖W 2,p

) ∆N
∼−→
(
PN⊥LpΩk, ‖·‖Lp

)
. Since

Lp-cl (∆ND (∆∞N )) = Lp-cl (D (∆∞N )) = PN⊥LpΩk, we conclude W 2,p-cl (D (∆∞N )) =

(−∆N)−1 (PN⊥LpΩk
)

= PN⊥W 2,pΩk
homN and we are done.
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So for p ∈ (1,∞) , s ∈ (0, 1) and u ∈ LpΩk:
∥∥∥es∆̃Nu

∥∥∥
W 2,p
. 1

s
‖u‖p. That implies

∥∥∥es∆̃Nu
∥∥∥
W 1,p
.

1√
s
‖u‖p

by complex interpolation (with complexification), using [CLp,CW 2,p] 1
2

=
[
CF 0

p,2,CF 2
p,2

]
1
2

=

CF 1
p,2.

Obviously, D
(
A∞p
)

= {ω ∈ Ωk
homN : ∆mω ∈ W 2,pΩk

homN ∀m ∈ N0} = D
(

∆̃N

∞)
by

Sobolev embedding.

Additionally, by the density of D
(
A∞p
)

in Lp, we can show by approximation that

〈〈
et∆̃Nω, η

〉〉
Λ

=
〈〈
ω, et∆̃Nη

〉〉
Λ
∀ω ∈ LpΩk, η ∈ Lp′Ωk, p ∈ (1,∞) , t ≥ 0

This implies that et∆̃NPN⊥ = PN⊥et∆̃N on Wm,pΩk ∀m ∈ N0,∀p ∈ (1,∞).

8.3 W 1,p-analyticity

We first observe that

W 1,p-cl
(
D
(

∆̃N

∞))
= W 1,p-cl

(
W 2,p-cl

(
D
(

∆̃N

∞)))
= W 1,p-cl

(
W 2,pΩk

homN

)
= W 1,pΩk

N

by Corollary 72 and Lemma 74.

Because we will soon be dealing with differential forms of different degrees, define Ω(M) =⊕n
k=0 Ωk(M) as the graded algebra of differential forms where multiplication is the wedge

product. We simply define Wm,pΩ(M) =
⊕n

k=0 W
m,pΩk(M), and similarly for Bs

p,q, F
s
p,q

spaces. Spaces like ΩD (M), Ω00 (M) or Wm,pΩhomN are also defined by direct sums. The

dot products 〈·, ·〉Λ and 〈〈·, ·〉〉Λ are also definable as the sum from each degree. Also define

H(M) =
⊕n

k=0Hk(M).

As an example, ω ∈ L2Ω (M) and η ∈ L2Ω (M) would imply ω ∧ η ∈ L1Ω (M). We also
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recover integration by parts:

〈〈dω, η〉〉Λ = 〈〈ω, δη〉〉Λ + 〈〈∗ω, ∗ινη〉〉Λ ∀ω ∈ RW 1,pΩ (M) ,∀η ∈ RW 1,p′Ω (M) , p ∈ (1,∞)

Then we can set D
(

∆̃N

)
= H2ΩhomN and D (Ap) = W 2,pΩhomN (p ∈ (1,∞)), and

previous results such as sectoriality or the Poincare inequality still hold true in this new

degree-independent framework, mutatis mutandis.

Theorem 75 (Commuting with derivatives I). Let p ∈ (1,∞) .

1. δc
(
D
(
A∞p
))
≤ D

(
A∞p
)

and d
(
D
(
A∞p
))
≤ D

(
A∞p
)

2. Let ω ∈ D(Ap) = W 2,pΩhomN and D ∈ {d, δc, δcd, dδc}. Then for t > 0 : Det∆̃Nω =

et∆̃NDω.

Proof.

1. Let η ∈ D
(
A∞p
)
. Obviously dη ∈ W 2,pΩhomN , so d∆mη ∈ W 2,pΩhomN ∀m ∈

N0.

Observe that nη = 0 implies nδη = 0, and ndη = 0 implies nδdη = 0. But

n∆η = 0 so ndδη = 0 and we conclude δcη ∈ W 2,pΩhomN . Similarly, δc∆
mη ∈

W 2,pΩhomN ∀m ∈ N0.

2. Let t > 0. Note that Det∆̃Nω ∈ D
(
A∞p
)
.

Then eh∆̃N−1
h

et∆̃Nω
C∞−−→
h↓0

∆̃Ne
t∆̃Nω so ∂t

(
Det∆̃Nω

)
= D∆̃Ne

t∆̃Nω = ∆̃NDe
t∆̃Nω.

Therefore

eh∆̃NDet∆̃Nω = De(t+h)∆̃Nω ∀t > 0,∀h > 0

Note that De(t+h)∆̃Nω
Lp−→
t↓0

Deh∆̃Nω since e(t+h)∆̃Nω
C∞−−→
t↓0

eh∆̃Nω.

On the other hand, eh∆̃NDet∆̃Nω
Lp−→
t↓0

eh∆̃NDω as et∆̃Nω
W 2,p

−−−→
t↓0

ω (why we need

ω ∈ D(Ap)).

So Deh∆̃Nω = eh∆̃NDω ∀h > 0.
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We can extend this via complexification. For ω ∈ CW 2,pΩhomN ,D
Cet∆̃

C
Nω = et∆̃

C
NDCω ∀t > 0.

By Lp-analyticity, ∃α = α(p) > 0 such that
(
ez∆̃

C
N

)
z∈Σ+

α∪{0}
is a C0, locally bounded,

analytic semigroup on CLpΩ. Then by the identity theorem, DCez∆̃
C
Nω = ez∆̃

C
NDCω ∀z ∈ Σ+

α .

Theorem 76 (W 1,p-analyticity).
(
ez∆̃

C
N

)
z∈Σ+

α∪{0}
is a C0, analytic semigroup on CW 1,pΩN .

Proof. Note that
(
D(AC

p ), ‖·‖W 2,p

)
is dense in (CW 1,pΩN , ‖·‖W 1,p) by Corollary 72.

So by Lemma 35, we just need to show
(
ez∆̃

C
N

)
z∈Σ+

α∪{0}
⊂ L (CW 1,pΩN) and is

locally bounded. So it is enough to show

∥∥∥ez∆̃C
Nu
∥∥∥
W 1,p
. ‖u‖W 1,p ∀u ∈ D

(
AC
p

)
,∀z ∈ D ∩ Σ+

α

Consider PN⊥u, then we only need
∥∥∥ez∆̃C

Nu
∥∥∥
W 1,p
. ‖u‖W 1,p ∀u ∈ PN⊥D

(
AC
p

)
,∀z ∈

D ∩ Σ+
α .

Recall et∆̃NPN⊥ = PN⊥et∆̃N from Section 8.2. By the Poincare inequality (Corol-

lary 71):

∥∥∥ez∆̃C
Nu
∥∥∥
W 1,p

∼
∥∥∥dCez∆̃C

Nu
∥∥∥
p

+
∥∥∥δCc ez∆̃C

Nu
∥∥∥
p

=
∥∥∥ez∆̃C

NdCu
∥∥∥
p

+
∥∥∥ez∆̃C

N δCc u
∥∥∥
p

.
∥∥dCu∥∥

p
+
∥∥δCc u∥∥p ∼ ‖u‖W 1,p ∀u ∈ PN⊥D

(
AC
p

)
, ∀z ∈ D ∩ Σ+

α

Corollary 77. Let ω ∈ W 1,pΩN and D ∈ {d, δc}. Then for t > 0 : Det∆̃Nω = et∆̃NDω.

Proof. Same as before, but with et∆̃Nω
W 1,p

−−−→
t↓0

ω.

Let A1,p be the generator of
(
et∆̃N

)
t≥0

on W 1,pΩN . Then A1,p and Ap agree on D
(
A2
p

)
by the

definition of generators, so A1,p = ∆̃N on D
(

∆̃N

∞)
. By potential estimates, ‖·‖D(A1,p) ∼
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‖·‖W 3,p on D
(

∆̃N

∞)
and therefore on ‖·‖W 3,p -cl

(
D
(

∆̃N

∞))
= D (A1,p). By the same

argument as in Lemma 74, D (A1,p) = (−∆N)−1 (PN⊥W 1,pΩN

)
⊕HN ≥ D

(
∆̃N

∞)
.

Theorem 78 (Compatibility with Hodge-Helmholtz). Let m ∈ N0, p ∈ (1,∞), t > 0. By

Corollary 77 and Corollary 69:

• et∆̃Nd (Wm+1,pΩN) = d
(
et∆̃NWm+1,pΩN

)
≤ d (ΩN) = d (Ω).

• et∆̃N δc (Wm+1,pΩN) = δc

(
et∆̃NWm+1,pΩN

)
≤ δc (ΩN) = δc (ΩhomN).

As et∆̃N = 1 on HN , we finally conclude et∆̃N (Pex
3 + P1) = (Pex

3 + P1) et∆̃N , et∆̃NP2 =

P2e
t∆̃N and et∆̃NPN3 = PN3 et∆̃N = PN3 on Wm,pΩ (M). Also, et∆̃NP = Pet∆̃N on Wm,pΩ (M)

where P is the Leray projection.

By the definition of generators,

∆̃N (Pex
3 + P1) = (Pex

3 + P1) ∆̃N ,PN3 ∆̃N = ∆̃NPN3 = 0,P2∆̃N = ∆̃NP2 = ∆̃NP = P∆̃N

on D(Ap) = W 2,pΩhomN .

We briefly note that in the no-boundary case, we have Ω = ΩN = ΩhomN , ∆̃N = ∆̃D = ∆,

et∆P1 = P1e
t∆ on Wm,pΩ, P1∆ = ∆P1 on W 2,pΩ.

Remark. The operator P∆̃N , with the domain PD(Ap), is a well-defined unbounded oper-

ator on PLpΩ. By our arguments, its complexification is acutely sectorial, and P∆̃N =

∆̃N , e
tP∆̃N = et∆̃N on PLpΩ. Other authors call it the Stokes operator corresponding to

the “Navier-type” / “free” boundary condition [Miy80; Gig82; MM09a; MM09b; BAE16].

8.4 Distributions and adjoints

Like the Littlewood-Paley projection, the heat flow does not preserve compact supports in
◦
M . So applying the heat flow to a distribution is not well-defined. This can be a problem as
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we will need to heat up the nonlinear term in the Euler equation for Onsager’s conjecture.

For the Littlewood-Paley projection, we fixed it by introducing tempered distributions. That

in turn motivates the following definition.

Definition 79. Let I ⊂ R be an open interval. Define

• DΩk = Ωk
00 = colim{

(
Ωk

00 (K) , C∞ topo
)

: K ⊂
◦
M compact} as the space of test

k-forms with Schwartz’s topology (colimit in the category of locally convex TVS).

• D ′Ωk =
(
DΩk

)∗
as the space of k-currents (or distributional k-forms), equipped

with the weak* topology.

• DNΩk = D
(

∆̃N

∞)
as the space of heated k-forms with the Frechet C∞ topology and

D ′NΩk =
(
DNΩk

)∗
as the space of heatable k-currents (or heatable distributional

k-forms) with the weak* topology.

• Spacetime test forms: D
(
I,Ωk

)
= C∞c

(
I,Ωk

00

)
= colim{

(
C∞c

(
I1,Ω

k
00(K)

)
, C∞ topo

)
:

I1×K ⊂ I ×
◦
M compact} and DN

(
I,Ωk

)
= colim{

(
C∞c

(
I1,DNΩk

)
, C∞ topo

)
: I1 ⊂

I compact}.

• Spacetime distributions D ′
(
I,Ωk

)
= D

(
I,Ωk

)∗
, D ′N

(
I,Ωk

)
= DN

(
I,Ωk

)∗
.

Obviously DΩk i
↪−→ DNΩk, so there is an adjoint D ′NΩk i∗−→ D ′Ωk. Unfortunately, Im(i) is not

dense so i∗ is not injective. Nevertheless, we will make i∗ the implicit canonical map from

D ′N to D ′. In particular, ωj
D ′N−−→ 0 implies ωj

D ′−→ 0. Similarly, D
(
I,Ωk

)
↪→ DN

(
I,Ωk

)
and

D ′N
(
I,Ωk

)
→ D ′

(
I,Ωk

)
.

By Sobolev tower (Theorem 34), we observe that et∆̃Nφ
C∞−−→
t↓0

φ ∀φ ∈ DNΩk.

For Λ ∈ D ′NΩk, t ≥ 0 and φ ∈ DNΩk, we define et∆̃NΛ (φ) = Λ
(
et∆̃Nφ

)
. As Λ is

continuous, ∃m0,m1 ∈ N0 such that |Λ (φ)| . ‖φ‖Cm0 . ‖φ‖Hm1 . Then for t > 0 and

φ ∈ DNΩk:
∣∣∣et∆̃NΛ (φ)

∣∣∣ . ∥∥∥et∆̃Nφ
∥∥∥
Hm1

.t,m1 ‖φ‖L2 =⇒ et∆̃NΛ ∈ L2Ωk and et∆̃NΛ =

e
t
2

∆̃N e
t
2

∆̃NΛ ∈ DNΩk.

Also, for p ∈ (1,∞) and ω ∈ LpΩk, et∆̃Nω is the same in LpΩk and D ′NΩk.
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Remark. We note an important limitation: though heated forms are closed under d and δ by

Theorem 75, because of integration by parts, we cannot naively define δ or ∆ on heatable

currents.

Analogous concepts such as DD and D ′D can be defined via Hodge duality for the relative

Dirichlet heat flow.

Recall the graded algebra Ω(M) =
⊕n

k=0 Ωk(M) from Section 8.3. We can easily define

DΩ,DNΩ etc. by direct sums.

For Λ ∈ D ′NΩ and φ ∈ DNΩ, we can define δ
D ′N
c Λ (φ) = Λ (dφ) and dD ′NΛ (φ) = Λ (δcφ).

These will be consistent with the smooth versions, though we take care to note that

〈〈
δ

D ′N
c ω, φ

〉〉
Λ

= 〈〈ω, dφ〉〉Λ = 〈〈δω, φ〉〉Λ+〈〈∗ινω, ∗φ〉〉Λ ∀ω ∈ W
1,pΩ, φ ∈ DNΩ, p ∈ (1,∞)

(8.1)

So δ
D ′N
c agrees with δc on W 1,pΩN as defined previously. In particular,

∆̃N

D ′N
= −

(
dD ′N δ

D ′N
c + δ

D ′N
c dD ′N

)
is well-defined on D ′NΩ.

Note that δD ′NΛ cannot be defined since there is φ ∈ DNΩ such that dcφ is not defined.

For convenience, we also write Λ (φ) = 〈〈Λ, φ〉〉Λ (abuse of notation) and Λε = eε∆̃NΛ for

ε > 0. Observe that for all Λ ∈ D ′NΩ, φ ∈ DNΩ :

〈〈d (Λε) , φ〉〉Λ = 〈〈Λε, δcφ〉〉Λ = 〈〈Λ, (δcφ)ε〉〉Λ = 〈〈Λ, δc (φε)〉〉Λ =
〈〈(

dD ′NΛ
)ε
, φ
〉〉

Λ

Then d (Λε) =
(
dD ′NΛ

)ε
and similarly δc (Λε) =

(
δ

D ′N
c Λ

)ε
∀Λ ∈ D ′NΩ.

Problem (Consistency problem). For p ∈ (1,∞), we have LpΩ ↪→ D ′NΩ and LpΩ ↪→ D ′Ω,

and we can identify D ′NΩ ∩ LpΩ = D ′Ω ∩ LpΩ = LpΩ. Let dD ′ and dD ′N be d defined on D ′

and D ′N respectively. For ω ∈ LpΩ, if dD ′ω ∈ D ′Ω ∩ LpΩ , the question is whether we can

say dD ′Nω ∈ D ′NΩ ∩ LpΩ.
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More explicitly, if α, ω ∈ LpΩ and 〈〈α, φ0〉〉Λ = 〈〈ω, δcφ0〉〉Λ ∀φ0 ∈ DΩ, can we say

〈〈α, φ〉〉Λ = 〈〈ω, δcφ〉〉Λ ∀φ ∈ DNΩ? The answer is yes, and the method is analogous to some

key steps in Section 4.3 and Section 9.3.

Recall the cutoffs ψr from Equation (4.2).

Lemma 80. Let p ∈ (1,∞) and φ ∈ W 1,pΩk
N . Then (1− ψr)φ

Lp−−→
r↓0

φ and δc ((1− ψr)φ)
Lp−−→
r↓0

δcφ.

Proof. In Penrose notation,

δc ((1− ψr)φ)a1...ak−1
= −∇i ((1− ψr)φ)ia1...ak−1

= ∇iψrφia1...ak−1
− (1− ψr)∇iφia1...ak−1

=⇒ δc ((1− ψr)φ) = ι∇ψrφ+ (1− ψr) δcφ = frιν̃φ+ (1− ψr) δcφ

Then we only need frιν̃φ
Lp−−→
r↓0

0. As ιν̃φ = 0 on ∂M , by Theorem 55, ‖frιν̃φ‖Lp .

1
r
‖ιν̃φ‖Lp(M<r)

. ‖ιν̃φ‖W 1,p(M<r)

r↓0−−→ 0.

Then we can conclude {ω ∈ LpΩ(M) : dD ′Nω ∈ Lp} = {ω ∈ LpΩ(M) : dD ′ω ∈ Lp}.

Recall that for an unbounded operator A, we write (A,D(A)) to specify its domain.

Theorem 81 (Adjoints of d, δ). For p ∈ (1,∞) , the closure of (d,Ω (M)) as well as

(d,DNΩ (M)) on LpΩ (M) is dLp where D(dLp) = {ω ∈ LpΩ(M) : dD ′Nω ∈ Lp} = {ω ∈

LpΩ(M) : dD ′ω ∈ Lp}.

By Hodge duality, the closure of (δ,Ω (M)) as well as (δ,DDΩ (M)) on LpΩ (M) is δLp

where D(δLp) = {ω ∈ LpΩ(M) : δD ′Dω ∈ Lp} = {ω ∈ LpΩ(M) : δD ′ω ∈ Lp}.

Define δc,Lp = d∗
Lp
′ and dc,Lp = δ∗

Lp′
. Then δc,Lp is the closure of (δ,DNΩ (M)) as well

as (δ,DΩ (M)). Also, D (δc,Lp) = {ω ∈ LpΩ(M) : δ
D ′N
c ω ∈ Lp}.

Similarly, dc,Lp is the closure of (d,DDΩ (M)) and (d,DΩ (M)). Also, D (dc,Lp) = {ω ∈

LpΩ(M) : d
D ′D
c ω ∈ Lp}.
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Proof. Firstly, it is trivial to check dLp is closed and (d,Ω (M)) is closable (ωj
Lp−→ 0

and dωj
Lp−→ η would imply η = 0 since dωj

D ′−→ 0). Then let ω ∈ D(dLp). We can

conclude (ωε, d (ωε)) =
(
ωε,
(
dD ′Nω

)ε) Lp⊕Lp−−−−→
ε↓0

(
ω, dD ′Nω

)
. This also gives the closure

of (d,DNΩ (M)).

Then let G (δc,Lp) ≤ LpΩ ⊕ LpΩ be the graph of δc,Lp . Similarly for G (dLp′ ) ≤

Lp
′
Ω ⊕ Lp′Ω. Write J(x, y) = (−y, x). By the definition of adjoints, J (G (δc,Lp)) =

G (dLp′ )
⊥. Then observe that

(
(Lp ⊕ Lp) -cl {(−δcφ, φ) : φ ∈ DΩ}

)⊥
= {(ω1, ω2) ∈ Lp′ ⊕ Lp′ : 〈〈ω1, δcφ〉〉Λ = 〈〈ω2, φ〉〉Λ ∀φ ∈ DΩ}

= {(ω1, ω2) ∈ Lp′ ⊕ Lp′ : ω2 = dD ′ω1} = G (dLp′ )

Then G (δc,Lp) = (Lp ⊕ Lp) -cl {(φ, δcφ) : φ ∈ DΩ}. Do the same for φ ∈ DNΩ. Fi-

nally, by the definition of adjoints:

D (δc,Lp) =
{
ω ∈ LpΩ(M) :

∣∣〈〈ω, dLp′φ〉〉Λ∣∣ . ‖φ‖Lp′ ∀φ ∈ D (dLp′ )
}

=

{
ω ∈ LpΩ(M) :

∣∣∣∣δD
′
N

c ω (φε)

∣∣∣∣ = |〈〈ω, dφε〉〉Λ| =
∣∣〈〈ω, (dLp′φ)ε〉〉Λ

∣∣
. ‖φε‖Lp′ ∀φ ∈ D (dLp′ ) ,∀ε > 0

}
=

{
ω ∈ LpΩ(M) :

∣∣∣∣δD
′
N

c ω (φ)

∣∣∣∣ . ‖φ‖Lp′ ∀φ ∈ DNΩ

}
= {ω ∈ LpΩ(M) : δ

D ′N
c ω ∈ Lp}

For the third equal sign, we implicitly used the fact that et∆̃Nφ
C∞−−→
t↓0

φ ∀φ ∈ DNΩk.

In particular, W 1,pΩN = W 1,p-cl (DNΩ) ≤ D (δc,Lp). Similarly, W 1,pΩD ≤ D (dc,Lp). This

makes our choice of notation consistent.
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Interestingly, a literature search yields a similar result regarding the adjoints of d and δ in

[AM04, Proposition 4.3], where the authors used Lie flows on the domain M which is bounded

in Rn, as well as zero extensions to Rn to characterize D(dLp) and D (d∗Lp). In [MM09a,

Equation 2.12], for η ∈ D(δLp), the authors defined ν ∨ η ∈ B
− 1
p

p,p Ω (∂M) =

(
B

1
p

p′,p′Ω (∂M)

)∗
(p ∈ (1,∞)) by

〈〈ν ∨ η, ∗ω〉〉Λ = 〈〈η, dω〉〉Λ −
〈〈
δD ′η, ω

〉〉
Λ
∀ω ∈ Ω (M)

which is reminiscent of Equation (8.1). Note that 〈〈ν ∨ η, ∗ω〉〉Λ is abuse of notation (re-

ferring to the natural pairing via duality). Recall from Blackbox 49 that W 1,p′Ω (M) =

F 1
p′,2Ω (M)

Trace
� B

1
p

p′,p′Ω (M)
∣∣
∂M

has a bounded linear section Ext, so it is possible to choose

ω such that ‖∗ω‖
B

1
p

p′,p′

∼ ‖ω‖W 1,p′ and therefore ν ∨ η is well-defined with

‖ν ∨ η‖
B
− 1
p

p,p

∼ sup
ω∈W 1,p′Ω(M)
‖∗ω‖

B
1/p

p′,p′
=1

|〈〈ν ∨ η, ∗ω〉〉Λ| . ‖η‖Lp +
∥∥∥δD ′η

∥∥∥
Lp

Of course, for η ∈ W 1,pΩ, ν ∨ η = ∗ινη. We can now show an alternative description of

D (δc,Lp):

Theorem 82. For p ∈ (1,∞), D (δc,Lp) = {η ∈ LpΩ(M) : δ
D ′N
c η ∈ Lp} = {η ∈ LpΩ(M) :

δD ′η ∈ Lp and ν ∨ η = 0}.

Proof. Assume η ∈ LpΩ(M) and δ
D ′N
c η ∈ Lp. Then ∃α ∈ LpΩ (M) : α = δ

D ′N
c η = δD ′η.

By the definition of ν∨η, 〈〈α, ω〉〉Λ+〈〈ν ∨ η, ∗ω〉〉Λ = 〈〈η, dω〉〉Λ ∀ω ∈ Ω (M). By the

definition of δ
D ′N
c η, 〈〈α, ω〉〉Λ = 〈〈η, dω〉〉Λ ∀ω ∈ DNΩ. So 〈〈ν ∨ η, ∗ω〉〉Λ = 0 ∀ω ∈

DNΩ. Recall that Ext (the right inverse of Trace) is bounded, soB
1
p

p′,p′-cl (∗ (DNΩ))
Ext
=

∗ (W 1,p-cl (DNΩ)) = ∗ (W 1,pΩN (M))
Ext
= ∗ (W 1,pΩ (M)) = B

1
p

p′,p′Ω (∂M). Therefore

ν ∨ η = 0.

Conversely, now assume η ∈ LpΩ(M), δD ′η = α ∈ Lp and ν ∨ η = 0. Then by the

111



definition of ν ∨ η for η ∈ D(δLp), 〈〈α, ω〉〉Λ = 〈〈η, dω〉〉Λ ∀ω ∈ Ω (M). The formula

also holds for ω ∈ DNΩ, and therefore δ
D ′N
c η = α ∈ Lp.

This result agrees with [MM09a, Equation 2.17]. Our characterization of the adjoints of d

and δ further highlights how heatable currents are truly natural objects in Hodge theory,

independent of the theory of heat flows.

In particular, it is trivial to show PLpΩ = Lp-cl Ker
(
δc
∣∣
ΩN

)
= {η ∈ D (δc,Lp) : δ

D ′N
c η = 0}

for p ∈ (1,∞).

Remark. The name “heatable current” simply refers to the largest topological vector space

of differential forms (and hence vector fields) for which the heat equation can be solved

(i.e. heatable), and once we apply the heat flow a heatable current becomes heated. The

name “current” for distributional forms was introduced by Georges de Rham [Rha84], likely

with its physical equivalents in mind, and has since become standard in various areas of

mathematics such as geometric measure theory and complex manifolds.

It is not easy to search for literature dealing with the subject and how it relates to Hodge

theory. They are mentioned in a couple of papers [BB97; Tro09] dealing with “tempered

currents” or “temperate currents” on Rn – differential forms with tempered-distributional

coefficients. Yet the notion of “tempered” – not growing too fast – does not make sense on a

compact manifold with boundary. Arguably, it is the ability to facilitate the heat flow, or the

Littlewood-Paley projection, that most characterizes tempered distributions and makes them

ideal for harmonic analysis. For scalar functions, much more is known (cf. [KP14; BBD18;

Tan18] and their references). In the same vein, various results from harmonic analysis should

also hold for heatable currents.

8.5 Square root

We will not need this for the rest of the thesis, but a popular question is the characterization

of the square root of the Laplacian.

112



By the Poincare inequality, PN⊥H1Ωk
N is a Hilbert space where the H1-inner product can

be replaced by (ω, η) 7→ D(ω, η) (the Dirichlet integral). The space is dense in PN⊥L2Ωk.

Define A as an unbounded operator on PN⊥L2Ωk where

D (A) = {ω ∈ PN⊥H1Ωk
N : |D(ω, η)| .ω ‖η‖2 ∀η ∈ P

N⊥H1Ωk
N}

and 〈〈Aω, η〉〉Λ = D(ω, η) ∀ω ∈ D(A),∀η ∈ PN⊥H1Ωk
N . Easy to check that 〈〈Aω, η〉〉Λ =

D
(
(−∆N)−1Aω, η

)
∀η ∈ PN⊥H1Ωk

N . Therefore ω = (−∆N)−1Aω ∈ PN⊥H2Ωk
homN and

Aω = (−∆N)ω ∀ω ∈ D(A), so A ⊂ −∆N . It is trivial to check D (−∆N) ≤ D (A), so

A = −∆N .

By Friedrichs extension (cf. [Tay11a, Appendix A, Proposition 8.7], [Tay11c, Section

8, Proposition 2.2]), we conclude that

CPN⊥H1Ωk
N =

[
CPN⊥L2Ωk,

(
D
(
∆C
N

)
, ‖·‖D(∆C

N)

)]
1
2

=
[
CPN⊥L2Ωk,CPN⊥H2Ωk

homN

]
1
2

=

(
D

(√
−∆C

N

)
, ‖·‖

D
(√
−∆C

N

))

By direct summing, we can extend the result to ∆̃N to get

CH1Ωk
N =

[
CL2Ωk,CH2Ωk

homN

]
1
2

=

(
D

(√
−∆̃C

N

)
, ‖·‖

D

(√
−∆̃C

N

)
)

We note that the norms are only defined up to equivalent norms, and ‖·‖D(A) is not the same

as ‖·‖∗D(A) (see Chapter 3). This difference is not always made explicit in [Tay11a; Tay11c].

8.6 Some trace-zero results

Although we will not need them for the rest of the thesis, let us briefly delineate some

results regarding the trace-zero Laplacian (cf. Theorem 63) which are similar to those

obtained above for the absolute Neumann Laplacian. We begin by retracing our steps from
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Corollary 65.

Define Hk
0 (M) = Hk

N (M) ∩ Hk
D (M). Obviously, Hk

0 (M) is finite-dimensional and we

can define P0 and P0⊥ the same way we did for PN and PN⊥ in Corollary 65. When M has

no boundary, P0⊥ = PN⊥ and P0 = PN = P3.

It is a celebrated theorem, following from the Aronszajn continuation theorem

[AKS62], that Hk
0 (M) = 0 when every connected component of M has nonempty boundary

(cf. [Sch95, Theorem 3.4.4]). When that happens, P0⊥ = 1 and P0 = 0.

Blackbox 83 (Potential theory). For m ∈ N0, p ∈ (1,∞), we define the injective trace-

zero Laplacian

∆0 : P0⊥Wm+2,pΩk
0 → P0⊥Wm,pΩk

as simply ∆ under domain restriction. Then (−∆0)−1 is called the trace-zero potential,

which is bounded. ∆0 can also be thought of as an unbounded operator on P0⊥Wm,pΩk
0.

Proof. We only need to prove the theorem on each connected component of M . So

WLOG, M is connected. If ∂M = ∅, we are back to the absolute Neumann case

in Blackbox 66. When ∂M 6= ∅, P0⊥ = 1 and we only need to show the trace-zero

Poisson problem
(
∆ω, ω

∣∣
∂M

)
= (η, 0) is uniquely solvable for each η ∈ Wm,pΩk. This

is [Sch95, Theorem 3.4.10].

Consequently, we have a trivial decomposition

ω = P0⊥ω + P0ω = dδ (−∆0)−1P0⊥ω + δd (−∆0)−1P0⊥ω + P0ω

for ω ∈ Wm,pΩk, m ∈ N0, p ∈ (1,∞). This decomposition is not as useful as the Hodge-

Morrey decomposition (Section 7.4) since the the first two terms are not orthogonal. How-

ever, it does mean that, when P0 = 0, every differential form is a sum of exact and coexact

forms.
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For ω ∈ P0⊥Wm+2,pΩk
0,m ∈ N0, p ∈ (1,∞), we also have ω = (−∆0)−1 (−∆0)ω =

(−∆0)−1 (dδω + δdω) , so ‖ω‖Wm+2,p ∼ ‖δω‖Wm+1,p + ‖dω‖Wm+1,p . This trick is not enough

to get the full Poincare inequality ‖ω‖W 1,p ∼ ‖δω‖p + ‖dω‖p, and therefore [Sch95, Lemma

2.4.10.iv] might be wrong.

As (−∆0)−1 is symmetric and bounded on P0⊥L2Ωk, we conclude ∆0 is a self-adjoint and

dissipative operator on P0⊥L2Ωk, with the domain D (∆0) = P0⊥H2Ωk
0. This means ∆C

0 is

acutely sectorial on CP0⊥L2Ωk.

Next we define the non-injective trace-zero Laplacian ∆̃0 as an unbounded operator

on L2Ωk with D
(

∆̃0

m
)

= D (∆m
0 )⊕Hk

0 and ∆̃0

m
= ∆m

0 ⊕ 0 ∀m ∈ N1. Again, ∆̃C
0 is acutely

sectorial on CL2Ωk and ‖ω‖D(∆̃0
m

) ∼ ‖ω‖H2m ∀ω ∈ D
(

∆̃0

m
)
, ∀m ∈ N1. In particular,

D
(

∆̃0

)
= P0⊥H2Ωk

0 ⊕Hk
0 = H2Ωk

0.

For Lp-analyticity, observe that on ∂M : |∇ν (|ω|2)| = 2 |〈∇νω, ω〉| = 0 . |ω|2 ∀ω ∈

W 2,pΩk
0,∀p ∈ (1,∞). So we argue as in Theorem 73, and Lp-analyticity follows.

Remark. The operator P∆̃0, with the domain H2Ωk
0 ∩ PL2Ωk, is a well-defined unbounded

operator on PL2Ωk. It is called the Stokes operator corresponding to the trace-zero/no-slip

boundary condition, as discussed in [FK64; GM85; MM08] and others. It lies outside the

scope of this thesis. For more information, see [HS18] and its references.
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CHAPTER 9

Results related to the Euler equation

9.1 Hodge-Sobolev spaces

We will have need of negative-order Sobolev spaces when we calculate the pressure in the

Euler equation.

Recall the space of heatable currents D ′NΩ (defined in Section 8.4). Note that PN⊥ is

well-defined on D
′
NΩ by

〈〈
PN⊥Λ, φ

〉〉
Λ

=
〈〈

Λ,PN⊥φ
〉〉
∀Λ ∈ D ′NΩ,∀φ ∈ DNΩ. Same for

PN , and we can uniquely identify PNΛ ∈ HN ∀Λ ∈ D
′
NΩ.

Similarly, P (DNΩ) ≤ DNΩ (use Theorem 78 and Theorem 70), so P, 1−P = (P1 + Pex
3 )

and P2 = P− PN are well-defined on D ′NΩ.

For all p ∈ (1,∞), define DN = dD ′N + δ
D ′N
c on PN⊥D ′NΩ and D̃N = dD ′N + δ

D ′N
c on D ′NΩ

as the injective and non-injective (Neumann) Hodge-Dirac operators.

By the Poincare inequality (Corollary 71), it is easy to check that

DN

∣∣
PN⊥DNΩ

: PN⊥DNΩ→ PN⊥DNΩ

is bijective. Consequently, so is DN on PN⊥D ′NΩ.

Observe that

∀m ∈ N0,∀p ∈ (1,∞) ,∀α ∈ PN⊥Wm,pΩ (M) ,∃!β = (DN)−1 α ∈ PN⊥Wm+1,pΩN

116



and

‖β‖Wm+1,p ∼ ‖α‖Wm,p = ‖dβ + δcβ‖Wm,p ∼ ‖dβ‖Wm,p + ‖δcβ‖Wm,p (9.1)

because PN⊥Wm,pΩ = d (Wm+1,pΩ) ⊕ δc (Wm+1,pΩN) is a direct sum of closed subspaces

(corresponding to P1 + Pex
3 and P2).

Note that we do not have dD ′NDN = DNd
D ′N , but dD ′ND2

N = D2
Nd

D ′N = −∆
D ′N
N dD ′N is true.

Definition 84. For m ∈ Z, p ∈ (1,∞), let Wm,p (DN) := (DN)−m
(
PN⊥LpΩ

)
= {α ∈

PN⊥D ′NΩ : (DN)m α ∈ LpΩ} and Wm,p
(
D̃N

)
:= Wm,p (DN)⊕HN . They are Banach spaces

under the norms ‖α‖Wm,p(DN ) := ‖(DN)m α‖LpΩ and ‖β‖Wm,p(D̃N) :=
∥∥PN⊥β∥∥

Wm,p(DN )
+∥∥PNβ∥∥HN .

In a sense, these are comparable to homogeneous and inhomogeneous Bessel potential

spaces. We can extend the definitions to fractional powers, but that is outside the scope of

this thesis.

It is trivial to check that ‖α‖Wm,p(D̃N) ∼ ‖α‖Wm,pΩ ∀α ∈ DNΩ, ∀m ∈ N0,∀p ∈ (1,∞).

Theorem 85. Some basic properties of Wm,p
(
D̃N

)
:

1. DNΩ is dense in Wm,p
(
D̃N

)
∀m ∈ Z,∀p ∈ (1,∞).

2. Wm,p
(
D̃N

)
= Wm,p-cl (DNΩ) ∀m ∈ N0, ∀p ∈ (1,∞).

3.
∥∥dD ′Nβ

∥∥
Wm,p(D̃N) +

∥∥∥δD ′N
c β

∥∥∥
Wm,p(D̃N)

. ‖β‖Wm+1,p(D̃N) ∀β ∈ Wm+1,p
(
D̃N

)
,∀m ∈

Z,∀p ∈ (1,∞)

Then P2 = δ
D ′N
c dD ′N

(
−∆

D ′N
N

)−1

PN⊥ = δ
D ′N
c

(
−∆

D ′N
N

)−1

dD ′N and P = P2 + PN are of

order 0 on Wm,p
(
D̃N

)
.

4.
(
Wm,p

(
D̃N

))∗
= W−m,p′

(
D̃N

)
∀m ∈ Z,∀p ∈ (1,∞) via the pairing

〈α, φ〉W−m,p(D̃N),Wm,p′(D̃N) =
〈〈
D−mN P

N⊥α,Dm
NPN⊥φ

〉〉
Λ

+
〈〈
PNα,PNφ

〉〉
Λ
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Proof.

1. Because Dm
N

(
PN⊥DNΩ

)
= PN⊥DNΩ is dense in PN⊥LpΩ.

2. We only need Wm,p (DN) = PN⊥Wm,p
(
D̃N

)
≤ Wm,p-cl

(
PN⊥DNΩ

)
. Let α ∈

PN⊥Wm,p
(
D̃N

)
and αε = eε∆̃Nα as usual. Then Dm

N (αε) = (Dm
Nα)ε

Lp−−→
ε↓0

Dm
Nα.

So D−mN Dm
N (αε) = αε

Wm,p

−−−→
ε↓0

α by Equation (9.1).

3. Let Dm+1
N PN⊥β ∈ Lp. Then Dm

NPN⊥β ∈ PN⊥W 1,pΩN by Equation (9.1).

When m = 2k (k ∈ Z):

∥∥dD2k
N PN⊥β

∥∥
Lp

+
∥∥δcD2k

N PN⊥β
∥∥
Lp
∼
∥∥dD2k

N PN⊥β + δcD
2k
N PN⊥β

∥∥
Lp

=
∥∥D2k+1

N PN⊥β
∥∥
Lp

When m = 2k + 1 (k ∈ Z): D2k
N PN⊥β ∈ PN⊥W 2,pΩhomN and

∥∥DNdD
2k
N PN⊥β

∥∥
Lp

+
∥∥DNδcD

2k
N PN⊥β

∥∥
Lp

=
∥∥δcdD2k

N PN⊥β
∥∥
Lp

+
∥∥dδcD2k

N PN⊥β
∥∥
Lp

∼
∥∥δcdD2k

N PN⊥β + dδcD
2k
N PN⊥β

∥∥
Lp

=
∥∥D2k+2

N PN⊥β
∥∥
Lp

4. Simply observe that (Wm,p (DN))∗ = W−m,p′ (DN) via the isomorphisms

Wm,p (DN)
DmN
∼−→ PN⊥LpΩ

and W−m,p′ (DN)
D−mN
∼−→ PN⊥Lp′Ω.

Remark. We briefly note that DN with the domain PN⊥H1ΩN is self-adjoint on PN⊥L2Ω

and its complexification is therefore “bisectorial”. For more on this, see [McI86; McI10;

MM18].
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Corollary 86. Assume U ∈ PL2X. Define div(U ⊗ U) ∈ D ′NX by 〈〈div(U ⊗ U), X〉〉Λ :=

−〈〈U ⊗ U,∇X〉〉 ∀X ∈ DNX.

If p ∈ (1,∞) and U⊗U ∈ LpΓ (TM ⊗ TM), then
∥∥div(U ⊗ U)[

∥∥
W−1,p(D̃N) . ‖U ⊗ U‖Lp.

Proof. For η ∈ Ω (M) , write ηk for the part of η in Ωk. Let φ ∈ DNΩ, then

∣∣〈〈D−1
N P

N⊥div(U ⊗ U)[, φ
〉〉

Λ

∣∣ =
∣∣∣〈〈U ⊗ U,∇ (D−1

N P
N⊥φ

)]
1

〉〉∣∣∣ . ‖U ⊗ U‖Lp ‖φ‖Lp′
This implies div(U ⊗ U)[ ∈ W−1,p

(
D̃N

)
. Then observe

∣∣〈〈div(U ⊗ U)[, φ
〉〉

Λ

∣∣ =∣∣∣〈〈U ⊗ U,∇ (φ)]1

〉〉∣∣∣ . ‖U ⊗ U‖Lp ‖φ‖W 1,p′(D̃N).

9.2 Calculating the pressure

In this section, we assume that ∂tV + div(V ⊗ V) + grad p
D
′
N (I,X)
== 0, V ∈ L2

loc (I,PL2X),

p ∈ L1
loc(I×M). This is true, for instance, in the case of Onsager’s conjecture (see Section 4.3

and Section 4.4).

We first note that H0
N = H0 = {locally constant functions}. Then we can show V

uniquely determines p by a formula, up to a difference in H0
N (dp is always unique). It is no

loss of generality to set p = PN⊥p (implying
∫
M
p = 0).

1. Assume V ⊗ V ∈ LqtWm+1,pΓ (TM ⊗ TM) for some m ∈ N0, p ∈ (1,∞) , q ∈ [1,∞].

Let ω = div(V ⊗ V)[. Then dD ′Np
D
′
N (I,X)
== (P− 1)ω ∈ LqtW

m,pΩ1. By the Poincare

inequality (Corollary 71), there is a unique f ∈ LqtPN⊥Wm+1,pΩ0 such that df =

(P− 1)ω
D
′
N (I,X)
== dD ′Np. An explicit formula is f = −Rdω where

Rd := PN⊥δ (−∆D)−1PD⊥ + PN⊥δ (−∆N)−1Pex
3

is the potential for d.
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We aim to show f = p. Let ψ ∈ C∞c (I,DNΩ0). Then because Ω0 = P2 (Ω0)⊕PN3 (Ω0) ,

we conclude PN⊥ψ = δcφ where φ := d (−∆N)−1PN⊥ψ ∈ C∞c (I,DNΩ1) and

∫
I

〈〈f, ψ〉〉Λ =

∫
I

〈〈
f,PN⊥ψ

〉〉
Λ

=

∫
I

〈〈f, δcφ〉〉Λ =

∫
I

〈〈df, φ〉〉Λ

=

∫
I

〈〈
dD ′Np, φ

〉〉
Λ

=

∫
I

〈〈p, ψ〉〉Λ .

Therefore p = f and ‖p‖LqtWm+1,p . ‖ω‖LqtWm,p . ‖V ⊗ V‖LqtWm+1,p .

2. Assume V ⊗ V ∈ LqtLpΓ (TM ⊗ TM) for some p ∈ (1,∞) , q ∈ [1,∞].

Let ω = div(V ⊗ V)[. Then dD ′Np
D
′
N (I,X)
== (P− 1)ω ∈ LqtW−1,p

(
D̃N

)
by Corollary 86

and Theorem 85. Then −δD ′N
c dD ′Np

D
′
N (I,X)
== δ

D ′N
c (1− P)ω = δ

D ′N
c ω ∈ LqtW−2,p

(
D̃N

)
and

p = −D−2
N δ

D ′N
c ω, so ‖p‖LqtLp .

∥∥∥δD ′N
c ω

∥∥∥
LqtW

−2,p(D̃N)
. ‖ω‖LqtW−1,p(D̃N) . ‖V ⊗ V‖LqtLp .

Remark. It is also possible to define Rδc := dD ′N

(
−∆

D ′N
N

)−1

PN⊥ on D ′NΩ and have Rd =(
D−1
N −Rδc

)
PN⊥ on D ′NΩ. This would then imply ‖Rdα‖Wm+1,p(D̃N) . ‖α‖Wm,p(D̃N) ∀α ∈

Wm,p
(
D̃N

)
,∀m ∈ Z,∀p ∈ (1,∞).

9.3 On an interpolation identity

Let p ∈ (1,∞). We are faced with the difficulty of finding a good interpolation character-

ization for B
1
p

p,1ΩN . We do have B
1
p

p,1Ω = (LpΩ,W 1,pΩ) 1
p
,1 (complexification, then projec-

tion onto the real part), but our heat flow is not analytic on CW 1,pΩ. The hope is that

B
1
p

p,1ΩN = (LpΩ,W 1,pΩN) 1
p
,1, and our first guess is to try to find some kind of projection.

Indeed, the Leray projection yields

PB
1
p

p,1Ω =
(
PLpΩ,PW 1,pΩ

)
1
p
,1

(9.2)

and the heat flow is well-behaved on PW 1,pΩ = PW 1,pΩN (Theorem 70, Theorem 78). By

interpolation, P is B
1
p

p,1-continuous, so nP : B
1
p

p,1Ω → LpΩ
∣∣
∂M

is continuous and PB
1
p

p,1Ω =
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PB
1
p

p,1ΩN .

This is enough to get all the Besov estimates we will need for Onsager’s conjecture.

Additionally, it is true that the heat semigroup is also C0 and analytic on CPB
1
p

p,1ΩN by

Yosida’s half-plane criterion (Theorem 41). Unlike the Lp-analyticity case, here we already

have analyticity on the 2 endpoints, so the criterion simply follows by interpolation. Alter-

natively, observe that there exists C > 0 such that supt>0

∥∥∥∥t(∆̃C
N − C

)
e
t
(

∆̃C
N−C

)∥∥∥∥
L(V )

<∞

for V ∈ {CPLpΩ,CPW 1,pΩN}. Therefore it also holds for V = CPB
1
p

p,1ΩN by interpolation,

and that is another criterion for analyticity ([Eng00, Section II, Theorem 4.6.c]).

Unfortunately, this does not tell us about the relationship between (LpΩ,W 1,pΩN) 1
p
,1

and B
1
p

p,1ΩN . Obviously (LpΩ,W 1,pΩN) 1
p
,1 ↪→ B

1
p

p,1ΩN by the density of W 1,pΩN . The other

direction is more delicate. Interpolation involving boundary conditions is often nontrivial.

The reader can see [Gui91; Lof92; Ama19] to get an idea of the challenges involved, especially

at the critical regularity levels N + 1
p
.

Nevertheless, there are a few interesting things we can say about these spaces.

Definition 87 (Neumann condition on strip). For vector field X and r > 0 small, with ψr

as in Equation (4.2), define

nrX = ψr 〈X, ν̃〉 ν̃ and trX = X − nrX

Then define XN,r = {X ∈ X : 〈X, ν̃〉 = 0 on M<r}. Similarly we can define Wm,pXN,r

and Bs
p,qXN,r by setting ‖〈X, ν̃〉‖L1(M<r)

= 0. We note that L3XN,r makes sense since the

definition does not require the trace theorem, unlike L3XN which is ill-defined.

Some basic facts:

1. trX ≤ XN, r
2

2. tr = 1 and nr = 0 on XN,r

121



3. t r
2
tr = tr

4. ‖trX‖Wm,p .r,m,p ‖X‖Wm,p for m ∈ N0, p ∈ [1,∞]

5. Wm,pXN,r and Bs
p,qXN,r are Banach for m ∈ N0, p ∈ [1,∞], s ≥ 0, q ∈ [1,∞]

6. Bmθ
p,qXN,r

tr=1
↪−−→

(
Wm0,pXN, r

2
,Wm1,pXN, r

2

)
θ,q
↪→ Bmθ

p,qXN, r
2

for θ ∈ (0, 1) ,mj ∈ N0,m0 6=

m1, p ∈ [1,∞], q ∈ [1,∞], mθ = (1− θ)m0 + θm1.

Remark. The last assertion is proven by the definition of the J-method, and it works like par-

tial interpolation. The reader can notice the similarity with the Littlewood-Paley projection

(P≤NP≤N
2

= P≤N
2

). The hope is that trX
t↓0−→ X in a good way for X ∈ XN .

A subtle issue is that for X ∈ Bmθ
p,qXN,r, ‖X‖(Wm0,pXN, r2

,Wm1,pXN, r2

)
θ,q

.r ‖X‖Bmθp,q XN,r . The

implicit constant which depends on r can blow up as r ↓ 0.

Define Bs
p,qXN,0+ = Bs

p,q-cl
(
∪r>0 smallB

s
p,qXN,r

)
.

Also define Wm,pXN,0+ = Wm,p-cl (∪r>0 smallW
m,pXN,r).

Then we recover the usual spaces by results from Section 6.5:

Theorem 88. Let p ∈ (1,∞):

1. LpXN,0+ = LpX, W 1,pXN,0+ = W 1,pXN .

2. B
1
p

p,1XN,0+ = B
1
p

p,1XN .

Proof.

1. Let X ∈ LpX. Then nrX
Lp−−→
r↓0

0 by shrinking support. If X ∈ W 1,pXN , then by

Theorem 55

‖nrX‖W 1,p = ‖ψr 〈X, ν̃〉‖W 1,p(M<r)

. ‖ψr‖W 1,∞(M<r)
‖〈X, ν̃〉‖Lp(M<r)

+ ‖ψr‖L∞ ‖〈X, ν̃〉‖W 1,p(M<r)

.
1

r
‖〈X, ν̃〉‖Lp(M<r)

+ ‖〈X, ν̃〉‖W 1,p(M<r)
. ‖〈X, ν̃〉‖W 1,p(M<r)

r↓0−−→ 0
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2. Let Y ∈ B
1
p

p,1X. As B
1
p
∞,∞ = (L∞,W 1,∞) 1

p
,∞ and ψr ∈ W 1,∞, we conclude

‖ψr‖
B

1
p
∞,∞
. ‖ψr‖

1
p′

L∞ ‖ψr‖
1
p

W 1,∞ .
(

1
r

) 1
p .

Then by Theorem 55 and Theorem 56 :

‖nrY ‖
B

1
p
p,1

.¬r ‖ψr‖
B

1
p
∞,1(M)

‖〈Y, ν̃〉‖Lp(M<4r)
+ ‖ψr‖L∞ ‖〈Y, ν̃〉‖

B
1
p
p,1(M)

.

(
1

r

) 1
p

‖〈Y, ν̃〉‖Lp(M<4r)
+ ‖Y ‖

B
1
p
p,1

. ‖〈Y, ν̃〉‖Lp(M<4r,avg) + ‖Y ‖
B

1
p
p,1(M)

.¬r ‖Y ‖
B

1
p
p,1

Therefore ‖nrY ‖B1/p
p,1

does not blow up as r ↓ 0. Then we make a dense con-

vergence argument: assume X ∈ B
1
p

p,1XN and let Xj ∈ X such that Xj

B
1/p
p,1−−→ X,

then ‖〈Xj, ν〉‖Lp(∂M)

j→∞−−−→ 0. Note that we do not have nXj = 0. By Theo-

rem 55:

‖nrXj‖
B

1
p
p,1

. ‖nrXj‖
1
p′

Lp ‖nrXj‖
1
p

W 1,p

. ‖〈Xj, ν̃〉‖
1
p′

Lp(M<r)

(
‖ψr‖

1
p

W 1,∞(M<r)
‖〈Xj, ν̃〉‖

1
p

Lp(M<r)

+ ‖ψr‖
1
p

L∞ ‖〈Xj, ν̃〉‖
1
p

W 1,p(M<r)

)
. ‖〈Xj, ν̃〉‖Lp(M<r)

(
1

r

) 1
p

+ ‖〈Xj, ν̃〉‖
1
p′

Lp(M<r)
‖〈Xj, ν̃〉‖

1
p

W 1,p(M<r)

. r
1
p′ ‖〈Xj, ν̃〉‖W 1,p(M<r)

+ ‖〈Xj, ν〉‖Lp(∂M) + ‖〈Xj, ν̃〉‖W 1,p(M<r)
.

So lim supr↓0 ‖nrXj‖
B

1
p
p,1

. ‖〈Xj, ν〉‖Lp(∂M) and

lim sup
r↓0

‖nrX‖
B

1
p
p,1

. lim sup
r↓0

‖nr (X −Xj)‖
B

1
p
p,1

+ lim sup
r↓0

‖nrXj‖
B

1
p
p,1

. ‖X −Xj‖
B

1
p
p,1

+ ‖〈Xj, ν〉‖Lp(∂M)
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As j is arbitrary, let j →∞ and lim supr↓0 ‖nrX‖
B

1
p
p,1

= 0.

These results hold not just for vector fields, but also for differential forms once we perform

the proper modifications: for differential form ω, define nrω = ψrν̃
[ ∧ (ιν̃ω), trω = ω − nrω,

Wm,pΩk
r = {ω ∈ Wm,pΩk : ιν̃ω = 0 on M<r}, replace 〈X, ν̃〉 with ιν̃ω in the proofs etc. In

particular, B
1
p

p,1Ωk
N,0+ = B

1
p

p,1Ωk
N for p ∈ (1,∞).
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CHAPTER 10

Complexification

Throughout this small chapter, the overline always stands for conjugation, and not topolog-

ical closure.

Let RX be a real NVS, then a complexification of RX is a tuple

(
CX,RX

φ
↪−→ CX

)
such that

1. CX is a complex NVS.

2. φ is a linear, continuous injection and φ(RX)⊕ iφ(RX) = CX.

3. ‖φ(x)‖CX = ‖x‖RX and ‖φ(x) + iφ(y)‖CX = ‖φ(x)− iφ(y)‖CX ∀x, y ∈ RX.

The last property says ‖·‖CX is a complexification norm. By treating φ(RX) as the

real part, ∀z ∈ CX, we can define <z,=z as the real and imaginary parts respectively, so

z = <z + i=z. Then define z = <z − i=z. So λz = λz ∀z ∈ CX, ∀λ ∈ C.

Construction A standard construction of such a complexification is CX = RX ⊗R C. As

RX is a flat and free R-module, 0→ R ↪→ C
=
� R→ 0 induces 0→ RX

φ
↪−→ CX

=
� RX → 0

as a split short exact sequence and CX = φ(RX)⊕ iφ(RX). Then we can make φ implicit

and not write it again. The representation z = x + iy = (x, y) is unique. Easy to see that

any two complexifications of RX must be isomorphic as C-modules.

We define the minimal complexification norm (also called Taylor norm)

‖x+ iy‖T := sup
θ∈[0,2π]

‖x cos θ − y sin θ‖RX = sup
θ∈[0,2π]

∥∥<eiθ (x+ iy)
∥∥
RX ∀x, y ∈ RX
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Any other complexification norm is equivalent to ‖·‖T .

Proof. Let ‖·‖B be another complexification norm. Then

∥∥<eiθ (x+ iy)
∥∥
RX =

∥∥<eiθ (x+ iy)
∥∥
B
≤ ‖x+ iy‖B

(minimal) and

‖x+ iy‖B ≤ ‖x‖RX + ‖y‖RX = ‖< (x+ iy)‖RX + ‖< (−i (x+ iy))‖RX ≤ 2 ‖x+ iy‖T .

So the topology of CX is unique. It is more convenient, however, to set ‖x+ iy‖CX =

‖(x, y)‖RX⊕RX =
(
‖x‖2

RX + ‖y‖2
RX
) 1

2 ∀x, y ∈ RX. Easy to see that any two complexifications

of RX must be isomorphic as complex NVS, so we write CX = RX ⊗R C from this point

on, and if RX is normed, so is CX. Obviously, if RX is Banach, so is CX, and when that

happens, we call (RX,CX) a Banach complexification couple.

Real operators Let (RX,CX) and (RY,CY ) be 2 Banach complexification couples.

• An operator A : D (A) ≤ CX → CY is called a real operator when D (A) = C<D(A)

and A< (D (A)) ≤ RY. In particular, A(x, y) = (Ax,Ay) ∀x, y ∈ RX.

• An unbounded R-linear operator T : D(T ) ≤ RX → RY has a natural complexified

version TC = T ⊗R 1C : CX → CY where D
(
TC
)

= CD (T ). Obviously TC is a real

operator and we write (RX,CX)
(T,TC)
−−−−→ (RY,CY ).

– D (TC) = D
(
TC
)

and TCz = TCz ∀z ∈ CX.

– T is closed ⇐⇒ TC is closed. Same for bounded, compact, densely defined.

• For any unbounded C-linear operator A : D (A) ≤ CX → CY such that D (A) =
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C< (D (A)), define 2 real operators


<A =

(
< ◦

(
A
∣∣
<D(A)

))C
=A =

(
= ◦

(
A
∣∣
<D(A)

))C
Then A = <A + i=A. We can see that A is real ⇐⇒ <A = A ⇐⇒ =A = 0. Also,

A is bounded ⇐⇒ <A,=A are bounded.

Spectrum For (RX,CX)
(T,TC)
−−−−→ (RY,CY ), define

• ρ(T ) := ρ
(
TC
)
, σ(T ) := σ

(
TC
)
.

• ρR(T ) := {λ ∈ R : λ− T is boundedly invertible} and σR(T ) := R\ρR(T ).

If ζ ∈ C and ζ−TC is boundedly invertible, so is ζ−TC. So σ (T ) = σ (T ) and ρ(T ) = ρ(T ).

For λ ∈ R, λ− TC is boundedly invertible ⇐⇒ λ− T is boundedly invertible. So ρR(T ) =

ρ(T ) ∩ R and σR (T ) = σ (T ) ∩ R.

Semigroup T generates an R-linear C0 semigroup ⇐⇒ TC generates a C-linear C0

semigroup. When that happens,
(
etT
)C

= etT
C
.

Proof. When either happens, T and TC are densely defined. Also, T − j and TC − j

are boundedly invertible for j ∈ N large enough, so T and TC are closed. Easy to

use Hille-Yosida to show both T and TC must generate C0 semigroups.

As in the proof of Hille-Yosida, define the Yosida approximations Tj = T 1
1− 1

j
T

,

TC
j = TC 1

1− 1
j
TC = (Tj)

C. As Tj and TC
j are bounded,

(
etTj
)C

= etT
C
j by power series

expansion. Then
(
etT
)C

= etT
C

as etT = limj→∞ e
tTj pointwise.

Hilbert spaces Let RH be a real Hilbert space with inner product 〈·, ·〉. Then CH is also

Hilbert with the inner product

〈x1 + iy1, x2 + iy2〉CH := 〈x1, x2〉+ 〈y1, y2〉+ i (〈y1, x2〉 − 〈x1, y2〉) ∀xj, yj ∈ RH

127



Then ‖x+ iy‖CH =
(
‖x‖2

RH + ‖y‖2
RH
) 1

2 ∀x, y ∈ RH, consistent with our previously

chosen norm.

Also, 〈z1, z2〉CH = 〈z2, z1〉CH ∀z1, z2 ∈ CH.

Let
(
A,AC

)
: (RH,CH)→ (RH,CH) be unbounded.

• A is symmetric ⇐⇒ AC is symmetric. When that happens, 〈Ax+ iAy, x+ iy〉CH =

〈Ax, x〉+ 〈Ay, y〉 ∀x, y ∈ RH.

• C (RH ⊕ RH) = CH ⊕ CH and G
(
AC
)

= CG (A) (graphs). Also C
(
G (A)⊥

)
=

G
(
AC
)⊥

.

• A is self-adjoint ⇐⇒ AC is self-adjoint. When this happens, σ(A) = σ(AC) ⊂ R.

• A is dissipative ⇐⇒ AC is dissipative.

For more information on complexification, see [Glü17, Appendix C].

128



Nomenclature

ψr, fr cutoffs on M living near the boundary, page 30

et∆ the absolute Neumann heat flow, defined for the proof of Onsager’s conjecture, page 33

L ((X0, X0) , (Y0, Y1)) morphisms between interpolation couples, page 43

(X0, X1)θ,q real interpolation, page 44

[X0, X1]θ complex interpolation, page 45

Wm,p Sobolev spaces, page 60

Bs
p,q Besov spaces, page 60

F s
p,q Triebel-Lizorkin spaces, page 60

Cs(Ω) Zygmund spaces, page 65

Ω<r {x ∈ Ω : dist(x, ∂Ω) < r} , page 68

‖f‖Lp(Ω,avg) integration on probability space , page 68

ν outwards unit normal vector field on ∂M , page 73

ν̃ extension of ν near ∂M , page 73

  : ∂M ↪→M is the smooth inclusion map, page 73

ι interior product (contraction) of differential forms, page 73

vol∂ volume form of ∂M , page 74

Γ(F), Γc(F), Γ00(F) the space of smooth sections of F with different support conditions,

page 74

〈〈σ, θ〉〉 dot product on Γ(F), page 74
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RWm,p, CWm,p real and complexified versions of function space, page 79

XM set of smooth vector fields on M , page 79

t tangential part, page 79

n normal part, page 79

Ωk (M) set of smooth differential forms on M , page 79

X[
p, ω

]
p musical isomorphism, page 80

? Hodge star, page 80

δ codifferential, page 80

∆ Hodge Laplacian, page 80

Rabcd Riemann curvature tensor, page 80

Ric Weitzenbock curvature operator, page 80

〈T,Q〉 tensor inner product, page 81

〈ω, η〉Λ , 〈〈ω, η〉〉Λ Hodge inner product, page 81

D(ω, η) Dirichlet integral, page 83

Ωk
D,Ω

k
homD different Dirichlet conditions for differential forms, page 85

Ωk
N ,Ω

k
homN different Neumann conditions for differential forms, page 85

Hk,Hk
D,Hk

N harmonic fields, then with Dirichlet and Neumann conditions, page 85

L2-cl (·) closure under L2 norm, page 85

PN , PN⊥, PD, PD⊥ natural orthogonal decomposition, page 87

∆N injective Neumann Laplacian, page 88
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(−∆N)−1 , (−∆D)−1 Neumann and Dirichlet potentials, page 88

δc, dc adjoints of d and δ, page 88

P1ω, P2ω, P3ω the component projections in Hodge decomposition, page 90

PN3 , Pex
3 , PD3 , Pco

3 Friedrichs decomposition, page 93

P Leray projection, page 94

∆̃N non-injective Neumann Laplacian, page 100

Ap generator of heat flow on Lp, page 102

A1,p generator of heat flow on W 1,p, page 105

DNΩk,D ′NΩk heated forms and heatable currents, page 107

DN , D̃N the injective and non-injective (Neumann) Hodge-Dirac operators, page 116

Wm,p (DN), Wm,p
(
D̃N

)
Hodge-Sobolev spaces, page 117

CY, TC complexification of spaces and operators , page 126

et∆ the absolute Neumann heat flow, defined for the proof of Onsager’s conjecture, page 146

ψr, fr cutoffs on M living near the boundary, page 150

131



Part II

Construction of the Hodge-Neumann

heat kernel, local Bernstein estimates,

and a local approach to Onsager’s

conjecture

132



CHAPTER 11

Introduction

Recall the incompressible Euler equation in fluid dynamics:


∂tV + div (V ⊗ V) = − grad p in M

divV = 0 in M

〈V , ν〉 = 0 on ∂M

(11.1)

where


(M, g) is an oriented, compact smooth Riemannian manifold with boundary

ν is the outwards unit normal vector field on ∂M .

I ⊂ R is an open interval, V : I → XM , p : I ×M → R.

We observe that the Neumann condition 〈V , ν〉 = 0 means V ∈ XN , where XN is the set

of vector fields which are tangent to the boundary.

The last two conditions can also be rewritten as V = PV , where P is the Leray projection

operator.

Roughly speaking, Onsager’s conjecture says that the energy ‖V(t, ·)‖L2(M) is a.e. con-

stant in time when V is a weak solution whose regularity is at least 1
3
. Making that statement

precise is part of the challenge.

In the boundaryless case, the “positive direction” (conservation when regularity is at

least 1
3
) has been known for a long time [Eyi94; CET94; Che+08]. The “negative direction”

(failure of energy conservation when regularity is less than 1
3
) is substantially harder [DS14;

DS13], and was finally settled by Isett in his seminal paper [Ise18a] (see the survey in [DS19]

for more details and references).
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Since then more attention has been directed towards the case with boundary on flat

backgrounds [BT18; DN18; BTW19; NN19; Bar+19b; Bar+19a]. The case of manifolds

without boundary was first handled via a heat-flow approach in [IO14]. This inspired the

consideration of manifolds with boundary in Part I, with the weak solution lying in L3
tB

1
3
3,1,

the largest space in which the trace theorem applies. However, the best results on flat

backgrounds hold in the slightly bigger space L3
tB

1
3
3,VMO, so this sequel aims to make that

improvement.

In essence, the absolute Neumann heat flow, created via functional analysis, is a replace-

ment for the usual convolution on flat spaces, with special properties like commutativity

with divergence. However, obtaining a pointwise profile of heat kernels for differential forms

(let alone their derivatives) is a difficult problem, so it was hard to reconcile the heat-flow

approach with local-type convolution arguments on flat backgrounds. Even the definition of

B
1
3
3,VMO itself is local, and it was not immediately obvious that the heat-flow approach could

handle such function spaces.

The solution to this is a manual construction of the Hodge-Neumann heat kernel (Chap-

ter B), using techniques from microlocal analysis and index theory (in particular, Richard

Melrose’s calculus on manifolds with corners [Mel18; Mel92]). The theory mimics the de-

velopment of pseudodifferential operators, in creating a filtered algebra that quantifies how

“nonsingular” an operator is as we approach the edges. In particular, much like the pseu-

dolocality of ΨDOs, the construction yields a precise description near the diagonal, as well

as rapid decay away from the diagonal. This enables the use of the heat flow as local convo-

lution, and we obtain local Bernstein estimates which allow us to handle VMO-type function

spaces.

The addition of local Besov-type estimates also marks another stage of development for

the theory of intrinsic harmonic analysis for differential forms (including scalar functions

and vector fields) on compact Riemannian manifolds with boundary, originally set forth in the

prequel with Hodge theory as the foundation. In particular, we have extended the notion
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of tempered distributions, and the methods of Littlewood-Paley frequency decomposition

(e.g. Bernstein-type estimates), which have proved useful on flat backgrounds for problems

in fluid dynamics and dispersive PDEs (cf. [Tao09; Tao13; Tao06; Lem02a]), to manifolds

with boundary. More history and references can be found in Part I.
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CHAPTER 12

Main result

To state the main result, we need some terminology.

The standard Besov spaces Bs
p,q, and the absolute Neumann heat semigroup es∆̃N were

discussed in Part I.

For r > 0, we define M>r := {x ∈M : dist(x, ∂M) > r}. Let
◦
M denote the interior of

M .

For p ∈ (1,∞), we say X ∈ B̂1/p
p,VX (M) if X ∈ LpX (M) and ∀r > 0 :

(
1√
s

) 1
p ∥∥∥X − es∆̃NX

∥∥∥
Lp(M>r)

s→0−−→ 0

Or equivalently (by Corollary 118), (
√
s)

1− 1
p

∥∥∥es∆̃NX
∥∥∥
W 1,p(M>r)

s→0−−→ 0

Similarly, for p ∈ (1,∞), we say X ∈ Lpt B̂
1/p
p,VX (M) if X ∈ LptLpX (M) and ∀r > 0 :

(
1√
s

) 1
p ∥∥∥X − es∆̃NX

∥∥∥
LptL

p(M>r)

s→0−−→ 0

As shown in Lemma 106, B̂
1
3
3,V contains the space B̂

1/3
3,c(N) from [IO14] (with equality when

∂M = ∅). While on flat backgrounds, by Theorem 126, B̂
1/3
3,V coincides with B

1
3
3,VMO from

[Bar+19b; NNT20; Wie20].

Let X00 be the space of smooth vector fields compactly supported in the interior of M .

We say (V , p) is a weak solution to the Euler equation when
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• V ∈ L3 (I,PL3X), p ∈ L 3
2 (I,H−β (M)) for any β ∈ N0

• ∀X ∈ C∞c (I,X00) :
∫∫

I×M 〈V , ∂tX〉+ 〈V ⊗ V ,∇X〉+ p divX = 0.

The last condition means ∂tV + div(V ⊗ V) + grad p = 0 as spacetime distributions.

Remark 89 (Local elliptic regularity). As V ∈ L3
tL

3X, we have ∆p = − div (div (V ⊗ V))

in L
3
2
t H

−2, 3
2 (M). By embedding, there is β ∈ N1 such that p ∈ L

3
2

(
I,H−β,

3
2 (M)

)
. Let

K ⊂⊂ W ⊂⊂
◦
M where K and W are precompact open sets. Then by interior elliptic

regularity (see [Tay11b, Subsection 5.11, Theorem 11.1] and [Tay11d, Subsection 13.6]), we

have for a.e. t ∈ I :

‖p (t)‖
L

3
2 (K)
.K,W ‖∆p (t)‖

H−2, 32 (W )
+ ‖p (t)‖

H−β,
3
2 (W )

Then we can conclude p ∈ L
3
2
t L

3
2 (K), for any K ⊂

◦
M precompact.

As can be seen in [NN19; Bar+19b; NNT20], the correct replacement for the trace

theorem is the following “strip decay” hypothesis near the boundary:

∥∥∥∥∥
(
|V|2

2
+ p

)
〈V , ν̃〉

∥∥∥∥∥
L1
tL

1
(
M[ r2 ,r]

,avg
) r↓0−−→ 0 (12.1)

where


ν̃ is the extension of ν near the boundary.

M[r/2,r] = {x ∈M : dist(x, ∂M) ∈ [r/2, r]}.

avg means the measure is normalized to become a probability measure.

Theorem 90. Let M be as in (11.1). Then ‖V(t, ·)‖L2(M) is a.e. constant in time if (V , p)

is a weak solution with V ∈ L3
tPL3X ∩ L3

t B̂
1
3
3,VX and (12.1) being true.

12.1 Outline of Part II

In Chapter 14, we summarize the key tools from Part I, discuss some connections between

the heat flow and Besov spaces, and then prove Onsager’s conjecture. However, at certain
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points we will need some local-type estimates involving the heat flow, which are themselves

derived from the construction of the heat kernel. To avoid interrupting the flow of the thesis,

the local estimates are proved in Chapter A, while the construction of the kernel, arguably

the most technical step of the thesis, can be found in Chapter B.
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CHAPTER 13

Common notation

Some common notation we use:

• A .x,¬y B means A ≤ CB where C > 0 depends on x and not y. Similarly, A ∼x,¬y B

means A .x,¬y B and B .x,¬y A. When the dependencies are obvious by context, we

do not need to make them explicit.

• N0,N1 : the set of natural numbers, starting with 0 and 1 respectively.

• DCT: dominated convergence theorem, FTC: fundamental theorem of calculus, WLOG:

without loss of generality.

• TVS: topological vector space. For TVS X, Y ≤ X means Y is a subspace of X.

• L(X, Y ) : the space of continuous linear maps from TVS X to Y . Also L(X) =

L(X,X).

• C0(S → Y ): the space of bounded, continuous functions from metric space S to normed

vector space Y . Not to be confused with C0
loc(S → Y ), which is the space of locally

bounded, continuous functions.

• ‖x‖D(A) = ‖x‖X + ‖Ax‖X and ‖x‖∗D(A) = ‖Ax‖X where A is an unbounded operator

on (real/complex) Banach space X and x ∈ D(A). Note that ‖·‖∗D(A) is not always a

norm. We also define D(A∞) = ∩k∈N1D(Ak).

• B(x, r) = Br(x): the open ball of radius r centered at x in a metric space.
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CHAPTER 14

Onsager’s conjecture

14.1 Summary of preliminaries

We will quickly summarize the key tools that we need for the proof (see Section 4.1 for the

precise locations where they are proved).

Definition 91. For the rest of the thesis, unless otherwise stated, let M be a compact,

smooth, Riemannian n-dimensional manifold, with no or smooth boundary. We also let

I ⊂ R be an open time interval. We write M<r = {x ∈ M : dist(x, ∂M) < r} for r > 0

small. Similarly define M≥r,M<r,M[r1,r2] etc. Let
◦
M denote the interior of M .

By the musical isomorphism, we can consider XM (the space of smooth vector fields)

mostly the same as Ω1(M) (the space of smooth 1-forms), mutatis mutandis. We note that

XM , X (∂M) and XM
∣∣
∂M

are different. Unless otherwise stated, let the implicit domain be

M , so X stands for XM , and similarly Ωk for ΩkM . For X ∈ X, we write X[ as its dual

1-form.

Let X00 (M) denote the set of smooth vector fields of compact support in
◦
M . We define

Ωk
00 (M) similarly (smooth differential forms with compact support in

◦
M).

Let ν denote the outwards unit normal vector field on ∂M . ν can be extended via

geodesics to a smooth vector field ν̃ which is of unit length near the boundary (and cut off

at some point away from the boundary).

For X ∈ XM, define nX = 〈X, ν〉 ν ∈ XM |∂M (the normal part) and tX = X|∂M−nX

(the tangential part). We note that tX and nX only depend on X
∣∣
∂M

, so t and n can be
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defined on XM
∣∣
∂M

, and t (XM |∂M) ∼−→ X(∂M).

For ω ∈ Ωk (M) , define tω and nω by

tω(X1, ..., Xk) := ω(tX1, ..., tXk) ∀Xj ∈ XM, j = 1, ..., k

and nω = ω|∂M − tω. Note that (nX)[ = nX[ ∀X ∈ X.

Let ∇ denote the Levi-Civita connection, d the exterior derivative, δ the codif-

ferential, and ∆ = − (dδ + δd) the Hodge-Laplacian, which is defined on vector fields by

the musical isomorphism.

Familiar scalar function spaces such as Lp,Wm,p (Lebesgue-Sobolev spaces), Bs
p,q

(Besov spaces), C0,α (Holder spaces) can be defined on M by partitions of unity and

given a unique topology. Similarly, we define such function spaces for tensor fields and

differential forms on M by partitions of unity and local coordinates. For instance, we can

define L2X or B
1
3
3,1X.

Fact 92. ∀α ∈
(

1
3
, 1
)
,∀p ∈ (1,∞) : W 1,pX ↪→ B

1
p

p,1X ↪→LpX and C0,αX = Bα
∞,∞X ↪→

Bα
3,∞X ↪→ B

1
3
3,1X ↪→ B

1
3
3,∞X

Definition 93. We write 〈·, ·〉 to denote the Riemannian fiber metric for tensor fields

on M . We also define the dot product

〈〈σ, θ〉〉 =

∫
M

〈σ, θ〉 vol

where σ and θ are tensor fields of the same type, while vol is the Riemannian volume

form. When there is no possible confusion, we will omit writing vol.

Define Ω(M) =
⊕n

k=0 Ωk(M) as the graded algebra of differential forms where multi-

plication is the wedge product. We then naturally define Wm,pΩ(M) =
⊕n

k=0W
m,pΩk(M),

and similarly for Bs
p,q, F

s
p,q spaces. Spaces like ΩN (M), Ω00 (M) are also defined by direct

sums.
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We define XN = {X ∈ X : nX = 0 } (Neumann condition). In order to define

the Neumann condition for less regular vector fields, we use the trace theorem. We can

similarly define Ωk
N .

Fact 94 (Trace theorem). Let p ∈ [1,∞). Then

• B
1
p

p,1 (M)� Lp (∂M) and B
1
p

p,1XM � LpXM
∣∣
∂M

are continuous surjections.

• ∀m ∈ N1 : B
m+ 1

p

p,1 XM � Bm
p,1XM

∣∣
∂M

↪→ Wm,pXM
∣∣
∂M

is continuous.

Definition 95. We define P as the Leray projection, which projects X onto Ker
(

div
∣∣
XN

)
.

Note that the Neumann condition is enforced by P.

Fact 96. ∀m ∈ N0,∀p ∈ (1,∞), P is continuous on Wm,pX and P (Wm,pX) = Wm,p-cl (PX)

(closure in the Wm,p-topology).

We collect some results regarding our heat flow in one place:

Fact 97 (Absolute Neumann heat flow). There exists a semigroup of operators (S(t))t≥0

acting on ∪p∈(1,∞)L
pX such that

1. S (t1)S (t2) = S (t1 + t2) ∀t1, t2 ≥ 0 and S (0) = 1.

2. ∀p ∈ (1,∞) ,∀X ∈ LpX :

(a) S(t)X ∈ XN and ∂t (S(t)X) = ∆S(t)X ∀t > 0.

(b) S(t)X
C∞−−−→
t→t0

S (t0)X ∀t0 > 0.

(c) ‖S(t)X‖Wm,p .m,p
(

1
t

)m
2 ‖X‖Lp ∀m ∈ N0,∀t ∈ (0, 1).

(d) S(t)X
Lp−−→
t→0

X.

3. ∀p ∈ (1,∞) ,∀X ∈ W 1,pXN :

(a) ‖S(t)X‖Wm+1,p .m,p
(

1
t

)m
2 ‖X‖W 1,p ∀m ∈ N0,∀t ∈ (0, 1).

(b) S(t)X
W 1,p

−−−→
t→0

X.
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4. S (t)P = PS (t) on Wm,pX ∀m ∈ N0,∀p ∈ (1,∞) ,∀t ≥ 0.

5. 〈〈S(t)X, Y 〉〉 = 〈〈X,S(t)Y 〉〉 ∀t ≥ 0,∀p ∈ (1,∞) , ∀X ∈ LpX,∀Y ∈ Lp′X.

These estimates precisely fit the analogy et∆ ≈ P≤ 1√
t

where P is the Littlewood-Paley

projection.

Analogous results hold for scalar functions and differential forms.

We observe some basic identities from differential geometry:

• Using Penrose abstract index notation, for any smooth tensors Ta1...ak , we define

(∇T )ia1...ak
= ∇iTa1...ak and div T = ∇iTia2...ak .

• For all smooth tensors Ta1...ak and Qa1...ak+1
:

∫
M

∇i

(
Ta1...akQ

ia1...ak
)

=

∫
M

∇iTa1...akQ
ia1...ak +

∫
M

Ta1...ak∇iQ
ia1...ak

=

∫
∂M

νiTa1...akQ
ia1...ak .

• (∇a∇b −∇b∇a)T
ij
kl = −Rabσ

iT σjkl − Rabσ
jT iσkl + Rabk

σT ijσl + Rabl
σT ijkσ for any

tensor T ijkl, where R is the Riemann curvature tensor. Similar identities hold for

other types of tensors. When we do not care about the exact indices and how they

contract, we can just write the schematic identity (∇a∇b −∇b∇a)T
ij
kl = R ∗T. As

R is bounded on compact M , interchanging derivatives is a zeroth-order operation on

M . In particular, we have the Weitzenbock formula:

∆X = ∇i∇iX +R ∗X ∀X ∈ XM (14.1)

There is an elementary lemma which is useful for convergence (the proof is straightforward

and omitted):

Lemma 98 (Dense convergence). Let X, Y be (real/complex) Banach spaces and X0 ≤ X

be norm-dense. Let (Tj)j∈N be bounded in L(X, Y ) and T ∈ L(X, Y ).
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If Tjx0 → Tx0 ∀x0 ∈ X0 then Tjx→ Tx ∀x ∈ X.

As the heat flow does not preserve compact supports in
◦
M , it is not defined on distribu-

tions. This inspires the formulation of heatable currents.

Definition 99 (Heatable currents). Define:

• DΩk = Ωk
00 = colim{

(
Ωk

00 (K) , C∞ topo
)

: K ⊂
◦
M compact} as the space of test

k-forms with Schwartz’s topology1 (colimit in the category of locally convex TVS).

• D ′Ωk =
(
DΩk

)∗
as the space of k-currents (or distributional k-forms), equipped

with the weak* topology.

• DNΩk = {ω ∈ Ωk : n∆mω = 0,nd∆mω = 0 ∀m ∈ N0} as the space of heated k-

forms with the Frechet C∞ topology and D ′NΩk =
(
DNΩk

)∗
as the space of heatable

k-currents (or heatable distributional k-forms) with the weak* topology.

In particular, DNX is defined from DNΩ1 by the musical isomorphism, and it is invariant

under our heat flow (much like how the space of Schwartz functions S(Rn) is invariant

under the Littlewood-Paley projection). By that analogy, heatable currents are tempered

distributions on manifolds, and we can write

〈〈S(t)Λ, X〉〉 = 〈〈Λ, S (t)X〉〉 ∀Λ ∈ D ′NX, ∀X ∈ DNX,∀t ≥ 0

where the dot product 〈〈·, ·〉〉 is simply abuse of notation.

Fact 100. Some basic properties of DNΩ (M) and D ′NΩ (M):

• 〈〈∆X, Y 〉〉 = 〈〈X,∆Y 〉〉 ∀X, Y ∈ DNX.

• DΩ ↪→ DNΩ and LpΩ ↪→ D ′NΩ ∀p ∈ (1,∞).

1Confusingly enough, “Schwartz’s topology” refers to the topology on the space of distributions, not the
topology for Schwartz functions.
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• S(t)Λ ∈ DNΩ ∀t > 0,∀Λ ∈ D ′NΩ. (a heatable current becomes heated once the heat

flow is applied)

• W 1,p-cl (DNΩ) = W 1,pΩN and B
1
p

p,1-cl (PDNΩ) = PB
1
p

p,1ΩN ∀p ∈ (1,∞)

• ∀X ∈ DNΩ : S(t)X
C∞−−→
t↓0

X and ∂t (S(t)X) = ∆S(t)X = S(t)∆X ∀t ≥ 0.

• ∀t ∈ (0, 1),∀m,m′ ∈ N0,∀p ∈ (1,∞),∀X ∈ DNΩ :

1. ‖S(t)X‖Wm+m′,p .
(

1
t

)m′
2 ‖X‖Wm,p

2. ‖S(t)X‖Wm,p .
(

1
t

) 1
2(m− 1

p) ‖X‖
B

1
p
p,1

when m ≥ 1

3. ‖S(t)X‖
B
m+m′+ 1

p
p,1

.
(

1
t

) 1
2p

+m′
2 ‖X‖Wm,p

14.2 Heating the nonlinear term

Recall integration by parts:

〈〈div (Y ⊗ Z) , X〉〉 = −〈〈Y ⊗ Z,∇X〉〉+

∫
∂M

〈ν, Y 〉 〈Z,X〉 ∀X, Y, Z ∈ X (M)

Let U, V ∈ B
1
3
3,1X. Then U ⊗ V ∈ L1X and div (U ⊗ V ) is defined as a distribution. So we

will define the heatable 1-current (div (U ⊗ V ))[ by

〈〈div (U ⊗ V ) , X〉〉 := −〈〈U ⊗ V,∇X〉〉+

∫
∂M

〈ν, U〉 〈V,X〉 ∀X ∈ DNX (X is heated)

It is continuous on DNX since

|〈〈div (U ⊗ V ) , X〉〉| . ‖U‖
B

1
3
3,1

‖V ‖
B

1
3
3,1

‖X‖
B

1
3
3,1

+ ‖U‖L3 ‖V ‖L3 ‖∇X‖L3 .

By the same formula and reasoning, we see that (div (U ⊗ V ))[ is not just heatable, but also

a continuous linear functional on (X (M) , C∞ topo).
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On the other hand, we can get away with less regularity by assuming U ∈ PL2X and

V ∈ L2X. Then (div (U ⊗ V ))[ is heatable as we simply need to define

〈〈div (U ⊗ V ) , X〉〉 = −〈〈U ⊗ V,∇X〉〉 ∀X ∈ X (14.2)

14.3 Besov spaces

For the rest of the proof, we will write et∆ for the absolute Neumann heat flow, as we will

not need another heat flow. For ε > 0 and vector field X, we will write Xε for eε∆X.

Now we define a crude version of the Littlewood-Paley projections: P≤t = e
1
t2

∆ for t > 0

and PN = P≤N − P≤N
2

for N > 1, N ∈ 2Z.

The definition of P≤t gives a quick Bernstein estimate:

Theorem 101. For N ≥ 1 and X ∈ D ′NΩk,

‖PNX‖p .
1

N2

∥∥P≤√2NX
∥∥
W 2,p .

1

N
‖P≤2NX‖W 1,p .

Proof. Recall that eε∆X ∈ DNΩk ∀ε > 0. Then observe that

PNX =

(
exp

(
∆

2N2

)
− exp

(
7∆

2N2

))
exp

(
∆

2N2

)
X =

∫ 1
2N2

7
2N2

∆et∆ exp

(
∆

2N2

)
X dt

and P≤
√

2N = P≤2NP≤2N .

Definition 102. For α ∈ (0, 1), p ∈ (1,∞) , q ∈ [1,∞], we define the Besov heat space

B̂α
p,qΩ

k as the space of heatable k-currents X where the norm

‖X‖B̂αp,q = ‖X‖Lp +
∥∥∥s 1

2
(1−α)

∥∥es∆X∥∥
W 1,p

∥∥∥
Lq(ds

s
,(0,1))

∼ ‖X‖Lp +
∥∥Nα−1 ‖P≤NX‖W 1,p

∥∥
lqN (N∈2Z,N>1)
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is finite.

Recall the theory of real interpolation. The following fact justifies the name “Besov” in

Besov heat space:

Theorem 103.
[
LpΩk,W 1,pΩk

N

]
θ,q

= B̂θ
p,qΩ

k for q ∈ [1,∞], p ∈ (1,∞) , θ ∈ (0, 1).

Proof. By definition, B̂θ
p,qΩ

k ↪→ LpΩk. We first show B̂θ
p,qΩ

k ↪→
[
LpΩk,W 1,pΩk

N

]
θ,q

.

Assume ‖X‖B̂θp,q ≤ 1. Then we decompose X
Lp
= P≤1X +

∑
N>1,N∈2Z PNX . Set

X0 = P≤1X and Xk = P2−kX ∀k ∈ Z, k ≤ −1. Then by the J-method, and the fact

that X =
∑

k≤0Xk, we have

‖X‖[LpΩk,W 1,pΩkN ]
θ,q

.
∥∥2−kθ ‖Xk‖Lp + 2k(1−θ) ‖Xk‖W 1,p

∥∥
lqk(k≤0)

. ‖X‖Lp +

∥∥∥∥∥
(

1

2

)−mθ
‖P2mX‖Lp +

(
1

2

)m(1−θ)

‖P2mX‖W 1,p

∥∥∥∥∥
lqm(m≥1)

. ‖X‖Lp +

∥∥∥∥∥
(

1

2

)m(1−θ)

‖P≤2m+1X‖W 1,p

∥∥∥∥∥
lqm(m≥1)

. 1

Now we will show
[
LpΩk,W 1,pΩk

N

]
θ,q

↪→ B̂θ
p,qΩ

k. Assume ‖Y ‖[LpΩk,W 1,pΩkN ]
θ,q

≤ 1,

then ‖Y ‖Lp . 1. We will use the K-method: for any N ≥ 1, Y0 ∈ LpΩk, Y1 ∈ W 1,pΩk
N

such that Y = Y0 + Y1, we have

‖P≤NY ‖W 1,p ≤ ‖P≤NY0‖W 1,p + ‖P≤NY1‖W 1,p . N ‖Y0‖Lp + ‖Y1‖W 1,p

Note that this is why we need W 1,pΩk
N instead of W 1,pΩk. Then

N θ−1 ‖P≤NY ‖W 1,p . inf
Y0+Y1=Y

N θ ‖Y0‖Lp +N θ−1 ‖Y1‖W 1,p = N θK

(
1

N
, Y

)

so ∥∥N θ−1 ‖P≤NY ‖W 1,p

∥∥
lqN (N∈2Z,N>1)

.
∥∥N−θK (N, Y )

∥∥
lqN (N∈2Z,N<1)

≤ 1
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Remark 104. We recover the standard Besov space when the manifold is boundaryless, ef-

fectively generalizing the proof in [IO14, Appendix B]. More importantly, in the case with

boundary, we have

PB
1
3
3,qΩ

k =
[
PL3Ωk,PW 1,pΩk

]
1/3,q

=
[
PL3Ωk,PW 1,pΩk

N

]
1/3,q

= PB̂
1
3
3,qΩ

k

for q ∈ [1,∞]. The fact that we need to apply the Leray projection is an important techni-

cality.

Definition 105. For p ∈ (1,∞), we say X ∈ B̂1/p
p,VX (M) if X ∈ LpX (M) and ∀r > 0 :

N
1
p
−1 ‖P≤NX‖W 1,p(M>r)

N→∞−−−→ 0 (14.3)

Similarly, we say X ∈ Lpt B̂
1/p
p,VX (M) if X ∈ LptLpX (M) and ∀r > 0 :

N
1
p
−1 ‖P≤NX‖LptW 1,p(M>r)

N→∞−−−→ 0 (14.4)

Remark. The vanishing property in (14.4) becomes important for the commutator estimate

in Onsager’s conjecture at the critical regularity 1
3
, while higher regularity has enough room

for vanishing in norm (which is better).

It is shown in Corollary 118 that (14.3) is equivalent to

N
1
p ‖P>NX‖Lp(M>r)

N→∞−−−→ 0 ∀r > 0

We briefly note that when ∂M = ∅, it is customary to set dist (x, ∂M) = ∞, M>r =

M =
◦
M , M<r = ∅, and DNXM = DXM = XM .

Recall the space B̂
1/3
3,c(N)X = B̂

1/3
3,∞-cl (DNX) from [IO14].

Lemma 106. B̂
1/3
3,c(N)X ↪→ B̂

1/3
3,VX. When ∂M = ∅, B̂1/3

3,VX = B̂
1/3
3,c(N)X.
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Proof. Observe that DNX ↪→ B̂
1/3
3,VX . For any r > 0, N ≥ 1 and X ∈ B̂1/3

3,∞,

N−2/3 ‖P≤NX‖W 1,3(M>r)
≤ N−2/3 ‖P≤NX‖W 1,3(M) . ‖X‖B̂1/3

3,∞(M)

Because
{
f ∈ l∞ (N) : f(k)

k→∞−−−→ 0
}

is closed in l∞ (N), we conclude B̂
1/3
3,c(N)X ↪→

B̂
1/3
3,VX.

On the other hand, when ∂M = ∅, observe that M>r = M . Let X ∈ B̂1/3
3,VX. We

aim to show P≤KX
B̂

1/3
3,∞−−−→

K→∞
X. For any N,K ∈ 2N0 :

N−2/3 ‖P≤NX‖W 1,3(M) &¬K,¬N N−2/3 ‖P≤N (1− P≤K)X‖W 1,3(M)

K→∞−−−→ 0

Let N0 ∈ 2N1 . Then observe that

lim sup
K→∞

∥∥∥N−2/3 ‖P≤N (1− P≤K)X‖W 1,3(M)

∥∥∥
l∞N>1

≤ lim sup
K→∞

∥∥∥N−2/3 ‖P≤N (1− P≤K)X‖W 1,3(M)

∥∥∥
l∞N (N∈2N0 ,N<N0)︸ ︷︷ ︸

0

+
∥∥∥N−2/3 ‖P≤NX‖W 1,3(M)

∥∥∥
l∞N (N∈2N0 ,N≥N0)

As N0 is arbitrary, let N0 →∞ and we are done.

Remark 107. On the other hand, Theorem 126 shows that, on flat backgrounds, B̂
1/3
3,V coin-

cides with the VMO-type Besov space B
1/3
3,VMO from [Bar+19b; NNT20].

We will also need to borrow a result from Chapter A, which allows us to employ cutoffs.

Fact 108 (Pointwise multiplier). If f ∈ D (M) and X ∈ L3
t B̂

1
3
3,VX, then fX ∈ L3

t B̂
1
3
3,VX.

149



14.4 Proof of Onsager’s conjecture

Definition 109. We define the cutoffs

ψr(x) = Ψr (dist (x, ∂M)) (14.5)

where r > 0 small, Ψr ∈ C∞([0,∞), [0,∞)) such that 1[0, 3
4
r) ≥ Ψr ≥ 1[0, r

2
] and ‖Ψ′r‖∞ .

1
r
.

Then there is fr smooth such that ∇ψr(x) = fr(x)ν̃(x) with |fr(x)| . 1
r

and supp fr ⊂

M[ r
2
, 3r

4
].

Let χr = 1−ψr. Then ∇χr = −frν̃. As usual, there is a commutator estimate which

we will now assume (leaving the proof to later):

∫
I

η
〈〈

div (U ⊗ χrU)2ε , (χrU)2ε〉〉− ∫
I

η
〈〈

div
(
U2ε ⊗ (χrU)2ε) , (χrU)2ε〉〉

=

∫
I

η
〈〈

div (U ⊗ χrU)3ε , (χrU)ε
〉〉
−
∫
I

η
〈〈

div
(
U2ε ⊗ (χrU)2ε)ε , (χrU)ε

〉〉
ε↓0−−→ 0 (14.6)

for fixed r > 0, U ∈ L3
t B̂

1
3
3,VX ∩ L3

tPL3X, η ∈ C∞c (I).

Remark. For any U in PL2X and V ∈ L2X, div (U ⊗ V )[ is a heatable 1-current (see Sec-

tion 14.2). In particular, for ε > 0, div (U ⊗ V )ε is smooth and

〈〈div (U ⊗ V )ε , Y 〉〉 = −〈〈U ⊗ V,∇ (Y ε)〉〉 ∀Y ∈ X (14.7)

Consequently, (14.6) is well-defined.

Notation: we write div (U ⊗ V)ε for (div (U ⊗ V))ε and ∇U ε for ∇ (U ε) (recall that the

heat flow does not work on tensors U ⊗ V and ∇U).

Theorem 110 (Onsager’s conjecture). Let M be a compact, oriented Riemannian manifold

with no or smooth boundary. Let (V , p) be a weak solution and V ∈ L3
t B̂

1
3
3,VX ∩ L3

tPL3X.
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Assume (14.6) is true. Also assume strip decay:

∥∥∥∥∥
(
|V|2

2
+ p

)
〈V , ν̃〉

∥∥∥∥∥
L1
tL

1
(
M[ r2 ,r]

,avg
) r↓0−−→ 0

Then we can show

∫
I

η′(t) 〈〈V(t),V(t)〉〉 dt = 0 ∀η ∈ C∞c (I)

Consequently, 〈〈V(t),V(t)〉〉 is constant for a.e. t ∈ I.

Proof. Let Φ ∈ C∞c (R) and Φτ
τ↓0−−→ δ0 be a radially symmetric mollifier. Write Vε

for eε∆V (spatial mollification) and Vτ for Φτ ∗ V (temporal mollification). First, we

use the cutoff χr and mollify in time and space

1

2

∫
I

η′ 〈〈V ,V〉〉 DCT
= lim

r↓0
lim
ε↓0

lim
τ↓0

1

2

∫
I

η′ 〈〈(χrV)ετ , (χrV)ετ 〉〉

Then for ε, τ small, we want to get rid of the time derivative:

1

2

∫
I

η′ 〈〈(χrV)ετ , (χrV)ετ 〉〉 = −
∫
I

η 〈〈∂t (χrV)ετ , (χrV)ετ 〉〉

= −
∫
I

〈〈∂t (η (χrV)ετ ) , (χrV)ετ 〉〉+

∫
I

η′ 〈〈(χrV)ετ , (χrV)ετ 〉〉

We now use the definition of weak solution (WS), and exploit the commutativity

between spatial and temporal operators. For the sake of exposition, we will freely

cancel the error terms that go to zero upon taking the limits. At the end of the proof,

we will show why they can be cancelled.

1

2

∫
I

η′ 〈〈(χrV)ετ , (χrV)ετ 〉〉 =

∫
I

〈〈∂t (η (χrV)ετ ) , (χrV)ετ 〉〉

=

∫
I

〈〈
∂t
[(
η (χrV)2ε

τ

)
τ
χr
]
,V
〉〉
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WS
==−

∫
I

〈〈
∇
[(
η (χrV)2ε

τ

)
τ
χr
]
,V ⊗ V

〉〉
−
〈〈

div
[(
η (χrV)2ε

τ

)
τ
χr
]
, p
〉〉

=−
∫
I

〈〈
∇
[(
η (χrV)2ε

τ

)
τ

]
χr,V ⊗ V

〉〉
−

(((((((((((((((((〈〈(
η (χrV)2ε

τ

)
τ
⊗∇χr,V ⊗ V

〉〉
−
〈〈

div
(
η (χrV)2ε

τ

)
τ
χr, p

〉〉
−

(((((((((((((〈〈(
η (χrV)2ε

τ

)
τ
· ∇χr, p

〉〉
=−

∫
I

〈〈(
η∇ (χrV)2ε

τ

)
τ
χr,V ⊗ V

〉〉
−

((((((((((((((((〈〈(
η div

(
(χrV)2ε)

τ

)
τ
χr, p

〉〉
=−

∫
I

η
〈〈
∇ (χrV)2ε

τ , χr (V ⊗ V)τ
〉〉

As there is no longer a time derivative on V , we will get rid of τ by letting τ ↓ 0 (fine

as V is L3 in time). Also recall Equation (14.7):

lim
r↓0

lim
ε↓0

1

2

∫
I

η′ 〈〈(χrV)ε , (χrV)ε〉〉 = − lim
r↓0

lim
ε↓0

∫
I

η
〈〈
∇ (χrV)2ε ,V ⊗ χrV

〉〉
= lim

r↓0
lim
ε↓0

∫
I

η 〈〈(χrV)ε , div (V ⊗ χrV)ε〉〉

= lim
r↓0

lim
ε↓0

∫
I

η 〈〈(χrV)ε , div (Vε ⊗ (χrV)ε)〉〉

= lim
r↓0

lim
ε↓0

∫
I

η 〈〈(χrV)ε ,∇Vε (χrV)ε〉〉 = lim
r↓0

lim
ε↓0

∫
I

η

∫
M

Vε
(
|(χrV)ε|2

2

)
= 0

where we used the commutator estimate to pass to the second line, and the fact

that Vε ∈ PX to make the integral vanish.

We are done. As promised, we now show why we could cancel the error terms

previously. Let us calculate

− lim
r↓0

lim
ε↓0

lim
τ↓0

∫
I

〈〈(
η (χrV)2ε

τ

)
τ
⊗∇χr,V ⊗ V

〉〉
(14.8)

+
〈〈(

η (χrV)2ε
τ

)
τ
· ∇χr +

(
η div

(
(χrV)2ε)

τ

)
τ
χr, p

〉〉

Recall from Part I that δc = δ �ΩN and δ
D
′
N

c is the extension of δc to heatable currents,
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defined by

δ
D
′
N

c Λ (φ) = Λ (dφ) ∀Λ ∈ D
′

NΩ,∀φ ∈ DNΩ

Then the fact that PV[ = V[ is equivalent to δ
D
′
N

c V[ = 0. This implies:

− div
(
(χrV)2ε) = δc

((
χrV[

)2ε
)

=

(
δ

D
′
N

c

(
χrV[

))2ε

(14.9)

=

(
−∇χr · V + χrδ

D
′
N

c V[
)2ε

= (frν̃ · V)2ε

With that simplification, and the lack of any time derivatives, (14.8) becomes

lim
r↓0

lim
ε↓0

∫
I

η
〈〈

(χrV)2ε ⊗ frν̃,V ⊗ V
〉〉

+ η
〈〈

(χrV)2ε · frν̃, p
〉〉

+ η
〈〈

(frν̃ · V)2ε , χrp
〉〉

= lim
r↓0

∫
I

η 〈〈V · V , χrfrν̃ · V〉〉+ 2η 〈〈V · χrfrν̃, p〉〉 = lim
r↓0

∫
I

2η

〈〈
|V|2

2
+ p, χrfrν̃ · V

〉〉

= lim
r↓0

O

(∫
I

|η|
∫
M[ r2 ,r]

∣∣∣∣∣ |V|22
+ p

∣∣∣∣∣ 1

r
|〈ν̃,V〉|

)
= 0

where we used the strip decay hypothesis.

Remark 111. The proof did not much use the Besov regularity of V , which is mainly used

for the commutator estimate.

It is the commutator estimate that presents the main difficulty. We proceed similarly as

in [IO14].

Note that from this point on r > 0 is fixed.

Let U ∈ L3
t B̂

1
3
3,VX ∩ L3

tPL3X and χr be as before.

By setting U(t) to 0 for t in a null set, WLOG we assume U(t) ∈ PL3X ∩ B̂1/3
3,VX ∀t ∈ I.

Define the commutator

W(t, s) = div (U (t)⊗ χrU (t))3s − div
(
U2s ⊗ (χrU (t))2s)s
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When t and s are implicitly understood, we will not write them. As div (U(t)⊗ U(t))3s

solves (∂s − 3∆)X = 0, we define N = (∂s − 3∆)W . Then W and N obey the Duhamel

formula.

Lemma 112 (Duhamel). For fixed t0 ∈ I and s > 0:
∫ s
ε
N (t0, σ)3(s−σ) dσ

ε↓0−−→ W (t0, s) in

D ′NX.

Proof. Let ε > 0. By the smoothing effect of es∆, W(t0, ·) and N (t0, ·) are in

C0
loc ((0, 1],DNX). As

(
es∆
)
s≥0

is a C0 semigroup on (Hm-cl (DNX) , ‖·‖Hm) ∀m ∈ N0,

and a semigroup basically corresponds to an ODE (cf. [Tay11b, Appendix A, Propo-

sition 9.10 & 9.11]), from ∂sW = 3∆W +N for s ≥ ε we get the Duhamel formula

∀s > ε :W(t0, s) =W (t0, ε)
3(s−ε) +

∫ s

ε

N (t0, σ)3(s−σ) dσ

So we only need to show W (t0, ε)
3(s−ε) D ′NX

−−−→
ε↓0

0. Let X ∈ DNX.

〈〈
X,W (t0, ε)

3(s−ε)
〉〉

=
〈〈
X3(s−ε), div (U (t0)⊗ χrU (t0))3ε − div

(
U (t0)2ε ⊗ (χrU (t0))2ε)ε〉〉

=−
〈〈
∇
(
X3s

)
,U (t0)⊗ χrU (t0)

〉〉
+
〈〈
∇
(
X3s−2ε

)
,U (t0)2ε ⊗ (χrU (t0))2ε〉〉 ε↓0−−→ 0.

From now on, we write
∫ s

0+
for limε↓0

∫ s
ε

. Then

∫
I

dt η (t) 〈〈W (t, s) ,U (t)s〉〉 =

∫
I

dt η (t)

∫ s

0+

dσ
〈〈
N (t, σ)3(s−σ) ,U (t)s

〉〉

Definition 113. Define the k-jet fiber norm |X|Jk =

(
k∑
j=0

∣∣∇(j)X
∣∣2) 1

2

∀X ∈ X.

Let K (σ, x, y) be the kernel of the heat flow at time σ > 0. Then by Chapter B, we

obtain off-diagonal decay for all derivatives:
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Fact 114 (Off-diagonal decay). For any multi-index γ and x 6= y, Dγ
σ,x,yK (σ, x, y) = O (σ∞)

as σ ↓ 0, locally uniform in {x 6= y}.

For convenience, we will write Y = χrU . Then for r > 0, σ ∈ (0, 1) and x ∈M<r/4 :

|Yσ(t, x)|J2 .M,r Or (σ∞) ‖U(t)‖L3(M>r/2) (14.10)

which implies ‖Yσ(t)‖W 2,3(M<r/4) + ‖Yσ(t)‖W 2,3XM |∂M .M,r Or (σ∞) ‖U(t)‖L3(M>r/2).

We now handle the most important error estimates that will appear in our analysis.

Lemma 115 (2 error estimates). For fixed r > 0 small, we have

lim
s↓0

∫
I

|η|
∫ s

0+

dσ

∫
M

∣∣U2σ
∣∣
J1

∣∣Y2σ
∣∣
J1

∣∣Y4s−2σ
∣∣
J1 = 0 (14.11)

and

lim
s↓0

∫
I

|η|
∫ s

0+

dσ

∫
∂M

∣∣U2σ
∣∣
J1

∣∣Y2σ
∣∣
J1

∣∣Y4s−2σ
∣∣
J2 = 0 (14.12)

.

Proof. We split (14.11) into 2 regions: M<r/4 and M≥r/4. Observe that

∫
I

|η|
∫ s

0+

dσ

∫
M<r/4

∣∣U2σ
∣∣
J1

∣∣Y2σ
∣∣
J1

∣∣Y4s−2σ
∣∣
J1

.
∫
I

|η|
∫ s

0+

dσ
∥∥U2σ

∥∥
W 1,3(M<r/4)

∥∥Y2σ
∥∥
W 1,3(M<r/4)

∥∥Y4s−2σ
∥∥
W 1,3(M<r/4)

.Or (s∞)

∫
I

dt |η (t)| ‖U(t)‖3
L3(M)

∫ s

0+

dσ

(
1

σ

)1/2
s↓0−−→ 0.

Define B (t, s) = s
1
3 ‖U (t)s‖W 1,3(M≥r/4) and C (t, s) = s

1
3 ‖Y (t)s‖W 1,3(M≥r/4).

By Fact 108, Y ∈ L3
t B̂

1/3
3,VX.

Therefore, ‖B (t, s)‖L3
t

and ‖C (t, s)‖L3
t

are continuous in s and converge to 0 as
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s→ 0 by (14.4). Observe that

∫
I

|η|
∫ s

0+

dσ

∫
M≥r/4

∣∣U2σ
∣∣
J1

∣∣Y2σ
∣∣
J1

∣∣Y4s−2σ
∣∣
J1

.
∫
I

|η|
∫ s

0+

dσ
∥∥U2σ

∥∥
W 1,3(M≥r/4)

∥∥Y2σ
∥∥
W 1,3(M≥r/4)

∥∥Y4s−2σ
∥∥
W 1,3(M≥r/4)

=

∫
I

dt |η(t)|
∫ s

0+

dσ

(
1

σ

) 2
3
(

1

2s− σ

) 1
3

B (t, 2σ)C (t, 2σ)C (t, 4s− 2σ)

.η

∫ s

0+

dσ

(
1

σ

) 2
3
(

1

2s− σ

) 1
3

‖B (t, 2σ)‖L3
t
‖C (t, 2σ)‖L3

t
‖C (t, 4s− 2σ)‖L3

t

σ=sτ
=

∫ 1

0+

dτ

(
1

τ

) 2
3
(

1

2− τ

) 1
3

‖B (t, 2sτ)‖L3
t
‖C (t, 2sτ)‖L3

t
‖C (t, 4s− 2sτ)‖L3

t

s↓0−−−→
DCT

0

So (14.11) is proven. For (14.12), observe that

∫
I

|η|
∫ s

0+

dσ

∫
∂M

∣∣U2σ
∣∣
J1

∣∣Y2σ
∣∣
J1

∣∣Y4s−2σ
∣∣
J2

.Or (s∞)

∫
I

dt |η (t)| ‖U (t)‖2
L3(M)

∫ s

0+

dσ
∥∥U (t)2σ

∥∥
W 1,3XM |∂M

.Or (s∞)

∫
I

dt |η (t)| ‖U (t)‖2
L3(M)

∫ s

0+

dσ
∥∥U (t)2σ

∥∥
B

1+1/3
3,1 (M)

.Or (s∞)

∫
I

dt |η (t)| ‖U (t)‖3
L3(M)

∫ s

0+

dσ

(
1

σ

)2/3

s↓0−−→ 0

where we used (14.10) to pass to the second line, and the trace theorem to pass to

the third line.

Note that

N (t, σ) = (∂σ − 3∆)
(
− div

(
U2σ ⊗ Y2σ

)σ)
= −2 div

(
∆U2σ ⊗ Y2σ

)σ − 2 div
(
U2σ ⊗∆Y2σ

)σ
+ 2∆ div

(
U2σ ⊗ Y2σ

)σ
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Now, we finally show

∫
I

η 〈〈W(s),Ys〉〉 =

∫
I

dt η (t) 〈〈W(t, s),Y(t)s〉〉 s↓0−−→ 0

Proof of the commutator estimate. First we integrate by parts into three compo-

nents:

∫
I

η 〈〈W(s),Ys〉〉 =

∫
I

dt η (t)

∫ s

0+

dσ
〈〈
N (t, σ)3(s−σ) ,Y (t)s

〉〉
=

∫
I

dt η (t)

∫ s

0+

dσ
〈〈
N (t, σ) ,Y (t)4s−3σ〉〉

=2

∫
I

η

∫ s

0+

dσ
〈〈

∆U2σ ⊗ Y2σ,∇
(
Y4s−2σ

)〉〉
+ 2

∫
I

η

∫ s

0+

dσ
〈〈
U2σ ⊗∆Y2σ,∇

(
Y4s−2σ

)〉〉
− 2

∫
I

η

∫ s

0+

dσ
〈〈
U2σ ⊗ Y2σ,∇

(
∆Y4s−2σ

)〉〉
Note that for the third component, we used Fact 100 to move the Laplacian.

We now use the Penrose abstract index notation to estimate the three components.

To clean up the notation, we only focus on the integral on M , with the other integrals

2
∫
I
η
∫ s

0+
dσ (·) in variables t and σ implicitly understood. We also use schematic

identities for linear combinations of similar-looking tensor terms where we do not

care how the indices contract (recall Equation (14.1)).

By Lemma 115, it is easy to check that all the terms with R or ν will be negligible

(going to 0 in the limit), and interchanging derivatives will be a negligible action.

We write ≈ to throw the negligible error terms away.

First component:

∫
M

〈
∆U2σ ⊗ Y2σ,∇

(
Y4s−2σ

)〉
=

((((((((((((((((∫
M

R ∗ U2σ ∗ Y2σ ∗ ∇
(
Y4s−2σ

)
+

∫
M
∇i∇i (U2σ)

j
(Y2σ)

l∇j (Y4s−2σ)l

157



≈
(((((((((((((((((((∫
∂M

νi∇i
(
U2σ
)j (Y2σ

)l∇j

(
Y4s−2σ

)
l
−

((((((((((((((((((((∫
M
∇i (U2σ)

j∇i (Y2σ)
l∇j (Y4s−2σ)l

−
∫
M
∇i (U2σ)

j
(Y2σ)

l∇i∇j (Y4s−2σ)l

Second component:

∫
M

〈
U2σ ⊗∆Y2σ,∇

(
Y4s−2σ

)〉
=

((((((((((((((((∫
M

U2σ ∗R ∗ Y2σ ∗ ∇
(
Y4s−2σ

)
+

∫
M

(U2σ)
j∇i∇i (Y2σ)

l∇j (Y4s−2σ)l

≈
(((((((((((((((((((∫
∂M

(
U2σ
)j
νi∇i

(
Y2σ
)l∇j

(
Y4s−2σ

)
l
−

((((((((((((((((((((∫
M
∇i (U2σ)

j∇i (Y2σ)
l∇j (Y4s−2σ)l

−
∫
M

(U2σ)
j∇i (Y2σ)

l∇i∇j (Y4s−2σ)l

For the third component, we use the identity ∇ (R ∗ U) = ∇R ∗ U + R ∗ ∇U to

compute:

−
∫
M

〈
U2σ ⊗ Y2σ,∇

(
∆Y4s−2σ

)〉
= −

((((((((((((((((∫
M

U2σ ∗ Y2σ ∗ ∇
(
R ∗ Y4s−2σ

)
−
∫
M

(U2σ)
j
(Y2σ)

l∇j∇i∇i (Y4s−2σ)l

≈
((((((((((((((((∫
M

U2σ ∗ Y2σ ∗R ∗ ∇
(
Y4s−2σ

)
−
∫
M

(U2σ)
j
(Y2σ)

l∇i∇j∇i (Y4s−2σ)l

≈
((((((((((((((((∫
M

U2σ ∗ Y2σ ∗ ∇
(
R ∗ Y4s−2σ

)
−
∫
M

(U2σ)
j
(Y2σ)

l∇i∇i∇j (Y4s−2σ)l

≈ −
(((((((((((((((((((∫
∂M

(
U2σ
)j (Y2σ

)l
νi∇i∇j

(
Y4s−2σ

)
l
+

∫
M
∇i (U2σ)

j
(Y2σ)

l∇i∇j (Y4s−2σ)l

+

∫
M

(U2σ)
j∇i (Y2σ)

l∇i∇j (Y4s−2σ)l

By adding them up, we are done.
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APPENDIX A

Local analysis

Let M be as in Equation (11.1). Throughout this chapter, we write et∆ for the absolute

Neumann heat flow, as we will not need another heat flow.

Assume the absolute Neumann heat kernel is already constructed, with off-diagonal decay

(Fact 114).

As before, define P≤N = e
1
N2 ∆ for N > 0 and PN = P≤N − P≤N

2
for N > 1, N ∈ 2Z.

Let χr = 1− ψr (see Equation (14.5)).

Then we have the localized Bernstein estimates:

Theorem 116. For any r > 0; m1,m2 ∈ N0; p ∈ (1,∞) ;N ≥ 1 and X ∈ Wm1,pΩ (M):

‖P≤NX‖Wm1+m2,p(M≥2r) .r,m1,m2,p N
m2 ‖X‖Wm1,p(M≥r) +Or

(
1

N∞

)
‖X‖Lp(M≤3r)

Proof. Observe that 1− χ2r = ψ2r = ψ2rψ4r. Then:

‖P≤NX‖Wm1+m2,p(M≥2r)

. ‖P≤N (χ2rX)‖Wm1+m2,p(M≥2r) + ‖P≤N (ψ2rψ4rX)‖Wm1+m2,p(M≥2r)

.m1,m2 N
m2 ‖χ2rX‖Wm1,p(M) +Or

(
1

N∞

)
‖ψ4rX‖Lp(M)

.r N
m2 ‖X‖Wm1,p(M≥r) +Or

(
1

N∞

)
‖X‖Lp(M≤3r)

where we have used the standard Bernstein estimate (Theorem 101) and the off-

diagonal decay of the heat kernel to pass from the first line to the second line

159



(supp ψ2r ⊆M≤ 3
2
r which does not intersect M≥2r).

Corollary 117. For any r, C1, C2 > 0; N ≥ 1; p ∈ (1,∞) and X ∈ D ′NΩ (M) :

‖(P≤C1N − P≤C2N)X‖Lp(M≥2r)

.C1,C2,r,p
1

N2

∥∥P≤2 max(C1,C2)NX
∥∥
W 2,p(M≥r)

+OC1,C2,r

(
1

N∞

)
‖X‖Lp(M)

.C1,C2,r,p
1

N

∥∥P≤3 max(C1,C2)NX
∥∥
W 1,p(M≥r/2)

+OC1,C2,r

(
1

N∞

)
‖X‖Lp(M)

Proof. WLOG C1 > C2 > 0. Let C = 2 max (C1, C2). Then by FTC:

‖(P≤C1N − P≤C2N)X‖Lp(M≥2r)

≤
∫ 1

C2
2N

2−
1

C2N2

1

C2
1N

2−
1

C2N2

dt
∥∥∥e(t+ 1

C2N2 )∆X
∥∥∥
W 2,p(M≥2r)

.C1,C2,r,p

∫ 1

C2
2N

2−
1

C2N2

1

C2
1N

2−
1

C2N2

dt

(∥∥∥e ∆
C2N2X

∥∥∥
W 2,p(M≥r)

+Or (t∞)
∥∥∥e ∆

2N2X
∥∥∥
Lp(M)

)

.C1,C2

1

N2
‖P≤CNX‖W 2,p(M≥r) +OC1,C2,r

(
1

N∞

)
‖X‖Lp(M)

We have used Theorem 116 to pass to the second line.

The rest is trivial.

Corollary 118. Let p ∈ (1,∞) and X ∈ LpΩ (M). Then the following conditions are

equivalent:

1. N
1
p
−1 ‖P≤NX‖W 1,p(M>r)

N→∞−−−→ 0 ∀r > 0

2. N
1
p ‖(P≤C1N − P≤C2N)X‖Lp(M>r)

N→∞−−−→ 0 ∀r, C1, C2 > 0

3. N
1
p ‖P>NX‖Lp(M>r)

N→∞−−−→ 0 ∀r > 0
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Proof. It is trivial to show (3) =⇒ (2) as P≤C1N − P≤C2N=P>C2N − P>C1N .

Next, we show (2) =⇒ (3). Let

w(N) = N
1
p ‖PNX‖Lp(M>r)

= N
1
p

∥∥(P≤N − P≤N/2)X∥∥Lp(M>r)

N→∞−−−→ 0

Then:

N
1
p ‖P>NX‖Lp(M>r)

≤ N
1
p

∑
K∈2Z
K>N

‖PKX‖Lp(M>r)
= N

1
p

∑
K∈2Z
K>N

K−
1
pw(K)

. ‖w(κ)‖l∞(κ>N,κ∈2Z)

N→∞−−−→ 0

We proceed to show (1) =⇒ (2). By Corollary 117:

N
1
p ‖(P≤C1N − P≤C2N)X‖Lp(M>r)

.C1,C2 N
1
p
−1
∥∥P≤3 max(C1,C2)NX

∥∥
W 1,p(M≥r/4)

+OC1,C2,r

(
1

N∞

)
‖X‖Lp(M)

N→∞−−−→ 0

Finally, we show (2) =⇒ (1). Let N0 ≥ 1 and N0 ∈ 2Z. There are constants

C1, C2 > 0 such that PN = P≤2N (P≤C1N − P≤C2N).

lim sup
N→∞

N
1
p
−1 ‖P≤NX‖W 1,p(M>r)

= lim sup
N→∞

N
1
p
−1 ‖(P≤N − P≤N0)X‖W 1,p(M>r)

. lim sup
N→∞

N
1
p
−1

∑
K∈2Z

N0<K≤N

‖PKX‖W 1,p(M>r)

. lim sup
N→∞

N
1
p
−1

∑
K∈2Z

N0<K≤N

(
K ‖(P≤C1K − P≤C2K)X‖Lp(M>r/2) +Or

(
1

K∞

)
‖X‖Lp(M)

)
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. lim sup
N→∞

N
1
p
−1

∑
K∈2Z

N0<K≤N

K1−1/pw (K) + lim sup
N→∞

N
1
p
−1Or

(
1

N∞0

)
‖X‖Lp(M)︸ ︷︷ ︸

0

(A.1)

where w (K) := K1/p ‖(P≤C1K − P≤C2K)X‖Lp(M>r/2)
K→∞−−−→ 0. Then we can bound

(A.1) by

lim sup
N→∞

∑
K∈2Z

N0<K≤N

(
K

N

)1−1/p

‖w(κ)‖l∞(κ≥N0,κ∈2Z) . ‖w(κ)‖l∞(κ≥N0,κ∈2Z)

But N0 is arbitrary. Let N0 →∞ and we are done.

Remark 119. By repeating the proof, for X ∈ LptLpΩ (M) :

∀r > 0 : N
1
p
−1 ‖P≤NX‖LptW 1,p(M>r)

N→∞−−−→ 0

⇐⇒ ∀r > 0 : N
1
p ‖P>NX‖LptLp(M>r)

N→∞−−−→ 0

We now prove a simple lemma from functional analysis.

Lemma 120 (Loss of norm). Let X, Y be Banach spaces and T : X ↪→ Y is continuous

injection. Let (fj)j∈N1
be a sequence in X and f ∈ X. If Tfj ⇀ Tf then

‖f‖X ≤ lim inf
j→∞

‖fj‖X

Proof. Note that T ∗ : Y ∗ → X∗has dense image. Then

‖f‖X = sup
‖x∗‖X∗=1
x∗∈X∗

|〈f, x∗〉| = sup
y∗∈Y ∗

‖T ∗y∗‖X∗=1

|〈f, T ∗y∗〉| = sup
y∗∈Y ∗

‖T ∗y∗‖X∗=1

lim
j→∞
|〈Tfj, y∗〉|

= sup
y∗∈Y ∗

‖T ∗y∗‖X∗=1

lim
j→∞
|〈fj, T ∗y∗〉| ≤ sup

y∗∈Y ∗
‖T ∗y∗‖X∗=1

lim inf
j→∞

‖fj‖X = lim inf
j→∞

‖fj‖X
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Theorem 121. Let p ∈ (1,∞), f ∈ DN (M), and X ∈ B̂1/p
p,VX (M) (as in Definition 105).

Then fX ∈ B̂1/p
p,VX.

Proof. To show fX ∈ B̂
1/p
p,VX, we just need to show a commutator estimate (much

like in the proof of Onsager’s conjecture):


W(s) := f sXs − (fX)s

(
√
s)

1− 1
p W(s)

W 1,p(M)−−−−−→
s↓0

0

where Xs is short for es∆X. Indeed, assuming this commutator estimate holds true,

∀r > 0:

lim sup
t↓0

(√
t
)1− 1

p ∥∥et∆ (fX)
∥∥
W 1,p(M>r)

≤ lim sup
t↓0

(√
t
)1− 1

p ∥∥f tX t
∥∥
W 1,p(M>r)

+ lim sup
t↓0

(√
t
)1− 1

p ‖W(t)‖W 1,p(M>r)︸ ︷︷ ︸
0

. lim sup
t↓0

(√
t
)1− 1

p ∥∥f t∥∥
C1(M)

∥∥X t
∥∥
W 1,p(M>r)

= 0

where we have used the fact that et∆f
C∞−−→
t→0

f , as f ∈ DN (M).

Now we prove the commutator estimate. DefineN (s) = (∂s −∆)W(s) = (∆f s)Xs+

f s (∆Xs)−∆ (f sXs). By the Weitzenbock formula, we get

N (s) =
(
D1f s

)
∗
(
D1Xs

)
where D1 is schematic for some differential operator of order at most 1, with smooth

coefficients (independent of s), and (D1f s) ∗ (D1Xs) is schematic for a linear combi-

nation of similar-looking tensor terms.

On the other hand, by the Duhamel formula for semigroups (cf. [Tay11b, Ap-
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pendix A, Proposition 9.10 & 9.11]), for any s > ε > 0 we get

W(s) =W (ε)s−ε +

∫ s

ε

N (σ)s−σ dσ

It is trivial to show that W (ε)s−ε
Lp−−⇀
ε↓0

0. Indeed, let Y ∈ Lp′X (M) . Then

〈〈
W (ε)s−ε , Y

〉〉
=
〈〈
f εXε − (fX)ε, Y s−ε〉〉 ε↓0−−→ 〈〈fX − fX, Y s〉〉 = 0

Then
∫ s
ε
N (σ)s−σ dσ

Lp−−⇀
ε↓0
W(s), and by Lemma 120, we conclude

‖W(s)‖W 1,p(M) ≤ lim inf
ε↓0

∥∥∥∥∫ s

ε

N (σ)s−σ dσ

∥∥∥∥
W 1,p(M)

≤
∫ s

0

∥∥e(s−σ)∆
(
D1fσ ∗D1Xσ

)∥∥
W 1,p(M)

dσ

.
∫ s

0

(
1

s− σ

) 1
2 ∥∥D1fσ ∗D1Xσ

∥∥
Lp(M)

dσ

.f

∫ s

0

(
1

s− σ

) 1
2

‖Xσ‖W 1,p(M) dσ

. ‖X‖Lp(M)

∫ s

0

(
1

s− σ

) 1
2
(

1

σ

) 1
2

dσ

σ=sτ
= ‖X‖Lp(M)

∫ 1

0

(
1

1− τ

) 1
2
(

1

τ

) 1
2

dτ .p ‖X‖Lp(M)

This obviously implies (
√
s)

1− 1
p W(s)

W 1,p(M)−−−−−→
s↓0

0.

Remark. By repeating the proof, with necessary modifications, for any f ∈ DN (M), and

X ∈ Lpt B̂
1/p
p,VX (M) (as in Definition 105), we have:

fX ∈ Lpt B̂
1/p
p,VX
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A.1 On flat backgrounds

Remark 122. When M is a bounded domain in Rn, the third condition in Corollary 118

takes on a more familiar form. Indeed, let φ ∈ C∞c (Rn) with
∫
φ = 1 and φε = 1

εn
φ
( ·
ε

)
.

Then we have the analogy

P≤ 1√
t
f = et∆f ≈ φ√t ∗ f

This means

N
1
p ‖P>NX‖Lp(M>r)

N→∞−−−→ 0 (A.2)

is analogous to
1

ε1/p
‖X − φε ∗X‖Lp(M>r)

ε→0−−→ 0 (A.3)

Definition 123. As in [Bar+19b; NNT20], for p ∈ (1,∞), we say X ∈ B
1/p
p,VMOX (M) if

X ∈ LpX (M) and ∀r > 0 :

Ar (ε) :=
1

ε1/p

∥∥∥‖X(x− εh)−X(x)‖Lp|h|≤1

∥∥∥
Lpx(M>r)

ε↓0−−→ 0 (A.4)

Similarly, we say X ∈ LptB
1/p
p,VMOX (M) if X ∈ LptLpX (M) and ∀r > 0 :

Ar (ε) :=
1

ε1/p

∥∥∥‖X (t, x− εh)−X (t, x)‖Lp|h|≤1

∥∥∥
LptL

p
x(M>r)

ε↓0−−→ 0 (A.5)

Remark 124. In (A.4), note that Ar (ε) is continuous for ε ∈ [0, r). Define

Ãr(ε) :=
1

ε1/p

∥∥∥‖1M>r (x− εh) (X(x− εh)−X(x))‖Lp|h|≤1

∥∥∥
Lpx(M>r)

for ε ∈ (0, 1] (well-defined). Then Ãr (ε) is also continuous in ε, with Ãr (ε) ≤ Ar (ε) ∀ε ∈

(0, r) and Ãr (ε) .r,p ‖X‖Lp(M) ∀ε ∈ [ r
2
, 1]. By Section 6.2, we conclude

‖X‖B1,p
p,∞(M>r)

∼ ‖X‖Lp(M>r)
+
∥∥∥Ãr (ε)

∥∥∥
L∞ε ((0,1))

.r,p ‖X‖Lp(M) + ‖Ar (ε)‖L∞ε ([0,r/2])
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From this we conclude B
1/p
p,VMO ↪→ B

1/p
p,∞,loc and LptB

1/p
p,VMO ↪→ LptB

1/p
p,∞,loc where

B
1/p
p,∞,loc (M) := Lp (M) ∩

(⋂
r>0

B1/p
p,∞ (M>r)

)

and LptB
1/p
p,∞,loc (M) := LptL

p (M) ∩
(⋂

r>0 L
p
tB

1/p
p,∞ (M>r)

)
.

We observe that (A.4) trivially implies (A.3). To relate (A.4) to (A.2), we now borrow

some results from the construction of the heat kernel (to be proven in Chapter B).

Fact 125. Fix r > 0. Let K(t, x, y) be the Hodge-Neumann heat kernel as constructed in

Chapter B.

For r′ > 0, let Er′ = {(x, y) ∈M ×M : d (x, y) ≥ r′}. Then Er′ is compact, and by the

locally uniform off-diagonal decay of the heat kernel, we conclude

∀x, y ∈ Er′ ,∀t ≤ 1 : |K(t, x, y)| = Or′,¬x,¬y (t∞) (A.6)

Now let Fr,r′ = {(x, y) ∈M≤r ×M : d (x, y) ≤ r′}. Then Fr,r′ is compact. By interior

blow-up, there is r′ = r′ (r) ∈
(
0, r

4

)
such that

∀x, y ∈ Fr,r′ ,∀t ≤ 1 : |K(t, x, y)| = Or,¬x,¬y

(
1

tn/2

〈
x− y√

t

〉−∞)
(A.7)

Theorem 126. Let M be a bounded C∞-domain in Rn, p ∈ (1,∞) and X ∈ LpX (M).

Then

∀r > 0 : Ar (ε) :=
1

ε1/p

∥∥∥‖X(x− εh)−X(x)‖Lp|h|≤1

∥∥∥
Lpx(M>r)

ε↓0−−→ 0 (A.8)

is equivalent to

∀r > 0 : N
1
p ‖P>NX‖Lp(M>r)

N→∞−−−→ 0 (A.9)
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Remark. The proof actually shows for N ≥ 1 :

N
1
p ‖P>NX‖Lp(M>r)

= Or

(
‖Ar‖L∞([0, r

2
]) +
‖X‖Lp(M)

N∞

)

Proof. We first show (A.8) implies (A.9). Fix r > 0. Let r′ = r′ (r) ∈
(
0, r

4

)
as in

(A.7). By (A.6), we can disregard the region {d(x, y) > r′}, and just need to show

(
1√
t

) 1
p
∥∥∥∥∫

d(y,x)≤r′
dy K(t, x, y) (X(y)−X(x))

∥∥∥∥
Lpx(M>r)

t→0−−→ 0

But by (A.7), the left-hand side is bounded by

(
1√
t

) 1
p

∥∥∥∥∥∥
∥∥∥∥∥Or

(
1

tn/2

〈
x− y√

t

〉−∞)
|X(y)−X(x)|

∥∥∥∥∥
L1
y(Br′ (x))

∥∥∥∥∥∥
Lpx(M>r)

.r

(
1√
t

) 1
p

∥∥∥∥∥∥
∥∥∥〈ζ〉−∞ ∣∣∣X(x−

√
tζ)−X(x)

∣∣∣∥∥∥
L1

|ζ|≤ r′√
t

∥∥∥∥∥∥
Lpx(M>r)

(A.10)

where we made the change of variable ζ = x−y√
t

. By (A.8) and Holder’s inequality, we

can disregard the region {|ζ| ≤ 1}. Then we split 1 < |ζ| ≤ r′√
t

into dyadic rings:

(A.10) .

(
1√
t

) 1
p ∑
N∈2N0 ,N. r′√

t

1

N∞

∥∥∥∥∥∥∥∥X(x−
√
tζ)−X(x)

∥∥∥
L1
|ζ|∼N

∥∥∥∥∥
Lpx(M>r)

.

(
1√
t

) 1
p ∑
N∈2N0 ,N. r′√

t

1

N∞

∥∥∥∥∥∥∥∥X(x−
√
tζ)−X(x)

∥∥∥
Lp|ζ|∼N

∥∥∥∥∥
Lpx(M>r)

.

(
1√
t

)n+1
p ∑

N∈2N0 ,N. r′√
t

1

N∞

∥∥∥∥‖X(x− τ)−X(x)‖Lp
|τ |∼
√
tN

∥∥∥∥
Lpx(M>r)

where we made the change of variable τ =
√
tζ. Now observe that (A.8) implies that
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for ε ≤ r/2: ∥∥∥‖X (x− τ)−X(x)‖Lp|τ |≤ε
∥∥∥
Lpx(M>r)

= ε
n+1
p Ar (ε)

where 0 ≤ Ar(ε) ≤ ‖Ar‖L∞([0,r/2]) and Ar (ε)
ε↓0−−→ 0. Then

(A.10) .

(
1√
t

)n+1
p ∑

N∈2N0 ,N. r′√
t

1

N∞

(√
tN
)n+1

p
Ar

(√
tN
)

.
∑

N∈2N0 ,N. r′√
t

1

N∞
Ar

(√
tN
)

t↓0−−−→
DCT

0

Now we show (A.9) implies (A.8). Observe that by Corollary 118, (A.9) is equivalent

to

N
1
p
−1 ‖P≤NX‖W 1,p(M>r)

N→∞−−−→ 0 ∀r > 0

Now fix r > 0. Then for ε ∈
(
0,min

(
1, r

2

))
, define N = 1

ε
, and we have:

Ar (ε) ≤ N
1
p

∥∥∥∥∥
∥∥∥∥P≤NX (x− 1

N
h

)
− P≤NX (x)

∥∥∥∥
Lp|h|≤1

∥∥∥∥∥
Lpx(M>r)

+N
1
p

∥∥∥∥∥
∥∥∥∥P>NX (x− 1

N
h

)∥∥∥∥
Lp|h|≤1

∥∥∥∥∥
Lpx(M>r)

+N
1
p

∥∥∥‖P>NX (x)‖Lp|h|≤1

∥∥∥
Lpx(M>r)

. N
1
p
−1

∥∥∥∥∥∥
∥∥∥∥∥
∥∥∥∥∇P≤NX (x− τ 1

N
h

)∥∥∥∥
L1
τ ([0,1])

∥∥∥∥∥
Lp|h|≤1

∥∥∥∥∥∥
Lpx(M>r)

+N
1
p ‖P>NX‖Lp

(
M>r2

)

. N
1
p
−1 ‖P≤NX‖W 1,p

(
M>r2

) +N
1
p ‖P>NX‖Lp

(
M>r2

) ε→0−−→ 0

Note that we used Minkowski’s inequality, in passing to the last line.
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APPENDIX B

Construction of the heat kernel

Recall the Japanese bracket notation 〈a〉 =
√

1 + |a|2 ∼ 1 + |a|. We also write a = O (b∞)

or |a| . b∞ to mean |a| .l bl ∀l ∈ N.

Let (M, g) be a compact Riemannian n-manifold with boundary. A differential k-form is

a member of C∞
(
M ; ΛkM

)
.

In this chapter, unless otherwise noted, we write ∆ for the Hodge Laplacian on forms.

We also let (t, x, y) be the standard local coordinates for [0,∞)×M ×M . When x or y is

near the boundary, we can stipulate that xn and yn stand for the Riemannian distance to

the boundary (geodesic normal coordinates).

We aim to construct a unique Hodge-Neumann heat kernel with the absolute Neumann

boundary condition. In particular, define END
(
ΛkM

)
= Hom

(
π∗2ΛkM,π∗1ΛkM

)
, where πi

is the projection from (0,∞)×M ×M onto the i-th M . We want

K ∈ C∞loc

(
(0,∞)×M ×M ; END

(
ΛkM

))
such that

(∂t −∆x)K (t, x, y) = 0

nxK (t, x, y) = 0 for x ∈ ∂M

nxdxK (t, x, y) = 0 for x ∈ ∂M

lim
t↓0

K (t, x, y) = δy (x)
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where the last condition means ∀u ∈ D
(
M ; ΛkM

)
,
∫
K (t, x, y)u(y) dy

t↓0−→ u(x).

During the construction, we will be able to prove certain properties of the kernel, such

as off-diagonal decay for all derivatives.

The construction of the heat kernel comes from [MV13], and we simply discuss the

modifications required for our case, to handle the Hodge-Neumann Laplacian on a smooth

manifold with smooth boundary.1

B.1 Kernel in Einstein sum notation

Let A ∈ C∞loc

(
(0,∞)×M2; END

(
ΛkM

))
. Let U ⊂ M be a coordinate patch. Then, by

using Einstein notation, locally for x, y ∈ U we have:

A (t, x, y) = AI
J (t, x, y) dxI ⊗ ∂yJ

where I, J ∈ Ik = {(i1, ..., ik) : i1 < i2 < ... < ik} and ∂yJ is dual to the form dyJ . (also in

Einstein notation, we write xn instead of xn)

• Note that we are abusing notation, as dxI here is a local section of π∗1ΛkM � (0,∞)×

M2, defined by pulling back the actual form dxI on M . We can explicitly write

AI
J (t, x, y) dxI

∣∣
x
⊗ ∂yJ

∣∣
y

to emphasize the pullback.

• Observe that dxA (t, x, y) = dx
(
AI

J (t, x, y) dxI
)
⊗ ∂yJ = ∂xiAI

J (t, x, y)
(
dxi ∧ dxI

)
⊗

∂yJ .

• If u(y) = uJ(y)dyJ is a differential form on M , we write

A (t, x, y)u(y) = AI
J (t, x, y)uJ(y)dxI

1The author thanks Daniel Grieser, András Vasy and Rafe Mazzeo for discussing these ideas.
The original plan was to follow the note [Gri04] which is simpler and does not rely on Melrose’s calculus,

but we have decided to clean up the note, modify some steps and publish it at a later date.
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which is a section of π∗1ΛkM .

As agreed above, when U touches the boundary, ∂xn is the inwards normal direction, so for

x ∈ ∂M : nxA (t, x, y) = 1n∈IAI
J (t, x, y) dxI ⊗ ∂yJ .

• If nxA = 0 for all x ∈ ∂M , then

nxdxA = 1n/∈I∂xnAI
J (t, x, y)

(
dxn ∧ dxI

)
⊗ ∂yJ

So nxdxA = 0 ⇐⇒ ∂xnAI
J (t, x, y) = 0 whenever x ∈ ∂M, n /∈ I. In other words,

nxA = 0 and nxdxA = 0 mean the normal part obeys the Dirichlet boundary condition,

while the tangential part obeys the Neumann boundary condition. This will inspire

the choice of leading terms later on.

B.2 Heat calculus

Let x = (x′, xn) and y = (y′, yn) be points in Rn. Recall:

1. The scalar heat kernel on Rn: K (t, x, y) =
(

1
4π

)n/2
τ−ne−

|ζ|2
4 where τ =

√
t, ζ = x−y

τ
.

2. The Dirichlet scalar heat kernel on Rn−1 × [0,∞):

K (t, x, y) =

(
1

4π

)n/2
τ−ne−

|ζ′|2
4

(
e−

1
4
|ξn−ηn|2 − e−

1
4
|ξn+ηn|2

)
where ξn = xn

τ
, ηn = yn

τ
, ζ ′ = x′−y′

τ
.

3. The Neumann scalar heat kernel on Rn−1 × [0,∞):

K (t, x, y) =

(
1

4π

)n/2
τ−ne−

|ζ′|2
4

(
e−

1
4
|ξn−ηn|2 + e−

1
4
|ξn+ηn|2

)

They will inspire the formulation of our boundary heat calculus, which describes heat-type

kernels on manifolds.
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We assume the reader is familiar with the spaces of conormal and polyhomogeneous

distributions on a manifold with corners [Mel18].

B.2.1 Blown-up heat space

We first construct the blown-up heat space M2
h , with the faces lf, ff, td, tf as defined in

[MV13] (though our case is simpler).

We start with [0,∞)×M ×M , with faces tf (temporal face), rf (right face), lf (left face)

being defined as {0} ×M ×M , [0,∞)× ∂M ×M , [0,∞)×M × ∂M respectively. Then we

perform a parabolic blow-up [Mel18, Section 7.4] on the submanifold {0}×∂M ×∂M in the

time direction dt, to create the face ff (front face)2. This creates an intermediate manifold

that we will call M1.

After that, we perform another parabolic blow-up on the lift of the submanifold {0} ×

∆ (M) to M1 (to be more precisely defined in (B.5)), which creates another face td (time

diagonal). This is the space M2
h we need.

Figure B.1: The blown-up heat space M2
h

2We are following [MV13] by letting rf be defined by xn = 0. Other authors might prefer yn = 0.
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B.2.2 Local coordinates

By letting τ =
√
t, we call (τ, x, y) the ts-coordinate system (time-rescaled) for [0,∞)×

M ×M .

• On M1, near rf and away from lf (i.e. yn > 0), we use the rf-coordinate system

T =
t

y2
n

, θ′ =
x′ − y′

yn
, θn =

xn
yn
, y′, yn (B.1)

where θn, yn, T are respectively the boundary defining functions for rf, ff, tf. For blow-

ups, it is also useful to define the (time-rescaled) tsrf-coordinate system

ς =
√
T , θ′, θn, y

′, yn (B.2)

We observe that as (ς, θ′, θn, y
′, yn) → (ς, θ′, θn, y

′, 0) in the tsrf-coordinate, in the ts-

coordinate we have

(0, (y′, 0) , (y′, 0)) + yn (ς, (θ′, θn) , (0, 1))→ (0, (y′, 0) , (y′, 0))

The (time-rescaled) tangent vector (ς, (θ′, θn) , (0, 1))3 at (0, (y′, 0) , (y′, 0)) (modulo vec-

tors tangent to {0}×∂M×∂M , and modulo positive scalar multiplication) corresponds

to a point on ff, which is [(ς, (θ′, θn) , (0, 1))] = [(ς, (0, θn) , (−θ′, 1))]. This is what allows

us to extend the (ts)rf-coordinate systems from [0,∞)×M ×M to M1, with {yn = 0}

being the face ff.

• On M1, near ff and away from tf, we use the ff-coordinate system

τ =
√
t, x′, ξn =

xn√
t
, ζ ′ =

x′ − y′√
t
, ηn =

yn√
t

(B.3)

3Explicitly, the tangent vector is ς∂τ + (θ′, θn) · ∂x + (0, 1) · ∂y.
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where τ, ξn, ηn are respectively the boundary defining functions for ff, rf, lf. As (τ, x′, ξn, ζ
′, ηn)→

(0, x′, ξn, ζ
′, ηn) in the ff-coordinate, in the ts-coordinate we have

(0, (x′, 0) , (x′, 0)) + τ (1, (0, ξn) , (−ζ ′, ηn))→ (0, (x′, 0) , (x′, 0))

The (time-rescaled) tangent vector (1, (0, ξn) , (−ζ ′, ηn)) at (0, (x′, 0) , (x′, 0)) corre-

sponds to a point on ff, which is [(1, (0, ξn) , (−ζ ′, ηn))].

• On M2
h , near td, near ff, away from lf, away from tf, we can use the rf-coordinate

system from (B.1) to define the fftd-coordinate system

ϑ =
√
T , σ′ =

θ′√
T
, σn =

θn − 1√
T

, y′, yn (B.4)

where ϑ is the defining function for td. Note that as (ϑ, σ′, σn, y
′, yn)→ (0, σ′, σn, y

′, yn)

in the fftd-coordinate, in the tsrf-coordinate we have

(0, 0, 1, y′, yn) + ϑ (1, σ′, σn, 0, 0)→ (0, 0, 1, y′, yn) (B.5)

We observe that the points (0, 0, 1, y′, yn) in the tsrf-coordinate, are precisely the lift of

the submanifold D0 := {0} ×∆ (M) to M1, which we will write as D1. By blowing up

D1, we create the face td and M2
h . Note that θn = 1 > 0, so td does not intersect rf (or

lf). Also, the (time-rescaled) tangent vector (1, σ′, σn, 0, 0) at (0, 0, 1, y′, yn) corresponds

to a point on the face td.

On the other hand, the point (ϑ, σ′, σn, y
′, 0) in the fftd-coordinate on M2

h maps down

to the point (ϑ, ϑσ′, ϑσn + 1, y′, 0) in the tsrf-coordinate on M1 (the map being injective

on {ϑ > 0}), which in turn corresponds to the point [(ϑ, (0, ϑσn + 1) , (−ϑσ′, 1))] on ff.

• The points (0, 0, 1, y′, 0) in the (ts)rf-coordinate are precisely the intersection ff ∩ D1

in M1.

The points (0, σ′, σn, y
′, 0) in the fftd-coordinate are precisely the intersection ff ∩ td
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in M2
h .

• On M2
h , near td, away from ff and away from tf, we use the td-coordinate system

τ =
√
t, x, ζ =

x− y√
t

(B.6)

where τ is the defining function for td. As (τ, x, ζ) → (0, x, ζ) in td-coordinate, in

ts-coordinate we have

(0, x, x) + τ (1, 0,−ζ)→ (0, x, x)

So we identify the point (0, x, ζ) in td-coordinate with the (time-rescaled) tangent vec-

tor (1, 0,−ζ) at (0, x, x) ∈ D0, which gives a point of td (or to be precise, away from

the edges, D1 and D0 are locally diffeomorphic, and td being defined as a bundle over

D1 is also locally defined over D0).

• Wherever we have both the td-coordinate system and the fftd-coordinate system, the

point (τ, x, ζ) = (τ, (x′, xn) , (ζ ′, ζn)) in the td-coordinate (with xn > 0, xn − τζn >

0) corresponds to the point
(

τ
xn−τζn , ζ

′, ζn, x
′ − τζ ′, xn − τζn

)
in the fftd-coordinate.

Conversely, (ϑ, σ′, σn, y
′, yn) in the fftd-coordinate corresponds to

(ϑyn, (y
′ + ϑynσ

′, yn + ϑynσn) , (σ′, σn))

in the td-coordinate. Consequently,

(0, (x′, xn) , (ζ ′, ζn)) in td-coordinate corresponds to (0, ζ ′, ζn, x
′, xn) in fftd-coordinate

(B.7)

and we identify the tangent vector (1, 0,−ζ) at (0, x, x) ∈ D0 (in the ts-coordinate)

with the tangent vector (1, ζ ′, ζn, 0, 0) at (0, 0, 1, x′, xn) ∈ D1 (in the tsrf-coordinate),

as the same point in td.
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Remark 127 (Compatibility condition at ff ∩ td). For any smooth functions u on ff and v on

td, the following are equivalent:

1. In the fftd-coordinate:

u (ϑ, σ′, σn, y
′, 0)

ϑ→0−−→ v (0, σ′, σn, y
′, 0) (B.8)

2. There is a smooth function f on M2
h such that N0

ff (f) = u, N0
td (f) = v.

B.2.3 Edge calculus

Definition 128. For α, α′ ∈ −N0, we define Ψα,α′,Elf ,Erf

e−h

(
M ; ΛkM

)
4 as the space of Schwartz

kernels K that are pushforwards of polyhomogeneous kernels K̃ on M2
h (though we will abuse

notation and also write K for K̃) such that:

• the index sets at lf and rf are Elf = (Et
lf , E

n
lf ) and Erf = (Et

rf , E
n
rf). Here Et

lf , E
t
rf describe

the local coefficients of txK (the tangent component), while En
lf , E

n
rf describe the local

coefficients of nxK.

• the index set at ff is {(j − (n+ 2 + α) , 0) : j ∈ N0} (expansion in τ from (B.3))

• the index set at td is {(j − (n+ 2 + α′) , 0) : j ∈ N0} (expansion in τ from (B.6)). By

convention, it is ∅ when α′ = −∞.

• the index set at tf is ∅ (off-diagonal decay).

Theorem 129. The absolute Neumann heat kernel H lies in Ψ−2,−2,Elf ,Erf

e−h

(
M ; ΛkM

)
where

• Et
lf , E

n
lf , E

t
rf , E

n
rf ⊆ N0 × {0}5

4To translate to the definition of Ψl,p,Elf ,Erf

e−h from [MV13, Section 3.2], we can use the formulas α =
−l, α′ = −p− 2, n = m,n− 1 = b.

5In fact, due to symmetry, we must have Elf = Erf .
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• nxH = 0 and nxdxH = 0.

We can also write Ψ−2,−2,N0,N0

e−h to describe smoothness at lf and rf.

B.3 Proof of Theorem 129

We proceed exactly as in [MV13, Section 3.2].

For any A ∈ Ψα,α′,Elf ,Erf

e−h

(
M ; ΛkM

)
, we can expand w.r.t. ff (with coordinates as in (B.3))

A = Aff
−n−2−α (x, ξn, ζ

′, ηn) τ−n−2−α + Aff
−n−2−α+1 (x, ξn, ζ

′, ηn) τ−n−2−α+1 + ....

We write N−n−2−α
ff (A) for the leading coefficient Aff

−n−2−α. We can expand similarly w.r.t.

td and define N−n−2−α′
td (A).

Then we note that t (∂t −∆x) is a b-operator which could be restricted to ff and td. In

particular,

 N−n−2−α
ff (t (∂t −∆x)A) = N−n−2−α

ff (t (∂t −∆x))N
−n−2−α
ff (A)

N−n−2−α′
td (t (∂t −∆x)A) = N−n−2−α′

td (t (∂t −∆x))N
−n−2−α′
td (A)

where, in the td-coordinate system from (B.6) and the ff-coordinate system from (B.3):

 N−n−2−α
td (t (∂t −∆x)) = −∆ζ (x)− 1

2
ζ · ∂ζ − n+2+α

2

N−n−2−α
ff (t (∂t −∆x)) = −∆(ζ′,ξn) (x′, 0)− 1

2
(ζ ′, ξn, ηn) · ∂(ζ′,ξn,ηn) − n+2+α′

2

(B.9)

Here we have written ζ · ∂ζ =
∑

i ζi∂ζi and ∆ζ (x) =
∑

i,j g
ij(x)∂ζi∂ζj .

Then we have t (∂t −∆x) Ψα,α′,Elf ,Erf

e−h ⊆ Ψα,α′,N0,N0

e−h .

From this point on, we fix Elf , Erf to be as in Theorem 129.
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Claim 130. There is an element H(1) ∈ Ψ−2,−2,Elf ,Erf

e−h

(
M ; ΛkM

)
such that

 P (1) := t (∂t −∆x)H
(1) ∈ Ψ−3,−∞,N0,N0

e−h

limt↓0H
(1) (t, x, y) = δy (x)

Proof. To prove this claim, we construct A ∈ Ψ−2,−2,Elf ,Erf

e−h such that

N−ntd (A) (x, ζ) (B.10)

=

(
1

4π

)n/2
e−
|ζ|2
g(x)
4 Id =

(
1

4π

)n/2
e−
|ζ|2
g(x)
4 dxI

∣∣
x
⊗ ∂yI

∣∣
x

(B.11)

N−nff (A) (x′, ξn, ζ
′, ηn)

=

(
1

4π

)n/2
e−
|ζ′|2

g(x′,0)
4

(
e−

1
4
|ξn−ηn|2 (t + n) + e−

1
4
|ξn+ηn|2 (t− n)

)
(B.12)

= 1n/∈I

(
1

4π

)n/2
e−
|ζ′|2

g(x′,0)
4

(
e−

1
4
|ξn−ηn|2 + e−

1
4
|ξn+ηn|2

)
dxI
∣∣
(x′,0)
⊗ ∂yI

∣∣
(x′,0)

+ 1n∈I

(
1

4π

)n/2
e−
|ζ′|2

g(x′,0)
4

(
e−

1
4
|ξn−ηn|2 − e−

1
4
|ξn+ηn|2

)
dxI
∣∣
(x′,0)
⊗ ∂yI

∣∣
(x′,0)

This choice satisfies the compatibility condition from (B.8) (with N−ntd (A) =

N0
td

(
t
n
2A
)

and N−nff (A) = N0
ff

(
t
n
2A
)
), since

e
− 1

4
|σ′|2

g(y′,0)

(
e−

1
4
|σn|2 (t + n) + e−

1
4
|σn+ 2

ϑ
|2 (t− n)

)
ϑ→0−−→ e

− 1
4
|σ′|2

g(y′,0)

(
e−

1
4
|σn|2

)
= e

− 1
4
|(σ′,σn)|2

g(y′,0) .

We note that A is smooth on (0,∞)×M ×M , and we can make A have the same

index set for rf as N−nff (A). More is true: as in Section B.1, by Taylor expansion in

ξn, we note that N−nff (A) satisfies the absolute Neumann condition, and so does A.

Off-diagonal decay is also explicit from these formulas (when x 6= y stay fixed and

t→ 0, we have ζ = x−y√
t
→∞).
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By direct calculations, N−nff (t (∂t −∆x)A) = 0 and N−ntd (t (∂t −∆x)A) = 0.

Therefore t (∂t −∆x)A ∈ Ψ−3,−3,N0,N0

e−h . We then observe two facts:

• In the expansion of A at td, Atd
j for j > −n can be freely changed.

• For any smooth f (x, ζ) that is Schwartz in ζ (rapidly decaying) and j ≥ 1,

there is a unique F (x, ζ) rapidly decaying in ζ such that

N−n+j
td (t (∂t −∆x))F (x, ζ) = f (x, ζ)

In particular, by using the Fourier transform ζ 7→ z (with the convention F̂ (z) =∫
Rn F (ζ)e−i2πζ·z dζ):

F̂ (x, z) =

∫ 1

0

ds 2sj−1f̂ (x, sz) e−(4π2)(1−s2)|z|2g(x)

See also [Alb17, Section 6.2] for an explanation of this. It boils down to the

fact that ∆ζ is smoothing (elliptic) for ζ.

Therefore it is possible to change
(
Atd
j

)
j>−nto make t (∂t −∆x)A vanish to infinite

order at td. It boils down to solving

N j
td (t (∂t −∆x))A

td
j = Bj, j > −n

where Bj is an inhomogeneous term depending on Atd
−n, ..., A

td
j−1. Changing

(
Atd
j

)
j>−n

will not affect the index set of A at rf, since td does not intersect rf and lf, by

the above reasoning with (B.4). A is smooth at rf and lf, and we therefore obtain

t (∂t −∆x)A ∈ Ψ−3,−∞,N0,N0

e−h .

We finally note that limt↓0A (t, x, y) = δy (x) due to (B.10), which is the “univer-

sal” formula for the expansion of heat kernels in the interior of manifolds. The claim

is then proven. We refer to [MV13, Proposition 3.2] for more details.
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So we have solved away the leading coefficient of t (∂t −∆x)H at ff, as well as all the

coefficients at td.

Next, we solve away all the coefficients at rf.

Claim 131. There is an element H(2) ∈ Ψ−2,−2,Elf ,Erf

e−h

(
M ; ΛkM

)
such that

 P (2) := t (∂t −∆x)H
(2) ∈ Ψ−3,−∞,N0,∅

e−h

limt↓0H
(2) (t, x, y) = δy (x)

Proof. Let r(x) be a boundary-defining function for rf such that r(x) = dist (x, ∂M) =

xn near rf. We observe that r2 (∂t −∆x) is a b-operator which can be restricted to

rf (defined by θn = 0 in the rf-coordinate system from (B.1)). On the other hand,

in the ff-coordinate system from (B.3), r = τξn, so r2 (∂t −∆x) is also a b-operator

w.r.t. ff.

We observe that (∂t −∆x)H
(1) ∈ Ψ−1,−∞,N0,N0

e−h and we want (∂t −∆x)H
(2) ∈

Ψ−1,−∞,N0,∅
e−h . Therefore it is enough to find J ∈ Ψ−3,−3,Elf ,Erf

e−h

(
M ; ΛkM

)
such that

r2 (∂t −∆x)
(
H(1) − J

)
vanishes to infinite order at rf.

Let B = r2 (∂t −∆x)H
(1) ∈ Ψ−3,−∞,N0,N0+2

e−h . We note that Brf
0 = Brf

1 = 0, so it is

fine to set J rf
0 = J rf

1 = 0.

Recall that ∆x =
∑

ij g
ij (x) ∂xi∂xj +

∑
i bi∂xi + c where bi, c are smooth. Then by

translating r2 (∂t −∆x) into rf-coordinates, we have to solve the formal expansion at

rf:

θ2
n

(
∂T −

∑
i,j 6=n

gij∂θi∂θj −
∑
i 6=n

ynbi∂θi − ∂2
θn − ynbn∂θn − cy

2
n

)(∑
j≥2

J rf
j θ

j
n

)
=
∑
j≥2

Brf
j θ

j
n

(B.13)

Note that near rf, because we have chosen the geodesic normal coordinates, gin = δin
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for any i ∈ {1, ..., n}. Then, (B.13) boils down to solving

N j
rf

(
r2 (∂t −∆x)

)
J rf
j (T, θ′, y′, yn) = Cj (T, θ′, y′, yn) , j ≥ 2

where

• N j
rf (r2 (∂t −∆x)) = −j (j − 1) , j ≥ 1.

• Cj is an inhomogeneous term depending on Brf
j and J rf

2 , ..., J
rf
j−1. In particular,

C2 = Brf
2 .

Solving this is trivial (with unique solutions), since for j ≥ 2, N j
rf (r2 (∂t −∆x)) is a

nonzero constant. We note that
(
J rf
j

)
j≥2

inherits many properties from
(
Brf
j

)
j≥2

by

induction:

• In the rf-coordinate system, Brf
j is defined from 1

j!
∂jθn
∣∣
θn=0

B (abuse of nota-

tion). But yn is the defining function for ff, so the index set of Brf
j at ff is

the same as that of B, and therefore this is also true for J rf
2 . This extends to

J rf
j ∀j ≥ 2, because we can explicitly derive Cj from (B.13), and see that the

powers of yn never get lowered (no ∂yn or 1
yn

).

• The index sets of B at td and tf are empty (i.e. B = O (T∞) as T → 0), which

implies J rf
j = O (T∞).

Note that we also have to solve for J rf
j where y is away from the boundary (which

means there is no rf-coordinate system). In that case, we use the ts-coordinate system

and solve the formal expansion at rf. This proceeds in the same fashion (but it is

even simpler, since we are far away from ff).

Consequently, constructing J from
(
J rf
j

)
j≥0

gives us J ∈ Ψ−3,−∞,N0,N0+2
e−h

(
M ; ΛkM

)
such that B − r2 (∂t −∆x) J vanishes to infinite order at rf.
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With the index set at rf being N0 + 2, J trivially satisfies the absolute Neumann

boundary condition. Also, because the index sets of J at ff and td are higher than

those of H(1), we conclude

 N−nff

(
H(1) − J

)
= N−nff

(
H(1)

)
N−ntd

(
H(1) − J

)
= N−ntd

(
H(1)

)
By setting H(2) = H(1) − J , the claim is proven.

For the last step, we consider the formal Volterra series:

H = H(2) +H(2) ∗R(2) +H(2) ∗R(2) ∗R(2) + ....

where R(2) := − (∂t −∆x)H
(2) ∈ Ψ−1,−∞,N0,∅

e−h , and the composition A ∗B is defined by

A ∗B (t, x, y) =

∫ t

0

ds

∫
M

dvolg (z) A(t− s, x, z)B(s, z, y)

By [MV13, Theorem 5.3], if Qlf +Q′rf > −1; α, γ, β ∈ −N1, we have the formula

Ψα,γ,Qlf ,Qrf

e−h ∗Ψ
β,−∞,Q′lf ,Q

′
rf

e−h ⊂ Ψα+β,−∞,Plf ,Prf

e−h

where Plf = Q′lf∪ (Qlf − β); Prf = Qrf∪ (Q′rf − α). This means that for N ∈ N1 :

H(2) ∗
(
R(2)

)∗N ∈ Ψ
−2−N,−∞,Elf,N ,Erf

e−h

where Elf,N is defined inductively by Elf,1 = N0∪ (N0 + 1) and Elf,N+1 = N0∪ (Elf,N + 1) for

N ≥ 1.

Letting Nj = {x ∈ N : x ≥ j} and N =
⋃
j∈N0

Nj, we conclude that

∀N : Elf,N ⊂ N = {(x, y) ∈ N2
0 : y ≤ x}
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which is a well-defined index set.

A common property of Volterra series is that they converge. We can observe this from

the fact that ∀m ∈ N2, L
∗m (t, x, y) is equal to

∫
Mm−1

dvolg (z1, ..., zm−1)

∫
∆t
m−1

d (s1, ..., sm−1) L (t− s1 − ...− sm−1, x, zm−1) ...L (s1, z1, y)

where ∆t
m−1 is the simplex defined by {0 ≤ s1 ≤ s1 + s2 ≤ ... ≤ s1 + ...+ sm−1 ≤ t}. As the

volume of ∆t
m−1 is tm−1

(m−1)!
, the factorial factor 1

(m−1)!
ultimately forces strong convergence as

m → ∞. See [BGV04, Section 2.4], [MV13, Section 3.2], and [Mel18] for more details and

estimates.

Consequently, we obtain H ∈ Ψ−2,−2,N ,Erf

e−h . Because of the identity

(∂t −∆x)
(
H(2) ∗

(
R(2)

)∗N)
=
(
R(2)

)∗N − (R(2)
)∗(N+1)

,

we conclude

(∂t −∆x)H = 0

Let us check that H is the true Hodge-Neumann heat kernel.

• The absolute Neumann boundary condition comes from the strong convergence of the

Volterra series.

• For any u ∈ L2
(
M ; ΛkM

)
:

H(t)u(x) :=

∫
M

H (t, x, y)u(y) dvolgy ∈ C∞
(
(0,∞) ,Ωk

homN

)
and satisfies (∂t −∆x) (H(t)u(x)) = 0 on {t > 0}. In particular, H (t) ∈ End (L2) for

all t > 0 and

∂t
(
‖H(t)u‖2

L2

)
≤ 0 (B.14)

because the Neumann Laplacian ∆̃N is self-adjoint and dissipative.
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• We have N−ntd (H) = N−ntd

(
H(1)

)
, therefore limt↓0H (t, x, y) = δy (x). For any u ∈

Ωk
00 (M) : H(t)u

L2

−→
t↓0

u, which, along with (B.14), implies ‖H(t)u‖L2 ≤ ‖u‖L2 . By

density, we conclude the same for u ∈ L2
(
M ; ΛkM

)
. Recall that et∆̃N is the heat

semigroup defined by functional analysis. For any u ∈ L2
(
M ; ΛkM

)
, U(t) := H(t)u−

et∆̃Nu is a C0
t L

2
x solution of


(∂t −∆x)U(t, x) = 0 ∀t > 0

U(t)
L2

−→
t↓0

0

By an energy argument just like (B.14), we must have U (t) = 0 for all t. Then,

H(t) = et∆̃N .

So H is the true heat kernel, which must be smooth on (0,∞) × M × M by standard

parabolic theory. Another way to see this is that the heat kernel must be symmetric, therefore

smoothness in x implies smoothness in y. Either way, because we have smoothness, there

are no log terms on lf, and we conclude H ∈ Ψ−2,−2,N0,N0

e−h .

B.4 Relevant properties

We extract some key properties from Theorem 129 that we need for this thesis, and write

them in a language more familiar with analysts.

1. (off-diagonal decay) For any multi-index γ and x 6= y,

Dγ
t,x,yH (t, x, y) = O (t∞) (B.15)

as t ↓ 0, locally uniform in (x, y) /∈ ∆ (M).

2. (interior blow-up) For x ∈ int (M), locally in projective coordinates (τ, x, ζ) =(√
t, x, x−y√

t

)
, with H̃ being the pullback of t

n
2H in these coordinates, we have
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(a) H̃ smooth in τ, x, ζ, up to {τ = 0}.

(b) (rapid decay) For any multi-index γ and bounded τ :

Dγ
τ,x,ζH̃ (τ, x, ζ) = O

(
〈ζ〉−∞

)
(B.16)

Remark 132. Both (B.15) and (B.16) come from the empty index set at tf. We also refer to

[Kot16, Section 2.3.3] for an explanation of (B.16).

There are more specific properties from Theorem 129, which we do not currently need.
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