UCLA

UCLA Electronic Theses and Dissertations

Title
Intrinsic harmonic analysis on manifolds with boundary, and Onsager’s conjecture

Permalink
https://escholarship.org/uc/item/8xd4p2n7

Author
Huynh, Manh Khang

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8xd4p2n7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Los Angeles

Intrinsic harmonic analysis on manifolds with boundary, and Onsager’s conjecture

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Mathematics

by

Manh Khang Huynh

2021



© Copyright by
Manh Khang Huynh
2021



ABSTRACT OF THE DISSERTATION

Intrinsic harmonic analysis on manifolds with boundary, and Onsager’s conjecture
by

Manh Khang Huynh
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2021
Professor Terence Chi-Shen Tao, Chair

We use Hodge theory and functional analysis to develop a clean approach to heat flows and
intrinsic harmonic analysis on Riemannian manifolds with boundary. We also introduce heat-
able currents as the natural analogue to tempered distributions and justify their importance
in Hodge theory. As an application, we prove Onsager’s conjecture (energy conservation of
ideal fluids), where the weak solution lies in the trace-critical Besov space BS% 1

In the second half of the thesis, by applying techniques from geometric microlocal analysis to
construct the Hodge-Neumann heat kernel, we obtain off-diagonal decay and local Bernstein
estimates, and then use them to extend the result to the Besov space B\S% v» which generalizes
both the space ES{QN) from [IO14] and the space Eé{\g}Mo from [Bar+19b; NNT20] — the

best known function space where Onsager’s conjecture holds on flat backgrounds.
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CHAPTER 1

Introduction

1.1 History and motivation

It is a well-known fact that the methods of harmonic analysis can be profitably used to handle
dispersive PDEs (e.g. non-linear Schrodinger, nonlinear wave) and the fluid equations (e.g.
Navier-Stokes, Euler) (cf. [Taol3; Tao09; Tao06]). For fluid dynamics in particular, the
central problem of turbulence underlying the quest for global regularity of 3D Navier-Stokes,
can be characterized via harmonic analysis as the transfer of energy towards ever higher

frequencies.

In harmonic analysis, we often work on simple geometric settings such as R™, T™ or locally
compact abelian groups, where we have the Fourier transform. But in applications, the
geometric settings are rarely so ideal, and there are challenging problems in fluid dynamics
which arise from the boundary or curvature in aerodynamic designs, atmospheric models,
etc. Consequently, it is profitable to understand how harmonic analysis techniques can work

in different geometric settings.

This turned out to be a very rich and diverse field, with various ideas and approaches.!
For instance, in [Str83], Strichartz introduced harmonic analysis (and the Riesz transform) in
the setting of complete Riemannian manifolds. Then in [KR06], Klainerman and Rodnianski
defined the L2-heat flow by the spectral theorem and used it to obtain the Littlewood-Paley

projection on compact 2-surfaces. In [[014], Isett and Oh tackled Onsager’s conjecture on

'For scalar functions, much more is known due to the very precise estimates of scalar heat kernels. See,
for instance, [KVZ14; Duo90; CDO03].



Riemannian manifolds without boundary by using Strichartz’s heat flow. All these in turn
suggest there should be a workable theory of harmonic analysis for vector fields on a manifold

with boundary.

1.2 Hodge theory and functional analysis

There are three main characteristics in our setting: vector fields, curvature and boundary.?
By necessity, our theory of harmonic analysis will feature much more interplay between

analysis and geometry than usual.

An oversimplified description of harmonic analysis on R™ would be “the spectral theory
of the Laplacian” [Str89], where the heat kernel is the Gaussian function. It is only natural
then for us to look into Hodge theory, which studies the de Rham cohomology of a manifold
via the Laplacian. For an analyst, Hodge theory provides the key information regarding the
frequency zero (the kernel of the Laplacian), and how it interacts with the boundary. We
also can not forget to mention that the Helmholtz decomposition, originally discovered in a

hydrodynamic context, turned out to be a part of Hodge theory.

By assuming standard results such as elliptic regularity, and using tools from functional
analysis, the development of harmonic analysis in this thesis can be broken down into certain

key steps:

1. Defining the frequency zero as the kernel of the Hodge-Neumann Laplacian. By remov-
ing the frequency zero, we obtain the inverse Laplacian and the Poincaré inequality for

Sobolev spaces.

2. The heat flow generated by the Hodge-Neumann Laplacian is analytic on L? (i.e. the

A

time variable ¢ in e’ can be analytically extended to z € C where arg (2) is small). By

2There is a lot of literature out there dealing with heat kernels and harmonic analysis, but when filtered
by these three characteristics, there was very little one could cite, and for other technical reasons, it was
simpler to re-develop everything and modify them to suit the author’s own needs. During the process, the
author was able to simplify certain steps substantially and discover new results.

2



the theory of sectorial operators, all we need for this is that the Laplacian is self-adjoint

and negative (trivial to show).

3. The L*-analyticity of the heat flow is extrapolated to LP-analyticity for p € (1,00), by
a simplified version of Kato-Beurling extrapolation. This step is substantially simpler
than traditional developments of the heat flow, since it does not involve establishing

the resolvent estimate in Yosida’s half-plane criterion.?

4. The LP-analyticity implies the W'P-analyticity of the heat flow via the Poincaré in-
equality, and some abstract tools from functional analysis such as Krein-Smulian and

the Vitali holomorphic convergence theorem.?

By a simple analogy P 3 f =~ e®f where P<y is the Littlewood-Paley projection, the
analyticity of the heat flow on L? and W' implies the all-important Bernstein estimates in
harmonic analysis, as can be found in [Tao06, Appendix A]. As a bonus, the Hodge heat
flow also commutes with all the important operators in Hodge theory such as the exterior
derivative and the codifferential, so it will preserve the incompressibility of the fluid in the

Euler equation.

One attractive feature of the approach is that it does not require heat kernel estimates
or resolvent estimates, both of which can be highly non-trivial depending on the geometric
setting. Besides elliptic regularity (which can be shown in various ways, and is part of

standard Hodge theory), the approach is purely functional-analytic.

1.3 Heatable currents and a global approach to Onsager’s conjec-

ture

Recall the incompressible Euler equation in fluid dynamics:

3Either via “Agmon’s trick” [Agm62] as done in [Miy80] or manual estimates as in [BAE16].

4The author is not aware of whether this has ever been done for vector fields on manifolds with boundary.



WY +VyVY =—gradp in M
divy =0 in M (incompressibility) (1.1)
V,v) =0 on OM  (impermeability)

(M, g) is an oriented, compact smooth Riemannian manifold with boundary
where v is the outwards unit normal vector field on OM.
I C Ris an open interval, V: I — XM, p: I x M — R.

Roughly speaking, Onsager’s conjecture says that the energy ||V(¢, -)||L2(M) is a.e. con-
stant in time when V is a weak solution whose regularity is at least % Making that statement
precise is part of the challenge. This problem is interesting because the failure of energy con-
servation comes from the transfer of energy towards higher frequencies (eventually running
off to infinity), and learning how regularity can prevent this sort of energy cascade gives us

a better understanding of the problem of turbulence.

In the flat and boundaryless case, the “positive direction” (conservation when regularity
is at least 5) has been known for a long time [Eyi94; CET94; Che+08]. The “negative
direction” (failure of energy conservation when regularity is less than %) is substantially
harder [DS14; DS13], and was finally settled by Isett in his seminal paper [Isel8a] for 3D
Euler on the torus (see the survey in [DS19] for more details and references). Since then, for
the positive direction, more attention has been directed towards the case with boundary on
flat backgrounds [BT18; DN18; BTW19; NN19; Bar+19b; Bar+19a]. The case of manifolds

without boundary was first handled via a heat-flow approach in [IO14].

Consequently, this thesis is an effort to extend the positive side of Onsager’s conjecture
to manifolds with boundary, hopefully recovering the best results from both the flat case

and the boundaryless case.

A conceptual problem now arises: how can we apply the heat flow to the convective term
VvV, which is a distribution? As the heat flow does not preserve compact supports in the

interior of M, it is not defined on distributions.



If we recall harmonic analysis on R", the same problem appears when we try to apply the
Fourier transform to distributions. It is impossible, and we have to restrict to a subclass of
distributions called tempered distributions, which then becomes the general setting for har-
monic analysis, in which we can define different function spaces such as Sobolev spaces W*P
(via the Bessel potential (V)*) and Besov spaces B, which are essentially the real interpo-

lation spaces between Sobolev spaces (thus allowing us to capture more subtle information

regarding regularity and integrability).

This inspired the author to define the notion of (Neumann) heatable currents in Part I:

o Let 20 = {w € QF : nA™w = 0,ndA™w = 0 ¥m € Ny} be the space of heated
k-forms with the Frechet C*° topology. Here n denotes the normal part; A is the
Hodge Laplacian, and d is the exterior derivative (like the gradient). In simpler words,

all Neumann conditions are satisfied.

o Let 23QF == (ZnQF)" be the space of heatable k-currents with the weak* topology.

We could then show that this is the correct generalization of Schwartz functions and tempered
distributions.® In particular, if w € Z50F then for any t > 0 : e®w € Zy0F. It can also
be showed that the associated Sobolev spaces, defined by the Hodge-Neumann Laplacian
within the space of heatable currents, have the same topology as the classical Sobolev spaces

(defined by partitions of unity and local coordinates).

With this theory of harmonic analysis based purely on functional analysis, and the def-
inition of heatable currents, the author was then able to prove Onsager’s conjecture in the
/3
1

Besov space B;} —the largest Besov space where the trace theorem applies. This is the main

goal of Part I. Here is the full technical statement:

Theorem 1 (Onsager’s conjecture, 1st version). Let M be a compact, oriented Riemannian

manifold with no or smooth boundary. Let P be the Leray projection, enforcing incompress-

5The author is not aware of whether vector-valued tempered distributions on manifolds with boundary
have ever been defined or used for PDEs.



ibility and impermeability (to be defined later). Let X = XM be the space of vector fields on
M.

Let V € LIPBE,X be such that VX € C= (I,PX) [[,.., (V.8:X) + (V@ V,VX) = 0

(Hodge-Leray weak solution).

Then we can show

/ (5 (V(8), V(D)) dt = 0 vy € C=()

1

Consequently, ((V(t),V(t))) is constant for a.e. t € I.

A very curious fact is that no “strip decay” condition involving the pressure p (which
is present in different forms for the results on flat spaces) seems to be necessary. This is
because our approach is global in nature, without any spatial cut-offs. The trade-off for this
/3
1

improvement is that the Besov space B;j is a bit smaller than the Besov spaces featured

1/3

3eoloc)- Still, it is a unique result

in the best results on flat spaces (typically subspaces of B

that does not require assumptions on p, and more details can be found in [Huy19].

1.4 A local approach to Onsager’s conjecture

Following [Huy19], the natural question to ask is whether our theory of harmonic analysis can
also facilitate a local approach to Onsager’s conjecture, using spatial cut-offs and assuming a
“strip decay” condition involving the pressure p. Ideally, we want to recover the best results
on flat spaces, with Q;{\?}Mo—spatial regularity, as in [Bar+19b; NNT20].° We also want to
recover the space E;/c ?N) from [IO14] (the best result on manifolds without boundary).” Is
there a possible generalization for both, on manifolds with boundary? The answer is yes

[Huy20], and detailed in Part II.

GB;{\?;MO is a VMO-type subspace of L3 N BY? and can be defined by local convolutions.

3,00,loc

7§?{,§EN) is the closure of C2° in the Bé/o‘i topology.



In essence, the absolute Neumann heat flow, created via functional analysis, is a replace-
ment for the usual convolution on flat spaces, with special properties like commutativity with
divergence. However, obtaining a pointwise profile of heat kernels for differential forms (let
alone their derivatives) is a difficult problem, so it was hard to reconcile the global heat-flow
approach on manifolds with local-type convolution arguments as on flat backgrounds. Even
the definition of Eé’VMO itself is local, and it was not immediately obvious that the heat-flow

approach could handle such function spaces.

Construction of the Hodge-Neumann heat kernel
The solution to this is a manual construction of the Hodge-Neumann heat kernel, using
techniques from microlocal analysis and index theory (in particular, Melrose’s calculus on
manifolds with corners [Mel18; Mel92]). The theory mimics the development of pseudodiffer-
ential operators, in creating a filtered algebra that quantifies how “nonsingular” an operator
is as we approach the edges. In particular, much like the pseudolocality of ¥DOs, the con-
struction yields a precise description near the diagonal, as well as rapid decay away from the
diagonal. This enables the use of the heat flow as local convolution, and we obtain local

Bernstein estimates, which allow us to handle VMO-type function spaces.

The construction is arguably the most technical step of the thesis, and is adapted from
the work in [MV13].% Initial attempts to stay within the space of smooth kernels would
fail due to the boundary. At the root of the problem was Briining and Seeley’s Singular
Asymptotics Lemma [GG00; BS85], which warns that logarithmic singularities can develop
at the boundary, destroying the smoothness. One needs to step into the space of singular
kernels, and this is where Melrose’s calculus (dealing with singular functions on manifolds
with corners) comes into the picture. We can still construct a singular heat kernel, which

can then become smooth by functional-analytic arguments.

8The decision was made after discussions involving Daniel Grieser, Andras Vasy and Rafe Mazzeo. The
original plan was to follow the note [Gri04] which is more elementary, but we have decided to clean up the
note, modify some steps and publish it at a later date.



1.4.0.1 Technical statement of the main result

For r > 0, we define M-, = {x € M : dist(z,0M) > r}. For p € (1,00), we say X €
[PBUPX (M) if X € LVLP% (M) and Vr > 0 (%) " = et

s—0

— 0.

Msr)

Lfgé/‘i’ contains the space Lfﬁ;/c ?EN) from [[014] (with equality when there is no bound-
ary). While on flat backgrounds, Li’ﬁé/‘? coincides with L?ﬁ;,/\?;Mo from [Bar+19b; NNT20;
Wie20].

The replacement for the trace theorem is the following “strip decay” hypothesis near the
boundary:

(5" ) 07

0
00,

LI (M[% . ,avg)
v: the extension of v near the boundary.

where ¢ M, :={z € M : dist(z,0M) € [r/2,r]}.
avg: the measure is normalized to become a probability measure.

Theorem 2. Let M be as in (1.1). Then |[V(L, )|l 12 @ a-e. constant in time if (V,p) is
a weak solution with V € LIPL3X N L?E;V% and the “strip decay” condition holds true.

1.5 General outline of the thesis

The global approach to Onsager’s conjecture, and the fundamental tools of intrinsic harmonic
analysis on manifolds with boundary, are contained in Part I, which is functionally identical

to [Huy19] (with necessary modifications for a thesis).

The local approach to Onsager’s conjecture (offering the best result in terms of regularity),
and the construction of the Neumann heat kernel by geometric microlocal analysis, are

contained in Part I, which is functionally identical to [Huy20] (with necessary modifications).



Part I

Hodge-theoretic analysis on manifolds
with boundary, heatable currents, and
a global approach to Onsager’s

conjecture in fluid dynamics



CHAPTER 2

Introduction

2.1 Onsager’s conjecture

Recall the incompressible Euler equation in fluid dynamics:

OV +div(VeV) =—gradp in M
divV =0 in M (2.1)
(V,v) =0 on OM

(M, g) is an oriented, compact smooth Riemannian manifold with smooth boundary
where v is the outwards unit normal vector field on OM.
I C Ris an open interval, V : I — XM, p: I x M — R.
Observe that the Neumann condition (V,v) = 0 means V' € Xy, where Xy is the set
of vector fields on M which are tangent to the boundary. Note that when V' is not smooth,

we need the trace theorem to define the condition (see Section 6.2).

Roughly speaking, Onsager’s conjecture says that the energy ||V (¢,-)||;» is a.e. constant
in time when V' is a weak solution whose regularity is at least % Making that statement

precise is part of the challenge.

In the boundaryless case, the “positive direction” (conservation when regularity is at
least 3) has been known for a long time [Eyi94; CET94; Che+08]. The “negative direction”
(failure of energy conservation when regularity is less than %) is substantially harder [DS13;

DS14], and was finally settled by Isett in his seminal paper [Isel8b] (see the survey in [DS19]

10



for more details and references).

Since then more attention has been directed towards the case with boundary, and its
effects in the generation of turbulence. In [BT18], the “positive direction” was proven in
the case M is a bounded domain in R" and V € L3C**Xy (a > %) The result was then
improved in various ways [DN18; Bar+19a; BTW19]. In [NN19], the conjecture was proven
for V in L}B§ X (a > %) along with some “strip decay” conditions for V' and p near the
boundary (more details in Section 4.2). Most recently, the conjecture was proven as part
of a more general conservation of entropy law in [Bar419b], where M is a domain in R™,
Ve Lf’ﬁé’/\?}MOJ{ (where E;{\%MO% is a VMO-type subspace of Bé/o‘z%), along with a “strip

decay” condition involving both V" and p near the boundary (see Section 4.2).

Much less is known about the conjecture on general Riemannian manifolds. The key
arguments on flat spaces rely on the nice properties of convolution, such as div (T x ¢.) =
div (T) % ¢. where T is a tensor field and ¢. s¢_0) 0o is a mollifier, or that mollification is
essentially local. This “local approach” by convolution does not generalize well to Rieman-
nian manifolds. In [[O14] — the main inspiration for this thesis — Isett and Oh used the
heat flow to prove the conjecture on compact Riemannian manifolds without boundary, for
Ve LfBéc(N)% (where Béc(N)f{ is the Bg%’oo—closure of compactly supported smooth vector
fields). The situation becomes more complicated when the boundary is involved. Most no-
tably, the covariant derivative behaves badly on the boundary (e.g. the second fundamental
form), and it is difficult to avoid boundary terms that come from integration by parts. Even
applying the heat flow to a distribution might no longer be well-defined. This requires a
finer understanding of analysis involving the boundary, as well as the properties of the heat

fow.

In this part of the thesis, we will see how we can resolve these issues, and that the

conjecture still holds true with the boundary:

Fact. Assuming M as in Equation (2.1), conservation of energy is true when (V,p) is a

1
weak solution with V € L} B3 Xy.

11



It is not a coincidence that this is also the lowest regularity where the trace theorem
holds. We also note a very curious fact that no “strip decay” condition involving p (which

is present in different forms for the results on flat spaces) seems to be necessary, and we

1

e (I X M) (see Section 4.3 for details). One way to explain this minor

only need p € L
improvement is that the “strip decay” condition involving V' naturally originates from the
trace theorem (see Section 4.3), and is therefore included in the condition V' € LfBé 1 XN,
while the presence of p is more of a technical artifact arising from localization (see [Bar+19b,
Section 4]), which typically does not respect the Leray projection. By using the trace theorem
and the heat flow, our approach becomes global in nature, and thus avoids the artifact.

Another approach is to formulate the conjecture in terms of Leray weak solutions like in

[RRS18], without mentioning p at all, and we justify how this is possible in Section 4.3.

1
A more local approach, where we assume V € L?B;C(N)% as in [I014], and the “strip
1
decay” condition as in [Bar+19b, Equation 4.9], is the topic of Part II. Nevertheless, B3 XN
is an interesting space with its own unique results, which keep the exposition simple and

allow the boundary condition to be natural.

2.2 Modularity

This part of the thesis is intended to be modular: the chapter dealing with Onsager’s conjec-
ture (Chapter 4) is relatively short, while the rest is to detail the tools for harmonic analysis
on manifolds we will need (and more). As we will summarize the tools in Chapter 4, they

can be read independently.

2.3 DMotivation behind the approach

Riemannian manifolds (and their semi-Riemannian counterparts) are among the most impor-
tant natural settings for modern geometric PDEs and physics, where the objects for analysis

are often vector bundles and differential forms. The two fundamental tools for a harmonic

12



analyst — mollification and Littlewood-Paley projection via the Fourier transform — do
not straightforwardly carry over to this setting, especially when the boundary is involved.
Even in the case of scalar functions on bounded domains in R", mollification arguments
often need to stay away from the boundary, which can present a problem when the trace
is nonzero. Consider, however, the idea of a special kind of Littlewood-Paley projection
which preserves the boundary conditions and commutes with important operators such as
divergence and the Leray projection, or using the principles of harmonic analysis without
translation invariance. It is one among a vast constellation of ideas which have steadily be-
come more popular over the years, with various approaches proposed (and we can not hope

to fully recount here).

For our discussion, the starting point of interest is perhaps [Str83], in which Strichartz
introduced to analysts what had long been known to geometers, the rich setting of complete
Riemannian manifolds, where harmonic analysis (and the Riesz transform in particular)
can be done via the Laplacian and the heat semigroup e*®, constructed by dissipative
operators and Yau’s lemma. Then in [KR06], Klainerman and Rodnianski defined the
L?-heat flow by the spectral theorem and used it to get the Littlewood-Paley projection
on compact 2-surfaces. In [[O14], Isett and Oh successfully tackled Onsager’s conjecture on
Riemannian manifolds without boundary by using Strichartz’s heat flow. These results hint
at the central importance of the heat flow for analysis on manifolds. But it is not enough to
settle the case with boundary, especially when derivatives are involved. Some pieces of the

puzzle are still missing.

To paraphrase James Arthur (in his introduction to the trace formula and the Langlands
program), there is an intimate link between geometric objects and “spectral” phenomena,
much like how the shape of a drum affects its sounds. For a Riemannian manifold, that
link is better known as the Laplacian — the generator of the heat flow — and Hodge the-
ory is the study of how the Laplacian governs the cohomology of a Riemannian manifold.

An oversimplified description of Fourier analysis on R™ would be “the spectral theory of
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the Laplacian” [Str89], where the heat kernel is the Gaussian function, invariant under the
Fourier transform and a possible choice of mollifier. Additionally, the Helmholtz decom-
position, originally discovered in a hydrodynamic context, turned out to be a part of Hodge
theory. It should therefore be no surprise that Hodge theory is the natural framework in
which we formulate harmonic analysis on manifolds, heat flows and Onsager’s conjecture.
Wherever there is the Laplacian, there is harmonic analysis. Historically, Milgram managed
to establish a subset of Hodge theory by heat flow methods [MR51]. Here, however, we will
establish Hodge theory by standard elliptic estimates, from which we develop analysis on
manifolds and construct the heat flow. Most notably, Hodge theory greatly simplifies some
crucial approximation steps involving the boundary (Corollary 72), and helps predict some
key results Onsager’s conjecture would require (Theorem 17, Section 8.4, Section 9.3). That
such leaps of faith turn out to be true only further underscore how well-made the conjecture

is in its anticipation of undiscovered mathematics.

For those familiar with the smoothing properties of Littlewood-Paley projection as well
as Bernstein inequalities [Tao06, Appendix A], the rough picture is that e'® ~ Pg%'
While the introduction of curvature necessitates the change of constants in estimates, and
the boundary requires its own considerations, it is remarkable how far we can go with this
analogy. Regarding the properties we will need for Onsager’s conjecture, there is a satisfying
explanation: the theory of sectorial operators in functional analysis. This, together with
Hodge theory, the theory of Besov spaces and interpolation theory, allows us to build a

basic foundation for global analysis on Riemannian manifolds in general, which will be more

than enough to handle Onsager’s conjecture.

Hodge theory and sectorial operators, in their various forms, have been used in fluid
dynamics for a long time by Fujita, Kato, Giga, Miyakawa et al. (cf. [FK64; Miy80; Gig81;
GMS85; BAEL6] and their references). Although we will not use them for this thesis, we
also ought to mention the results regarding bisectorial operators, H* functional calculus,

and Hodge theory on rough domains developed by Alan Mclntosh, Marius Mitrea, Sylvie

14



Monniaux et al. (cf. [McI86; DM96; FMMO98; AM04; MMO08; MM09a; MM09b; GMM10;
Shel2; MM18] and their references), which generalize many Hodge-theoretic results in this
thesis. Alternative formalizations of Littlewood-Paley theory also exist (cf. [HMY08; KP14;
FFP16; KW16; BBDI18; Tanl8] and their references). Here, we are mainly focused on
the analogy between the heat flow and the Littlewood-Paley projection on LP spaces of

differential forms (over manifolds with boundary), as well as the interplay with Hodge theory.

Lastly, we also introduce heatable currents — the largest space on which the heat flow
can be profitably defined — as the analogue to tempered distributions on manifolds (Sec-
tion 8.4). In doing so, we will realize that the energy-conserving weak solution in Onsager’s
conjecture solves the Euler equation in the sense of heatable currents. This is an elegant
insight that helps show how interconnected these subjects are. For the sake of accessibility,
besides providing a gentle introduction to the theory with copious references, this thesis also

hopes to convince the reader of the naturality behind the formalism.

2.4 Blackboxes

Since we draw upon many areas, the thesis is intended to be as self-contained as possible, but
we will assume familiarity with basic elements of functional analysis, harmonic analysis and
complex analysis. Some familiarity with differential and Riemannian geometry is certainly
needed (cf. [Lee09; Cha06]), as well as Penrose notation (cf. [Wal84, Section 2.4]). In

addition, a number of blackbox theorems will be borrowed from the following sources:

1. For interpolation theory: Interpolation Spaces [BL76] and “Abstract Stein Interpola-
tion” [Voi92]

2. For harmonic analysis and elements of functional analysis:

e Singular Integrals and Differentiability Properties of Functions. (PMS-30) [SteT1]

e Partial Differential Equations I [Tayllal
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e Recent Developments in the Navier-Stokes Problem (Chapman & Hall/CRC Re-
search Notes in Mathematics Series) [Lem02b]

3. For Besov spaces: Theory of Function Spaces; Theory of Function Spaces II [Tril0;
Tri92]

4. For Hodge theory: Hodge Decomposition—A Method for Solving Boundary Value Prob-

lems [Sch95]

5. For semigroups and sectorial operators: One-Parameter Semigroups for Linear Evolu-
tion Equations [Eng00] and Vector-Valued Laplace Transforms and Cauchy Problems:
Second Edition (Monographs in Mathematics) [Are+11]

The first three categories should be familiar with harmonic analysts.

2.5 For the specialists

Some noteworthy characteristics of our approach:

e An alternative development of the (absolute Neumann) heat flow. In particular, the
extrapolation of analyticity to LP spaces does not involve establishing the resolvent
estimate in Yosida’s half-plane criterion (Theorem 41), either via “Agmon’s trick”
[Agm62] as done in [Miy80] or manual estimates as in [BAE16]. Instead, by abstract
Stein interpolation, we only need the local boundedness of the heat flow on LP, which
can follow cleanly from Gronwall and integration by parts (Theorem 73). In short,
functional analysis does the heavy lifting. We also managed to attain W P-analyticity
assuming the Neumann condition (Section 8.3), and Bp% ;-analyticity via the Leray

projection (Section 9.3).

e We do not focus on the Stokes operator in this thesis, but our results (Section 8.3,
Section 9.3) do contain the case of the Stokes operator corresponding to the “Navier-

type” / “free” boundary condition, as discussed in [Miy80; Gig82; MM09a; MMO09b;
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BAE16] and others. This should not be confused with the Stokes operator correspond-
ing to the “no-slip” boundary condition, as discussed in [FK64; GM85; MMO8] and

others. See [HS18] for more references.

For simplicity, we stay within the smooth and compact setting, which, as Hilbert
would say, is that special case containing all the germs of generality. An effort has also
been made to keep the material concrete (as opposed to, for instance, using Hilbert

complexes).

Heatable currents are introduced as the analogue to tempered distributions, and we
show how they naturally appear in the characterization of the adjoints of d and o

(Section 8.4).

A refinement of a special case of the fractional Leibniz rule, with the supports of

functions taken into account, is given in Theorem 56.

For the proof of Onsager’s conjecture, there are some subtle, but substantial differences

with [I014]:

— In [IO14], Besov spaces are defined by the heat flow, and compatibility with the
usual scalar Besov spaces is proven when M is R™ or T". Here we will use the
standard scalar Besov spaces as defined by Triebel in [Tril0; Tri92], and prove

the appropriate estimates for the heat flow by interpolation.

— The heat flow used by Isett & Oh (constructed by Strichartz using dissipative
operators) is generated by the Hodge Laplacian, which is self-adjoint in the
no-boundary case. In the case with boundary, there are four different self-adjoint
versions for the Hodge Laplacian (see Theorem 63), and we choose the absolute
Neumann version. There are also heat flows generated by the connection
Laplacian, but we do not use them in this thesis since the connection Laplacian
does not commute with the exterior derivative and the Leray projection etc.

The theory of dissipative operators is also not sufficient to establish LP-analyticity
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and W!P-analyticity for all p € (1,00), so we instead use the theory of sectorial

operators, which is made for this purpose.

— The commutator we will use is a bit different from that in [IO14]. This will help
us eliminate some boundary terms. We will also avoid the explicit formula and
computations in [I014, Lemma 4.4], as they also lead to various boundary terms.

Generally speaking, the covariant derivative behaves badly on the boundary.
e A calculation of the pressure by negative-order Hodge-Sobolev spaces (Section 9.2).

e More results will be proven for analysis on manifolds than needed for Onsager’s con-
jecture, as they are of independent interest. For the sake of accessibility, we will also
review most of the relevant background material, with the assumption that the reader

is a harmonic analyst who knows some differential geometry.

It is hard to overstate our indebtedness to all the mathematicians whose work our theory
will build upon, from harmonic analysis to Hodge theory and sectorial operators, and yet

hopefully each will be able to find within this thesis something new and interesting.
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CHAPTER 3

Common notation

It might not be an exaggeration to say the main difficulty in reading a manuscript dealing
with Hodge theory is understanding the notation, and an effort has been made to keep our

notation as standard and self-explanatory as possible.

Some common notation we use:

o A<, , Bmeans A < CB where C' > 0 depends on x and not y. Similarly, A ~, ., B
means A S, -, B and B S, -, A. When the dependencies are obvious by context, we

do not need to make them explicit.
e Ny, Nj : the set of natural numbers, starting with 0 and 1 respectively.

e DCT: dominated convergence theorem, FTC: fundamental theorem of calculus, PTAS:

passing to a subsequence, WLOG: without loss of generality.

e TVS: topological vector space, NVS: normed vector space, SOT: strong operator topol-
ogy.

e For TVS X, Y < X means Y is a subspace of X.

e L(X,Y) : the space of continuous linear maps from TVS X to Y. Also £(X) =
L(X,X).

e (%S — Y): the space of bounded, continuous functions from metric space S to normed
vector space Y. Not to be confused with CP (S — Y), which is the space of locally

loc

bounded, continuous functions.

19



7] pay = llzllx + |Az[lx and [lz]5 4 = [[A7| x where A is an unbounded operator
on (real/complex) Banach space X and z € D(A). Note that |||, is not always a
norm. Also define D(A™®) = Nyen, D(AF).

For § € (0,7], define the open sector ©f = {z € C\{0} : |argz| < 0}, &; = =X},
D= {z € C:|z| < 1}. Also define 3§ = (0,00) and X, = —%.

e B(x,r): the open ball of radius r centered at x in a metric space.

S(R™): the space of Schwartz functions on R”, S(€2): restrictions of Schwartz functions

to the domain 2 C R™.

There is also a list of other symbols we will use at the end of Part I.
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CHAPTER 4

Onsager’s conjecture

4.1 Summary of preliminaries

At the cost of some slight duplication of exposition, we will quickly summarize the key tools
we need for the proof, and leave the development of such tools for the rest of the Part I.

Alternatively, the reader can read the theory first and come back to this section later.

Definition 3. For the rest of Part I, unless otherwise stated, let M be a compact, smooth,
Riemannian n-dimensional manifold, with no or smooth boundary. We also let I C R be an
open time interval. We write M., = {x € M : dist(z,0M) < r} for r > 0 small. Similarly
define M>,, M, M, ., etc. Let M denote the interior of M.

By musical isomorphism, we can consider XM (the space of smooth vector fields)
mostly the same as Q!(M) (the space of smooth 1-forms), mutatis mutandis. We note that
XM, X (0OM) and XM ’ ony are different. Unless otherwise stated, let the implicit domain be
M, so X stands for XM, and similarly QF for Q*M. For X € X, we write X’ as its dual

1-form. For w € Q', we write w! as its dual vector field.

Let Xgo (M) denote the set of smooth vector fields of compact support in M. Define
QF, (M) similarly (smooth differential forms with compact support in M ).

Let v denote the outwards unit normal vector field on OM. v can be extended via
geodesics to a smooth vector field 7 which is of unit length near the boundary (and cut off

at some point away from the boundary).

For X € XM, definenX = (X,v)v € XM]|,,, (the normal part) and tX = X|,,, —nX
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(the tangential part). We note that tX and nX only depend on X onr» SO tand n can be
defined on XM|,, , and t (XM|,,,) = X(OM).

For w € Q% (M), define tw and nw by
tw(Xl, ,Xk) = w(tXl, ,th) \V/XJ S %M,j = 1, ,]{Z

and nw = w|,,, — tw. Note that (nX) =nX’ VX € X.

Let V denote the Levi-Civita connection, d the exterior derivative, ¢ the codif-
ferential, and A = — (dd + dd) the Hodge-Laplacian, which is defined on vector fields by

the musical isomorphism.

Familiar scalar function spaces such as LP,WW"? (Lebesgue-Sobolev spaces), By,
(Besov spaces), C%* (Holder spaces) (see Chapter 6 for precise definitions) can be defined
on M by partitions of unity and given a unique topology (Section 6.2, Subsection 7.1.2).
Similarly, we define such function spaces for tensor fields and differential forms on M
by partitions of unity and local coordinates (see subsection 7.1). For instance, we can define

L?X or B X.

1
Fact 4. Va € (3,1),Vp € (1,00) : WX — B! X —LPX and C*°X = BY X <

3

1
BS X — B3, X (cf. Section 6.2, Section 6.4)

Definition 5. We write (-, ) to denote the Riemannian fiber metric for tensor fields on

M. We also define the dot product

(o, 0)) = /M (0, 0) vol

where o and 6 are tensor fields of the same type, while vol is the Riemannian volume

form. When there is no possible confusion, we will omit writing vol.

We define Xy = {X € X: nX =0 } (Neumann condition). Similarly, we can define

Q% . In order to define the Neumann condition for less regular vector fields (and differential
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forms), we need to use the trace theorem.

Fact 6. (Section 6.2, Subsection 7.1.2) Let p € [1,00). Then

. B;1 (M) — LP(OM) and BPEJXM — LPXM‘E)M are continuous surjections.

a1 , .
e Vm e Ny : Bp71 PXM — B;’?lfaEM‘aM — Wm’p%M‘aM 18 continuous.

Also closely related is the coarea formula:

Fact 7. (Theorem 55) Let p € [1,00), r > 0 be small and f be in BZ,(M):

1. <[O, r) = R, o= | fll oo )) is continuous and bounded by C' || f||
P B

1 for someC > 0.
!
2. M| ~M,-r |OM| 7 and ||f||LP(M<T) ~ar ||f||LP(aM>p) » :
= Lp((0,r))
rl0
3. ||f||LP(M§T,avg) Sﬁr ||fH 1 and HfHLP(MST,avg) - Hf”LP((’)M,an)’ where avg means

By (M)
normalizing the measure to make it a probability measure.

1 10
4. Let € LP(I — By (M)), then HfHLi, Z-r Il e poare, ave) = Il oot ave) -

B, (M)
1
Analogous results hold if f € By, X. (Subsection 7.1.2)

1 1
Therefore, we can define spaces such as B, Xy = {X € Bj X: nX =0 } and W' Xy.
However, something like L?X would not make sense since the trace map does not continu-

ously extend to L?X.

Definition 8. We define P as the Leray projection (constructed in Theorem 70), which

projects X onto Ker (div!xN) Note that the Neumann condition is enforced by P.

Fact 9. Vm € Ny, Vp € (1, 00), P is continuous on W™PX and P (W™PX) = WPl <Ker (div|%N>>
(closure in the W™P-topology). (Section 7.4)

We collect some results regarding our heat flow in one place:
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Fact 10 (Absolute Neumann heat flow). There exists a semigroup of operators (S(t)),sq
acting on Upe(1,00)LPX such that
1. S(t1) S (t2) = S(t; + t3) Vti,t2 >0 and S(0) = 1.
2. (Section 8.2)Vp € (1,00),VX € LPX :
(a) S(t)X € Xn and 0; (S(t)X) = AS(t)X Vt > 0.
(b) S(t)X ﬁ% S (to) X Vto > 0.

() 1ISOX lwmr Smo (3)

(d) SHX 5 X.

t—0

m
2

I1X]|,, Vm € Ny, ¥t € (0,1).

3. (Section 8.3) Vp € (1,00),VX € WlPXy :

(@) 1SOXllwmsrr Smp (3) 7 [ X1 ¥m € No, ¥t € (0, 1).

) SHx L x.

t—0

4. (Theorem 78) S (t)P =PS (t) on W™PX ¥Ym € Ny, Vp € (1,00),Vt > 0.
5. (Section 8.2) ({(S(H)X,Y)) = ((X,S(t)Y))Vt > 0,¥p € (1,00),VX € LPX,VY € [P X.

These estimates precisely fit the analogy e'® ~ <L where P is the Littlewood-Paley

— WVt
projection. We also stress that the heat flow preserves the space of tangential, divergence-
free vector fields (the range of IP), and is intrinsic (with no dependence on choices of local

coordinates).

Analogous results hold for scalar functions and differential forms (Chapter 8). We also
have commutativity with the exterior derivative and codifferential in the case of differential
forms (Theorem 75). Loosely speaking, this allows the heat flow to preserve the overall
Hodge structure on the manifold. All these properties would not be possible under standard

mollification via partitions of unity:.

Note that for X € X, X ® X is not dual to a differential form. As our heat flow is

generated by the Hodge Laplacian, it is less useful in mollifying general tensor fields (for
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which the connection Laplacian is better suited). Fortunately, we will never actually have

to do so in this thesis.
We observe some basic identities (cf. Theorem 60):

e Using Penrose abstract index notation (see Section 7.2), for any smooth tensors

Tay...ay, We define (V1) =ViTuy.ap and divT = VT, .-

ay...ag

e For all smooth tensors Tg,. .4, and Qq,..qy,,:

/ Vi (Tay..an@ %) = / ViTu,..a @ %+ / Toy..ap ViQ' ™ = / ViTa,..a, Q"
M M M oM

e For X e Xy, Y €X, feC®M):

L [, Xf=[,div(fX)— [, fdiv(X)= [, (fX,v) = [, fdivX = — [ fdivX

2. [, (div(X ® X),Y)=— [, (X ®X,VY)
¢ (VaVe = VuVa) Ty = —Rape'T% 11 — Ravo’ Tkt + Raok” T 51 + Rap”T" o for any
tensor T%;;, where R is the Riemann curvature tensor. Similar identities hold for
other types of tensors. When we do not care about the exact indices and how they
contract, we can just write the schematic identity (V,V, — V,V,)T%y = R*T. As
R is bounded on compact M, interchanging derivatives is a zeroth-order operation on

M. In particular, we have the Weitzenbock formula:

AX =V,V'X + Rx X VX € XM (4.1)

e For X ePL2X,)Y € X, Z € X, feC>®(M):
1 [, Xf=0
2. [, (VxY,Z) = — [, {(Y,VxZ) .

There is an elementary lemma which is useful for convergence (the proof is straightforward

and omitted):
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Lemma 11 (Dense convergence). Let X,Y be (real/complex) Banach spaces and Xy < X
be norm-dense. Let (T})jen be bounded in L(X,Y) and T € L(X,Y).

If Tjxg — Txog Voo € Xo then Tjo — Tx Vo € X.

Definition 12 (Heatable currents). As the heat flow does not preserve compact supports in
M , it is not defined on distributions. This inspires the formulation of heatable currents.

Define:

o 20F = QF) = colim{(Qf, (K),C> topo) : K C M compact} as the space of test

k-forms with Schwartz’s topology' (colimit in the category of locally convex TVS).

o I'OF = (.@Qk)* as the space of k-currents (or distributional k-forms), equipped

with the weak™ topology.

o Iy ={w e QF : nA™w = 0,ndA™w = 0 ¥m € Ny} as the space of heated k-
forms with the Frechet C™ topology and Z4QF = (2yQF)" as the space of heatable

k-currents (or heatable distributional k-forms) with the weak™ topology.

e Spacetime test forms: 7 (1,QF) = C> (1,Qf,) = colim{(C (I, (K)) , C™ topo) :
LI xKcCclIx M compact} and Py (I, Qk) = colim{ (Cg" (Il, @NQ’“) ,C> topo) I C

I compact}.

e Spacetime distributions 2’ (1,Q%) = 7 (I, Qk)*, DN (1,9%) = 2y (1, Qk)*

In particular, Iy X is defined from Z5Q' by the musical isomorphism, and it is invariant
under our heat flow (much like how the space of Schwartz functions S(R") is invariant
under the Littlewood-Paley projection). By that analogy, heatable currents are tempered

distributions on manifolds, and we can write

(SHA, X)) = (A, S (£) X)) VA € DX, VX € DN, 9t >0

!Confusingly enough, “Schwartz’s topology” refers to the topology on the space of distributions, not the
topology for Schwartz functions.
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where the dot product ((-,-)) is simply abuse of notation.

Fact 13. Some basic properties of InX and D\ X:

o ((AX)Y)) = ((X,AY)) VXY € IyX. (Theorem 60)

o S(t)A € IyX VYt > 0,VA € D X. (Section 8.4, a heatable current becomes heated once
the heat flow is applied)

o Xo0 C InX and is dense in LPX Vp € [1,00). Also, LPX — DNX is continuous

Vp € [1, 00].
o PB},X = PB}, Xy, PW'2X = PW'2Xy and POyX < InX. (Section 7.4)

o WPl (IyX) = WXy Vp € (1,00) (Section 8.3), Byl (POnX) = PBJ,Xx (Sec-
tion 9.3)

o VX € InX : S(H)X %‘} X and 8, (S()X) = AS(H)X = SH)AX Vt > 0. (Theo-
rem 34, Section 8.2)

(Section 8.2, Section 9.3) ¥t € (0,1),Ym,m’ € No,Vp € (1,00),VX € IyX :

m

LANSOX s S (1) 2 1X s

L_i_ﬂ
2. ||S(t)XHBm+m’+% 5 (%) o ||X||WmP
p,1
3. 2D SO X |ypmn + ISOX] 1+ SX| 1+ whenm > 1 and X € POyX.
Bzf,l B:l

1

B3, 1
By dense convergence (Lemma 11), this means S(t)X ﬁ) X VX € PB3 | Xy.

1 1 s
Corollary 14 (Vanishing). VX € PBJ Xy : 55 ||S(5) X ||y 0.

’ L ([0,5])
This pointwise vanishing property becomes important for the commutator estimate in On-

sl0
L3 DCT

3pR3
LtB3,1

Remark. So, for U € L{PBS Xn: U] . 1 2 o3 |S(a)U@) || s

sager’s conjecture at the critical regularity level %, while higher regularity levels have enough

room for vanishing in norm (which is better).
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Proof. For Y € P9yX, as s > 0 small: s3||S(s)Y 13<s% Y 13£>0. Then
3 wh wis

1
note s3 15(8) X || y1s S ||X||B% VX € PB;J Xy, so we can apply dense convergence
3,1

(Lemma 11). O

4.2 Searching for the proper formulation

Onsager’s conjecture states that energy is conserved when V has enough regularity, with
appropriate conditions near the boundary. But making this statement precise is half of the

challenge.

Definition 15. We say (V,p) is a weak solution to the Euler equation when

e Vel (I,PL?X),pe L (Ix M)

loc loc

o VX € CX(1,%00) [ 10y (Vs 0X) + (VO V, V) + pdivX = 0.

The last condition means 9,V 4 div(V ® V) 4 grad p = 0 as spacetime distributions. Note
that V@V € L (I, L'X) so it is a distribution.

loc

The keen reader should notice we use a different font for time-dependent vector fields.

There is not enough time-regularity for FTC, and we cannot say

<<v<t1>,X>>—<<v<to>,X>>:/1<<V®v,vx>>+/tl/MpdivX VX € Xoo

to

But we can still use approximation to the identity (in the time variable) near to,t;, as
well as Lebesgue differentiation to get something similar for a.e. tg,t;. By using dense
convergence (Lemma 11) and modifying I into I, C I such that |I\Iy] = 0, we can say

Vel (Iy, (L2X, weak)) < L (I, L*X).

loc loc

We do not have V € C?

D (I, L*X), so energy conservation only means 0, (HV(t)Hi?x) =0
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as a distribution. In other words, the goal is to show
@ o v a=ow e oz
I

Next, having the test vector field X € C2° (I, Xy) can be quite restrictive, since the heat
flow (much like the Littlewood-Paley projection) does not preserve compact supports in M.

We need a notion that is more in tune with our theory.

Definition 16. We say (V,p) is a Hodge weak solution to the Euler equation when
Vel (I,PL*X),pe L (I x M) and

VX € C (1, Xy) : // WV, 0,X) + (VY QV,VX) +pdivX =0
IxM

Now this looks better, since Xy is invariant under the heat flow. However, this is a leap of

faith we will need to justify later (cf. Section 4.3).

As PX < Xy, we can go further and say V is a Hodge-Leray weak solution to the
Euler equation when V € L2 _(I,PL*X) and

loc
VX € C®(I,PX) : // V,8.X) + (V@ V,VX) =0
IxM

This would help give a formulation of Onsager’s conjecture that does not depend on the

pressure, similar to [RRS18].

Next, we look at the conditions for V and p near OM. In [BT18], they assumed V €
L3C* Xy with a € (3,1). In [NN19], they assumed V € L{B§ X (a € (3,1)) with a more

general “strip decay” condition:

0
00

2 ~
b ||V||L§L3(M<7-,avg) ||<V7 V>||L§’L3(M<r,avg)

rl0

¢ HpHLt%L%(M<r,avg) ite V>HL?L3(M<r7avg) — 0.
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In [Bar+19b] (the most recent result), they assumed V € Lfﬁ;{\?}MO% (see the paper for the

full definition), along with a minor relaxation for the “strip decay” condition:

AT
(5 0]

1 ~ rl0 . .
When V € L{B; X, ||(V, s s are, ave) oo, [V, )l 3 13001,avg) DY Fact 7. This moti-

0
rd

LI (M[ﬁ’%] ,avg)

1
vates our formulation later in Section 4.5, where we put V € L{PB; X y.

4.3 Justification of formulation

We define the cutofts
Up(x) = W, (dist (z,0M)) (4.2)
where r > 0 small, ¥, € C*°([0, 00), [0, 00)) such that L,y = Wy > 1pgz) and [RZA[ >
Then Vi, () = f.(x)v(x) where |f,(z)| < * and supp i), C M.
Let (V,p) be a weak solution to the Euler equation and o € (%, 1). Define different

conditions:

1. Ve L?CO’(X:{N.

rl0

a 2 =~
2. Ve L?B?),oo% and HVHL?L3(M<T,avg) ”<V7 I/>HL§’L3( — 0.

M<ave)
1

3. Ve L3BS,Xy.

4. (V,p) is a Hodge weak solution.

5. V is a Hodge-Leray weak solution.

Theorem 17. We have (1) = (2) = (3) = (4) = (5).
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1
Proof. By Fact 4, C%*%y = B% XN < B§, Xy < B3, Xy. Then by the coarea

formula,

~ 113 2 ~
H <V’ V> HL?L3(M<T,an) ,S ’|V||L§’L3(M<r,avg) || <V7 V> ||LfL3(M<r,avg)

2 ~
SV g I P g v

1
So for V € L} B3 %:

2 ~ rl0
HVHLZEL3(M<T,avg) 1V, I/>HL§’L3(M<T,avg) — 0 = [V, I/>HL§L3(8M) =0

<— nV=0

As (4) = (5) is obvious, the only thing left is to show (3) = (4). Recall the
cutoffs ¢, from Equation (4.2).

Let I; C I be bounded and X € C° (11, Xy), then (1 —,) X € C° (I, X¢), and

so by the definition of weak solution:

0= [[ =6 0.0+ .9y (1= ) X))+ pdiv (L - ) X)
IxM
[ 0= @.08)+ 2, 952) + paiv ¥)
IxM
[ @) ) e 0
We are done if the first term goes to zero as r | 0 . So we only need to show the

second term goes to zero. Since Vi, = f,v and supp, C M., we only need to

bound

‘//IM £V, 2) W, X) + 0 (X, 7)

1 ~
5; ||V||L§’L3(M<T) 1V, V>||L§’L3(M<T) ||X||L§L3(M<T)
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+ ; ||p||L1(11><M<r) ||<X77J>||L§OL°°(M<¢)

5 ||V||L?L3(M<T,avg) || <V7 ;> |’L?L3(M<r,avg) ’|X||L§’L3(M<T,avg)

F Pl ey X ) | oo ar,y

S HV“L?Bélx ||<Vag>‘|L§L3(M<T,avg) ”XHLgBélx + ||pHL1(Il><M<T) H<X7AVV>||L;>OCOJ(M<,«)

0
%0

We used the estimate [(X, V)| ey S 7I(X, ) llcoa,) since (X,v) = 0 on
oM. N

Remark. Interestingly, as Section 4.5 will show, no “strip decay” condition involving p seems

to be necessary. See the end of Section 2.1 for a discussion of this minor improvement.

We briefly note that when dM = (), it is customary to set dist (z, 0M) = oo, and 1), = 0,
Mo, =M= M, M., =0, and IyXM = XM = X M.

4.4 Heating the nonlinear term

Let U,V € Béli{. Then U®V € L'X and div (U ® V) is defined as a distribution. To apply
the heat flow to div (U @ V), we need to define (div (U ® V))" so that it is heatable.

Recall integration by parts:

(div (Y @ Z), X)) = — (Y & Z, VX)) +/ v, Y)(Z,X) YX,Y, Z € X (M)

Observe that for X € X, even though ((div (U ® V), X)) is not defined, [, (v, U) (V,X) —
((U®V,VX)) is well-defined by the trace theorem. So we will define the heatable 1-current
(div (U @ V))" by

(div(U@ V), X)) = — (U V, VX)) + /BM (v, U) (V,X) VX € DyX (X is heated)
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It is continuous on Yy X since

[{div (U@ V), XNIS ULy VI 11Xy + 11U 1V s VXL
1 1 1

1 1 1
3 3 3
3, 3, 3,
By the same formula and reasoning, we see that (div (U ® V)" is not just heatable, but also

a continuous linear functional on (X (M), C* topo).
On the other hand, we can get away with less regularity by assuming U € PL?X. Then
we simply need to define ((div(U® V), X)) =—-((U®V,VX)) VX € X.

In short, (div (U @ V))’ is heatable when U € PL2X and V € L*X. Consequently, by
1
Theorem 17, when (V, p) is a weak solution to the Euler equation and V € L{B3,Xy: (V,p)

is a Hodge weak solution and

Y +div(V ® V) +gradp =0 1in 2y (1, X). (4.3)

4.5 Proof of Onsager’s conjecture

For the rest of the proof, we will write e/ for S(t), as we will not need another heat flow.

For £ > 0 and vector field X, we will write X for e*2X.

We opt to formulate the conjecture without mentioning the pressure (see Section 4.3 for

the justification).

Theorem 18 (Onsager’s conjecture). Let M be a compact, oriented Riemannian manifold
with no or smooth boundary. LetV € L{PB3 Xy such that VX € C® (I,PX) : [, ,, (V, 0:X)+
(Vo V,VX) =0 (Hodge-Leray weak solution,).

Then we can show

/ (5 (V(8), V(D)) dt = 0¥y € C=(1)

1

Consequently, ((V(t),V(t))) is constant for a.e. t € I.
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As usual, there is a commutator estimate which we will leave for later:

/I 0 ((div (U @ U= U>)) - /l 0 ((div (U © U¥) U=

:/In<<div U @U)™ UY) —/In<<div (U ou*)" u))y 250 (4.4)

for all U € LIPB] Xn.n € C (I).

Notation: we write div (U @ U)° for (div (U @ U))° and VU* for V (U°) (recall that the
heat flow does not work on tensors Y @ U and VIU). Compared with [IO14], our commutator

estimate looks a bit different, to ease some integration by parts procedures down the line.

Remark. For any U in PL2X, div (U ® U)’ is a heatable 1-current (see Section 4.4). In
particular, for e > 0, div (U ® U)® is smooth and

(div (U U), YY) = — (U U,V (Y9))) VY € X (4.5)

Consequently, Equation (4.4) is well-defined.

Theorem 19 (Onsager). Assume Equation (4.4) is true. Then [, 7/(t) ((V(t),V(t))) dt = 0.

Proof. Let ® € C°(R) and @, % 5o be a radially symmetric mollifier. Write V*°
for e*AV (spatial mollification) and V, for ®, * V (temporal mollification). First, we

mollify in time and space

1 1
3 [ ) " i [ (v
I

el0 700 I
Then we want to get rid of the time derivative:

3 [ == [atevivey == [amvn vy + [ i

1 I 1

Then we use the definition of Hodge-Leray weak solution, and exploit the commuta-
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tivity between spatial and temporal operators:

3 o 0rvn = o) v = [ lE)) V)
- _/I<<v (V)] v ev))
- —/<<[n (Vo). veV))

I

- /In (V) v eV).)

where we used the fact that (nV*)_€ C> (I,PX) to pass to the second line.

As there is no longer a time derivative on V', we get rid of 7 by letting 7 | 0 (fine

as V is L? in time). Recall Equation (4.5):

%/n'«vs,vs» :—/jn<<v (v26),V®v>>:/In<<vs,div<1;®v>f>>

_ /77 (V2 div (VE @ Vo)) + 0:(1)

= [n407, v ot //v&(‘ E') 0.(1) = 0.(1)

where we used the commutator estimate to pass to the second line, and the fact that
V* € PX to make the integral vanish.

So = fl limgw hmﬂ,o % fI 77, V;:, V7E_>> = limgw % f[ 7”]’ <<V€, V€>> =0

]

The proof is short and did not much use the Besov regularity of V. It is the commutator

estimate that presents the main difficulty. We proceed similarly as in [IO14].

Let U € L}PB; Xy. By setting U(t) to 0 for ¢ in a null set, WLOG U(t) € PB3, Xy Vt €

I. Define the commutator

W(t,s) = div (U(t) @UE)> — div (U (t)* U )*)
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When ¢ and s are implicitly understood, we will not write them. As div (U(t) @ U(t))**

solves (05 — 3A) X = 0, we define N' = (9; — 3A) W. Then W and N obey the Duhamel

formula:

Lemma 20 (Duhamel formulas).

1. W(t, s) 00 in DX and therefore in 2'X. Furthermore, W(-, s) =00 in Dy (1,%)
and therefore in 9' (1,X) (spacetime distribution,).

2. For fiwzed to € I and s > 0: [N (to, o)3) do Oy (to,s) in DNX.

Proof.

1. Let X € IyX, X € C (I, In%) . 1t is trivial to check (with DCT)

sJ0

((UE)@U(L),V (X)) = (U @U)*,V (X®))) =0
/<<U®U,V(X3s)>> —/I<<u28®u2S,V(XS)>> 20

I

2. Let ¢ > 0. By the smoothing effect of e*2, W(ty,-) and N(to,-) are in
CP.((0,1], Z8%). As (&%)

loc

>0 is a Cp semigroup on (H™-cl(ZnX), |||l gn)

VYm € Ny, and a semigroup basically corresponds to an ODE (cf. [Taylla, Ap-
pendix A, Proposition 9.10 & 9.11]), from 9, W = 3AW + N for s > ¢ we get

the Duhamel formula

Vs > e Wt s) = W (to, )" + / N (t0,0)**™" do

R
So we only need to show W (¢, £)36=e) —%0. Let X € 9yX.

<<X, W (to, 5)3(S*E>>> = (X362 div (U (to) D U (t0))™))

_ << X369 div (U (tg)* @ U (to)2€)€>>
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= — ((V (X™) U (to) @ U (1))

+ <<V (X3sf25> U (t0)2€ QU (t0)25>> el0

— 0.

. S . S
From now on, we write fo N for lim, o fe . Then

s

/dt n () (W (L, s),U 1)) = /dt n(t)/ da<<N (t,0)°¢) 7U(t)8>>

1 1 0+

To clean up the algebra, we will classify the terms that are going to appear but are actually
negligible in the end. The following estimates lie at the heart of the problem, showing why
the regularity needs to be at least %, and that our argument barely holds thanks to the

pointwise vanishing property (Corollary 14).

[NIES

k
Lemma 21 (3 error estimates). Define the k-jet fiber norm |X| ;. = (Z ’V(j)X‘2> VX €
=0

X (more details in Subsection 7.1.1). Then we have

s o2 s—20 sJ0
1. f[ u f0+ deM U [0 U7 == 0

s o2 s—9%0 sJ0
2. fl|n|f0+dafaM|U2 || U2, = 0

S o o s—20 540
3. f[ ul fo+ do faM | \u? | (75 |l —0

Proof. Define A(t,s) = s3 ||U (t)?

1\s 2
0 s,

also note that ||U (¢)°]| ..
B3 1

1
3

s Then for s > 0 small: ||U (t) ||B;’+1% <

1A (t,a)HL%SHLg % 0 by Corollary 14. We

< (%)%A s) and ’
(3)°

Now we can prove the error estimates go to 0:

(t7
< U(t)?

< (1
s (1) A, s).
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A Y e Py AT A 7 Y e 9
1
/dt|77 \/ da( ) (23—0) A(t,20)* A(t,4s — 20)
m—_)sa - 1 % 2 .
= /Idt|n(t)|/0+da <0> (2_0) A(t,2s0)” A(t,4s — 2s0)

50
< / dt (] A (o),

— 0.

Jun [ao [ e,
I 0+ oM

§/I|n|/0+ dUHUQU”iﬁ%M\aM HZ/{ZLS_QUHWZ’i‘%M\aM
K [ ey e
~ U os B XM Bffl%xM
s 1
< [acmonuor, [ (5 ) s -20)

50 1 1 — 2s0
= /Idt \77()!HU()\|3331xM/+d0(2_U)A(t>43 250)
< / at IO U@y A0 e,

BS,I

2 10
S IZ( O (RO T EY

L5B3§1 oc<4s

3
Lt

/|77\/ dO'/ ’u20'| |u2o’}J1 ‘u48720‘t}1
I 0+ oM

Trace S
2 20 4s—20
< /I??\/ do [lel] g o 17 s o 72 s
1 Jor 1% SRR i

SO/INE/ 1O\
< ol [a(3) (55,) Atk -2
1 3.1 JO+ g S—0
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1

osso PN 1
> /Idt |n(t)|||z4(t)y|B§1/o+da(;) (2_0> A(t,250) A (£ 45 — 250)
S [t @M 1400l

o<d4s
2
[EYEI

sl0

Sl —0

3
B3,

Note that

N (t,0) = (8, — 3A) (—div (U @U*)")
= —2div (AU @U*)" — 2div (U* @ AU>)7 + 2Adiv (U @UY)°
Finally, we will show

50

/n<(W(S),Us>> = /Idtn(t)<<W(t, s),U(t))) — 0

I

Proof. Integrate by parts into 3 components:

[noveun = [anw [ ar (K007 aay))
_ /1 dt 5 (1) /0 + do (N (t,0) .U (1))
:zfln/oidﬂ@u?”@u%,v(U4S‘2”)>>

L /I . /0+ do (U & AU,V (UM27)))

_2/1"/; do (U7 @ U,V (AUS2)))

the Laplacian. It also explains our choice of W.
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We now use Penrose notation to estimate the 3 components. To clean up the
notation, we only focus on the integral on M, with the other integrals 2 [ I f08+ do (+)
in variables ¢ and ¢ implicitly understood. We also use schematic identities for
linear combinations of similar-looking tensor terms where we do not care how the
indices contract (recall Equation (4.1)). By the error estimates above, all the terms
with R or v will be negligible as s | 0, and interchanging derivatives will be a free
action. We write ~ to throw the negligible error terms away. Also, when we write
(V,;Uy)** 77, we mean the heat flow is applied to U, not VI (which is not possible

anyway ).

First component:

/ <Au2o ® Z/{QU’ \V4 (u45720)>

W / ViU (U (Vi)

/ (VZV u] ]Z/{l)48 20 / (vzu] - (vjul)4s—2a

_ /]w (vz’u]’)Qa (ul)20 (vivjul)élsf&r
Second component:

/]\/l <u20 ® AL{20’7 \V4 (u4s—2o‘)>
L{QO’ « R 20 u4s—2a) +/ (uj)Zo (viviul)zo (Vjul)4s—2a
M

%/ (Z/{j)2o . i1 7\ 20 jul)4s20'_/ (VZZ/{j 20 i (vjul)48720'

_ /]\; (uj)Qa (Vz‘ul)QU (ViVjU[)4S_20
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For the third component, note V(R+U) = VR*U + R VU

- [ @ w3 (au))
__W_/M U7 (U (VI U) T
o= [ )T (R T 4 T
~— /M (U)* (UN)* (VR4 + ViV, VU5 )

J%E/ﬂ@/wvﬁ/ﬂzﬂ/ V0 @ (0T

1]/{[ v V Z/{l 4s—20
M

Add them up, and we get 0 as 2 [, 7 [;, do (-) =2 0. O

So we are done and the rest of Part I is to develop the tools we have borrowed for the proof.
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CHAPTER 5

Functional analysis

5.1 Common tools

We note a useful inequality:

Theorem 22 (Ehrling’s inequality). Let X,Y, X be (real/complex) Banach spaces such that
X is reflexive and X — X is a continuous ingection. Let T : X — 'Y be a linear compact

operator. Then Ve > 0,3C, > 0:
[Txlly <ellzfly +Cellzllz Vo e X

Remark. Usually, X is some higher-regularity space than X (e.g. H' and L?). The in-
equality is useful when the higher-regularity norm is expensive. We will need this for the

LP-analyticity of the heat flow (Theorem 73).

Proof. Proof by contradiction: Assume & > 0 and there is (z;) ;. such that [|z;| , =1
and [|Tz;||y, > €+ j|;]|g. Since X is reflexive, by Banach-Alaoglu and PTAS,
WLOG assume z; X Too. Then Tx; R T2 and z; X Too. As T is compact,

PTAS, WLOG Txz; = T2w. So ||[Txlly > limsup;,. (¢ +7llz;llg¢) > 0 and

T, X, 0. Then X, X0 and 2o = 0, contradicting | Tz |ly > 0. O

Definition 23 (Banach-valued holomorphic functions). Let € C C be an open set and X

be a complex Banach space. Then a function f : Q — X is said to be holomorphic (or

fz4+h)—f(2)
h

analytic) when Vz € Q : f'(2) := limyy 0 exists. The words “holomorphic” and
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“analytic” are mostly interchangeable, but “analytic” stresses the existence of power series
expansion and can also describe functions on R for which analytic continuation into the

complex plane exists.

Theorem 24 (Identity theorem). Let X be a complex Banach space and Xo < X closed.
Let Q0 C C be connected, open and f : Q — X holomorphic. Assume there is a sequence

(2)) ;e such that z; — z € Q and f(z;) € Xo Vj. Then f(2) C Xo.

Proof. Let A € X* such that A(Xy) = 0. Reduce this to the scalar version in complex

analysis. O

In fact, many theorems from scalar complex analysis similarly carry over via linear functionals

(cf. [Rud91, Theorem 3.31]).

5.2 Interpolation theory

We will quickly review the theory of complex and real interpolation, and state the abstract
Stein interpolation theorem. Interpolation theory can be seen as vast generalizations of the

Marcinkiewicz and Riesz-Thorin interpolation theorems.

Definition 25. An interpolation couple of (real/complex) Banach spaces is a pair (X, X;)
of Banach spaces with a Hausdorff TVS X such that Xy — X, X; <— X are continuous in-

jections. Then Xy N X; and Xy + X; are Banach spaces under the norms

ey, = max (e, lolly,) and el = _ inf oy, + iy,

Let (Yo, Y1) be another interpolation couple. We say T : (Xo, X1) — (Yo, Y1) is a mor-
phism when 7" € L(Xo+ X1,Yo+Y1) and T" € L£(X,,Y;) for j = 0,1 under domain
restriction. That implies T' € £ (Xo N X1, Yy NY)) and we write T € L ((Xo, X1), (Yo, Y1))-
We also write £ ((Xo, X1)) = £ ((Xo, X1) , (X0, X1)).
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Let P € L£((Xy, X)) such that P2 = P. Then we call P a projection on the interpola-
tion couple (Xo, X1).

Definition 26. Let (X, X;) be an interpolation couple of (real/complex) Banach spaces.
Then define the J-functional:

J: (0,00)XXoﬂXl — R

(t,7) — llzllx, +tll2lly,

For 6 € (0,1),q € [1, 0], define the real interpolation space

(XQ,X1> 6,q = {Z Uj > Uy € X(] N Xl, (2_j9J<2j,Uj))j€Z € l?(Z)}

jET

which is Banach under the norm ||x||(Xo7X1)9,q = I:i%fuj 27797 (27, uj)Hl?. Note that >, u;
JEL
denotes a series that converges in Xy + Xj.

e When ¢ € [1,00] and 2 € X, N X, note that Vj € Z:x =}, _, 6;x and
_ iy : ‘ iy . Lo o
20l 303, < i0f (27727, 2)] = inf 277 [l + 20l y, | ~oog 2l 2l

The last estimate comes from AM-GM and shifting j so that [|z]|y, ~ 27 [|z] y,. Note

that the implied constants do not depend on 8 and gq.

e By considering the finite partial sums E| jl<jo Wis We conclude that Xy N X is dense in

(Xo, X1)y, when g € [1, 00).

e Let (Yp,Y1) be another interpolation couple and T' € £ ((Xo, X1), (Yo, Y7)). For 0 €

(0,1),q € [1,00], define Xy, = (Xo,X1)p,,Yoq = (Yo, Y1)y, Then T" € L(Xg,, Y,)

and

1-6 0
||TH[,(X9’q,Y97q) fi_‘ey_‘%_‘T ||THL X0,Y0) ||T||£(X1,Y1)
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where the implied constant does not depend on # and ¢. This can be proved by a

simple shifting argument.
e If P is a projection on (Xj, X;) then (PXj, PXl)qu =P (XO,Xl)M.

Remark. There is also an equivalent characterization by the K-functional, which we shall
omit. This theory can also be extended to quasi-Banach spaces. We refer to [BL76; Tril0]

for more details.

Definition 27. Let (Xj, X;) be an interpolation couple of complex Banach spaces.

Let @ = {z € C: 0 < Rez < 1}. We then define the Banach space of vector-valued

holomorphic/analytic functions on the strip:
Fxox, = 1f € C°(Q = Xy + X;) : f holomorphic in €, Hf(zt)HXO +[|f(1+ it)HX1 m 0}

with the norm [[f]z,. .. = max (supyeg /(i) L, »subres 11+ t) ).
For 6 € [0, 1], define the complex interpolation space [Xo, X1]p = {f(0) : f € Fx,.x,},

which is Banach under the norm

120 xo 01, = e }?{fm 11l 7y x,
F0)=2
e When z € X, N X;\{0}, 0 €[0,1], € > 0, define f.(z) = >~) _—__2__ By the

1—
)y el

freedom in choosing e, we conclude

. 1-6 0
Il gy < 06 1ol g, el el

. —62 —e6? 1-0 0 1-0 0
< inf max (<0, =) alli? e, = il lel%,
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e When 6 € [0, 1], by Poisson summation and Fourier series, we can prove that
N
2 .
./—")0(07)(1 = {602 ZGAJZZL'J‘ :NeNC > O,)\j S R,{L‘j € XoN Xl}
j=1

is dense in Fy, x, (cf. [BL76, Lemma 4.2.3]). This implies X(NX; is dense in [ X, X1]p.
There is a simple extension of the above density result. Let U be dense in XyN X, and

define A(Q) = {¢ € C°(Q — C) : ¢ holomorphic in Q}. Then
N
.7:)({07)(1 = {ecz2 ng)j(z)uj NeNC>0,¢;, € AQ),u; €U}
j=1

is dense in Fx, x,. This will lead to the abstract Stein interpolation theorem.

e Let (Y5, Y1) be another interpolation couple and T € L ((Xo, X1), (Yo,Y1)). Then for

0 € [0, 1], almost by the definitions, we conclude

1-6 0
||T||,C([X07X1]9,[Y0,Y1]9) S ||T||L‘,(X(),Yo) ||T||,C(X1,Y1)

e If P is a projection on (Xo, X1) then [PXy, PX1]g = P[Xo, X1

Remark. A keen reader would notice that we use square brackets for complex interpolation,
and parentheses for real interpolation. One reason is that the real interpolation methods
easily extend to quasi-Banach spaces, while the complex interpolation method does not.
There is a version of complex interpolation for special quasi-Banach spaces, which is denoted

by parentheses (cf. [Tril0, Section 2.4.4]), but we shall omit it for simplicity.

Blackbox 28 (Abstract Stein interpolation). Let (Xo, X1) and (Yo, Y1) be interpolation cou-
ples of complex Banach spaces and U dense in XoNX;. Let Q ={z€ C:0< Rez < 1} and
(T'(2)),eq be a family of linear mappings T(z) : U — Yo + Y1 such that

1. YueU: (Q—=Yy+ Y,z T(2)u) is continuous, bounded and analytic in Q.
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2. For j = 0,1 and u € U: (R—=Yj,t—T(j+it)u) is continuous and bounded by

Mj |[ullx, for some M; > 0.

Then for 6 € |0, 1], we can conclude
ITO)ulliyy vy, < Mo MY [lull, x,), Yu €U

Consequently, by unique extension, we have T(6) € L([Xo, X1]y, [Y0, Y1ly)-

Proof. See [Voi92], which is a very short read. O

Remark. We will only use Stein interpolation in Section 5.3.

5.3 Stein extrapolation of analyticity of semigroups

We are inspired by [Facl5, Theorem 3.1.1] (Stein extrapolation) and [Fac15, Theorem 3.1.10]
(Kato-Beurling extrapolation), and wish to create variants for our own use. We will focus

on Stein extrapolation, since it is simpler to deal with.

There exists a subtle, but very important criterion to establish analyticity /holomorphicity:

Blackbox 29 (Holo on total). Let Q C C be open and X complex Banach. Let f:Q — X

be a function. Assume N < X* is total (separating points) and f is locally bounded.

Then f is analytic iff Af is analytic VA € N.

Proof. This is a consequence of Krein-Smulian and the Vitali holomorphic conver-

gence theorem, and we refer to [Are+11, Theorem A.7]. O

Remark. 1t will quickly become obvious how crucial this criterion is for the rest of the thesis.
Let us briefly note that an improvement has just been discovered by Arendt et al. [ABK19]

(the author thanks Stephan Fackler for bringing this news).
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Corollary 30 (Inheritance of analyticity). Let Q C C be open and X,Y be complex Banach
spaces where j : X — 'Y is a continuous injection. Let f : 2 — X be locally bounded. Then

f is analytic iff j o f is analytic.

Proof. Tm(j*) is weak*-dense, therefore total. O

Corollary 31 (Evaluation on dense set). Let X,Y be complex Banach spaces with Xy < X.
Let Q C C be open and [ : Q — L(X,Y) be a function. Assume Xog < X is weakly dense

and f is locally bounded.
Then f is analytic <= Vo € Xo, f(:)zo: Q =Y is analytic.

Proof. Consider Nx, = span{y* o ev,, : 1o € Xo,y* € Y} < L(X,Y)*. It is total as
Xy is weakly dense. Use Blackbox 29. O

5.3.1 Semigroup definitions

As mentioned before, we assume the reader is familiar with basic elements of functional

analysis, including semigroup theory as covered in [Taylla, Appendix A.9].

Unfortunately, definitions vary depending on the authors, so we need to be careful about

which ones we are using.
Definition 32. For § € (0,7, define ¥F = {z € C\{0} : |argz| < 6}, X; = —XF,
D ={z€C:|z| < 1}. Also define 3§ = (0,00) and X, = —%.
Let X be a complex Banach space.
(T'(t))e>0 C L(X) is called:
e a semigroup when 7" : [0,00) — £(X) is a monoid homomorphism (7'(0) = 1,T(¢t; +
ta) =T (t1)T(t2))
e degenerate when 7" : (0,00) — L£(X) is continuous in the SOT (strong operator
topology).
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e immediately norm-continuous when 7" : (0,00) — £(X) is norm-continuous.
e () (strongly continuous) when 7" : [0,00) — £(X) is continuous in the SOT.

e bounded when 7'([0,00)) is bounded in £(X), and locally bounded when 7T'(K)
is bounded VK C [0,00) bounded. (so Cy implies local boundedness by Banach-

Steinhaus, and the semigroup property implies we just need to test K C [0, 1))
(T(z))zezgu{o} C L(X) is called

e a semigroup when 7' : 3} U {0} — £(X) is a monoid homomorphism.
e Cy when V&' € (0,0),T : X5 U {0} — L(X) is continuous in the SOT.

e bounded when T (3},) is bounded V¢’ € (0,6) and locally bounded when T'(K) is
bounded VK C ¥f, bounded. (so Cy implies local boundedness, and the semigroup

property implies we just need to test K C DN X})

e analytic when 7 : ©F — £(X) is analytic

We say (1'(t)):>0 is analytic of angle 6 € (0, 7] if there is an extension (T(z))zezju{O} C L(X)

which is analytic and locally bounded. If furthermore (T(Z))zezgu{()} is bounded, we say

(T'(t)):>0 is boundedly analytic of angle §.

Remark. A subtle problem is that when (7'(¢));>o is bounded and analytic, we cannot con-

clude (7'(t))>0 is boundedly analytic (cf. [Are+11, Definition 3.7.3]).

Blackbox 33. If (T(t))t>0 is a Cy semigroup which is (boundedly) analytic of angle 6 €

(0, 3], then (T<Z)>zezgu{o} is a Cy, (bounded) semigroup.

Proof. The semigroup property comes from the identity theorem, and Cjy comes from
the Vitali holomorphic convergence theorem. We refer to [Are+11, Proposition 3.7.2].
O
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Theorem 34 (Sobolev tower). Let (e!1);5q be a Cy semigroup on a (real/complex) Banach
space X with generator A (implying A is closed and densely defined). Then¥m € Ny, D(A™)
is a Banach space under the norm ||z|| piamy = llzllx + > 32, |A*z| ., and D(A™) is dense
in X.

As et and A commute on D(A), we conclude that (') after domain restriction, is

t>0’

also a Cy semigroup on D(A™) and He < HetAHL(X) vt > 0.

“ Hﬁ(D(Am

Lastly, if X is a complex Banach space and (etA) is (boundedly) analytic on X, (etA)

>0 >0

is also (boundedly) analytic on D(A™) after domain restriction.

Proof. Most are just the basics of semigroup theory (cf. [Taylla, Appendix A.9]). We
only prove the last assertion. All we need is commutativity: if (e“‘) >0 18 extended

to (e”‘)zeE;U{O}, we want to show e*4 A = Ae*4 on D(A).

By Blackbox 33, (QZA)ZEE;;U{O} is a Cj semigroup. Therefore Vo € D(A),Vz € &} :

etd — 1 etd — 1 eth — 1
A Ar = 4 (X— lim x) = X-lime™ z = X-lim A
t10 t tl0 t 40 t

The last term implies e*z € D (A) and e*4 Az = Ae*Ax. Then use Corollary 30 and

Corollary 31 to get analyticity. ]

5.3.2 Simple extrapolation (with core)

Lemma 35. Let U, X be complex Banach spaces and U — X be a continuous injection with

dense 1mage.

1. Let (T(t))e>0 C L(X) be locally bounded and T(t)U < U Vt > 0. Assume (T'(t))i>o is

a Cy semigroup on U. Then (T(t))i>0 on X is also a Cy semigroup.

2. Let (T(Z))zezgu{o} C L(X) (where 6 € (0,75]) be locally bounded and T'(2)U < U Vz €
¥i. Assume (T'(2)).estuqoy @ a Co, analytic semigroup on U. Then (T(2)).ex+u0

on X is also a Cy, analytic semigroup.
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Remark. The assumption of local boundedness on X is important. We will also use this

result in Section 8.3 to establish the W!P-analyticity of the heat flow.
Proof. The semigroup property comes from the density of U in X.
To get Cyy on X, use the local boundedness on X and dense convergence (Lemma 11).

For analyticity in (2), use Corollary 31. O

Lemma 36 (Core). Let A be an unbounded linear operator on a (real/complex) Banach

space X and E < D(A). E is called a core when E is dense in <D(A), ||-||D(A)>.
If A is the generator of a Cy semigroup on X, E is dense in X and e*E < E, then E is

a core.

Proof. Let x € D(A). Then there is (mj)jE
check

Ny in E such that z; £> x. It is trivial to

I oy 1 f* Illpa)
— [ etrjds —5 - [ etrds — D
tJo j—ooo t Jo 10

as <€SA|D(A)>5>0 is [|*[| p(ay-continuous. Note that f(f e*Ax; ds is in the [[[[ p(ay-closure

of E by the Riemann integral. ]

Theorem 37 (Simple extrapolation with core). Let (Xo, X7) be an interpolation couple of
complex Banach spaces and Xg = [Xo, X1]o for 6 € (0, 1].

Let (T'(t))o C £ ((Xo, X1)) . Assume that on Xo, (T'(t)),s, is bounded.

Assume that on Xy, (T(t)), is a Co semigroup, boundedly analytic of angle § € (0, 3]

with generator A;.

Assume Im € Nj : (D(A’I”), ||'||D(Agn)> — (Xo N X1, [llx,nx,) = Xo are continuous

imjections with dense images.

Then on Xg, (T(t)), is a Co semigroup, and boundedly analytic of angle 5.

Remark. The existence of a convenient core like D(A7") is usually a trivial consequence of

Sobolev embedding. We can replace bounded analyticity on X; and X, with analyticity, and
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boundedness on X with local boundedness via the usual rescaling argument (V¢" € (0,0) C

(0,5),3Cy > 0: [ T (2)| 1,y S 1 V2 € ).

The existence of a core allows conditions on Xy and X; to be more general than those
in [Facl5, Theorem 3.1.1] (which requires immediate norm-continuity on Xj), and actually
be equivalent to those in [Facl5, Theorem 3.1.10] (though Kato-Beurling covers more than
just complex interpolation). Once again, the assumption of (local) boundedness on Xj is

important.
We will use this result to establish the LP-analyticity of the heat flow in Section 8.2.
Proof. Let U = D(AT"). Then U is Banach as A; is closed. Obviously U — Xj is a

continuous injection with dense image, and (T(Z))zezgu (0y 18 @ Co, bounded, analytic

semigroup on U (via Sobolev tower).

By Lemma 35, (T'(t)),5, is a C, bounded semigroup on Xy. Also by Lemma 35,
to get the desired conclusion, we only need to show (T(z))zez%u {0y 1s locally bounded
in £(Xp).

Fix ¢’ € (0,6). We use abstract Stein interpolation. Define the strip Q@ = {0 <
Re < 1}. Let a € (—=¢',0"), p> 0,u € U and

L(z) = T(pe"*)u ¥z € Q

Note that U < XyN X is dense. We check the other conditions for interpolation:

e As U — Xy and U < X, are continuous, (Q — X + X1,z + L(2)u) is

continuous, bounded on Q and analytic on © (as L(z)u € X; — Xy + X).
e For j =0,1 (R — X,,s— L(j +is)u) is

— continuous since U < X is continuous.

— bounded by Cjr |[ul x, for some Cjr > 0 since (T(f)),5, is bounded on
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Xo and (T'(te™)),5, is bounded on X;.

Then by Stein interpolation, we conclude {T'(pe®®) : p > 0,a € (=0",8)} =
T(X45) C L(Xp) is bounded. O

5.3.3 Coreless version

There is an alternative version which we will not use, but is of independent interest:

Theorem 38 (Coreless extrapolation). Let (Xo, X1) be an interpolation couple of complex

Banach spaces and Xy = [Xo, X1]g for 6 € (0,1].
Let (T'(t));5 C L£((Xo,X1)) be a semigroup. Assume that on Xo, (T'(t)),s, s bounded
and degenerate.

Assume that on X1, (T'(t)),5, s a Co semigroup, boundedly analytic of angle 6 € (0, 5]

with generator Aj.

Then on Xq, (T(t)),sq is a Co semigroup, boundedly analytic of angle 66.

Remark. The differences with the previous version are underlined. Again, via rescaling we
can replace bounded analyticity on X; and Xy with analyticity, and boundedness on X
with local boundedness. The conditions on X, and X are still a bit more general than those
in [Faclb, Theorem 3.1.1], which requires immediate norm-continuity on X,. In practice
local boundedness on X can usually come from global analysis, while degeneracy can come
from Sobolev embedding and dense convergence (Lemma 11). Immediate norm-continuity

is harder to establish.

Note that Theorem 38 is not as general as [Facl5, Theorem 3.1.10] (which removes the
need for degeneracy and covers more than just complex interpolation), though it is markedly

easier to prove.
Proof. By interpolation, (T'(t)),s, is a bounded semigroup on Xp.

Let U = Xo N X;. Obviously (7'(t)),, is a bounded semigroup on U.
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Then observe that Yu € U,Vt,tg > 0 :

I(T(8) = T(to)) ully,, < I(T(t) = T(to)) ully,” I(T(t) = T(to)) ul’,

ST () = T(to)) ull%,

Since 0 # 0, we have T'(t)u % T(to)u. As (T'(t)),~, is bounded on Xy and U is
—to =

dense in Xy, we conclude (T'(t)),s, is Co on Xy by dense convergence (Lemma 11).

Fix ¢ € (0,6). We use abstract Stein interpolation. Define the strip Q = {0 <
Re < 1}. Let a € (—=0",0'), p> 0,u € U and

L(z) = T(pe™*)u ¥z € Q

Note that U = Xy N X;. We check the other conditions for interpolation:

e As U — Xy and U < X are continuous, (Q — X + X1,z + L(2)u) is

continuous, bounded on Q and analytic on  (as L(2)u € X; — Xy + X1).
e For j =0,1 (R — X,,s— L(j +is)u) is

— continuous since (T(t)),s, is degenerate on Xy and (T'(te*)),5, is Co on

Xj.

— bounded by C;r ||u||XJ for some Cjr > 0 since (T'(t)),5, is bounded on
Xo and (T'(te™)),, is bounded on X;.

By Stein interpolation, {T'(pe’) : p > 0,a € (=¢,8)} = T(X4;) C L(Xp) is
bounded.

Finally, we just need to show (T(Z»zez(;;u{o} is analytic on Xy. Let u € U. Then

(ZF = X1 = Xo+ X1, 2 T(2)u)
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is analytic. Therefore (355 — Xp < Xo 4+ X1, 2+ T'(z)u) is analytic. On the other
hand, (Z% — X,z — T(z)u) is locally bounded, so we can use Corollary 30 to
conclude (X5 — Xp, z — T'(z)u) is analytic. As U is dense in Xy, by corollary 31,

we conclude (S55 — £(Xy), z — T(2)) is analytic. O

5.4 Sectorial operators

Recall that if (T'(t)),, is a Cp semigroup on a complex Banach space X, then it has a closed,

densely defined generator A, and T'(t) = e'4

some C' > 0. Then V¢ € {Re > C} : ( € p(A) and

is exponentially bounded: ||etAH < et for

1
(—A

T = / e ety dt Vo e X
0

(cf. [Taylla, Appendix A, Proposition 9.2])

This means that the resolvent ﬁ is the Laplace transform of the semigroup e*4. This
naturally leads to the question when we can perform the inverse Laplace transform, to recover
the semigroup from the resolvent. This motivates the definition of sectorial operators, which

includes the Laplacian.

Unfortunately, there are wildly different definitions currently in use by authors. The
reader should study the definitions closely whenever they consult any literature on sectorial

operators (e.g. [Lun95; Haa06; Are+11; Eng00]).

Definition 39. Let A be an unbounded operator on a complex Banach space X. For

6 €[0,7), we say A is

o(A)Cx,

Vw € [0, —6) : M(A,w) := sup ||:25] < o0
xexd

e sectorial of angle 6 (A € Sect(f)) when

e quasi-sectorial when da € R : A — a is sectorial.

e acutely sectorial when A € Sect(f) for some 6 € [0, 7)
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e acutely quasi-sectorial when da € R : A — a is acutely sectorial.

For r > 0,n € (§,m), we define the (counterclockwise-oriented) Mellin curve
Ve = €1, 00) U e "[r, 00) U rell=mml

Remark. Depending on the author, “sectorial” can mean any of those four, and that is not
taking sign conventions into account (some authors want —A to be sectorial), as well as

whether A should be densely defined. The term “quasi-sectorial” is taken from [Haa06].

In particular, letting the spectrum be in the left half-plane means we agree with [Eng00;
Lun95] and disagree with [Are+11; McI86; Haa06]. This is simply a personal preference,
of being able to say “the Laplacian is sectorial”, or “generators of Cy analytic semigroups

A

are acutely sectorial”. Also, for bounded holomorphic calculus, e*® morally comes from

(€).c(ay Which is bounded in the left half-plane.

In keeping with tradition, here is the usual visualization:

A

Figure 5.1: Acutely sectorial operators
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Blackbox 40. A generates a Cy, boundedly analytic semigroup on complex Banach space X

if and only if A is densely defined and acutely sectorial.

When that happens, 36 € (0 “) andn € (5, m) such that (etA) N

. >0 €xtends to (eCA)

cexiu{o}

and

1
Comi - z—A

>N

1
e = e%* dz V¢ eXf,vr>0
Also ¥t > 0,Vk € Nj 1 e4(X) < D(A%), || A% || Soiop 5 and 9F (e'4a) = AFetdz Vo €
X.

Remark. This is the aforementioned inverse Laplace transform. The Mellin curve and the
resolvent estimate in the definition of sectoriality ensure sufficient decay for the integral to
make sense. As it is a complex line integral and the resolvent is analytic, the semigroup

becomes analytic.

A trivial consequence is that D(A*) is dense in X and therefore a core.

A—a) _ —taetA

When A is densely defined and acutely quasi-sectorial, a simple rescaling e*( e

implies (e'?) 150 18 @ Cp, analytic semigroup.

Proof. See [Eng00, Section I1.4.a]. The curious figure ’;—: comes from AFe!4 =
N
(AeEA> . ]

Theorem 41 (Yosida’s half-plane criterion). A is acutely quasi-sectorial if and only if 3C' >

0 such that

e {Re > C} C p(A)

o suwp ||gZ]l <o
Ae{Re>C}

Remark. This is how the LP-analyticity of the heat flow is traditionally established. Yet

proving the resolvent estimate is nontrivial, as it is quite a refinement of elliptic estimates,
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1
so we choose not to do so. Interestingly, we will instead use this for the BjJ;-analyticity
of the heat flow in Section 9.3, though that case is especially easy since we already have

analyticity at the two endpoints L? and W13,

Proof. We only need to prove <. Recall the proof of how p(A) is open: VA €
p(4), B (X,

get O+ X1 C p(A) for some n € (3, 7). By choosing 1 near 7, the resolvent estimate

ﬁH_l> C p(A). Applying this allows us to open up {Re > C'} and

is retained. O]

Definition 42. Let A be an unbounded operator on a Hilbert space X. Then A is called

e symmetric when (Az,y) = (z, Ay) Va,y € D(A), or equivalently, A C A* (where A
and A* are identified with their graphs).

e self-adjoint when A = A*. This implies 0(A) C R (cf. [Taylla, Appendix A,
Proposition 8.5]).

e dissipative when Re (Az,z) < 0Vz € D(A).

When A is dissipative, VA € {Re > 0},Vz € D(A) : Re{((A— A)z,z) > Re(Az,z) so
A = A) 2| = Re Aflz].

Recall how p(A) is proved to be open: Y\ € p(A), B </\, Hﬁ”_l) C p(A). Consequently,
if A is dissipative and I\g € {Re > 0} N p(A), we can conclude {Re > 0} C p(A).

Theorem 43 (Dissipative sectoriality). Assume X is a complex Hilbert space and A is an

unbounded, self-adjoint, dissipative operator on X. Then A is acutely sectorial of angle 0.

Remark. Though standard, this might be the most elegant theorem in the theory, and later
on will instantly imply the L?-analyticity of the heat flow in Section 8.1. The theorem can
also be proved by Euclidean geometry. When X is separable, we can also use the spectral

theorem for unbounded operators.
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Proof. As A is self-adjoint, C\R C p(A). By dissipativity, we conclude o(A) C
(—00,0]. Also by self-adjointness, Re (Az,z) = (Az,x) < 0Vz € D(A).

Arbitrarily pick 6 € (5, 7). We want to show || 25| S 1Vz € 5.

Let € X and u = 2z As [(u,2)| < ||ully ||lz]|x, we want to show ul 3 <o

|1 (u,z)|. Note that

) = % {u, (2 — A = ) — - (Au, )

z

WLOG assume |lully = 1. Then we want 1 <y [1—2(Au,u)|. Note that

—(Au,u) > 0 and —2 (Au,u) € 3. Then we are done since

1
’1 — = (Au,u)| > dist(0,1 +3]) > 0.

z

By Euclidean geometry, we can even calculate dist(0,1 4 X;). We will not need

it though. [
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CHAPTER 6

Scalar function spaces

Throughout this chapter, we work with complex-valued functions.

6.1 On R"

Definition 44. Here we recall the various (inhomogeneous) function spaces which are par-
ticularly suitable for interpolation. They are defined as subspaces of §'(R") with certain

norms being finite:

1. Lebesgue-Sobolev spaces: for m € No,p € [1,00]: [|fl[yymp@n) ~ D peo HV’“pr
where V¥ f € LP are tensors defined by distributions. It is customary to write H™ for

W2

2. Bessel potential spaces: for s € R,p € [1,00]: | f|
(V)" = (1 — A)? is the Bessel potential.

sy ~ I9)" Fl, where

3. Besov spaces: for s € R,p € [1,00],q € [1, o0]:

/1

sy ~ [Pt fl, + | N2 1P £,

lq
N>1

where Py and P<y (for N € 2%) are the standard Littlewood-Paley projections (cf.
[Tao06, Appendix Al).

4. Triebel-Lizorkin spaces: for s € R,p € [1,00),q € [1,00]: || f]
HNS ||PNf||l§‘v>1Hp

Fs @ ~ [P<fll, +
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Remark. As there are multiple characterizations for the same spaces, we only define up to

equivalent norms. Of course, the topologies induced by equivalent norms are the same.

In the literature, “Fractional Sobolev spaces” like W*? could either refer to B, , (Sobolev—
Slobodeckij spaces) or H*P. We shall avoid using the term at all. There are also some

delicate issues with [, | which we do not need to discuss here (cf. [Tri10, Section 2.3.4]).

Blackbox 45. Recall from harmonic analysis (cf.[Tril0, Section 2.5.6, 2.3.83, 2.11.2] and
[Lem02b, Part 1, Chapter 3.1]):

o WmP(R™) = H™P(R"™) for m € Ny, p € (1,00).

o I7,(R") = H*P(R") for s € R,p € (1, 00).
° th(R") — WmP(R") — B;‘OO(R") form € Ny, p € [1, 00].

o S(R") is dense in W™P(R"), By (R") and F; (R") form € Ny, s € R,p € [1,00),q €
[1,00).

BS

p,min(p,q

)(R”) — Fy (R") — B> (R™) for s e R,p € [1,00),q € [1,00].

p,max(p,q)
° (B;,q (]R")yk = B];fq/ (R™) for s e R,p € [1,00),q € [1,00).
(Fpﬁq (R"))* = pr,z, (R™) for s e R,p € (1,00),q € (1,00).

6.2 On domains

Definition 46. A C*° domain €2 in R" is defined as an open subset of R" with smooth
boundary, and scalar function spaces are then defined on Q. If Q@ C S C Q, let function
spaces on S implicitly refer to function spaces on 2. This will make it possible to discuss
function spaces on, for example, M N Bgn(0,1), or compact Riemannian manifolds with

boundary.

Obviously, Sobolev spaces are still defined on domains by distributions. The big question

is finding a good characterization for By , and F; on domains, when the Fourier transform
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is no longer available. This is among the main topics of Triebel’s seminal books. Let us

review the results:

Definition 47. Let € be either R", or the half-space R’;, or a bounded C**° domain in R".

Then B; (Q) and F; () can simply be defined as the restrictions of By (R") and
F; (R™) to © and

/]

Bs ,(Q) — inf{|| F| Bg ,(R) FepB (R"), Flg=f} for s € R;p,q € [1,00]

/]

Fs ,(Q) = 1nf{||F1| Fs o (R™) (Fe F]iq(Rn)v F‘Q = f} for s € Rap € [17 OO)>q € [17 OO]

A more useful characterization is via BMD (ball mean difference). Let 73, f(z) = f(z + h)
be the translation operator and Ay, f = 75, f — f be the difference operator. Then for m € Ny,
we can define A" = (A)™ as the m-th difference operator. As we need to stay on the
domain €2, define

V™(z,t) = — (Blz,mt) NQ —z) forz € Q,t>0,me Ny

1
m

So V™(x,t) C B(0,t), x + mV™(x,t) C Q and Al f(x) is well-defined when h € V™(z,t).
Also note for t € (0,1): |V™(x,t)| ~qm t". Then by [Tri92, Section 3.5.3, 5.2.2]:

1. Form e Ny,p € [l,00],q € [1,00],s € (0,m),r € [1,p] :

/]

(6.1)

s ~ I, + Ht‘s | A f(:v)||Lz(%ndh7Vm(m7t))‘

LY () La(2dt,(0,1))

We carefully note here that m > s (the difference operator must be strictly higher-
order than the regularity), and that the variable ¢ is small, which will play a big role
in Theorem 56. We also note that this is different from the classical characterization

via differences ([Tril0, Section 3.4.2], [Tri92, Section 1.10.3]) which analysts might be
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more familiar with:

1155~ 161 V1™ A0 @) sz oy

where A}’ f(z) is the same as A} f(x), but zero wherever undefined, and m € Ny, p €

(1,00),q € [1,00],s € (0,m).

2. Form e Ny,p € [l,00),q € [1,00]|,s € (0,m),r € [1,p] :

A7 £ () (31 )|

g0~ 11, + [

Le(0D) [l £

Blackbox 48 (Diffeomorphisms and smooth multipliers). Fvery diffeomorphism on R™ pre-

serves (under pullback) the topology of

o WHP(R™) for k € No,p € [1, 00
° B;,q(Rn) forseR,pell o0, q€[l,o0

o [, (R") for s eR,p€[l,00),q€ [1,00]

Also on the same spaces, for ¢ € C°(R"™), f > of is a bounded linear map .

Remark. This allows us to trivially define function spaces on compact Riemannian manifolds

with boundary via partitions of unity and give them unique topologies.

Proof. For W*? it is trivial. For By and F7 ., see [Tri92, Section 4.3, 4.2.2] and

b,q’

[Tril0, Section 2.8.2]. O

Blackbox 49 (Extension and trace). Let Q) be either the half-space R’y or a bounded C'*

domain in R".

1. Stein extension: There exists a common (continuous linear) extension operator € :

WHEP(Q) — WHFP(R™) for all k € Ny, p € [1, 0]
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2. Triebel extension: For any N € Ny, there exists a common (continuous linear)

extension operator €V such that

(a) €Y : By (Q) — B; (R") for all |s| < N,p € [1,00],q € [1,00]

(b) €N : Fy () — Fy (R") for all |s| < N,p € [1,00),q € [1, ]
3. Trace theorems: Let n > 2.

s 1
(a) Forp € [1,00],q € [1,00],5 > % : By (Q) = Bpg"(09) is a retraction (contin-
uous surjection with a bounded linear section as a right inverse).
s 1
(b) Forpe€ [l,00),q € [1,00],s > i D By (Q) = Byt (09) is a retraction.

1

(c) (Limiting case) For p € [1,00), B? () — LP(9Q) and W' (Q) — LY(0Q) are

p,1

continuous surjections.

1
Remark. It is important to note that we do not have the trace theorem for, say, B3, (€2) (cf.

[Sch11, Section 3])

Proof.
1. See [Ste7l, Section VL.3].
2. See [Tri92, Section 4.5, 5.1.3].

3. See [Tril0, Section 2.7.2, 3.3.3] and the remarks.

Corollary 50. Let € be either the half-space RY} or a bounded C*° domain in R™.

o FH(Q2) = W™P(Q) form € Ny, p € (1,00).

(Q) — Wm™P(Q) — B;?OO(Q) form € Ny, p € [1, 00].

o S(Q) is dense in W™P(Q), F5 (Q) and B (Q) form € Ny, s € Rp € [1,00),q €
[1,00).

64



o B3¢

p,min(p,q)

Q) = F;.(Q) = By

p,max(p,q)

(Q) for s e R,p e [l,00),q € [1, 0]

Remark. When Q is a bounded O domain, S(Q) = C>=(Q).

Proof. Use Triebel and Stein extensions. ]

6.3 Holder & Zygmund spaces

Definition 51. Let Q be either R", the half-space R’} or a bounded C*° domain in R".

Recall some L*° type spaces:

e Holder spaces: for k € Ny, « € (0, 1],

— g
Hf||ok7a(sz) = Hf||ck(9) + fg@% [D f] C0e(Q)

where [g]oo. () = SUp, U

e Zygmund spaces: for s > 0, define €*(Q2) = B3 (©2) . Then for m € Ny, s € (0,m):

HAZLf(x)HLgO(Vm(z,t))

AV f(x
~sup|f|+ sup —‘ AL S< >‘
o<in<izea  |P|

oy ~ 1 + |
1(9)) Lo (%) L@ ] Loo ((0,1)

It is well-known (cf. [Tril0, Section 2.2.2, 2.5.7, 2.5.12, 2.8.3]) that

° ||f||¢k+a(9) ~ [ fllgr + max g ||Df3fH¢a(Q) for k € Ny, a € (0,1]
hd ||f||¢k+a(Q) ~ ||f||cka for k € Ng,a € (0, 1).
o Hnggs(Q) S HfHQS”gHQS fOI‘ s > 0.

Note that C%!, C' and ¢! are different.
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6.4 Interpolation & embedding

Blackbox 52 (Interpolation). Let Q2 be either R", the half-space RY or a bounded C*

domain in R"™. Throughout the theorem, always assume 6 € (0,1),sg = (1 — 6)sg + 0s;.

p;q0 p,q1

1. (B3, (), B3 <Q))0,q = By (Q) for sg # s1,5; € R,p € [1,00],¢;5,q € [1,00].

(Fso (), F5 (Q))e,q = By (Q) for so # s1,5; €R,p € [1,00),¢;,q € [1,00].

P,q0 A 2151

2 (B30 (), 5320 (), = Bit () for so # 51,55 € Ropy € [1,00], g5 € [1,00], 1 =

Po,q0 p1,91 Po,Po

1-0 , 6 _ 1-0 , 0
Do +p1_ Qo +q1

3. [B (), Ba ()], = B3 () and [F (), Fa, ()], = Fe  (Q)

Po,90 P1,91 Po,q6 Po,90

5. (Wmeb(Q), Wmib(Q)), . = Bpe(2) for m; € No,mo # my,p € [1,00],q € [1, 0],
mg = (1 —0)mgo + Om,.

Proof.
1. Extension operators and [Tril0, Section 2.4.2].
2. Extension operators and [BL76, Theorem 6.4.5].
3. Extension operators and [Tril0, Section 2.4.7].
4. Extension by zero and [BL76, Section 5.1.1]

5. Recall B (Q) < W™P(Q) — B _(Q) for m € Ny, p € [1,00]. Then apply 1.

]
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Blackbox 53 (Embedding). Let 2 be a bounded C* domain in R"™. Assume oo > sy >

s$1 > —oo. Then

1. By () = Byt () is compact for p; € [1,00],q; € [1, 0], pL1 > pio — =5

Fso (Q) < F51 (Q) is compact for p; € [1,00),q; € [1,00], L > L — =51

0,90 p1,q1 ’ p1 po n

2. B () = B3t (Q) is continuous for p; € [1,00],q € [1,00], pil = pio — 0=

EFro (Q) = F3r () is continuous for p; € [1,00),¢q; € [1,00], pil = pio — 0=

Proof.
1. See [Tril0, Section 4.3.2, Remark 1] and [Tril0, Section 3.3.1].

2. See [Tril0, Section 3.3.1].

Corollary 54. Let € be a bounded C'*° domain in R™. Then

7L > 1L mo—my .
p1 Po n

Wmopo(Q) < B (Q) « B () < W™PL(Q) is compact.

P0,00 p1,1

1. For mj € No,mg > my,p; € [1, 00

2. For m; € No,mo > mq,py € [LOO],CY c (0’ 1) ,O > pio _ mo—(mi1+a) .

n

Wmopo(Q) < B0 () < ngl;ga((z) = CO™*(Q) is compact.

Po,00

1

3. Form € Ny,p € (1,00) : W™P(Q) — B _(Q) — Bﬁl(Q) — LP(0Q) is compact.

Remark. These include the Rellich-Kondrachov embeddings found in [Ada03, Theorem 6.3],

so the Besov embeddings generalize Sobolev embeddings.

67



6.5 Strip decay

Some notation first: let 2 be a C*>° domain in R" or a compact Riemannian manifold with
or without boundary. Define 2., = {z € Q : dist(z,08) > r} where dist(z,0) = oo if
0Q = (). Similarly define Q>,, Qc,, Q1)

When || < 0o and p € [1,00), we write

L :
o = Wiz = (L 167) = i ([ 17)

By convention, we set || f{[ ;.0 (q,ave) = [/ ()] 1 de ) = = [|fll ¢ ()- The implicit measure is of
course the Riemannian measure. In such mean 1ntegrals, the domain becomes a probability

space.

Theorem 55 (Coarea formula).

1. For any h € R", the translation semigroup (Tin),~, is a Co semigroup on W™P(R™),
By (R") and F; (R") form € Ny, s € R,p € [1,00),q € [1,00). Consequently, for
1
p€[l,00) and f € B}, (R") ,

([07 OO) - Lp(Rn_l)vt = Tthf|Rn—1)

is continuous and bounded by C'|| f|] for some C' > 0.
(R™)

Sy
iSIRST

1

2. Let Q be a bounded C* domain in R™ (or a compact Riemannian manifold with bound-

ary). Letp € [1,00). Then for f € B;I(Q) and r > 0 small:

(a) <[O, r)— R p— Hf|]Lp(m>p)> is continuous and bounded by C' || f||
C > 0.

() 1F ey ~-
() 1l gy S IS

1 for some
Bp,(Q)

Lp((0.r))

ri,O

@ P o e = I lloo0,0ve)

1
BP
p
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>

~ T

(d) Let I C R be an open interval and f € LP(I — BE,()),then ||f| 1 (
’ LY By, ()

rl0
HfHLfLP(QST,avg) — HfHLfLP(aQ,avg) :

1
3. Letp € [1,00), f € WH(Q), show that || f|| pier,y Sov 7 1 lwrriy +77 1| Loany Jor

r > 0 small.
Proof.

1. Use the density of S(R™) and Lemma 11.

(a) By partition of unity, geodesic normals, diffeomorphisms and the smallness

of r, reduce the problem to the half-space case, which is just 1).

(b) Approximate f in B; 1 by C*(Q2) functions. This is the well-known coarea
formula, which corresponds to Fubini’s theorem in the half-space case.
Note that || f|| ;s (aq. ) is defined by the trace theorem. See [Cha06, Section

I11.5] for more details.

(¢) For r small, |Q.,| ~ [0Q]r and |0€2s,| ~ |09, so

< sup HfHLp(aQ>p,avg)

170 zm ey~ [ 00|y 1y < 5

10 .
= [ £l o (a6.avg) PY continuity in a).

and H
nd ||| f HLP(BQ>p»an) LE((0,r),avg)

(d) Dominated convergence.

3. By the trace theorem, WLOG f € C>=(). By partition of unity and diffeo-
morphisms, WLOG Q = R} = {(x,y) : x € R"1,y > 0}. Then

P N H H Hayf(Xa :O)HL/l)([o,y]) + ‘f(x’ 0)“

~ X’ r
7l ~ [ G0 g0 ol e
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+re £ (0l g

1
< I10urtx g |

5(0)|| L

1
The first term < HHﬁyf(x, p>”l£([0,r]) H\y|p’

o], 7106 lisga,)- Sowe

are done.

O
Theorem 56 (Product estimate). Let M be a bounded C* domain in R™ (or a compact
Riemannian manifold with boundary). Assume r > 0 small, f, € C*°(M) with support in

M_,. Then forp e (1,00), g € Blil(M):

||f7”g||3;/lp(M) SMF‘T ||fr||Bi<{ﬁ(M)||g||Lp(M<4T) + ||f7‘||L°°(M<r)”gHB;/lP(M)

Remark. The theory of product and commutator estimates (Kato-Ponce, Coifman-Meyer
etc.) has a long and rich history which we will not recount here (cf. [KP88; Tao07; GO14;
NT19]). However, for our intended application, f, has very small support and we want to use
g/l o (r-s) instead of ||g||Le(ar) to control the product. Unfortunately there does not seem
to be much, if at all, literature on this issue. This theorem will only be used for Theorem 88,
and is not necessary for Onsager’s conjecture.

Proof. By diffeomorphisms, partition of unity, and geodesic normals, WLOG assume
M =R% with M., ={z € R": 0 <z, <7}

Recall ||9lze(@,=a) S 191l 1/ n ) VO < @ < 00 where |[gl| oz, =a) = llgllzr((zerniza=a))

is defined by the trace theorem.

WLOG, assume | f,|| ., < 1. Recall the characterization of Besov spaces by ball
mean difference (BMD) and write V(z,t) for V!(z,t) (see Equation (6.1)). Then

HAh(ng) <I>HL}L(V($¢)) LE(M)

1
Vgl e ~ I fogllnan + Ht
By (M) L1(4E (0,1))

The term || fg||zr(m) is easily bounded and thrown away. For the remaining term,
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we use the identity Ay (fr.g) = Anfrg + T frAng to bound it by

1,
|57 18t @y aapato)

B L 0,1))

- A X 1 T
Ifrllec 1209 @)z @anl] o L1(4,(0,1))

The second term here is just || fo||r<||g]l 5170 (ary» 50 throw it away. For the remaining
p,1

)

term, by using H'”LP(M) S H‘||Lp(M<4,.) + ||'HLP(M>4,.) and

2L @) 3 9 @)

Y ([ Co] Py

) |‘9($)HL£(M<4,>)

Lg(M<4T ’Lgo(M<4r

we are left with

1,
ool + 57 1807 @lyvaapato)

LR (M>ar) || st 0,1

Throwing away the first term, we have arrived at the important estimate: what

happens on M-y,.. It will turn out that the values of g on My, are well-controlled

by |lgll g1/e )" To begin, recall f, is supported on M_, and use the crude geometric
p,1

estimate

[ ARS @) L2 vy =t (@ 4+ D) L2 (v

B(x,t)N M., r
<| (|B():L= t)| < | 5 x_1t>$n_r \V/.ZU (- M>4T,Vt - (ST, ].)

Note that ¢ > 3r comes from t > z,, — r > 4r — r. So we have used the “room” from

4r to get an O(r)-lower bound for ¢. By x, < r 4+ t, we now only need to bound

LE(Migy d
( [ar, +t]) Ll(Tt’(?)T)l))
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Obviously, we will integrate g on x,-slices (using p > 1):

r 1 1
g9(x)— =7 {|= 9/l Loz, =p) S gl g || =
H L I LE Mgy, i) P LY([dr,r+t]) pt (40 L3 ([4r,00))
1
5 re ”9”3;/17’(1\/1)
Then we are done (using p < 00):
L 1
o[ :H@)p _ <1) 1
Ll(%,(i‘]r,l)) t Ll(%,(?ﬂ‘,l)) t Ll(ﬂ @ l)) ~
t O\
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CHAPTER 7

Hodge theory

We stick closely to the terminology and symbols of [Sch95], with some careful exceptions.

7.1 The setting

Definition 57. Define a d-manifold as a paracompact, Hausdorff, metric-complete, ori-

ented, smooth manifold, with no or smooth boundary.

Note that this means Bg»(0,1) is not a d-manifold (as it is not complete), but Bga(0,1)
is.

For the rest of this thesis, unless mentioned otherwise, we work on M which is a compact
Riemannian n-dimensional d-manifold (where n > 2), and use v to denote the outwards unit

normal vector field on M.

As before, define M., = {z € M : dist(x,0M) > r}, and similarly for M>,, Mo, M, ;.
ete.

For r > 0 small, the map (OM x [0,7) — M., (z,t) — exp,(—tv)) is a diffeomorphism,
which we call a Riemannian collar. Then v can be extended via geodesics to a smooth

vector field 7 which is of unit length near the boundary (cut off at some point away from

the boundary, but we only care about the area near the boundary).

Let vol stand for the Riemannian volume form orienting M and voly for that of 9M. Let
J:OM — M be the smooth inclusion map and ¢ stand for interior product (contraction) of

differential forms. Note that for a smooth differential form w, y*w only depends on w‘ onrr SO
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by abuse of notation, we can write
volyg = 7*(¢, vol)

where 1, vol € Q"7 (M) | on- Additionally, the Stokes theorem reads [, dw = [, 7w for
w € Q" (M).

7.1.1 Vector bundles

Let F be a real vector bundle over M with a Riemannian fiber metric (-, ).

Define

e ['(F) : the space of smooth sections of F
e ['.(F) : smooth sections with compact support (so I'.(F) = I'(IF) since M is compact)
e ['yo(IF) : smooth sections with compact support in M (the interior of M).

Remark. We are following [Sch95], where Hodge theory is also formulated for non-compact
M. In the book, I'gF is used instead of I'ggF to denote compact support in M. As that can

be confused with having zero trace, we opt to write I'oo[F instead.

Then on I'.(FF), define the dot product

and |o|y = \/(0,0)g. Then for p € [1,00), LPT'(F) is the completion of I'.(F) under the
norm

o]l Lor ey = Molell o ary
Let V¥ be a connection on F. Then for o € ['(F), V¥o € I'(T*M ® F) and we can define

74



the fiber metric

(a® 0,88 0) 1 pep = (@, B)pepy (0,0)p

In local coordinates (Einstein notation):

(Vio,V*0),.\ op = (da' @ Vo, da! @ Vo), = (da',da’) . (Vio,V]0) = g7 (V]o,Vi0),

M®F

For higher derivatives, define the k-jet fiber metric

(0,0) g = Z <(V]F)(j) o) (VF)(j) 9>

o (® T M)eF

and |o| iy = \/(0,0) jip. Then we have Cauchy-Schwarz: (o, 0) g < || kg 0] g -
Then for m € Ny, p € [1,00), we define the Sobolev space W™PT'(F) as the completion
of I'.(F) under the norm

||U||Wm,pr(1F) - H|‘7|JWFHLP(M)

It is worth noting that |o| ;m.p, up to some constants, does not depend on V. Indeed,

assume there is another connection VF, then VF — VF is tensorial:
(Vs = V&) (fo) = 1 (Vi = ¥4) (0) = (Vx = Vix) (0)

for fe C*(M),0c e I'(F),X € XM.

So there is a C°°(M)-multilinear map A : XM ®c¢oo(ary I'(F) — I'(IF) such that
(vgi - ﬁ;) (0) = A(X, o).

By the compactness of M and the boundedness of A, we conclude |0 jmpor ~ |0] jmp o

Therefore the topology of W™PT'(F) is uniquely defined.

Definition 58 (Distributions). Set ZI' (F) = L'y (F) as the space of test sections and
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P'T (F) = (97T (F))" the space of distributional sections. As usual, in the category of
locally convex TVS, 2T (F) is given Schwartz’s topology as the colimit of {I" (F),. : K C
M compact}, where I' (F) . := {0 € I' (F) : suppo C K} has the Frechet C* topology.

7.1.2 Compatibility with scalar function spaces

We aim to show that the global definitions of Sobolev spaces in Subsection 7.1.1 are com-
patible with the definitions of Sobolev spaces by local coordinates.

Let (¢, Us), be a finite partition of unity, where U, is open in M and v, is supported
in U,. Normally in differential geometry, U, is diffeomorphic to either R% N Bgx(0,1) or
Bgn (0, 1). However, it is problematic that the half-ball does not have C*° boundary, so we

use some piecewise-linear functions and mollification to create a bounded C*° domain.

Figure 7.1: Smoothing the corners

So WLOG, U, is diffeomorphic to the closure of a bounded C* domain in R”, and
scalar function spaces are well-defined on U, (recall Definition 46). Note that supp 1), might

intersect with OM.

For U, chosen small enough, the bundle F on U, is diffeomorphic to U, x F' (where F is
the typical fiber of F).
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Let (e‘”‘) be the coordinate sections on supp,, and cut off such that suppv, C
(suppe§) C suppe§ C U,. Let o € I'(F). Then there exist ¢§(0) € C°(U,) such that

supp ¢(07) C supp Ya, Ya0 = 3,4 ci(0)ef and
o= Z cg(a)eg
a?ﬁ

Now, observe that |o|p ~ > |¢a0|r and

N

ol = (Seatowsto <eg,eﬁ/) (Zm ‘)

8,8’

To see this, let z € supp 1, and <eg, eg,>]F (z) = Bgp /(). Then By (u,v) := )5 5 ugvg Bgg ()
is a positive-definite inner product, which induces a norm on a finite-dimensional vector

space, where all norms are equivalent. Then simply note B, (u,u) is continuous in variable
T € Supp Yq-

Also, in local coordinates, there are s}, € Cg°(Uy) such that Vie§ = 37 s]zeS on supp ¢a.
Then

V]F (Va0) Z 0; 05 6% + Z cg(a)szﬁe?y‘ = Z dfﬁ(a)eﬁ
Byy B

where dfz (o) = 9;c§(0) +3_, C?;(U)Siﬁw'
So |o| jip ~ Za,ﬁ |C%(U)| + Za,ﬂ,i |d?,8(‘7)| ~ Za,,@ |C%(U)| + Za,ﬁ,i |3i0§(0)|-
Similarly |o| jmp ~ Za,ﬁ Zkgm ‘V(k)cg(a)}.

So for m € Ny, p € [1, 00),
o llwms ~ ZH% ]| Pr——

Now define So = (¢5(0)) _ and R(c§) . = > apcges. Then RS =1 on I'(F) and

a?ﬁ a?ﬁ
P := SR is a projection on [ 8 C*>(U,). Note that P depends on the choice of partition
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of unity. By looking into the definitions of R and S, we can extend this to have P = SR as

a continuous projection on [], ; L'(Ua) and
(e < o o m,p
1P @)l e & S 1y o m € Mo € 10l 5 € W70

The keen reader should have noticed we never mentioned the case p = oo in Subsec-
tion 7.1.1 as we defined W™PI'(IF) by the completion of smooth sections, and C*°(M) is not
dense in W™>°(M). Now, however, by using local coordinates, we are justified in defining
WmPD(F) = {3, scief : c§ € WmP(U,)} for m € Ny, p € [1, oo with the norm defined (up

to equivalent norms) as

> ches
a,8

S ches
a’/B

WmPTF o5 WP (Us)

Then B; I (F) and F; I' (F) can be defined similarly. In other words, for m € Ny, p €

[1,00],q € [1,00],8 > 0:
o WL (B) = P, Wo(0.)
o By I'(F) = P[5 B,,Us)
o By U(F) = Pll,sFy(Ua), p# 00

By using Blackbox 48, we can show the Banach topologies of these spaces are uniquely defined
(independent of the choices of ¢,,U,). For convenience (such as working with Holder’s
inequality), we still use the Sobolev norms W™P (m € Ny, p € [1,00)) defined globally in
Subsection 7.1.1.

All theorems from chapter 6 that worked on bounded C*° domains carry over to our
1
setting on M, mutatis mutandis. For instance, B§ ,I'(F) — L* T'(F)|,,, is a continuous
surjection and

B, D(F) = (LT (F), WL (F)), |
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Moreover, for p € (1,00), LPT'(F) is reflexive. By Holder’s inequality, (LT (F))" =
LPT (F) for p € (1, 00).

7.1.3 Complexification issue

A small step which we omitted is complexification. As F is a real vector bundle, the previous
definitions only give W™PT'(F) ~ P[], s W™?(Us,R) for m € No,p € [1,00]. In working
with real manifolds, differential forms/tensors and their dot products, we always assume real-
valued coefficients for sections, but whenever we need to use theorems involving complex
Banach spaces or the theory of function spaces, we assume an implicit complexification
step. Fortunately, no complications arise from complexification (see Chapter 10 for the full
reasoning), so for the rest of the thesis we can ignore this detail. When we want to be

explicit, we will specify the scalars we are using, e.g. RW"™PI'(F) versus CW™PT'(F).

7.2 Differential forms & boundary

Unless mentioned otherwise, the metric is the Riemannian metric, and the connection is the

Levi-Civita connection.

For X € XM, define nX = (X,v) v € XM]|,,, (the normal part) and tX = X|,,, —nX
(the tangential part). We note that tX and nX only depend on X’aM’ so t and n can be
defined on %M‘BM, and by abuse of notation, t (XM|,,,) = X(0M).

For w € Q% (M), define tw and nw by
tw(Xl, ,Xk) = w(tXl, ,th) VX] S %M,] = 1, ,k)

and nw = wly,, — tw. By abuse of notation, we similarly observe that t (QF <M>‘BM) 2y
QHOM) = 7 (9 (M)],) = 7 (2 (21)).

Recall the musical isomorphism: Xz(Yp) = (X,.Y,) and (WY,) = w,(Y,) for p €
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M,w, € T;M, X, € T,M,Y, € T,M.

Recall the usual Hodge star operator * : QF(M) = Q"*(M), exterior derivative
d: QF(M) — QFY(M), codifferential § : QF(M) — QF1(M), and Hodge Laplacian
A = —(do + 0d) (cf. [Taylla, Section 2.10] and [Sch95, Definition 1.2.2]).

We will often use Penrose abstract index notation (cf. [Wal84, Section 2.4]), which
should not be confused with the similar-looking Einstein notation for local coordinates,
or the similar-sounding Penrose graphical notation. In Penrose notation, we collect the

usual identities in differential geometry (cf. [Lee09]):

e For any tensor T,, ,,, define (VT) =ViTu, op and divT = VT4, 4,

1a7...aK

o (dw) =(k+1) ﬁ[bwal_“ak] Vw € QF(M) where V is any torsion-free connection.

bai...ay

o (0w) = Vs oy, = —(diVW)ay. a0y, Yo € QF(M)

a1..ag_1
¢ (VoVy = ViVa) Ty = —Rape'T% 10 — Rave’ T ki + Raok” T 51 + Rap”T" 1o for any
tensor T%;, where R is the Riemann curvature tensor and V the Levi-Civita
connection. Similar identities hold for other types of tensors. When we do not care
about the exact indices and how they contract, we can just write the schematic
identity (V,V, — V,V,) T%;; = R+T. As R is bounded on compact M, interchanging

derivatives is a zeroth-order operation on M.

e For tensor T}, ,,, define the Weitzenbock curvature operator

k
. . Z i
RIC(T)al...ak - 2 v[ivaj]Ta1...aj_1 Aj41...0)
j=1
— E g _ E n o
- Raj Tal...a]-_laaj_;,_l.‘.ak Raj aj Tal‘..a...,u..‘ak
J J#l

where R,, = R, is the Ricci tensor. The invariant form is

Ric(T)(X1, . Xx) = Y (R(0:, Xo)T) (X1, o0, Xa1, 0", X1, o0y Xi) VX, € XM

a
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where ' = ¢Y9; and R(9;,0;) = V,;V; — V,;V,; (Penrose notation). Note that
(R(Dy, Op)O4, Oe) = Ruapea- Special cases include Ric(f) = 0Vf € C°(M) and Ric(X), =
R,7 X, VX € XM (justifying the notation Ric).

In local coordinates
Ric (w) = da? A (R(9;,0j)w - ') Yw € QF(M),

where - stands for contraction (interior product). Then we have the Weitzenbock
formula:

Aw = V;Viw — Ric(w) Yw € QF(M)

where V;Viw = tr(V?w) is also called the connection Laplacian, which differs from
the Hodge Laplacian by a zeroth-order term. The geometry of M and differential
forms are more easily handled by the Hodge Laplacian, while the connection Laplacian

is more useful in calculations with tensors and the Penrose notation.

For tensors Ty, ., and Qg a,, the tensor inner product is (T, Q) = T,, ., Q.
But for w,n € QF(M), there is another dot product, called the Hodge inner product,

where

() = 7 ()

So [w|, = 4/ 7 |w|. Then we define ((w,n)) = [, (w,n) vol and ((w,n)), = [,, (w, ), vol.
Recall that w A % = (w,n), vol Yw € Q¥(M),Vn € QF(M). Also

({dw,m)) = ({w,0n)) Vw € Qi(M),Vn € Qi (M)

So (-, ), is more convenient for integration by parts and the Hodge star. Nevertheless,
as they only differ up to a constant factor, we can still define W™PQF(M) (m € Ny, p €

[1,00)) by (-, -) as in Subsection 7.1. Finally, by the Weitzenbock formula and Penrose
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notation, we easily get the Bochner formula:

LA (jof?) = LYV (@,6)) = (Aw,) + [Vol? + (Ric (&) )

Remark. In [Sch95], the conventions are a bit different, with

A = (dé + 6d), A* = -V, Vi, RY = —Ric

and N the inwards unit normal vector field. Also the difference between ((-,-)) and ({-,-)),

is not made explicit in the book. We will not use such notation.

Lemma 59. Some basic identities:

1.

2.

Vw e QF (M) i tw=0 <= 7*w =0 . Similarly, nw =0 <= 1w =0.
(tX) =t(X") VX € XM

Ftw = 7w, tw = 1,(V Aw), nw = 1’ Auw, t(wAn) = twAty Yw € QF(M),¥n € QY(M)

- ((tw, ), = ((bw, ), = ((w, tn)), Yw,n € QF(M)

t (xw) = % (W), N (kw) = * (tw), *xdw = (=1)" dxw, 0w = (—1)F dxw, *Aw = Axw

Vw € QF(M)

Jtdw = 7*dw = d°M y*w = dOM y*tw Yw € QF (M)

Let w € QF(M). If tw =0 then tdw = 0. If nw = 0 then néw = 0.
Lw =t (Lw) = ,nw Yw € QF(M)

7 (w A *n) = (7w, 7" 1,m) , voly Yw € QF(M),Vn € QFL (M)

Proof. We will only prove the last assertion. Observe that j* (vol) = 0 so vol gy =

nvol = 1’ A, vol. Recall voly = j*(1, vol) and tQF = 5*QF so the problem is
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equivalent to proving
V' Atw Atxn = (tw, te,n), vol on OM
Simply observe that ti,n = ¢,n and

V' Atw At (xn) =17 Atw Axnn = <Vb /\tw>n77>AV01

— <yb A tw, N [,,ﬂ7>A vol = (tw, ¢,1) , vol

O]
Theorem 60 (Integration of tensors and forms by parts).
1. For tensors Ty, . .q), and Qq,...ay.,
/ V’L (Tal...ainalmak) - / ViTal...ainalmak + / aj...ap Qlal ak
M M
— / ViTm...ainmmak
oM
In other words, fM (VT, Q) Vol—l—fM (T, div Q) vol = faM v@T,Q)voly.
2. Forp € (1,00),w € RWWPQF n € RIWWW QL.
((dw, )y = (w, o))\ + (T, 7 0m)) 5 (7.1)
where ((7*w, 7 1,m)) = [orr (W, 75 0m) 5 vOla.
3. Forp € (1,00),w € RW*PQF(M),n € RWWQF(M) :
D(w,n) = ((=Aw,m)y + (T wdw, 7))y — (770w, 7 0um)) 5 (7.2)

where D(w, n) := ((dw, dn)), + ((dw, én)) , is called the Dirichlet integral.
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Proof.
1. Let Xt = Tal.,,ainal“'“k. Then it is just the divergence theorem.

2. By approximation, it is enough to prove the smooth case.

/aM <]*w’j*L“7>AV018:/aMJ* (w A *n) Z/Md(w/\*n)
:/de/\*ﬁ%-(—l)k/Mw/\d*n:((dw,n>>A—((w7577>>A

3. Trivial.

7.3 Boundary conditions and potential theory

Definition 61. We define:

o O (M) ={we QM) :tw=0} (Dirichlet boundary condition)

o OF (M) ={weQ¥M):tw=0,téw =0} (relative Dirichlet boundary condi-

tion)
o O (M) ={we Q*M):nw=0} (Neumann boundary condition)

o OF (M) ={we QM) : nw = 0,ndw = 0} (absolute Neumann boundary

condition)
o QF (M) =0k (M)NQk (M) (trace-zero boundary condition)
o HE(M) ={we Q¥(M) : dw=0,5w = 0} (harmonic fields)
o HY (M) =HF¥(M)N QK (M) (Dirichlet fields)
o HE(M) =HFM)N QK (M) (Neumann fields)
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Remark. In writing the function spaces, we omit M when there is no possible confusion.

Note that QF, (compact support in M ) is different from QF.

We can readily extend these definitions to less regular spaces by replacing w € QF with, for
1
example, w € Bg”le. Boundary conditions are defined via the trace theorem, and therefore
1
require some regularity. For example, Bg’lﬁlfv makes sense, while L2Q% and H'QF_ . do

not make sense.

Observe that L?-cl (Q%) (closure in the L? norm) is just L?*Q* since Qf, is dense in
L2Qk,

Most of these symbols come from [Sch95]. Note that in [Sch95], the difference between

L?X and L?-cl(X) (where X is some space) is not made explicit.

Function spaces of type p = oo are problematic since the smooth members are not dense
(see Corollary 50). For instance, W™>QF = Wm>_cl(Q*) in general.

A special case is when k = 0: Q% (M) = Q°(M) = C>°(M) and Q). (M) = QY (M).
Indeed, the conditions for QY - and QY . are what analysts often call “Dirichlet” and

“Neumann” boundary conditions respectively.

In fluid dynamics, the condition for Q) is also called “impermeable”, while Q} is “no-
slip”. On the other hand, Q] . is often given various names, such as “Navier-type”, “free
boundary” or “Hodge” [MM09a; Mon13; BAE16]. The consensus, however, seems to be that
Ql__» should be called the “absolute boundary condition” [Wu91; Hsu; COQ09; BaulT;

hom

Ouy17], which explains our choice of naming.

Lemma 62. We have Hodge duality:
o« QM) = QH(M), % O, p (M) =5 Qe v (M), + : HE(M) = HiTH(M).
o Vx(xw) =*(Vxw), |xw|, = |w|, forw e Q¥ X € XM.

e Form € Ny,p € [1,00), we have x : W™PQE (M) =5 WmPQL (M),

* Wm’pQ]ﬁomD(M) = Wm’pQﬁo_rﬁN(M)-
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We stress that harmonic fields are harmonic forms, i.e. Aw = 0, but the converse is

not true in general.

Theorem 63 (4 versions). Let w € Q*(M) be a harmonic form. Then w is a harmonic field

iof either

1. tw=0,nw =0 (trace-zero)
2. tw = 0,téw = 0 (relative Dirichlet)
3. nw = 0,ndw = 0 (absolute Neumann)

4. tow = 0,ndw =0 (Gaffney)

Proof. Trivial to show D(w,w) = 0 via integration by parts. O

Remark. The four conditions correspond to four different versions of the Poisson equation
Aw =1 (cf. [Sch95, Section 3.4]), and four ways we can make A self-adjoint. In this thesis,

we will just focus on the absolute Neumann Laplacian and the absolute Neumann heat flow.

Gaffney, one of the earliest figures in the field, showed that the Laplacian corresponding to
the 4th boundary condition is self-adjoint and called it the “Neumann problem” (cf. [Gaf54;
Conb4]). We, however, feel the name “Neumann” should only be used when its Hodge dual
is Dirichlet-related (for instance, the Dirichlet potential vs the Neumann potential, to be
introduced shortly). Therefore, absent a better rationalization or convention, we see no

reason not to honor the name of the mathematician.

In the same vein, some authors consider the 1st condition to be the “Dirichlet boundary
condition” (following the intuition from the scalar case, where the trace and the tangential

part coincide). By the same reasoning as above, we choose not to do so in this thesis.

Blackbox 64 (Dirichlet/Neumann fields). HY (M) and HE, (M) are finite-dimensional, and
therefore complemented in RW™PQF(M) Vm € Ny, p € [1,00].
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Remark. All norms on H%, are equivalent, so we do not need to specify which norm on H5%;

we are using at any time.
These are very nice spaces, yet they often prevent uniqueness for boundary value prob-
lems. We almost always want to work on their orthogonal complements, where Hodge theory

truly shines.

Proof. See [Sch95, Theorem 2.2.6]. O

Corollary 65. Vm € Ny, p € [1,00], there is a continuous projection Py, , : RW™PQF — HE,

such that

o it is compatible across different Sobolev spaces, i.e. Ppgpo(w) = Py (W) if w €

WmmpoQk N TWm:p1 QOF

o1 —-F,,: RW™PQF s J/mop (7—[?\[)L = {w € WmrQk . ((w, ), =0 V¢ € Hi ) is

also a compatible projection.

Proof. Define the continuous linear map Z,, , : WmrQF (Hﬁv)* where
L pw(9) = ({w, 9)), Vo € Hiy,Vw € W™PQF

Then note that (¢1, ga) — ((¢1,P2)), is a positive-definite inner product on H%;, so

does not depend on m, p,

Im’p|'H]f\, D HE = (Hﬁ“\,)* We also observe that Im’p{H]fV

so we can define the continuous inverse J : (Hﬁ“v)* =3 Hk. Then we can just set
Prny =T 0Ly, Aswedefined Z,,, by ((-,")), Pmyp is compatible across different

m,p. O]

Remark. From now on, for w € W™PQF we can decompose |w = PNw + PN+w| where
L

Phw = Wik € HE, and PNtw = w(H,;V)L € W™ (H%)". The decomposition is natural,

i.e. continuous and compatible across different Sobolev spaces. By Hodge duality, similarly

define PP and PPL . Note PNLWLPQk < WIPQA and PNLW?2PQF < W2PQE
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Blackbox 66 (Potential theory). For m € No,p € (1,00), we define the injective Neu-

mann Laplacian

AN . PNJ_Wm+2,pQIhﬂomN N rPNJ_Wm,ka

as simply A under domain restriction. Then (—AN)f1 1s called the Neumann potential,

which is bounded (and actually a Banach isomorphism). Ay can also be thought of as an

unbounded operator on PNLW™MPQF,

By Hodge duality, we also define the Dirichlet counterparts Ap and (—AD)_l.

Proof. See [Sch95, Section 2.2, 2.3] O

Remark. Because duality is involved, we stay away from p € {1, 00}. Amazingly enough, this
is the only elliptic estimate we will need for the rest of the thesis. One could say the whole
theory is a functional analytic consequence of elliptic regularity (much like how the Nash
embedding theorem is a consequence of Schauder estimates, following Giinther’s approach

[Tao16]).

There are many identities which might seem complicated, but are actually trivial to check
and helpful for grasping the intuition behind routine operations in Hodge theory, as well as

its rich algebraic structure.

Definition. We write d. as d restricted to WPQ¥ and §, as § restricted to W1PQk for
p € (1,00). We will prove in Section 8.4 that they are essentially adjoints of § and d. Let us
note that Ay = — (dd, + d.d) on PNLW2rQF .

Corollary 67. Let p € (1,00). Some basic properties:

1. PPL§ =6 and PNtd =d on WHPQF.
PNLS, = 6. on WHPQK and PPLd. = d. on WLPQE,.

2. (=Ap) 6 =0 (=Ap)~" on PPLWLPQE,
(—AN)Hd=d(=Ax)"" on PYEWIPQK,
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(—Ayx)"' 6, =0, (—AN)_l on PNLW POk
(—AD)_l d. =d. (—AD)_l on PPLWIPQE

3. 6 = 6PPL = 6PNL and d = dPPL = apNt on WhPQF.

4. dod = d (6d + dd) = d(-A).
0dd (—Ap) ™" =08 on PPLWIPQF and déd(—Ay)~' = d on PNLWIPQF,

5. d(W2PQE ) = d (WPQK) nWErQ 5 (W2rQf ) = 6 (WPQE) N WeQit
d (Wg’pQﬁomN) < Wz’pQﬁ:riNf 0 (Wg’pQﬁomD> < W2’p9ﬁ;}11}-

Remark. A good mnemonic device is that Ay is formed by d and ., so (—A N)*1 commutes

with d and ¢,.

Proof.
1. Integration by parts.
2. Just check that the expressions are well-defined by using 1).
3. This comes from 1 = PP + PPL and so forth.
4. We simply note that dd = 0 and d0 = 0.

5. This follows from the definitions of W2’pQﬁom N and WZ’pQﬁom D

7.4 Hodge decomposition

We proceed differently from [Sch95], by using a more algebraic approach in order to derive
some results not found in the book. There will be a lot of identities gathered through
experience, so their appearances can seem unmotivated at first. Hence, as motivation, let’s
look at an example of a problem we will need Hodge theory for: is it true that W2PQF

is dense in W1PQk for p € (1,00)? The problem is more subtle than it seems, and it is

89



true that the heat flow, once constructed, will imply the answer is yes. But we do not yet
have the heat flow, and it turns out this problem is needed for the W'P-analyticity of the
heat flow itself. This foundational approximation of boundary conditions can be done easily
once we understand Hodge theory and the myriad connections between different boundary

conditions.

Let w € W™PQF (m € Ny, p € (1,00)). In one line, the Hodge-Morrey decomposition

algorithm is

w=d.0 (—AD)_1 PPLo+6.d (—AN)_1 PNLG + wypn

where PPtw = w( 1, PNy = w(%’c )L are defined as in Corollary 65, and wyr is sim-

) &

ply defined by subtraction. This is the heart of the matter, and the rest is arguably just

bookkeeping.

Note that if w € W"?QF, dw = dod (—Ax) " PN rw+dwyr = AP w+dwye = dw-+dwyys.
So dwyx = 0 and similarly dwyr = 0, justifying the notation. A mild warning is that we do

not yet have WhrHE = Whr-cl (HF).
As we will keep referring to this decomposition, let us define
o P, =d(—Ap) ' PPL. Then Py = d. (—Ap) " dPP+ =d.(—Ap)~" 6 on WHPQF.
o Py =0.d(—AyN)"" PNt Then Py = 0. (—Ax) " d on WHPQF.

° 7)3:1—731—732.

We observe that the decomposition 1 = P; + Py + Ps is natural (continuous and compatible
across different Sobolev spaces) since all the operations are natural. In particular, P; (for
J € {1,2,3}) is a zeroth-order operator, and if w is smooth, so is P;w by Sobolev embedding.

Recall that tw = 0 implies tdw = 0, while nw = 0 implies néw = 0 (Lemma 59).

Theorem 68 (Smooth decomposition). Some basic properties of P; on QF:
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1. P16 =0 on Q! and Pad =0 on QF1L.
7)1:7)2:0 on’Hk.

2. P3d. =0 on Qf\,ﬂ and Psd. = 0 on QkD_l.

3. PjP; = 6;jP;. Therefore QF = EB?=1 Pi (Qk)

4. PL(QF) =d. Q") = d.PPH Q") = doPPE (U p) < Q.
Pa (F) = 6. () = 6PN () = 6edPNE (i v) < O
Ps (QF) = HE.

5 QF = @3 P; (Qk) is ((-,)) y-orthogonal decomposition.

1. On Q¥ Pid =d, (—Ap) 66 = 0.
Let n € H*. Then Py = d. (—Ap)~" 61 = 0.

2. We just need Pyd. = J. on Q’f\;’l. Indeed, Prd. = 5Cd(—AN)_1 S PNt =
Scdde (—Ay) ' PNE =5, PNE =5

3. By 1), P,P1 = PiPy = PiPs = P,P3 = 0. By 2), PsP> = P3P = 0. Then
observe Py = (Py + Py + P3)Py = P3. Similarly, P? = P, and P2 = Ps.

4. Recall Ps (Qk) < H*. It becomes an equality since P, (7—[’“) =P (’H"C) =0.
Similarly, obviously Py (QF) = d.6PP+ (U, p) < d. (5 "). It becomes an

equality since Pod = 0 and Psd,. = 0.

5. Trivial.

To extend this to Sobolev spaces, we will need to use distributions and duality.

Corollary 69 (Sobolev version). Some basic properties of P; on W™PQF (m € Ny,p €
(1,00)):
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10.

11.

‘ <<P]w7¢>>/\ = <<w77)j¢>>1\ vw E Wm,ka’7v(b e ng;j = 17 273

P16 =0 on WmHLPQEHL gnd Pod = 0 on WmHLPQE—1

Pi1=Po=0 on WPH* and WmP-cl (HF).

. P3d. =0 on WHLPQEFL gnd Pad, = 0 on WmHLPQE-L

P;Pi = 6;;P;. Therefore WmPQF = @?:1 P; (Wm’ka).

Ps (WmPQF) = WmPHY for m > 1 and W™?-cl (H¥) for m > 0.
Py (WmrQF) = 6. (WHHPQRH) = §.dPN - (WmH2rQp )
PL(WmeQF) = d, (WHPQEt) = d.5PPE (W H2Ph ).

tP; =0 and nPy = 0 on WmTLPQFk,
For p > 2, WmPQk = @?21 P; (Wm™rQF) is ((-,-)) ,-orthogonal decomposition.

Wmrcl (d. (Q51)) = de. (WmHeQi ).
Wmp-cl (6, () = 6. (WmHrQifh).
Wmtlp o] (HF) = Wmtlrpk,

d=d(P;+Py+Ps) = dPy = dPN+ = PNLd on WmTPQF,
Consequently, ndPy (WmH2PQf ) = nd (WmH2PQF ) =0, and

Po (W2 Q) < W27y

We also have
d (WHHPQF1) = dPy (WTHPQM ) = d (WHPORTY) = aPNE (W Qi)
0 = Pade on WHLPQK and

732 (Wm—i-l,ka) _ 50 (Wm+2,pQ§fV+1) — 5CdzPNL (Wm+3,pQﬁ0mN)
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SoPY L)
Remark. Note that LP-cl (H*) (p € (1,00)) is defined, while LPH* is not.
Proof.

1. Observe Piw € d. (Wm“’lef{l) , Paw € 0, (Wm“’pQ]fVH) , Psw € WmP-cl (”Hk)
Simply show d. (W™ Q™) L 6. (), Wme-cl (HF) L d. ("), and so

forth via integration by parts.
2 Werl,kaJrl = Wmtlp_q] (QkJrl).

3. The case W™P-cl (1) is trivial. For w € W™k,

<<P1w’ ¢>>A = <<W7P1¢>>A =0Vg € ng

since W PHF 1 d.(Q%) (integration by parts).

4. Let w € WmHLPQEH Then ((P3dw, ¢)), = (6w, P3d)), = 0 Yo € QF, since
S (WmHtpQift) 1 Hk,

The rest is trivial. O

To connect Hodge decomposition to fluid dynamics, we will need the Friedrichs decom-
position:

Ps = (PN +77NL) P3 =Py + P
where
o PN .= PNPy =PN = P3PV (as PNLP; = Pp and PNLPy, = Py)
o P = PNLp; = PPNt

We similarly define PP, Ps° via Hodge duality. Note that ex and co stand for “exact” and

“coexact” (and we will see why shortly).
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Then we define P := Pi¥ + P, as the Leray projection. Then 1 = (P +P;) +
(P +P2) = (P§*+ P1) + P is called the Helmholtz decomposition.

Theorem 70 (Friedrichs decomposition). Basic properties of PN, P on WmPQF (m €
NOap S (1700))

1. P& =dé(—Ay)"1PEE on WmPQE,
2. P (WmrQF) = Wme-cl (HF) nd (WmhrQE-1).
3. (P 4 Py) (WmPQF) = d (WmHPQr1) = d (WmHrQRit) = apNE (WmHirQ!) .

4. P (W’W’Qk) = (Pév + 732) (Wm’ka) = Ker (5C}Wm7qﬂ’f\,> whenm > 1 and WPl (Ker <6C|Q'X/>>

when m > 0.

5. (Py+Ps) (Wm,ka) = Ker (5‘Wm,q9k) when m > 1.
(P + Po) (WmPQF) = WmP-cl (Ker (5|Qk)) when m > 0.

6. PNLP = Py = PPN on WmPQE,
Therefore dP = dPNLP = dPy = d = dPN+ = PNLd on WmHLeQk.

7P (Wmt2eQk ) < Po (WmH2eQE o) @ HE < WmzeQk
Proof.

1. On QF: 6d(—Ay) P& = 6(—Ay) 1P = 0, s0 PS* = (—A)(—Ay) 1P =
dd(—Axn)7IPS*. Then we are done by density.

2. PYd="PsPNd =0 as PN+d = d.
3. Pad =0 and P?fvd:O.

4. We first prove the smooth version. Let w € Ker <5C|Qk ) Then ((Piw, Piw)), =
N
((Piw,w)), = 0 as Ker <(5c’m> L d (1), so Piw = 0. Similarly, P§*w = 0.
N
Then (P +Py) @ = Ker (], ).
N

94



For W™PQF  the case W™P-cl (Ker <(5C‘Q,€ )) is trivial. Then assume m > 1
N

and w € Ker (

Ker (

6C‘Wm7qﬂk ) . We can show Pyw = Ps*w = 0 as distributions since
N

Oelyymagy, ) L A2,

5. Just note that Ker ( 1 d.(9%71) and argue similarly.

Ol yymaqe)
6. Easy to check that PNLPY = PNPNL = ( and PVNLP, = PyPVE = Py,

7. Trivial.

]
Remark. Similar results for PP P hold by Hodge duality. When M has no boundary,
HF = HE = HE so Py = P = PP.

A simple consequence of the Hodge-Helmholtz decomposition is that

Ker (0lo) _ P @) _
) )

(Ps+P1) (@) _ Ker (d],)
(P +Py) (%) (1)

This can be rewritten as |H* (M) = H% (M) = HE, (M, d) | (Hodge isomorphism theo-

Ker( d
rem) where H, (M, d) = ( Qk) is called the k-th de Rham cohomology group,

d(Qkfl)
Ker(éc k)
k - o
and Ha (M) = W
particular, % (M) = dim H% (M) = dimH%; (M, d) is called the k-th Betti number of

Ker <dC )
M. Note that the Hodge dual of H"* (M) is HF (M) := ﬁ
c\*p

is called the k-th absolute de Rham cohomology group. In

, the k-th relative de

Rham cohomology group.
We can also define right inverses (potentials) for d,d, 9., d. (see Section 9.1).

In many ways, Hodge theory reduces otherwise complicated boundary value problems into
purely algebraic calculations. A standard Hodge-theoretic calculation related to the Euler

equation is given later in Section 9.2. We can also derive a general form of the Poincare
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inequality:

Corollary 71 (Poincare-Hodge-Dirac inequality). Let w € PNLW™HLPQk (m € Ny, p €
(1,00)). Then

[@llwmsre ~ ldwllymn + 110e0]lym.s

and we have a bijection

’PNJ_Wm+1,pQ§€V @) d (Wm+1,ka) @ 6, (Wmﬂ,pgm

= (P1 + P5") (WMPQE) @ Py(Wm PO

In particular, | (d ® 6,)~" (dn, 6.0) = Py (n — v) + v ¥y, v € PNLW™HLrQk |

Proof. Observe that
o PNLyymtloQk 2% gpNL (WmttrQh ) @ 0., PNE (WmHLPQR ) is a continuous
injection.
° d'PNL (WmH’pQ?V) =d (Wm+1,ka) _ (7)1 + ng) (Wm,ka+1) by Corollary 69.

o §PNE(WmHtrQk ) = 6, (WmTLrQR ) = Po(W™PQF~1) by Corollary 67 and
69.

By open mapping, we only need to prove d ® o, (the injective Hodge-Dirac oper-
ator) is surjective: let n,v € PNLW™ POk = We want to find w € PNEWmHrQk,

such that dw = dn, d.w = d.v. By the restriction d.w = d.v, the freedom is in choosing

¥ :=w—v € PN Ker ( ) = PNLPW™HLPQR) = Py (WP QF)

50 ‘ wmtlpQk

such that dw = dv + dv = dn. In other words, we want ¢ such that dd = d (n —v)
and Pot) = ). Then we are done by setting ¢ = Py (n — v). ]

Remark. We note that a less general version of the Poincare inequality was used in [Sch95]
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to establish the potential estimates in Blackbox 66 as well as Blackbox 64. A more general
version [Sch95, Lemma 2.4.10] deals with the case p > 2. Our version here only requires
p € (1,00).

Among other things, the inequality allows the following approximation of boundary con-

ditions, which will play a crucial role for the W1P-analyticity of the heat flow in Section 8.3.
Corollary 72. Letp € (1,00).

1. WheQk = d (W2PQf 1) @ Ker (50‘W1m9§\,> and Q% = d (QLy) @ Ker <5c|9'fv>'

2. LP-cl (d (Qun)) = d (WHPQK) = d (WHrQF).

g, Whecl (W2PQE | ) = WHPQk,.
Proof.

1. Because PWHPQF < WO we conclude PWHPQF = PWLPQL . Meanwhile,
(P + PYWEPQE = (1 —P)WhPQk < WEPQk  so (P + PgE) WhrQk <
F(VEO5) AWK, = d (Wi,

2. LP-cl ((731 + P¥) Q?\/H) = (Py + PS¥) LP-cl (Q?\f+1) = (P, + P5¥) LPQF+1

3. We are done if W'P-cl (PNLQF ) = PVLWLrPQk .
Recall Py (U y) < Qoun and 6. (k) = 6PN+ (QF, . ) by Corollary 69,
so by the formula of (d @ 8,)" from Corollary 71:

(d®8e) 7" [d (omn) ® I (W)] = (A 0) " [dPY (Uomy) @ 0P (Qiom )]

So

WhP-el (PNEOf ) = (@ 6.) " [LP-cl (d (Qf gy )) ® LP-cl (6. (25))]
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=(d®d.)"" [d(WPQY) @ 6. (WPQk)]
= PNIWIPQR

7.5 An easy mistake

Let p € (1,00),w € QF . In other words, nw = 0 and ndw = 0. Using intuition from

Euclidean space, it is tempting to conclude V,w = 0, but this is not true in general.

We will not use Penrose notation but work in local coordinates on OM, with 0y, ...0,,_1
for directions on OM and 0, for the direction of v. Let {ai,...,ar} C {1,...,n — 1}. Observe

that ndw = 0 implies

0= (dw)nal...ak = anwa1...ak + Z(il)aaiwnay..@...ak = anwal...ak

since Wnay . a..a, = 0 on OM. Then recall 0,wa,. o, = (v"w)al...ak + I * w where I' * w is

schematic for some terms with the Christoffel symbols. As I' is bounded on M, we conclude

[tV w| < |w| and [tV,w|, S |w|a on OM. Then
Ld (Jw]?) =V, (w,w) = 2(V,w,w) =2 {tV,w,w)

50 |V, (|w]?)| < |w|* on @M. This will be important in establishing the LP-analyticity of the

heat flow in Section 8.2.
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CHAPTER 8

Heat flow

As promised, we now obtain a simple construction of the heat flow. We still work on the

same setting as in Subsection 7.1.

8.1 [L’-analyticity

Recall that Ay is an unbounded operator on RPNEL2QF and (—Ay)~" is bounded. It is
trivial to check that (—Ay) "' is symmetric, therefore self-adjoint. Then Ay is also self-
adjoint. Then for w € D(Ay) = PNLH2QF v ((Ayw,w)), = —D(w,w) < 0. So Ay is
dissipative. Therefore, by a complexification argument , A% is acutely sectorial of angle 0
by Theorem 43 and (etA}CV> is a C, analytic semigroup on CPN+L2QF. By Blackbox 40,

>0
we can derive some basic facts about e!2y :

e For m € Ny, D(AY) < PNH*QF and ||A%wl|2 ~ [l yzm ~ ||WHD(A’N”) Yw €

D (AR) by potential estimates. Recall that (e’),_ on (D(AR), ||| jyz) is also a Cy

>0

semigroup by Sobolev tower (Theorem 34).

e For t > 0, by either the spectral theorem (with a complexification step) or semigroup
theory, e!®V is a self-adjoint contraction on RPNLL2QF with image in D(AS) <

PNLOF by the analyticity of (eSA(JCV> .
s>0

e Vw € PNEL2OF, ((0,00) — PNLQF 1 e®Vw) is C™-continuous by Sobolev tower.
Let m € Ny, then 9" (e'*¥w) = ARe!*Vw and ||e"¥w]| o, ~ [|ARE YW, Som-e

Tl e
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Next we define the non-injective Neumann Laplacian K;; as an unbounded operator on
L2QF with D(Z;m) = D(AR) & HA and Ay = AR @ 0 Vm € N;. By using either the
spectral theorem or checking the definitions manually, Z]; is also a self-adjoint, dissipative
operator. Then we also get an analytic heat flow, and E = Ay & uns with etAn =
BN @ Tdyy .

Recall that for m € Ng,p € (1,00),w € W™PQF . ||w]| jyrmp ~ HPNLwHWmm + ”PNWHH’]“V

where we do not need to specify the norm on H%; as they're all equivalent. Then the previous

results for Ay can easily be extended to Z]; .

e For m € Ny, D(K]\//m) < H?>"QF and Yw € D(K];m): HK];me ~ H'PNJ‘UJ”HQm
L2
and [|w|[p a5y ~ lwll grzm- Recall <etAN> on D(ANm) is also an a Cj semigroup.
>0

(Sobolev tower)

e For t > 0, by either the spectral theorem (with a complexification step) or semigroup

theory, €™ is a self-adjoint contraction on RL2Q*, with image in D <K§OO> < QF.

o Yw e L2QOF, ((O, 00) = QOF t — et&;w) is C*°-continuous by Sobolev tower. Let m €

Ny, then 9™ (et&;w> = K];met&;w and

+ [PY el Someme o [PYl| 2 + (1Pl

etANPNJ_w
tm

etANw)

Y ‘

H2m H2m

By these estimates, we conclude that !y =% PN in £ (L*QF) (Kodaira projection).

In fact, this is how Hodge decomposition was done historically.

8.2 [P-analyticity

Though we could use the same symbols Ay and Z]; for the Neumann Laplacian on L?; that
can create confusion regarding the domains. Let them still refer to the unbounded operators

on RPVLL20F and RL2QF as before. However, ¢!V and ¢!~ are compatible across all L?

spaces (as we will see).
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First we note that QF, < D (Z;oo> so D (K;OO) is dense in LP Vp € (1,00).

Then for LP-analyticity, we make a Gronwall-type argument (adapted from [I014, Ap-
pendix A] to handle the boundary).

Theorem 73 (Local boundedness). Forp € (1,00),s € (0,1) and u € D (Z;OO) :

eSvul 5y full,
p

Proof. By duality and the density of D (fA\];OO) in L2NLP, WLOG assume p > 2. By
complex interpolation (with a complexification step), WLOG assume p = 4K where

K is a large natural number.

Let U(s) = e¥*Vu, so 9,U = AU and

05 (JUI*M) = 2K|U|*" 7 2AU, U)

Bogner QK‘U‘4K72 (A (’U‘Q) -9 ‘VU’Q -2 <R1C (U) ) U))

So
aS/ U < 2K/ U5 =2A ([UP) + Onrk (/ |U\4K)
M M M

Let f = U AsU € D (&?"’) < QF o IV,f| < f on OM by Section 7.5.
By Gronwall, we just need [, f**7'Af < [, f** (pseudo-dissipativity). Simply

integrate by parts:

AL L)) = = (drd (P57 + (V. 25700)
= —(2K — 1) /M dfI* f2572 + O (/aM f2K)
=2 [auPvou ([ )
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Let F = |f|X. So for any ¢ > 0, we want C.. > 0 such that [, F? <e [, |dF|*+
C. [,, F*. This follows from Ehrling’s inequality, and the fact that H'(M) — L*(9M)

is compact. O]

So <et&; ) can be uniquely extended by density to L2QF+ LPQF and etAn ‘ o € L (LPOF).
t>0 p
With a complexification step and an appropriate core chosen by Sobolev embedding, local

boundedness on L? implies LP-analyticity for all p € (1,00) by Theorem 37.

Let A, be the generator of <et&§ > on LPQ*. By the definition of generator, A, = /A\; on
>0

D <KJ;OO> In our terminology, Ag is acutely quasi-sectorial. But we want a more concrete

description of D(A,).

Lemma 74. Let p € (1,00). Then (D(Ap), H'I!D(Ap)) ~ (W2PQE ) and

W2 el (D (Z;“)) = WPQk

Proof. Observe that Yu € D (Z;OO) : PNy € D(AY) and

luloga,y =l + [Bxu]| ~ [PYully + [P ull, + | AxP 0],

~ P ullyy, P ullyps ~ Nl

Then H-HD(AP) ~ ||llyy2p since D <Z];OO> is a dense core in <D(Ap)> ||'||D(Ap)> (see
Lemma 36). This also implies D(A4,) = W*P-cl <D <Ew>> = W2P-cl (D (AY)) &

Recall that D (A%) < (PVAW2PQE v |-z ) A’%N (PNLLPQ*, |||l ). Since
LP-cl (AND (A)) = LP-cl (D (AY)) = PNLLPQE, we conclude W2P-cl (D (A)) =
(—An)H (PNLLPQF) = PNLWW2PQE - and we are done. O
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So for p € (1,00),s € (0,1) and u € LPQF: es&;uH LS Slull,- That implies
W?2p
1
X

— [CF?

by complex interpolation (with complexification), using [CLP, CW?2?] 2>

CFL,.

CF2,]

1
2

N

Obviously, D (AX) = {w € Q. - A"w € W2PQF  Vm € No} = D (Em> by
Sobolev embedding.

Additionally, by the density of D (A;O) in LP, we can show by approximation that
<<etA~Nw,n>>A = <<w,em~N7y>>A Vw e LPQF n e LPQF p e (1,00),t >0

This implies that AN PNL = PNLAN on WmPQk Ym € Ny, Vp € (1,00).

8.3 WlPl.analyticity

We first observe that
Wv_cl (D (Z;“)) — Wo_cl (Wlp-d (D (Z;“’))) = WPl (W2PQE, ) = WOk,

by Corollary 72 and Lemma 74.

Because we will soon be dealing with differential forms of different degrees, define Q(M) =
D,_, (M) as the graded algebra of differential forms where multiplication is the wedge
product. We simply define W™PQ(M) = @,_, W™PQ*(M), and similarly for B , Fs,
spaces. Spaces like Qp (M), Qoo (M) or W™PQp oy are also defined by direct sums. The
dot products (-,-), and ((-,-)), are also definable as the sum from each degree. Also define

H(M) = Dj_o H*(M).
As an example, w € L?*Q (M) and n € L*Q (M) would imply w An € L'Q (M). We also
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recover integration by parts:
((dw,m)y = ((w,00)) + (T, 7)), Yo € RWHPQ (M), ¥y € RWH'Q (M), p € (1, 00)

Then we can set D (Z;) = H*Quomny and D (4,) = W*PQuomn (p € (1,00)), and
previous results such as sectoriality or the Poincare inequality still hold true in this new

degree-independent framework, mutatis mutandis.

Theorem 75 (Commuting with derivatives I). Let p € (1,00).
1. 6. (D (A7) = D (A7) and d (D (A7) < D (A7)

2. Letw € D(A,) = WPy and D € {d,0,,0.d,d5,}. Then for t > 0 : DePNw =

AN Dy,
Proof.

1. Let n € D (A;O). Obviously dn € W2PQuom N, 50 dA™n € W2PQuonn VM €
No.
Observe that nn = 0 implies nén = 0, and ndn = 0 implies nddn = 0. But
nAn = 0 so nddn = 0 and we conclude §,n € W*PQyom n. Similarly, 6.A™n €
W2PQom v ¥ € No.

2. Let ¢t > 0. Note that ’Detﬂw eD (A;O) )

hAN _1 +xT O T AT e — — N
Then %emﬁ’w —— Anet®Nwso 0, (Deme) = DANePNY = AyDetAVw.
hl0

Therefore

AN D ANy — DHMAN v > 0,Vh >0

~ Ir ~ . AT C® A
Note that DeltthAN, ? DelANy since elttAN, T) ehAn .
t10 £10

~ ~ P ~ ~ W2p
On the other hand, e"*VDeAvw == PANDw as eANw T> w (why we need
£10 e

40
w e D(A)).

So @eh&;w = eh&;@w Yh > 0.
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]

We can extend this via complexification. For w € CW?2PQpomn, DCetARw = e AVDCw WVt > 0.

By LP-analyticity, 3o = a(p) > 0 such that (eZEJC;> coia is a Cp, locally bounded,
zeXL U{0

analytic semigroup on CLPS). Then by the identity theorem, DCe AN w = 2V DCw V2 € Xt

Theorem 76 (W!'P-analyticity). <€ZA(1CV) is a Cy, analytic semigroup on CW1PQy.

zex{u{0}

Proof. Note that (D(AS), ||[ly2,) is dense in (CW'PQy, ||-[l;y1,) by Corollary 72.

So by Lemma 35, we just need to show (eZKEN) C L(CW'PQy) and is
zexfu{o}

locally bounded. So it is enough to show

eZA(JCVuH < lullyrs Yu € D (AS) V2 € DN EE

Wwip

AC
BZANU

Consider PN1u, then we only need ‘ ‘ 3 ullyre Yu € PNED (AS) V2 €
Wl

DnNXt.
Recall etAvPNL = PNLAN from Section 8.2. By the Poincare inequality (Corol-

lary 71):

AC AC AC AC
e ANy + {|6Ce* vy A dty e* AN 5Ty

o~ ol e |
S |l + [|65ul|, ~ llullyr, Yu e PVED (AS) ¥z e DAL

AC
‘dCeZAN U

d
p

O]
Corollary 77. Let w € WPQy and ® € {d,d.}. Then fort >0: Detdnyy = Ay,
Proof. Same as before, but with BNy W—1p> w. O

tl0

Let Ay, be the generator of <et§v> on W'#Qy. Then Ay, and A, agree on D (A2) by the
>0

definition of generators, so A, = Ay on D (Z;oo> By potential estimates, H'HD(Alp) ~
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|[lyy5, O D </A\];OO> and therefore on ||-||}ys, -cl (D (K];oo>> = D(A;,). By the same
argument as in Lemma 74, D (A;,) = (—Ay) ™" (PNWPQy) @ Hy > D (ZJ;OO>

Theorem 78 (Compatibility with Hodge-Helmholtz). Let m € Ng,p € (1,00),t > 0. By
Corollary 77 and Corollary 69:

o AN (WmHPQN) = d <et§vwm+1mN) <d(Qy) = d(Q).

o eANS, (WmHlrQy) =6, (etANNWmHmN) < 5o () = 8o (Qbomn )
As ™ = 1 on Hy, we finally conclude et~ (P +Py) = (73§X—|—731)em~”,6t5;732 =

Poet™N and e’ﬁ;ﬂﬁv = PgNetm =PI on Wm™PQ (M). Also, etANP = PetAN on TWMPQ) (M)

where P is the Leray projection.

By the definition of generators,
Ay (PS+Py) = (P +P1) Ay, PY Ay = AxPY = 0,PyAx = AyPy = AyP = PAy

on D(Ap) = W27thomN-
We briefly note that in the no-boundary case, we have Q = Qn = Quomn, K]\; = /A\; = A,
AP, = Pret® on WmPQ, PiA = AP, on W2PQ.

Remark. The operator IPZ;, with the domain PD(A,), is a well-defined unbounded oper-
ator on PLPC). By our arguments, its complexification is acutely sectorial, and IP’ZE =
Ay, ePAN = ¢tAn on PIPQ. Other authors call it the Stokes operator corresponding to

the “Navier-type” / “free” boundary condition [Miy80; Gig82; MM09a; MMO09b; BAE16].

8.4 Distributions and adjoints

Like the Littlewood-Paley projection, the heat flow does not preserve compact supports in

M. So applying the heat flow to a distribution is not well-defined. This can be a problem as
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we will need to heat up the nonlinear term in the Euler equation for Onsager’s conjecture.
For the Littlewood-Paley projection, we fixed it by introducing tempered distributions. That

in turn motivates the following definition.

Definition 79. Let I C R be an open interval. Define

o 20F = Qf; = colim{(Qf, (K),C™ topo) : K C M compact} as the space of test

k-forms with Schwartz’s topology (colimit in the category of locally convex TVS).

o I'OF = (.@Qk)* as the space of k-currents (or distributional k-forms), equipped

with the weak™ topology.

e IO =D (ZJ;OO> as the space of heated k-forms with the Frechet C* topology and
DOk = (@NQk)* as the space of heatable k-currents (or heatable distributional

k-forms) with the weak™* topology.

e Spacetime test forms: 7 (I,QF) = C (1,94)) = colim{(C2° (I, Q% (K)) ,C> topo) :
I x K C1Ix M compact} and Py (I, Qk) = colim{ (Cgo (Il, .@NQk) , O topo) L C

I compact}.
e Spacetime distributions 2’ (I,Q%) = 2 (1,Q%)", 2}, (1,QF) = 2y (1,QF)".

Obviously 2" N PnQF, so there is an adjoint 23 0F Ny 743 Unfortunately, Im(4) is not
dense so i* is not injective. Nevertheless, we will make ¢* the implicit canonical map from
D) to Z'. In particular, w; SN implies w; 7. Similarly, 2 (I,Q%) < 2y (1,QF) and
Py (1,9%) — 7' (1,9F).

By Sobolev tower (Theorem 34), we observe that etTNng f—;{;—) P Vo € DNOE.

For A € 240k t > 0 and ¢ € DyQF, we define e'2¥A (¢) = A(etz;gb). As A is
continuous, Imgy,my € Ny such that [A ()] S [|@llgme S ||@||gmi- Then for ¢ > 0 and
0 € In: [N 0)] S 50 Sim ol = @FVA € L20F and BV =

NN
e2BNes AN € PNOF,

Also, for p € (1,00) and w € LPQF, !B is the same in LPQF and DOk
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Remark. We note an important limitation: though heated forms are closed under d and 4 by
Theorem 75, because of integration by parts, we cannot naively define 6 or A on heatable

currents.

Analogous concepts such as Zp and 27, can be defined via Hodge duality for the relative

Dirichlet heat flow.

Recall the graded algebra Q(M) = @;_, Q¥(M) from Section 8.3. We can easily define
290, DN ete. by direct sums.

For A € 2/Q and ¢ € P59, we can define 5. VA () = A (d¢) and d7VA () = A (6.5).

These will be consistent with the smooth versions, though we take care to note that

<<5?5m, ¢>>A = ({w,dd)), = ({8w, D))y + ({7 o, 7)), Ve € WPQ 6 € Dy, p € (1, 00)
(8.1)

So (5;@ N agrees with 6, on WPQy as defined previously. In particular,
AN = = (awo 5 4 57va)

is well-defined on Z,€).
Note that 67~ A cannot be defined since there is ¢ € 25 such that d.¢ is not defined.

For convenience, we also write A (¢) = ((A, ¢)), (abuse of notation) and A® = "MV A for

€ > 0. Observe that for all A € Z),Q, ¢ € INQ -

(A (A),00) 0 = (A%, 0.8} = (A, (8c6) Dy = (A, 6 (6D = (((4VA) 0))

Then d (A%) = (d7A)° and similarly 0, (A%) = <5C%A>€VA e 7,Q.

Problem (Consistency problem). For p € (1,00), we have LPQ — Z3,Q and LPQ) — 2'Q,
and we can identify 25,Q N LPQ = 2'Q N LPQ = LPQ. Let d”" and d7v be d defined on &’
and P respectively. For w € LPQ, if d”'w € 2'Q N LPQ , the question is whether we can
say d”Nw € DN LPAY.
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More explicitly, if a,w € LPQ and ((a, ¢o)), = ((w,0c00)), Voo € Z€, can we say
({(a, ) = ((w,0.0)), Vo € DNS2? The answer is yes, and the method is analogous to some

key steps in Section 4.3 and Section 9.3.

Recall the cutoffs 1, from Equation (4.2).

Lemma 80. Let p € (1,00) and ¢ € W'Qk. Then (1 —v,) ¢ % ¢ and 5, (1 — 1) @) %
5e.

Proof. In Penrose notation,

60 ((1 - ¢T) gb)al...ak,l = _vl ((1 - wr) ¢)ia1...ak,1 = viwrgﬁial...ak,l - (1 - wT) Vi¢ia1..,ak,1
— 60 ((1 - %) ¢) = LVdJrgb + (1 - ¢r> 5c¢ - fTL17¢ + (1 - %) 5c¢

Then we only need f,i7¢ % 0. As tp¢p = 0 on OM, by Theorem 55, || frt5¢|;, S

rl0

Uleobllpoar.y S lobllwinqar.) = 0. -

Then we can conclude {w € LPQ(M) : d/~w € LP} = {w € LPQ(M) : d”'w € LP}.

Recall that for an unbounded operator A, we write (A, D(A)) to specify its domain.

Theorem 81 (Adjoints of d,d). For p € (1,00), the closure of (d,Q2(M)) as well as
(d, ZnQ (M) on LPQ (M) is dr» where D(dpy) = {w € LPQ(M) : d/vw € [P} = {w €
LPQ(M) : d”'w € LP}.

By Hodge duality, the closure of (0,2 (M)) as well as (5, Zp2(M)) on LPQ (M) is dr»
where D(0rp) = {w € LPQ(M) : §7pw € LP} = {w € LPQ(M) : §7'w € LP}.

Define | 6o1r = d | and |de,pr = 07,/ | Then dcr» is the closure of (0, Zn2(M)) as well
as (6, 20 (M)). Also, D (6.10) = {w € LPQ(M) : 6/¥w € LP}.

Similarly, d. e is the closure of (d, ZpQ2 (M)) and (d, 72 (M)). Also, D (derr) = {w €
LPQ(M) : d/Pw € LY.
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Proof. Firstly, it is trivial to check dp» is closed and (d, 2 (M)) is closable (w; 20

and dw; TN n would imply 7 = 0 since dw; Z, 0). Then let w € D(dr»). We can
conclude (w, d (w%)) = (w*, (d%Vw)E) % (w,d”~w). This also gives the closure
of (d, xS (M)).

Then let G (d.,0) < LPQ & LPQ be the graph of 6. ». Similarly for G (d,,/) <
LPQ @ LPQ. Write J(x,y) = (—y,z). By the definition of adjoints, J (G (0c.rr)) =
G (d,,)". Then observe that

(7o ) -ci{(-6,0): 6 € 7))
—{(wr,n) € I © L7 5 (w1, )y = (o ) W6 € 70}
= {(w1,ws) € FolrL”: dglwl} =G (dp)

Then G (dc,rr) = (LP @ LP) -cl{(4,0.0) : ¢ € 29Q}. Do the same for ¢ € D). Fi-

nally, by the definition of adjoints:

D (0c,10) = {w € L"AUM) : [{(w, dpwd)) | S N0l Yo € D (dw)}

_ {w & LPQ(M) : 6% (6°)| = [{{w, d6*)) x| = ({0, (dpwr &) ) 4|

<161l V6 € D (dyy), Ve > o}

= {w € LPQ(M) :

57 <¢>] < ll6ll, Vo € @NQ}

= {we LPAM) : 6 %0 € L)

For the third equal sign, we implicitly used the fact that etAN [0) % o Vo € DnOF.
]

In particular, W'?Qy = WhP-cl (Z5Q) < D (0c1r). Similarly, W'?Qp < D (d.r»). This

makes our choice of notation consistent.
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Interestingly, a literature search yields a similar result regarding the adjoints of d and ¢ in
[AMO4, Proposition 4.3], where the authors used Lie flows on the domain M which is bounded
in R, as well as zero extensions to R™ to characterize D(dr») and D (d},). In [1\'11\"10932Z
Equation 2.12], for n € D(dr»), the authors defined v V7 € Bp_,p%Q (OM) = (Blﬁl’,yp,Q (8M)>

(p € (1,00)) by
(v v gw))y = (o), = ((67mw)) Vo e QM)

which is reminiscent of Equation (8.1). Note that ((v V 7,j*w)), is abuse of notation (re-

ferring to the natural pairing via duality). Recall from Blackbox 49 that W''Q (M) =
Trace _ =

Fpl/’QQ (M) - B

1
MY (M) ‘ on D1as a bounded linear section Ext, so it is possible to choose

w such that |[jw]| 1+~ ||w|[y1.» and therefore vV 7 is well-defined with
B

p'.p’

lval s~ sup [V g S Il + 67|
pe weWw P QM) Ly

Il 1p =1

o0’

Of course, for n € WPQ, vV n = 5*,m. We can now show an alternative description of

D <5C7Lp):

Theorem 82. For p € (1,00), D (8c10) = {n € LFQ(M) : 5(%7) € [P}y = {n e LPQ(M) :
§7ne L? and vV n=0}.

Proof. Assume n € LPQ(M) and 5?],‘]77 € LP. Thenda € LPQ (M) : v = 5(%77 =07"n.
By the definition of vVn, ({a,w)) ,+ (¥ V 1, 75 w)) , = ((n, dw)), Yw € Q(M). By the
definition of 5095%7, ({a,w)), = ((n,dw)), Yw € DN So ((rVn,jw)), =0 Vw €
InQ. Recall that Ext (the right inverse of Trace) is bounded, so ij,—cl (75 (98Q2)) =
7 (WPcl (2x9)) = 7 (WQy (M) 2 (W99 (M) = B, ,Q (9M). Therefore
vVvn=0.

Conversely, now assume 7 € LPQ(M), §7'n = a € L? and vV 1 = 0. Then by the
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definition of v V n for n € D(01s), ((a,w)), = ((n,dw)), Yw € Q(M). The formula
also holds for w € Zy(1, and therefore 57 N n=aoacll. ]

This result agrees with [MMO09a, Equation 2.17]. Our characterization of the adjoints of d
and ¢ further highlights how heatable currents are truly natural objects in Hodge theory,

independent of the theory of heat flows.

In particular, it is trivial to show PLPS) = LP-cl Ker <5C‘QN) ={neD.rr): 50@}”} =0}
for p € (1, 00).

Remark. The name “heatable current” simply refers to the largest topological vector space
of differential forms (and hence vector fields) for which the heat equation can be solved
(i.e. heatable), and once we apply the heat flow a heatable current becomes heated. The
name “current” for distributional forms was introduced by Georges de Rham [Rha84], likely
with its physical equivalents in mind, and has since become standard in various areas of

mathematics such as geometric measure theory and complex manifolds.

It is not easy to search for literature dealing with the subject and how it relates to Hodge
theory. They are mentioned in a couple of papers [BB97; Tro09] dealing with “tempered
currents” or “temperate currents” on R"™ — differential forms with tempered-distributional
coefficients. Yet the notion of “tempered” — not growing too fast — does not make sense on a
compact manifold with boundary. Arguably, it is the ability to facilitate the heat flow, or the
Littlewood-Paley projection, that most characterizes tempered distributions and makes them
ideal for harmonic analysis. For scalar functions, much more is known (cf. [KP14; BBDI1S;
Tan18] and their references). In the same vein, various results from harmonic analysis should

also hold for heatable currents.

8.5 Square root

We will not need this for the rest of the thesis, but a popular question is the characterization

of the square root of the Laplacian.
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By the Poincare inequality, PN+ H'Qk is a Hilbert space where the H'-inner product can
be replaced by (w,n) — D(w,n) (the Dirichlet integral). The space is dense in PN+ L2Q0F,

Define A as an unbounded operator on PN+ L*QF where
D (A) = {w e P H'QY : [D(w,n)| So lInlly Y € PYH'QKY

and ((Aw,n)), = D(w,n) Yw € D(A),Vn € PN-H'QX . Easy to check that ((Aw,n)), =
D ((—An) " Aw,n) ¥y € PNLHIQK. Therefore w = (—Ay) ' Aw € PNLH2QE - and
Aw = (wAy)w Yw € D(A), so A C —Ap. It is trivial to check D (—Ay) < D (A), so
A=—-Ay.

By Friedrichs extension (cf. [Taylla, Appendix A, Proposition 8.7], [Tayllc, Section

8, Proposition 2.2]), we conclude that
CPY I = |CPYLOY, (D (%) M p(ag)) |, = [CPY 1208 CPY4H20L,,0]
2

= (2 (V=2%) Wlogyam))

By direct summing, we can extend the result to Z]; to get

1
2

CHIQk = [CL2Qk)(CH29ﬁ0mN}% = <D (\/ _/A‘g> ’HHD(\/T)>

We note that the norms are only defined up to equivalent norms, and [|-[| 4 is not the same

as |||l p(4) (see Chapter 3). This difference is not always made explicit in [Taylla; Tayllc].

8.6 Some trace-zero results

Although we will not need them for the rest of the thesis, let us briefly delineate some
results regarding the trace-zero Laplacian (cf. Theorem 63) which are similar to those

obtained above for the absolute Neumann Laplacian. We begin by retracing our steps from
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Corollary 65.

Define HE (M) = HE (M) N HY, (M). Obviously, HE (M) is finite-dimensional and we
can define P° and P°* the same way we did for PV and PVt in Corollary 65. When M has
no boundary, P% = PN+ and PV = PN = P;.

It is a celebrated theorem, following from the Aronszajn continuation theorem
[AKS62], that HE (M) = 0 when every connected component of M has nonempty boundary
(cf. [Sch95, Theorem 3.4.4]). When that happens, Pt =1 and P° = 0.

Blackbox 83 (Potential theory). For m € Ny, p € (1,00), we define the injective trace-

zero Laplacian

Ay : PHWTTRRQE — POEITPQE

as simply A under domain restriction. Then (—A(])_l 15 called the trace-zero potential,

which is bounded. Ay can also be thought of as an unbounded operator on POLW™PQE.

Proof. We only need to prove the theorem on each connected component of M. So
WLOG, M is connected. If OM = (), we are back to the absolute Neumann case
in Blackbox 66. When OM # ), P+ = 1 and we only need to show the trace-zero

Poisson problem (Aw,w‘ 6M) = (n,0) is uniquely solvable for each n € W™PQF. This

is [Sch95, Theorem 3.4.10]. O

Consequently, we have a trivial decomposition
w=P"w+Pw=ds (—Ao) " P w +dd (—A¢) " P w + POw

for w € W™PQF m € Ny, p € (1,00). This decomposition is not as useful as the Hodge-
Morrey decomposition (Section 7.4) since the the first two terms are not orthogonal. How-
ever, it does mean that, when P° = 0, every differential form is a sum of exact and coexact

forms.
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For w € POLW™2rQk m € Ny,p € (1,00), we also have w = (—=Ag) " (=Ag)w =
(=) (ddw + 6dw) , 50 [|w|lyymizs ~ 110wl yymsrp + [|dw|lyymssp. This trick is not enough
to get the full Poincare inequality ||w||y1, ~ [[dwl], + [|dw||,, and therefore [Sch95, Lemma

2.4.10.iv] might be wrong.

As (=Ag) " is symmetric and bounded on P*-L2QF we conclude A, is a self-adjoint and
dissipative operator on P+ L20F with the domain D (Ag) = P*LH2Qk. This means A§ is
acutely sectorial on CP**+L2Q*.

Next we define the non-injective trace-zero Laplacian /AVO as an unbounded operator
on L2QF with D (ANOm) = D (A) ® HE and Ay = AT @0 Vm € Ny. Again, &/g is acutely
sectorial on CL?QF and ”WHD(&)’") ~ ||w|| gzm Yw € D (AN()m) ,VYm € Nj. In particular,
D (’A}) — POLE2QE & HE = H2Qk.

For LP-analyticity, observe that on dM: |V, (jw|?)| = 2[(V,w,w)| = 0 < |w|® Yw €
W2PQk ¥p € (1,00). So we argue as in Theorem 73, and LP-analyticity follows.

Remark. The operator IP’/AVO, with the domain H2QF N PL?QF, is a well-defined unbounded
operator on PL2QF. Tt is called the Stokes operator corresponding to the trace-zero/no-slip
boundary condition, as discussed in [FK64; GM85; MMOS8| and others. It lies outside the

scope of this thesis. For more information, see [HS18] and its references.
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CHAPTER 9

Results related to the Euler equation

9.1 Hodge-Sobolev spaces

We will have need of negative-order Sobolev spaces when we calculate the pressure in the

Euler equation.

Recall the space of heatable currents 24 Q (defined in Section 8.4). Note that PN+ is
well-defined on 2, by <<73NLA,¢>>A = <<A, PNL¢>> VA € 2,Q,Yp € DnS). Same for
PN, and we can uniquely identify PNA € Hy VA € Z2,Q.

Similarly, P (ZnQ) < ZnQ (use Theorem 78 and Theorem 70), so P, 1 — P = (P; + P5¥)
and Py = P — PV are well-defined on 2, 1.

For all p € (1,00), define Dy = d”v + 5N on PNL P Q and Dy = d? + 6% on DS

as the injective and non-injective (Neumann) Hodge-Dirac operators.

By the Poincare inequality (Corollary 71), it is easy to check that
Dl pnig g PNLINQ — PN

is bijective. Consequently, so is Dy on PN+ 2.

Observe that

Vm € Ny, Vp € (1,00) ,Vao € PNEW™PQ (M), 318 = (Dy) " a € PNLW™HLrQ
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and

1Bllwmsro ~ llatllyms = 15 + deBllwmn ~ [|dBllwms + 10e ]l ym.s (9.1)

because PNLW™PQ) = d (W™TLPQ) @ 6, (W™HLPQy) is a direct sum of closed subspaces
(corresponding to Py + PS$* and Ps).

Note that we do not have d7v Dy = Dyd?, but 7% D% = D%d7 = —AZNd7W is true.
Definition 84. For m € Z,p € (1,00), let W™P (Dy) := (Dy) " (PY*+LPQ) = {a €
PNLDLQ  (Dy)™ « € LPQ} and WP (51;) = W™P(Dy)@®Hn. They are Banach spaces

under the norms Hoz||Wm,p(DN) = ||(Dn)" || 1pq and ||5||Wm7p(b;) = HPNLﬁHWm,p(DN) +

1PY51[5,

In a sense, these are comparable to homogeneous and inhomogeneous Bessel potential
spaces. We can extend the definitions to fractional powers, but that is outside the scope of

this thesis.

It is trivial to check that HaHWm’p(BE) ~ e[ jympg Yoo € D, ¥m € Ny, Vp € (1, 00).

Theorem 85. Some basic properties of W™P (b\;) :

1. 95 is dense in W™P (5;) VYm € Z,Vp € (1,00).
2. Wmp (1’)}) — Wmr_cl (D3Q) Ym € Ny, ¥p € (1, 00).

T T —
Z,¥p € (1,00)
Then Py = 02 d7 (—AﬁflV)_l PpNL = 57N (—AZI’V)_I A7 and P = Py + PV are of
order 0 on W™P (5];)

NﬁH S IBllwmisn(zyy VB € Wt (f);) Vm €

wmp(

4. <Wm’p (ﬁ)y = W—mv </5];> Vm € Z,¥p € (1,00) via the pairing

(0 Oy (57) = (DR P20 DIPYE6)), (P PG,
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Proof.
1. Because Dy (PNL.@NQ) = PNL Py is dense in PNLLPQ).

2. We only need W™P (Dy) = PNLWmPp (5;) < WmP_cl (PNL@NQ). Let a €
PNLymp (5;) and o = ¥ as usual. Then DY (af) = (Dla)* % DR
So D" DR (af) = of % a by Equation (9.1).

3. Let DYH'PNL3 € LP. Then DRPNLB € PNLWIPQy by Equation (9.1).
When m = 2k (k € Z):

4Dy g1l + 0D 5], ~ [dDP 8 + 8. DRPY 4,

- o3P,
When m = 2k + 1 (k € Z): D¥PNL3 € PNLW2PQyom v and

|DxdDFPYB| , + | Dnd DR PV 5],
= [[8:ADF P 5], + (|40 DX P

~ [|0.dDFPYEB + dd DX P, = || DX HPYEB]

4. Simply observe that (W™? (Dy))* = W™ (Dy) via the isomorphisms

Dy
W™ (Dy) = PNLLPQ

m

Dy

and W=7 (Dy) = PNLLPQ.

O

Remark. We briefly note that Dy with the domain PV+H'Qy is self-adjoint on PN+ L2Q)
and its complexification is therefore “bisectorial”. For more on this, see [MclI86; Mcl10;

MM13g].
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Corollary 86. Assume U € PL*X. Define div(U @ U) € 74X by (div(U @ U), X)), =
—((UeU, VX)) VX € IyX.

Ifp e (1,00) and U®U € LPT (T'M @ TM), then ||div(U @ U)’|,,, () S SNWURU| .-
Proof. For n € Q (M), write n, for the part of n in Q*. Let ¢ € Zx(Q, then
(DR PY iU @ U, 0)),| = |((U @ U, 7 (D5PY6)}))| S 1U @ Ully, 1]

This implies div(U ® U)* € W~L» (ﬁ) Then observe |<<diV(U® U)ba¢>>A‘ =
[((Ueu. v @) S0 UIL 16l o) =

9.2 Calculating the pressure

’

In this section, we assume that 0,V + div(V ® V) + gradp Il O Ve LE (I,PL*X),

loc

pel

loe(Ix M). This is true, for instance, in the case of Onsager’s conjecture (see Section 4.3

and Section 4.4).

We first note that HY, = H® = {locally constant functions}. Then we can show V
uniquely determines p by a formula, up to a difference in HS, (dp is always unique). It is no

loss of generality to set p = PN1p (implying [,, p = 0).

1. Assume V®V € LIW™ NPT (TM @ TM) for some m € No,p € (1,00),q € [1,00].

D (1,%)

Let w = div(V ® V)’. Then d/~p (P—1)w € LIW™PQ!. By the Poincare

inequality (Corollary 71), there is a unique f € LIPNEW™HLrQ0 such that df =
P 1w Py (1)

d”’~p. An explicit formula is f = —Rgw where
Ry :=PN 6 (=Ap) " PPH 4+ PVES (—Ay) T PS

is the potential for d.
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We aim to show f = p. Let v € C° (I, ZnQ°). Then because Q° = P, (Q°) P (Q0),
we conclude PN11) = 6.¢ where ¢ := d (=Ay) "' PNy € O (I, ZvQ) and

Jtan= [P0, = [, = [ o,
= [{{@.0)), = [ won,

Therefore p = f and HPHL;IWme N HWHqump SIYe V”Lqu-‘rlp :

2. Assume V@V € L{LPT (TM ® TM) for some p € (1,00),q € [1, 00].

Let w = div(V @ V). Then d%vp 2 (P _1)w € LIWw-1r (b}) by Corollary 86
and Theorem 85. Then —. Nd@Np I 7 1-Pw= 5N € LIW 2P (51;) and
b= —D% w50 P sy S 1wy S 1V E Vg

’ —1
Remark. 1t is also possible to define R, := d?n <—A§N) PNL on P5§2 and have Ry =
(Dy' — Rs,) PN+ on 24Q. This would then imply HRdOé”WmH,p(b‘];) < |]0z\|wm?p<5;) Vo €
Wwmp <lf)\];> ,Vm € Z,¥p € (1,00).

9.3 On an interpolation identity

Let p € (1, ) We are faced with the difficulty of finding a good interpolation character-
ization for Bp 1Qy. We do have BPIQ = (LPQ, Wpo)  (complexification, then projec-
tion onto the real part), but our heat flow is not analytlc on CW1PQ. The hope is that
BP%JQN = (LPQ), WLPQN)%’I, and our first guess is to try to find some kind of projection.

Indeed, the Leray projection yields

1
PB; Q= (PLPQ,PW'PQ), | (9.2)

'c\’—‘

and the heat flow is Well—behaved on PWHPQ) = PIWHPQy (Theorem 70, Theorem 78). By

1 1
interpolation, PP is B”1 continuous, so nP : By, — LPQ‘ oy 18 continuous and PBJ, Q) =
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1
This is enough to get all the Besov estimates we will need for Onsager’s conjecture.

1
Additionally, it is true that the heat semigroup is also Cjp and analytic on CPB; {1y by
Yosida’s half-plane criterion (Theorem 41). Unlike the LP-analyticity case, here we already

have analyticity on the 2 endpoints, so the criterion simply follows by interpolation. Alter-

t (/A?g - C’) et(EV_C> < 00
L(V)

natively, observe that there exists C' > 0 such that sup,-,

for V € {CPLPQ, CPW'?Qy}. Therefore it also holds for V = C}P’B; 182y by interpolation,

and that is another criterion for analyticity ([Eng00, Section II, Theorem 4.6.c]).

Unfortunately, this does not tell us about the relationship between (LFQ, W'PQn)1
p7

1 1
and B},Qy. Obviously (LFS, I/V“’QN)%’1 — B} Qy by the density of W"Qy. The other
direction is more delicate. Interpolation involving boundary conditions is often nontrivial.
The reader can see [Gui9l; Lof92; Amal9] to get an idea of the challenges involved, especially

at the critical regularity levels N + %.

Nevertheless, there are a few interesting things we can say about these spaces.

Definition 87 (Neumann condition on strip). For vector field X and r > 0 small, with v,

as in Equation (4.2), define
nX =v¢,. (X, 7)vand t,X = X —n. X

Then define Xy, = {X € X : (X,7) = 0on M_.,}. Similarly we can define W™PXy,
and Bj X, by setting [[(X,7)|| 15,y = 0. We note that L*Xy, makes sense since the

definition does not require the trace theorem, unlike L3>Xy which is ill-defined.
Some basic facts:
1. t, X< X N,E

2. t, =1land n, =0 on Xy,
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4t Xl yyms Srmp [[ Xy, for m € No,p € [1, o0]
5 WmPXy, and By Xy, are Banach for m € Ng,p € [1,00],5 > 0,¢ € [1, o0]

tr=1
6. BE;%N,T — (ng’p%N’%,Wml’p%Né)aq — B;?;%N’% for 8 € (O, 1) , Ty < No,mo %

mi,p € [1,00],q € [1,00], myg = (1 — 0) mg + Omy.
Remark. The last assertion is proven by the definition of the J-method, and it works like par-
tial interpolation. The reader can notice the similarity with the Littlewood-Paley projection

(PSNng = Pg%)' The hope is that t, X 2 Xina good way for X € Xy.

ST “XHB;ng

s xN,r'

The

»q

A subtle issue is that for X € B Xy, ||X||(W’”O‘%N,ngml’p%w,g%
»q

implicit constant which depends on 7 can blow up as r | 0.
Define B;7q%N,O+ = B]‘j’q—cl (Ur>0 smaHB;,q:{N,r) .
Also define W™PXy oy = W™P-cl (Upso smant W™ P XN ;).

Then we recover the usual spaces by results from Section 6.5:

Theorem 88. Let p € (1,00):
1. prN,g+ = pr, Wl’pr70+ = Wl’p}:]\].
1 1
Proof.

1. Let X € L?X. Then n, X % 0 by shrinking support. If X € W'PXy, then by
Theorem 55

0 Xl = [0 (X, ;>||W1»P(M<T)

S e llwrearey KK M ogaae,y + 1900l oo IKX M T ai,

1 —~ —~ ~ rl0
S - IKX D e are,y + X Do,y S XM lwisre,y = 0
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2. Let Y € B X. As Bl = (L=, W) and 1, € W™ we conclude

1
% 1 L !
19ell s S Il Il S (7)7 -
Then by Theorem 55 and Theorem 56 :
< ~ ~
¥l p S el IO ar el 169,90,

1
1\~ ~
< (3) 1P s + IV

S IV iotas e+ IV S IV
p,1

1

iSRST

1

Therefore [[n,Y|| ;1/» does not blow up as 7 | 0. Then we make a dense con-
p,1
1 1/p

1 B
vergence argument: assume X € B}, Xy and let X; € X such that Xj 0 X,

then |[(X;, )|l oann 222 0. Note that we do not have nX; = 0. By Theo-

rem 55:

1 1
I XG0 5 S e XG0 e X

1

P

p,1
1

L 1 1
S X5 D) L ar, <H¢r||€vl,oo(M<r) X5 ) 1 2o ar,

1 1
e X, v>||5vl,p<M<r))

1

1
v S 1
Sy (7) HE M 1 e

1 ~ ~
S X D lw e,y + 6K W Lo onn + KX D llwrs .,y -

So lim sup,, HHTXJ'HB% S X5 )M Lo oar) and
p,1

1+ limsup ||n,. X;|| 1
g3, S (a8 JHBﬁl

AN

lim sup [|n, (X — X})||
rl0

SIX =Xl A+ 165 o onry

1
P
p,1
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= 0.

As j is arbitrary, let j — oo and lim sup,., |, X||
B 1

1
P
D,
]

These results hold not just for vector fields, but also for differential forms once we perform
the proper modifications: for differential form w, define n,w = ¥,7” A (17w), t,w = w — N,w,
WmPQk = {w € WmPQF : ;w0 = 0 on M_, }, replace (X,7) with (zw in the proofs etc. In

1 1
particular, B, Q% o, = B}, Qf for p € (1,00).
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CHAPTER 10

Complexification

Throughout this small chapter, the overline always stands for conjugation, and not topolog-

ical closure.

Let RX be a real NVS, then a complexification of RX is a tuple <CX ,RX i> CX )

such that

1. CX is a complex NVS.

2. ¢ is a linear, continuous injection and ¢(RX) @ ip(RX) = CX.
3. [[9(@)]lcx = [I7llgx and [|¢(z) +id(y)llcx = [l@(z) — id(y)|lcx Vo, y € RX.

The last property says ||-||cy is a complexification norm. By treating ¢(RX) as the
real part, Vz € CX, we can define Rz, Sz as the real and imaginary parts respectively, so

2 =Rz + iz, Then define 7 = Rz — iz So Az = Az Vz € CX,V\ € C.

Construction A standard construction of such a complexification is CX = RX ®@g C. As
RX is a flat and free R-module, 0 - R — C = R — 0 induces 0 — RX i> CX = RX — 0
as a split short exact sequence and CX = ¢(RX) @ i¢p(RX). Then we can make ¢ implicit
and not write it again. The representation z = x 4 iy = (z,y) is unique. Easy to see that

any two complexifications of RX must be isomorphic as C-modules.

We define the minimal complexification norm (also called Taylor norm)

Vz,y € RX

|z +iy|l; = sup ||xcosf —ysinf|py = sup H%ew(ﬂc—i—z’y)HRx
o 0€[0,27]

[0,27]
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Any other complexification norm is equivalent to |||,

Proof. Let ||| 3 be another complexification norm. Then

[Re” (@ + iy)[|pc = [[Re” (@ +iy)|| 5 < Nz + iyl

(minimal) and
|z + iy“B < HQC”RX + HyHRX = IR (z + iy)HRx + 1R (=i (z + iy))”RX <2z + iy“T'

]

So the topology of CX is unique. It is more convenient, however, to set ||z + iy|/oy =

1
(2.9 laxery = (I7lzx + vllax)? Yo,y € RX. Easy to see that any two complexifications

of RX must be isomorphic as complex NVS, so we write |CX = RX ®p (C‘ from this point
on, and if RX is normed, so is CX. Obviously, if RX is Banach, so is CX, and when that

happens, we call (RX,CX) a Banach complexification couple.

Real operators Let (RX,CX) and (RY,CY) be 2 Banach complexification couples.

e Anoperator A: D (A) < CX — CY is called a real operator when D (A) = CRD(A)
and AR (D (A)) < RY. In particular, A(x,y) = (Az, Ay) Vz,y € RX.

e An unbounded R-linear operator T': D(T) < RX — RY has a natural complexified
version T¢ = T ®g 1¢ : CX — CY where D (T) = CD (T). Obviously 7€ is a real
T,7¢
operator and we write (RX, CX) u) (RY,CY).

— D(T%) = D (T%) and T2 = Tz Vz € CX.

— T is closed <= TC is closed. Same for bounded, compact, densely defined.

e For any unbounded C-linear operator A : D(A) < CX — CY such that D(A) =
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RA — <8%o <A|8%D(A)>)(C

C
SA = (g 0 <A|%D(A)>)
Then A = RA + iSA. We can see that Aisreal «— RA=A <— TA = 0. Also,

A is bounded <= RA, SA are bounded.

CR (D (A)), define 2 real operators

T,1¢
Spectrum For (RX,CX) Q (RY,CY'), define
o p(T):=p(T%),0(T) =0 (T°).
o pr(T) :={X € R: X —T is boundedly invertible} and og(T) := R\pr(T).

If ¢ € C and ¢ —T° is boundedly invertible, so is ( —T°. So o (T) = o (T) and p(T) = p(T).
For A € R, A — T is boundedly invertible <= X\ — T is boundedly invertible. So pr(T) =
p(T)NR and og (T) =0 (T)NR.

Semigroup 7T generates an R-linear Cj semigroup <= TC generates a C-linear O,

semigroup. When that happens, (etT)C = 1",

Proof. When either happens, 7' and TC are densely defined. Also, T — j and TC — j
are boundedly invertible for j € N large enough, so 7 and T are closed. Easy to
use Hille-Yosida to show both 7" and TC must generate Cjy semigroups.

1
1-i77
J

As in the proof of Hille-Yosida, define the Yosida approximations 7; = T'

C_7pC__1 __ _ ® C t1;\C _ tT¢ .
Ty = T = (T})". As T} and T} are bounded, (e”7)~ = e"s by power series
J
. C C . . . .
expansion. Then (7)™ = €™ as ' = lim;_, €7 pointwise. O

Hilbert spaces Let RH be a real Hilbert space with inner product (-,-). Then CH is also

Hilbert with the inner product

(1 + iy, T2 + 1Yo) oy = (@1, 2) + (Y1, Y2) + ¢ (Y1, 22) — (21, 2)) Voj,y; € RH
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1
Then ||z +iyllcy = (|7lag + |vllag)® Yo,y € RH, consistent with our previously

chosen norm.
AISO, <Zl, 22>(CH = <22, Zl>(CH VZl, zy € CH.

Let (A, A%) : (RH,CH) — (RH,CH) be unbounded.

e A is symmetric <= A® is symmetric. When that happens, (Az + iAy, © + iy)c; =
(Az, 2) + (Ay,y) Yo,y € RE.

C(RH ®RH) = CH © CH and G (AS) = CG (A) (graphs). Also C (G (A)i) -
G (A%)".

A is self-adjoint <= AC is self-adjoint. When this happens, o(A) = o(A%) C R.

A is dissipative <= AC is dissipative.

For more information on complexification, see [Gliil7, Appendix C].
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¥y, fr cutoffs on M living near the boundary, page 30

e’ the absolute Neumann heat flow, defined for the proof of Onsager’s conjecture, page 33
L ((Xo, Xo), (Yo, Y1) morphisms between interpolation couples, page 43
(Xo, Xl)e,q real interpolation, page 44

(X0, X1], complex interpolation, page 45

W™P Sobolev spaces, page 60

B, Besov spaces, page 60

F;, Triebel-Lizorkin spaces, page 60

¢*(Q) Zygmund spaces, page 65

Qo {z e Q:dist(z,00) < r}, page 68

£l Lr(Q.avg) iNtEgration on probability space , page 68

v outwards unit normal vector field on OM, page 73

v extension of v near oM, page 73

9 J:0M — M is the smooth inclusion map, page 73

interior product (contraction) of differential forms, page 73

~

voly  volume form of OM, page 74

[(F), To(F), Too(F) the space of smooth sections of F with different support conditions,

page 74

({(0,0)) dot product on I'(F), page 74
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RW™P CW™P real and complexified versions of function space, page 79
XM set of smooth vector fields on M, page 79

t tangential part, page 79

n normal part, page 79

QF (M) set of smooth differential forms on M, page 79

Xg, wg musical isomorphism, page 80

* Hodge star, page 80

) codifferential, page 80

A Hodge Laplacian, page 80

Rupeq Riemann curvature tensor, page 80

Ric  Weitzenbock curvature operator, page 80

(T, Q) tensor inner product, page 81

(w,m s, ({w, 1)), Hodge inner product, page 81

D(w,n) Dirichlet integral, page 83

Qb QF . different Dirichlet conditions for differential forms, page 85
Ok QF v different Neumann conditions for differential forms, page 85
HE,HE,, HE harmonic fields, then with Dirichlet and Neumann conditions, page 85
L?-cl(+) closure under L? norm, page 85

PN, pNL PP PPL patural orthogonal decomposition, page 87

Ay  injective Neumann Laplacian, page 88
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(=Ay)"", (=Ap)~" Neumann and Dirichlet potentials, page 88

0., d. adjoints of d and ¢, page 88

Piw, Pow, Psw the component projections in Hodge decomposition, page 90
PN, P, PP Ps° Friedrichs decomposition, page 93

P Leray projection, page 94

Ay non-injective Neumann Laplacian, page 100

A generator of heat flow on LP, page 102

4
Ay, generator of heat flow on Wh? page 105
DN, DO heated forms and heatable currents, page 107
Dy, Dy the injective and non-injective (Neumann) Hodge-Dirac operators, page 116
W™ (Dy), WP (5;) Hodge-Sobolev spaces, page 117
CY,T® complexification of spaces and operators , page 126

tA

e the absolute Neumann heat flow, defined for the proof of Onsager’s conjecture, page 146

¥r, fr cutoffs on M living near the boundary, page 150
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Part II

Construction of the Hodge-Neumann
heat kernel, local Bernstein estimates,
and a local approach to Onsager’s

conjecture
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CHAPTER 11

Introduction

Recall the incompressible Euler equation in fluid dynamics:

WV +div(VeV) =—gradp in M
divy =0 in M (11.1)
V,v) =0 on OM

(M, g) is an oriented, compact smooth Riemannian manifold with boundary
where ¢ v is the outwards unit normal vector field on M.

I C Ris an open interval, V: I — XM, p: I x M — R.

We observe that the Neumann condition (V,v) = 0 means V € Xy, where Xy is the set

of vector fields which are tangent to the boundary.

The last two conditions can also be rewritten as V = PV, where P is the Leray projection

operator.

Roughly speaking, Onsager’s conjecture says that the energy ||V(¢,-)]| L2(M) 18 a.e. con-
stant in time when V is a weak solution whose regularity is at least % Making that statement

precise is part of the challenge.

In the boundaryless case, the “positive direction” (conservation when regularity is at
least %) has been known for a long time [Eyi94; CET94; Che+08]. The “negative direction”
(failure of energy conservation when regularity is less than %) is substantially harder [DS14;
DS13], and was finally settled by Isett in his seminal paper [Ise18a] (see the survey in [DS19]

for more details and references).
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Since then more attention has been directed towards the case with boundary on flat
backgrounds [BT18; DN18; BTW19; NN19; Bar+19b; Bar+19a]. The case of manifolds
without boundary was first handled via a heat-flow approach in [[O14]. This inspired the
consideration of manifolds with boundary in Part I, with the weak solution lying in LfBi 1)
the largest space in which the trace theorem applies. However, the best results on flat
backgrounds hold in the slightly bigger space Lfﬁé}VMo, so this sequel aims to make that

improvement.

In essence, the absolute Neumann heat flow, created via functional analysis, is a replace-
ment for the usual convolution on flat spaces, with special properties like commutativity
with divergence. However, obtaining a pointwise profile of heat kernels for differential forms
(let alone their derivatives) is a difficult problem, so it was hard to reconcile the heat-flow
approach with local-type convolution arguments on flat backgrounds. Even the definition of

!

E;,VMO itself is local, and it was not immediately obvious that the heat-flow approach could

handle such function spaces.

The solution to this is a manual construction of the Hodge-Neumann heat kernel (Chap-
ter B), using techniques from microlocal analysis and index theory (in particular, Richard
Melrose’s calculus on manifolds with corners [Mell8; Mel92]). The theory mimics the de-
velopment of pseudodifferential operators, in creating a filtered algebra that quantifies how
“nonsingular” an operator is as we approach the edges. In particular, much like the pseu-
dolocality of WDOs, the construction yields a precise description near the diagonal, as well
as rapid decay away from the diagonal. This enables the use of the heat flow as local convo-
lution, and we obtain local Bernstein estimates which allow us to handle VMO-type function

spaces.

The addition of local Besov-type estimates also marks another stage of development for
the theory of intrinsic harmonic analysis for differential forms (including scalar functions
and vector fields) on compact Riemannian manifolds with boundary, originally set forth in the

prequel with Hodge theory as the foundation. In particular, we have extended the notion
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of tempered distributions, and the methods of Littlewood-Paley frequency decomposition
(e.g. Bernstein-type estimates), which have proved useful on flat backgrounds for problems
in fluid dynamics and dispersive PDEs (cf. [Tao09; Taol3; Tao06; Lem02al), to manifolds

with boundary. More history and references can be found in Part 1.
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CHAPTER 12

Main result

To state the main result, we need some terminology.

The standard Besov spaces B, ,, and the absolute Neumann heat semigroup eSAN were

discussed in Part 1.

For r > 0, we define M, := {x € M : dist(x,0M) > r}. Let M denote the interior of
M.

For p € (1,00), we say X € E;/&%(M) if X € LPX (M) and Vr > 0 :

1 % A 5—0
=) |lx - x| 0
(\/5) H LP(M>1)
Or equivalently (by Corollary 118), (\/5)1_% eSZEXH ) 2200
Wp (M,

Similarly, for p € (1,00), we say X € LVB)/2% (M) if X € LVLPX (M) and Vr > 0 :

1
1\» =
— ) x - SANX‘
<\/§) H ‘

~1 ~
As shown in Lemma 106, By contains the space Bé/c ?EN) from [I014] (with equality when

LYLP (M)

OM = (). While on flat backgrounds, by Theorem 126, Eé/é coincides with B3 yyo from
[Bar+19b; NNT20; Wie20].

Let Xoo be the space of smooth vector fields compactly supported in the interior of M.

We say (V,p) is a weak solution to the Euler equation when
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o Ve L3(I,PL3X), p e Ls(I, H?(M)) for any 8 € Ny
o VX € O (I,X00) :f [,y V, 0 X) + (VR V,VX) +pdivX = 0.
The last condition means ;) + div(V ® V) + grad p = 0 as spacetime distributions.

Remark 89 (Local elliptic regularity). As V € L}L3X, we have Ap = —div (div(V ®V))
in L H>3(M). By cmbedding, there is 8 € Ny such that p € L3 (1, B3 (). Let
K cC W cC M where K and W are precompact open sets. Then by interior elliptic
regularity (see [Tayllb, Subsection 5.11, Theorem 11.1] and [Tay11d, Subsection 13.6]), we

have for a.e. t € [ :

19 ()1 30y S 128 Ol-23 g, + 1B O3

3 o
Then we can conclude p € LEL%(K ), for any K C M precompact.

As can be seen in [NN19; Bar+19b; NNT20], the correct replacement for the trace

theorem is the following “strip decay” hypothesis near the boundary:

i)

v is the extension of v near the boundary.

where S M, /5,1 = {z € M : dist(z,0M) € [r/2,7]}.

=20 (12.1)

L1LY (M[% ] ,avg)

avg means the measure is normalized to become a probability measure.

Theorem 90. Let M be as in (11.1). Then [[V(t, )|l 12(ps) is a-e. constant in time if (V,p)
is a weak solution with V € LIPL*% N L?égV% and (12.1) being true.

12.1 Outline of Part II

In Chapter 14, we summarize the key tools from Part I, discuss some connections between

the heat flow and Besov spaces, and then prove Onsager’s conjecture. However, at certain
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points we will need some local-type estimates involving the heat flow, which are themselves
derived from the construction of the heat kernel. To avoid interrupting the flow of the thesis,
the local estimates are proved in Chapter A, while the construction of the kernel, arguably

the most technical step of the thesis, can be found in Chapter B.

138



CHAPTER 13

Common notation

Some common notation we use:

o A<, , Bmeans A < CB where C' > 0 depends on z and not y. Similarly, A ~, -, B
means A <, -, B and B S, -, A. When the dependencies are obvious by context, we

do not need to make them explicit.
e Ny, Nj : the set of natural numbers, starting with 0 and 1 respectively.

e DCT: dominated convergence theorem, FTC: fundamental theorem of calculus, WLOG:

without loss of generality.
e TVS: topological vector space. For TVS X, Y < X means Y is a subspace of X.

e L(X,Y) : the space of continuous linear maps from TVS X to Y. Also £(X) =
L(X,X).

e C%S —Y): the space of bounded, continuous functions from metric space S to normed

vector space Y. Not to be confused with C?

loc

(S — Y), which is the space of locally

bounded, continuous functions.

o [[2lpay = llzllx + |Az[lx and [lz]lp 4 = [[A2| x where A is an unbounded operator
on (real/complex) Banach space X and x € D(A). Note that H~H*D(A) is not always a
norm. We also define D(A®) = Nyen, D(AF).

e B(x,r) = B,(x): the open ball of radius r centered at x in a metric space.
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CHAPTER 14

Onsager’s conjecture

14.1 Summary of preliminaries

We will quickly summarize the key tools that we need for the proof (see Section 4.1 for the

precise locations where they are proved).

Definition 91. For the rest of the thesis, unless otherwise stated, let M be a compact,
smooth, Riemannian n-dimensional manifold, with no or smooth boundary. We also let
I C R be an open time interval. We write M_, = {x € M : dist(z,0M) < r} for r > 0
small. Similarly define M>,, M_,, M, ,, etc. Let M denote the interior of M.

By the musical isomorphism, we can consider XM (the space of smooth vector fields)
mostly the same as Q!(M) (the space of smooth 1-forms), mutatis mutandis. We note that
XM, X (OM) and XM ’ ony are different. Unless otherwise stated, let the implicit domain be
M, so X stands for XM, and similarly QF for Q*M. For X € X, we write X" as its dual

1-form.

Let Xo0 (M) denote the set of smooth vector fields of compact support in M. We define

Qb (M) similarly (smooth differential forms with compact support in M ).

Let v denote the outwards unit normal vector field on OM. v can be extended via
geodesics to a smooth vector field 7 which is of unit length near the boundary (and cut off

at some point away from the boundary).

For X € XM, definenX = (X,v)v € XM]|,,, (the normal part) and tX = X|,,, —nX

(the tangential part). We note that tX and nX only depend on X‘aM’ so t and n can be
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defined on XM|,, , and t (XM|,,,) = X(OM).

For w € Q% (M), define tw and nw by
tw(Xl, ,Xk) = w(tXl, ,th) \V/X] S %M,j = 1, ,k

and nw = w|,,, — tw. Note that (nX) =nX’ VX € X.

Let V denote the Levi-Civita connection, d the exterior derivative, ¢ the codif-
ferential, and A = — (dd + dd) the Hodge-Laplacian, which is defined on vector fields by

the musical isomorphism.

Familiar scalar function spaces such as LP, WP (Lebesgue-Sobolev spaces), By,
(Besov spaces), C%® (Holder spaces) can be defined on M by partitions of unity and
given a unique topology. Similarly, we define such function spaces for tensor fields and
differential forms on M by partitions of unity and local coordinates. For instance, we can

1
define L*X or Bj X,

Fact 92. Va € (1,1),Vp € (1,00) : W'PX — B!\X —LPX and C*°X = B X <
X

1

1 1
Bg X — Bj X — B3
Definition 93. We write (-,-) to denote the Riemannian fiber metric for tensor fields

on M. We also define the dot product

((0,9>>:/M<0, 6) vol

where o and 6 are tensor fields of the same type, while vol is the Riemannian volume

form. When there is no possible confusion, we will omit writing vol.

Define Q(M) = @, _, 2*(M) as the graded algebra of differential forms where multi-
plication is the wedge product. We then naturally define W™PQ(M) = @, _, W™PQF (M),

and similarly for B; , F>  spaces. Spaces like Qy (M), Qoo (M) are also defined by direct

p,q’

suIs.
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We define Xy = {X € X : nX =0} (Neumann condition). In order to define
the Neumann condition for less regular vector fields, we use the trace theorem. We can

similarly define QF;.

Fact 94 (Trace theorem). Let p € [1,00). Then

1 1
e B (M)~ LP(OM) and B}, XM —» LP%M‘aM are continuous surjections.
e Vme N : BZ;FE%M —» BZLI%M‘aM — WWP%M‘aM 18 continuous.

Definition 95. We define P as the Leray projection, which projects X onto Ker (div| %N> .

Note that the Neumann condition is enforced by P.

Fact 96. Ym € Ny, Vp € (1,00), P is continuous on W™PX and P (W™PX) = WPl (PX)
(closure in the W™P-topology).

We collect some results regarding our heat flow in one place:

Fact 97 (Absolute Neumann heat flow). There exists a semigroup of operators (S(t))

>0

acting on Upe(1,00)LPX such that

2. ¥pe(l,0),VX € LPX :

(a) S(t)X € Xn and 0; (S(t)X) = AS(t)X Vt > 0.
(b) SH)X TCS* S (to) X Wty > 0.

() IS X s Smp (3)F X0 ¥ € No, ¥t € (0,1).
(d) S(t)X ti? X.

3. Vpe(l,00),VX € WhPXy :
(@) 1S X s Smp (1) [ X |yprn ¥ € No, ¥Vt € (0,1).
(b) S(t)X iV—O> X.
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4. S(t)P=PS(t) on W™PX ¥Ym € Ny, Vp € (1,00),Vt > 0.

5 ((SHX, YY) = (X, St)Y))Vt > 0,Vp € (1,00),VX € LPX,VY € LF'X.

These estimates precisely fit the analogy e*® ~ <1 where P is the Littlewood-Paley
projection.

Analogous results hold for scalar functions and differential forms.

We observe some basic identities from differential geometry:

e Using Penrose abstract index notation, for any smooth tensors 7, ,,, we define
(VT)ial...ak = viTalwak a’nd leT = vij—‘iaa...ak'

e For all smooth tensors T5,. 4, and Qq,..qy,,:

/ Vl (Talmainm...ak) :/ viTal...ainal'”ak‘i‘/ Tal...akvilemak
M M "

iay...ag
:/ ViTm...akQ et
oM

* (VoVy = ViVo) T = —Rape' Tty — Rave?’ Tty + Rai" T 51 + Rop®T 1y for any
tensor T%;;, where R is the Riemann curvature tensor. Similar identities hold for
other types of tensors. When we do not care about the exact indices and how they
contract, we can just write the schematic identity (V,V, — V,V,) T%; = RxT. As
R is bounded on compact M, interchanging derivatives is a zeroth-order operation on

M. In particular, we have the Weitzenbock formula:

AX =V,V'X + Rx X VX € XM (14.1)

There is an elementary lemma which is useful for convergence (the proof is straightforward

and omitted):

Lemma 98 (Dense convergence). Let X,Y be (real/complex) Banach spaces and Xo < X
be norm-dense. Let (Tj);en be bounded in L(X,Y) and T € L(X,Y).
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If Tjxg — Txy Voo € Xo then Tjx — Tx Vo € X.

As the heat flow does not preserve compact supports in M , it is not defined on distribu-

tions. This inspires the formulation of heatable currents.

Definition 99 (Heatable currents). Define:

o 20F = Qf; = colim{(Qf, (K),C™ topo) : K C M compact} as the space of test

k-forms with Schwartz’s topology' (colimit in the category of locally convex TVS).

o J'OF = (.@Qk)* as the space of k-currents (or distributional k-forms), equipped

with the weak™ topology.

o IO = {w € O : nA™w = 0,ndA™w = 0 Vm € Ny} as the space of heated k-
forms with the Frechet C°° topology and Z)QF = (.@NQ’“)* as the space of heatable

k-currents (or heatable distributional k-forms) with the weak™ topology.

In particular, ZyX is defined from 25O by the musical isomorphism, and it is invariant
under our heat flow (much like how the space of Schwartz functions S(R") is invariant
under the Littlewood-Paley projection). By that analogy, heatable currents are tempered

distributions on manifolds, and we can write

(SN, X)) = ((A, S (t) X)) VA € DX, VX € INnENE>0
where the dot product ((-,-)) is simply abuse of notation.
Fact 100. Some basic properties of Zn (M) and Z\Q(M):

o ((AX,Y)) = ((X,AY)) VX,Y € yX.

o 90 — PNQ and LPQ — P3Q Vp € (1,00).

!Confusingly enough, “Schwartz’s topology” refers to the topology on the space of distributions, not the
topology for Schwartz functions.
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o S(HHA € INQ YVt > 0,YA € D\Q. (a heatable current becomes heated once the heat

flow is applied)
o« WPl (23Q) = W'PQy and B, -l (P2yQ) = PBI,Qy ¥p € (1, 00)
o VX € Iy : S(H)X %} X and 0, (S(#)X) = AS(#)X = SE)AX Vt > 0.
o Vt € (0,1),Vm,m’ € Ny, Vp € (1,00),VX € Iy :

LASOX e S (1) 2 1 X s

2. ISOX yms < (

=

~—
N[

3

|
3=
~—

Sy

L_i_&
S ANSOXN ey S ()77 MK s
p,1

14.2 Heating the nonlinear term

Recall integration by parts:

(div (Y @ Z), X)) = — ({Y ® Z, VX)) + / W, Y)(Z,X) VX,Y, Z € X (M)
oM
Let U,V € Bélf{. Then U ® V € L'X and div (U ® V) is defined as a distribution. So we
will define the heatable 1-current (div (U @ V))" by

(div (U @ V), X)) = — (U @ V,VX)) + /aM (v, U} (V, X) VX € Iy (X is heated)

It is continuous on Yy X since

((div (U V), XN S Uy (VI3 X s + (U s IV s VX s -
B3, B3, B3,

By the same formula and reasoning, we see that (div (U ® V)" is not just heatable, but also

a continuous linear functional on (X (M), C* topo).
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On the other hand, we can get away with less regularity by assuming U € PL2X and
V € L2X. Then (div (U ® V))’ is heatable as we simply need to define

(div (U V), X)) = — (U V, VX)) VX € X (14.2)

14.3 Besov spaces

For the rest of the proof, we will write e/ for the absolute Neumann heat flow, as we will

not need another heat flow. For ¢ > 0 and vector field X, we will write X¢ for e#2X.

Now we define a crude version of the Littlewood-Paley projections: P<; = e for t > 0

and Py = PSN_ng for N > 1, N € 2%

The definition of P<; gives a quick Bernstein estimate:

Theorem 101. For N > 1 and X € 2\QF,

1 1
1Pn X1, S 77 1Pean X || yop S ~ 1P<en Xl

Proof. Recall that e*2X € Z5QF Ve > 0. Then observe that

A 7A A e A
Py X = (exp (W) — exp (W)) exp <m> X = = Aet® exp <W> X dt

2N2

and P_ sy = P<onyP<an. -

Definition 102. For a € (0,1), p € (1,00), ¢ € [1, 0], we define the Besov heat space

EK qQ’“ as the space of heatable k-currents X where the norm

1X11gy, = 100 + [[530 [[e2 X 0,

Le($:.01)

~ ||X||Lp + ”Na_l ”PSNX”WLPHl?V(NGQZ,N>1)
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is finite.

Recall the theory of real interpolation. The following fact justifies the name “Besov” in

Besov heat space:

Theorem 103. [LPQF, W'PQk | b= Eg,qQk for g € [1,00],p € (1,00),6 € (0,1).

that X =3, o X, we have

1]

k k
Lrk wirl ]

S X +

S IX e +

SO

[N P Y s

S 27 Xl + 2 [ Xy
q

Now we will show [LPQF, WPQK ]
then ||Y|;, < 1. We will use the K-method: for any N > 1,Y, € LPQ* Y, € WHPQE,
such that Y =Y, + Y7, we have

HZ‘JZV(NGQZ,N>1)

Proof. By definition, B\g’qﬁk s LPQF. We first show Equﬁk — [LPQ’“, Wl’meeq.

Assume || X ||z < 1. Then we decompose X £ Pai X + ) oy nveor PN X . Set
Xo =P X and X, = P,-+ X Vk € Z,k < —1. Then by the J-method, and the fact

} | 1} (k<0)

1 —mé 1 m(1—6)
(3) WXt (3) 1Pl

1 m(1—0)
(5) ||P§2m+1X”W1’P

14, (m>1)

<1

I (m>1)

<1
LPQ’“,WLPQ’;\,] = b

Bo Ok
— B, Q% Assume HYH[ y

0,q

IP<nY [lyro < I P<nYollyrs + [P<nYaillyrs S N IYoll o + [Yillyn

Note that this is why we need WPQX, instead of W1PQF. Then

N?

1
o— . 9 9— 0
N PV s S 00N [l N il = N (57

5 HNf@K (N7 Y)||I§V(NE2Z,N<1) <1
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O
Remark 104. We recover the standard Besov space when the manifold is boundaryless, ef-
fectively generalizing the proof in [I014, Appendix B]. More importantly, in the case with

boundary, we have

= [PLPQF, PWIQY] = PB§ Q"

1/3,q

PngQ’f [PL*QF PW'PQ]

1/3,q

for ¢ € [1,00]. The fact that we need to apply the Leray projection is an important techni-

cality.

Definition 105. For p € (1,00), we say X € E;/‘f% (M) if X € LPX (M) and Vr > 0 :

N—o0

1_
N2 Pan Xy pgagey ——2 0 (14.3)

Similarly, we say X € LY BYPx (M) it X € LYLPX (M) and ¥r > 0 :

N—o0

1_
No PN ppwrogar,) —— 0 (14.4)

Remark. The vanishing property in (14.4) becomes important for the commutator estimate
in Onsager’s conjecture at the critical regularity %, while higher regularity has enough room

for vanishing in norm (which is better).

It is shown in Corollary 118 that (14.3) is equivalent to

NoPon X poarey 2 0 > 0

We briefly note that when OM = (), it is customary to set dist (x,0M) = oo, M-, =
M =DM, M., =0, and IyXM = 9XM = XM.

Recall the space B / nX = Bl/?’ -cl (ZnX%) from [1014].

Lemma 106. Bl/3 %<—>B§/‘i’% When OM = (), 31/3% B;/CQEN)%
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Proof. Observe that IyX — B\;/‘?% . Forany r >0,N >1and X € Eé/o:i7

N3 ||P§NX||WL3(M>T) <N HPSNXHWLS(M) : HXHE‘%/;

(M)
Because § f € l>*(N): f(k 2200l is closed in 1% (N , we conclude BY3 X <
3,¢(N)

B
On the other hand, when OM = (), observe that M., = M. Let X € ]§§/‘§% We

=1/3
aim to show P<p X Ks—oo> X. For any N, K € 2Mo :
- —00

K—oo

N3 ||PSNXHW1’3(M) R-K~N N3 [P<n (1 — P<k) XHWLB(M) 0

Let Ny € 28, Then observe that

tim sup | N2 [ Payy (1= Pee) X o |

K—o0 IRt

<li HN-2/3 Pen(1— Peg) X ‘

< limsup [P<n (1 = P<i) Xllyriagan 155 (N2 N <No)

0
N3 Pey X 1 H
|V 1 Pan Xy an SR

As Ny is arbitrary, let Ny — oo and we are done. O

Remark 107. On the other hand, Theorem 126 shows that, on flat backgrounds, LA?;/S coin-
cides with the VMO-type Besov space ﬁé,/\?MO from [Bar+19b; NNT20].

We will also need to borrow a result from Chapter A, which allows us to employ cutoffs.

~1 A1
Fact 108 (Pointwise multiplier). If f € 2 (M) and X € L}B; X, then fX € L{Bj X.
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14.4 Proof of Onsager’s conjecture

Definition 109. We define the cutoffs
Yp(x) = U, (dist (z,0M)) (14.5)

where r > 0 small, ¥, € C*°([0, 00), [0, 00)) such that L3,y = Wy > 1z and v, <t

Then there is f, smooth such that Vi,(z) = f.(z)v(x) with |f(z)] < * and supp f, C

~

Let x, = 1 —1,.. Then Vx, = —f,v. As usual, there is a commutator estimate which

we will now assume (leaving the proof to later):

[t @e ™ 0ot®)) - [[o (v @ o ) o))

1

:/y«mWU®MuﬁmMum>_zn«mwu%®WMﬁmem§>i%o(M@

I

for fixed r > 0, U € L}B{ X N LIPLAX, 7 € C°(I).

Remark. For any U in PL2X and V € L2X, div(U ® V)" is a heatable 1-current (see Sec-
tion 14.2). In particular, for ¢ > 0, div (U ® V)° is smooth and

(div (U@ V)", Y)) = — (U V,V (Y*) VY € X (14.7)

Consequently, (14.6) is well-defined.

Notation: we write div (U @ V) for (div (U @ V))° and VU* for V (U) (recall that the
heat flow does not work on tensors U ® V and V).

Theorem 110 (Onsager’s conjecture). Let M be a compact, oriented Riemannian manifold

with no or smooth boundary. Let (V,p) be a weak solution and V € L?Eivf N L3PL3X.
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Assume (14.6) is true. Also assume strip decay:

V| -
(5 )

0
%0

Lz (M[% o] ,avg)

Then we can show

/I (5 (V(8), V(D)) dt = 0¥y € C=(1)

Consequently, ((V(t),V(t))) is constant for a.e. t € I.

Proof. Let ® € C*(R) and @, o, do be a radially symmetric mollifier. Write V*
for e*AV (spatial mollification) and V, for ®, * V (temporal mollification). First, we

use the cutoff y, and mollify in time and space

L[, peT .. oo L[ e e
5 [ ) P i s [ (00 (00)2)

Then for e, 7 small, we want to get rid of the time derivative:

3 [ v e = = [0 eV e
—— [ (@) D + [ eV Vi)

We now use the definition of weak solution (WS), and exploit the commutativity
between spatial and temporal operators. For the sake of exposition, we will freely
cancel the error terms that go to zero upon taking the limits. At the end of the proof,

we will show why they can be cancelled.

5 [ 40 02 = [ ey (evi)

1 1

ot 1o
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- /1<<V (1 0aV)E) ] V@ VY)Y = ((div [(n 06 V)Z), 3] b))
- /1<<V [ 0eV)E) X V@ v)) = (e VeV Ve V)

= {(div (1 0aV)), X 0)) = (67 V X0 p))
——/<<(77V (xrv)zf)Txr,V®V>>—< (ndiv =) X b >

= [ ven.)

As there is no longer a time derivative on V, we will get rid of 7 by letting 7 | 0 (fine

as V is L? in time). Also recall Equation (14.7):

timim = [/ (V) (6 V)) = —limlim [ ((V eV Ve )

rl0 l0 I 0 €0 Jr
=limlim [ n{(((x,V)*,div(V ® x,V)%))
r}0 el0 Jr

=lim lim A (V) div (V2@ (xV)))

.1 XV
=lim1 X V)7, Ve (x,V)7)) = lim1 % =0
il G0V B (v =it o | ( )

where we used the commutator estimate to pass to the second line, and the fact

that V* € PX to make the integral vanish.

We are done. As promised, we now show why we could cancel the error terms

previously. Let us calculate

— lim lim lim / {(n(V)Z). @ VX, VR V)) (14.8)

rl0 el0 710 J;
({1 0W)2), - Y+ (ndiv (6 V)*),), xeb) )

Recall from Part I that 6. = ¢ [, and 5? N'is the extension of d. to heatable currents,
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defined by
SINA(8) = A (do) VA € Dy Vo € Dy

Then the fact that PV’ = V" is equivalent to 5? NYP — (. This implies:
9 @/ 2e
~div (b)) = 6. (V) ) = (&N (X,,vb)) (14.9)
2e
( Vxr -V + xn0e va) = (f,0-V)*

With that simplification, and the lack of any time derivatives, (14.8) becomes

lim lim 77<<(XTV)25®]}5,V®V>>+n<<(er)2€-fr5,P>>+77<< (f7- V)%, xob))

rl0 l0

—hm/ V- Voo V) + 20 {0V - xo 7. 1)) —1lm/2n<<v—|+p 7 v>>
—1g1510</| " ﬁw‘ 1z >r>=o

where we used the strip decay hypothesis. O

Mz v

Remark 111. The proof did not much use the Besov regularity of V', which is mainly used

for the commutator estimate.

It is the commutator estimate that presents the main difficulty. We proceed similarly as

in [1014].

Note that from this point on r > 0 is fixed.

~1
Let U € L} B3, X N L{PL*X and ¥, be as before.
By setting U(t) to 0 for ¢ in a null set, WLOG we assume U(t) € PL3X N éé/‘f’v% Vtel.

Define the commutator

W(t,s) = div (U (t) @ x,U (£))* — div (U @ (x,U (1))
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When ¢ and s are implicitly understood, we will not write them. As div (U(t) @ U(t))**
solves (05 — 3A) X = 0, we define N' = (9; — 3A) W. Then W and N obey the Duhamel

formula.

Lemma 112 (Duhamel). For fized to € I and s > 0: f;/\/’(to,a)g(s_a) do =5 w (to, s) in
DNX.

Proof. Let ¢ > 0. By the smoothing effect of e*2, W(ty,-) and N (t,-) are in

C ((0,1], 2xX). As (e*2) _, is a Co semigroup on (H™-cl (ZnX), ||| ym) VM € N,

and a semigroup basically corresponds to an ODE (cf. [Tayl1b, Appendix A, Propo-
sition 9.10 & 9.11]), from ;W = 3AW + N for s > ¢ we get the Duhamel formula

Vs > Wity 5) = W (to, )" + / N (to,0)** ™" do

P x
So we only need to show W (tg,£)**™ =250, Let X € yX.

el0
(X (0,9}
- << X369 div (U (to) @ x,U (o)™ — div (U (t)* @ (.U (to))2€)8>>

=~ (V00 U 1) @ 36 (10))) + (7 () 2 (0 @ (o (0))) 2 0.

. S . S
From now on, we write fo N for lim. o fg . Then

/dtn(t)(<W(t,S),U(t)s>> :/dtn(t) / da<<N(t,o)3(s‘”),U(t)s>>

1 1 0+

2

k
Definition 113. Define the k-jet fiber norm |X|,, = (Z |V(j)X|2> VX eX.
j=0

Let K (o,z,y) be the kernel of the heat flow at time ¢ > 0. Then by Chapter B, we

obtain off-diagonal decay for all derivatives:
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Fact 114 (Off-diagonal decay). For any multi-indexy and x #y, D] , K (0,7,y) = O (0%)

as o 1 0, locally uniform in {x # y}.
For convenience, we will write . Then for r > 0,0 € (0,1) and x € M4 :

970 ) 2 Saar Or () UM 3o ) (14.10)

which 1mp11es Hyo-(t)Hw2,3(M<T/4> —+ Hya(t)HWZ?’f{M\aM SJM,T 07« (O'OO) |’u(t)HL3(M>T/2)

We now handle the most important error estimates that will appear in our analysis.

Lemma 115 (2 error estimates). For fized r > 0 small, we have

hrn/yny/ da/ |u2"|J1 \y%\ﬂ ]y‘*S*?f’\Jl =0 (14.11)
sl0 Jr 0+ M
and
hm/yn\/ da/ \uﬂﬂ }y2"|J1 \y4sf20|ﬂ =0 (14.12)
si0 Jr 04+ oM

Proof. We split (14.11) into 2 regions: M., /4 and M, 4. Observe that

/|/’7|/ do_/ ‘u20'|J1 ‘y2a}J1 ‘y4s—20’|J1
1 0+ Mcyyy

’ 20 20 4s—20
’§//17|/’7|\/0+ dO- HZ/[ HWL?’(M<T/4> ||y HW173<M<T/4) Hy HW1’3<M<T/4)

N s 1\ /2 w0
<0, () [t @O Esq, [ do (—) LI
I 0+ o

Define B (t,s) = s3 |U (1) lwr2(ar, ) and O (t,5) = s3 ||y () w1 (ats, )
By Fact 108, ¥ € L{Byi'x.

Therefore, || B (¢,s)||;; and [|C' (¢, s)|| s are continuous in s and converge to 0 as
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s — 0 by (14.4). Observe that

[ [Cao [ e,
M>;/4
< [l [ ao e 1) I s 1 s,
/dtln \/ da( ) (81_0)3B(t,QU)C(t,QO)C’(t,4s—20)
1
Sn/0+da (;) (23_0) 1B (t,20) ] 1€ (£, 20) || 5 IC (¢, 45 — 20)]| 3

O=8T ! 1 % 1 %
- / o (‘> (_> 1B (¢, 257)I 3 1C (¢, 257)lI 3 | C (¢, 45 — 257)l|
0+ T 2-7 t t t

0
sl 0
DCT

So (14.11) is proven. For (14.12), observe that

/‘7]|/ dO'/ |Z/{20|J1 ‘yQU‘Jl ‘y43720‘€]2
I 0+ oM
<0, (s®) / dt [n (&) 14 ()70 / o [ZAG i v

SO0 () [t @O, [ o U0 o
+ ’

<0, [t OOl [0 (1)

0
0

where we used (14.10) to pass to the second line, and the trace theorem to pass to
the third line.

O
Note that

N (t,0) = (0, — 3A) (—div (U @ Y*7)7) = —2div (AU* @ Y*7)7 — 2div (U* @ AY*>)”
+ 2Adiv (U* ® Y*7)7
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Now, we finally show

[0 = [den ) wie.s), 9007 o

I I

Proof of the commutator estimate. First we integrate by parts into three compo-

nents:

/In<<w(s),y5>) - /Idtn(t) /0+ da<</\/(t,a)3(5*"),y(t)s>>
:/Idtn(t) /0+ do (N (t,0), Y (£)757))
—2 /1 0 /0 + do ((AU> © Y%,V (P727))) + 2 /1 n /O + do (U © AV, V (Y4727)))

) /I 0 /0+ do (U © Y*7, ¥ (AY**27)))

Note that for the third component, we used Fact 100 to move the Laplacian.

We now use the Penrose abstract index notation to estimate the three components.
To clean up the notation, we only focus on the integral on M, with the other integrals
2 [ N f05+ do (+) in variables ¢ and o implicitly understood. We also use schematic
identities for linear combinations of similar-looking tensor terms where we do not

care how the indices contract (recall Equation (14.1)).

By Lemma 115, it is easy to check that all the terms with R or v will be negligible
(going to 0 in the limit), and interchanging derivatives will be a negligible action.

We write &~ to throw the negligible error terms away.

First component:

/ <Au20 ® :)}207 \V4 (y4s—20)>
M

- [ Rt TR ¢ [0 @y (9009, )
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%/ Vivi u20’ J 2 i (y4572cr)l _/ vz (ugo- J ) VJ (y45_20.)l

_ / vz (L{Qa)j (chr)l Vzvj (y4sf2a)l
M
Second component:
/ <u2a ® Ay207 V (y4sf20')>
M
= Z/[QU * R 20 y45_2‘7) + / (L{Za)j vzvz (y2o)l vj (y4sf2a)l
M

~ / (uQO’ J U i 2 j (y45—20)l _ / vz (uQU J<7i Vj (y4572cr)l

_ /M (uQa)j \V& (yQo)l Vlv] (y4s—2cr)l

For the third component, we use the identity V(R*xU) = VR U + R *x VU to

compute:

_ / <u2cr ® y20’ v (Ay4s—2o)>

W / Uy () V, ViV, (V42),
AA{/MM’(:)}%/%) / (UQU) (yQa) vzv v (y4s 20)
M

~ | U YT xYPT) — /M U>) (V) ViV, Y, (Y2,

~ _/ (u2o J 20\ v (y43720)l + /]w \V& (ugg)j (ygg)lvivj (y4s_20>l

+ / (uQa)j vz (chr)l Vzvj (y43720)l
M

By adding them up, we are done. ]
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APPENDIX A

Local analysis

Let M be as in Equation (11.1). Throughout this chapter, we write e/ for the absolute

Neumann heat flow, as we will not need another heat flow.

Assume the absolute Neumann heat kernel is already constructed, with off-diagonal decay

(Fact 114).
As before, define P<y = eﬁA for N > 0 and Py = P<y — PS% for N > 1, N € 2%.
Let x, = 1 — 1, (see Equation (14.5)).
Then we have the localized Bernstein estimates:

Theorem 116. For any r > 0; my,my € No; p € (1,00); N > 1 and X € W™PQ (M):

||PSNX||WW1*”?”’(M22T) Sramynap N ||X||Wm1’p(M2r) +0, (3=) ||X||Lp(Mg3r)

Proof. Observe that 1 — xa, = Y9, = 12,14,. Then:

1P<N X lyymitman (ars,)
S 1Pen Oz Xl ymisma o (s, ) T 1P2n (D20ar X)) yrmieman (a1,

m 1
s N [0 X s+ Or (7 ) X

- 1
< N™ ||X||Wm1,p(M2T) + O, (W) ||X||Lp(M§3T)

where we have used the standard Bernstein estimate (Theorem 101) and the off-

diagonal decay of the heat kernel to pass from the first line to the second line
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(supp 9o, € M. 5, which does not intersect Mso,). O]

Corollary 117. For any r,C1,Cy > 0; N > 1;p € (1,00) and X € 2,2 (M) :

|(P<cyn — P<cyn) XHLP(MZQT)

1

1
501 Co,r,p N2 HP<2max(C1 Ca NXHpr( )+Ocl Ca,r (Noo) || ||LP(M

1 1
Sarcarp 37 [[Pesmaxcorcon X loiar,, ) + Ocrcanr (NOO) X1 2o ar

Proof. WLOG C} > Cy > 0. Let C' = 2max (C},Cs). Then by FTC:

||(P§C1N - P<C2N) X“LP(Mzw)

1
C2N2 2 2
< [T elerim)ay|

2
6’21]\72 c2N2 W p M>2T)
W Ti
SciCamp at ( ||e== x| +0,(t7)|
W2p M>r) M)
C2N2 C2N2

1 1
Seucs 2 1Peev Xlan(oe,) + Oevcar (5 ) X

We have used Theorem 116 to pass to the second line.

The rest is trivial. 0

Corollary 118. Let p € (1,00) and X € LPQY(M). Then the following conditions are

equivalent:

1_ )
. N ' ||P§NX||W1,;}(M>T) NL} 0Vr>0

N—o0

3=

- N7 |[(P<eyw = Peeon) Xl o,y —— 0 V7, €1, C2 > 0

N—oo

3. N7 |Pon Xl s,y ——% 0 ¥r > 0
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Proof. 1t is trivial to show (3) = (2) as P<¢,n — P<con=P>c,n — Psoyn-

Next, we show (2) = (3). Let

N—oo

w(N) = N7 | Pu X poarosy = N7 || (Pen — Penyz) Nooe

Xl oars.

Then:

N» ||P>NX||LP(M>T) < N» Z ||PKX||LP(M>T) =Nr Z Kigw(K)

Ke2” Ke2%
K>N K>N

N—o0

—0

S 1w (R o0 (5 we22)
We proceed to show (1) = (2). By Corollary 117:

1
N7 [[(P<c,n = P<oon) Xl poare )

1 1
Seves No 77 HP§3max(clyc2)NXHWLP(MZTM) + O0cy <W) X1 2o any
N—00 0

Finally, we show (2) = (1). Let Ny > 1 and Ny € 2%. There are constants

Cl,Cg > 0 such that PN = PSQN (P§C1N — PSCQN)'

1 . 1
limsup N# ' | P<nXlwipar,) = limsup N7 "|(P<y — P<p,) Xllwroear,)
N—o00 N—o00

' 1
<limsup N» ' Z 1P X lwiware,)

T
0 >
. 1_ 1
Stimswp N3 S (K (Pecur = Peca) Xliogar,y + O () 1¥unc
—00 7
Noli%QSN
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N—oo 7 N—oo NE)X)
Ke2
No<K<N

J/

1 1 1
<limsup N» ! Z K'"VPy (K) + limsup N# 'O, <—> X 2o ary (A.1)
0

K—oo

where w (K) := KYP ||(P<c,xc — PSCQK>XHLP( 0. Then we can bound

(A.1) by

M>r/2)

' K\ -Vp
lim sup Z <N) ||w(’f)||zoo(nzNo,ne2Z)5 ’|w(’<¢)”zoo(nzjvo,ﬁezz)

N—
* Ke?
No<K<N

But Ny is arbitrary. Let Ny — oo and we are done. O

Remark 119. By repeating the proof, for X € LYLPQ (M) :

N—o0

Vr>0:Nv ! ||PSNX||L§W1,p —0

(M>r)

N—oo

<~ Vr>0:N»r HP>NXHLpr(M>T) >0

We now prove a simple lemma from functional analysis.

Lemma 120 (Loss of norm). Let X,Y be Banach spaces and T : X — Y is continuous

injection. Let (f;)..y be a sequence in X and f € X. If Tf; = Tf then

JeEN;

< T inf I .
11l < lim inf [ f5]] ¢

Proof. Note that T* : Y* — X*has dense image. Then

1fllx = sup [(f,2")|= sup [(f,Ty") = sup lim (Tf;,y")]
| =1 yrey™ yreyr oo
2" EX* 1Ty =1 1%y e =1

= sup  lim [(f;, T7y")[ < sup  liminf[|f[|, = Lminf[|f;|,
1Ty™ || x =1 I1T*y" || x«=1
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Theorem 121. Let p € (1,00), f € Dy (M), and X € B\;/{ff{ (M) (as in Definition 105).
Then fX € By\PX.

Proof. To show fX € E;(‘ff%, we just need to show a commutator estimate (much

like in the proof of Onsager’s conjecture):

W(s) = fX° — (FX)°
WP (M) 0
sl0

where X* is short for e®2X. Indeed, assuming this commutator estimate holds true,

Vr > 0:

1

177
. P A
hntlﬁ)up (ﬁ) Het (fX)HWLP(M>r)

1—1 1-1
= thlﬁ)up <ﬁ> HftXtHWLP(Mw) + thlSJuP <\/E> HW(t)HWl'p(MW)

[ J/
~~
0

11
Slmtf)up <\/Z> HftHcl(zm ”XtHWl*p(Mw) =0

where we have used the fact that e*® f % f,as f € Dy(M).
—>

Now we prove the commutator estimate. Define N'(s) = (9s — A) W(s) = (Af*) X*+
fP(AX®) — A(f°X?). By the Weitzenbock formula, we get

N(s) = (D'f*) = (D'X?)

where D! is schematic for some differential operator of order at most 1, with smooth
coefficients (independent of s), and (D! f*) * (D' X*) is schematic for a linear combi-

nation of similar-looking tensor terms.

On the other hand, by the Duhamel formula for semigroups (cf. [Tayllb, Ap-
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pendix A, Proposition 9.10 & 9.11]), for any s > & > 0 we get
W(s) =W ()" —|—/ N (o) 7do

It is trivial to show that W ()" ¢ % 0. Indeed, let Y € LP'X (M) . Then

(W ()5, Y)) = ((f°X° = (fX)5, V) 25 ((FX — fX, V") =0

Then [*N (0)* 7 do % W(s), and by Lemma 120, we conclude

/6 N (0) do

IW(s)llyw1(ar) < lim inf
el0 WLp(M)

- /s He(sfa)A (lea * DlXa) le,p(M) do
0

1
i 1 2 g ag
< [ (55) 104 5 D o

S— 0

1
S 1 2
< X° d
5 [ (525) I s do
SO01\E[1)\?

Sy [ (525) (5) a0
1 1 1

o=8T 1 2 1)2

= W [ (125) (3) 451Xy

. . . . 1-1 WP (M)
This obviously implies (v/s) » W(s) T> 0. O

Remark. By repeating the proof, with necessary modifications, for any f € Zx (M), and

X e Lfé;{‘];% (M) (as in Definition 105), we have:

fX e LYBPx
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A.1 On flat backgrounds

Remark 122. When M is a bounded domain in R”, the third condition in Corollary 118
takes on a more familiar form. Indeed, let ¢ € C° (R™) with [¢ = 1 and ¢, = E%(b (g)
Then we have the analogy

Py f=cfmoysf

This means

1 N—oo
N& ||P>NX||LP(M>,«) —=0 (A.2)
is analogous to
1 e—0
7 X = 6 Xl gy, S22 0 (A.3)

Definition 123. As in [Bar+19b; NNT20], for p € (1,00), we say X € El,/\I;Mo%(M) if

P

X e LPX (M) and Vr > 0:

1
el/p

%0 (A.4)

Lg(M>'r)

A, (e) =

1 X(x —eh) = X ()|

[h]<1

Similarly, we say X € LVBY2\ 0% (M) if X € LVLPX (M) and Vr > 0 :

1 .
A, (€)= =40,

- 51/17

X (¢, & —eh) = X(t, 2)|

[h<1

LYLE(Ms,)
Remark 124. In (A.4), note that A, (¢) is continuous for € € [0, 7). Define

— 1
AT(E) = m

., (2 —ch) (X (2 —ch) = X(2))]|

[n|<1

Lf;(M>7»)
for € € (0,1] (well-defined). Then A, (¢) is also continuous in ¢, with 4, () < 4, () Ve €

(0,7) and A, () S [ X oary Ve € [5,1]. By Section 6.2, we conclude

X032, 0100 ~ WX Lry + [ A @) o o 1K oty + 140 @l oz

Lge((0,1)
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From this we conclude E;;,/\I;MO < BY? and L? Q;(\I?MO < LPBY?  where

p,00,loc p,00,loc

B o (M) = (ﬂ B/ (M., )

r>0

p,00,loc

and LY B2 1o (M) = L{LP (M) 01 (g B2 (M),
We observe that (A.4) trivially implies (A.3). To relate (A.4) to (A.2), we now borrow

some results from the construction of the heat kernel (to be proven in Chapter B).

Fact 125. Fiz r > 0. Let K(t,z,y) be the Hodge-Neumann heat kernel as constructed in
Chapter B.

Forr" >0, let B = {(x,y) € M x M :d(xz,y) >1'}. Then E, is compact, and by the

locally uniform off-diagonal decay of the heat kernel, we conclude

Vo,y € By ¥t <1:|K(t,z,y)| = Op gy (t%°) (A.6)

Now let F,,» = {(z,y) € M<, x M :d(x,y) <r'}. Then F,, is compact. By interior
blow-up, there is ' =1 (r) € (0, ﬁ) such that

1 . —00
vay € Fr,r’th <1: |K(t,.1},y)| = Orﬁxﬁy (W <$—\/¥y> ) (A7)

Theorem 126. Let M be a bounded C*-domain in R, p € (1,00) and X € LPX(M).
Then

1 el0
> 00 A () = o HHX(:U =eh) = X@lg ||, S0 (A.8)
18 equivalent to
¥r >0 Nv [ Pan X poary ~—or 0 (A.9)
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Remark. The proof actually shows for N > 1:

l 1X 10
NFNPoxX ooy = Or (HATHLM@,;D D

Proof. We first show (A.8) implies (A.9). Fix r > 0. Let ' = +/(r) € (0,%) as in
(A.7). By (A.6), we can disregard the region {d(x,y) > '}, and just need to show

()

But by (A.7), the left-hand side is bounded by

(%) 0, (ti/ <%>w) X(y) — X(2)

< (\%) (€7 X - Vi) - X . (A.10)

SSEE

t—0
— 0

LZ(M>7‘)

/d( A E() (X)X ()

3=

Lgly(Br’ (z)) LE (M=)

SR

where we made the change of variable { = x—\;f” By (A.8) and Holder’s inequality, we

can disregard the region {|¢| < 1}. Then we split 1 < |(| < \T/_/Z into dyadic rings:

Ll
/ [Cl~N LQ(M>,«)

(A.m)g(%); v L | X - Vi) - X))

()

(%) T aexe-n-xel,

X = viQ) - X ()|

! I<l~N Lg(M>7‘)

N
=]
R

Lg(M>r)

where we made the change of variable 7 = v/#(. Now observe that (A.8) implies that

167



for e <r/2:

=cv A (e)

LP(M>T)

1% @ = 7) = X@)l

|| <e

where 0 < A, (¢) < [[Ar|l 1o 0,/ and 4; (€) % 0. Then

n+tl bl

(A.10) < (%) Y (\f N) " A, (ViN)

NEZNO,Ng\T[
1
s > =A(van)
Ne2No N< T7
tl0
LN
DCT

Now we show (A.9) implies (A.8). Observe that by Corollary 118, (A.9) is equivalent
to

N—o0

Ngi HP<NX||W1PM )—)OVT>O

Now fix r > 0. Then for € € (O,min (1, g)), define N = %, and we have:

Ar<€)<N; ‘P<NX<£C—N]I) P<NX()
W<l oo,
1 1
+ N» ’ PonX (a: - Nh>
W<l oo,
N 1P X @l ]
T >r
1 1 1

< Nv! HVP<NX <x — Tﬁh) + N \!P>NX|!LP(M
Ly (0,1 || 1 -

|h|<1 Lp(M>T)

e—0

S NF BN Xy )+ NPy 0
)

wtp <M>5

Note that we used Minkowski’s inequality, in passing to the last line. [
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APPENDIX B

Construction of the heat kernel

Recall the Japanese bracket notation (a) = \/1+ [a[2 ~ 1 + |a|. We also write a = O (b™)
or |a] < b to mean |a| <; b VI € N.

Let (M, g) be a compact Riemannian n-manifold with boundary. A differential k-form is
a member of C> (M; A*M).

In this chapter, unless otherwise noted, we write A for the Hodge Laplacian on forms.
We also let (t,z,y) be the standard local coordinates for [0,00) x M x M. When x or y is
near the boundary, we can stipulate that z,, and y, stand for the Riemannian distance to

the boundary (geodesic normal coordinates).

We aim to construct a unique Hodge-Neumann heat kernel with the absolute Neumann
boundary condition. In particular, define END (A*M) = Hom (m3A*M, 7jA*M), where m;
is the projection from (0,00) x M x M onto the i-th M. We want

K € O ((0,00) x M x M;END (A*M))

such that

(0 = Be) K (t,2,y) = 0
n, K (t,z,y) =0 for x € OM
n,d,K (t,z,y) =0 for v € OM
ltlf(quK (t,z,y) =9, ()
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where the last condition means Yu € Z (M; A*M) , [ K (t,z,y) u(y) dy LN u(z).

During the construction, we will be able to prove certain properties of the kernel, such

as off-diagonal decay for all derivatives.

The construction of the heat kernel comes from [MV13], and we simply discuss the
modifications required for our case, to handle the Hodge-Neumann Laplacian on a smooth

manifold with smooth boundary.*

B.1 Kernel in Einstein sum notation

Let A € C%° ((0700) x M?* END (AkM)) Let U C M be a coordinate patch. Then, by

loc

using Einstein notation, locally for x,y € U we have:
At z,y) = A7 (t 2, y) de’ © 0y

where I, J € Zj, = {(i1, ..., i) 1 41 < ip < ... < ix} and 9,s is dual to the form dy’. (also in

Einstein notation, we write 2" instead of z,,)

e Note that we are abusing notation, as dz! here is a local section of 7 A* M — (0, 00) x
M?, defined by pulling back the actual form dz! on M. We can explicitly write
A (t,z,y) dx1|x ® 8yj|y to emphasize the pullback.

e Observe that d, A (t,z,y) = d, (A;7 (t,2,y) dz’) @ 0,0 = 0 Ay (t, 2, y) (dat A dx') @
9.

o If u(y) = uy(y)dy’ is a differential form on M, we write

Atz y)uly) = Ar? (t,2,y) us(y)ds’

'The author thanks Daniel Grieser, Andras Vasy and Rafe Mazzeo for discussing these ideas.
The original plan was to follow the note [Gri04] which is simpler and does not rely on Melrose’s calculus,
but we have decided to clean up the note, modify some steps and publish it at a later date.
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which is a section of 7} A*M.

As agreed above, when U touches the boundary, d,» is the inwards normal direction, so for

€ OM: nA(t,x,y) = loefAr (tz,y)da! ® 0,0

e Ifn,A=0 for all x € OM, then
n,dy A = 1,g10mAr” (¢, 2,y) (dz" A dz") ® O,

So n,d, A =0 <= 0.A;’ (t,2,y) = 0 whenever x € OM,n ¢ I. In other words,
n,A = 0 and n,d, A = 0 mean the normal part obeys the Dirichlet boundary condition,
while the tangential part obeys the Neumann boundary condition. This will inspire

the choice of leading terms later on.

B.2 Heat calculus

Let x = (2',z,) and y = (v, y,) be points in R™. Recall:

1. The scalar heat kernel on R™: K (¢,z,y) = (é%)n/2 ==

7y

where 7 = V/t,( = £,

T e~

2. The Dirichlet scalar heat kernel on R™™! x [0, 00):
1 n/2 "2
K <t7l"y) = (E) T_ne_% <6_i|€n_77n|2 — €_i|§n+77n|2>

_z _yn 'y
where §, = =2, n, = 2, (' = *—

T

3. The Neumann scalar heat kernel on R"™! x [0, 00):

1 " -n -~ —l|fn_77n|2 _l‘fn‘f"’in‘Q
K (t,z,y) = yy T e 4 <e4 +e71 >

They will inspire the formulation of our boundary heat calculus, which describes heat-type

kernels on manifolds.
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We assume the reader is familiar with the spaces of conormal and polyhomogeneous

distributions on a manifold with corners [Mell8§].

B.2.1 Blown-up heat space

We first construct the blown-up heat space M7, with the faces If, ff, td, tf as defined in

[MV13] (though our case is simpler).

We start with [0, 00) x M x M, with faces tf (temporal face), rf (right face), If (left face)
being defined as {0} x M x M, [0,00) x OM x M, [0,00) x M x OM respectively. Then we
perform a parabolic blow-up [Mel18, Section 7.4] on the submanifold {0} x M x OM in the
time direction dt, to create the face ff (front face)?. This creates an intermediate manifold

that we will call M;.

After that, we perform another parabolic blow-up on the lift of the submanifold {0} x
A (M) to M, (to be more precisely defined in (B.5)), which creates another face td (time

diagonal). This is the space M? we need.

If rf

tf tf
td

Figure B.1: The blown-up heat space M}

2We are following [MV13] by letting rf be defined by z,, = 0. Other authors might prefer y,, = 0.
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B.2.2 Local coordinates

By letting 7 = v/, we call (7, x,y) the ts-coordinate system (time-rescaled) for [0, 00) x
M x M.

e On My, near rf and away from If (i.e. y, > 0), we use the rf-coordinate system

t I "
T:779/:u79n:x_ay/7yn (Bl)

n Yn n

where 0, y,,T are respectively the boundary defining functions for rf, ff, tf. For blow-

ups, it is also useful to define the (time-rescaled) tsrf-coordinate system
< =VT,0,0,,Y yn (B.2)

We observe that as (¢,0,0,,y,yn) — (s,6,60,,9,0) in the tsrf-coordinate, in the ts-

coordinate we have

(0,(%,0), (¥, 0)) +yn (5, (¢, 0x) , (0,1)) = (0, (4, 0), (4, 0))

The (time-rescaled) tangent vector (s, (¢, 6,,),(0,1))* at (0, (v/,0), (¢, 0)) (modulo vec-
tors tangent to {0} x M x 0M, and modulo positive scalar multiplication) corresponds
to a point on ff, which is [(s, (¢, 60,), (0,1))] = [(s, (0, 6,), (—€,1))]. This is what allows
us to extend the (ts)rf-coordinate systems from [0, 00) x M x M to M, with {y, = 0}
being the face ff.

e On M, near ff and away from tf, we use the ff-coordinate system

T, x/_y/
7‘:\/%,1"7": 7/: y lin =
Sy A A

(B.3)

SE

3Explicitly, the tangent vector is <0, + (¢/,6,) - 0, + (0,1) - 9,,.
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where 7, &, n, are respectively the boundary defining functions for ff, rf, If. As (7,2/,&,, (", n,) —

(0,2',&,,¢",m,) in the ff-coordinate, in the ts-coordinate we have

(0, (2',0), (2/,0)) + 7 (1,(0,&) , (=¢",ma)) = (0, (27,0, (2, 0))
The (time-rescaled) tangent vector (1,(0,&,), (=" n,)) at (0, (2,0),(2',0)) corre-
sponds to a point on ff, which is [(1, (0,&,), (=, 1mn))]-
On M?, near td, near ff, away from If, away from tf, we can use the rf-coordinate

system from (B.1) to define the fftd-coordinate system

4 0, — 1
ﬂ:ﬁ,glzﬁ,(fn:ﬁ y/,yn (B4)

where 9 is the defining function for td. Note that as (9,0, 0,9, yn) — (0,0, 00, ¥, Yn)

in the fftd-coordinate, in the tsrf-coordinate we have
(07 07 17 ylv yn) + 19 (]'7 OJ) UN7 07 0) — (07 07 1’ y/7 yn) (B5)

We observe that the points (0,0, 1,9, y,) in the tsrf-coordinate, are precisely the lift of
the submanifold Dy := {0} x A (M) to My, which we will write as D;. By blowing up

Dy, we create the face td and M?. Note that 6, = 1 > 0, so td does not intersect rf (or

If). Also, the (time-rescaled) tangent vector (1,0, 0,,0,0) at (0,0, 1,4, y,) corresponds
to a point on the face td.

On the other hand, the point (¢, 0’, 0,9, 0) in the fftd-coordinate on M? maps down
to the point (9, ¥o’, Yo, + 1,4/, 0) in the tsrf-coordinate on M; (the map being injective
on {¢ > 0}), which in turn corresponds to the point [(¢, (0,d0, + 1), (—v0’,1))] on ff.

The points (0,0, 1,y,0) in the (ts)rf-coordinate are precisely the intersection ff N D
in Ml.

The points (0,0, 0,,4',0) in the fftd-coordinate are precisely the intersection ff N td
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- 2
in Mj.

On M2, near td, away from ff and away from tf, we use the td-coordinate system

T=Vtr,(= az\;fy (B.6)

where 7 is the defining function for td. As (7,z,{) — (0,z,¢) in td-coordinate, in
ts-coordinate we have

(0,z,2) +7(1,0,—C) — (0, x,x)

So we identify the point (0, z, () in td-coordinate with the (time-rescaled) tangent vec-
tor (1,0,—() at (0,z,x) € Dy, which gives a point of td (or to be precise, away from
the edges, D; and Dy are locally diffeomorphic, and td being defined as a bundle over
D; is also locally defined over Dy).

Wherever we have both the td-coordinate system and the fftd-coordinate system, the

point (7,z,¢) = (7, (2',2,),(¢",(,)) in the td-coordinate (with =, > 0,x, — 7(, >

0) corresponds to the point (x T Gl — 7, — T<n> in the fftd-coordinate.

n—7Cn’

Conversely, (U, 0', 0,9, yn) in the fitd-coordinate corresponds to

(Vs (Y + 9Yn0', Yo + DY) , (07, 04))
in the td-coordinate. Consequently,

(0, (z',x,),(¢",¢y)) in td-coordinate corresponds to (0,(’, ¢, 2, x,) in fftd-coordinate
(B.7)

and we identify the tangent vector (1,0, —() at (0,z,2) € Dy (in the ts-coordinate)

with the tangent vector (1,({’,(,,0,0) at (0,0,1,2",2,) € D; (in the tsrf-coordinate),

as the same point in td.
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Remark 127 (Compatibility condition at ff Ntd). For any smooth functions u on ff and v on

td, the following are equivalent:

1. In the fTftd-coordinate:

w(®,0,00,,0) =% v (00", 00,9/, 0) (B.8)

2. There is a smooth function f on M7 such that N (f) = u, N (f) = v.

B.2.3 Edge calculus

Definition 128. For o, o’ € —Nj, we define \Ilg’_of:’E“’E‘f (]\/[; A'“M)4 as the space of Schwartz
kernels K that are pushforwards of polyhomogeneous kernels KonM 2 (though we will abuse

notation and also write K for K ) such that:

e the index sets at If and rf are Fyy = (Ef, Eff) and Eyy = (EY%, E%). Here Ef, EY, describe
the local coefficients of t, K (the tangent component), while £}, E% describe the local

coefficients of n K.
e the index set at ffis {(j — (n+ 24+ «),0) : j € Ng} (expansion in 7 from (B.3))

e the index set at tdis {(j — (n +2+/),0) : j € No} (expansion in 7 from (B.6)). By

convention, it is () when o = —o0.
e the index set at tf is () (off-diagonal decay).

Theorem 129. The absolute Neumann heat kernel H lies in \11;_21’172’E“’E” (M; AkM) where

hd EltfrEl??E:ﬁE;% - NO X {0}5

4To translate to the definition of \I'i_p hE‘f’E” from [MV13, Section 3.2], we can use the formulas o =
o/ =—-p—-2,n=m,n—1=b.

5In fact, due to symmetry, we must have Ejf = Ei;.
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e n,H=0 and n,d,H = 0.

We can also write \1/;_21’:2’N°’N0 to describe smoothness at If and rf.

B.3 Proof of Theorem 129

We proceed exactly as in [MV13, Section 3.2].

For any A € \Ifg"ff:’E”’Erf (M; A*M), we can expand w.r.t. ff (with coordinates as in (B.3))
A= AT @6 (o) T AT (6 ) T

We write N;" 27* (A) for the leading coefficient A%, . We can expand similarly w.r.t.
td and define N3" 727" (A).
Then we note that ¢ (0, — A,) is a b-operator which could be restricted to ff and td. In

particular,

Ng" 27 (8 (0 = D) A) = Ng" 277 (0 — D)) Ng" 277 (4)
N 27 (80 = Ag) A) = Ng" 27 (£(0, = A0)) Ny ™7 (A4)

where, in the td-coordinate system from (B.6) and the ff-coordinate system from (B.3):

N7t (0 — Ay) = —Ac (x) — 3¢ - 0 — M2+

~ (BY)
Ng" 2780 — Ay)) = =Deg (2,0) = 5 (¢ &) - O gy — 552

Here we have written ¢ - 9c = 3, (i0¢, and A¢ (v) = 37, 5 g7 (2)9¢, 0, -
Then we have t (0; — A,) \I/gfﬁ’E”’Erf C \I/Z‘;O}‘;’NO’NO.

From this point on, we fix Ej, F,¢ to be as in Theorem 129.
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Claim 130. There is an element HY € \IJ;EEQ’E”’E” (M; A’“M) such that

P(l) =1t (at - AI) H(l) - \I{e_j’il_ooaNmNO

Proof. To prove this claim, we construct A € ¥_~ 2 “2BeEt guch that

Nig" (A) (z,¢) (B.10)
1\™? 12, 1\"? 1w
- (a) ©o s (a) e do], @ 0y, (B.11)
Ng" (A) (2", &, ¢ )
1 /2 i<’ ‘g(z’ 0) 1 2 1 2
— (4—) e 4 <67|§”*77”| (t+n)+ e~ 1léntmnl (t — n)) (B.12)
T
n/2 |12
1 _ = 9(=0)
= 1n¢[ <E) € 4 ( |£n TIn‘ +e 4|£n+77n > d&? ( /’0) ® 8y1}(m/,0)
1\"? e, s
+ Lyer <4—) 6_# ((37'5"_’7”‘ — e aléntnl ) da:1| 0 @ Oy ‘ 0)
T

This choice satisfies the compatibility condition from (B.8) (with N " (A) =
NP, (t2A) and Ng" (A) = N (t2 A)), since

o195 0) (e—ilo—nﬁ (t +n) + e tlontdP (g — n)> 920, 5170 (e_i"’"‘rz)

Lyt 2
—e 1l(e ’f’n)|g(y/,0).

We note that A is smooth on (0, 00) x M x M, and we can make A have the same
index set for rf as Ng" (A). More is true: as in Section B.1, by Taylor expansion in
&n, we note that Ng" (A) satisfies the absolute Neumann condition, and so does A.
Off-diagonal decay is also explicit from these formulas (when x # y stay fixed and

t — 0, we have ( = %= = 4 — 00).
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By direct calculations, Ng" (t (0 —A;)A) = 0 and N " (¢ (0, — A;) A) = 0.
Therefore ¢ (9, — A,) A € W% #5N0 We then observe two facts:

e In the expansion of A at td, A;d for 7 > —n can be freely changed.

e For any smooth f (z,() that is Schwartz in ¢ (rapidly decaying) and 7 > 1,

there is a unique F'(z, () rapidly decaying in ¢ such that
NG (8 (00— A)) F (2,0) = f (,€)

In particular, by using the Fourier transform ¢ — z (with the convention F (z) =

Jen F(Qem276% d():

~

1
F(z,2)= / ds 25771 f (x,s2) e~ (47%) (1=5) 12l30)
0

See also [Alb17, Section 6.2] for an explanation of this. It boils down to the
fact that A, is smoothing (elliptic) for ¢.

Therefore it is possible to change (A;-d)j>_nto make ¢ (0; — A,) A vanish to infinite

order at td. It boils down to solving
Ny (00— Ap)) A = By, j > —n

where Bj is an inhomogeneous term depending on A*, ..., A% . Changing (A;‘d)j>,n
will not affect the index set of A at rf, since td does not intersect rf and If, by
the above reasoning with (B.4). A is smooth at rf and 1If, and we therefore obtain
t(0 — A,) A g W %moololo,

We finally note that lim, o A (¢, 2,y) = 0, (x) due to (B.10), which is the “univer-

sal” formula for the expansion of heat kernels in the interior of manifolds. The claim

is then proven. We refer to [MV13, Proposition 3.2] for more details. ]
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So we have solved away the leading coefficient of t (0, — A,) H at ff, as well as all the

coefficients at td.
Next, we solve away all the coefficients at rf.

Claim 131. There is an element H® € ng;:zElﬁErf (M; AkM) such that

PO =19, — A,) H® e g %moolod
limgo H? (t,2,y) =4, ()

Proof. Let r(z) be a boundary-defining function for rf such that r(x) = dist (z,0M) =
x, near rf. We observe that r? (9; — A,) is a b-operator which can be restricted to
rf (defined by 6#,, = 0 in the rf-coordinate system from (B.1)). On the other hand,
in the ff-coordinate system from (B.3), r = 7&,, so 72 (9, — A,) is also a b-operator
w.r.t. ff.

We observe that (9, — A,) HD € W 70NN and we want (0, — A,) H® €
\I/:;I_OO’NO’@. Therefore it is enough to find J € \I/;E’fl_?”E'f’Erf (M;AkM) such that
r? (0 — A,) (HW — J) vanishes to infinite order at rf.

Let B =12(9, — A,) HY € W_%7>NoNot2 o note that Byt = Bif = 0, so it is

fine to set Jit = Jif = 0.

Recall that A, = Zij g" (z) 02,0z, + >, biOy, +c where by, ¢ are smooth. Then by

translating r? (9, — A,) into rf-coordinates, we have to solve the formal expansion at

rf:
0, <3T — " 9995,00, = > ynbiOs, — 0;, — YnbnOs, — cyi) <Z Jf%) =Y B
ijn in =2 j=2
(B.13)

Note that near rf, because we have chosen the geodesic normal coordinates, ¢ = 6™
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for any ¢ € {1,...,n}. Then, (B.13) boils down to solving

Njf (T'2 (at - Am)) J]rf <T7 9/7 y/> yn) = Cj (T, 917yl7yn> ) ] > 2

I

where
o NL(? (0 —A)=—j(—-1),j>1L

e () is an inhomogeneous term depending on B;f and Jif, ..., Jj’?f_l. In particular,

Cy, = B

Solving this is trivial (with unique solutions), since for j > 2, N7 (r? (0, — A,)) is a

nonzero constant. We note that (J?f)j>2 inherits many properties from (Br-f by

J J )]22

induction:

e In the rf-coordinate system, B]r»f is defined from % 8; ‘ B (abuse of nota-

w10, =0
tion). But vy, is the defining function for ff; so the index set of Bjr-f at ff is
the same as that of B, and therefore this is also true for Ji'. This extends to
J;f Vj > 2, because we can explicitly derive C; from (B.13), and see that the

powers of y,, never get lowered (no d,, or yi)

e The index sets of B at td and tf are empty (i.e. B = O (T*) as T'— 0), which
implies Jif = O (T*).

Note that we also have to solve for J;f where y is away from the boundary (which
means there is no rf-coordinate system). In that case, we use the ts-coordinate system
and solve the formal expansion at rf. This proceeds in the same fashion (but it is

even simpler, since we are far away from ff).

Consequently, constructing J from (J;f)j>0 givesus J € \I/;_i)’l’:oo’NO’NOH (M cAFM )

such that B —r? (9; — A,) J vanishes to infinite order at rf.
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With the index set at rf being Ny 4 2, J trivially satisfies the absolute Neumann
boundary condition. Also, because the index sets of J at ff and td are higher than

those of HM, we conclude

N (HO ) = N (1)
Neg" (H(l) - J) = Nyg" (H(l))

By setting H® = H® — J the claim is proven. [

For the last step, we consider the formal Volterra series:
H=H9 +H?Y«R® 4+ H® « R® x R® ¢ .
where R® := — (8, — A,) H® € >N 4nd the composition A % B is defined by

t
AxB(t,x,y) = / ds/ dvol, (2) A(t —s,z,2)B(s, 2,y)
0 M
By [MV13, Theorem 5.3|, if Qir + Q. > —1; a,y, 8 € —Nj, we have the formula

a,7,Q1,Qrt B,—00,Q1¢,Qr¢ a+B,—o0, Pit, Prt
\De—h * \Ije—h C \Ije—h

where P = QU (Qix — B); Prr = QU (Q); — «). This means that for N € N :

H®? 4 (R(Q))*N c \IJG_EEN’—OC%EH,N,E&
where Fjy is defined inductively by Ey; = NoU (Ng + 1) and Ey ny1 = NoU (Ejg n + 1) for
N >1.

Letting N; ={r e N: 2 > j} and A4 = N,, we conclude that

J€No

VNZE1f7NC</V:{($,y)ENginQT}
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which is a well-defined index set.

A common property of Volterra series is that they converge. We can observe this from

the fact that Vm € Ny, L*™ (¢, z,y) is equal to

/ dvol,, (21,...,zm_1)/ d(s1y.ySma1) L(t—81— .. — S—1, T, Zm—1) ---L (81, 21,Y)
Mm—l At

m—1

where A! | is the simplex defined by {0 < 57 < 81+ 82 < ... <51+ ... + 81 < t}. As the

volume of Al is (7";:—__11)!, the factorial factor m ultimately forces strong convergence as

m — oo. See [BGV04, Section 2.4], [MV13, Section 3.2], and [Mellg] for more details and
estimates.

Consequently, we obtain H € \I/e_i_ZJV’E“. Because of the identity

(@ =8 (H® s« ()7 = (RO) " = (),
we conclude
Let us check that H is the true Hodge-Neumann heat kernel.

e The absolute Neumann boundary condition comes from the strong convergence of the

Volterra series.

e For any u € L? (M;AkM):

H(t)u(x) := /MH(t,x,y) u(y) dvolyy € C*° ((0,00) , QﬁomN)

and satisfies (0; — A,) (H(t)u(x)) = 0 on {¢t > 0}. In particular, H (¢) € End (L?) for
all £ > 0 and

o, (I (tull2:) <0 (B.14)
because the Neumann Laplacian E is self-adjoint and dissipative.
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e We have N;" (H) = Ng" (HW), therefore lim; o H (t,z,y) = &, (z). For any u €
QF (M) : H(t)u i—j)) u, which, along with (B.14), implies || H (t)ul|;. < ||ul|,= . By
density, we conclude the same for u € L? (M;A*M). Recall that AN is the heat
semigroup defined by functional analysis. For any v € L? (M AP M ), U(t) == H(t)u—

etANqy is a CPL2 solution of

0, — A)U(t,z) = 0Yt>0

L2
Ut)— 0
t10

By an energy argument just like (B.14), we must have U (t) = 0 for all . Then,

H(t) = etAn,

So H is the true heat kernel, which must be smooth on (0,00) x M x M by standard
parabolic theory. Another way to see this is that the heat kernel must be symmetric, therefore

smoothness in x implies smoothness in y. Either way, because we have smoothness, there

—92,-2,No,N
are no log terms on If, and we conclude H € W_7 57,

B.4 Relevant properties

We extract some key properties from Theorem 129 that we need for this thesis, and write

them in a language more familiar with analysts.

1. (off-diagonal decay) For any multi-index v and x # v,
Dy, H (t,2,5) = O (t%) (B.15)

as t } 0, locally uniform in (x,y) ¢ A (M).

2. (interior blow-up) For xz € int (M), locally in projective coordinates (7,z,() =

<\/¥, x, %), with H being the pullback of ¢tz H in these coordinates, we have
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(a) H smooth in 7,z,¢, up to {r = 0}.

(b) (rapid decay) For any multi-index v and bounded 7:
D, H (7,2,0) = 0 ({0)™™) (B.16)

Remark 132. Both (B.15) and (B.16) come from the empty index set at tf. We also refer to
[Kot16, Section 2.3.3| for an explanation of (B.16).

There are more specific properties from Theorem 129, which we do not currently need.
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