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Abstract

Computational models can support materials development by identifying the key factors that affect material

properties and by guiding the search for optimal chemical and processing conditions. However, the success

of this venture assumes the ability to accurately model material structures and the relationship of those

structures to material properties. State-of-the-art tools in high-performance computing and machine learning

are continually improving the performance of these models, thereby furthering their integration into the

process of developing better materials including advanced alloys.

This dissertation includes three projects that use atomic simulations to support the development of

advanced alloys for applications in extreme conditions. First is the construction of a novel framework for

machine learning potentials (MLPs). MLPs could dramatically accelerate simulations of atomic systems

while providing the accuracy of electronic structure techniques through the use of supervised regression

algorithms. MLPs do still have a higher computational expense than empirical potentials though, both

during their construction and for every evaluation of the potential energy. With the purpose of reducing

these costs and alleviating the necessity for enormous training data sets, our framework for producing MLPs

combines an efficient implementation of a sparse Gaussian process algorithm with a novel set of descriptors for

atomic environments. Second, molecular dynamics is used to investigate energy storage and heat evolution

during high-strain-rate deformation of the refractory metal Ta. This is encapsulated in a quantity known

as the Taylor–Quinney coefficient, which is critical to models of material failure in conditions where direct

experimental measurement of the temperature is infeasible. Other than developing a phenomenological model

for the energy stored in the material, this chapter identifies that a significant amount of the energy is stored

in the form of point defects. Third, molecular dynamics is used to study the defect structures that evolve

in irradiated materials in the low temperature and high radiant flux regime. The algorithm used involves

the successive insertion of Frenkel pairs and relaxation of the simulation cell, and allowed the study of Fe,

equiatomic CrCoNi, and a fictitious metal with identical bulk properties to the CrCoNi up to the equivalent

of 2.0 displacements per atom (dpa). Several areas requiring further research are identified, including the

mechanisms by which Shockley partials develop in FCC metals at low dpa and robust ways to measure point

defect concentrations in heavily-damaged FCC materials.
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Chapter 1

Introduction

“All models are wrong; some are useful”

-George E.P. Box

The process of developing novel high-performance metal alloys is remarkably challenging because of the

large design space and continual difficulties associated with competing properties. Depending on the ap-

plication, a suitable alloy providing an acceptable trade-off of competing properties, manufacturability, and

cost could be lost in the combinatorial space of potential compositions. The alloy development space, in a

manner similar to a plethora of other materials problems, poses fundamental scientific questions that are

laborious and expensive to address experimentally. Many such questions are well suited to be addressed

using computational models and simulations. John von Neumann and his colleagues at Los Alamos National

Laboratory provided some of the earliest demonstrations of the utility of computational material simulations

following the end of World War II with the inception of Monte Carlo (MC) techniques [1]. von Neumann’s

MC simulations directly led to well-recognized scientific breakthroughs in nuclear physics relating to neutron

diffusion [2]. Since then, computational models and simulations have become increasingly integral to materi-

als development processes, providing insight into the connections between microstructural features and their

effect on material properties and thereby guiding the search for optimal chemical and processing conditions.

Indeed, this is the basis for the Integrated Computational Materials Engineering (ICME) paradigm, in which

computational models are integrated into and used to accelerate multiple stages of the materials development

pipeline [3].

An example application that could benefit from the ICME methodology is the development of structural

components for next-generation nuclear reactors that are intended to provide a consistent and low-carbon

baseline power supply during the upcoming century [4]. All of the concept Generation IV nuclear reactors

1



would require materials to operate for much longer periods at higher temperatures and higher radiation

doses than the current light water reactors, most of which were constructed in the 1970s and 80s [5, 6].

Whereas current light water reactors have structural components that are exposed to temperatures around

300 ◦C and up to 80 displacements per atom (dpa, the standard measure of radiation damage) over a 40

year operation life, several of the Generation IV reactor concepts would be exposed to temperatures of up

to 1000 ◦C and 200 dpa over the course of 60 years [7]. Advancing the properties of metal alloys to be able

to withstand these fierce conditions is one of the most prominent challenges facing the realization of such

nuclear reactors.

Computational models and simulations provide a means of investigating prospective alloys’ strength,

radiation resistance, and corrosion susceptibility for this and other applications in extreme environments.

Metallic strengthening mechanisms in an alloy of interest can be studied through deformation simulations.

When a metal is plastically deformed, most of the work that is imparted to the material is dissipated as

heat. The remaining fraction of the work is stored in the material in the form of defects, commonly referred

to as the “stored energy of cold work” or “latent energy”. If the deformation occurs at a high strain rate, the

evolved heat is unable to dissipate to the surroundings, resulting in a potentially significant increase in the

metal’s temperature. Since the mechanical properties of metals are temperature dependent, it is important

to accurately describe both the heat evolution and dissipation during continuum-scale simulations.

The ratio of evolved heat to plastic work was first experimentally investigated by Taylor and Quinney

nearly century ago [8] using the torsion of copper rods to high strains. This ratio is commonly referred to as

the Taylor–Quinney Coefficient (TQC), and according to their measurements is initially close to 0.9 before

asymtotically approaching 1.0 with increasing strain. The TQC is ultimately a function of the microstruc-

tural evolution of the material [9] and can depend on the alloy species, strain, strain rate [10], deformation

orientation [11], and infrequently the loading mode [12]. The total stored cold work depends on the con-

figuration and distribution of evolved defects that can include dislocations, point defects, grain boundaries,

stacking faults, and twins. Although molecular dynamics (MD) simulations have not frequently been used to

study the stored energy of cold work[13], the atomic-scale resolution can help to resolve the relevant defects

and provide complete information about the partitioning of energy into thermal and potential contributions,

reducing any systematic errors involved in evaluating the TQC.

Another property that must be considered specifically for prospective structural alloys in nuclear reactors

is, of course, radiation resistance. Passing high-energy particles (typically neutrons) can transfer kinetic

energy to an atom of the metal lattice, initiating a collision cascade that displaces the surrounding atoms,

produces a thermal spike, and generates a high concentration of point defects [14]. As the density of

point defects increases with further radiation damage, they can initiate processes that sharply degrade the
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material properties. Specifically, point defect concentration and migration are heavily implicated in radiation

hardening, radiation-induced segregation and precipitation, void swelling, and radiation-induced creep [7].

MD simulations have been used in recent decades to simulate and study the cascade collision events initiated

by impacts from high-energy radiation particles [15, 16, 14]. While the same simulations could in principle be

used to directly investigate the degrading effects listed above, in practice it is difficult to simulate a sufficient

number of overlapping collision cascades to reach the required point defect concentrations.

Multi-principal element alloys (MPEAs) are a promising class of metal alloys for this and related ap-

plications. Prior to the initial identification of MPEAs (or high-entropy alloys) in the early 2000s, alloy

development mainly involved adding small amounts of one or more secondary elements to a single primary

element that defined the properties of the underlying lattice. The development of MPEAs has dramati-

cally expanded the domain of alloys to consider though, with much of the recent research being into alloys

where three or more elements are in near-equal concentrations and form a single solid solution (a solid-

phase homogeneous mixture). The resulting alloys could be ideal for structural applications in extreme

environments, with reported properties including an unusual combination of strength and ductility [17, 18],

corrosion resistance [19], and resistance to radiation damage [20]. For example, the CrMnFeCoNi Cantor

alloy has demonstrated a remarkable combination of yield strength and fracture toughness that is already

competitive with all other state-of-the-art alloys developed to date [18]. Furthering our understanding of

the aspects of MPEAs that are responsible for their exceptional properties is essential to being able to tune

their composition and structure and achieve further improvements.

The modeling of MPEAs, along with almost every other area of science and engineering, is benefiting

from the recent and widespread application of machine learning approaches. The application of data science

techniques to address materials science problems in particular is already considered to be a distinct subfield

of “materials informatics” [21]. Well-established data science methods for pattern recognition, regression,

dimension reduction, and classification have become ubiquitous here partly because materials science in-

vestigations continually produce large quantities of high-dimensional data. A major objective of material

informatics is to expedite the materials design process using inverse strategies, or methods that use machine

learning models to identify a small subset of candidate material morphologies and compositions possessing a

desirable combination of macroscopic properties for a given application. However, as pointed out by Jain et

al. [22], developing successful inverse strategies will require efficient feedback loops that use current simula-

tions and experimental approaches as forward strategies. Specifically, forward simulations and experiments

provide the experience and theory that is necessary to construct inverse models, and they allow the inverse

models to be validated and directed. In addition to supporting the search for highly effective inverse mod-

els, machine learning has already shown success in other materials modeling problems including bringing
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simulations at disparate length and time scales [23].

On the higher-resolution end of the range of computational techniques are ab initio electronic structure

calculations that rely on a knowledge of fundamental electron interactions, with reasonable approximations

for those parts of the interactions that are not well understood. The computational resources that are

available today limit such methods to small numbers of atoms, on the order of 103. On the other end of

this range are continuum models that can capture macro-scale phenomena to varying degrees of accuracy.

These approaches are driven by parameterized constitutive relationships, making accurate parameterization

critical to the extraction of meaningful information regarding material properties. There is great interest in

the computational materials modeling community in developing methods that bridge these time and length

scales, ideally using more accurate and more expensive models to parameterize or train less expensive ones.

This could ultimately enable the ab initio techniques to even inform the behaviors that emerge on the

macro-scale.

One of the most successful examples of using machine learning algorithms for scale-bridging has been the

machine learning interatomic potentials for atomistic simulations. Referred to as machine learning potentials

(MLPs), these functions interpolate ab initio calculations for the potential energy of an atomic configuration

using regression algorithms. The construction of an MLPs initially requires a computationally-convenient

representation of an atom’s local environment. This is usually an array of scalars known as descriptors that

is invariant to the symmetries of the physical system and from which the machine learning algorithm can

extract important features related to the potential energy. Next, a regression function is constructed on

the space of descriptors to map a local atomic environment to a potential energy. The success of machine

learning in this area is a consequence of machine learning effectively being the nonparametric regression

of functions in high-dimensional spaces, and particularly complex functions that do not necessarily have

analytical definitions. There are several MLPs already reported in the literature that display DFT-level

accuracy with orders of magnitude lower computational cost [24, 25, 26].

Recent work by Rosenbrock et al. [25], provides an apt example of the capabilities of MLPs for metallic

systems, while also the highlighting the differences between two state-of-the-art MLP frameworks, namely,

Gaussian Approximation Potential (GAP) and the Moment Tensor Potential (MTP). Both MLP models

were able to fit a potential for a Ag-Pd system and accurately predict DFT-calculated forces, energies,

virial stresses, and phonon dispersion curves for a wide array of compositions. The superior computational

efficiency of MTP made it the only suitable choice for calculating a temperature-composition phase diagram

for the alloy with acceptable resolution. On the other hand, GAP demonstrated the greater transferability

(ability to make predictions for configurations far away from the training examples) in that it gave more

reasonable pathways between configurations. Understanding which MLP frameworks are best suited for a
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specific application and developing new MLP frameworks is a currently active area of research.

The subsequent chapters of this dissertation describe three projects involving MD simulations that are

motivated by the development of alloys under extreme conditions and, to varying degrees, have aspects

involved with bringing model length and time scales. Chapter 2 describes a novel framework for construct-

ing machine learning interatomic potentials (MLP). This framework, like others in the literature, bridges

electronic structure calculations and MD simulations; the interatomic potential energies that determine the

atomic trajectories are informed by, and trained on, quantum mechanical calculations. Chapter 3 describes a

MD study of high-strain rate compression of single crystal Ta. This study reports TQC values up to a total

strain of 1.0 and also develops two models for the stored energy, one that could be utilized in continuum-

level deformation simulations and a second that reveals the surprisingly high energy contribution of point

defects. Finally, Ch. 4 describes atomistic simulations of radiation damage in a CrCoNi MPEA in the low

temperature and high radiant flux regime. Several areas requiring further research are identified, including

the mechanisms by which Shockley partials develop in FCC metals at low dpa and robust ways to measure

point defect concentrations in heavily-damaged FCC materials.
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Chapter 2

Machine learning potential

2.1 Introduction

Atomistic simulations, encompassing both Monte Carlo (MC) techniques and molecular dynamics (MD), are

well-established tools in a variety of scientific fields, from biochemistry to materials science. All of these

techniques rely on the Born–Oppenheimer approximation, i.e., they assume that the electronic degrees of

freedom relax on a much shorter time scale than that of atomic motion, allowing the atoms to be treated

as classical point particles. MD simulations then apply the classical equations of motion, finding the atomic

trajectories by integrating Newton’s second law. While these are not the true trajectories because of the

inherently chaotic dynamics of many body systems [27], they approximate the behavior of physical systems

well enough in practice. MC simulations instead sample the configuration space (the space such that a

configuration of all atoms corresponds to a single point) in a way that does not involve time integration but

is nevertheless consistent with the canonical Gibbs measure.

Repeated evaluations of the interatomic potential energies and the forces acting on all the atoms are

a critical part of all atomistic simulations. The potential energy can be viewed as a hypersurface over the

configuration space, known as the potential energy surface (PES), on which the electrons are always assumed

to be in a ground-state as a consequence of the Born-Oppenheimer approximation. Methods to evaluate

the interatomic potential energy, commonly referred to in the literature as “potentials” or “force fields”,

generally reduce the dimension of the problem by fitting the PES as a sum of functions defined only on the

local atomic environments of individual atoms. These functions are specific both to the atomic species and to

the material, and the accuracy of the underlying assumptions and the fitting procedure itself fundamentally

limits the accuracy of atomistic simulations and the apparent properties that emerge.
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There are ongoing efforts to develop empirical interatomic potentials using only elementary functions

that can reasonably describe a variety of physical systems based on the types of atomic bonding present. In

metallic systems the embedded atom method (EAM) [28] and modified embedded atom method (MEAM)

[29] have been widely successful. This approach involves dividing the potential energy Ei of an atom i into

a sum of pair-wise interactions and a term that accounts for the energy cost of embedding that atom into

the local electron cloud [30]:

Ei =
1

2

∑
j

V (rij) + F (ρ̄i) (2.1)

where V is a function of the pair-wise atomic distance rij from atom i to a neighboring atom j, and F is the

embedding function over the local electron density ρ̄i. The local electron density is in turn defined as [30]:

ρ̄i =
∑
j

ρp(rij) (2.2)

where ρp(rij) is the contribution to the local electron density from neighboring atom j. The refinement

introduced by the MEAM potential includes an angular term in the electron density function.

Despite the general success of these methods, the systematic errors introduced by empirical interatomic

potentials are generally unknown, and there are many questions that call for more accurate potential energy

evaluations. The simulated behavior of dislocations (which govern the deformation behavior of crystalline

metal alloys) can be sensitive to even minor perturbations to the potential. For example, Xu et al. used

three different potentials to study screw dislocation behavior in W and found that only one reproduced the

ab initio results [31]. This sensitivity would seem to encourage the exclusive use of high-fidelity potentials,

but the desire for accuracy needs to be balanced with other trade offs. In particular, if the potential is too

expensive, limitations on simulation size and duration could preclude studies of the intended phenomenon.

For example, dislocation core radii are on the scale of 1 nm [32], so simulations of the stress field for a single

dislocation must exceed this, lest non-physical effects of the dislocation interacting with its periodic image

will occur.

The questionable accuracy of empirical potentials and the requirement for efficient evaluation of the

potential energy has motivated a variety of attempts over the last two decades to use machine learning

to develop higher accuracy potentials. These methods are commonly referred to as “machine learning

potentials” (MLPs), and are motivated by the idea that the number of physical assumptions made about the

PES can be reduced by performing a small number of electronic structure calculations and interpolating the

rest of the surface. Setting aside the training data, MLPs consist of two primary components: the descriptors

of a local atomic environment and a machine learning algorithm. The descriptors are sets of real numbers
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that are intended to represent the configuration of neighboring atoms within a sphere around a central atom.

The boundary of this sphere marks a cutoff radius, with atoms outside the cutoff radius assumed to have a

negligible effect on the potential energy of the central atom. These descriptors (or “fingerprints”) should be

invariant to the various symmetries inherent to the PES, including translational and rotational symmetries

and permutations of the labels of atoms of the same species. Respecting these symmetries is essential for

the fitting of the PES to be tractable for the machine learning algorithm. Once the descriptors have been

evaluated, a machine learning algorithm, trained on electronic structure data usually provided by density

function theory (DFT) calculations, predicts the central atom’s potential energy.

MLPs initially appeared in the literature around 1995 when Skinner and Broughton proposed that neural

networks could be used to interpolate the PES [33]; however, widespread exploration of this idea did not

begin until Behler and Parrinello introduced Neural Network Potentials (NNPs) in 2007 [26]. A central

assumption made by NNPs and subsequent MLPS is that the total potential energy E of the system can be

partitioned into a sum of atomic contributions:

E =
∑
i

Ei. (2.3)

NNPs predict an atom’s contribution Ei to the potential energy by using feedforward neural networks (FNN)

trained to interpret the descriptors proposed by Behler and Parrinello, referred to as “symmetry functions”.

These symmetry functions are of two varieties. The radial symmetry functions G1
i characterize the pairwise

distances between an atom i and the neighboring atoms j by means of a sum over Gaussians [26]:

G1
i (rij |η, rs) =

∑
i6=j

e−η(rij−rs)2fc(rij) (2.4)

where rs and η are parameters that control the mean and variance of the Gaussian. The radial character of

the environment is resolved using a set of values η to construct a set of G1
i . The fc is a cuttoff function that

ensures that the potential energy contribution smoothly decays to zero as a neighboring atom is displaced

beyond the cutoff radius rc.

The symmetry functions G2
i instead characterize the central angles between pairs of neighboring atoms i

and j, and is a “three-body” descriptor in the sense that it requires knowledge of the set of all atom triplets.

They are defined as:

G2
i (rij , rik|ζ, λ) = 21−ζ

∑
j,k 6=i

(1 + λ cosθijk)
ζ
e−ζ(r

2
ij+r2ik+r2jk)fc (rij) fc (rik) fc (rjk) (2.5)
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where θijk = (rij · rik)/ (rijrik) are the central angles between pairs of neighboring atoms j and k. A set

of ζ values are used to resolve the space of central angles in the same way that η is used with the G1. The

parameter λ controls the domain of the cosine term.

Training a NNP involves determining the proper sets of symmetry functions (usually by a process of

guess and check) and the values of weights and biases for the FNN. FNNs contain a predefined number

of “hidden-layers” that transform the input features using non-linear activation functions in a way that

allows for highly-flexible function fitting. The Ei returned by the FNN for each of the atoms are summed

as specified by Eq. 2.3 to find the total potential energy of the system, and this is compared with the DFT-

derived total potential energies for each example in the training set. Training the NNP consists of reducing

the discrepancy using standard machine learning procedures to optimize the weights and biases of the FNN,

with backpropagation being the most widely employed [34].

Several other descriptor formulations and MLP frameworks have been developed following the early

successes of NNPs. The Gaussian Approximation Potential (GAP) developed by Barktók et al. [35] uses a

set of descriptors referred to as the smooth overlap of atomic positions (SOAP) descriptors. These begin by

constructing a Gaussian-smeared atomic neighbor density function ρ for a local atomic environment:

ρ(r) =

i=N∑
i=1

exp(−α|r − ri|2) (2.6)

a function of an arbitrary displacement vector r ∈ R3 from the central atom defining the local atomic

environment to any point within the environment. This function can be described as a sum of Gaussians

centered on each of the neighboring atoms, defined by their displacement vectors from the central atom ri.

The parameter α controls the smoothness of the density and is important for the numerical conditioning

and N is the number of atoms of the same atomic type. The function ρ(r) describes an atomic environment

in a way that is invariant to permutations of the atomic labels due to the commutativity of addition. This

function is also invariant to translations, being defined relative to the position ri of the central atom, but

is not rotationally invariant. The atomic density functions ρ(r) and ρ′(r) of two different local atomic

environments can be compared in a rotationally invariant way by taking the inner product of the two

averaged over all possible relative rotations R̃. The result is a similarity kernel:

k(ρ, ρ′) =

∫ [ ∫
ρ(r)ρ′(R̃r)dr

]n
dR̃ (2.7)

where n ≥ 2 is an adjustable parameter. This integration is not done explicitly; instead, the atomic neighbor

density function is expanded as a linear combination of products of spherical harmonics and orthonormal
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radial basis functions with coefficients cnlm. The properties of the spherical harmonics under rotations allows

the integration in Eq. 2.7 to be simplified to:

K(ρ, ρ′) =
k(ρ, ρ′)√

k(ρ, ρ)k(ρ′, ρ′)
=
∑
nn′l

pnn′lp
′
nn′l (2.8)

where the pnn′l are the coefficients of the rotationally invariant power spectrum:

pnn′l =

m=l∑
m=−l

c∗nlmcn′lm. (2.9)

The SOAP descriptors have been extended to systems with multiple atomic species. This is done by defining

a Gaussian-smeared atomic neighbor density function and a corresponding basis function expansion for each

atomic species [36].

At the heart of GAP is a sparse version of Gaussian process regression on the space of all local atomic

environments, and rather than explicitly constructing a set of descriptors on this space, some versions of

GAP use the similarity kernel K as a rough way to measure the proximity of two local atomic environments.

This type of algorithm will be discussed in greater detail in the later sections of this chapter.

Since the literature on MLPs is vast and rapidly growing, only a few of the other prominent MLP

frameworks will be briefly mentioned here. The Spectral Neighbor Analysis Potential (SNAP) uses linear

regression over the bispectrum coefficients of the atomic neighbor density function ρ to predict the atomic

energies Ei [37, 38], and has the advantage of a simple training procedure. The Moment Tensor Potential

(MTP) also uses linear regression, but over an overcomplete set of invariant polynomials of the relative

atomic coordinates [39, 40, 41]. The second generation of the Chebyshev Interaction Model for Efficient

Simulation (ChIMES) developed by Lindsey et al. in 2017 [42] fits many-body atomic interactions with

Chebyshev polynomial expansions via a force matching procedure [43, 44], and also benefits from a simple

linear fitting procedure. ChIMES is capable of fitting an arbitrary order of n-body correlations, which has

been carried out up to four-body interactions [45, 46]. Further in-depth discussion on the history and current

state of MLPs can be found in the 2016 perspective on MLPs from Jörge Behler [47] and in other reviews

Refs. [48, 49, 50].

The most common approach to constructing descriptors, used by roughly half of the aforementioned

frameworks, is to represent local atomic environments using only two- and three-body information. However,

this was proven by Pozdnyakov et al. [51] to be insufficient to distinguish all possible atomic environments

up to the relevant symmetry operations. The proof is by counterexample where they identify a situation in

which two different environments have the same two- and three-body information but could have distinct
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potential energies. Related situations apply to four-body information, and it is unclear whether there is any

higher-order information (short of the n-body information for an environment of n atoms) that could be

included to ensure systematic errors are avoided. The existence of distinct environments with degenerate

representations is therefore a widespread possibility and could limit the effectiveness of MLPs which use such

descriptors. There are comparatively few MLPs that do not suffer from this issue (e.g., [39, 52]).

Despite such concerns about the descriptors, MLPs have been widely successful. They have been used in

a plethora of atomistic simulations for a variety of material systems and are well-recognized as being capable

of achieving DFT-level accuracy for far smaller computational cost. That said, they are still typically 2-3

orders of magnitude more costly than empirical potentials [53]. This brings us to the directions of future

MLP development, three of which are commonly discussed. The first is to improve the MLP’s accuracy

of fitting the PES, and more specifically the ability to generalize from the electronic structure data in

the training set. Many MLP frameworks are already capable of fitting a PES with an accuracy greater

than that to which DFT calculations are trusted (∼0.5 eV/atom [54]), so in principle more fundamental

electronic structure methods such as coupled-cluster calculations could be used instead [53]. This accuracy

does not necessarily extend to local atomic configurations outside of the training set though, about which

few uncertainty guarantees are currently available. The second direction is to reduce computational cost.

As mentioned, MLPs are still far more computationally intensive than empirical potentials, limiting the size

and scale of possible simulations. Improvements in this area could involve further development of either

the descriptors or the machine learning algorithm. The third direction is with regard to the efficiency and

simplicity of training. Ideally, MLPs would be fast enough to construct that they could even be used as

surrogate functions for small pieces of the PES, e.g., around a particular reaction pathway.

More formally, the MLP is regarded as a function φ̄ from local atomic environments to atomic potential

energies that is constructed by the composition of two other functions. The first function is a map f : RN →

Z from local atomic environments to sets of descriptors. The space defining the local atomic environment is

RN =
∏
N Brc , or the N -fold direct product of 3-balls surrounding the central atom. A point is this space

defines the set of displacement vectors rj = xj − xi from the central atom i to the N neighboring atoms

j within a specified cutoff radius rc, where any atoms beyond the cutoff radius are assumed to contribute

negligibly to the potential. The space of sets of descriptors Z ⊂ Rm is usually constructed as a region in

m-dimensional Euclidean space, where m is an adjustable number of descriptors. The second function is a

map g : Z → R from sets of descriptors to atomic potential energies Ei ∈ R and is usually constructed by

means of a machine learning algorithm. The relationship of these three functions is indicated schematically

in Fig. 2.1. The utility of this formal perspective of the structure of MLPs is that it clarifies that the choice

of a set of descriptors and of a regression algorithm can be independent, and that the functions realizing
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Figure 2.1: General structure of machine learning potentials.

these choices should be subject to different requirements.

The objective of this chapter is to develop our framework for constructing MLPs. Many elements of our

approach resemble those used by GAP, and this is not an accident. There are numerical and theoretical

reasons why it is advantageous to construct the descriptors with the expansion coefficients of the atomic

density function, and the use of Gaussian processes regression in principle allows for robust estimates of

the uncertainty in the predicted atomic potential energies. That said, GAP is well known to to be highly

computationally expensive, and our belief is that this related to certain choices that were made during the

development of GAP that had unforeseen consequences. Section 2.2 derives a novel set of atomic descriptors,

referred to as the ξ descriptors, that provably contain the same information as the bispectrum cofficients

used in more recent implements of GAP but that are 1-2 orders of magnitude faster to evaluate depending on

the implementation. Section 2.5 reviews the theory of Gaussian processes, and of the specific sparsification

method that our framework uses. This method is now standard in the literature, and is reported to give more

accurate approximations to the true posterior distribution than the one used by GAP. Section 2.6 benchmarks

the resulting framework by fitting the forces and energies of a DFT data set for Cu and compares the results

with contemporary alternatives in the literature.

2.2 Atomic descriptors

Let X be a point cloud in R3, and Yi be the intersection of X with Brc(xi), a ball of radius rc centered on

xi ∈ X. Yi is referred to as the local atomic configuration centered at xi. This implicitly defines the set R

of all local atomic configurations as

R =

∞⋃
N=0

RN

RN = {(r1, . . . , rN ) : ‖ri‖ < rc for all i}
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where rj = xj − xi. Let there additionally be a function φ : R → R called the interatomic potential that

maps a local atomic configuration to a real quantity known as the interatomic potential energy. This can

be used to define dynamics on the points in X in such a way that their motion resembles that of the atoms

in a physical system. The process of numerically integrating the dynamical relations to solve for the point

trajectories is known as a molecular dynamics simulation.

The function φ obeys a number of physical symmetries. First, the isotropy of space suggests that φ

should be invariant to the simultaneous action of the orthogonal group O(3) on all the ri. Second, the

indistinguishability of atoms of the same element suggests that φ should be invariant to permutations of the

indices 1 ≤ i ≤ N of the ri, i.e., to the action of the symmetric group SN .

Suppose that there is a known set of local atomic configurations Yi and associated potential energies

φ(Yi), and that one would like to approximate φ by constructing a regression function φ̄ from this data. φ̄

can be required to obey the same physical symmetries as φ by constructing the regression function as the

composition

φ̄ = g ◦ f

where f identifies points if and only if they are in the same orbits of the orthogonal group and symmetric

group, and the regression analysis is performed by g.

The main concern of this section is the map f : R → Z from the space of local atomic configurations to a

space Z with coordinates known as descriptors. This map would ideally have several additional properties.

First, the second derivatives of f with respect to the ri should be continuous everywhere in Brc , including on

the boundary. This is required for the dynamics on X to be well-defined as atoms enter and leave the local

atomic environment. Second, f should minimize the maximum distortion throughout the space as indicated

by, e.g., the singular value spectrum of the Jacobian matrix. Regression algorithms usually constrain the

set of possible functions by assuming that some property of the function is roughly uniform on the space,

and are more accurate when this is so. Third, one would prefer to be able to always distinguish points on

different orbits of the orthogonal and symmetric groups with as few coordinates as possible. This is because

the computational complexity of regression algorithms often increases as O(d2) or O(d3), where d is the

number of coordinates.

The motivation for the approach developed here is the observation that the atomic density function

ρ(r) =

N∑
i=1

δ(r − ri) (2.10)

allows reconstruction of a local atomic environment up to the action of SN , but is not invariant to the
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action of O(3). Given a complete orthonormal basis for L2 (square-integrable) functions on Brc , ρ(r)

could alternatively be represented by an infinite sequence of expansion coefficients. Certain functions of the

expansion coefficients are invariant to the action of O(3), and set of such functions could perhaps be used

to construct a suitable map f .

The recent literature [51, 55] suggests that the main difficulty with this approach is verifying that the

resulting descriptors contain enough information to allow a local atomic environment to be reconstructed

up to the action of SN and O(3). If it does not, φ̄ could be constrained to assign certain physically-distinct

local atomic environments the same potential energies, introducing systematic errors that cannot be reduced

by any choice of g. That said, there are indications in the literature that four-body information (indicating

the positions of three neighboring atoms relative to the central atom) is often sufficient in practice [51, 56].

Our intention with this section is therefore to simply construct a set of descriptors that include all four-body

information, have continuous derivatives up to second order, are invariant to the required isometries, and

are as efficient as possible to evaluate.

2.3 Complete orthogonal systems

Following the motivation in Sec. 2.2, this section effectively constructs canonical sets of functions of the

expansion coefficients of ρ(r) that are invariant to the action of O(3), though by a different procedure than

initially proposed. Specifically, ρ(r) is not expanded over a complete orthonormal basis for L2 functions on

Brc , but over a complete orthonormal basis for O(3)-invariant L2 functions on Brc . The resulting expansion

coefficients then have all the required invariance properties without further manipulation, and the suitability

of the map f is reduced to the question of the number of descriptors that is sufficient and the efficiency of

their evaluation.

2.3.1 Functions on Brc

While there are many complete orthogonal bases for L2 functions on Brc , the one considered here is based

on eigenfunctions of the Helmholtz equation

∇2Ψ(r,Ω) = −k2Ψ(r,Ω)

where Ω = {θ, φ} and θ and φ are the polar and azimuthal angles in spherical coordinates. The Laplacian

can be written as

∇2 = ∇2
r +

1

r2
∇2

Ω
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where

∇2
r =

1

r2

∂

∂r

(
r2 ∂

∂r

)
∇2

Ω =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂

∂φ
.

Separating variables with Ψ(r, θ, φ) = R(r)Ω(θ, φ) gives

∇2
rR(r) +

[
k2 − l(l + 1)

r2

]
R(r) = 0 (2.11)

and

∇2
ΩΩ(θ, φ) + l(l + 1)Ω(θ, φ) = 0. (2.12)

The solutions to the second equation are the spherical harmonics, defined as

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (2.13)

with integer l ≥ 0 and −l ≤ m ≤ l, where the Condon–Shortley phase is included in the definition of the

associated Legendre polynomials Pml (cos θ). It will be useful below that ÎY ml (Ω) = (−1)lY ml (Ω) where Î is

the inversion operator. The solutions to the first equation are the spherical Bessel functions of the first kind

jl(kr). Further details of this derivation can be found in the standard references (e.g., Sec. 9.4 of Ref. [57]).

The functions Ψlm(r,Ω; k) = jl(kr)Y
m
l (Ω) form a complete orthogonal system for L2 functions on R3.

The orthogonality condition

∫ 2π

0

∫ π

0

∫ ∞
0

Ψ∗l′m′(r,Ω; k′)Ψlm(r,Ω; k)r2 sin θdrdθdφ = δ(k′ − k)δl′lδm′m
π

2k2

is a consequence of those for the jl(kr) and the Y ml (Ω). Completeness follows by observing that the eigen-

functions of the Helmholtz equation in Cartesian coordinates are the complex exponentials exp(ik · r), that

these constitute a complete basis for L2 functions on R3, and that they are related to the Ψlm(r,Ω; k) by

the plane wave expansion [58]

exp(ik · r) = 4π

∞∑
l=0

l∑
m=−l

ilY m∗l (k̂)jl(kr)Y
m
l (r̂)

where, e.g., r = ‖r‖ and r̂ = r/r. That is, the Ψlm(r,Ω; k) are related to a complete orthogonal system

by a change of basis corresponding to a change from Cartesian to spherical coordinates, and are therefore
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complete as well.

This basis is restricted to one for L2 functions f(r,Ω) on Brc subject to the boundary condition f(rc,Ω) =

0 by requiring that k = unl/rc, where unl is the (n + 1)st nonzero root of jl(x). The further boundary

conditions ∂f/∂r|rc = 0 and ∂2f/∂r2|rc = 0 are enforced by replacing jl(unlr/rc) with the functions gnl(r)

defined in Appendix B.1. Letting Ψn
lm(r,Ω) = gnl(r)Y

m
l (Ω), the orthogonality condition becomes

∫ 2π

0

∫ π

0

∫ rc

0

Ψn′∗
l′m′(r,Ω)Ψn

lm(r,Ω)r2 sin θdrdθdφ = δn′nδl′lδm′m. (2.14)

That the Ψn
lm(r,Ω) are a complete basis for L2 functions subject to the specified conditions is a consequence

of the Hilbert projection theorem [59]. Specifically, the basis elements Ψlm(r,Ω; k) are projected into the

appropriate subspace of the Hilbert space of L2 functions and orthogonalized by a Gram–Schmidt procedure,

giving the Ψn
lm(r,Ω) as a basis for this subspace.

At this point, it is useful to observe that the Ψn
lm(r,Ω) are eigenfunctions of the angular momentum

operators L2 and Lz [60]. That is, they behave as irreducible tensors of rank l under the action of SO(3), or

Ψn
lm(r,Ω′) =

∑
m′

Ψn
lm′(r,Ω)Dl

m′m(α, β, γ)

where Dl
m′m(α, β, γ) is a Wigner D-function obeying the conventions described in Sec. 1.4.1 of Ref. [60],

and Ω and Ω′ are the spherical coordinates of a single unit vector in the original and rotated coordinate

systems. Notably, since D0
00(α, β, γ) is a constant, the functions Ψn

00(r,Ω) are invariant to the action of

SO(3). Moreover, they are a complete basis for SO(3)-invariant L2 functions on Brc with the prescribed

boundary conditions; recall that

f(r,Ω′) = exp(−iωn̂ · L)f(r,Ω)

describes the effect of a rotation of the coordinate system by an angle ω about an axis n̂ on the function

f(r,Ω), as indicated in Sec. 4.5.1 of Ref. [60]. If f(r,Ω) is SO(3)-invariant, then this implies

[1− exp(−iωn̂ · L)]f(r,Ω) = 0.

In particular, this needs to hold for infinitesimal rotations since they are the generators of the rotation group.

Taking the first-order Taylor expansion of the exponential about ω = 0 gives the condition n̂ · Lf(r,Ω) = 0

for all n̂. This is only possible if every component of the angular momentum of f(r,Ω) vanishes. That is, the

only SO(3)-invariant functions are precisely the linear combinations of the eigenfunctions of L2 with l = 0.

Since ÎΨn
00(r,Ω) = Ψn

00(r,Ω), these also form a basis for O(3)-invariant functions.
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That said, the Ψn
00(r,Ω) are not particularly useful for representing the atomic density function of a local

atomic environment given in Eq. 2.10, since expanding ρ(r,Ω) over this basis only retains information about

the distances of nearby atoms from the central one. Let AΨ be the function space spanned by the Ψn
00(r,Ω),

and P̂Ψ the operator that projects a function onto AΨ. Since P̂Ψ is a linear operator, P̂Ψρ(r) is the same as∑
i P̂Ψδ(r−ri). Moreover, since P̂Ψδ(r−ri) is invariant to the action of O(3), it is equivalent to P̂Ψδ(r−riẑ).

That is, P̂Ψρ(r) is equivalent to P̂Ψ

∑
i δ(r − riẑ), or as claimed above, only retains information about the

histogram of the ri. This is clearly not sufficient to reconstruct a local atomic environment.

2.3.2 Functions on B2
rc

Instead, one could consider pairs of atoms in the local atomic environment, and expand this over a complete

orthonormal basis for L2 functions on B2
rc . Such a basis is provided by the irreducible tensor product of the

Ψn0

l0m0
(r) and Ψn1

l1m1
(r′) (Sec. 3.1.7 of Ref. [60]), or

Φn0n1

l0l1lm
=
∑
m0m1

Clml0m0l1m1
Ψn0

l0m0
(r)Ψn1

l1m1
(r′)

where Clml0m0l1m1
is a Clebsch–Gordan coefficient. Many of the properties of the Φn0n1

l0l1lm
are the same as

those of the bipolar spherical harmonics as defined in Sec. 5.16.1 of Ref. [60]. In particular, the Φn0n1

l0l1lm

transform as an irreducible tensor of rank l under the action of SO(3). When l = 0, the properties of the

Clebsh–Gordan coefficients and the Y ml (Ω) allow the definition above to be simplified to

Φn0n1

l0
=

(−1)l0√
2l0 + 1

∑
m0

Ψn0∗
l0m0

(r)Ψn1

l0m0
(r′).

By the same reasoning as in Sec. 2.3.1, the Φn0n1

l0
are a complete orthonormal basis for SO(3)-invariant L2

functions on B2
rc that satisfy the prescribed boundary conditions. Since ÎΦn0n1

l0
= Φn0n1

l0
, these also form a

basis for O(3)-invariant functions. As such, they can be used to expand the atomic pair density function

ρ(r, r′) =

N∑
i=1

N∑
j=1

δ(r − ri)δ(r′ − rj). (2.15)

Let AΦ be the function space spanned by the Φn0n1

l0
, and P̂Φ the operator that projects a function onto AΦ.

Then P̂Φρ(r, r′) is equivalent to the projection of a modified atomic pair density function where, for each

of the δ(r − ri)δ(r′ − rj), the coordinate system is rotated to orient ri along the z-axis and rj in the xz-

plane with positive x coordinate. That is, P̂Φρ(r, r′) only retains information about the histogram of triples
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{ri, rj , r̂i · r̂j}1. This is known to not be sufficient for f : R → Z to distinguish atomic environments up to

isometry, with counterexamples available in the literature [51]. Note that restricting the second summation

in Eq. 2.15 to j > i makes P̂Φρ(r, r′) variant to the action of SN , and using j 6= i instead makes P̂Φρ(r, r′)

unable to describe environments with N < 2 atoms.

2.3.3 Functions on B3
rc

One could perhaps be discouraged at this point, without a visible proof in the literature that n-point

histograms are sufficient to reconstruct all local atomic configurations up to the action of SN and O(3) for

any n < N . As stated in Sec. 2.2 though, four-body information (or 3-point histograms) is already sufficient

for MLPs to reproduce electronic structure calculations of the atomic potential energies with an accuracy

greater than that to which DFT calculations are trusted [53]. The question of whether there is a set of

descriptors that is complete in the sense of all local atomic configurations being reconstructable is therefore

set aside as the subject of a future study, and this section proceeds with the derivation of an efficiently

computable set of four-body descriptors.

The construction begins by defining the irreducible tensor products of Φn1n2

l1l2l′m′ and Ψn0

l0m0
(r) as the

functions

χn0n1n2

l0l1l2l′lm
=
∑
m0m′

∑
m1m2

Clml0m0l′m′Cl
′m′

l1m1l2m2
Ψn0

l0m0
(r)Ψn1

l1m1
(r′)Ψn2

l2m2
(r′′).

When l = 0, the properties of the Clebsh–Gordan coefficients allow this to be simplified to

χn0n1n2

l0l1l2
=

(−1)l0√
2l0 + 1

∑
m0m1m2

Cl0m0

l1m1l2m2
Ψn0∗
l0m0

(r)Ψn1

l1m1
(r′)Ψn2

l2m2
(r′′) (2.16)

=
∑

m0m1m2

(
l2 l1 l0
m2 m1 m0

)
Ψn0

l0m0
(r)Ψn1

l1m1
(r′)Ψn2

l2m2
(r′′)

where the second version introduces a 3jm symbol [60] and makes the symmetry of the χn0n1n2

l0l1l2
more

apparent. Notice that the Clebsh–Gordan coefficient and therefore the χn0n1n2

l0l1l2
vanish unless l0, l1 and l2

satisfy the usual triangle conditions. These functions form a complete orthonormal basis for SO(3)-invariant

L2 functions on B3
rc that satisfy the prescribed boundary conditions. Orthonormality is a consequence of

the corresponding property of the tripolar spherical harmonics in Sec. 5.16.2 of Ref. [60] and the gnl(r) in

B.1. Since Îχn0n1n2

l0l1l2
= (−1)l0+l1+l2χn0n1n2

l0l1l2
, the subset of the χn0n1n2

l0l1l2
where L = l0 + l1 + l2 is even is the

corresponding basis for O(3)-invariant functions.

1This can also be shown by applying the spherical harmonic addition theorem to the definition of the Φn0n1
l0

.
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Let P̂χ and P̂ ′χ respectively be the projection operators onto the function space Aχ spanned by the

χn0n1n2

l0l1l2
and the subspace A′χ where L is even. The functions

ρ(r, r′, r′′) =

N∑
i=1

N∑
j=1

N∑
k=1

δ(r − ri)δ(r′ − rj)δ(r′′ − rk)

are SN invariant, and P̂χρ(r, r′, r′′) is SO(3) invariant. By the same reasoning as in Sec. 2.3.2, this projection

is equivalent to that of a corresponding function where, for each of the δ(r − ri)δ(r′ − rj)δ(r′′ − rk), the

coordinate system is rotated to orient ri along the z-axis and rj in the xz-plane with positive x coordinate.

That is, P̂χρ(r, r′, r′′) is equivalent to a histogram of oriented triples of points, and P̂χ′ρ(r, r′, r′′) to a

histogram of unoriented triples of points.. The coefficients

ξn0n1n2

l0l1l2
=

N∑
i=1

N∑
j=1

N∑
k=1

χn0n1n2∗
l0l1l2

(ri, rj , rk) (2.17)

of the projection of ρ(r, r′, r′′) onto a linear combination of the χn0n1n2

l0l1l2
where L is even therefore constitute

an infinite set of four-body descriptors with the required isometry invariances.

2.4 Evaluating the ξn0n1n2

l0l1l2

The ξn0n1n2

l0l1l2
will need to be evaluated frequently during any MD simulation employing an MLP constructed

to use these descriptors. The purpose of this section is to provide a more computationally efficient alternative

to directly evaluating Eq. 2.17, and to construct an explicit sequence from which the required number of

descriptors can be drawn.

Initially inserting Eq. 2.16 into Eq. 2.17, exchanging the order of summations, and converting the sum

of products into a product of sums gives

ξn0n1n2

l0l1l2
=

(−1)l0√
2l0 + 1

∑
m0m1m2

Cl0m0

l1m1l2m2

[∑
i

Ψn0

l0m0
(ri)

][∑
j

Ψn1∗
l1m1

(rj)

][∑
k

Ψn2∗
l2m2

(rk)

]
. (2.18)

The properties of the Clebsch–Gordan coefficients indicate that

Cl0m0

l1m1l2m2
=

1

2

[
Cl0m0

l1m1l2m2
+ (−1)l0+l1+l2Cl0−m0

l1−m1l2−m2

]
=

1

2

(
Cl0m0

l1m1l2m2
+ Cl0−m0

l1−m1l2−m2

)
where the second equality is a consequence of L being required to be even. Inserting this into Eq. 2.18,

relabeling the summation indices, and using the property that Ψn
l−m(r) = (−1)mΨn∗

lm(r) inherited from the
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spherical harmonics gives

ξn0n1n2

l0l1l2
=

(−1)l0√
2l0 + 1

∑
m0m1m2

Cl0m0

l1m1l2m2

1

2

{[∑
i

Ψn0

l0m0
(ri)

][∑
j

Ψn1∗
l1m1

(rj)

][∑
k

Ψn2∗
l2m2

(rk)

]

+

[∑
i

Ψn0∗
l0m0

(ri)

][∑
j

Ψn1

l1m1
(rj)

][∑
k

Ψn2

l2m2
(rk)

]}
(2.19)

where the property that the Clebsch–Gordan coefficients are nonzero only if m0 +m1 +m2 = 0 was used to

simplify the signs. Using the definition of the Ψn
lm(r,Ω) in Sec. 2.3.1, a single one of the summations over

Ψn
lm(ri) is explicitly written as

∑
i

Ψn
lm(ri) =

1√
2π

∑
i

gnl(ri)P̃
m
l (cos θi) cos(mφi) +

i√
2π

∑
i

gnl(ri)P̃
m
l (cos θi) sin(mφi)

= cnlm + isnlm (2.20)

where i is the imaginary unit, the dependence of cnlm and snlm on the relative positions of the neighboring

atoms in the local atomic environment is left implicit, and

P̃ml (cos θ) =

√
2l + 1

2

(l −m)!

(l +m)!
Pml (cos θ)

is a normalized associated Legendre function. Finally, inserting Eq. 2.20 into Eq. 2.19, expanding the terms

inside the braces, and simplifying leads to

ξn0n1n2

l0l1l2
=

(−1)l0√
2l0 + 1

∑
m0m1m2

Cl0m0

l1m1l2m2

[
cn0

l0m0

(
cn1

l1m1
cn2

l2m2
− sn1

l1m1
sn2

l2m2

)
+ sn0

l0m0

(
cn1

l1m1
sn2

l2m2
+ sn1

l1m1
cn2

l2m2

)]
. (2.21)

There are two properties of Eq. 2.21 that are particularly significant. The first is that the ξn0n1n2

l0l1l2
for even L

are real quantities, and can be calculated using only real quantities on floating point units without resorting

to complex numbers. The second is that once the quantities cnlm and snlm defined in Eq. 2.20 are calculated

for a given local atomic environment for all of the required sets of indices {n, l,m} in O(N) operations,

calculating the ξn0n1n2

l0l1l2
requires an additional number of operations that is constant in N . This is clearly

preferable to the O(N3) operations that the direct evaluation of Eq. 2.18 requires.
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The ordering of the ξn0n1n2

l0l1l2
is set by lexicographically ordering the tuples of integers (q, r, s, t, u, v) where

0 ≤ q 0 ≤ r ≤ q 0 ≤ s ≤ r

0 ≤ t ≤ s 0 ≤ u ≤ q − r 0 ≤ v ≤ q − r − u.

These are converted to tuples of indices (n0, n1, n2, l0, l1, l2) using the following equations:

n0 = r − s n1 = s− t n2 = t

l0 = q − r − u l1 = q − r − v l2 = u+ v

The rationale for this ordering is that the oscillation frequency of the χn0n1n2

l0l1l2
roughly increases with q, that

it is practical to separately consider the sums
∑
i ni = r and

∑
i li = 2(q − r) of the radial and angular

indices due to the constraints on the li (including that L be even), and that reverse lexicographic ordering

is otherwise convenient.

There are computational reasons why it is desirable to use the smallest possible number of descriptors

sufficient for the intended purpose. This encourages the removal of any ξn0n1n2

l0l1l2
from the resulting sequence

that are clearly dependent on the preceding terms. Consider that the invariance of the 3jm symbols in the

second version of Eq. 2.16 to all permutations of the columns when L is even implies that the χn0n1n2

l0l1l2
are

invariant to all permutations of the sets {ni, li, ri}. This means that the ξn0n1n2

l0l1l2
defined in Eq. 2.17 are

invariant to all permutations of the sets {ni, li}, or explicitly that

ξn0n1n2

l0l1l2
= ξn0n2n1

l0l2l1
= ξn1n0n2

l1l0l2
= ξn1n2n0

l1l2l0
= ξn2n0n1

l2l0l1
= ξn2n1n0

l2l1l0
.

While is it possible that the sequence indexing could be revised to include only one such equivalent term,

the resulting scheme would be unwieldy. A simpler solution is to simply generate the tuples (q, r, s, t, u, v) in

lexicographic order, and as they are converted to the tuples (n0, n1, n2, l0, l1, l2), to exclude any that differ

by an arbitrary permutation of the sets {ni, li} from a previously-generated tuple.

Let Nb be a user-defined upper bound on the number of neighboring atoms in a local atomic environment.

The number of terms of the resulting infinite sequence of the ξn0n1n2

l0l1l2
that should be used for the descriptor

set is unclear, but will certainly depend on Nb. A lower bound is 3(Nb − 1) since this is the number of

independent variables required to specify the relative locations of the neighboring atoms up to the action of

O(3), and an upper bound is Nb(Nb−1)(Nb−2) since there are six independent variables required to specify

each unique triple of neighboring atoms up to the action of O(3). This still leaves an interval of considerable
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size, and while the accuracy of many MLPs appears to improve with increasing numbers of descriptors, the

computational expense of training and evaluating the MLPs increases with the number of descriptors as well.

The appropriate balance of these concerns depends on the user’s requirements.

2.5 Gaussian Processes

Notation

Vectors and matrices

- vectors are bold (e.g., y)

- matrices are capitalized (e.g., K)

- block matrices are given carets (e.g., K̂).

Operations

- matrix determinant: |K|
- matrix transpose: KT

- matrix trace: tr(K) =
∑
i kii

- vector p–norms: ‖x‖p = (
∑
i x

p
i )

1/p; by default ‖x‖ = ‖x‖2

Gaussian processes (GPs) are powerful machine learning tools used to perform supervised regression and

classification. This section reviews the concepts necessary for a general understanding of Gaussian process

regression (GPR), including of the specific implementation used in the MLP framework developed here.

GPs are appealing for regression for several reasons, including the robust uncertainty estimates that they

can provide and the small number of assumptions about the form of the fitted function; it is for this last

reason that GPs are classified as nonparametric models. This is beneficial for the MLP application because

it is not obvious what the form of the function relating the descriptor space to the potential energy should

be and a nonparametric model limits the possibility of human bias. Further description of GPs is provided

in the text Gaussian Processes for Machine Learning [61].

A GP is a generalization of the Gaussian probability distribution, and is formally defined as a collection

of random variables f = (f1, f2, ..., fd) such that any finite subset of variables follows a joint multivariate

Gaussian distribution [61] (the reason for the nonstandard notation will be clear below). The probability

density function (PDF) of a multivariate Gaussian distribution is often written as

P (f) = 2π−
d
2 |Σ|− 1

2 exp
[
− (f − µ)TΣ−1(f − µ)/2

]
(2.22)
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Figure 2.2: Jointly sampled random variables f1 and f2 from a multivariate Gaussian distribution. Each of
the three figures show the results for different values of the covariance σ2

12, with σ12 = {0.985, 0.999,−0.999}
on the left, middle, and right, respectively.

where d is the dimension of the random variable, µ is the mean vector, and Σ is the covariance matrix. If

a multivariate random variable f is sampled from a multivariate Gaussian distribution (i.e., f ∼ N (µ,Σ)),

then any individual element fi will be distributed according to a univariate Gaussian distribution (or a

normal distribution). This univariate distribution has a mean µi given by the corresponding element of the

mean vector and a variance σ2
ii given by the ith diagonal element of Σ. The off-diagonal elements of Σ (i.e.,

σij for all i 6= j) are the corresponding covariances between pairs of random variables. The magnitude and

sign of these covariances provides information as to what is expected when jointly sampling two variables.

As shown in Fig. 2.2, a large positive covariance between two random variables f1 and f2 suggests that larger

values for f1 correspond to larger values for f2. A negative covariance instead implies that larger values for

f1 correspond to smaller values for f2, and a zero-valued covariance indicates that the random variables are

uncorrelated.

There are several ways to interpret GPR, and this section will follow the function-space interpretation.

The objective of any regression model is usually to infer a continuous function f(x) that maps a set of inputs

xi to a set of function values fi. The relevance of GPs to regression begins with the idea that the (infinite) set

of function values fi over the (infinite) set of points xi comprising the domain of f(x) be modeled as random

variables obeying a joint multivariate Gaussian distribution. This construction would not be useful if the

function values fi were independently distributed, but since f(x) is assumed to be continuous the function

values fi and fj associated with nearby points xi and xj in the underlying space should be positively

correlated, i.e., they should have a positive covariance. The GP then defines a probability distribution of

functions P [f(x)] where µi indicates the expectation value of fi at xi, σii indicates the uncertainty in the

function value fi at xi, and σij indicates whether the function values fi and fj at distinct points xi and xj

are positively or negatively correlated.

Recognizing that the set of xi is infinite, that µ is an infinite vector of expectation values of f(x),

and that Σ is an infinite matrix of variances and covariances of the function values, the motivation for the
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function-space interpretation is now clear. This views a GP as defining a probability distribution P [f(x)]

over functions f(x) completely specified by a mean function m(x) and covariance function k(x,x′), where

m(x) is the expectation value of f(x) at x and k(x,x′) is the covariance between two points x and x′ (not

necessarily distinct). Of course, it is impractical to explicitly construct the space of functions on which this

probability distribution is defined; instead, the probability distribution of functions is defined implicitly by

m(x) and k(x,x′).

Machine learning models are necessarily trained on observations, and GPR performs the training using

Bayesian inference. This involves conditioning a prior distribution on a set of observations to construct a

posterior distribution, i.e., an initial probability distribution of possible regression functions is updated to

reflect the increased knowledge provided by the observations about the underlying system. The resulting

posterior mean function mp(x) is often used to make predictions of f(x), and the posterior covariance

function kp(x,x
′) can be used to quantify the uncertainty of those predictions.

The training process requires an explicit choice of initial covariance function for the prior distribution. A

frequent simplifying assumption is that the covariance function does not depend on the absolute position x

but only on the relative position x−x′, and covariance functions with this property are referred to as being

stationary. Since the prior distribution needs to be constructed before seeing any data, the prior distribution

usually has a large and uniform variance to reflect the initial lack of knowledge about f . The training data

used to condition the prior distribution includes input values X = {xi}i=ni=1 and corresponding output values

y = {yi}i=ni=1 that are often assumed to be noisy measurements such that yi = f(xi) + εi with εi ∼ N (0, σ2).

Conditioning on the training data effectively removes all functions from the prior distribution that do not

pass through these data points, at least to within a tolerance determined by the assumed noise variance σ2.

Using the standard GP model described above, the posterior mean and posterior covariance functions have

the following explicit form [61]:

mp(x) = Kxn(σ2I +Knn)−1y (2.23)

kp(x,x
′) = k(x,x′)−Kxn(σ2I +Knn)−1KT

x′n (2.24)

where Kxn is a row vector containing the values of the prior covariance function k(x,x′) evaluated for x

and the n training points in X, and Knn is a covariance matrix with element kij = k(xi,xj) in the ith row

and jth column evaluated using the prior covariance function for all pairs of the n training points in X. An

example of a GP prior distribution and the posterior distribution after conditioning on the training data is

displayed in Fig. 2.3.

While the application of Eqs. 2.23 and 2.24 appears to be straightforward, they depend sensitively on the
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Figure 2.3: GP prior distribution (left) and posterior distribution (right) for a latent function f(x). The red
dotted line is the mean function in both distributions and the gray area represents a 95% confidence interval
specified by the covariance function. The black circle markers are sampled training points. The the function
used for the covariance of the prior is the 5/2-Matérn kernel.

choice of the prior covariance function and the noise variance σ2. The entire difficulty of the training process

consists of finding the prior covariance function and noise variance that return an optimal posterior distri-

bution as defined by an appropriate objective function. This is handled by assuming a specific parametric

form for k(x,x′), identifying the set of quantities θ defining k(x,x′) and the noise variance as the hyper-

parameters, and applying standard numerical optimization techniques to find the optimal θ. The objective

function, called the log-marginal likelihood, is the logarithm of the probability density P (f) integrated over

the subset of functions f that pass through the training points. The training procedure therefore maximizes

(in a measure-theoretic sense) the probability that a function sampled from the prior distribution would be

consistent with the training points. The the log-marginal likelihood is given by [61]:

log p(y|X,θ) = −1

2
yT (σ2I +Knn)−1y − 1

2
log |σ2I +Knn| −

n

2
log 2π (2.25)

where the first term is a penalty that encourages the posterior distribution to pass through the data points,

the second term is complexity penalty that helps to prevent overfitting, and the third term is a normalization

term related to the underlying Gaussian distribution.

It follows that the choice of parametric form for the prior covariance function is crucial to constructing a

GPR model. Covariance functions, also referred to as kernel functions, are utilized in a wide class of machine

learning models [62]. One of the most commonly used covariance functions is the squared exponential (or
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Figure 2.4: The posterior distribution for a latent function f(x) after training with the data used to fit the
model in Fig. 2.3, but using a squared exponential covariance function. The red dotted line is the mean
function and the gray area represents a 95% confidence interval specified by the covariance function. The
black circle markers are sampled training points.

the radial basis function) that has the following form [61]:

k(x,x′) = σ2
v exp

(
−ρ2

2

)
(2.26)

where ρ = ‖x − x′‖/l2 is a scaled distance between two points in the domain of f(x), l is a length-scale

parameter that regulates how rapidly f(x) is able to vary with respect to x, and σ2
v regulates the initial

uncertainty in the values of f(x). The simplicity of this kernel is appealing for many applications, especially

if that application requires modifying the covariance function. For example, the procedure for including

derivative information into the model requires taking derivatives of the covariance function (described in

the next section), and this operation is quite straightforward for the squared exponential. However, since

the squared exponential is smooth (infinitely differentiable), each function in the posterior distribution will

be smooth as well, and therefore could be written down as a Taylor series expansion using only derivative

information in an arbitrarily small region of the domain. It is unclear that it is desirable or even physically

reasonable that perfect knowledge of, e.g., the derivatives of an interatomic potential energy in the neigh-

borhood of an arbitrary atomic configuration could be used to reconstruct the interatomic potential energy

function for all atomic configurations. That is, it is unclear that the prior distribution should be constrained

to only analytic functions when there is no evidence that nature inherently prefers such functions.

The MLP framework developed here instead uses the 5/2-Matérn kernel:

k(x,x′) = σ2
v

[
1 +
√

5ρ+
5

3
ρ2
]
exp
(
−
√

5ρ
)

(2.27)
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which is only twice differentiable, relaxing the smoothness assumption while still enforcing that atomic forces

and elastic constants derived from the MLP be continuous functions of the atomic coordinates. The squared

exponential covariance function is actually a limiting case of a one-parameter family of Matérn kernels with

adjustable smoothness. The effect of increasing the smoothness by using the squared exponential instead of

the 5/2-Matérn kernel can be seen by comparing Fig. 2.5 to Fig. 2.3.

2.5.1 Sparse Gaussian Processes

Despite their attractive theoretical properties, it is intractable to use GPs for regression problems involving

large datasets (i.e., n ∼ 10, 000 training examples) on a typical workstation. This difficulty is related to the

O(n3) computational complexity and O(n2) memory requirements of finding the matrix inverses in Eqs. 2.23

and 2.24 on each training step. This has encouraged the development of a variety of approximate methods,

called sparse GP methods, to reduce the order of the scaling [63]. These approximate the GP posterior

using a smaller set of m � n inducing points (also referred to as support variables or pseudo inputs), the

locations of which are formally included among the hyperparameters that define the prior distribution and

in this sense induce the posterior distribution [64]. The inducing points are used to construct a reduced-rank

approximation Qnn to the covariance matrix of training points Knn via the Nystöm approximation. By

exploiting knowledge of the reduced rank, Qnn can be inverted in only O(nm2) time using the Woodbury

matrix inversion identity (see App. A).

The sparse method used here is the Variational Free Energy (VFE) method formulated by Titsias [64].

The VFE approach constructs a lower bound LB to the log-marginal likelihood that, in addition to measuring

the likelihood of the observed data given the prior distribution, also measures the difference between the

true and approximate posterior distributions. Therefore, using LB as the objective function not only ensures

that the posterior distribution fits the data, but also that the full GP is reasonably approximated [65]. One

drawback to this approach is that it can overestimate the noise variance σ2 [65], so enforcing smaller values

of this hyperparameter could be necessary to enhance fitting. Another drawback of the VFE is that the

LB is prone to local minima that make finding the global optimum more difficult [65], though this can in

principle be overcome with careful choice of the optimization routine. This work uses Powell’s Derivative

Free Optimizers (PDFO) [66], which iteratively construct quadratic approximations to the objective function

to determine where to sample next, and which in our experience, out-perform gradient-based optimization

methods for this application. The LB has the following form [64]:

LB = −1

2
yTQ−1

nny −
1

2
log |Qnn| −

n

2
log 2π − r

2σ2
(2.28)
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Figure 2.5: Fitting a 1D function (blue line) with the VFE sparse GP. The model prediction is the red
dotted line, the black circle markers are training points with added noise, the grey area represents a 95%
confidence interval evaluated using the posterior covariance, and the blue stars at the bottom mark where
inducing points have been selected.

where Qnn = KnmK
−1
mmK

T
nm + σ2I, r = tr(Knn − KnmK

−1
mmK

T
nm), and Knm is the covariance matrix

between the training points and the inducing points. The corresponding sparse posterior mean and covariance

functions are [64]

mq
p(x) = Kxm(σ2Kmm +KT

nmKnm)−1KT
nmy (2.29)

kqp(x,x
′) = k(x,x′)−Kxm[σ2(σ2Kmm +KT

nmKnm)−1 −K−1
mm]KT

x′m (2.30)

An example of a sparse model fitting a 1D function is shown in Fig. 2.5. The function was purposely

constructed to be difficult for GPR methods, and yet the sparse model is still able to approximate the

function reasonably well. The presence of the function’s sharp peaks forces the length scale hyperparameters

of the prior covariance function to be small (the functions in the prior distribution can vary quickly), requiring

a relatively dense sampling of the space to constrain the uncertainty in the posterior distribution. Notice

that the posterior variance is reduced only where there are inducing points, and that there is a lower bound

on the posterior variance that reflects the magnitude of the sampling error.

The selection of inducing points is a subtle and important part of the algorithm. While the inducing

points do not have to be chosen from the training set, they usually are to reduce the complexity of the

optimization problem. Here, the set of inducing points is constructed by a greedy (suboptimal but with low

computational cost) algorithm to build an ε-net on the training set. An ε-net is a subset of a point cloud

point in a general-dimensional space such that every point in the cloud is within a specified distance ε of one

or more points the subset (the subset is referred to as the net). The procedure for constructing the ε-net

begins by picking the first point to add to the set at random, and then iteratively adding the point that is

furthest away (as defined by the L2 norm) in descriptor space from any point already in the set. This process
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Figure 2.6: Representative subsets of a two-dimensional point cloud as constructed using either a greedy
ε-net or the centroids of clusters identified by a k-means algorithm.

continues until the distance to the most distant point falls below a specified parameter ε. Fig. 2.6 shows

an example of such an ε-net built for a two-dimensional point cloud; an alternative method for building

a representative subset, as the centroids of the clusters identified by the k-means clustering algorithm, is

shown for comparison. Two advantages of the ε-net are that points in the subset are more evenly distributed,

avoiding clustering of inducing points in regions already well-covered by the training set, and that the ε-net

preferentially includes points on the boundary of the point cloud, reducing the uncertainty of the posterior

distribution when the model is asked to extrapolate.

2.5.2 Including atomic forces

There are several modifications that need to be made to the standard GP to align it with the requirements of

the MLP application. The training data for the MLP model as provided by electronic structure calculations

includes atomic forces and total potential energies of the simulation cell. Atomic forces are incorporated

into the GPR model by formulating a joint (or multivariate) GP in the same way as does the GAP [67].

This not only allow the atomic forces to be included in the training data, but allows the forces to be directly

evaluated for arbitrary local atomic configurations. If the PES can be well described by a GP, then the

forces necessarily can be well described by a GP as well; this is a consequence of the forces being defined

by the negative gradient of the PES, and of the property of GPs that applying a linear operator results in

another GP. For simplicity of notation, the derivation below treats the forces as gradients and then corrects

for the sign by taking the negative of the force observation data yf .

Constructing the joint GP requires formulating the covariances and mixed covariances for the force GP

and energy GP priors. Let kee(x,x′) be the covariance function for the energies (the 5/2-Matérn kernel)

where x and x′ are two points in the space of descriptors. Let O be a fixed Cartesian coordinate system as
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Figure 2.7: The relationship of the relevant coordinate systems. O is the coordinate system with respect
to which the forces are calculated. The displacement vectors rk to the neighboring atoms in local atomic
environments are defined with respect to the position of the central atom.

indicated in Fig. 2.7. The covariance between the force on an atom with local environment x and the energy

of an atom with local environment x′ is given by [67]:

kfe(x,x′) =
∂kee(x,x′)

∂rO,k
(2.31)

where rO,k is the kth Cartesian coordinate of the atom with local environment x, with the same coordinate

system O used to define the kth component of the observed force. Similarly, the covariance between both

environments’ forces is [67]:

kff (x,x′) =
∂2kee(x,x′)

∂rO,k∂r′O,q
(2.32)

where r′O,q is the qth Cartesian coordinate of the atom with local environment x′, and the same coordinate

system O is again used to define the qth component of the observed force.

Equations 2.31 and 2.32 require derivatives of the descriptors with respect to the coordinates of the central

atom in coordinate system O, but kee(x,x′) is an explicit function of the descriptors, and the descriptors

are explicit functions of spherical coordinates of the neighboring atoms with respect to the central atom.

The calculation of these derivatives therefore requires three coordinate transformations. Let rsp,ζ be the

ζth component of the spherical coordinates of the pth neighboring atom relative to the central atom, and

rp,k be the Cartesian coordinates of the pth neighboring atom relative to the central atom, and rsp,ζ be

the ζth component of the spherical coordinates of the pth neighboring atom relative to the central atom.

The first transformation involves multiplying by the Jacobian of the descriptors xd with respect to the

relative spherical coordinates rsp,ζ , the second involves multiplying by the Jacobian of the relative spherical

coordinates rsp,ζ with respect to the relative Cartesian coordinates rp,k, and the third involves multiplying

by the Jacobian of the relative Cartesian coordinates rp,k with respect to the absolute Cartesian coordinates

r′O,q. That is:

∂kee(x,x′)

∂rO,k
=
∑
dpζ

∂kee(x,x′)

∂xd

∂xd
∂rsp,ζ

∂rsp,ζ
∂rp,k

∂rp,k
∂rO,k

(2.33)

With the covariance functions so defined, the joint GP model is constructed by organizing the covariances
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of the forces and energies into a block matrix such that:

K̂ =

[
Kff Kfe

Kef Kee

]
(2.34)

Similarly, the training data is organized as a block matrix:

ŷ =

[
−yf
ye

]
(2.35)

Replacing the covarinace matrices with block matrices, the sparse model Eqs. 2.28-2.30 become:

LB = −1

2
ŷT Q̂−1

nnŷ −
1

2
log |Q̂nn| −

n

2
log 2π − 1

2
r̃ (2.36)

mq
p(x) = K̂xm(K̂mm + K̂T

nmΛ−1K̂nm)−1K̂T
nmΛ−1ŷ (2.37)

kqp(x,x
′) = k(x,x′)− K̂xm[(K̂mm + K̂T

nmΛ−1K̂nm)−1 − K̂−1
mm]K̂mx (2.38)

where Q̂nn = K̂nmK̂
−1
mmK̂

T
nm + Λ, r̃ = tr[Λ−1(K̂nn − K̂nmK̂

−1
mmK̂

T
nm)], and Λ is a diagonal matrix with

entries σ2
e or σ2

f for the energy and force noise variances respectively [67]:

Λ =

σ
2
f

. . .

σ2
e

 (2.39)

This makes the expected noise for the two GPs independent, which is sensible since the atomic forces and

energies should not necessarily have functionally-related uncertainties or measurement errors.

2.5.3 Including total energies of atomic configurations

Electronic structure theory does not naturally provide per atom potential energies, the energy instead being

a property of the electron density. This means that the GP for the per atom potential energies must be

replaced with one for the total potential energy of a simulation cell. Since the summation that relates the

per atom energies to the total energy is a linear operation (the same as the derivative relating potential

energies to forces), the total energies can also be assumed to be described by a GP. All that remains is to

define the covariances and mixed covariances accordingly.

For brevity, a configuration of atoms in an electronic structure calculation is referred to as a snap (short

for snapshot) and is denoted as S. By linearity of summation, the covariance between the total potential

energies of snaps S and S ′ is simply the sum of the per atom atomic energy covariances for all pairs of atoms
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between the snaps [67]:

kEE(S,S ′) =
∑
xj∈S
x′

g∈S
′

kee(xj ,x
′
g) (2.40)

In the same way, a mixed covariance between the total energy of snap S and the force on an atom with local

environment x′ is

kEf (S,x′) =
∑
xj∈S

kef (xj ,x
′) (2.41)

Since equations 2.40 and 2.41 only involve summations, the snap covariance matrices can be constructed

from those involving atomic energies by matrix operations [67]:

KEE = LKeeLT (2.42)

KEf = LKef (2.43)

where L is a matrix whose rows correspond to snaps in the training set and columns correspond to all atomic

environments in all the snaps in the training set. The lij element of this matrix is one if the jth atomic

environment is in the ith snap and is zero otherwise.

The final complication is that the equations for the sparse model often involve covariances with inducing

points that are not associated with any particular snap. This means that the definition of the K̂mm remains

unchanged, and the definition of K̂nm changes to:

K̂nm =

[
Kff
nm Kfe

nm

KEf
nm KEe

nm

]
(2.44)

using what is believed to be obvious notation. This version of K̂nm should be used for all occurrences in

Eqs. 2.36-2.38. The block matrix of the training data needs to be similarly revised to:

ŷ =

[
−yf
yE

]
(2.45)

where yE is a vector containing the total energies of all snaps in the training data. The last required

modification is to change the associated noise hyperparameter of the total energy GP (in accordance with

the central limit theorem) to:

σ2
E,j = Njσ

2
e (2.46)

where Nj is the number of atoms in snap j and the resulting σ2
E,j appear on the lower diagonal of Λ.

32



Figure 2.8: Test set values for atomic forces (left) and total energies (right) of Cu systems. The DFT-
calculated ground truth is on the horizontal axis, and the values predicted by the MLP framework are on
the vertical axis.

Table 2.1: Test set RMSEs of evaluated forces and energies of a Cu data set for our framework (labeled
ξ-GP) and others reported in Ref. [24].

ξ-GP GAP MTP NNP SNAP qSNAP

Energy [meV/atom] 4.54 0.56 0.52 1.68 0.87 1.16
Force [eV/A] 0.04 0.02 0.01 0.06 0.08 0.05

2.6 Resulting Framework

Using the atomic descriptors described in Sec. 2.2 with the sparse Gaussian process described in Sec. 2.5

produces a functioning MLP framework that can fit a single element PES using atomic forces and total

potential energies of simulation cells. Fortunately, Ref. [24] reports the accuracy and computational cost of

fitting DFT-calculated forces and total energies for five single element systems with several prominent MLPs.

They included a data set containing a collection of ab initio MD snapshots with low and high temperature

trajectories, vacancies and surfaces, and distorted structures. The results of using our model to fit the Cu

data provided by Ref. [24] can be seen in Fig. 2.8. The root mean squared error (RMSE) of the evaluated

forces and energies are 0.0370 eV/A and 4.54 meV/atom, respectively.

While the reported test set errors of our framework are exceedingly low, it is relevant to compare its

performance to other frameworks in the literature for the same Cu data set. As shown in Table 2.1) ours

predicts forces with higher accuracy than NNP, SNAP, and qSNAP. However, our model’s predicted energies

are less accurate than those of any of the other models. Several straightforward ideas about how the accuracy

could be improved are discussed in the conclusions of this dissertation.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of

Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR)

program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education
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(ORISE) for the DOE. ORISE is managed by ORAU under contract number DE-SC0014664. All opinions

expressed in this paper are the author’s and do not necessarily reflect the policies and views of DOE, ORAU,

or ORISE.
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Chapter 3

Energy storage under high-rate

compression of single crystal tantalum

The following chapter is comprised of a manuscript that was a joint effort of J. C. Stimac, N. Bertin, J. K.

Mason, and V. V. Bulatov [68].

3.1 Introduction

The Taylor-Quinney coefficient (TQC), or the coefficient of thermo-mechanical conversion, is named for two

scientists who observed that only a fraction of the mechanical work performed on a plastically deformed

material is converted into heat and concluded that the remainder must be stored in the material [8]. The

TQC is specifically defined as the fraction of mechanical work converted into heat, with the difference

between one and the TQC indicating the extent of energy storage. The original experiments by Taylor

and Quinney imposed significant torsion and compression on copper rods and found that this ratio began

around 0.85 or 0.9 before converging to 1.0 with increasing strain. As a consequence, the TQC is frequently

approximated as a constant around 0.9. Although its nature was unknown at the time, Taylor and Quinney

convincingly related the stored energy to an increase in the flow stress (plastic strength), a phenomenon

that would eventually become known as strain hardening. This suggested that perhaps the stored energy

itself constituted a material state variable that evolved during plastic deformation and defined the material

strength. Less than a year after publishing the original paper, Taylor further developed this connection

by proposing (simultaneously with Orowan and Polanyi) that crystal plasticity results from the motion of
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distinct line-shaped defects called dislocations [69]. Following that ground-breaking discovery nearly 90 years

ago, it has subsequently been established that the stored energy reflects changes in the defect microstructure,

e.g., the distributions of dislocations, point defects, grain boundaries, stacking faults, deformation twins, etc.

For most deformation conditions of interest though, both strain hardening and energy storage are mainly

consequences of the multiplication and storage of dislocations.

From a theoretical standpoint, it has been proposed that the TQC is related to the configurational

entropy. An early review made note of estimated contributions to this entropy change from dislocations and

point defects to estimate the free energy change during a cold-work process [70]. Later, the TQC became

a quantity of interest in thermodynamic theories of plasticity [71], including the thermodynamic dislocation

theory (TDT) [72, 73] which introduces an effective temperature to quantify the configurational disorder

of non-equilibrium dislocation systems. This later framework was recently used to derive thermodynamic

constraints on the TQC [74]. Recent work by Zubelewics also proposed a novel interpretation of the TQC as

a measure of the ability of the material to raise the configurational entropy enough to untangle the dislocation

network and enable dislocation motion [75].

Experimentally, direct measurement of the TQC requires delicate accounting of the heat released by the

material during the prescribed straining conditions. The measurement accuracy is hampered at low strain

rates by the typically small amounts of heat released and the difficulty of thermally isolating the system

from its environment. High strain-rate deformation can release substantially more heat and suffers from

fewer thermal losses to the environment, but can make thermal measurements themselves more difficult. For

example, measurements of the dissipated thermal energy by means of infrared detection have been found to

be rather sensitive to the calibration procedure, with updates to this procedure able to change the apparent

TQC by as much as a factor of two [76]. During material tests performed at most extreme deformation rates,

e.g., at the National Ignition Facility [77, 78], uncertainty in specimen temperature can reach hundreds of

Kelvin making extraction of the material’s intrinsic thermo-mechanical properties quite difficult. Despite (or

perhaps due to) our continually expanding and improving experimental capabilities, the range of TQC values

appearing in the literature is not narrowing, and if anything has expanded to the entire interval between 0.1

and 1.0. Reference [12] provides a review of the recent literature on this increasingly controversial subject.

Accurate knowledge of the TQC is desirable since it allows the prediction of the temperature change

of a material that is plastically deforming in adiabatic conditions, e.g., at high strain rates. Given that a

material’s mechanical properties can be temperature dependent, the TQC can appear as a critical parameter

in continuum-level models of plastic deformation [79, 13]. The value of the TQC can be relevant to other

simulations of material behavior as well, with the stored energy of cold work known to be implicated in the

onset of recrystallization and the Baushinger effect [80].
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Since it remains effectively impossible to partition mechanical work between released heat and stored

energy in experimental tests performed at the most extreme deformation conditions, computer simulations

offer an alternative means to gain much needed insights into energy storage. Unlike high strain rate experi-

ments, numerical simulations can provide complete information about the simulated material response and

allow mechanical work, released heat and stored energy to all be computed and monitored incrementally

at every time step. Reference [80] was perhaps the first simulation to explore energy storage due to dislo-

cation multiplication during plastic deformation, and used a discrete dislocation dynamics (DDD) method.

However, given that it was a highly abridged two-dimensional version of DDD with several critical param-

eter values adjusted in an ad hoc fashion to compensate for the missing third dimension, the values of the

TQC reported there do not represent any real material or deformation condition. More recently, molecular

dynamics (MD) simulations of dislocation motion in single crystals and of plasticity in nanocrystals [13]

were used to calculate the TQC of aluminum, copper, iron, and tantalum under high strain-rate shearing in

isothermal-isobaric conditions. Based on these simulations, the authors concluded that only extreme dislo-

cation multiplication up to densities of 1016 m−2 or extreme grain refinement down to diameters of 10 nm

could account for a TQC lower than 1.0 at the deformation rates accessible to MD simulations (∼108 s−1).

The authors then argued that grain refinement is the more likely of the two mechanisms to account for

appreciable energy storage in practice. That said, their simulations of nanograined samples had grain sizes

that were orders of magnitude smaller than what is usually observed in experimental specimens, artificially

inflating the apparent contribution of grain refinement to energy storage. Furthermore, their simulations

of dislocated single crystals initially contained only a single edge dislocation dipole, effectively precluding

dislocation multiplication as a means of energy storage.

In this paper, large-scale MD simulations of high-rate deformation of single crystal tantalum in isothermal-

isochoric conditions are performed and analyzed up to a true strain of 1.0 to observe and quantify the role of

dislocation multiplication as a mechanism of energy storage. Tantalum (Ta) has long been recognized for its

toughness and resistance to corrosion [81], resulting in its use in a variety of high strain-rate applications. For

this reason, Ta is used as a model material to study body-centered cubic (BCC) metals under extreme strains

and strain rates. The MD simulations and the methods used to monitor the thermo-mechanical response of

simulated single crystals are described in Sec. 3.2. Our simulation results on the TQC and energy storage

in Ta for the specified deformation protocols are given in Sec. 3.2. The relative utility of the differential and

integral forms of the TQC for understanding the materials response, a phenomenological model for both the

differential and integral TQC as functions of plastic strain, and a model that describes the energy stored in

the defect microstructure as a function of only the dislocation density and point defect concentration are all

discussed in Sec. 3.4. Conclusions on the basis of our observations are offered in Sec. 3.5.
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Figure 3.1: Simulation volume and dislocation network at true plastic strains of (a) 0.0, (b) 0.4, and (c) 1.0.
The compression axis x points to the right in all three frames.

3.2 Methods

All simulations were carried out using the LAMMPS software [82] with the embedded atom method (EAM)

interatomic potential for Ta of Li, et al. [83] and a 10 fs time step. A single-crystal rectangular prism of Ta

containing about 33 million atoms was generated with a 2:1:1 aspect ratio along the [100], [010] and [001]

crystallographic directions. Periodic boundary conditions were enforced in all directions, and the crystal was

seeded with an equal number of hexagonal dislocation loops for each of the four 1
2 〈111〉 Burgers vectors of the

body-centered cubic lattice as is visible in Fig. 3.1a. The crystal was then subject to uniaxial compression

along the x-dimension (the longest dimension aligned with the [100] direction), and the displacements along

the y- and z-dimensions enforced that the deformed crystal remain a tetragonal prism of constant volume.

The temperature was maintained at 300 K by means of a Langevin thermostat. All simulation settings

were identical or similar to those reported in Ref. [84], the only difference being the use of isothermal-

isochoric rather than isothermal-isobaric conditions. This minor change was made largely for computational

convenience since the crystal volume was fixed to maintain near-zero pressure during plastic flow (crystal

plasticity is naturally isochoric).

The crystal was subjected to two different dislocation seed configurations and deformation protocols to

investigate the extent to which the TQC depends on the initial dislocation density and loading conditions.

The first simulation (A) initialized the crystal with 12 hexagonal dislocation loops that were 40 lattice

constants in diameter and subjected the crystal to a constant compressive strain rate along the x-axis of

2 × 108 s−1 throughout the entire simulation. As discussed further below, this caused a stress overshoot

to develop as a consequence of the initial few dislocations requiring time to multiply to a level sufficient

to relieve the stress by means of their motion. The second simulation (B) initialized the crystal with 16

hexagonal dislocation loops that were 80 lattice constants in diameter, twice that of the first simulation.

The compressive strain rate along the x-axis was linearly ramped from 0 to 4 × 108 s−1 over an interval of
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Figure 3.2: Verification that the ramped simulation obeys the first law of thermodynamics. The total
mechanical work W done on the crystal is equal to ∆U +Q, or the sum of the change in the internal energy
∆U and the heat Q exchanged with the thermostat.

2 ns to a total strain of 0.4, and afterwards held constant at 4× 108 s−1. As a result of ramping the strain

rate and initializing a greater number of larger-sized dislocation loops, simulation B did not exhibit a stress

overshoot.

The amount of external mechanical work dW performed on the crystal in a given time step was computed

as

dW =
∑
i

σiiAidLi (3.1)

or as the sum of the products of the diagonal components σii of the internal stress tensor, the areas Ai of

the corresponding faces, and the incremental displacements dLi of the faces in their normal directions (the

shear components all vanished since the simulation volume remained strictly tetragonal). The mechanical

work, the internal energy U of the entire crystal, and the thermal energy δQ exchanged with the Langevin

thermostat were continuously recorded during the simulation. Figure 3.2 shows that, to a high degree of

accuracy and over the entire simulation, the total mechanical work W performed on the crystal (the integral

of Eq. 3.1) is equal to the sum of the change in the internal energy ∆U and the heat Q exchanged with the

thermostat. Our partitioning of mechanical work into dissipated heat and stored energy should be accurate

to the extent that this energy balance holds.

In their original paper, Taylor and Quinney computed the work-to-heat conversion ratio by dividing the

heat released by the total mechanical work, the latter computed as the area under the true stress–true strain

curve [8]. It has subsequently become more common to use the plastic work instead of the total work, the

rationale being that the elastic component is reversible and therefore never converted into heat. This is

schematically illustrated on the left side of Fig. 3.3 where plastic work only begins to accrue after the onset
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Figure 3.3: Stress-strain schematics that indicate the relationship of yield point phenomenon and the trans-
formation of elastic work to plastic work at low strains.

of yielding. This distinction has no bearing on the results and observations in the original paper since, at the

low deformation rates employed there, the elastic work constituted a negligible fraction of the total work.

However, at the high compressive strain rates employed in our MD simulations the crystal experienced much

higher stresses on the order of several GPa (and even higher during the stress overshoot in simulation A).

Thus, a substantial fraction of the total work is stored in the form of elastic strain energy. Since our concern

is with the part of the total work that is irreversibly stored in the defect microstructure, here we follow the

prevailing practice and use only the plastic work to calculate the TQC.

The plastic work is found by subtracting the elastic energy (the energy that could be recovered by

unloading the crystal) from the total work. The equation for the elastic energy for cubic crystals in the 〈100〉

frame reduces to

Eel =
V

2

∑
ijkl

Sijklσijσkl

=
V

2
[S11(σ2

11 + σ2
22 + σ2

33) + 2S12(σ11σ22 + σ11σ33 + σ22σ33) + S44(σ2
12 + σ2

13 + σ2
23)] (3.2)

where V is the crystal volume, σij are the internal stress tensor components, and Sijkl and Sij are the elastic

compliance components in tensor and Voigt notations. The elastic compliance components were found from

the elastic stiffness matrix components Cij by the standard equations

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)

S12 =
−C12

(C11 − C12)(C11 + 2C12)

S44 =
1

C44
(3.3)

and the elastic stiffness components were measured in a separate calculation using the same interatomic

potential, temperature and pressure as in simulations A and B.

The Langevin thermostat employed in our simulations did not strictly maintain the temperature at 300 K,
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Figure 3.4: Constant-volume specific heat capacity of Ta over the relevant temperature range. The blue
trend trend interpolates observations measured over 1 ps intervals.

and instead allowed the temperature to increase by a few Kelvin. Therefore, a precise calculation of the

fraction of mechanical work expended in forming defect structures requires knowledge of the heat capacity of

Ta for the selected interatomic potential [83]. The specific heat capacity at constant volume was measured

by maintaining the simulation cell at constant volume, slowly incrementing the target temperature over the

interval 250 K ≤ T ≤ 350 K, and continuously observing the heat exchanged with the thermostat. The

results are reported in Fig. 3.4 where the specific heat capacity at constant volume apprears to stay constant

at 0.135 J/(gK) in the relevant interval, coincidentally agreeing with the cp = 0.14 J/(gK) reported in Ref.

[13] for a different interatomic potential for Ta.

3.3 Results

The stress in simulation A (with a constant strain rate) is shown in Fig. 3.5a and exhibits an overshoot to

an upper yield point followed by a substantial drop to a lower yield point, with the flow stress afterwards

remaining nearly constant for the rest of the simulation. Particularly at high strain rates, the initial transient

in such stress-strain curves is generally attributed to delayed dislocation multiplication in response to a rising

stress. The initially low dislocation density limits the amount of deformation that can be accommodated via

dislocation motion, resulting in the majority of the mechanical work being converted into elastic energy. On

reaching the upper yield point, dislocations have multiplied sufficiently for their motion to produce plastic

strain at a rate that equals and even exceeds the externally-imposed strain rate; this overproduction of

plastic strain causes the subsequent stress drop. As the stress drops, the elastic energy accumulated during

the initial stress rise is rapidly converted into plastic work (shaded area in the schematic on the right of Fig.

3.3), most of which is immediately released as heat. This temporarily increased the temperature to 307 K
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(a) (b)

Figure 3.5: True stress and absolute temperature as a function of true strain for (a) simulation A and
(b) simulation B. While the temperature is not constant, the Langevin thermostat keeps the temperature
to within a few Kelvin of the target temperature, with the difference being roughly proportional to the
instantaneous rate of plastic work.

despite the use of a Langevin thermostat intended to maintain the temperature constant at 300 K. The

thermostat relaxation time was set to 10 ps as a compromise between the desires for a constant simulation

temperature and to avoid excessively perturbing the dynamics from the random atomic kicks and friction

forces that the thermostat employs. The majority of the heat released during the simulation is still exchanged

with the thermostat, with the minority responsible for the observed temperature variations being accounted

for by adding the term CV dT (t) to the incremental heat exchanged with the reservoir dQ(t). The specific

heat capacity 0.135 J/(gK) (Fig. 3.4) and mass density 16.55 g/cm−3 were specific to the Ta model used in

this study. This correction affects our computed TQC only during the initial yield transient and becomes

insignificant past the lower yield point where the temperature settles at about 304 K and stays very nearly

constant through the rest of the simulation.

The intent with simulation B was to suppress the initial upper-lower yield transient that caused the

rapid conversion of elastic energy into plastic work after the upper yield point in simulation A, thus possibly

affecting the value of the TQC. This was achieved (Figure 3.5b) by seeding a greater initial dislocation

density and linearly increasing (ramping) the strain rate. The temperature in simulation B similarly rises

monotonically with strain, though to a higher value than in simulation A as is consistent with the higher

steady-state strain rate.

The differential TQC is defined as the ratio of the incremental heat released to incremental plastic work

performed during the time step starting at time t, or [79, 85]

βdiff(t) =
dQ(t) + CV dT (t)

dWp(t)
(3.4)
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(a) (b)

Figure 3.6: Differential (blue) and integral (green) TQC as calculated by Eqs. 3.4 and 3.5 for (a) constant
(simulation A) and (b) ramped (simulation B) strain-rate compression.

where dWp(t) = dW (t)−dEel(t) is the incremental plastic work defined by Eqs. 3.1 and 3.2 and the remaining

quantities are taken directly from the standard output of the MD simulation. The integral TQC is instead

defined as the ratio of total heat released by time t and the total plastic work done on the crystal by the

same time t:

βint(t) =
Q(t) + CV ∆T (t)

Wp(t)
. (3.5)

While βdiff is more informative as a measure of the instantaneous partitioning of mechanical work along the

deformation path, βint is more commonly reported of the two in the literature, perhaps for the reason that

it is easier to measure experimentally. As was explained in [85] where the two parameters were first referred

to as “differential” and “integral”, the integral TQC is not equal to the integral of the differential TQC.

Instead, the following equality holds:

βint(t) =

∫ t

0

βdiff(t′)
dWp(t

′)

Wp(t)
(3.6)

in which the contribution of βdiff computed at time t′ to βint is weighted by the fractional plastic work

performed during [t′, t′ + dt′] relative to that during [0, t].

Figure 3.6 shows the computed differential and integral TQC values as blue and green lines for simulations

A and B. The differential TQC is susceptible to high-frequency fluctuations attributed to uncertainties in the

small values of the denominator in Eq. 3.4 computed over short time intervals, especially during the initial

stress rise where only a small fraction of the mechanical work is converted into plastic work; such uncertainties

can even cause βdiff to be ostensibly higher than one over a few time intervals. Indeed, fluctuations of this

kind are all too familiar in MD simulations with finite numbers of atoms. For the systems of the size
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considered here, a smoothing operation is applied to the differential TQC that entails a moving average in

a 20 ps window iteratively applied for 10 passes. The rapid increase of the integral and differential TQC

during and after yielding indicates that initially a large fraction of plastic work is expended in generating

new crystal defects (storage), and that this fraction gradually decreases with increasing plastic strain as the

system approaches a state of stationary flow.

3.4 Discussion

Simulations A and B are generally consistent with each other and with other similar large-scale simulations

reported elsewhere [84, 86, 87]. As has been observed in all simulations performed at comparable strain

rates, the flow stress reaches a plateau at true strains in the range of 0.3 to 0.5 (Fig. 3.5). The flow stress in

simulation B has nearly plateaued when the end of ramping is reached at a true strain of 0.4 and remains

nearly constant from a true strain of ∼0.5 to the end of the simulation. The plateau stress is higher than in

simulation A because the final strain rate of 4×108 s−1 in simulation B is twice as high as that in simulation

A.

3.4.1 Comparison between TQC measures

Simulations A and B confirm earlier observations that, when subjected to straining under conditions that

remain constant for a sufficiently long time, a plastic crystal can attain a state of stationary flow [84]. In

such a stationary state the dislocation microstructure itself becomes stationary but only in a statistical

sense; although mutually balanced, dislocation multiplication and annihilation continue unabated resulting

in the incessant rebuilding and dissolution of a dynamically evolving dislocation network. Since the total

defect density eventually reaches a stationary state, βdiff must be 1.0 in stationary flow—to the degree the

defect density is unvarying—since all of the plastic work must therefore be dissipated as heat. The heat is

generated primarily by dislocation motion converting the work of the Peach-Kohler force into the energy of

lattice vibrations (phonons). Further plastic work is converted into phonons as a result of energy-reducing

dislocation reactions such as dislocation annihilation (and to a lesser extent the formation of dislocation

junctions). In stationary flow, the energy released as heat through dislocation annihilation is compensated

by the additional defect energy accrued in the crystal by dislocation multiplication, leaving the net defect

energy invariant.

This is fully consistent with data presented in Fig. 3.6 showing that, indeed, on reaching the true strain

where the flow stress reaches its plateau, βdiff reaches and remains close to 1.0 within the fluctuations expected

in our simulations. Although not obvious from Fig. 3.6, the average of βdiff is actually slightly below 1.0 as a
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consequence of the point defect density continuing to rise past the apparent start of stationary flow, discussed

further in Sec. 3.4.3. By contrast, βint never reaches but only asymptotically approaches 1.0 from below.

This is a direct consequence of the relationship in Eq. 3.6 since, if βdiff is smaller than 1.0 at any point and

does not rise above 1.0, βint necessarily remains smaller than 1.0 for all strains. As occurred in simulations

A and B, there is often appreciable energy storage at the early stages of straining that is integrated into

βint, making this parameter rather insensitive to the subsequent straining trajectory. For this reason it

is tempting to advocate, after Ref. [13], that βdiff is the more informative of the two parameters since it

provides information about the instantaneous state of the system. On the other hand, βdiff can be difficult

or even impossible to extract during experiments, whereas βint gives a simple measure of thermo-mechanical

conversion under straining. Regardless, their relationship in Eq. 3.6 makes clear that the two quantities

contain precisely the same information, simply in different forms. Perhaps a more pertinent issue is that a

value of the TQC (whether differential or integral) obtained in one experiment or simulation is generally not

applicable to experiments or simulations performed under different conditions, depending as they do on the

material’s initial defect microstructure as well as on the entire thermo-mechanical trajectory followed during

the test.

Asymptotic convergence notwithstanding, our simulations indicate that βint remains markedly lower

than 1.0 up to rather large plastic strains in situations where dislocation multiplication is the primary

energy storage mechanism. For instance, βint is still below 0.9 at a plastic strain of 0.5 for both simulations

in Fig. 3.6. This is at variance with Ref. [13] which found that βint quickly converged to 1.0 after plastic

yield in MD simulations involving dislocations. They concluded that energy storage due to dislocation

multiplication could not explain experimental observations of βint less than 1.0, and that some other energy

storage mechanism must be responsible. It is significant to this discussion that the simulations in Ref.

[13] used an initial condition consisting of a single edge dislocation dipole, effectively precluding dislocation

multiplication which is the key energy storage mechanism in crystal plasticity. By comparison, dislocation

multiplication takes place naturally in our simulations in a statistically representative ensemble of interacting

dislocations. Indeed, our results suggest the opposite conclusion, that energy storage due to dislocation

multiplication is substantial and should be accounted for when assessing thermo-mechanical conversion

during high-rate straining experiments. As discussed in more detail in Sec. 3.4.3, the total energy additionally

stored in the defect microstructure in simulations A and B is 17 and 22 meV/atom, respectively, or roughly

5% of the total plastic work performed on the crystals in the same simulations. Assuming that the specific

heat capacity remains unchanged at 0.135 J/(gK), this amounts to about 80 K of additional temperature

rise if all of the stored energy were to be released as heat. By comparison, an estimate given in Ref. [13]

for the amount of energy that could be stored by a grain refinement mechanism is only 2.5 × 103 J/m3 =
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0.28×10−3 meV/atom, five orders of magnitude lower than what is observed in the two simulations reported

here and hence entirely negligible on the energy scales involved with high-rate plasticity.

3.4.2 Phenomenological model

As discussed in Sec. 3.1, Taylor and Quinney conjectured in their original paper that the stored energy

constituted a material state variable [8]. They did this without knowledge of the defect microstructure, and

while our understanding of such defects has developed extensively in the intervening years, there remains

an appealing simplicity to modeling the evolution of the energy stored in the defect microstructure without

concern for the specifics of the defect evolution processes (a subject that will be explored in Sec. 3.4.3).

Let Estored = U −Uref −Eel−CV ∆T be defined as the energy stored in the defect microstructure, where

∆T is the deviation from the reference temperature (300 K) and Uref = NatEcoh where Nat is the number

of atoms in the crystal and Ecoh is the per-atom energy in a perfect crystal at the reference temperature.

Suppose that there is a limiting value of Estored in a material that is continuously deformed in unchanged

straining conditions for a sufficiently long time; this value, indicated by E∞, is a material function that could

in principle be computed or measured as a function of temperature, pressure and straining rate. The quantity

E∞−Estored is then the remaining capacity of the material to store energy in the defect microstructure given

a prescribed deformation protocol. Suppose further that the material stores in the defect microstructure a

fraction of the incremental plastic work that is proportional to the remaining energy storage capacity, or

dEstored/dWp = ζ(E∞ − Estored), (3.7)

where ζ is the constant of proportionality (conjectured to be a material constant). The solution of this

differential equation for the stored energy as a function of plastic work is

Estored(εp) = E∞ − (E∞ − E0) exp[−ζWp(εp)] (3.8)

where Estored and Wp are both taken to be functions of plastic strain εp and E0 is the energy stored in the

defect microstructure at the beginning of deformation (εp = 0). The definition in Eq. 3.4 then implies the

following explicit form for the differential TQC:

βdiff(εp) = 1− dEstored/dWp

= 1− ζ(E∞ − E0) exp[−ζWp(εp)]. (3.9)
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Figure 3.7: Comparison of the predictions of Eq. 3.8, Efit
stored, with the energy stored in the defect microstruc-

ture, Estored, for both simulations. The red marker roughly indicates the point where steady-state plastic
flow begins in simulations A and B. The overall RMSE is 0.434 meV/atom.

Finally, substituting this into Eq. 3.6 and performing the integration there gives the following explicit form

for the integral TQC:

βint(εp) = 1− (E∞ − E0)
1− exp[−ζWp(εp)]

Wp(εp)
. (3.10)

Provided both E∞ and E0 are known, the simple model expressed in Eqs. 3.9 and 3.10 involves a single

fitting parameter ζ defining the rate of energy storage as a function of plastic strain. Here a nonlinear least

square procedure is used to fit to the stored energy data Esim
stored extracted from the two MD simulations and

both ζ and E∞ regarded as fitting parameters.

The resulting values for simulation A are ζ = 12.9 and E∞ = 18.1 meV/atom, and for simulation B

are ζ = 8.78 and E∞ = 24.1 meV/atom. Inserting these values into Eq. 3.8 and using the value of the

initial energy stored in the defect microstructure for E0 gives the values of Estored plotted in Fig. 3.7. The

accuracy of the model noticeably improves for both simulations after steady-state plastic flow is reached

(indicated by the red marker in the figure), likely as a consequence of the model not being able to capture

the complex processes of defect multiplication around the yield point. The same parameters were used to

evaluate the predictions of Eqs. 3.9 and 3.10 for βdiff and βint, with the results shown in Fig. 3.8. The model

agrees reasonably well with the values of TQC extracted directly from the two MD simulations, with the

most significant deviations occurring right after yielding for plastic strains of less than 0.1; this is the same

interval where the fluctuations in the observed values of the TQC are largest.

Fundamentally, the TQC reflects the complexity of microstructural evolution [9] and should depend on

the straining rate [10], crystal orientation [11], and even loading mode [12]. A phenomenological model

of the kind described here, while not resolving any relevant details of the microstructure evolution, offers
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(a) (b)

Figure 3.8: Comparison of the predictions of Eqs. 3.9 and 3.10 with the values of βdiff and βint plotted in
Fig. 3.6 for (a) simulation A and (b) simulation B.

an approximate quantitative description that goes beyond the current practice where TQC is treated as a

material constant. Indeed, at the expense of one (or perhaps two) additional adjustable parameters, such a

model is likely to predict with better accuracy the rate of heat release and the resulting rise in temperature

as a function of plastic strain. Again assuming that parameter ζ is a material constant, the kinetics of energy

storage could be described over complex straining trajectories that entail variations in pressure, temperature

and loading mode. In such situations, the asymptotic stored energy E∞ could be viewed as a moving target

to which the instantaneous energy Estored relaxes, e.g., according to Eq. 3.7. Given the dependence of

material response on temperature, this would considerably reduce experimental uncertainties about material

behavior under extreme straining conditions.

3.4.3 Stored energy model

Having defined stored energy as a measurable macroscopic quantity, the purpose of this section is to identify

microscopic defects that actually contribute to Estored. Here we show that, although the majority of the

stored energy is attributed to dislocations, the dislocation contribution alone does not account for all of

the energy storage in our MD simulations. It is significant that an early review on the TQC included

the contributions of point defects, along with dislocations, when estimating the stored energy of cold work

[70]. Indeed, our MD simulations indicate that point defects including vacancies, interstitials, and their

clusters contribute substantially to the energy stored in the defect microstructure. The concentration of

point defects generally increases with increasing straining rates and dislocation density. The defects are

produced largely as debris in the wake of moving screw dislocations dragging cross-kinks and/or jogs formed

by dislocation intersections [88] [89]. Moreover, in the absence of internal interfaces or other sinks, point
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(a) (b)

Figure 3.9: Dislocation density and vacancy concentrations as functions of true strain for (a) simulation A
and (b) simulation B.

defect recombination and absorption by dislocations are the two most likely mechanisms of point defect

removal in the crystal bulk.

The copious point defect debris in our high strain-rate simulations is mostly single vacancies, though

single interstitials and interstitial clusters also occur. The BCC Defect Analysis (BDA) method [90] was

used to count the vacancies produced in our simulations. The same BDA method is inaccurate in counting

interstitials, even though we were able to visually identify multiple interstitials and interstitial clusters using

various functionalities of the OVITO software [91]. Visually, interstitials appear to be less numerous than

vacancies, but their contribution to energy storage should not be discounted because the formation energy

of a single interstitial in the Ta model employed here is 7.54 eV, nearly three times that of a vacancy at

2.75 eV. Here we shall assume that energy stored in the interstitials is directly proportional to the energy

stored in the vacancies at all times.

Shown in Fig. 3.9a is a plot of the vacancy concentration in simulation A as a function of strain along

with the evolution of the dislocation density extracted using DXA [92, 93]. At a strain of ∼0.5 where

the dislocation density appears to have saturated, the vacancy concentration is still rising and has not

fully saturated even by the end of simulation A at a strain of 1.0. The same trend can be seen in Fig.

3.9b pertaining to simulation B. This asynchronicity could reflect the fact that, while the rate of debris

production depends only on dislocation density, the rate of debris removal should also depend on the point

defect concentration itself. Thus, for the rate of debris removal to balance the rate of debris production by

dislocations, the debris may need to reach sufficiently high concentrations that are not fully attained even

at a strain of 1.0. Assuming that at any given time the energy of stored interstitials is proportional to the

energy of stored vacancies, the contribution of the debris to the stored energy is modeled by multiplying the
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(a) (b)

Figure 3.10: Stored energy model for simulation A as a function of true plastic strain. Including point defects
in the fitting (a) gives χ = 1.26 and ξ = 1.73, whereas excluding point defects (b) gives χ = 1.72.

(a) (b)

Figure 3.11: Stored energy model for simulation B as a function of true plastic strain. Including point defects
in the fitting (a) gives χ = 1.40 and ξ = 1.55, whereas excluding point defects (b) gives χ = 1.75.
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energy stored in vacancies by a constant factor ξ > 1:

Edebris = ξNvcyEvcy (3.11)

where Evcy is the vacancy formation energy and Nvcy is the number of vacancies counted using the BDA

algorithm.

The energy stored in the dislocation network is modeled following Ref. [94]:

Edis = ηχ
µb2

4π
ρ ln

(
1

rc
√
ρ

)
(3.12)

which includes the linear dependence of the elastic energy on the dislocation density ρ and a logarithmic

term that accounts for the screening and core cutoff rc of the dislocations’ stress fields. Here µ is the shear

modulus, b = 0.286 nm is the Burgers vector magnitude, and χ and η are parameters on the order of unity

that are discussed below and in more detail in the Appendix. Although this model was initially introduced

to describe the energy associated with arrays of infinite straight dislocations, it has been recently shown to

accurately capture the energetics of complex and realistic dislocation networks [94].

To more accurately account for the energy stored in dislocations, Eq. 3.12 is adjusted from Ref. [94] as

follows. First, a factor η is introduced to correct the isotropic model proposed in Ref. [94] for the elastic

anisotropy of the Ta model used in our MD simulations. As described in the Appendix, this is estimated

to be η ' 1.35 at 300 K. Second, a factor χ is used as a fitting parameter to account for variations in the

stored energy as a consequence of the precise geometric arrangement of the dislocation lines. Although the

physical meaning of χ is subtle, as was shown in Ref. [94] and is further discussed in the Appendix, physically

reasonable values of this parameter are bound to the interval between 1.0 and 1/(1 − ν) ' 1.5. The cutoff

radius is set to rc = 0.5b as a coarse estimate for dislocation core energies reported for the same model of Ta

elsewhere [95]. More details on the parameters η, χ, rc, and their relationships are given in the Appendix C.

Assuming that the point defect debris and the dislocations are the only contributions to the energy of

the defect microstructure gives

Estored = Edis + Edebris (3.13)

where the coefficients ξ and χ in Eqns. 3.11 and 3.12, respectively, are treated as fitting parameters to

describe the variations in the stored energy data Estored extracted from our MD simulations. Results for the

fit obtained with Eq. 3.13 are shown in Fig. 3.10 a for simulation A, with χ = 1.26 and ξ = 1.73 providing

a remarkably good fit to the energy storage data. The value of ξ > 1 indicates that the contribution to the

stored energy from the unknown population of interstitials is a significant fraction of that of the vacancies,
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while the value of χ = 1.26 falls within the expected interval defined elsewhere [94]. Shown in Fig. 3.10b

for comparison is a best fit at ξ = 0 ignoring the contribution of the point defects and accounting only for

the dislocation network energy. This results in a best fit value χ = 1.72 which is outside the acceptable

range of 1.0 to 1.5 for this parameter. In comparison to Fig. 3.10a, the agreement between the “dislocations

only” model and the MD data is rather poor which additionally supports our assessment that the dislocation

network alone cannot reasonably account for the total stored energy. Thus, we find that point defects provide

a significant mechanism for energy storage, with their contribution potentially half that of the (very dense)

dislocation network at strains of 1.0 in Fig. 3.10a.

Similar results were obtained for simulation B in Fig. 3.11a for which the best fit values are χ = 1.40 and

ξ = 1.55. Accounting only for the dislocation network energy in Fig. 3.11b instead yields a higher value of

χ = 1.75 which, just as in the case of simulation A, falls outside the physically admissible range. That the

best fit parameters have slightly different values for simulations A and B likely reflects differences in their

straining trajectories and ultimate straining rates.

3.5 Conclusion

Taylor and Quinney defined a thermo-mechanical conversion factor (TQC) as a measure of the energy stored

in a material undergoing plastic deformation. This continues to be a quantity of enduring interest that can

be and has been experimentally measured at low and moderately high deformation rates. That said, fully

dynamic high-rate simulations of the kind reported here can be used to quantify thermomechanical conversion

under extreme deformation conditions where experimental measurements are difficult or impossible.

Since the original study of Taylor and Quinney, advances in microscopy and material characterization

have offered a variety of ways to observe and quantify changes in the defect microstructure that contributes

to energy storage during mechanical deformation. Likewise, the atomistic simulations reported here allow

one to observe the mechanisms of energy storage during high-rate deformation in silico and in arbitrary

detail.

Our results support the following conclusions:

• Under compressive deformation conditions held unchanged for sufficient strains, single crystal tantalum

is predicted to asymptotically approach a state of steady flow in which the defect microstructure

becomes statistically stationary. Energy storage ceases and the TQC approaches 1.0 in the same

asymptotic limit.

• The asymptotic limit E∞ of stored energy is a measure of the material’s energy storage capacity and
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can be computed and tabulated as a function of the straining conditions. It is used here to define

a phenomenological model of energy storage kinetics potentially applicable to complex deformation

histories.

• Dislocation multiplication is a major energy storage mechanism in the high-rate deformation conditions

studied here. However, point defect debris is also produced in copious quantities and contributes as

much as 1/2 of the energy stored in the dislocation network. Dislocation multiplication and debris

production together account for the TQC staying measurably below 1.0 up to large compressive strains.

• Although minor, energy storage due to debris production continues well beyond the strains at which

dislocation multiplication ceases to contribute to energy storage.
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Chapter 4

Dependence of simulated radiation

damage on crystal structure and

atomic misfit in metals

The following chapter is comprised of a manuscript that was a joint effort of C. Serrao, J. C. Stimac, and J.

K. Mason.

4.1 Introduction

Structural components in nuclear fission reactors need to be engineered to withstand decades of exposure to

radiation and elevated temperatures [96, 97]. Materials in the next generation of fission reactors and future

fusion reactors will be subject to substantially higher radiation dosages and temperatures and likely highly

corrosive environments as well [5, 6]. Irradiation by exposure to high-energy particles displaces atoms and

damages the crystalline structure of pure metals and alloys [14, 98], resulting in a variety of microstruc-

tural changes. Specifically with respect to the degrading effects of radiation, there are five considerations

for structural metals in reactor environments: radiation hardening (low temperature), radiation-induced

segregation and precipitation, void swelling, radiation-induced creep, and helium embrittlement (high tem-

perature) [99, 7]. The three intermediate temperature effects are usually the most relevant in practice, and

are often observed simultaneously since they are all strongly associated with the underlying ability of point

defects generated by radiation to migrate through the lattice [100, 101].

Radiation-induced segregation of substitutional solutes is generally attributed to the inverse Kirkendall
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effect where, as vacancies migrate to and annihilate on sinks, the different atomic species have different

migration rates in the opposite direction [102]. The segregation extent is governed by differences in diffusive

mobility, with undersized solutes generally being enriched and oversized solutes being depleted in the vicinity

of the sinks [103, 101]. Void swelling is a serious engineering concern that entails an increase in the volume

of the material by as much as 1% per dpa [104] from the nucleation and growth of voids in the bulk. This

process is driven by an imbalance in the concentrations of vacancies and interstitials, with annihilation of

high-mobility interstitials on dislocations and other sinks leaving behind a relative excess of vacancies that

precipitate as voids [100, 105]. While a variety of mechanisms have been proposed for irradiation creep, the

two main mechanisms are believed to be the climb of favorably-oriented dislocations by the stress-induced

preferred absorption of point defects and the glide of dislocations enabled by climb over obstacles [106, 100].

Multi-principal component alloys (MPEAs) [107, 108] (often called high-entropy alloys or composition-

ally complex alloys) consist of a few to several atom types in solid solution with nominally equi-atomic

concentrations. This emerging class of metals could perform well as structural materials in irradiated en-

vironments, with initial evidence showing exceptional mechanical properties [109, 18] and higher resistance

to radiation damage [110, 111] than traditional metals. One experimental and computational study of the

effects of radiation on a CrCoNi MPEA showed decreases in the relative disorder, the number of defects, and

large defect clusters compared to irradiated samples of pure Ni and a NiFe binary alloy [110]. The authors

attributed these effects to decreasing dislocation mobility with increasing number of atomic species. Lu et al.

[112] studied void swelling in several Ni-based alloys including pure Ni, NiFe, CrCoNi and two quinary alloys

with and without prior nanoindentation, and found that nanoindentation improved resistance to swelling by

increasing the density of defects like dislocations, stacking faults, and twin boundaries that promote vacancy

annihilation. Curiously, Velişa et al. [113] found that CrCoNi only showed superior irradiation resistance

relative to NiCr only at temperatures near and below 300 K though. The reason for this is not well estab-

lished, but is believed to be related to the specifics of the chemical short range order (SRO) that developed

in the two alloys.

The most direct way to simulate radiation damage at the atomic level uses molecular dynamics (MD)

simulations of collision cascades [98, 14]. This involves assigning a large initial velocity to the primary knock-

on atom (PKA) to mimic a passing neutron or other high-energy particle transferring kinetic energy to the

lattice. The PKA recoils, displacing many of the surrounding atoms from their lattice sites and converting

the initial kinetic energy into a thermal spike with sufficient energy to facilitate the regeneration of the

crystalline lattice and the recombination of many, but not all, of the generated point defects. The resulting

interstitials and vacancies are respectively distributed on the periphery and the interior of the affected zone,

increase the point defect concentration in the material, and are directly responsible for the most visible
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degrading effects of radiation.

Mass conservation requires that the interstitials and vacancies generated by a single collision cascade

occur as Frenkel pairs. The accumulated number of such Frenkel pairs divided by the number of atoms in

the material is known as the displacements per atom (dpa), and is the standardized measure of the extent of

radiation damage in crystalline materials [114]. Early work by Kinchin and Pease modeled atoms as hard-

spheres that exhibit elastic collisions during collision cascades and laid the theoretical foundation for radiation

effects in crystalline materials [115]. If the energy transferred to an atom exceeded a material-specific

threshold value, then the atom was said to have been displaced from its lattice site. While energies below

the threshold could still displace the atom, it would return to its lattice site after the initial perturbation.

The theory developed by Kinchin and Pease was further developed in the work of Norgett, Robinson, and

Torrens (hereafter referred to as the NRT model) who added additional terms to account for energy lost

to ionization and for the affects of inelastic collisions [116]. Several more recent studies concluded that the

NRT model overestimates the number of defects generated by a collision cascade and neglects the mixing

from atomic replacements though, spurring a number of proposed refinements [98, 14]. These are significant

for the reason that accurate damage models that can reliably predict dpa are essential to reliably compare

radiation damage resistance among various materials.

Full-scale atomic simulations of collision cascades have been performed for several decades now, and are

useful to uncover the evolution of radiation-induced primary damage [15, 117]. However, the use of MD

for this application is subject to several limitations. As Ref. [98] points out, interatomic potentials cannot

capture the effects of deviations from the Born-Oppenheimer approximation when excited electronic states

are induced. The other main limitations are the time and length scales that can reasonably be achieved with

modern computational resources. MD simulations are usually no longer than a few nanoseconds, limiting

the overall radiation dose that can reasonably be achieved by full cascade simulations without the events

overlapping in time; Refs. [118, 119] further discuss these limitations. As a result of the high computational

cost to reach appreciable dpa, the doses investigated in MD simulations have been historically been less

than 1.0 dpa. Although these are useful to understand defect creation at low doses, structural materials in

a nuclear reactor core can experience as much as 80 dpa over a 40 year service life [7]

A variety of strategies have been used to circumvent the computational limitations imposed by cascade

simulations, one of which involves the direct insertion of a high density of Frenkel pairs [120, 121, 122].

Such Frenkel pair accumulation (FPA) techniques forgo the dynamics of time-resolved high-energy atomic

collisions stemming from the primary knock-on event. Instead, they intermittently introduce Frenkel pairs

by randomly displacing atoms from their lattice positions, usually followed by some form of equilibration

and time integration. These methods benefit from a clearly defined radiation dose, based on the the number

56



of displaced atoms, and dose rate, based on the ratio of displaced atoms to the simulated time. For example,

Chartier et al. [123] used a FPA procedure to model irradiation of UO2 and found the steady-state dislo-

cation density to be in good agreement with experiments. A major limitation of FPA procedures though is

the absence of any effects related to the thermal spike [119], particularly providing the thermal energy nec-

essary for diffusion and clustering of defects. This notably includes the recombination of point defects when

vacancies and interstitials collide. Analysis of FPA simulations should be done with careful consideration of

this limitation to avoid the potential for nonphysical extrapolation.

Recent work by Derlet and Dudarev [118] introduced a variant of the FPA method that further streamlines

the process of sampling irradiated microstructures. Known as the creation-relaxation algorithm (CRA),

this differs from preceding FPA methods in that there are no time integrated dynamics. CRA simulations

randomly select atoms and displace them with random directions and magnitudes, just as other FPA methods

do, but always follow this with an energy minimization procedure. The entire simulation involves repeating

this process for a specified number of displacements, with the canonical dpa equal to the number of displaced

atoms divided by the total number of atoms in the system. Dudarev and Derlet applied the CRA to BCC

Fe systems of a variety of sizes and reported good agreement between full cascade simulations [124, 125]

and the CRA for interstitial density as a function of dpa, at least up to a linear rescaling of both the

independent and dependent variables. The need for rescaling is likely related to the CRA effectively being

performed at zero Kelvin, as with other FPA methods [126]. The thermally-driven diffusion of point defects

that is prevalent at high temperatures and substantially contributes to microstructure evolution of irradiated

materials is negligible in such conditions. That said, the CRA can be viewed as simulating radiation damage

in conditions where thermally-driven diffusion is active but negligible compared to other mass transport

mechanisms. For example, Dudarev and Derlet observed evolution of the microstructure resulting from

fluctuating atomic-level stresses in the simulation cell as defects were introduced.

The CRA has since been used to investigate radiation effects in materials other than BCC Fe. One

such study used the CRA to simulate irradiation of a NiFe system doped with C and evaluated the ability

of C interstitials to decrease radiation damage [127]. Several others applied the CRA to W to investigate

the relationships between dpa and specific physical parameters at relatively high doses (above 1.0 dpa),

either alone or with the assistance of other computational or experimental methods. Parameters that were

investigated include thermal conductivity [128], hydrogen embrittlement and tritium concentration [129],

and radiation induced structural evolution [130].

This paper investigates the microstuctures of highly irradiated Fe, equi-atomic CrCoNi, and a fictitious

metal with identical bulk properties to the CrCoNi composed of a single atom type referred to as an A-atom.

The main motivation for including the Fe and A-atom systems is to establish points of comparison for the
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investigation of the reported radiation resistance of CrCoNi. The CRA is used to simulate the irradiation

of all three systems up to a final dose of 2.0 dpa. The details of the implemented CRA, as well as an

analysis of the experimental dose rates and temperatures for which it is likely relevant, are described in

Sec. 4.2. The same section also outlines our methods for identifying material defects including dislocations,

vacancies, interstitials, and stacking faults, and a model for the energy stored in those defects. The results

and a discussion of the simulations are included in Sec. 4.3, and Sec. 4.4 draws conclusions to inform further

research in this area.

4.2 Methods

4.2.1 CRA simulations

All molecular dynamics simulations were performed using the LAMMPS software [82]. Orthorombic simula-

tion cells were used with periodic boundary conditions for all cell faces, and the number of atoms remained

constant. No temperature or time-steps were defined for any simulation. After constructing the initial space-

filling single crystals, the volume of the simulation cell was relaxed using a potential energy minimization

and fixed thereafter. The present study examined three material systems: BCC Fe, equi-atomic FCC Cr-

CoNi, and FCC A-atom designed to reproduce the bulk properties of CrCoNi using a single fictitious atom

type [131]. Comparison with an A-atom model more directly allows identification of the effects caused by

chemical short range order (SRO) and lattice distortion (LD) which are widely implicated in the enhanced

physical properties of MPEAs [18].

The BCC Fe simulation consisted of a simulation volume of 40 units cells along each of the three di-

mensions, and with two atoms in each unit cell contained a total of 128, 000 atoms. This simulation used

the Mendelev-II embedded atom method (EAM) potential [132]. The FCC CrCoNi simulation consisted of

32 unit cells along each of the three dimensions, and with four atoms in each unit cell contained a total

of 131, 072 atoms. All three atomic species were represented with equal concentrations, and were initially

distributed uniformly at random throughout the simulation cell. The propose of reducing the number of

unit cells for the FCC systems was to make the number of atoms as close as possible to that in the Fe

simulation. The equiatomic CrCoNi simulation utilized the EAM potential developed by Li et al. [133]. The

FCC A-atom simulation used the EAM potential offered by Jian et al. [134] but was otherwise identical to

the CrCoNi simulation.

This work circumvented the computational limitations associated with full collision cascade simulations

by using the creation relaxation algorithm (CRA) [118] to simulate the effects of irradiation by the repeated
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Algorithm 1 Creation Relaxation Algorithm

1: n := 0 . number of displaced atoms
2: while n/N < φdpa do . N is total number of atoms
3: Randomly select an atom i uniformly over all atoms
4: Move atom i to a randomly selected point within the simulation cell
5: while Potential energy increase exceeds a threshold do
6: Move atom i to a randomly selected point within the simulation cell
7: end while
8: Relax the system using energy minimization
9: n← n+ 1

10: end while

introduction of Frenkel pairs [135, 123]; the basic CRA is described in Alg. 1. All three experiments used

the CRA to simulate radiation damage up to 2.0 dpa, requiring a total of 256, 000 atomic displacements

in the Fe system and 262, 144 displacements in both the CrCoNi and A-atom systems. The potential en-

ergy minimization conducted after each atomic displacement consisted of two steps. First, the position of

every atom was randomly perturbed by a small Gaussian-distributed displacement, and second, a standard

gradient-based energy minimization was applied to the atomic positions to reduce the system energy. The

purpose of the small perturbations in the first step was to help the system to escape shallow local energy

minima as would naturally occur in a thermal system. The perturbation magnitude was fixed after system-

atically exploring the relationship between the perturbation magnitude and the relaxed potential energy of

a smaller BCC Fe system of 2, 000 atoms. This involved displacing 100 atoms with energy minimization

but without perturbations between displacements. After all the displacements, the atoms were subjected to

repeated cycles of perturbations and energy minimization, with the resulting potential energy profiles for a

given standard deviation of the perturbation magnitude shown in Fig. 4.1 as a function of cycle number.

Standard deviations of 0.005 and 0.01 angstroms were found to rapidly result in a relatively stable potential

energy minimum, with larger displacements often introducing additional defects and smaller displacements

unable to reliably allow the system to escape shallow potential energy minima. A perturbation magnitude of

0.01 angstroms was chosen for the subsequent simulations for the reason that it reached the potential energy

minimum in the fewest number of cycles.

Since the intention was for the perturbations to make the system more closely resemble a thermal one,

a natural question is what would be the corresponding temperature for a given perturbation magnitude.

The equipartition theorem implies that the potential energy per atom relative to that in an ideal crystal

should be (3/2)kBT for a thermal system; equating this with the average potential energy increase per

atom resulting from a single perturbation gives an equivalent temperature of ∼30 K for all three systems.

This implies that the additional energy supplied by the perturbations is consistent with the assumption
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Figure 4.1: The absolute potential energy per atom of a highly defected BCC Fe system as a function of
minimization cycles. Perturbation magnitudes of 0.005 and 0.01 angstroms allow the system to quickly reach
a deep potential energy minimum.

that any thermally-driven diffusion of point defects is insignificant compared to alternative mass transport

mechanisms.

4.2.2 Applicable temperatures and dose rates

As mentioned in Sec. 4.1, the microstructures that develop when using the CRA are a direct product of

relaxations of the atomic-level stress fields, and do not necessarily represent microstructures that develop

in conditions with appreciable thermally-driven diffusion. We characterize the regime of physical conditions

for which the CRA is applicable by a simple argument that compares the rates of atomic transport by

thermally-driven diffusion and ballistic displacements from collision cascades. The main criterion for appli-

cability is that the rate of ballistic displacements per atom K0 be much greater than the interstitial hopping

rate γdiff (assumed to be the fastest thermally-driven diffusion event). In such conditions, any effects of

thermally-driven diffusion should be negligible compared to those resulting from ballistic displacements and

the subsequent stress relaxation. The interstitial hopping rate, as described by transition state theory, obeys

the Arrhenius relation γdiff = ν0exp (−Ea/kbT ) where ν0 is the high-temperature limit for the site-hopping

frequency, Ea is the activation energy, kb is the Boltzmann constant, and T is the temperature. The random

walk diffusion model suggests that ν0 be approximated by 6D0/λ
2 where D0 is the diffusivity prefactor and

λ is the distance separating two interstitial sites [136].

Using the values for the diffusivity and activation energy of CrCoNi given by Ref. [137] leaves only the

temperature and K0 as independent variables. We now define a measure of applicability A = log10(K0/γdiff)

such that a factor of one increase in A, indicates an order of magnitude increase in the ratio of K0 to γdiff .
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Figure 4.2: Contour plot of the applicability measure A = log10(K0/γdiff) as a function of the logarithm of
the dose rate and temperature. The calculations used the diffusivity and activation energy of CrCoNi given
by Ref. [137].

A contour plot of A for CrCoNi is included as Fig. 4.2 and indicates that applicability increases at lower

temperatures and higher dose rates; moreover, the dependence on the temperature is much more significant

than the dose rate, a consequence of the exponential scaling in the Arrhenius relation for the diffusivity.

Across the range of dose rates considered, the temperatures are in the cryogenic range for a tolerance of

applicability A ≥ 2. This low temperature constraint is entirely consistent with the equivalent temperature

resulting from the perturbations in the atomic positions described in Sec. 4.2.1.

4.2.3 Identifying defects

It is difficult to precisely identify crystalline defects in a material that has suffered extensive radiation

damage. Certainly there is still an underlying lattice, but conventional defect models assume that the defect

is isolated, or equivalently, that the surrounding atoms occupy well-defined lattice positions. This is not

true for the high defect concentrations that can occur in irradiated materials, and identification of reference

lattice sites is further complicated in MPEAs like CrCoNi where the reference lattice is already perturbed

by atomic size differences.

The numbers and types of dislocations in the simulations were determined using OVITO’s dislocation

extraction algorithm (DXA) [91]; the algorithm requires a trial circuit length and a value for circuit stretch-

ability which were set to 14 and 9 respectively. Surprisingly, the DXA appeared to be relatively robust to

extensive disruption of the crystalline lattice from the CRA, with very few isolated dislocation segments

appearing in the networks reported below in Sec. 4.3.2.

The number of vacancies were determined using OVITO’s Wigner-Seitz (WS) analysis. This constructs

Voronoi cells around the lattice sites in an initial crystal structure and checks the atom occupancy of each
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Figure 4.3: Three different estimates for the number of vacancies in BCC Fe as a function of dpa.

Voronoi cell in subsequent time steps. A Voronoi cell that does not contain any atoms is regarded as

indicating the presence of a vacancy, though this approach does not precisely define the vacancy location.

The WS analysis was compared with two other approaches to estimating vacancy concentration in the BCC

Fe systems, the first of which was the BCC defect analysis (BDA) [90]. The second approach involved

evaluating the relaxed volume of the simulation box. Inserting a single Frenkel pair produces an interstitial

and a lattice site occupied by a vacancy, resulting in the expansion of a crystal subject to zero traction

boundary conditions. Since the simulations were conducted at constant volume, the insertion of Frenkel

pairs in the CRA instead elevated the system pressure. The equivalent volume change was evaluated by

relaxing the simulation cell subject to a zero traction boundary condition, and enabled the number of

vacancies to be estimated by assuming that the volume change from inserting a Frenkel pair remained

constant throughout the simulation. Figure 4.3 compares the three methods and shows that the WS analysis

agrees much better with with the vacancy concentration estimated from the relaxed volume than from the

BDA. The factor by which the WS and relaxed volume method differ can be interpreted as the reduction in

volume change per effective Frenkel pair insertion with increasing dpa. The poor performance of the BDA is

likely a consequence of extensive radiation damage making it difficult to identify vacancies based on features

of local atomic environments without a clear underlying crystal lattice.

Interstitials are the defect type that is most difficult to identify in our simulations. The multiplicity of

local atomic configurations that can occur for non-isolated interstitials means that template-based approaches

would be difficult or even infeasible to implement, and examining the expected number of atoms contained

within a surface that passes only through crystalline material (the analogue of a Burgers circuit) often fails

because of the obstructions to constructing such surfaces. In the absence of a canonical alternative, our

approach involves constructing a distribution of atomic volumes as estimated by the Voronoi polyhedra.
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The compressive stresses around an interstitial reduce the volumes of the interstitial and of the surrounding

atoms in a characteristic way when the interstitial is in an otherwise perfect crystal. The distribution of

atomic volumes in our simulations is decomposed with a K-means algorithm into a superposition of peaks,

one for each characteristic atomic volume surrounding an isolated interstitial. Part of the utility of K-means

is that the boundaries that define the locations the peaks can be dynamically updated from one time step

to the next; this is necessary to account for the shifting and broadening of the peaks as the structure

reaches higher defect concentrations. Comparing the numbers of atoms assigned to each peak with the

corresponding numbers of atoms for an isolated interstitial gives an estimate for the number of interstitials

in our simulations, though the accuracy is expected to decrease as the peaks broaden and overlap with

increasing radiation damage.

Stacking fault (SF) densities in the FCC CrCoNi and A-atom systems are relatively simple to evaluate

by comparison. Since the local atomic structure around atoms belonging to a SF appears to be HCP, all that

is necessary for a reasonable estimate is to count the number atoms classified as HPC by OVITO’s common

neighbor analysis and to convert this to an equivalent SF area using lattice geometry.

The Warren-Cowley parameters are used to quantify the type and degree of chemical short range order

(SRO) and are defined as [138, 139]

αij = 1− pij/cj (4.1)

where pij is the probability that an atomic type j is present in the first nearest-neighbor shell of an atomic

type i, and cj is the overall concentration of atomic type j. Positive values of αij means there is a repulsion

between species i and j, while negative values indicate attraction.

4.2.4 Energy model

This section develops a model to partition the energetic contributions of the various types of material defects

to the overall potential energy change as a function of dpa. The potential energy stored in defects is defined

as Estored = Epe − Ecoh − Eelas, where Epe is the potential energy, Ecoh is the cohesive energy, and Eelas is

the elastic strain energy. This stored energy is modeled as a sum over defect contributions:

Efit = Edis + Evcy + Eint − Esro (4.2)

which includes terms for the contributions of dislocations, vacancies, interstitials, and chemical short range

order, respectively. The contribution of stacking faults to Efit was found to be negligible.

The energy of a well-developed dislocation network in an elastically isotropic material is well described
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Table 4.1: Material properties used as parameters to evaluate the dislocation energy.

µ [Gpa] b [A] a0 [A] ν

Fe 49.5 2.49 2.87 0.373
CrCoNi 37.0 2.47 3.50 0.414
A-atom 43.0 2.47 3.50 0.403

by the equation [94]:

Edis = χ
µb2

4π
ρ ln

(
1

rc
√
ρ

)
(4.3)

where µ is the shear modulus, b is the Burgers vector, rc is a cutoff radius of the dislocation core stress

field, and ρ is the dislocation density. The value of rc is approximated as the lattice parameter, a0. χ

is a parameter that accounts for the overall dislocation character, and depending on the material and the

development of the network is expected to be in the interval 1.0 ≤ χ ≤ 1/(1− ν) where ν is Poisson’s ratio.

The elastic constants that are necessary to evaluate Eq. 4.3 were found in Refs. [134, 132], and the material

parameters used in the model are included in table 4.1.

The energetic contributions of the point defects are modeled as:

Evcy = βevcyNvcy (4.4)

Eint = γeintNint. (4.5)

evcy and eint are the formation energies of an isolated vacancy or interstitial as found by inserting a single

vacancy or interstitial into an otherwise perfect crystal. The values of these formation energies are reported

in table 4.2. After minimizing the potential energy and measuring the potential energy change ∆E relative

to the perfect crystal, the isolated point defect formation energies were defined as:

evcy = ∆Eremove + Ecoh (4.6)

eint = ∆Eadd − Ecoh. (4.7)

Nvcy and Nint are the numbers of vacancies and interstitials, and β and γ are fitting parameters to account

for deviations from the isolated point defect energies that occur as the density of point defects increases with

dpa.

Finally, Esro is the energy associated with the chemical short range order relative to a random solid

solution, and was evaluated for the CrCoNi MPEA system using molecular statics calculations. Starting

with an initial configuration, the types of all the atoms were randomly reassigned to one of the three
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Table 4.2: Isolated point defect formation energies.

evcy [eV] eint [eV]

Fe 1.71 4.01
CrCoNi 1.49 2.45
A-atom 1.62 3.85

constituent elements and the potential energy of the structure was minimized. This procedure was repeated

five times for each configuration to account for statistical variations, and the the average potential energy

change relative to the initial structure was included in the model for each dpa for which the fitting was

conducted.

The resulting energy model contains the three adjustable parameters χ, β, and γ. Fitting the model

to each of the three systems involved first constructing the bounds on the dislocation energy that would

be realized by the minimum and maximum allowed values for χ. The dislocation energy was then fixed at

the lower bound, and a least-squares technique was used to find the values of β and γ that minimized the

difference between Estored and Efit over the entire interval up to 2.0 dpa. Repeating this procedure with

the dislocation energy fixed at the upper bound allowed the construction of corresponding intervals for the

predicted contributions of the vacancy and interstitial terms. As discussed below in Sec. 4.3.5, the largest

contribution to the model error is likely the estimated numbers of point defects Nvcy and Nint.

4.3 Results and Discussion

4.3.1 Total energy and pressure

The successive generation of Frenkel pairs considerably increases the potential energy of the simulated

systems, particularly in the absence of thermally-driven point defect migration and recombination. As

displayed in Fig. 4.4, the energies of all three systems roughly reach steady states by 0.5 dpa, suggesting

the activity of another recovery mechanism that offsets the energy increase of additional Frenkel pairs. The

convergence of the system potential energy does not indicate that the microstructure has reached a steady

state though; a slow but continual increase in pressure past 0.5 dpa that is most visible for the Fe system in

Fig. 4.5 implies that at least some features of the microstructure continue to evolve up to much higher dpa.

The supplied energy that persists through the structural relaxations can be partitioned into local material

defects and an overall elastic energy—there is no kinetic energy in the absence of atomic velocities. The

increasing elastic energy is a direct consequence of the introduction of Frenkel pairs; consider that displacing

an internal atom to an external surface of a crystal increases the crystal volume by one atomic volume.
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Figure 4.4: The change in the energy of the simulation cell as a function of dpa for all three material systems.

Figure 4.5: The pressure of the simulation cell as a function of dpa for all three material systems.
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The simulations are performed at fixed volume though, meaning that the boundary conditions can only be

satisfied by subjecting the crystal to an increasing pressure to maintain a net zero volumetric strain. The

elastic energy is defined as the elastic work that would need to be performed on the relaxed system in a zero

pressure configuration to return it to the required volume. This can be calculated from the material’s elastic

constants and the volume of the system in the relaxed configuration, with the later evaluated by allowing

the simulation box to expand while minimizing the potential energy. The percent of the supplied energy

that resides as elastic energy is negligible in all situations, being 3%, 0.2% and 0.3% for the Fe, CrCoNi and

A-atom systems, respectively. The overwhelming majority of the supplied energy therefore resides in the

form of defects, specifically dislocations, interstitials, and vacancies (the contribution of stacking faults was

found to be negligible in Sec. 4.2.4).

4.3.2 Dislocations

While the dislocation networks that developed in the three systems are clearly distinct, the dislocation

densities of all three initially rapidly increased before falling to steady state values. Figure 4.6 shows the

dislocation networks in the Fe (left), CrCoNi (middle), and A-atom (right) systems at 0.5 dpa (top) and

2.0 dpa (bottom) as found by the DXA, with the network density visibly lower at higher dpa for the Fe

and A-atom systems. A more quantitative analysis of the distribution of dislocation types as a function of

dpa is provided in Fig. 4.7, where the dislocation density for the Fe system is visibly lower than that for

both the FCC systems at all dpa. This can be explained by the main dislocation production mechanism in

irradiated materials; isolated self-interstitials precipitate as interstitial disks, forming dislocations loops that

evolve and eventually develop into a larger network. In Fe this is known to produce more mobile 1/2〈111〉

and less mobile 〈100〉 loops, with the population of the former being greater at low temperatures [140, 141].

The 1/2〈111〉 dislocations begin as isolated loops, but appear to be mobile enough to migrate and react

once the dislocation density and internal stresses reach critical values around 0.8 dpa, reducing the overall

dislocation density as a dislocation network is formed.

The expectation was that the dislocation networks in the CrCoNi and A-atom systems would begin as

isolated extrinsic Frank loops resulting from the precipitation of interstitials on {111} planes. It is well

established experimentally that these sessile Frank eventually unfault to form a glissle dislocation network

containing both perfect dislocations and Shockley partials, though the precise mechanism by which this

occurs continues to be a subject of study [142, 143, 144]. What was unexpected in Fig. 4.7 is that this

unfaulting process should begin at the outset, with the population of Shockley partials visibly exceeding

that of any other dislocation type in Fig. 4.7 even for very low dpa. There is a measurable population of
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Figure 4.6: Dislocation networks at 0.5 dpa (top) and 2.0 dpa (bottom) for Fe (left), CrCoNi (middle), and
A-atom (right) systems where color indicates dislocation types. For the Fe system green are 1/2〈111〉 and
purple are 〈100〉 dislocations. For the CrCoNi and A-atom systems green are 1/6 〈112〉 Shockley partials,
purple are 1/6 〈110〉 stair-rods, yellow are 1/3 〈100〉 Hirth, light blue are 1/3 〈111〉 Frank, and dark blue are
1/2 〈110〉 perfect dislocations.

m m m

Figure 4.7: The dislocation density and dislocation types for Fe (top left), CrCoNi (top right), and A-atom
(bottom) as a function of dpa.
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extrinsic Frank loops that slowly decreases up to around 1.0 dpa, but the rapid growth of the population

of Shockley partials well before this point suggests that there is some other mechanism by which Shockley

partials are being generated. The details of the dislocation formation mechanisms at the earliest stages of

radiation damage will require a dedicated study that is relegated to future work though. The generally

increasing populations of sessile stair-rod dislocations with dpa is an expected result of the maturation of a

glissile dislocation network mainly composed of Shockely partials. Finally, it is significant that the dislocation

network in the A-atom system continues to undergo substantial change even up to 1.6 dpa, well beyond the

0.5 dpa at which the potential energy converged in Fig. 4.4. The invariance of the potential energy even as

the dislocation density is reduced by nearly half requires a corresponding increase in the population of other

defect types, a point that will be significant in the following.

4.3.3 Stacking faults

As expected, stacking faults (SFs) were only observed in the FCC CrCoNi and A-atom systems. The SF

configurations for these two systems at 2.0 dpa are shown in Fig. 4.8, and the SF density as a function of

dpa is reported in Fig. 4.9. The very high SF densities observed in these systems are consistent with the

low reported values for their SF energies [134] and with the high density of partial dislocations in Fig. 4.7.

It is interesting that the SF density for the A-atom system was higher than for the CrCoNi system up to

around 0.8 dpa, but by 2.0 dpa the situation had reversed with the SF density in the A-atom system falling

by almost a factor of three. This roughly correlates with the decrease in the density of Shockley partials in

Fig. 4.7, though the correspondence is not exact. If the decrease in the SF density is in fact driven by the

maturation of the dislocation network, then an important question is why a similar decrease in the density

of Shockley partials and SFs was not observed in the CrCoNi system. Any explanation should likely involve

the chemical SRO since this is (by design) the main difference between the CrCoNi and A-atom systems.

Possible mechanisms include atomic rearrangements following the formation of the SF lowering the energy

of the SF relative to the pristine state and increasing the unfaulting barrier, or the fluctuations in the local

stacking fault energy decreasing the difficulty of cross slip and increasing the complexity of the dislocation

network. If true, either of these mechanisms would help to explain why the dislocation density for the

CrCoNi system does not fall as quickly with increasing dpa as for the A-atom system.

The elevated SF density observed here could have significant implications for the mechanical strength of

irradiated CrCoNi since SFs can act as barriers to dislocation motion that increase plastic strength. Recent

work by Richie et al. used in situ transmission electron microscopy to investigate CrCoNi under cryogenic

conditions and noted that a high density of SFs and extensive cross slip likely contributed to the superior
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Figure 4.8: Stacking faults as identified by locally HCP coordinated atoms in CrCoNi (left) and A-atom
(right) systems at 2.0 dpa

m

Figure 4.9: The stacking fault density as a function of dpa for the CrCoNi and A-atom systems.

mechanical properties of the alloy [145]. SFs have also been suggested to decrease radiation-induced void

swelling of CrCoNi by alleviating internal stress build up [112].

4.3.4 Short range ordering

The CrCoNi system, initialized as a random solid solution, did develop a minor degree of SRO during the

CRA simulation. While not visually apparent this ordering was statistically significant as indicated by

the WC SRO parameters reported in Fig. 4.10. All of the WC parameters stabilized by 0.5 dpa, with Cr

displaying an increased likelihood to neighbor Co and both Cr and Co less likely to neighbor other atoms

of the same species. It is interesting that this degree of order developed despite the randomizing effects of

atomic displacements in the CRA, and is significant that the order generally agrees with what has been found

experimentally [146] and with more accurate DFT-based Monte Carlo simulations [147]. Finally, despite the

magnitude of the SRO being relatively small, the contribution toward lowering the potential energy of the

system is still substantial; as will be discussed in Sec. 4.3.5 below, the magnitude of the Esro can be as much
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Figure 4.10: The Warren-Cowley SRO parameters as a function of dpa for the CrCoNi system.

as 30% of the magnitude of Efit.

4.3.5 Point defects and energy balance

The results discussed up to this point have included dislocations and stacking faults, i.e., defects for which

there are standard identification techniques and about which we have general confidence. The same is not

true for point defects though, for the identification of which there are arguably no methods in the literature

(including the ones used here) that work reliably at high defect concentrations. This section not only reports

the nominal point defect concentrations as calculated using the methods described in Sec. 4.2, but highlights

the inconsistency of these estimates with respect to the stored energy. This is particularly concerning

since the point defect balance equations that describe the evolution of point defect concentrations are the

foundations of our understanding of damage development in irradiated materials [100, 97], and it is unclear

whether it is currently possible to evaluate the independent variables in these equations either by experiment

or simulation. Our sincere hope is that this will be identified as an area requiring the further attention of

the research community in the future.

One expectation is that the concentrations of vacancies and intertsitials should be equal at low dpa and

increase linearly with the number of displacements. This is because both are initially produced in equal

amounts by Frenkel pair insertions and the defect density is not high enough for there to be appreciable

annihilation. While this is satisfied for the point defect concentrations reported in Fig. 4.11, the vacancy and

interstitial concentrations quickly diverge with increasing dpa just as in the CRA simulations of Ref. [118].

This is conventionally believed to indicate that the more mobile interstitials are clustering to form dislocation

loops or are annihilating on previously-existing loops once a threshold density is reached, with the less mobile

vacancies remaining in the bulk. Although our simulations only considered single crystal systems, interstitials
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Figure 4.11: Estimated vacancy and interstitial concentrations as a function of dpa for all three material
systems.

can also migrate to and annihilate on other types of sinks (e.g., grain boundaries, phase boundaries, voids) in

more general materials. The nominal vacancy concentrations of the Fe and CrCoNi systems were comparable

at all dpa, and were consistently ∼50% greater than that of the A-atom system. It is suspicious that the

vacancy concentrations of the two FCC systems as found by the WS method continue to increase all the

way to 2.0 dpa though, considering that the pressures of these systems have already converged by 0.5 dpa

in Fig. 4.5; along with the results of the energy fitting reported below, this suggests that the WS method

increasingly overestimates the vacancy concentrations of the FCC systems at higher dpa. Confusingly, the

same does not seem to be true for the Fe system for which the vacancy concentration, pressure, and energy

model results are all consistent. The reason for this discrepancy is unknown, but highlights the need for

more robust ways to identify vacancies (or a more precise definition of what constitutes a vacancy) in highly

damaged structures.

The results of fitting the energy model Efit of Sec. 4.2.4 to Estored for all three structures are reported in

Fig. 4.12, with the values of the fitting parameters β and γ given in Table 4.3. The model works remarkably

well for the Fe system, with Efit reproducing all of the general trends of Estored and many of the smaller

features as well. The fitted values of β and γ for the Fe system are also physically reasonable, being slightly

below one as is necessary for the clustering of point defects to be energetically favorable. This is not the

case for the CrCoNi and A-atom systems though; both of these systems exhibit a Efit that continually

increases with dpa rather than converging around 0.5 dpa, and γ values that are well above the physically

reasonable bound of 1.0. The second observation in particular suggests that the interstitial concentration is

severely underestimated, with the model compensating for an unreasonably low value of Nint in Eq. 4.5 by

elevating the value of γ. Supposing from the Fe system that γ should be ∼0.9, the interstitial concentration

in the FCC systems appears to be underestimated by a factor of two to three at high dpa. While it is
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sro

Figure 4.12: Fit of the stored energy model described in Sec. 4.2.4 for the Fe (left), CrCoNi (center), and
A-atom (right) systems. The dotted trend lines are bounds derived from the estimated bounds on the
dislocation network energy.

Table 4.3: Parameters fit by the energy model that account for deviations of energy from isolated defects.
β is the coefficient for vacancies and γ is for the interstitials.

β γ

Fe 0.879 0.840
CrCoNi 0.454 2.90
A-atom 0.970 1.49

true that the steady-state interstitial concentrations should not necessarily be comparable in BCC and FCC

systems, Fig. 4.11 is also consistent with the interstitial concentrations in FCC systems being systematically

underestimated. The source of the error is likely that the difference in atomic volumes of interstitials and

atoms of the crystalline lattice is less pronounced in FCC than BCC systems, with interstitials in BCC Fe

often adopting split-dumbbell configurations.

If the vacancy concentrations are relatively accurate and the errors in the interstitial concentrations are of

a similar magnitude for the CrCoNi and A-atom systems, then the gap between the vacancy and interstitial

concentrations would be significantly larger for the CrCoNi than for the A-atom system throughout the

simulations, even at very low dpa. If this is true, then that would have important implications for the

effects of SRO and lattice distortions on the development of radiation damage. Based on a conventional

understanding of the point defect balance equations [100, 97], prior observations of CrCoNi’s low-temperature

radiation resistance [113] imply that the gap between the vacancy and interstitial concentrations should be

smaller for CrCoNi, encouraging point defect recombination and suppressing vacancy precipitation. While

this is superficially inconsistent with our results, observe that a higher sustained vacancy concentration does

not necessarily lead to a higher susceptibility to voids. Specifically, there is evidence that SRO and lattice

distortions can increase the magnitude of energetic well depths for vacancies [148], effectively decreasing the

vacancy-vacancy and vacancy-void capture radii and allowing higher vacancy concentrations to be sustained

as compared to the A-atom system. Given the magnitude of the apparent errors in the estimated vacancy
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and interstitial concentrations though, there is not strong evidence for this conclusion at present.

There are other qualifications relating to the CRA’s limitations that should be made regarding the

observed differences in point defect concentrations across the three material systems. One important factor

absent in these simulations is the thermal spike associated with a collision cascade. MPEAs have been found

to have a shorter mean-free electron path and a lower thermal conductivity than traditional alloys, and it

has been proposed that this could prolong the thermal spike and increase the extent of defect recombination

[149, 150]. It is also worth considering the potential effects of nanotwinning, which has been experimentally

observed to be an important cryogenic strengthening mechanism for CrCoNi [145]. While the CRA did not

induce any visible nanotwinning, this could be related to the relative sizes of the simulation cell and the

critical nucleation event. Nanotwins would not only affect the development of the dislocation network, but

have shown the ability to capture or promote the transport of point defects to sinks in irradiated Cu [151].

4.4 Conclusion

CRA simulations were conducted to investigate differences in the development of irradiated microstructures

in BCC Fe, FCC CrCoNi, and FCC A-atom systems in the low temperature and high dose rate regime

up to 2.0 dpa. The CrCoNi system developed the highest overall dislocation density and exhibited the

ability to maintain that dislocation density even as the dislocation networks in the Fe and A-atom systems

matured and simplified. The higher stacking fault density in CrCoNi is likely related to the consistently

higher density of partial dislocations relative to the other systems. The successive insertion of Frenkel pairs

entailed by the CRA mildly increased the degree of chemical short range order in CrCoNi relative to the

initial random solid solution in a way that is consistent with other modeling and experimental studies. A

model was developed for the energy stored in the material defects, and strongly suggests that the interstitial

concentrations for the FCC systems as estimated from the distribution of Voronoi cell volumes are lower

than the actual effective concentrations by a factor of two to three. It is also possible that the Wigner-Sietz

method of identifying vacancies slightly overestimates the vacancy concentration for the FCC systems at

high defect concentrations. The same methods of point defect identification seem to be much more reliable

for the BCC Fe system though, with the energy model closely following the simulation results. Given the

overwhelming importance of point defects to the development of radiation damage and the intense interest in

CrCoNi and other FCC MPEAs for nuclear applications, our results reveal a critical need to either develop

more robust ways to measure point defect concentrations in heavily-damaged FCC materials, or perhaps to

reevaluate what is meant by a point defect in such materials.
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Chapter 5

Conclusion and future work

This dissertation describes a novel framework for constructing MLPs in addition to two studies that use

atomistic simulations to study the behavior of metal alloys in extreme conditions. While the intention was

to use the MLP framework in the latter two studies, they were being conducted simultaneously with the

MLP development. This practical limitation is the main reason why the simulations of Ta and CrCoNi

resorted to using EAM potentials previously reported in the literature. Naturally, there are several areas in

which this research could continue in the future.

Regarding the MLP framework described in Ch. 2, there are several straightforward modifications that

should improve the balance of accuracy and computational efficiency. The first is to explore alternatives to

the ε-net procedure to construct the set of inducing points. While the ε-net procedure is inexpensive and

robust, equivalent performance could likely be achieved with fewer inducing points (and therefore higher

efficiency) provided that the inducing points are appropriately distributed. The second is to allow the

hyperparamter length-scales of the GP to vary independently for each of the descriptors. This is expected

to improve the accuracy by allowing for a more flexible regression function given a fixed number of inducing

points, though this will need to be done carefully to limit the increased computational cost of training with

more hyperparameters. The descriptors could also be modified to include information about additional

many-body interactions, and research in this direction is ongoing.

In addition to modifications of features of the MLP framework that are already functioning, there are

other features that would ideally be implemented in the near future. These include:

• Extending the framework to be capable of including multiple atomic species would be necessary for

simulations of more complex systems, for example, MPEAs. This could theoretically be accomplished

by weighting the Dirac delta functions in Eq. 2.10 with weights that depend on the species of the
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atom. By defining several sets of weights and evaluating the descriptors independently for each set,

the Gaussian process would receive information both about the atomic species and positions. This

approach was suggested as part of the GAP framework [35], but there is still considerable uncertainty

in the literature about the construction of optimal sets of weights.

• Extending the GP to include fitting observed components of the stress tensor could be important

depending on the phenomenon of interest. Accurate predictions of mechanical responses of alloys

undergoing deformation is an example application where accurate stresses are essential. The system

stress components can be incorrect in model systems with periodic boundary conditions even with

an interatomic potential that perfectly reproduces atomic forces [152, 153]. A GP over snap stress

components could be added to the already-constructed joint model in an similar manner to that

described for the atomic forces in Sec. 2.5.2, and as is fully described in Ref. [67].

• Using the posterior variance of the GP to develop an active learning scheme would improve the sim-

plicity and efficiency of training. The variance acts as a measure of uncertainty for all force and energy

evaluations. If the uncertainty of the atomic forces exceeds a pre-specified tolerance, further electronic

structure calculations could be performed specifically for the problematic atomic configurations, and

the results added to the model data. While the earliest mention of this idea of which we know is in

Ref. [35], this has been recently implemented in another Gaussian process based MLP framework that

is referred to as Fast Learning of Atomic Rare Events (FLARE) [154].

As for further study related to TQC and the stored energy of cold work, which was the focus of Ch. 3,

a potentially interesting and worthy avenue to pursue is testing and extending both stored energy models

to other metallic systems, including polycrystalline ones. Kositski et al. [13] conducted MD simulations of

multiple grains which suggested that grain coarsening could act as a significant energy source, and further

investigating that contribution to the total stored energy would be worthwhile. Additionally, the parameters

of the phenomenological model could be tabulated for various materials under specific straining conditions,

making the model of more practical use for estimating the temperature increase in continuum scale simula-

tions of deformation.

Regarding the study on radiation-induced damage in CrCoNi (Ch. 4), this work and other simulations

of radiation damage would benefit immeasurably from more robust ways to identify point defects in heavily

damaged materials. At a minimum this would allow for more confident assessments regarding the imbalance

between the vacancy and interstitial concentration which is believed to be the main driver for void swelling

and other types of radiation damage. Considering the fundamental motivation for studying MPEAs, explor-

ing whether radiation resistance could be improved by varying the composition of the primary elements or
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by adding additional elements would be impactful, and could be done with the Frenkel pair accumulation

method described here.
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Appendix A

Matrix inversions and determinants

A critical part of the sparse Gaussian process is the application of the Woodbury matrix inversion identity

(also referred to as the Sherman-Morison-Woodbury formula) to the low-rank matrix Q̂nn to reduce the

computational scaling from O(n3) to O(nm2). One formulation of the Woodbury identity is [155]:

(
A+ UBUT

)−1
= A−1

[
I − U

(
B−1 + UTA−1U

)−1
UTA−1

]
(A.1)

Notice that the LHS is of the same form as Q̂nn = Λ + K̂nmK̂
−1
mmK̂

T
nm. This formula has well-documented

stability issues, though the stability can be improved by adjusting the definitions of B and U . Specifically,

let B := RT K̂−1
mmR where R is upper triangular matrix constructed from the economic QR decomposition

K̂nm = QR, U := Q, and A := Λ.

Apart from the inversion of Λ (a diagonal matrix), some of the other matrices that need to be inverted

during the training of a sparse GP can be poorly conditioned. A common way to address these issues is to add

“jitter” as discussed in detail in technical report Ref. [64]. This entails improving the conditioning of a matrix

K by adding a small multiple of the identity matrix before taking the inverse. That is, K−1 is approximated

as (K+ εI)−1, with the Cholesky decomposition often used to solve for the inverse where possible. However,

since the smallest value of ε required to make K positive definite and apply the Cholesky decomposition

could be excessively large, our implementation generally used the Moore-Penrose pseudo-inverse method

[156].

Finally, for the matrix determinant of Q̂nn required to evaluate the lower bound to the log-marginal

likelihood in Eq. 2.36, the following identity is used [157]:

|Q̂nn| = |K̂mm + K̂T
nmΛK̂nm||K̂−1

mm||Λ|. (A.2)
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Appendix B

Atomic descriptors

B.1 Definition of the gnl

Let fnl(r) be a linear combination of spherical Bessel functions of the first kind

fnl(r) = anljl(unlr/rc) + bnljl(un+1lr/rc) (B.1)

where anl and bnl are constants, jl(r) is the spherical Bessel function of the first kind of order l, unl is the

(n + 1)st nonzero root of jl(r), and rc is the cutoff radius. Since fnl(rc) = 0 by design, the objective is to

find anl and bnl such that f ′nl(rc) = 0 and f ′′nl(rc) = 0. Using the differentiation rules for the spherical Bessel

functions

j′l(x) = jl−1(x)− l + 1

x
jl(x) j′l(x) =

l

x
jl(x)− jl+1(x)

in, e.g., Sec. 14 of Ref. [57], f ′nl(r) and f ′′nl(r) can be shown to vanish at r = rc if the coefficients in Eq. B.1

satisfy

anl =
un+1l

jl+1(unl)
cnl bnl = − unl

jl+1(un+1l)
cnl

for an arbitrary constant cnl. This constant is constrained by requiring that fnl(r) be appropriately normal-

ized, or ∫ rc

0

fnl(r)fnl(r)r
2dr = 1.

Using the relevant orthogonality relation for the spherical Bessel functions [57]

∫ rc

0

jl(un′lr/rc)jl(unlr/rc)r
2dr = δn′n

r3
c

2
[jl+1(unl)]

2
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leads to

fnl(r) =

(
1

r3
c

2

u2
nl + u2

n+1l

)1/2[
un+1l

jl+1(unl)
jl

(
unl

r

rc

)
− unl
jl+1(un+1l)

jl

(
un+1l

r

rc

)]
as an explicit equation for the fnl(r).

For any integer l ≥ 0, the gnl(r) for n ≥ 0 are a set of orthonormal functions derived by applying the

Gram–Schmidt process to the fnl(r). Let g0l(r) = f0l(r). The process then involves constructing gnl(r) for

n > 0 given fnl(r) and gn′l(r) for 0 ≤ n′ ≤ n− 1. Observe that gn′l(r) contains components of all fn′′l(r) for

0 ≤ n′′ ≤ n′, and therefore terms involving jl(un′′lr/rc) for all 0 ≤ n′′ ≤ n′ + 1. Since fnl(r) only contains

terms involving jl(unlr/rc) and jl(un+1lr/rc), fnl(r) is already orthogonal to all gn′l(r) for 0 ≤ n′ ≤ n−2 by

the orthogonality of the spherical Bessel functions of the first kind. The only remaining step is to subtract

the projection of fnl(r) onto gn−1l(r), or

hnl(r) = fnl(r)− gn−1l(r)

∫ rc

0

fnl(r)gn−1l(r)r
2dr. (B.2)

hnl(r) is orthogonal to all gn′l(r) for l ≤ n′ ≤ n− 1, but is not yet normalized. Let

dnl =

∫ rc

0

hnl(r)hnl(r)r
2dr (B.3)

be the squared magnitude of hnl(r). The desired orthonormal gnl(r) is

gnl(r) = hnl(r)/
√
dnl. (B.4)

Explicitly evaluating the integral

∫ rc

0

fnl(r)gn−1l(r)r
2dr = −

√
enl
dn−1l

where the constants enl are defined as

enl =
u2
n−1lu

2
n+1l

(u2
n−1l + u2

nl)(u
2
nl + u2

n+1l)

allows Eqs. B.2, B.3 and B.4 to be solved to derive the recursion relations

dnl = 1− enl
dn−1l

gnl(r) =
[
fnl(r) +

√
1− dnlgn−1l(r)

]
/
√
dnl.

These recursion relations can be initialized with d0l = 1 and g0l(r) = f0l(r) for any 0 ≤ l.
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Appendix C

Dislocation network energy model

This section provides additional details on the model used for the evaluation of the dislocation network energy

in our Ta simulations. Following Ref. [94], the energy of a complex dislocation network in an isotropic medium

is well described by the expression

Edis = C
µb2

4π
ρ ln

(
1

rc
√
ρ

)
(C.1)

where µ is the shear modulus, b is the Burgers vector magnitude, ρ is the dislocation density, and rc is the

core cutoff radius. C is a coefficient that depends on the distribution of the dislocation line character angles,

with values ranging from C = 1.0 for an array of pure screw dislocations to C = 1/(1 − ν) for an array of

edge dislocations, where ν is Poisson’s ratio. Reference [94] examined the validity of Eq. C.1 for complex

dislocation networks using discrete dislocation dynamics (DDD) simulations in FCC crystals and showed

that this simple model is accurate with the value of C reflecting the dislocation character angle averaged

over all lines in the network.

Here the validity of the same analytical model is examined for dislocation networks in Ta. For this

purpose we first extracted the dislocation networks attained at several strain values in simulation B using

the DXA method [92, 93]. Energies of the extracted dislocation networks were found by summing up the

pairwise interaction energies of all dislocation segments in the networks as in Ref. [94]. Since real space

solutions for such interaction energies are only available for elastically isotropic crystals, isotropic elasticity

was assumed with µ = 55 GPa and ν = 0.339. The core energy contributions were computed for the same

networks using a simple core model described in Ref. [94] and added to the elastic energies. The so-computed

network energies containing both isotropic elastic and core contributions are plotted in Fig. C.1a as a function

of the dislocation density. On the same plot the best fit to the analytical energy model in Eq. C.1 is also

shown as a solid blue line with C as the only fitting parameter. This simple model captures the energy
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(a) (b)

Figure C.1: (a) Evaluation of the dislocation network energy as a function of the dislocation density using
different methods and the isotropic model in Eq. C.1. (b) Evolution of the empirical anisotropic correction
factor η defined as the ratio of the energies computed for cubic and isotropic elasticity using the spectral
method.

of our complex BCC networks quite well. The best fit was obtained for C = 1.1 which is consistent with

the average character angle of θ ' 20o computed from the fully developed dislocation networks in our MD

simulations; this average angle reflects the prevalence of screw dislocations in our configurations.

Despite seemingly working well, the simple analytical model in Eq. C.1 needs to be corrected to be

applicable to the dislocation networks produced by our MD simulations. First, variations in the core energy

with dislocation character angle are subtle and, as was shown in Ref. [95], cannot possibly be described

using a single value of the core cutoff parameter rc. However, this inaccuracy only enters through the

slowly-varying logarithmic term. Fixing the core radius at rc = 0.5b is generally consistent with the core

energy values calculated at 0 K in Ref. [95], and all remaining variations are subsumed into the single fitting

parameter χ. For simplicity, the same parameter χ also accounts for the character angle dependence of the

network energy. We expect χ to be in the range 1 ≤ χ ≤ 1/(1 − ν), similar to the previously-used fitting

parameter C.

A second and more substantial correction is required to account for the elastic anisotropy of our atomistic

Ta model which has a Zener’s anisotropy ratio of 2C44/(C11 − C12) = 2.1 at 300 K. This could make the

approximation of isotropic elasticity previously used to validate Eq. C.1, and in particular the µb2/(4π)

energy factor, significantly inaccurate. This inaccuracy is accounted for using an anisotropy correction

factor η. Computing η would involve computing the energies of the same dislocation networks in a crystal

with cubic symmetry. Since there are no analytical solutions for the interaction energies of dislocation

segments in cubic crystals, we resort to a spectral method in which the energy of the elastic field induced
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by a dislocation network is computed by directly integrating the strain energy density over the simulation

volume [158].

The method entails summing up Fourier components of the elastic strain energy obtained using the

elastic Green’s function available in an analytical form for solids of arbitrary symmetry in the k-space. To

obtain the correction factor, this spectral method is used to compute and compare energies of the same

dislocation networks with full cubic anisotropy and in the isotropic approximation. The spectral method

is approximate, with an accuracy limited by the spacing of the grid used by the Fast Fourier Transform

(FFT) to map the field values into k-space. The spectral method was used to compute both the cubic and

the isotropic energies for a number of dislocation networks extracted from simulation B for grids containing

1283, 2563 and 5123 points. These grids are likely too coarse to fully capture the variations of the strain

fields near the dislocation cores, as indicated by the results for the 2563 grid shown in Fig. C.1a (orange and

green symbols). Compared to the energies computed using the more accurate real-space method of Ref. [94]

(blue symbols), the network energies computed with the spectral method in the isotropic approximation are

consistently lower, a consequence of the smearing of the elastic strain field on the regular grid. Nevertheless,

we observe that the ratio of the cubic to the isotropic network energies is nearly independent of the grid

size. At higher dislocation densities where the networks are fully developed, the ratio of the anisotropic and

isotropic energies is found to converge to a value η ' 1.35 (Fig. C.1b). This is introduced as the correction

factor in

Edis = ηχ
µb2

4π
ρ ln

(
1

rc
√
ρ

)
, (C.2)

and is subsequently used to fit the above equation to the energy storage data extracted directly from our

MD simulations.
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