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The primary mode of failure in disordered solids results from the formation and persistence of highly localized
regions of large plastic strains known as shear bands. Continuum-level field theories capable of predicting this
mechanical response rely upon an accurate representation of the initial and evolving states of the amorphous
structure. We perform molecular dynamics simulations of a metallic glass and propose a methodology for
coarse graining discrete, atomistic quantities, such as the potential energies of the elemental constituents. A
strain criterion is established and used to distinguish the coarse-grained degrees-of-freedom inside the emerging
shear band from those of the surrounding material. A signal-to-noise ratio provides a means of evaluating the
strength of the signal of the shear band as a function of the coarse graining. Finally, we investigate the effect
of different coarse graining length scales by comparing a two-dimensional, numerical implementation of the
effective-temperature description in the shear transformation zone (STZ) theory with direct molecular dynamics
simulations. These comparisons indicate the coarse graining length scale has a lower bound, above which there
is a high level of agreement between the atomistics and the STZ theory, and below which the concept of effective
temperature breaks down.

DOI: 10.1103/PhysRevE.95.053001

I. INTRODUCTION

Amorphous solids are characterized by a complex, random
arrangement of their atomic or molecular constituents [1–3].
While amorphous materials have long presented a great
scientific challenge due to the nature of their disordered
structure, significant progress has been made toward a the-
oretical foundation relating the degree of disorder of the solid
to thermodynamic principles [4–7]. Amorphous solids are
essentially indistinguishable from fluids in their microscopic
structure, but they are unlike fluids in that they exhibit a yield
stress below which they respond elastically to external forces,
while fluids flow even under infinitesimal shear stresses. Once
an amorphous solid is subjected to a shear stress that exceeds
the yield stress, it can flow plastically in a manner that
depends on the temperature, the shear-rate, and the density
[8]. Microscopically, the plastic flow is widely believed to arise
from local rearrangements of the constituents in response to
these external conditions, and in recent years a proliferation
of many distinct theoretical models characterizing these
rearrangements in different ways has occurred [9–22]. The
most appropriate way to build a physical connection between
the amorphous microstructure and the observed mechanical
response such as shear banding, a critical failure mode in
many amorphous materials, remains controversial.

Shear banding, as the name implies, is a plastic instability
that localizes large shear strains in a relatively thin band
when a material is deformed [23]. A shear band has the
ability to broaden and invade the surrounding material outside
the band, which remains nearly undeformed [24–26]. Shear
bands have been widely observed in metals, polymers, the
Earth’s mantle, granular solids, yield stress fluids, and many
other materials, including liquids under shear flow [27].
In metallic glasses, shear banding is the primary mode of
deformation, from yielding to failure. One specific attempt

to link local particle rearrangements to shear banding is
the shear transformation zone (STZ) theory [4–7,28,29],
which proposes that zones of tens or even hundreds of
particles undergo transitions between two states resulting in
an increment of plastic strain. The STZ theory is distinct
from other approaches in that a constitutive law relates the
transitions to an effective temperature [30–38], describing
the deforming amorphous structure in terms of a continuum
field. A mathematical field theory of this kind has significant
advantages as it essentially reduces the particle-level com-
plexity of amorphous plasticity to a boundary-value problem
in solid mechanics, but with the challenge of generating ap-
propriate initial conditions, determining values of the theory’s
physical parameters, and establishing an accurate method of
validation.

Related to these considerations is the notion that a well-
formulated continuum theory must have far fewer degrees-of-
freedom (DOF) than, for example, detailed atomistic simu-
lations, and should also provide a computationally efficient
description of the mechanical response. In particular, it
would make the continuum assumption that a representative
volume element (RVE) exists. The RVE has been defined
as the smallest material volume element of the system for
which the usual spatially constant macroscopic constitutive
representation is a sufficiently accurate model to represent
mean constitutive response [39]. This continuum assumption
is equivalent to neglecting the local heterogeneity of the
stresses and strains within the RVE, and instead working with
averaged quantities, as the effects of the heterogeneities act
only indirectly through a certain number of internal variables
[40]. For crystalline materials a great number of methods have
been constructed using the continuum hypothesis to describe
elastoplastic behavior, including nonlocal, energy-based, and
multiscale frameworks [40,41].
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The procedure of selectively reducing the number of DOF
of a system, known as coarse graining, is essential to con-
structing a predictive continuum-level description. However,
differences in system complexity and purpose of modeling
often lead to difficulties in developing a universal method
for coarse graining [42]. Attempts to formulate generalized
coarse graining frameworks, which account for a wide range
of physical phenomena (e.g., elasticity and electrical conduc-
tivity) often result in a complex coarse graining procedure with
large numbers of parameters and a diminished representation
compared to frameworks following a phenomena-dependent
focus. Several rigorous methods have been developed for
equilibrium systems where there is a well-defined partition
function [43,44]. In cases where the system is driven out of
equilibrium, e.g., through the process of shear, such clear
statistical mechanics-based descriptions are often precluded
or extremely difficult to formulate.

Earlier work has attempted to address the problem of
coarse graining the amorphous microstructure by construct-
ing so-called “mesoscale models” that connect the original
STZ transition-rate equations to finite element calculations
[17,45,46] and evolving the system using either a kinetic
Monte Carlo or an extremal dynamics algorithm. Similar
techniques have been applied to three-dimensional systems
[47] and connections to the realistic timescales of experiments
have been made. Lattice-based depinning models have been
proposed, which describe plasticity in amorphous solids by
allowing local element interfaces to slip in a random fashion
[48–51]. Significant limitations exist with these mesoscale
approaches. For amorphous solids in particular, the nature of
the RVE has not been well investigated and remains largely
unknown. In nearly all mesoscale models the RVE is merely
taken to be the size of an individual STZ or slip event,
and so the fundamental question regarding how to correctly
average over experimental or atomistic data of the amorphous
microstructure has not been addressed. Moreover these ap-
proaches have no connection to fundamental thermodynamic
considerations, which are known to be essential in describing
the shear-induced disordering of the material’s structure during
plastic deformation [52]. This is most apparent in that changes
in energy between material states of varying disorder are
typically not quantified in these models, and energetic criteria
play no role in influencing transition rates. Furthermore, only
rather modest and tangential comparisons to experiments
and atomistic simulations using these techniques have been
attempted so far, usually in the form of a demonstration
that the model can produce some feature of the deformation
qualitatively, such as the presence of a yield stress or a
stress-strain history that is typical of a metallic glass.

In contrast to much of the prior work, we approach the
problem of coarse graining by translating details directly
from an amorphous system where atom-by-atom information
is known and accessible. This is distinct from building
a coarse-grained representation from an established set of
assumptions. In choosing to directly reduce the number of
DOF in this way, we are able to recast the problem as
a study of averages of atomic-level quantities over some
chosen length scale. Because changes in atomic potential
energy reflect changes in the amorphous structure [53], we
believe it is important to study the statistics of these energies,

how these statistics evolve as the material is driven out
of equilibrium during shear, and how the statistics depend
on the size of the RVE (i.e., coarse graining length scale).
Of paramount importance is understanding whether there is
an optimal coarse graining length scale for these quantities
such that the shear banding and the mechanical response is
best captured when cross-comparisons are made between the
coarse-grained atomistics and a continuum description. In this
paper we propose a methodology for coarse graining discrete,
atomistic data pertaining to an amorphous solid, and use the
coarse-grained representations to initialize and validate the
effective-temperature dynamics of the STZ theory. Specifi-
cally, we preform molecular dynamics (MD) simulations of
amorphous copper-zirconium (CuZr) under simple shear, and
then coarse-grain the MD system for a range of length scales
to obtain continuum representations of potential energy and
atomic strain.

The structure of this paper is as follows. In Sec. II we present
the details of the coarse graining methodology devised to
efficiently take advantage of the detailed per-atom information
of the MD simulations. Then in Sec. III we define a signal of
the shear band and distingish it from the background through
a criterion that connects the atomic strain to the potential
energy. Analysis of the system’s signal-to-noise suggests a
lower bound on the coarse graining length scale. In Sec. IV
we apply the coarse graining procedure to the MD system
and extract an initial condition for the effective-temperature
field in the STZ theory. We compare the coarse-grained MD
simulation of the shear banding alongside the results of a
two-dimensional, quasi-static numerical implementation of
STZ theory using this initial condition. We conclude in Sec.
V with a discussion of how this preliminary work can inform
future efforts to develop continuum theories of amorphous
plasticity where coarse-grained representations of atomistic
data are used to parametrize and validate the material models.

II. COARSE-GRAINING METHODOLOGY

MD simulations were preformed using the LAMMPS
software [54] with a well-established embedded-atom-method
(EAM) interaction potential [55]. The initial presheared glass
was formed by taking a 50-50 composition of CuZr with
297,680 total atoms and quenching the equilibrated liquid
at a rate of 1011 K/s to a temperature T = 100 K. The
system is square with sides of length L = 400 Å, and has
a thin out-of-plane direction (30 Å) that allows us to treat
the system as effectively two-dimensional. A nonequilibrium
molecular dynamics (NEMD) shear simulation was preformed
by deforming the simulation box of the quenched glass under
simple shear conditions at constant volume and temperature
with periodic boundary conditions in all directions enforced
by the SLLOD [56] equations of motion. A time step of 0.005
picoseconds (ps) and an applied shear rate γ̇ = 10−4 ps−1 were
used. The system was held at 100 K for the duration of the
shear. The NEMD shear simulation revealed the formation of
a shear band near the center of the simulation box. The shear
band was aligned with the direction of shear and continued to
broaden as the system was deformed.

The corresponding coarse-grained representation of the
system is defined by a two-dimensional square grid of equally
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spaced continuum points. We map the the atomic potential
energies to the grid using a Gaussian function gn = g(rn,c) of
the form

gn = 2√
2πc

exp

(
− r2

n

2c2

)
(1)

to weight the contributions of each atom. The function gn is
centered on continuum point α and rn is the distance from
α to atom-n and defines a coarse-grained region determined
by the cutoff radius rcut. In this way, neighboring regions
are allowed to overlap with one another. The coarse-grained
atomic potential energy Eα at α, for instance, is given by

Eα =
∑

n gnEn∑
n gn

, (2)

where the sum on n extends over each atom within rcut.
The coarse graining map is entirely determined by the

choice of the parameter c, which sets the width of gn and
hence determines the spatial extent of the MD data influencing
the value of the continuum field at α, which was found to be
well converged when rcut � 3c. A similar consideration of
convergence found the maximum spacing between continuum
points to be d = 0.25c.

The application of this coarse graining procedure to
the potential energies of the pre-sheared glass is relatively
straightforward. However, during the shear simulation it is
necessary to compute such coarse-grained field quantities
at a given time step. A proper continuum-level description
requires a choice of either a Lagrangian or Eulerian frame.
We have chosen a Lagrangian approach in what follows, as
this is the typical description for solids. In the Lagrangian
description, the material points are defined with respect to a
reference configuration and continuum fields are functions of
the reference coordinates X and current time t . In the case of the
coarse-grained potential energy Eα = Eα(X,t). Therefore, the
MD system is only coarse-grained based on atomic positions
in the initial configuration at t = 0 (before shear) and the
evolution of Eα is determined by the changes in the potential
energies of the atoms initially within the region surrounding α

defined by rcut.
The local atomic strain can also be calculated in a way

that is consistent with this coarse graining method through
an adaptation of a well-established definition of nonaffine
displacement [15]. The measure of nonaffinity is determined
by minimizing the mean-square difference between the actual
displacements of the neighboring atoms relative to the central
one and the relative displacements that they would have if they
were in a region of homogeneous deformation. The square of
the error D2

min can be written as

D2
min =

∑
n

g2
n

∑
i

⎛
⎝xi

n − xi
0 −

∑
j

Fij

(
Xj

n − X
j

0

)⎞⎠
2

. (3)

The indices i and j denote Cartesian coordinates xi at time
t describing the spatial position of an atom during the shear
and Xj in the reference configuration. The index n runs over
the atoms within the coarse graining region surrounding α,
where n = 0 is the reference atom with coordinates xi

0 and
X

j

0 , chosen to be closest to the centroid of the region. We have

found that this choice for the reference atom is better than
simply an arbitrary atom, which can present computational
anomalies for regions with a small number of atoms or for
large strains. Equation (3) differs from the original [15] in that
it is a weighted least-squares formulation, and because it is
generalized for finite deformations. The minimization of D2

min
allows a fit of the deformation gradient tensor Fij from which
the Green-Lagrange strain can be calculated as

εα
ij = 1

2

(∑
k

F α
kiF

α
kj − δij

)
. (4)

In the following sections, the CuZr system studied using
NEMD simulations has been coarse-grained according to
the proposed methodology for selected length scales defined
by c = 5,16,32, and 50 Å, where c = 5 Å and c = 50 Å
correspond to the coarse-grained representations that are the
finest and coarsest, respectively.

III. SIGNAL AND NOISE IN MOLECULAR DYNAMICS

The coarse graining methodology of the previous section
efficiently reduces the vast number of DOF in the MD system
by appropriately weighting the contributions of each atom
within a given region surrounding a continuum point α and
ensuring that the resulting coarse-grained representation of
the field values at α are converged. The methodology relies
entirely on the choice of the width of the Gaussian filter c and
is amenable to local calculations of field quantities for each α,
in particular the atomic strain, which requires knowledge of
atomic positions in both reference and current configurations.
In this section, we attempt to determine the range of values
of c that best distinguishes regions inside the shear band from
those outside it. Because spatial localization of both potential
energy and atomic strain has been shown to characterize shear
banding [53], we propose a criterion whereby the atomic strain
computed at α, as described in the previous section, is used to
analyze the evolution of the coarse-grained potential energies
inside and outside the shear band. This enables us to study
the effect of different coarse-grained representations on the
identification of states inside and outside the band.

Herein, we define the shear band as simply the set of coarse-
grained atomic strains that reach or exceed the net strain. More
precisely the signal of the shear band is the set

S = {
εα

12

∣∣εα
12 � γ

}
, (5)

where γ is the nominally imposed strain at the boundary
[57]. Analogously, we define the background as the set of
regions where the coarse-grained atomic strains are less than
the nominally imposed strain at the boundary,

B = {
εα

12

∣∣εα
12 < γ

}
. (6)

Figures 1–4 show the sets S and B as the system evolves
from the purely elastic ramp-up, through the onset of the shear
band, and into the flow-stress regime for the selected coarse
graining length scales. It is important to note that we have
only included the Cu atoms when applying Eq. (2) since the
potential-energy distribution of each species is different. Either
species however shows essentially the same results in terms of
the onset of the shear band and the qualitative changes in the

053001-3



HINKLE, RYCROFT, SHIELDS, AND FALK PHYSICAL REVIEW E 95, 053001 (2017)

FIG. 1. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 50 Å, defining
the signal (orange) of the shear band and the background (blue).
Histograms (right column) of the corresponding coarse-grained
potential energies in the shear band and background. Configurations
shown at a net strain of: (a) 3.5%, (b) 9.5%, (c) 10%, (d) 10.5%, and
(e) 27.5%.

FIG. 2. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 32 Å, defining
the signal (orange) of the shear band and the background (blue).
Histograms (right column) of the corresponding coarse-grained
potential energies in the shear band and background. Configurations
shown at a net strain of: (a) 3.5%, (b) 9.5%, (c) 10%, (d) 10.5%, and
(e) 27.5%.
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FIG. 3. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 16 Å, defining
the signal (orange) of the shear band and the background (blue).
Histograms (right column) of the corresponding coarse-grained
potential energies in the shear band and background. Configurations
shown at a net strain of: (a) 3.5%, (b) 9.5%, (c) 10%, (d) 10.5%, and
(e) 27.5%.

FIG. 4. Map (left column) of continuum points for a coarse-
grained representation of the Cu atoms where c = 5 Å, defining
the signal (orange) of the shear band and the background (blue).
Histograms (right column) of the corresponding coarse-grained
potential energies in the shear band and background. Configurations
shown at a net strain of (a) 3.5%, (b) 9.5%, (c) 10%, (d) 10.5%, and
(e) 27.5%.
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TABLE I. The statistics of the coarse-grained potential energies
in the signal and background distributions at different strains for
a coarse-grained representation where c = 50 Å. The mean μs and
standard deviation σs of the signal and the μb and σb of the
background. The signal-to-noise ratio SNR = |μs−μb |

σb
defines the

strength of the shear band in the energy background.

Strain μs μbg σs σbg SNR

3.5% −3.3598 −3.3600 0.0004 0.0005 0.4377
9.5% −3.3578 −3.3588 0.0006 0.0007 1.4735
10% −3.3561 −3.3586 0.0009 0.0008 2.9933
10.5% −3.3533 −3.3595 0.0019 0.0012 5.0282
27.5% −3.3542 −3.3591 0.0014 0.0011 4.4564

distributions reflected in Figs. 1–4. The effect of considering
only one of the species is further discussed in Sec. IV.

The signal and background plots in Figs. 1–4 feature an
entirely mechanical response, in the sense that the distinction
between signal states and background states is a binary choice
based solely upon whether a given continuum point α has a
local strain that satisfies the criterion of Eq. (5). However,
this criterion for the mechanical response of the system
can be directly related to the potential energy. The right
side of Figs. 1–4 shows histograms of the potential energies
corresponding to each α in S and B, identifying the signal
and background as two distinct potential-energy distributions.
Using these energy distributions we define a signal-to-noise
ratio (SNR) as

SNR = |μs − μb|
σb

, (7)

where μs and μb are the means of the signal and background,
respectively, and σb is the standard deviation of the back-
ground.

The emergence of the shear band can be readily seen
through the relative changes in these distributions. In the purely
elastic startup, the system exhibits a fluctuating mixture of
signal and background without any strain localization. The
average of 2εα

12 = γ at all times during the deformation to
satisfy compatibility. During the purely elastic regime, the
signal and background possess nearly identical potential-
energy distributions. The statistics of these two distributions
are summarized in Table I as the system evolves for the
representation where c = 50 Å. At 3.5% strain (still within
the elastic regime) the means of the signal and background are
nearly identical, and the SNR is very small.

The values of the SNR are shown in Fig. 5 as a function of
the net strain for the different coarse-grained representations.
A protoshear band begins to develop at 9.5% strain, and the
two distributions begin to show a noticeable separation in their
mean values. Figure 5 shows that while the shear band begins
its initial stages of formation just prior to 9.5% strain, the
signal μs − μb appears to begin to significantly separate from
the noise σb (when SNR > 1) for c = 50, 32, and 16 Å.
This indicates that the SNR after banding is improved by
considering larger coarse-grained representations, but that the
onset of the shear band itself is detected equivalently as long
as this coarse graining exceeds c = 16 Å.

0 10 20 30 40 50
0

1

2

3

4

5

6

FIG. 5. The SNR as function of global strain for different
coarse-grained representations defined by c in gn. The signal μs − μb

exceeds the noise σb only when SNR > 1 (dashed line).

The shear band is fully formed across the system at 10.5%
strain, as can be seen at each level of coarse graining shown
in Figs. 1–4. This also corresponds to the largest SNR value,
evidenced by both the most significant separation in the means
of the distributions as well as the occupation of the highest
energy states. Once the signal and background distributions
have distinctly separated, they remain so throughout the shear
simulation. We have observed that once the shear band has
formed at approximately 10.5% strain, the SNR tends to
monotonically increase with the width of the coarse graining,
until saturating for c � 32 Å as Fig. 5 shows. We note that the
minimum-image convention places a limit on the size of any
coarse graining region surrounding a given α relative to the
size of the simulation cell, namely we must ensure rcut � L/2.

IV. EFFECTIVE-TEMPERATURE MODEL

The coarse graining methodology and corresponding anal-
yses presented thus far suggest that coarser-grained repre-
sentations may better capture the shear banding seen when
the methodology is applied to NEMD shear simulations of a
CuZr glass. To further evaluate the suitability of the different
coarse graining length scales and their affect on the ability to
predict the system’s mechanical response, we now turn to the
preparation of the initial condition of the STZ theory.

One critical feature of the STZ theory is its ability to
describe the structure of an amorphous solid through a
continuum scalar field of effective temperature [30–38] Teff

that is defined as

Teff = ∂Uc

∂Sc

, (8)

where Uc and Sc are the amorphous system’s potential energy
and entropy, respectively, of only the configurational DOF,
i.e., those DOF describing the structure of the material
[5–7,35–37] and operating on timescales no shorter than
those associated with molecular rearrangements. This is to be
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distinguished from the more familiar, thermalized temperature
T , which accounts for the fast, kinetic DOF, which relax
on time scales short compared to the timescales associated
with plasticity. The typical definition of T is applicable to
the vibrational DOF, which remain in thermodynamic equi-
librium. The configurational DOF constitute an enumerable
set of specific potential-energy configurations of the atoms,
which correspond to low-lying minima in the potential-energy
landscape of the amorphous solid. They are often referred to as
the system’s “inherent structures” [6]. An STZ rearrangement
that occurs during plastic deformation corresponds to the state
of the system transitioning from one inherent structure (local
minimum) to a neighboring one. In the effective-temperature
STZ formalism, a dimensionless scalar field χ = χ (X,t) is
defined as

χ ≡ kBTeff

Ez

, (9)

where kB is the Boltzmann factor and Ez is the STZ formation
energy. Although χ is a dimensionless form of Teff we shall
henceforth refer to it as simply “the effective temperature” for
readability. Some limited attempts to experimentally measure
an effective temperature for disordered materials have been
made [58], as well as other direct, quantitative comparisons
with experiments of bulk metallic glasses [59].

For a monotonically loaded, athermal amorphous system
where there are no rate-dependent processes such as aging,
which compete with the STZ-transition rates described in Sec.
I, and where we assume there to be a low STZ density, the
flow rule for the plastic component of the rate-of-deformation
tensor Dpl follows from the STZ theory with the form,

Dpl =
{

0, ||S̃|| < 1
ε0
τ0

e−1/χ
(
1 − 1

||S̃||
)
F, ||S̃|| � 1, (10)

where F = F(S̃) is a monotonic tensor-function of the devia-
toric Cauchy stress S̃, which is normalized in terms of the yield
stress sy . When ||S̃|| < 1 there are no plastic rearrangements
and Dpl = 0. A family of symmetric functions of the stress has
been identified as having the correct properties for F, such as
F → 0 when S̃ → 0 and F grows linearly as S̃ → ∞ [60,61].
For simplicity we have chosen the form

F = −2 + ||S̃|| + exp(−||S̃||)(2 + ||S̃||), (11)

which has been shown to be effective in one-dimensional
continuum STZ analyses [62]. The parameter 1/τ0 is the
inherent attempt frequency of the material, which is close
to the Einstein frequency, and sets a timescale for the “flips”
or rearrangments of the STZs. The average STZ contains an
approximate number of atoms denoted by the value of ε0.

In the athermal limit the dynamical equation for the
effective temperature χ takes the form

c0χ̇ = S̃ : Dpl(χ∞ − χ ) + ∇ · Dχ∇χ . (12)

The first term on the right-hand side in Eq. (12) represents the
plastic work per unit time done on the configurational DOF
when ||S̃|| > 1. The parameter c0 is a specific-heat-like quan-
tity that relates the heat flowing into the configurational DOF
to the resulting increase in the effective temperature. In flowing
regions χ converges to a limiting value χ∞, which represents

the steady-state effective temperature where the work done to
shear the amorphous material no longer causes an increase in
disorder. The final term in Eq. (12) describes the diffusion of
the effective temperature through a rate-dependent diffusivity
Dχ = l2

√
1
2 Dpl : Dpl with dimensions length-squared per unit

time, where the length scale l is approximately the size of an
STZ (on the order of a molecular length scale). Because Dχ

is a function of the plastic rate-of-deformation, the diffusivity
is inhomogeneous and the effective temperature diffuses at
different rates in different regions of the material. For example,
in regions where the local plastic-strain rate is larger, so too is
the value of Dχ .

The initial value of the effective-temperature field χ0 =
χ0(X) characterizes the structure of the glass in the presheared
state, and ideally would come from an analysis of the atomistic
information of the system’s constituents. In the absence of this
per-atom information, the form of χ0 including the mean value
and fluctuations about the mean are usually chosen in a way
to best match the macroscopic behavior, e.g., the stress-strain
curves of the material. The ability of the fluctuations in χ0 to
grow and lead to strain localization in the form of a shear band
depends on both the mean value of χ0 and the amplitude of
the fluctuations [62,63], which underscores the need for χ0 to
capture the structural state of the pre-sheared glass with the
appropriate level of physical detail.

Previous STZ-theory approaches that have attempted to
model the NEMD shear deformation of Lennard-Jones glasses
have relied upon postulating a value for χ0 a priori without
directly extracting it from actual atomistic data, such as
the potential energies [59,62,64,65]. These STZ-effective-
temperature simulations were also entirely one-dimensional,
but nonetheless have provided important guidance for the
development of more sophisticated techniques. Although it is
important to note that the range of acceptable values of χ0 for
a particular system is significantly restricted by the nonlinear
form of Eq. (12) and its stability.

A determination of χ0 from the presheared glass would
in principle come from a direct calculation of the derivative
in Eq. (8). This could be achieved by enumerating the set of
inherent structures and considering their density-of-states, thus
determining the corresponding Sc and Teff at a given Uc. At the
moment however, such a calculation remains computationally
intractable. Moreover, in practice temperatures are usually
determined from equations of state or through a heat capacity,
and the necessity of directly measuring entropic changes is
therefore avoided. In devising a simpler procedure here to
relate effective temperature to atomic potential energy, we
follow a similar approach. We note that there is already
evidence suggesting the average atomic potential energy of
a simple Lennard-Jones system [53] is linearly related to χ .

In the context of the coarse-grained potential energies
coming from Eq. (2), an assumption of linearity allows us
to compute an effective temperature at a given α as

χMD
α = β

∑
n gn(En − Eo − Eel)∑

n gn

, (13)

where the parameter β is a material specific constant with units
of inverse potential energy per atom and can be related to a
specific heat [53]. The reference energy Eo corresponds to a
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FIG. 6. The initial condition of the effective temperature in the
STZ theory χ0 using different coarse-grained representations: (a)
c = 50 Å, (b) c = 32 Å, (c) c = 16 Å, and (d) c = 5 Å.

state of no disorder in the glass, where by definition Teff = 0.
Equation (13) introduces Eo and β as yet unknown parameters,
but now with the advantage of being able to directly relate
averages of atomic potential energy per atom to χ . We have
further shifted En by removing the effect of the linear-elastic
strain energy, since changes in χ occur only in the presence of a
nonzero plastic-strain rate. Linear-elastic strain energy is given
by W = 1

2Cijklεij εkl , where Cijkl is the Hookean-elasticity
tensor, and therefore the per-atom elastic-strain energy Eel is
found by a fit to the parabolic portion of the system’s total
potential-energy density as a function of shear strain ε12. This
is an approximation that becomes an exact correction in the
limit where all elastic behavior is perfectly linear.

Figure 6 shows the result of applying Eq. (13) and the
values of Table III to the as-quenched configuration of the
glass, yielding coarse-grained representations of the system
before shear χMD

α (γ = 0) for different c. These images of
the initial conditions reveal how the levels of coarse graining
affect the spatial variation of χ . The coarser representations
tend towards a smoother, more localized field. For instance,
when c = 50 Å and c = 32 Å, the highest values of χ0 reside
in the bottom left quadrant of the grid, and are likely sites for
the growth of a particular instability that can lead to strain
localization.

The same procedure described by Eq. (13) is applied to
determine χMD

α for subsequent configurations as the system is
subjected to a state of simple shear. The left column of Figs. 7–
10 shows the evolution of χMD

α at different increments of the
system’s net strain during the NEMD shear simulation. The

FIG. 7. The coarse-grained effective temperature of the NEMD
shear simulation (left column) χMD

α and the effective temperature of
the STZ theory (right column) χ , where the system is coarse-grained
using c = 50 Å at: (a) 9.5%, (b) 10.5%, (c) 15.5%, (d) 27.5%, and (e)
42% net strain.
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FIG. 8. The coarse-grained effective temperature of the NEMD
shear simulation (left column) χMD

α and the effective temperature of
the STZ theory (right column) χ where the system is coarse-grained
using c = 32 Å at: (a) 5%, (b) 9.5%, (c) 10.5%, (d) 15.5%, (e) 27.5%,
(f) 42%, and (g) 49.5% net strain.

FIG. 9. The coarse-grained effective temperature of the NEMD
shear simulation (left column) χMD

α and the effective temperature of
the STZ theory (right column) χ where the system is coarse-grained
using c = 16 Å at: (a) 5%, (b) 9.5%, (c) 10.5%, (d) 15.5%, (e) 27.5%,
(f) 42%, and (g) 49.5% net strain.
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FIG. 10. The coarse-grained effective temperature of the NEMD
shear simulation (left column) χMD

α and the effective temperature of
the STZ theory (right column) χ , where the system is coarse-grained
using c = 5 Å at: (a) 5%, (b) 9.5%, (c) 10.5%, (d) 15.5%, (e) 27.5%,
(f) 42%, and (g) 49.5% net strain.

formation of the shear band here proceeds in a manner similar
to that depicted in Figs. 1–4, which show the evolution of
signal and noise states under the strain criterion. As mentioned
in Sec. III we have arbitrarily chosen only one of the species,
the Cu atoms, to include in the sum in Eq. (13). We have found,
however, that choosing either species gives very similar results
for a particular gn, including the signature of the shear band.
This would confirm that both species contain similar, relevant
structural information. We note, however, that while only one
species is explicitly considered, the Cu-Zr-interactions are still
present through the potential energies of the atoms of either
species.

Recently a numerical method for simulating the defor-
mation of elastoplastic materials in the quasistatic limit has
been developed [66] by building on a mathematical corre-
spondence with the incompressible Navier-Stokes equations.
It is well-suited for a large class of materials, which typically
undergo small elastic deformations and feature large elastic
wave speeds, making many plastic deformation problems
intrinsically quasi-static. In such situations, this method allows
simulating realistic loading rates, which would be prohibitively
computationally expensive using explicit methods [67].

Here we use the methodology of Sec. II to provide an initial
condition for the effective-temperature field and then simulate
the continuum STZ model using the two-dimensional quasi-
static numerical implementation. The quasistatic condition
requires

∇ · σ = 0 . (14)

and is equivalent to the inertial limit where σ is the Cauchy
stress tensor. This numerical approach is most suitable for
materials that can be well-described by the additive decompo-
sition of the rate-of-deformation tensor into elastic and plastic
parts, namely

D = Del + Dpl, (15)

and is generally a good assumption when elastic strains are
small. The model can be solved by connecting the flow rule
for the plastic-strain rate to Newton’s laws for deformable
bodies by

Dσ

Dt
= C : Del = C : (D − Dpl), (16)

where C is the Hookean-elasticity tensor and D
Dt

refers to
the Jaumann objective rate. To simulate the simple shear
deformation of the NEMD results in Sec. II the velocity v(x,t)
is fixed at the top and bottom of the system in the direction of
shear by the imposed shear-strain rate,

v(x1,0,t) = γ̇ Le1 v(x1,L,t) = 0, (17)

while
∂σ

∂x2
= ∂χ

∂x2
= 0 (18)

at x2 = 0 and x2 = L. These boundary conditions and the
model’s numerical implementation developed in Ref. [66]
describe a system that is periodic in the direction of shear
(x1) but not in the perpendicular direction. This is unlike the
simulation box in the NEMD simulations which is periodic in
all directions. While these differences in boundary conditions
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TABLE II. The parameters of the STZ effective-temperature
model used in all coarse-grained representations. The “−” indicates
the parameter is dimensionless.

PARAMETERS UNIT Value

Yield stress sy GPa 0.85
STZ size ε0 — 10
Inverse attempt frequency τ0 ps 0.1
Elastic shear modulus μ GPa 20
Plastic-work fraction co — 0.3
Global shear rate γ̇ ps−1 10−4

Diffusivity length l Å 4.01

could possibly affect the continuum model’s ability to predict
shear band formation at the top or bottom boundaries, in all
the simulations reported here the shear band forms near the
center of the system.

The values of the parameters of the effective-temperature
model are summarized in Table II, which are the same across
simulations of different coarse-grained initial conditions. The
value of the elastic shear modulus μ in the STZ theory was set
to match the linear-elastic regime of the atomistic simulation
where c = 50 Å, in particular the linear-elastic portion of the
stress-strain curve shown in Fig. 11. Values for ε0 and sy were
taken from previous investigations of metallic glasses [67].
The fraction of plastic work c0 was chosen to best match the
shape of the stress-strain curve of the atomistic simulation
where c = 50 Å. Previous studies involving far simpler, one-
dimensional analyses have indicated that c0 should be on the
order of unity [62], and earlier STZ-theory simulations have
reported values between 0 and 1 [66,67]. Here we initially
performed the STZ-theory simulations using c0 = 1 and then
adjusted c0 to match the stress overshoot and the softening
behavior of the atomistic simulations. Changes in c0 adjust
how slowly or quickly χ reaches χ∞ and consequently affect
the shape of the stress-strain curve as well as the evolution
of χ itself. The length scale contained in the prefactor of the
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FIG. 11. The average shear stress S12 of the CuZr MD simulation
(dashed curve) and continuum effective-temperature theory (solid
curves) for different coarse-grained initial conditions χ0.

TABLE III. The values of β and Eo in the potential-energy map-
ping to effective temperature given by Eq. (13) and the steady-state
effective temperature χ∞ for different coarse-grained representations
defined by c.

c (Å) β Eo (eV) χ∞

50 9.5 −3.367 0.13
32 6.1 −3.371 0.12
16 2.3 −3.390 0.094
5 0.92 −3.440 0.085

diffusivity, in general, is strictly constrained by the choice of
the time step used during the STZ-theory simulation. Here,
we initially attempted values of l that were on the order of the
size of the developing shear banding, since l is also related to
the length of the interfacial region between the shear band and
the material outside the band. The value of l in Table II enabled
the best agreement between the evolution of χ and χMD

α when
c = 50 Å by allowing the shear band to broaden (in the x2

direction) as much as possible while inhibiting the tendency
for regions outside the band to disorder, a phenomenon not
observed in the molecular dynamics simulations.

The values in the mapping described by Eq. (13), β and Eo,
were chosen so that the initial condition χ0 = χMD

α (γ = 0)
effected the best agreement between the NEMD simulation and
STZ theory and vary slightly as a function of c as summarized
by Table III. Unlike the values of the STZ parameters, which
are the same for all the STZ-theory simulations regardless
of the level of coarse graining, β and Eo must be chosen
separately for each value of c. The choice of β and Eo was
found to have the most dramatic effect on the behavior of the
model. While the STZ parameters essentially control the rates
of the evolution of the amorphous system, the values of β and
Eo determine the initial condition and hence whether it is even
possible for shear banding to occur. Initially, β and Eo were
chosen so that the mean of χ0 for each level of coarse graining
was within the range of the mean χ0 reported in previous work
[62] and then adjusted to best match the atomistic simulation
with respect to both the stress-strain curve and the evolution of
χMD

α . The steady-state condition for the effective temperature
χ∞ similarly depends on the level of coarse graining but is
precisely calculable once β and Eo, and therefore Eq. (13),
have been determined. The set S defined in the analysis of
Sec. III can be used to identify the χMD

α inside the shear band,
and the average of χMD

α in S at 50% net strain is then taken to
be χ∞. The average of this flowing region varied only slightly
for different values of c as seen in Table III.

The right column of Figs. 7–10 shows the effective
temperature of the STZ theory evolving as the system is
sheared. Each figure illustrates the effect of a particular
level of coarse graining that is applied to the same initial
configuration of atomic potential energies. The same grid
resolution determined by the convergence criteria discussed
in Sec. II is used for both χ and χMD

α . At 10.5% strain the
shear band, which is readily apparent in χMD

α of the NEMD
simulation, is somewhat delayed in χ of the continuum model.
The increase in χ in the model near the center does indicate the
formation of a shear band, but this is not continuous across the
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FIG. 12. The coarse-grained effective temperature of the NEMD
shear simulation (left column) χMD

α and the effective temperature of
the STZ theory (right column) χ along x1 = L/2 where the system
is coarse-grained for: (a) c = 50 Å, (b) c = 32 Å, (c) c = 16 Å, and
(d) c = 5 Å.

system until about 11.5% strain, and takes slightly longer to
reach χ∞ in the center of the band. Figure 12 shows the value
of χMD

α and χ along a one-dimensional slice at x1 = L/2, and
highlights the sharpest contrast among the different coarse-
grained representations and their effect on the predictability
of χ in the continuum description. Coarser representations,
i.e., c = 50 Å and c = 32 Å certainly appear to better capture
the size (width) and location of the shear band, while finer
coarse-grained representations lead to a proliferation of noise
that in turn leads to numerous individual shear bands and
a subsequent system-wide, uniform disordering that is not
reflected in the NEMD simulations. The effect of the initial
condition is also apparent from the stress-strain curves in
Fig. 11. The stress-strain histories further support the notion
that the coarser representations provide a more accurate

continuum picture. The stress-strain curves for c = 50 Å and
c = 32 Å exhibit a strong stress-overshoot and subsequently
a distinct softening period, which is indicative of the plastic
strain being accommodated within some region of the system.
This is in contrast to the curves for c = 16 Å and c = 5 Å,
which reflect a less-ordered structure that undergoes the more
uniform disordering also seen in the Fig. 12.

V. CONCLUSIONS

We have presented a study of shear banding using NEMD
simulations and a two-dimensional numerical implementation
of the continuum STZ effective-temperature theory. The coarse
graining methodology used in this work has been developed
with the phenomena-dependent focus of capturing the primary
mode of deformation of metallic glasses, shear banding.
The methodology is an attempt to identify and directly
link the atomistic descriptors of the system, e.g., the local
potential energy, to the initial condition for the effective-
temperature in the STZ model to develop a well-informed,
predictive continuum description of the plasticity. Such a
description would permit rapid evaluation of material response
for amorphous systems. It would further enable quantitative
performance assessment through quantification of variability
and uncertainty in material response in an efficient manner
without the need for large-scale, computationally intensive
atomistic simulations.

In the STZ theory the effective temperature is the
continuum-based measure of the shear-induced disordering of
a material’s structure, and as per its definition with respect to
the configurational energy and entropy of the system, should
evolve closely with the material’s potential energy. We have
found that to be the case here, but also that the continuum
model’s accuracy is significantly dependent on how the atomic
information is coarse-grained, which affects the properties of
the resulting initial condition and the ability to make one-
to-one comparisons between the coarse-grained NEMD and
the effective temperature theory. Our analysis indicates that
coarser-grained representations between c = 32–50 Å appear
to best resolve the variations from the average in atomic
potential energy data so that an instability in χ0 can grow,
diffuse, and saturate in a way that corresponds accurately to
the NEMD results. Indeed, the primary conclusion of this
investigation is that there exists a coarse graining length
scale at which the effective-temperature description in the
STZ theory becomes capable of accurately describing the
mechanical response and microstructural evolution. Below this
length scale the concept of effective temperature appears to
beak down and is no longer useful as a material property.

The steady-state effective temperature χ∞, which enters
the theory as a well-defined material-dependent property, also
supports this conclusion. When c = 32–50 Å, χ∞ appears to
converge to a single value. In prior work [53], χ∞ was approx-
imated to be the effective temperature that corresponds to the
glass transition temperature Tg , and from this assumption Ez

was estimated directly from Eq. (9), namely Ez = kBTg/χ∞.
In the case of our work here, using a reported value of
Tg ≈ 700 K [68] when c = 50 Å and χ∞ = 0.13 results in
Ez ≈ 0.45 eV, which is very similar to the prior estimate
reported in Ref. [53]. Most interesting, however, is that these
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computed values of Ez from the STZ theory are within the same
range as the activation barriers (0.32 eV) associated with shear
band flow in recent experiments of Vitreloy [69]. This suggests
STZ creation may be the rate-limiting step in mediating shear
band flow.

Both the location and width of this flowing region in the
effective-temperature model compare well with the corre-
sponding changes in χMD

α when c = 50 Å and c = 32 Å. The
difference in strain between the onset of a fully formed shear
band that is continuous and visible across the MD system and
that observed in the effective-temperature model is approxi-
mately 5–6% as seen in Figs. 7(c) and 7(d). The results of the
STZ-effective-temperature modeling in this study are the only
ones we know of in which model validation has been derived
directly from atomistic simulation. Both the microstructural
evolution and the stress-strain response have been directly
compared with the results of the NEMD simulation, which
itself employs a well-established EAM potential.

Despite a good deal of measurable agreement using the
methodology presented here, this analysis is incomplete and
has left us with a number of important questions. The optimal
length scale for the coarse graining, i.e., what the value of c

in gn should be, is not completely clear. While the value of
the SNR increases with c after the shear band forms, analysis
of the SNR does not provide clear guidance by itself as to
the selection of a unique optimal c, although it does indicate

that there is a minimal value of c. A study of the range of the
parameters β and Eo that are critical for determining the initial
conditions from the coarse-grained atomistic data that lead
to shear banding would be beneficial in guiding constitutive
theory development, but also, eventually, in guiding alloy
development. Criteria for the ability of a single perturbation
off a flat, uniform χ0 to grow and localize into a shear
band in one-dimension have already been preformed [62].
More generalized criteria still need to be developed to apply
to the two- and three-dimensional coarse-grained atomistic
data under nonidealized conditions, e.g., where there exist
fluctuations from the background with a nonzero mean. An
understanding of this sort could connect the level of coarse
graining directly to the initial condition, and allow acceptable
levels of coarse graining that optimize shear banding to be
more clearly defined.
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