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Abstract8

The Southern Ocean has, on average, warmed and freshened over9

the past several decades. As a primary global sink for anthropogenic10

heat and carbon, understanding changes in the Southern Ocean is di-11

rectly relevant to predicting the future evolution of the global climate12

system. However, the drivers of these changes are poorly understood,13

owing to sparse observational sampling, large amplitude internal vari-14

ability, modelling uncertainties and the competing influence of multiple15

forcing agents. Here we construct an observational synthesis to quantify16

temperature and salinity changes over the Southern Ocean and combine17

this with an ensemble of co-sampled climate model simulations. Using a18

detection and attribution analysis, we show that the observed changes are19

inconsistent with internal variability or the response to natural forcing20

alone. Rather, the observed changes are primarily attributable to human21
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induced greenhouse gas increases, with a secondary role for stratospheric22

ozone depletion. Physically, the simulated changes are primarily driven23

by surface fluxes of heat and freshwater. The consistency between the24

observed changes and our simulations provides increased confidence in25

the ability of climate models to simulate large scale thermohaline change26

in the Southern Ocean.27

The Southern Ocean has experienced a complex set of changes over the past several decades.28

There have been strong, regionally opposing trends in sea-ice since satellite observations be-29

gan in 1979, with a small but significant overall increase in sea-ice cover, and an associated30

near-surface cooling1;2;3. However, below the surface, repeat observations show a significant31

warming trend since 19504;5, and a broad-scale freshening6. At mid-depths and within the32

latitudes of the Antarctic Circumpolar Current, the warming has proceeded at nearly twice the33

rate of global upper ocean warming4. The processes driving this warming make the Southern34

Ocean the dominant region of anthropogenic heat and carbon uptake7;8;9. Hence, understand-35

ing the drivers of these changes is vital for making reliable future climate projections10;11, but36

is complicated by several factors.37

The Southern Ocean is subject to strong internal climate variability, which may account38

for a substantial portion of the observed change12;13;14;15;16. It is also one of the more poorly39

sampled regions of the global ocean5, accentuating the difficulty of quantifying forced trends.40

Modelling results suggest that both greenhouse gas increases17 and stratospheric ozone de-41

pletion18;19 are important drivers of Southern Ocean change. However, the ability of coarse42

resolution climate models to accurately simulate changes in the Southern Ocean, where the dy-43

namics are modulated by small-scale eddies, has been questioned10. Human influence on ocean44

thermohaline change has previously been detected in large-scale basin averages20;21;22;23. How-45

ever, observed patterns of Southern Ocean thermohaline change have not yet been attributed46
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to specific forcing agents. Here we present a new observational synthesis of Southern Ocean47

temperature and salinity changes, address the questions of data sparsity and model skill, and48

then develop a framework for attributing these changes to individual forcing agents.49

Observed and simulated changes50

To quantify historical changes in Southern Ocean temperature and salinity, we use all hydro-51

graphic profiles available in the World Ocean Database for the period 1950-2015. We compute52

anomalies between each profile and the closest matching point in a modern Argo based clima-53

tology24 to avoid aliasing due to the sparse historical sampling, and grid the data (see Methods54

and below).55

The observed zonal-mean temperature change over the Southern Ocean, computed as the56

2006-2015 mean minus the 1950-1980 mean, is dominated by a region of warming centered near57

45◦S and extending from the surface to over 1,500 m (Fig. 1a). An interesting exception to58

this warming pattern is a sub-surface cooling between about 250 and 2,000 m and between59

30-36◦S. Salinity shows a more complex pattern of change (Fig. 1b). The salinity pattern is60

dominated by a strong surface freshening south of 45◦S, which extends into the ocean interior61

in a northward arc, which is contrasted against a strong salinification in the upper 500 m, north62

of 45◦S. These patterns of change are largely consistent with previous observational studies10;6.63

To help understand these observed changes we turn to the Canadian Earth System Model,64

in which the ALL forcing experiment (including solar, volcanic, anthropogenic aerosols, ozone65

depletion, land use change and greenhouse gases; see Methods) was run 50 times from slightly66

different initial conditions to produce a large ensemble. The ensemble mean over the 50 real-67

izations provides an estimate of the forced response - the fingerprint of change associated with68

the forcing, while the spread across the ensemble provides an estimate of the uncertainty due to69

internal climate variability. We sub-sample the model using the same coverage of historical hy-70
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drographic profiles, determined to the nearest month, to make our results directly comparable71

with the observations above (see Methods).72

The ALL forcing fingerprints reproduce the observed patterns of change very well (Figs. 1c,73

d). The correlation coefficients between the simulated and observed patterns are 0.83 and 0.7274

for temperature and salinity respectively. Regions where the observed changes fall within the75

2.5th to 97.5th percentile spread of the 50 model realizations are indicated by stippling in Figs.76

1a and b, indicating where the model and observations agree at the 5% level. Most regions77

are stippled, but in the non-stippled areas the model typically correctly simulates the sign of78

the observed change, but does not capture the correct magnitude of changes. In particular,79

the model underestimates the magnitude of the observed subsurface cooling and freshening,80

between about 30 to 42◦S. This will partly be addressed by the scaling factors introduced in81

the detection and attribution analysis below.82

The observational coverage is extremely sparse in the early part of the record and increases83

over time, with a step-like jump after the introduction of the Argo array in 2004 (Figs. S1, S2).84

We can use the model to address the question of whether the sparse observational sampling85

biases our estimates of temperature and salinity change since 1950, despite our careful analysis86

approach (see Methods). Figs. 1e and f show the patterns of change obtained when we use the87

full model coverage (no sub-sampling). Relative to Figs. 1c and d, in which the model was sub-88

sampled with observational coverage, we see minor differences in detail, but no fundamental89

changes in the patterns. This result suggests that the sparse observational sampling of the90

Southern Ocean has not systematically biased our estimates of multi-decade scale zonal mean91

temperature and salinity change. Analysis of more regional scales, and shorter period variability92

would however be increasingly subject to aliasing, and hence we do not attempt to move our93

analysis beyond zonal mean scales. Next we address the drivers of these observed changes.94
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Detection and attribution95

In order to objectively compare the simulated and observed Southern Ocean changes, and to96

determine the relative contributions of individual climate forcings to the changes, we apply a97

detection and attribution analysis25 (see Methods). We begin with a one-signal analysis, re-98

gressing observed changes (Fig. 1a, b) onto the model-derived fingerprints of change associated99

with ALL forcing experiment (Fig. 1c, d). The resulting scaling factors are significantly differ-100

ent from zero at the 5% significance level for both temperature and salinity (Fig. 2). This means101

that we formally detect the fingerprints of climate change in observed Southern Ocean temper-102

ature and salinity, and the observed changes are not explainable by internal climate variability103

alone25. The salinity scaling factor is consistent with unity, which means that the magnitude104

of the simulated changes is consistent with the observations. The temperature scaling factor of105

0.74 does not include unity in its uncertainty range, implying that the model response has to be106

scaled down to best fit the observations. This is consistent with our knowledge that CanESM2107

warms too rapidly over the historical period26.108

To identify the roles of individual forcing agents, we now conduct a multi-signal analysis109

(see Methods). The fingerprints are derived from four experiments, each comprising 50 sim-110

ulations, in which the CanESM2 model was forced by i) greenhouse gas forcing only (GHG);111

ii) natural forcing only (NAT, solar and volcanic); iii) anthropogenic aerosols only (AER) and112

iv) stratospheric ozone depletion only (OZ). The resulting scaling factors represent the best113

combined fit to the observations of the fingerprints for each individual forcing (Fig. 2). The114

scaling factors associated with the NAT fingerprints are not significantly different from zero,115

indicating no detectable influence of natural forcing (solar and volcanic) in these zonal mean116

sections. Similarly, the AER fingerprints were not detected in the observations. By contrast117

we can independently detect the fingerprints of both GHG and OZ induced changes in the118

observed temperatures, while for salinity only the GHG fingerprint is detected. If we do a119
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combined analysis on temperature and salinity, we can detect both the GHG and OZ patterns120

(Fig. S3).121

The relative contribution of each forcing to the observed pattern of change (Fig. 3) is122

given by the fingerprints multiplied by the appropriate scaling factor. For both temperature123

and salinity, greenhouse gas forcing plays the dominant role (Fig. 3a, b), showing patterns of124

change similar to the ALL forcing experiment and observations (Fig. 1). This is consistent125

with the understanding that increasing greenhouse gases are the principal driver of climate126

warming25 and recent anomalous ocean heat uptake27. In our simulations, stratospheric ozone127

depletion is responsible for the cooling observed north of 40◦S, and for warming to the south128

(Fig. 3c), consistent with previous modelling studies28;18;29. The OZ response is distinct from129

the uniformly-warming GHG signal in this regard. The fact that the fingerprint of OZ forcing130

was detected in the observations for temperature but not salinity most likely lies in the fact131

that the GHG and OZ fingerprints are highly correlated for salinity (Fig. 3b, d) which makes132

independent detection difficult.133

Based on these results, we conclude that observed Southern Ocean temperature and salin-134

ity changes are inconsistent with internal variability or natural forcing alone, but can be at-135

tributed to anthropogenic influence in general, and greenhouse gas increases and stratospheric136

ozone depletion in particular. These results are in agreement with the previous detection of137

anthropogenic influence on ocean temperature and salinity at the global scale and in other138

ocean basins20;21;22;23. We have advanced on previous work by using an updated observational139

synthesis to focus on the Southern Ocean patterns of change, and by attributing the observed140

changes to GHG and OZ forcing in particular, rather than just the combined anthropogenic141

signal (ALL).142
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Physical mechanisms143

Changes in temperature and salinity on pressure surfaces (Fig. 1) can be driven by changes144

in surface fluxes and water masses, or by adiabatic shifts of density surfaces which do not al-145

ter water masses (known as heave), induced by wind and ocean circulation changes. To help146

separate these effects, we recompute the changes on isopycnal surfaces 26 ≤ σθ ≤ 27.75, com-147

prising the main watermasses of the Antarctic Circumpolar Current (Fig. 4). The observations148

show a warming and salinification of Upper Circumpolar Deep Water centered on σθ = 27.5,149

south of 45◦S, and a cooling and freshening of thermocline waters north of this and centered on150

σθ = 27.0 (Figs. 4a, b). The CanESM2 ALL forcing simulation overall shows similar patterns151

of change (Figs. 4c, d), though the model does have some climatological biases in water mass152

structure, and the cooling/freshening tends to occur in lighter density classes than observed.153

Overall, these patterns of change are consistent with previously identified water mass changes154

in the Southern Ocean30;31;32;10, and imply water mass modification by surface fluxes.155

In the model, a heat budget analysis of the ALL forcing experiment shows that 75% of depth-156

integrated warming in the Southern Ocean can be explained by overlying anomalous surface157

heat fluxes (Figs. 5a, c). Given conservation of heat, we can infer that the remaining 25%158

of the simulated warming is driven by anomalous ocean heat transport across the boundaries159

of the domain. The salinity budget shows that most of the additional freshwater enters the160

ocean to the south of the boundary of our analysis area at 60◦S (Figs. 5b, d), and then161

is advected into the analysis region by the prevailing northward Ekman transport. These162

results are consistent with a previous study1, which argues that Southern Ocean warming is163

largely driven by anomalous surface fluxes combined with the climatological transport, and164

that changes in transport play only a secondary role. In our simulations the Southern Ocean165

Meridional Overturning Circulation (MOC) does change (Fig. S4), mostly driven by GHG166

forcing, and intensified westerly winds (Fig. S5), while the Antarctic Circumpolar Current167
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shows only a very small increase in strength (Fig. S6).168

Previous studies proposed that observed Southern Ocean warming may be associated with169

poleward shifts of the Southern Ocean fronts5;10. The additional constraint of salinity changes170

suggests that this is unlikely the case. Since salinity increases towards the north over the upper171

water column, the observed pattern of freshening is inconsistent with a simple southward shift172

of isopycnals (i.e. fronts). Indeed, recent studies find no evidence that the Southern Ocean173

fronts have shifted poleward33;34. It is also interesting to note that CanESM2 does not include174

an interactive ice sheet, but is able to simulate the observed large scale salinity change in the175

Southern Ocean north of 60◦S. This is evidence that the observed salinity changes are not176

primarily driven by freshwater input from ice sheet melt, which is small relative to changes in177

precipitation minus evaporation35;36;6 and northward advection of freshwater by sea-ice37;38.178

Implications for the future179

Our detection and attribution analysis shows that the thermohaline changes simulated by180

CanESM2 are statistically consistent with the observed changes. This provides increased con-181

fidence in the ability of coarse resolution climate models (≈ 1◦) to simulate large scale temper-182

ature and salinity changes in the Southern Ocean. Our attribution results also indicate that183

greenhouse gas forcing dominated over ozone depletion in the observed warming and freshen-184

ing of Southern Ocean since 1950 (Fig. 3). Given this, we expect to see continued warming185

and freshening of the Southern Ocean over the coming decades, despite the mitigating effects186

of ozone recovery39;40. Such changes are highly relevant for the future of Southern Ocean187

sea-ice29;12, the Antarctic ice-sheets41, and the global ocean uptake of heat and carbon7;8;9.188
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Methods189

Observations190

Since the observational record is sparse, particularly in the early part of the record (Fig. S1),191

we need to compute anomalies carefully to avoid aliasing. For a reliable baseline, we use192

the well sampled modern Argo era (2004-2008), and specifically the gridded Roemmich and193

Gilson (RG) Argo based climatology24, which is available at http://sio-argo.ucsd.edu/194

RG_Climatology.html. For every historical profile available in the World Ocean Database195

(https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html) for the period 1950-2015, we compute196

the temperature and salinity anomaly relative to the RG climatological value for the same197

month, and the closest position in space to the profile. Computing anomalies in such a manner is198

used to avoid seasonal and spatial aliasing effects resulting from averaging sparse observations10.199

We then bin-average these observed anomalies in space onto the CanESM2 model grid, with a200

nominal resolution of 1◦ in latitude and 1.5◦ in longitude and at a time resolution of one month.201

After using this monthly resolved data to define the sub-sampling of the model (see below), we202

further average to 5-year means. Finally we compute the differences between the mean over203

the decade 2006 to 2015 minus the base period, which is a mean over 1950 to 1980.204

CanESM2 large ensembles205

We use the Canadian Earth System Model version 242;43, the version of the model used for206

the Coupled Model Intercomparison Project Phase 5. The model consists of the CanAM4207

atmosphere model, run at T63 spectral resolution and coupled to the CanOM4 ocean model,208

which has a nominal resolution of 1◦ in latitude and 1.5◦ in longitude. CanESM2 includes a209

land surface scheme (CLASS) and interactive carbon cycle components on the land (CTEM)210

and in the Ocean (CMOC).211
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Four CMIP5 attribution experiments were conducted with the model: i. all forcing (ALL);212

ii. natural forcing only (NAT, solar and volcanic); iii. anthropogenic aerosols only (AER)213

and iv. stratospheric ozone depletion only (OZ). In all cases the model was run over the214

historical period (1950-2005), and this was joined with future runs using the appropriate forcing215

from the Representative Concentration Pathway 8.5 (2006-2100). We are only interested in216

the period extending from 1950 to 2015. There is very little difference between the RCPs217

between 2006 and 2015. For each experiment, the initial condition in 1950 is taken from the218

5 CanESM5 realizations submitted to the CMIP5 archive. In this year, the five realizations219

were branched into 50 realizations per experiment (for a total of 200), by introducing a random220

permutation to the seed used in the random number generator for cloud physics, and then221

integrated forwards under the appropriate historical/RCP8.5 forcing. No other perturbation is222

made to the realizations, but the subtle change to the random seed for cloud physics ensures that223

internal variability diverges rapidly across the realizations. Therefore, within each experiment,224

the forcing is identical, and the runs only differ in their realization of internal variability.225

A large ensemble was not run with greenhouse gas (GHG) forcing only, but we are interested226

in the the impacts of GHGs alone. The difference between the all forcing experiment and the227

sum of the other three provides an estimate of the influence of greenhouse gases, under the228

assumption that the responses to these forcings sum linearly (i.e. ALL = GHG + NAT + OZ229

+ AER). We can verify that this assumption holds by comparing to five CanESM2 simulations230

forced by GHG only, which were submitted to CMIP5. The ensemble mean response to GHG231

forcing inferred from the large ensembles, using the assumption of linearity above, is nearly232

identical to the ensemble mean response in the five actual GHG-only simulations (Fig. S7).233

In the model at each spatial point and for each month, we compute anomalies relative to234

the model climatology over 2004 to 2008 (the same period used to compute the RG observed235

climatology - the model and RG baseline climatologies both have complete spatial coverage).236
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The observations have many grid points that contain no data. We use the missing data-mask237

from the observations, and apply it to the model, so that data coverage is exactly consistent238

between them. After this point, all averages are applied in the same way to the model and239

observations, ensuring consistent sampling. Specifically, we bin-average the data into 5-year240

means, then we compute differences between the mean over the decade 2006 to 2015 minus the241

base period, which is a mean over 1950 to 1980.242

While the large size of the CanESM2 ensemble provides robust estimates of the forced re-243

sponse (fingerprints), and the range of internal variability, it does not sample model uncertainty.244

However, the warming pattern in CanESM2 is consistent with the average across the CMIP5245

models1.246

Detection and attribution methodology247

In the context of our study, detection means demonstrating that the Southern Ocean tem-248

perature and salinity have changed in a statistical sense, and that this change is inconsistent249

with internal variability. Attribution means determining the relative contributions of multi-250

ple climate forcings to the change, with an assigned statistical confidence25. Attribution to a251

specific forcing is done by showing that the observed changes are consistent with the process-252

based model (CanESM2) which includes the forcing (e.g. greenhouse gas increases), but is253

inconsistent with an otherwise identical model that excludes this forcing.254

We adopt the widely used fingerprinting approach, which means that we assume that the255

model simulates the pattern (or fingerprint) of the response to external forcing, but not neces-256

sarily the correct magnitude of the response25. For each of the four experiments (GHG, NAT,257

AER, OZ, see main text), the fingerprint is the ensemble mean over 50 model realizations,258

which differ only in their rendition of internal variability. The analysis produces scaling fac-259

tors, which describe how the magnitude of the model response to individual forcings should be260
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scaled up or down to best match the observations, and associated uncertainty estimates25.261

To obtain the scaling factors, we regress the observed changes onto the simulated finger-262

print(s). In the one signal case the observations are regressed on the ALL forcing fingerprint.263

In the multi-signal case, a multiple linear regression is used to regress the observations onto the264

fingerprints for each of the four experiments. Since the simulated forced response is estimated265

from the ensemble mean of a 50-member ensemble, internal variability in the forced response266

is negligible, and we use an ordinary least squares regression25.267

To estimate uncertainty of the coefficients, we compute the residual between each realization268

and the ensemble mean from its experiment, which provides us with 200 realizations of internal269

variability. We rescale the realization by
√

50/49 to account for subtraction of the ensemble270

mean44. We then repeat the regressions 200 times, in each iteration replacing the observations271

with a different realization of the variability. That is we regress the realization of internal272

variability against the ensemble means. The spread (5th to 95th percentile) in parameters273

derived in this way provides the uncertainty in the scaling factors, and informs us of the274

likelihood of obtaining the scaling factors due to internal variability alone. This confidence275

interval allows us to evaluate if the scaling factors are significantly different from zero at the276

5% level. For display purposes we center this distribution of scaling factors on the corresponding277

regression coefficient of the forced response in Fig. 2. Our approach leverages the large number278

of independent samples of internal variability available to avoid the need to estimate uncertainty279

intervals from an ill-conditioned covariance matrix and to avoid assuming normally distributed280

internal variability, as has been done previously22.281

Using different variables that are physically linked, such as temperature and salinity, can282

increase signal detectability23. For the combined temperature and salinity analysis (Fig. S3),283

the temperature and salinity fingerprints used above were normalized (i.e. the mean was re-284

moved, and they were divided by the standard deviation). The data were then concatenated285
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(producing a series double the length of the temperature or salinity data alone), and the above286

analysis was repeated.287

Code availability288

Analysis code is available from the authors upon request.289

Data Availability290

All data used in this manuscript are publicly available. The CanESM2 large ensembles are avail-291

able at http://open.canada.ca/data/en/dataset/aa7b6823-fd1e-49ff-a6fb-68076a4a477c.292

The Roemmich and Gilson Argo climatology is available at http://sio-argo.ucsd.edu/RG_293

Climatology.html. The historical profiles from the World Ocean Database can be found at294

https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html.295
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Figure 1: Observed and simulated changes in temperature and salinity. Zonal mean

temperature (a, c, e) and salinity changes (b, d, e) from observations (a, b), the ensemble

mean of CanESM2 ALL forcing experiment, sub-sampled to match the observational coverage

(c, d), and the ensemble mean of CanESM2 ALL forcing ensemble with full sampling (e, f).

The stippling in a and b show where the observations fall within the 2.5th to 97.5th percentile

spread across the model ensemble. The anomalies represent the difference between the 2006-

2015 mean and the mean over a 1950-1980 base period. Black contours are the climatological

temperatures and salinities.

Figure 2: Detection and attribution scaling factors. a) Temperature and b) salinity

scaling factors are shown for a one-signal analysis of the ALL forcing experiment, and for the

multi-signal analysis using the greenhouse gas only (GHG), stratospheric ozone depletion only

(OZ), natural forcing only (NAT) and anthropogenic aerosol only (AER) experiments. Scaling

factors are the regression coefficients between the observations and the ensemble mean patterns

of change for each experiment. The 90% confidence intervals (grey bars) were generated from

the spread across the 200 individual realizations of model internal variability (see Methods),

with the individual ensemble members shown as small black dots.
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Figure 3: Fingerprints of temperature and salinity change. Zonal mean temperature (a,

c) and salinity changes (b, d) from the ensemble means of CanESM2 single forcing experiments

using greenhouse gas only (GHG) and stratospheric ozone depletion only (OZ) forcing. All

are sub-sampled to match the observational coverage. The anomalies represent the difference

between the 2006-2015 mean and the mean over a 1950-1980 base period. Note, fields have

been scaled to best match observations using the scaling factors from Fig. 2.

Figure 4: Observed and simulated changes in temperature and salinity in density

space. As in Fig. 1, but with anomalies computed in density space. Zonal mean temperature

(a, c, e) and salinity changes (b, d, e) from observations (a, b), the ensemble mean of CanESM2

ALL forcing experiment, sub-sampled to match the observational coverage (c, d), and the

ensemble mean of CanESM2 ALL forcing ensemble with full sampling (e, f). The anomalies

represent the difference between the 2006-2015 mean and the mean over a 1950-1980 base

period. Black contours are the climatological temperatures and salinities. σθ is potential

density, referenced to the surface, minus 1000 kg m−3.

Figure 5: Southern Ocean heat and salt budget. Change in simulated Southern Ocean

volume integrated (30-60◦S, 0-2000 m) heat (a) and salt (b) content, along with cumulative

changes in the area-integrated surface heat and (virtual) salt fluxes. Changes in zonal mean

surface heat (c) and salt (d) fluxes in time over 10-80◦S. In a) contributions from shortwave

radiation (SW), longwave radiation (LW) and latent (LA) and sensible (SE) heat and the flux

below sea-ice (ICE) are shown. In b) E-P is evaporation minus precipitation. Dashed lines in

c) and d) show latitudes 30◦ and 60◦S. Results are for the CanESM2 ALL forcing experiment.
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