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Abstract

A neural network instantiation of Decision Field Theory
(Busemeyer & Townsend, 1993) for multiple choice decision
tasks is presented. First it is shown how under certain situa-
tions this dynamic model reduces to two well-known static
models of choice. Next, model simulations of two well-
known findings in multiple choice decision literature are pre-
sented. The first is the effect of similanty (Tversky, 1972).
Several choice models also predict this effect. However, a
more challenging effect, which is not predicted by numerous
static choice models is the decoy effect (Huber, Payne, &
Puto, 1982). Simulations show that the current model predicts
this finding by using the concept of lateral inhibition. Finally,
predictions of the model are made about the dynamic nature
of the deliberation process in the decoy effect. If empirical
results are found to be in agreement with this prediction, it
would be a strong test of the model

Introduction

Preferential choice is a very complex topic that needs to
be studied from many different perspectives. Take for ex-
ample, the relatively simple task of buying a used car. From
one point of view, this is a search problem in which a very
large set of options is winnowed down to a much smaller set
of satisfactory options (Simon, 1955). From another point of
view, this is an evaluation problem requiring tradeoffs
among multiple conflicting attributes such as safety, quality,
performance, and cost (Keeney & Raiffa, 1976). From a
third point of view, this is a choice problem which the can-
didates engage in a competition for the purpose of identify-
ing a winning or best alternative (Thurstone, 1959).

The purpose of this article is to present a general deci-
sion theory that encompasses all of these points of view
within a single processing framework. The present theory is
based on an earlier theory known as decision field theory.
Decision field theory was originally developed to explain
choice behavior for decision making under uncertainty by
Busemeyer & Townsend (1993). Later it was extended to
explain the relation between choice, selling prices, and cer-
tainty equivalents by Townsend & Busemeyer (1996). More
recently, it was extended to account for multi-attribute deci-
sion making by Diederich (1997). However, all of these pre-
vious developments were limited to choice situations in-
volving only two choice options. This simplification was
initially necessary to focus on other issues in more depth
such as multi-attribute outcomes and multiple uncertain out-
comes. The purpose of this article is to relax this restriction
and present an extension of decision field theory to multiple
(more than two) preferential choice problems. Many new
and complex issues arise with multiple alternative choice
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problems that do not appear in the simpler binary choice
task -- for example, a winnowing search process is unneces-
sary in the binary choice task.

A very large literature already exists on the topic of pref-
erential choice with multiple options. What is unique about
decision field theory is that it provides a detailed description
of the dynamic process that ensues between the onset of the
choice task and the final selection. This dynamic description
permits the theory to explain the systematic relations be-
tween choice probability and decision time, and the impor-
tant effects of time pressure on choice probability.

A second purpose of this article is to build formal con-
nections between decision field theory and other neurally
inspired models of decision processes (e.g. Grossberg &
Gutowski, 1987, Usher & Zakay, 1993, & Levin & Levin,
1996). More specifically, decision field theory is recast or
reinterpreted in terms of a neural network formulation. One
key idea borrowed from neural network theorists (e.g.,
Grossberg, 1988) 1s the principle of lateral inhibition among
competing nodes. This idea turns out to play a critical role in
explaining paradoxical findings that have posed serious
challenges to a large class of static choice models.

The remainder of this article is organized as follows.
First we introduce the basic ideas of decision field theory. In
order to do this, a specification of how this theory operates
under two different types of task constraints, one called the
experimenter controlled choice task, and the other called the
subject controlled choice task is needed. Second, it is shown
how some earlier static theories of choice can be viewed as
special cases of decision field theory. In particular, it is
shown how decision field theory can be used to derive a
dynamic version of the classic Thurstone choice model for
the experimenter controlled task, and it is shown the well
known elimination by aspects model can be mimicked for
the subject controlled task. Next some basic findings are
reviewed from multiple alternative choice including the
effects of similarity on choice and the effects of adding
asymmetrically dominated alternatives. The latter result is
particularly important because it violates a principle of
choice called regularity that is satisfied by a large class of
previous choice models. Then it is shown how the multiple
choice version of decision field theory provides a simple
and natural explanation for these paradoxical results. Finally
new predictions from the theory are derived for the effects
of deadline time pressure on multiple alternative choice. At
this point in time, these predictions are unique to newly
developed version of decision field theory and provide a
strong test of the theory.
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Multiple Cue Decision Field Theory

In order to make the description of the model more con-
crete, an example of a three option choice task we will be
presented and referred to throughout the paper. Consider the
case of a new car purchase where after some deliberation the
choice set has been reduced to three cars. Also consider that
the number of dimensions used to deliberate about these
choices has been reduced to two, performance and gas mile-
age.

Below is presented a neural network interpretation of
Multiple Choice Decision Field Theory (MCDFT) for this
choice task. The model is expressed with the following lin-
ear difference equation:

P(t+1)=8 * P(t)+ V(1)
where P is a 3x1 vector representing the preferences for the
three alternatives, V is a 3x1 vector of valences which repre-
sent the momentary anticipated value of each option, and S
is a 3x3 constant matrix called the stability matrix that con-
trols the rate of growth of the preferences.

The current model is expressed within a neural network
framework as shown in Figure 1. There are three nodes in
the system, labeled A, B, and C that represent three options.
The nodes in the network are fully connected and have a
self-feedback loop. The weights of the connections between
these nodes are given in S matrix. By choosing the appropri-
ate values in the S matrix, the principle of lateral inhibition
can be implemented. It turns out that lateral inhibition is a
key issue in predicting known findings in the area of multi-
ple choice decision tasks.

The input that drives the system are valences, repre-
sented in Figure 1 by V's. Values of the valences for each
option change moment by moment as attention is randomly
shifted from dimension to dimension in the deliberation pro-
cess. For example, while deliberating on a new car purchase,
attention may be shifting between gas mileage and perform-
ance. Therefore, the momentary anticipated value of each
option will change depending on what dimension is being
attended to. It has been shown that subjects do tend to use a
dimension-wise process in many choice tasks (Russo &
Dosher, 1983). Because attention is randomly shifting and
the value of the V's are fluctuation, they are random vari-
ables and are assumed to be independent and identically
distributed. The output of the system is the preference, P, of
each option at time t+1. The option selected in a particular
choice task depends on the values of these preferences and
the type of choice task.

Vi V2 V3

P,
' '

P1 P2 P3

Figure 1: A neural network representation of
MCDFT
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Given this brief explanation of the model it can now be
shown how it maps onto two types of choice tasks, experi-
menter controlled and subject controlled. In describing these
mappings, it will shown how MCDFT can be viewed as spe-
cial cases of two well-known static theories of choice.

Experimenter Controlled Choice Tasks

Experimenter controlled choice tasks involve placing a
deadline on the choice deliberation time. For example, while
deliberating on the purchase of a new car, the dealer may
interrupt the deliberation process by forcing an immediate
decision. Part of Figure 2 represents this type of choice task
for the new car example. The abscissa represents time while
the ordinate represents the level of preference of each op-
tion. The three lines labeled A, B, and C represent the pref-
erences of each option as they evolve over time. The vertical
line to the right represents the choice deadline. The option
with the highest preference at deadline is the one chosen. In
this case, option C was chosen because it had the highest
preference at deadline (the meaning of the upper bound is
discussed below).

. 1. Upper Boundary
High Option B wins
Preference
Ss
Low 2. Time Deadline *
Option C wins
Option A — '~ Option B OptionC ~ =7~

Figure 2: Experimenter and subject controlled tasks

The probability that a particular choice is made at time t,
for example option C, is:
P(Choose C, AB, attime t) =
P (Pc > P, at time t, Pc>Pg at time t).

To find the mean and the variance of preferences, we
look at the expansion of the model equation given earlier:
With E(V) = p and Var(V) = @ and the fact that the V's are
1.i.d. (Therefore their sum becomes multivariate normal),
MCDFT reduces to a Multivariate Dynamic Thurstone
choice Model with:

P(t+1)=3 S'V(t- j)+S'P(0)

J=0

E[P)])=(=5)"(U~-S")u

VIP(1))=2S'®(S’)



As can be seen in the above equations, means evolve over
time such that at any point in time t, the means can change
leading to preference reversals.

By stopping the deliberation process and obtaining a
choice response at various points during deliberation, it is
possible to study how the deliberation process evolves. A
paradigm such as this, known as the response signal method
(Reed, 1973), had been used to study many cognitive proc-
esses such as recognition memory and lexical decisions
(Hintzman & Curran, 1997) and discriminating semantic
from episodic associations (Dosher, 1984).

Presently there are no known decision-making studies us-
ing experimenter-controlled tasks. However, a model pre-
diction based on this type of task makes a strong test of the
model and will be presented below. A second and more fre-
quently used type of choice task is the subject controlled
choice task.

Subject Controlled Choice Task

Subject controlled differ from experimenter controlled
choice tasks 1n that no deadline is placed on the deliberation
process. Instead, a choice is made when the preference for
an option crosses some threshold. Figure 2 also represents
this type of choice task for the new car example. The ab-
scissa represents time while the ordinate represents the level
of preference of each option. The three lines labeled A, B,
and C represent the preferences of each option as they
evolve over time. The horizontal line at the top represents
the choice threshold. A choice 1s made when the level of
preference for any option crosses the threshold. In this case,
option B is chosen.

Within this type of choice task, MCDFT mimics a well-
known model of multiple choice decision, Elimination by
Aspects (Tversky, 1972). According to this model, options
are eliminated from the choice set based on aspects (or di-
mensions). However, unlike the subject controlled task pre-
sented above, a different choice boundary is needed, a lower
boundary to discard options. In Figure 3, the results of a
computer simulation of a choice task with five options along
three aspects (or dimensions) are shown. The abscissa repre-
sents time and the ordinate represents preferences. The lines
labeled A through E represent each option. Each vertical
line represents a shift of attention from one dimension to
another in the deliberation process. As can be seen, while
focusing on the first dimension two options, A and E, were
eliminated from the choice process. After the shift to the
second dimension, no items were eliminated, and while fo-
cusing on the third dimension, items B and D were elimi-
nated leaving option C as the option selected.

MCDFT mimics well the Elimination by Aspects model
of multiple choice decision. In the sections that follow it sill
be shown how MCDFT can qualitatively account for two
salient findings in the literature, the effect of similarity and
violations of regularity.
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Figure 3: Results of EBA simulation

Effects of Similarity

The similarity effect is a well-known phenomenon in the
area multiple-choice decision-making, (Tversky, 1972). It
states that by adding a new item to a choice set that is simi-
lar to one already in the set, the probability that the original
similar item chosen is lowered relative to the other items in
the choice set. In other words, the similar alternative takes
more of the market share from items similar to it than dis-
similar to it. Part of Figure 4 shows an example of this
situation for three options. The three options are represented
in a two dimensional space of performance and gas mileage.
Options A and B are located such that option A has better
performance but poorer gas mileage than B, and option B
has worse performance but better gas mileage than A. By
adding the third option S which is similar to A, the prob-
ability that B is chosen relative to A is increased.

‘| @

| @@
G

:

Gas Mileage

Figure 4: Similarity and Decoy Effects

The similarity effect leads to violations of strong sto-
chastic transitivity. Many static choice models can handle
these violations including Elimination by Aspects (Tversky,
1972) and the Edgell-Geisler choice model (Edgell
&Geisler, 1980). The dynamic model proposed here can
also handle these violations. Computer simulations were run
to test model predictions for this finding. Simulations were
first run to obtain preferences for two options then a third
similar option was added. Figure 5 shows the prediction of
the model. The abscissa shows the two possible options A
and B while the ordinate shows the probability that an item
1s chosen. The line connected with the diamonds reflects the
probability of each choice when only two options are avail-
able. In this case, each option is equally likely to be chosen.
The line connected by the squares indicates the effect of



adding the similar alternative. As you can see, the probabil-
ity that A is chosen relative to B is lower when the similar
item is added.

This simulation shows that MCDFT can qualitatively re-
produce the similarity effect. However, as mentioned above,
several static choice models do also. An often more difficult
finding to explain is violations of regularity.
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Figure 5: Results of Similarity Effect Simulation

Violations of Regularity

Violations of regularity, called the decoy effect, have
been shown in several studies (Huber, Payne, & Puto, 1982
& Ariely &Wallsten, 1995). Regularity implies that by
adding an item to a choice set, the probability of choosing an
item already in the set cannot be increased. Formally, for
any option x that is an element of set A which is in turn a
subset of set B, x € AcB, the probability of choosing x from
A must be greater than or equal to choosing x from B
Pr(x;A) 2 Pr(x;B).

These violations occur when a new item is added to the
choice set which is asymmetrically dominated. An item is
asymmetrically dominated if it is dominated by at least one
alternative in the choice set but not dominated by at least
one other. Figure 4 shows two types of dominated alterna-
tives, or decoys, the range decoy and the frequency decoy.
The range decoy R is dominated by A because it has the
same performance but worse gas mileage than A. It is called
a range decoy because adding it to the choice sel increases
the range on the gas mileage dimension. The frequency de-
coy F is dominated by A in that it has the same gas mileage
as A but worse performance. It is called a frequency decoy
because adding it to the choice set increases the frequency
of items below A. Using range and frequency decoys,
Huber, Payne, & Puto (1983) found subjects violate regu-
larity and they do more so with range decoys than with fre-
quency decoys.

Computer simulations were run to test model predictions
for this finding. Simulations were first run to obtain prefer-
ences with two options and then a third option (either a
Range or Frequency decoy) was added and another simula-
tion run. Figure 6 shows the prediction of the model. The
abscissa gives the probability that the dominating choice is
picked (choice A) in the binary condition. The ordinate
gives the probability that A is chosen for both two and three
option conditions. The line connected by the squares repre-
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sents the predictions for the probability that A will be cho-
sen without the decoy. The line connected by the circles
represents the probability that A will be chosen when the
frequency decoy is present. As can be seen, the model pre-
dicts that adding the frequency decoy leads to higher prob-
abilities of choosing A across a wide initial range probabili-
ties of choosing A in the binary case. Also notice that the
effect is stronger for the range decoy than the frequency
decoy

< 081 %
% 06
o
5 0.4-
& 0.2
u L] L L) L] L

0 02 04 06 08 1
Pr(Choose A) - Binary

—a— Without decoy
—a— Frequency decoy

—a— Range decoy

Figure 6: Results of Decoy Effect Simulations

A critical issue in producing this result was the use of
lateral inhibition. In the model described here, the S matrix
reflects lateral inhibition in which options close together in
decision space inhibit each other and this inhibition lessens
as distance increases. The S matrix shown below was used
in the simulations of the decoy effect for the frequency de-
coy:

A F B

95 —-.09 -.001 4
S=|-09 95 -.02|F

-.001 -.02 95 |B

Referring to Figure 4, and this S matrix, we can see that
options A and F are closer to together relative to B. There-
fore options A and F inhibit each other more relative to B
and F. In much the same way as edge enhancement effects
can be produced with lateral inhibition, the closeness of A to
F enhances the probability that A is chosen. To produce the
larger effect for the range decoy, the matrix S is simply al-
tered to reduce the inhibition between R and B (because R is
farther away from B than F). This allows a greater effect of
the inhibition between A and R.

Effects of Decision Deadline

Because of the dynamic nature of this model, predictions
can be made about the effects of deadline time pressure and
other time related ideas on the choice process. One predic-
tion of the model is the effect of a time deadline on viola-
tions of regularity, As mentioned above, by using the ex-
perimenter control method, we can look at the deliberation
process at specific instances over time. By stopping the pro-
cess at various times, the evolution of the process can be
studied.



Model simulations of an experimenter controlled choice
task were conducted by stopping the choice process at vari-
ous points in time. The same simulation for the effect of the
frequency decoy presented above was used except the time
delay was varied.. Figure 7 gives the predictions of the
model. The abscissa represents the time deadline with
smaller numbers meaning shorter deadline. The ordinate
represents the probuability of choosing A, the dominating
alternative. The line connected with squares represents the
probability that A is chosen in the binary choice conditions.
Here. no matter what the time cutoff, there i1s an equal prob-
ability that A or B will be chosen. The line connected by
diamonds reflects the probability that A is chosen with the
decoy present. Notice that with short deadlines, the model
predicts that regularity will be satisfied. This can be seen in
that by adding the decoy the probability that A is chosen
decreases instead of increases. However, as the as the dead-
line time increases, the model predicts regularity will be
violated. This can be seen in that adding the decoy increases
the probability that A is chosen. Recall that most static mod-
els of choice predict that regularity will always be satsfied
even though empirical studies show this is not true. If it is
found that with short deadlines regularity is satisfied, it
would be a very strong test of the model.
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Figure 6: MCDFT predictions for the effect of time pressure

Conclusion

Under certain choice tasks this neural network instantia-
tion of MCDFT has been shown to reduce to special cases of
some well-known static models of choice (e.g., Thurstone's
(1959) choice model, and Elimination by Aspects (Tversky,
1972)). Also, MCDFT can account for both the similarity
and decoy effects found in the literature on multiple choice
decision making. Further, the dynamic nature of this model
allows for predictions about time deadlines on the choice
process. Specifically it predicts that with very short dead-
lines, subjects will not violate regularity although it has been
found that they do. Due to the fact that most models of
choice are static, they make no prediction about this. If this
result can be found empirically, it would be a strong test of
the model. This is currently being tested in our lab.
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