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Abstract

An Impact of Divergence-Free Magnetic Field Interpolation Using a Solenoidal

Gaussian Process Kernel

by

Liliya Milenska

A new interpolation method using an analytically solenoidal Gaussian Pro-

cess (GP) kernel has been introduced within the Unsplit Staggered Mesh (USM)

magnetohydrodynamics (MHD) solver, implemented in the University of Chicago

ASC FLASH Center’s FLASH4 code. USM computes numerically divergence-

free (up to machine accuracy) magnetic fields at the cell interface-centers at each

time step, and then uses those values to predict the cell-centered magnetic fields

through simple linear interpolation. The GP interpolation method presented here

(which replaces the simple linear interpolation) uses the computed cell interface-

centered magnetic fields as sample points to train a GP model with an analytically

divergence-free kernel function, which is used to predict these fields at the cell cen-

ters. The performance of the USM scheme using GP interpolation is studied and

compared to the original scheme using arithmetic averaging. Some improvements

can be seen, particularly when calculating the numerical divergence using the

cell-centered fields. However, the interpolation is highly sensitive to the hyperpa-

rameter ` defining the kernel function and its optimization is subject to further

study.
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Chapter 1

Introduction

Magnetohydrodynamics (MHD) is the study of electrically-conducting fluid

flows which interact with magnetic fields. MHD has numerous applications in

modern science, ranging from astrophysical and geophysical problems, through

nuclear energy, to metallurgy. Being highly non-linear, the equations of MHD

require reliable, accurate and robust numerical methods for their solution. An

important constraint in these equations is the solenoidal condition for the magnetic

field: ∇·B = 0. In analytical solutions, this requirement is automatically satisfied,

but this is not necessarily true in a numerical setting, and could potentially lead

to unwanted numerical oscillations and inaccuracies [1].

Several different numerical methods have been introduced and are routinely

used to take care of the numerical divergence-free condition. For this study we

use the Unsplit Staggered Mesh (USM) [9] MHD solver implemented in the Uni-

versity of Chicago ASC FLASH Center’s FLASH4 [5] code release, which uses a

Constrained Transport (CT) [6] type of scheme to ensure zero divergence for mag-

netic fields collocated at the cell interfaces. In typical second order CT schemes,

the magnetic fields at the cell centers are not guaranteed to be divergence-free,

as they are calculated by taking arithmetic averages of the ones collocated at the
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cell interfaces.

The aim of this study is to improve this simple arithmetic averaging by replac-

ing it with an interpolation method using Gaussian Processes (GP) within the

USM scheme. This method uses a specific kernel function definition, which will

ensure that the resulting predicted values will be analytically divergence-free.

In the following introductory sections, we present a brief general overview

of the governing equations of MHD, the importance of the numerical solenoidal

condition, as well as a description of the USM scheme. We then present and

develop the GP interpolation methods we will use in our implementation. In

Chapter 2 we summarize the main points of the implementation and present a

series of numerical tests, comparing the results to those obtained through the

USM solver with the default arithmetic averaging.

1.1 Magnetohydrodynamics

As already mentioned, magnetohydrodynamics (MHD) [3] is the study of

electrically-conducting fluid flows and their interaction with magnetic fields. This

mutual interaction can be viewed as a three-part process. Let B denote the mag-

netic field and u, the velocity field of the flow. First, the relative movement of

the fluid and the magnetic field will create an electromotive force proportional to

|u × B| which will in turn generate electrical currents. Next, by Ampère’s law,

these currents will produce a new induced magnetic field, interfering with the orig-

inal B. The result of this interference will be a "drag" of the B field lines along

with the fluid flow. Finally, the two magnetic fields together will interact with the

induced current density (which we denote J). This will produce a Lorentz force

proportional to J×B, and this force will affect the relative movement of the fields

u and B. Naturally, the amplitude of all these effects will depend on the impor-
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tance of the fluid’s velocity, its conductivity, as well as the characteristic length

scale of the motion, which is linked to the strentgth of the induced magnetic field.

1.1.1 The Governing Equations

The governing equations of MHD are a combination of a simplified version of

Maxwell’s equations (1.1) of electrodynamics and the Navier-Stokes equation.

∇ · E = ρe
ε0
,

∇ ·B = 0,

∇× E = −∂B
∂t
,

∇×B = µ

(
J + ε0

∂E
∂t

)
.

(1.1)

In these equations E denotes the electric field, ρe is the charge density, ε0 is

the permittivity of free space, J is the current density and µ is the permeability

of free space. In addition to these, we also have the charge conservation equation

and the force equation (with q being the total charge):

∇ · J = −∂ρe
∂t

,

F = q(E + u×B).
(1.2)

Several simplifications may be made of Maxwell’s equations for the purposes of

MHD. Indeed, in a conducting fluid the free charge density ρe can be shown to be

insignificantly small, which will lead to some terms disappearing in the equations

above. The new, revised equations become:
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∇ · J = 0,

∇ ·B = 0,

∇× E = −∂B
∂t
,

∇×B = µJ.

(1.3)

We also have (with σ, the electrical conductivity) Ohm’s law and the Lorentz

force (per unit volume) given by:

J = σ(E + u×B),

F = J×B.
(1.4)

Combining Ohm’s law with Faraday’s equation and Ampère’s law, we write

the induction equation, which gives the relationship between B and u:

∂B
∂t

= ∇× (u×B) + λ∇2B, λ = (µσ)−1. (1.5)

In this expression, λ is the magnetic diffusivity, and for ideal conductors this

quantity is zero. Furthermore, we have the Navier-Stokes equation combined

with the Loretz force, governing the evolution of our fluid flow:

ρ
Du
Dt

= −∇p+ ρν∇2u + J×B. (1.6)

In this expression, ρ is the mass density of the fluid, p denotes the fluid pressure,

ν is the viscosity and D
Dt

denotes the material derivative. For our purposes, we

will limit ourselves to the equations of ideal MHD written in conservation form:
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∂ρ

∂t
+∇ · (ρu) = 0, Continuity

∂ρu
∂t

+∇ · (ρuu−BB) +∇ptot = 0, Momentum
∂B
∂t

+∇ · (uB−Bu) = 0, Induction
∂E

∂t
+∇ · (uE + uptot −BB · u) = 0. Energy

(1.7)

Here the momentum of the fluid is ρu, the total energy density is E and with γ

being the ratio of specific heats we also have the current density and total pressure:

J = ∇×B, Current Density

ptot = p+Bp = (γ − 1)
(
E − 1

2ρ||u||
2 − 1

2 ||B||
2
)

+ ||B||
2

2 .
(1.8)

The norm used in the expression for the total pressure is the Euclidean norm:

||u||2 = u2 + v2 + w2 where u = (u, v, w).

1.1.2 The Importance Of The Solenoidal Condition

From an analytical point of view, the solenoidal condition on the magnetic

field, ∇·B = 0 must be maintained exactly, however this will not be automatically

satisfied in numerical solutions. Furthermore, it has been shown in [1] that even a

very small non-zero term for the magnetic field divergence may lead to numerical

instability and unphysical components in the solution to the equations, appearing

as an additional force parallel to the field itself.

When solving the equations in 1D, the divergence-free condition is easily en-

forced by setting the only component of the magnetic field Bx as a constant.

However, in higher dimension when using conservative shock-capturing schemes,

this is not straightforward. Different algorithms maintaining this divergence-free

condition throughout the simulation have been proposed and extensively studied.
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In this section we shall briefly mention some of them, along with their advantages

and related issues. A complete study of the methods listed here is presented in

[16].

A first approach is the so-called 8-wave scheme [8], which considers the addition

of non-zero source terms proportional to ∇·B explicitly, on the right hand side of

the MHD equations. A new discretization was developed in order to capture the

evolution of the non-zero ∇ · B term, which appears as an extra wave structure

and propagates throughout the computational domain. The algorithm is simple

to implement, but a significant downside is that the non-conservative nature of

this scheme may lead to incorrect jump conditions and propagation speeds when

the solution presents some discontinuities.

Another approach is the constrained transport (or CT) scheme - this is the

method implemented into the USM solver [9] we will be using. It implements a

particular discretization of the magnetic fields on a staggered grid, which main-

tains the divergence-free condition to machine round-off error. In this staggered

grid formulation, we denote by b the magnetic field at the cell interface centers.

Next, placing the z-component of the electric field Ez at the cell corners, one

can solve the resulting set of discretized induction equations along the cell edges

in order to evolve the components of b through Equation (1.9). The variables

appearing on the right hand side are shown in Figure (1.1).

bn+1
x,i+ 1

2 ,j
= bnx,i+ 1

2 ,j
− ∆t

∆y

{
E
n+ 1

2
z,i+ 1

2 ,j+
1
2
− En+ 1

2
z,i+ 1

2 ,j−
1
2

}
,

bn+1
y,i,j+ 1

2
= bny,i,j+ 1

2
− ∆t

∆x

{
−En+ 1

2
z,i+ 1

2 ,j+
1
2
− En+ 1

2
z,i− 1

2 ,j+
1
2

}
.

(1.9)

From these expressions it is then straightforward to show that the value of the

numerical divergence of b given in Equation (1.10) will remain small (of the order

of machine accuracy) throughout the simulation.
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Figure 1.1: Ez calculated at the cell-corners, used to evolve bn
x,i+ 1

2 ,j
and bn

y,i,j+ 1
2

to the next time step.

(∇ · b)i,j =
bn+1
x,i+ 1

2 ,j
− bn+1

x,i− 1
2 ,j

∆x +
bn+1
x,i,j+ 1

2
− bn+1

x,i,j− 1
2

∆y . (1.10)

Further details of this approach, specifically implemented into the USM scheme

will be discussed further on.

A third approach is the so-called projection scheme [1], which will, as the name

suggests, project the numerical solution for the magnetic field onto a subspace

formed by zero-divergence solutions. The projection step is applied through a

linear operator, and its output is then used as the magnetic field value for the

following time step calculation.

Another possible way of maintaining ∇ · B to be exactly zero is to consider

the equations in terms of the vector potential A instead (B = ∇×A) [4]. This

will however increase the order of the spatial derivatives, leading to a decreased

order of accuracy.
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1.2 The Unsplit Staggered Mesh Scheme

For our applications we use the FLASH code (version 4.4), developed at the

Flash Center for Computational Science at the University of Chicago. It is a pub-

licly available high-performance astrophysics simulation code, containing a wide

array of conveniently separated modules and solvers. Its capabilities range from

hydrodynamics and magnetohydrodynamics through nuclear physics to gravita-

tional and cosmological applications. Regarding MHD, FLASH contains two units:

the 8-wave model [8] (which evolves the MHD equations in a directionally-split

manner) and the Unsplit Staggered Mesh algorithm (which is directionally unsplit)

[9]. The main issue with directionally split methods for MHD is that they do not

take into account the normal magnetic field (with respect to the sweep direction)

when performing each directional sweep. The advantage of directionally-unsplit

methods is that they naturally contain the necessary multidimensional terms,

which take into account all components of the fields. The USM scheme is based

on a finite-volume high-order Godunov method and uses a CT-type implementa-

tion to enforce the solenoidal condition on the magnetic field.

In the staggered geometry, the mass density ρ, the momentum density ρu

and the energy density E are collocated at the cell centers, whereas the magnetic

fields are collocated both at the cell centers and cell interface-centers. We denote

the cell-centered magnetic fields by B and the cell interface-centered fields by b.

The geometry is shown in Figure (1.2) for a given cell (i, j). In the following

paragraphs we shall briefly explain how the USM scheme is constructed and how

it treats the ∇·B = 0 condition. The scheme can be summarized in the following

steps.

(a) The first step is to transform the nonlinear system of MHD equations into

a quasi-linearized version (using the primitive variables V = (ρ,u,B, p)T rather

8



Figure 1.2: The staggered geometry. The variables ρ,u and p are collocated
at the cell face centers. The magnetic fields are collocated both at the cell face
centers (B) and the cell interface centers (bx and by). Vi,j contains the cell-
centered variables.

than the conservative ones) and then to proceed to the reconstruction-evolution

step using a second-order MUSCL-Hancock type Total Variation Diminishing

(TVD) algorithm. Throughout this process the necessary multidimensional MHD

terms will be included by treating the evolution of the normal magnetic field sep-

arately from the other variables.

(b) The first step results in four Riemann states Vn+ 1
2

i,j,N,S,E,W (as shown in Fig-

ure (1.3)) at each cell’s boundaries, evolved by half a time-step, with the excep-

tion of the normal components of the magnetic field, which remain to be evolved.

With the already evolved Riemann states at the interfaces we can obtain the cor-

responding high-order Godunov fluxes by solving the appropriate (intermediate)

Riemann problem. In order to evolve the normal components of the magnetic

field, the CT-method is applied using these fluxes, by solving a set of discrete

induction equations given in Equation (1.11)
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Figure 1.3: Configuration of the Riemann states at a given cell (i, j).

b
n+ 1

2
x,i+ 1

2 ,j
= bnx,i+ 1

2 ,j
− ∆t

2∆y

[
Ẽ
n+ 1

2
z,i+ 1

2 ,j+
1
2
− Ẽn+ 1

2
z,i+ 1

2 ,j−
1
2

]
b
n+ 1

2
y,i,j+ 1

2
= bny,i,j+ 1

2
− ∆t

2∆x

[
−Ẽn+ 1

2
z,i+ 1

2 ,j+
1
2
− Ẽn+ 1

2
z,i− 1

2 ,j+
1
2

] (1.11)

The newly evolved values bn+ 1
2

x,i± 1
2 ,j

and bn+ 1
2

y,i,j± 1
2
are then added to the four Riemann

states in cell (i, j), Vn+ 1
2

i,j,N,S,E,W , which finalizes their half-time updating. These

states are then used to calculate the full second-order Godunov fluxes at the cell

faces by solving the Riemann problems (RP):

F∗,n+ 1
2

i− 1
2 ,j

= RP(Vn+ 1
2

i−1,j,E,V
n+ 1

2
i,j,W ) F∗,n+ 1

2
i+ 1

2 ,j
= RP(Vn+ 1

2
i,j,E ,V

n+ 1
2

i+1,j,W )

G∗,n+ 1
2

i,j− 1
2

= RP(Vn+ 1
2

i,j−1,N ,V
n+ 1

2
i,j,S ) G∗,n+ 1

2
i,j+ 1

2
= RP(Vn+ 1

2
i,j,N ,V

n+ 1
2

i,j+1,S)
(1.12)

(c) With these fluxes, the cell-centered conservative variables are evolved to the

next time step:

Un+1
i,j = Un

i,j −
∆t
∆x

[
F∗,n+ 1

2
i+ 1

2 ,j
− F∗,n+ 1

2
i− 1

2 ,j

]
− ∆t

∆y

[
G∗,n+ 1

2
i,j+ 1

2
−G∗,n+ 1

2
i,j− 1

2

]
(1.13)

(d) Some additional precautions are required to ensure that the interface-centered
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magnetic fields satisfy the solenoidal condition. Using the second-order accurate

Godunov fluxes, the electric fields collocated at the cell corners may be con-

structed, and they are then used to solve the discrete induction equations to

evolve the magnetic fields. In the final step, the cell-centered magnetic fields B

are reconstructed by simply taking arithmetic averages of the cell interface values

as shown in Equation (1.14).

Bn+1
x,i,j =

bn+1
x,i+ 1

2 ,j
+ bn+1

x,i− 1
2 ,j

2

Bn+1
y,i,j =

bn+1
y,i,j+ 1

2
+ bn+1

y,i,j− 1
2

2

(1.14)

This is the step that we would like to modify, in order to improve the interpolation

method, in an attempt to obtain divergence-free values for the cell-centered B as

well.

1.3 Interpolation Using Gaussian Processes

As mentioned in the previous section, our main goal here is to improve the

last step in the USM algorithm, i.e., the linear interpolation of the components

of the magnetic field at the cell centers (see Equation (1.14)). We will replace

the current arithmetic averaging method by a more accurate interpolation using

Gaussian Processes (GP). Furthermore, we will make use of a particular form of

interpolant, which will ensure that the resulting magnetic field remains divergence-

free (at least analytically). The interpolation itself will depend on two elements: a

hyperparameter ` in the definition of the kernel function, and the size of the stencil

we sample from. In this section we take a closer look at how GP interpolation

works and how these elements may influence our results. What follows has been

thoroughly developed in [2, 10, 12, 15] and we only present briefly the elements
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necessary for our implementation.

When it comes to data interpolation, the usual methods used are polynomial-

based ones. Indeed, these methods are quite intuitive due to their close relation

to Taylor expansion types of approximations, and a higher inteprolation accuracy

can be simply achieved by considering higher degree polynomials. Unfortunately,

there are also several considerable downsides known to accompany polynomial

interpolation: it is known to suffer greatly from overfitting issues and oscilla-

tions when treating discontinuous data; it can only be applied on stencils of fixed

size (thus making the use of unstructured meshes more complicated); and the

algorithmic complexity is known to grow with higher orders of accuracy and with

dimensionality in FVM. As we shall see, GP interpolation, which belongs to a class

of non-polynomial methods, may allow us to overcome these difficulties without

increasing the algorithmic complexity.

By definition, GP forms a class of stochastic processes, which sample func-

tions from a space of infinite dimensionality. A Gaussian process is a set of

random variables, any finite subset of which presents a joint Gaussian distribu-

tion. Two elements are necessary to define a Gaussian process: a mean function

f̄(x) = E[f(x)]) in RN , as well as a convariance function K(x,y) over RN × RN

(symmetric and positive-definite). Within the Gaussian modeling framework, we

begin by specifying a prior probability distribution over the function space. In or-

der to predict the quantities of interest at unknown points, the process of GP mod-

eling first trains the observed and known data at its respective coordinates and is

then capable of producing a data-informed prediction for the posterior probability

distribution at the interpolation points by using Bayes’ theorem. This posterior

probability distribution comes with two pieces of information: a mean value and

a corresponding uncertainty. Furthermore it is possible and quite straightforward

12



to include a given uncertainty on the prior data and take it into account when

calculating the posterior. In our case however, we will only consider the mean

value of the posterior in our interpolation method.

In order to fully define the mean function f̄ and the covariance K(x,y) needed

to describe our GP, we need some fitting procedure to determine the parameters

controlling these functions. If we consider the sample points xi with i = 1, . . . , N

(where f ≡ [f(x1), . . . , f(xN)]T is known), we can calculate and maximize the

likelihood L of observing the values f , given the GP model with its parameters:

L ≡ P (f) = (2π)−N
2 det |K|− 1

2 exp
[
−1

2(f − f̄)TK−1(f − f̄)
]
. (1.15)

In this expression, matrix K is composed of the kernel function evaluated for all

pairs of points: Kij ≡ K(xi,xj).

In order to make a prediction for the function f at a new unknown point x∗,

we use the conditioning property of GP. We consider the joint distribution of

the known data f and the new value f∗ as well as the corresponding augmented

likelihood function L∗ (of f and f∗ given the GP model):

L∗ ≡ P (f , f∗) = (2π)−
N+1

2 det |M|− 1
2 exp

[
−1

2(g− ḡ)TM−1(g− ḡ)
]
. (1.16)

In this expression we have the augmented vectors:

g ≡ [f∗, f ]T , ḡ ≡
[
f̄(x∗), f̄

]T
, (1.17)

and the (N + 1)× (N + 1) augmented covariance matrix:

13



M =

k∗∗ kT∗

k∗ K

 . (1.18)

Here we use the following notation for the scalar k∗∗ and the N -dimensional

vector k∗ = [k∗,i]i=1,...,N :

k∗∗ ≡ K(x∗,x∗), k∗,i ≡ K(x∗,xi). (1.19)

We now apply Bayes’ Theorem and the conditioning property to the joint

Gaussian prior distribution, which will give us the posterior distribution of the

desired function f∗, given the values f :

P (f∗|f) =
(
2πU2

)− 1
2 exp

[
−(f∗ − f̄∗)2

2U2

]
. (1.20)

In this expression, the updated posterior mean function and covariance are

respectively:

f̃∗ ≡ f̄(x∗) + kT∗K−1 · (f − f̄), (1.21)

U2 ≡ k∗∗ − kT∗K−1 · k∗. (1.22)

It is precisely f̃∗ that we are interested in to perform the interpolation. Fur-

thermore, if we choose a constant, zero mean function f̄(x) = 0 (the most general

choice) in Equation (1.21), it will be simplified to:

f̃∗ ≡ kT∗K−1 · f . (1.23)

In what we have described to this point, we only consider interpolating single-
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valued functions. We aim however to interpolate a vector-valued quantity - the

magnetic field - whose components are not mutually independent. We could con-

sider applying the method as described to the components of the magnetic field

separately, however we cannot guarantee that the interpolant will preserve the

relation between the components, i.e., the fact that B is divergence-free. Before

further developing the interpolation method for multivariate functions, we note

that this first, single-valued method, will still be used within the USM scheme at

an intermediate step.

We thus need a vector-valued equivalent of this interpolation method, which

also preserves the divergence-free quality of the function. It has been shown [11]

that many statistical learning methods can be transformed in such a way simply

by constructing an appropriate matrix-valued kernel function (instead of a scalar

one). Such a kernel function, which also satisfies the divergence-free condition

has been presented in [12] and [10]. Indeed, it is constructed so that its columns

define themselves divergence-free vector fields. This is a sufficient condition to

guarantee that the result of the interpolation will also be divergence-free, since

the latter will be a linear combination of these columns.

In our implementation we use a squared exponential kernel of the form:

φ(x) = Σ2 exp(−||x||
2

2`2 )) (1.24)

The parameters Σ and ` in this expression are “hyperparameters” defining the

model. The first hyperparameter, Σ, will not affect the value of the posterior

mean function, so we can set it to Σ2 = 1. On the other hand, the second hyper-

parameter, `, will play an important role. Indeed, it defines the correlation length

scale of the GP model and should reflect the physical length scale of the problem

at hand. Typical values of ` are usually larger than the minimum grid separation
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and even larger than the radius of the interpolation stencil. The optimal value of `

will thus vary depending on the grid size and on the problem we consider. It may

even be preferable to use different values of the parameter at different locations

on the grid.

One may also argue that this choice of smooth kernel function may be inap-

propriate to treat discontinuous data. Other types of kernel functions with less

strict smoothness requirements may be considered, but it has been shown [15]

that since they are of finite order of differentiability, their use may lead to noisy,

less accurate and unstable solutions.

The construction of the divergence-free kernel itself is done by applying a

specific linear differential operator onto our scalar kernel function φ of choice.

Such an operator is the Hessian H: (Hφ)ij = ∂2φ
∂xi∂xj

. For the matrix-valued kernel

to be divergence-free, the applied linear operator can be: L = H − tr(H) · I [12].

Applying this operator onto the scalar-valued kernel specified above, we obtain

the matrix-valued kernel (with n being the dimension of the physical space):

K(x,y) = 1
`2 e
− ||x−y||2

2`2

[(x− y
`

)(x− y
`

)T
+
(

(n− 1)− ||x− y||2

`2

)
· I
]

(1.25)

We can indeed verify (see Appendix (4.1)) that this kernel function is divergence-

free, which will in turn guarantee that the interpolated magnetic field at the cell

centers will be divergence-free as well. At this point we make a very important

note. The above matrix valued kernel function is only divergence-free analytically.

There is, however, no guarantee that it will still be divergence-free numerically. In

fact, we can show (see Appendix (4.2)) that the numerical divergence is non-zero.

With the GP interpolation method now defined, we can put together the necessary

algorithm for our specific application and perform several numerical tests.
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Chapter 2

Results

2.1 Implementation

Some precautions are necessary in order to implement divergence-free GP in-

terpolation into the USM scheme. We recall that our goal is to use interface

averaged training data (the evolved magnetic fields bx and by, collocated at the

cell interface centers) in order to predict (at least analytically) divergence-free

values of the magnetic fields at the cell centers, Bx and By by using the kernel in

Equation (1.25). We notice however, that this requires the simultaneous knowl-

edge of both bx and by at each cell interface-center, and the USM scheme does not

supply that information. Indeed, only bx is evolved along the cell interfaces in the

x-direction, and only by along the cell interfaces in the y-direction. We thus need

to construct an intermediate step in order to find bx at the interface centers along

the y-direction and similarly - by along the x-direction. The situation is shown in

Figure (2.1).

Our intermediate step consists in a single-valued GP interpolation along each

spatial direction separately. Figure (2.2) describes the situation. We choose, as our

stencil of sample points, a simple set of four points surrounding each interpolation
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(a) (b)

Figure 2.1: After each update, USM provides bx along the x-faces and by along
the y-faces as shown in 2.1a. To perform divergence-free GP interpolation, we
need both bx and by at each sample point as shown in 2.1b. The missing variables
are shown in red.

point (where we wish to calculate the missing field value). At each time step,

sweeping over all interface-centered points, first along the x-direction and then

along y, we perform single-valued GP interpolation, using Equation (1.23) with

zero mean.

Once we have both components of the magnetic field at the cell interface

centers, we can proceed to the divergence-free GP interpolation. This time we

will use a stencil of sample points as described in Figure (2.3), whose size can

be controlled by the parameter Rstencil, called the GP radius. We then loop over

all the cell-centered interpolation points (i, j), and we use Equation (1.23) with

the matrix-valued kernel function defined in Equation (1.25) in order to predict

Bx(i, j) and By(i, j) at those points.

With the newly interpolated cell-centered field B, we also define its corre-

sponding numerical divergence in Equation (2.1).
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(a)

(b)

Figure 2.2: Four-point stencils used for single-valued GP interpolation. The
unknown variable is shown in red in each case and the red arrows indicate GP
interpolation from the sample points to the point where that quantity is unknown.
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Figure 2.3: Stencil of radius Rstencil used for divergence-free GP interpolation.
The sample points are shown in black (cell interface centers) and the interpolation
point is in red (the cell center at (i, j)). For this choice of Rstencil we have a total
of 16 sample points.

∇ ·B(i,j) = Bx,(i+1,j) −Bx,(i−1,j)

2∆x + Bx,(i,j+1) −Bx,(i,j−1)

2∆y (2.1)

Although we do not expect this quantity to be zero (as explained in Ap-

pendix (4.2), we can use it to compare the performance of the original USM

scheme with arithmetic averaging (see Equation (1.14)) and the new scheme with

GP interpolation.

At this stage we must make an important remark. The process may seem

computationally expensive, since the interpolation involves the inversion of a

Nker ×Nker matrix, with Nker = N ×D where N is the number of sample points

and D is the dimension (D = 1, 2, 3). However, looking back at Equation (1.23),

we note that both k∗ and K are independent of the values at the sample points

f , but only depend on the distances between pairs of these sample points. This
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means that if the locations of these sample points are known in advance (which

is the case in the simulations of interest to us), we can calculate kT∗K−1 (also

referred to as a vector of weights wT = kT∗K−1) a single time at the beginning

of the simulation. If we wish to use AMR (Adaptive Mesh Refinement) during

our simulation, we usually specify the maximum level of refinement we wish to

use. We can then calculate the weight vectors wT for each refinement level and

store them, once again, at the beginning of the simulation. This way we only

need to compute the matrix inversion once (or as many times as there are levels

of refinement), significantly reducing the computation time.

2.2 Numerical Tests

2.2.1 Field Loop Problem

The first test we consider is the problem of the advection of a weakly magne-

tized field loop, traveling diagonally across the computational domain [7]. In our

setup, we set this domain to be [0, 2] × [0, 1] with periodic boundary conditions,

and the corresponding resolution to be 256 × 256. The initial conditions for the

mass density is set to ρ = 1 and the pressure is p = 1, with a ratio of specific

heats γ = 5/3. With the advection angle defined as θ = tan−1(0.5) ≈ 26.57◦, we

can write the initial velocity field as:

U = u0(cos(θ), sin(θ), 1), u0 =
√

5 (2.2)

The initial condition for the magnetic field here is defined in an indirect way,

using the numerical curl of the third component of a specifically defined vector

potential Az:
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bx = ∂Az
∂y

and by = −∂Az
∂x

. (2.3)

Using a centered numerical difference allows us to obtain initially numerically

divergence-free bx and by components at the cell faces. We take this component

of the vector potential as:

Az =


A0(R− r) if r ≤ R,

0 otherwise.
(2.4)

In this expression we have A0 = 10−3 and R = 0.3 (which is the loop radius).

This choice of parameters results in a divergence-free initial magnetic field (with

a numerical divergence of up to 10−16). Furthermore, the strength of the defined

magnetic field on the inside of the loop is very weak, which means that the dy-

namics of the flow will be governed mainly by the gas pressure. The choice of

initial parameters is such that one complete advection cycle is performed in time

t = 1.

Knowing that the loop is supposed to reach its initial position at the end of the

simulation, we may test the effect of the parameters used in our GP interpolation.

Indeed, as mentioned previously, the choice of the ` parameter defining the kernel

function will influence the resulting interpolation, and we may see this quite clearly

here. Figure (2.4) shows a comparison of the different solutions using the USM

scheme without GP interpolation (2.4a); with GP interpolation using ` = 1.5∆y

(2.4b); and using ` = 8.0∆y (2.4c) at time t = 2.0.

As we can see, the ` = 8.0∆y case leads to a more accurate solution, as

the one with ` = 1.5∆y does not seem to reach the original position precisely

(instead of returning to (1.0, 0.5), the center of the field loop is approximately

situated at (0.969, 0.438)). If we further increase the value of ` we begin to see
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(a) USM with arithmetic averaging at t = 2.0

(b) USM with GP interpolation using ` = 1.5∆y at t = 2.0

(c) USM with GP interpolation using ` = 8.0∆y at t = 2.0

Figure 2.4: Comparison of the magnetic pressure at t = 2.0 for the Field Loop
problem, without and with GP interpolation and two values of `. The same color
scheme is used for values between 5.5 × 10−26 and 5.8 × 10−7 and the resolution
is 256× 256.
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unwanted diffusive effects throughout the computational domain. The chosen

value ` = 8.0∆y has not been shown to be optimal, but this suggests that such a

value should exist. For further discussion on the optimal value of `, see [15].

A good way to test the performance of our scheme is to also check whether

the circular symmetry of the solution is maintained throughout the simulation.

We can do this by plotting the contour lines of the z-component of the vector

potential we used to define the magnetic field. Figure (2.5) shows a plot of 20

contour lines of Az at t = 2.0, both for the original USM scheme with arithmetic

averaging and with GP interpolation. We have used the parameter ` = 8.0∆y in

this case. As we can see, the circular symmetry of the solution is well maintained

in the latter case.

To verify this quantitaively, we measure the horizontal (dh) and vertical (dv)

diameters of the outermost contour lines, both for the original case (with arith-

metic averaging) and the one using GP interpolation, and calculate the ratio of

the vertical diameter to the horizontal one. With the original USM scheme we

have:

dv
dh

= 0.583
0.616 ≈ 0.946 (2.5)

Now with GP interpolation we obtain:

dv
dh

= 0.584
0.614 ≈ 0.951 (2.6)

As we can see the two values are very close, with the latter suggesting a slightly

better-preserved circular shape. This could potentially be further improved with

a better choice of GP parameters.

We can also consider the L1 error on the two components of the magnetic field

Bx and By calculated at t = 2.0. For a given variable qk, the associated L1 error
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(a) USM with arithmetic averaging at t = 2.0

(b) USM with GP interpolation using ` = 8.0∆y at t = 2.0

Figure 2.5: Comparison of the z-component of the vector potential, Az at t = 2.0
for the Field Loop problem, without GP interpolation and with GP interpolation
and a value of the parameter ` = 8.0∆y. Plotted are 20 contour lines between
−2.16× 10−6 and 2.7× 10−4 and the resolution is 256× 256.
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at time t = n is given by:

δqk = ∆x∆y
∑
i,j

|qnk,(i,j) − q0
k,(i,j)|. (2.7)

In this expression the summation is over all grid cells (i, j). Figure (2.6) shows

these errors on a logarithmic scale. The different resolutions we have used are

N = 8, 16, 32, 64 and 128. We can see from these plots that there does not seem

to be any particular improvement when using GP interpolation, however this can

be explained once again by the dependence of GP on its hyperparameter. Since for

a given problem the choice for this hyperparameter depends on the grid resolution,

ideally we would compare the performance of the scheme with GP interpolation

to the original one, by choosing the optimal value of ` for each resolution. The

values used to plot Figure (2.6) have been chosen on a case by case basis and a

more accurate method is a subject of further study. Another possible explanation

is that matrix K becomes ill-conditioned as we take higher resolutions. In [15],

quadruple precision was used to overcome this issue, whereas we only use double

precision in the current study.

2.2.2 Orszag-Tang Problem

The Orszag-Tang vortex is a typical problem studied to verify the performance

of 2D MHD solvers. Although the initial conditions are smooth, the evolution of

this highly nonlinear system involves numerous shock wave interactions, traveling

at different speeds. The resulting features are thus characterized by complex

strong discontinuities throughout the computational domain. We define the latter

as [0, 1]× [0, 1] with a N×N resolution. In our case we use N = 512 with periodic

boundary conditions (both in the x- and y-directions). The initial velocity and

magnetic fields are given respectively in Equations (2.8) and (2.9)
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(a) L1 error on Bx t = 2.0

(b) L1 error on By at t = 2.0

Figure 2.6: Comparison of L1 errors on Bx and By at t = 2.0 using the USM
scheme with arithmetic averaging (blue) and with GP interpolation (green) for
resolutions N = 8, 16, 32, 64 and 128.
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U = u0 (− sin(πy), sin(2πx), 0) (2.8)

B = B0 (− sin(πy), sin(4πx), 0) (2.9)

The initial conditions on the density and velocity field are ρ = 1 and u0 = 1.

We also take the sound speed to be equal to one. Our choice for B0 is then

B0 = 1/γ, where γ = 5/3.

In Figure (2.7) we can see the contour plots of the mass density at t = 0.5

and t = 1.0 for both the original USM scheme and the one with GP interpolation.

We can see that our new addition to the scheme maintains the complex features

of the flow, as well as its characteristic symmetry and this is also verified for the

other primitive variables.

We have verified that the numerical divergence (both its original definition

using the interface-centered values in Equation (1.10) and the new definition using

the cell-centered values defined in Equation (2.1)) remains well under control.

The GP-interpolation scheme presents some improvement, sometimes as much as

one order of magnitude less, but this result is again strongly dependent on the

resolution used and the ` parameter chosen for the simulation. In the case of

` = 1.5∆x (which is the value we used for the plots here) the order of magnitude

remains the same for both definitions of the numerical divergence, with the one

using the cell-interface values being as low as 10−13, as expected. The plots of

the divergence have been omitted as they are noisy and simply show that this

quantity is well under control throughout the computational domain. Our choice

of ` = 1.5∆x (since ∆x = ∆y) has not been verified to be optimal, but produces

satisfactory results for our current purposes.

28



(a) USM with arithmetic averaging at
time t = 0.5

(b) USM with GP interpolation at time
t = 0.5

(c) USM with arithmetic averaging at
time t = 1.0

(d) USM with GP interpolation at time
t = 1.0

Figure 2.7: Comparison of 30 density contour lines for the Orszag-Tang problem
plotted at t = 0.5 (with density values between 0.38 and 2.21) and t = 1.0 (with
density values between 0.18 and 1.8) with and without GP interpolation. The
resolution is 512× 512 and we have used the Roe Riemann solver and ` = 1.5∆x
for the GP interpolation.
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Chapter 3

Conclusion

A new implementation using divergence-free Gaussian Process interpolation

has been presented and tested within the Unsplit Staggered Mesh MHD solver. Al-

though USM is capable of computing numerically divergence-free magnetic fields

at the cell interface-centers, it only predicts these values at the cell centers by

performing simple arithmetic averaging. Our additional implementation uses the

divergence-free interface-centered values as sample data to train a GP model, to

predict Bx and By at the cell centers.

We have tested our additional scheme and compared its performance with

that of the original USM method with arithmetic averaging. We can see some

improvements with GP interpolation, particularly when calculating the numerical

divergence using the cell-centered fields. We have seen however that the inter-

polation is highly sensitive to the hyperparameter ` appearing in our squared

exponential kernel function. Another important parameter is the sample stencil

radius that we use to train the model. Since our method involves two separate

GP interpolations done successively, a non-optimal choice of these parameters in

the first will lead to inaccuracies in the second.

The optimal hyperparameter may be calculated by maximizing the likelihood
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function, and this is a subject of further study. In addition, since the current

matrix-valued kernel is only divergence-free analytically, our goal will also be to

construct a new such kernel, satisfying ∇ ·B numerically as well.
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Chapter 4

Appendix

4.1 Analytically Divergence-Free Interpolant

Here we will show that the interpolant we used is indeed analytically of zero

divergence. We recall that the interpolant calculated at a given point x is given

by:

t(x) =
N∑
k=1

ψ(x,xk)sk. (4.1)

In this expression, the index goes over all the sample points xk, and in order

to find the coefficient vector s, we evaluate the interpolant at the sample points

themselves:

t(xj) =
N∑
k=1

ψ(xj,xk)sk. (4.2)

Let tj = (t1j, t2j) and sk = (s1k, s2k). We write vector t̃ = (t11, t21, . . . , t1N , t2,N)T

and s̃ = (s11, s21, . . . , s1N , s2,N)T and we call Ψ the matrix whose row j is the vector

ψ(xj,xk). With this we can write:

32



t̃ = Ψs̃. (4.3)

We can find the coefficients s̃ simply by evaluating: s̃ = Ψ−1t̃, and this will

depend on the invertibility of matrix Ψ. By definition, the latter is symmetric

and semi-positive-definite, which means that it is invertible and the solution thus

exists. Since the sample points and the data therein are constant, we only have to

show that every ψ(x,xk) in the expression for the interpolant will be divergence-

free, to ensure that the inteprolant will itself satisfy that property.

We recall also that constructing the matrix-valued kernel function could be

done by applying a certain linear operator onto a scalar-valued kernel. For a

scalar kernel φ(r) (where r = ||x − xk||), and with x = (x, y) and xk = (xk, yk),

the matrix-valued kernel becomes:

ψ(x,xk) = −F (r)

1 0

0 1

−G(r)

 (y − yk)2 −(x− xk)(y − yk)

−(x− xk)(y − yk) (x− xk)2

 . (4.4)

In this expression, we have:

F (r) = 1
r
φ′(r), G(r) = 1

r
F ′(r). (4.5)

In our case we used a squared exponential scalar kernel (depending only on

the distance r between points) of the form φ(x,xk) = exp(−||x−xk||2). Plugging

this into the matrix-valued kernel in Equation (4.4), we get its two columns ψ1

and ψ2:

ψ1 =

2 exp(−||x− xk||2)− 4 exp(−||x− xk||2)(y − yk)2

4 exp(−||x− xk||2)(x− xk)(y − yk)

 (4.6)
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ψ2 =

 4 exp(−||x− xk||2)(x− xk)(y − yk)

2 exp(−||x− xk||2)− 4 exp(−||x− xk||2)(x− xk)2

 . (4.7)

All that remains to be done now is to show that each of these columns is

divergence-free. We shall show this for the first one, as the procedure for the

second one is equivalent.

∇ · ψ1 = ∂

∂x

(
2 exp(−||x− xk||2)− 4 exp(−||x− xk||2)(y − yk)2

)
+

∂

∂y

(
4 exp(−||x− xk||2)(x− xk)(y − yk)

)
=4 exp(−||x− xk||2)(x− xk)(2(y − yk)2 − 1)+

4 exp(−||x− xk||2)(x− xk)(1− 2(y − yk)2)

=0.

(4.8)

We note that for the exact form of the kernel we use in our interpolation,

φ(x,xk) = exp(− ||x−xk||2
2`2 ) this condition will of course still be verified.

4.2 Numerical Divergence of the Matrix-Valued

Kernel

In the previous section we showed that analytically the matrix-valued kernel

function we are using is indeed divergence-free. However, this is not guaranteed

to be true numerically. The numerical partial derivative with respect to x (and

equivalently with respect to y) of a given function f(x, y) is given by:

∂f

∂x
= f(xi+1)− f(xi−1)

2∆x . (4.9)
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Here the index i denotes the i-th cell (using cell-centered coordinates). We can

once again calculate the divergence of the first column ψ1 to illustrate:

∇ · ψ1 = 1
∆x [2 exp(−||x(i+1,j) − xk||2)(1− 2(yj − yk)2)

− 2 exp(−||x(i−1,j) − xk||2)(1− 2(yj − yk)2)]

+ 1
∆y [4 exp(−||x(i,j+1) − xk||2)(xi − xk)(yj+1 − yk)

− 4 exp(−||x(i,j−1) − xk||2)(xi − xk)(yj−1 − yk)]

(4.10)

In this expression, the notation x(i,j) denotes the coordinates (xi, yj). At this

point it is clear that we have no guarantee that these terms will cancel out exactly.

Numerical divergence will thus remain non-zero. Based on the numerical expres-

sion for the divergence of the interpolant (4.10) we could think of ways to ensure

this divergence goes to zero. Since none of the terms will disappear explicitly,

we could attempt to force this expression to be zero by selecting, for each x(i,j),

only xk points such that the coefficient of each exponential term in the expression

disappears. This would lead to the following restrictions:

xi − xk = 0, yj − yk = 1√
2

(4.11)

This implies that the chosen point xk should have the same x-coordinate as

x(i,j) and that the distance between the two along the y-direction is 1√
2 . These

conditions are however too restrictive, limiting our choice of grid size drastically,

and allowing us only two sample points, which cannot be expected to improve the

interpolation accuracy. A better idea would be to construct the matrix-valued

kernel from a numerical point of view altogether, ensuring that its columns are

numerically divergence-free. This will be a subject of future study.
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