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ABSTRACT

When a one-dimensional plasma is confined by a static potential, the

electric fiéld fluctuations can be described in térms of normal modes. 2

mode interacts resonantly with a particle whose bounce frequency is an in-

tegral submultiple of the mode eigenfrequency. This leads to energy ex-

change and quasi-linear diffusion of particles. Kinetic equations are de-

rived for the evolution of mode energy, due to wave emission and to damping

or growth; and for the evolution of the particle distribution in action-

space, due to radiation reaction and quasi-linear diffusion. These equations

have an H-theorem, implying an approach to thermal equilibrium (in the absence

of neglected effects). The mode-particle coupling coefficient is expressed

explicitly, and is approximated for the limiting cases‘bf high eigenfrequency

and of short wave length.
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1. INTRODUCTION

The kinetic theory of the interaction of particleé‘and waves in a,
uniform medium is now well undefétood;l—u ét.least when perturbation theory
is valid. In a regime where collisions ahd wave;wavé interactioﬁs may be
neglected, one has coupled kinetic equations fdr particies and anes;Are-

AN

presenting the effect of wave emission and abs;rptidn'by particles. This

p)

set of equations ha§ban H-theorem,” leading ﬁovthe conclusion that a system
of interaciing wavés and particles approacheé a state of thermal eqﬁilibrium,
characterized by a Maxwell disﬁribution of parficles,:and Ra.vylei‘gh—J'ea.ns’‘~
. energy for the waves. |

_ The present‘work extends these results to an inhomogeheous systgm. In
the interests of'simplicity,7 we tream.heré only the one-dimensional casé,r
wherein all the particles are confined by a static potential o(x). The in-
homogeneous plasma supports a sét of'electrostafié,nqrmal modés, which
interact resonantly with particles whose bounce~frequency is an integral
sub-multiple of the wa.ve-frequency.8 This interaction produces, for the
?articles, an energy loss (from spontaneous wave emission) and a quasi-
linear diffusion in action. For‘the wéve energy; there is correspondingly
a source (from emission) and a linear deéay or growth rate. Again the kinetic
equations satisfy an H-theorem; here, even in the one-dimensional case, one
can in general deduce an approach to thermal equilibrium. o

The methods used in this pﬁper rely'on_the test~-particle philoscphy.

‘We do not concern ourselves with.mathematiéal rigor, since we believe that-

»9,10 éan be extended

recent techniques, developed for the uniform ca.sej,3’)‘l
to the inhomogeneous case to justify our approach.
In the following section, the conductivity kernel is derived, for the

linear response of thc inhomogeneous Vlasov plasma. It is exhibited in a
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 form (2.16) which generalizesifhevkubo relationll to the non-equilibrium ,
eese. An explicit expression (2.25) for the conductivity is then obtained,
whose real part (2.27) exhlblts the bounce-resonance phenomenon.
In section 3, the Green's function for the electrlc field equation‘ ; W
(3.1) is exﬁressed, first in terms of the normal modes of an associated
eigeﬁvalue problem (3.6), and then in terms of the actual normal modes,
| satisfying (3.4). The result,bequation (3.17), is.similar to the‘form .
pbstulated by‘Leavens and Lovelz on the}basis of nemefical calculatioﬁs, and
has'explieit'normalization (3.16} of'the'normal modes appeerihg'iﬁ ite
In sectlon h we study the case of nearly real elgenfrequencleu, and-
obtain an expression (4.8) for the linear damping (or growth) rate in terms
of'a>mbde-particle coupling COefficient, defined in (4.7). Its explicit
| evalﬁation'(h.9) shows that only bounce-resonant particles ceuplekto'a:mOde;:
in the limit of high frequency,.it.is a continﬁous function of particle energy
(4.20). . | R
Invsectién>5, the spontaneous (incohefent) wave emission by partieies
is'calcﬁlated using the test;particle philesophy;f The result, equation
(5. 8), is expressed in terms of the coupllng coefficient introduced earlier.
The wave klnetlc equatlon is then 1mmed1ately obtained (5. 11) | |
To prepare for the partlcle kinetic equation in section 7, the electric
field spectral den51ty is studled in sectlon 6, and is expressed (C.9) 1n
terms of the normal modes and the wave energies, in the. limit of 1nf1n1te51m§1
damping_rate.v _ - | ._' v  ' ' o _.:- S K
The following.section then derives the quasi-linear diffusivity of ectioh
(7.7),again in terms of the coupling coefficient. Including the eraé due te
cmission,‘the.particle kinetic equation (7.11) is obtained. |
In section 8, the energy conservation law and the H-theorem are derived.

The conclusion that thermal equilibrium is approached asymptotically hinges



on the properties of the coupllng coefficient.

In section 9, we study the llmltlng case that the wave 1ength of a
normal mode is small compared to-the_size of the system. The coupling
coefficient can then be expressed (9.8) in terms of local Landau resonénce,
and the actionrdiffusivity related (9.1&) to £hc'lccalvvelocity—difrusivity.

In section 10, the form of- the coupled.kinetic equations is derived‘by
taking the classlcal 1imit of the quantum master equatlons. The quantum

transition probablllty is related to the classlcal coupling coefflclent.

In section.ll, the five characteristic time scales of the

problem are‘estimatéd.

2. THE CONDUCTIVITY KERNEL
- The conductivity represents the linedr response‘of the stationary

inhomogeneous plasma to a time-dependent electric field. It is defined

by the equivalent relations A : : . B
o ‘ . ) o
i(x,t) =J!;t}£x' o (x,x*; T) E (x', t-7), ‘ ' (2.1)
o _

305) f/‘;x' o (x,x'; ©) E (x'; @); ' (2.2)
where E(x,t) is the linearly perturbing self—consiSteht electric field,

j(x,t) is the mean current density, E(x,®) and j(x,0) are their Fourier

transforms:
E(x ,w) E,fgt et B(x,t)s v - . (2.3)
-0 ’ . ' ) . . .
and .
o
o(x,x";0) = fdar T o(x,x'; T) ' : ' o (2.1)



is a one~51ded Fourler transform, analytic in’ the upper half of the
w-plane. On the real a»axls and 1n the lower half-plane, one 1s to use
not (2.4) but its analytlc comtinuatlon. The reallty of - E(x,t) and J(x,t)
implies the reallty of a(x,x" 1), and the relatzon

o*(k,x'; aﬁ = g(x,x'; - aﬁ) o B _'-,'t';eiz S C(2.5)

from the definition (2 h). ) ‘ _

In the Vlasov model the phase-space density f(x,p, t), for oinéle- 

speC1es, satisfies the equatlon E |
o/t +{f, H}'= 0, S (=.6)

where the Hamlltonian is

H(x,p; t) -£<x,p) + e¢(x t) (2T

The unperturbed»energy is

gx,p) =p/2m+e®(x), ‘ o . - . (2 8),; o

where o(x) is the conflnlng potential, while ﬁ(x,t) is the self-cons1stent
perturbing potential.. In the absence of ﬁ, the statlonary.Vlasov equatlonb

is

-t

its general solution is

| fo(X;P)';‘ fO(é - E | . ‘. | : 1.':__(2.10)

Oﬂe shall nct be concerned here with the self-con31stency relations ‘between

o@f} and o(x).)

{?é;df} i O; . .. | 1. A   £”A1 : ': | ‘;v1 ,AA‘1 4 ? i_ ;.;: _. (2;9) :



In the presence of $, the linearized Vlasov equation is

e o
e

- fo.ev B(x,t)

BSf/& * {51‘,6}

8

il

- g’/ax' j(x'; r) e(x*,t). o (2.11)
The subscripﬂéi denotes differentiation, and
jxT)=ev(Dalx - x()] o (2.12)

is the current density at x', when a"?article is at the phase-point

= (x,p). The solution of (2.11) is

8f(l'; t) = -fg. Jd'r ax' j(x'; 0, - 1) E(x',t-1), o 3 (2.13)
whe;e | |
j.(x'; | ‘_'-r) = J[X'; rt (F, - T)] | . . (Z.lu)

is the current density at x' and time t-T, when an unperturbed pdrticle
isat I' at time t. [In (2.14), I'* denotes the phase-point at,t-T, for an
unperturbed orbit throughT at t.]

The mean current density is

505t a/ar;(x';r)sf('r-';@),_- o (zas)

where a sum over species will henceforth be implicit. Inserting (2.13), we

obtain the conductivity kernel for (2.1):

a(x,x'; 'r_) =.-J[dr 2" J(x3T) 3(x'; L - T)e . . ' (2.16)



K
For the special case of a thermal distribution (fo's - Bfg), thiS-i

¢

reduces to _ _

o(xx's T) = B<I00E) J0eT)y, s (2an)
S an anélogue of thé Knbolreldtionll'betﬁoen conductivity and current
fluctﬁations in.equilibrium.} Ourjequation'(2;16) is its generaiization
1o an inhomogeneous Vlasov system.

Examining the result (2.16), we see first that

o(x,x*; - 1) = 0b'(xﬂ) X3 T); ' ’ o (r).] 5)

this follows from the invariance of ﬁé with respect to the time-translation
o

r—r'. DNext, the invariance of'ﬁé-with respect to time-reversal (p-s -p)
leads to
o(x,x'; - T) = olx,x's 7). " S S (2.19)

It follows rrom'these two relations, that o is a symmotric kernels

o(x,x's 7) = olxtyxs 1), . |  (2.20)

o(x,x'; @) = o(x',x; w). - - |  (e.21)
(This important result is lost, if the unpérturbed system includes un-
trapped particles, with f depending also on the sign of p )

Without u31ng the symmetry condition (2.21), we may deriwe a - useful.

expreSS1on.for the Hermitian part of ¢ at real_w,'from (2.4) and (2.16):

e
o=

YUIF' ~—

o' (x,x'; @) = o(x,x*; w) + o%(x',x; m)]

R
1

T ﬁr fgj(x; [ @) j¥(x's § o) , (° 22
where +T/2

. " _ L
CdxsT, o) f—;/:it M jixsry t), o : | (“'23
-172 -



and the limit T— @ is implied. For a thermal distribution, this ber:anés
' ' 1 =L il o) s%fx?S - o 1)
ot (xx's @) = 58T Gl @) g*xhe)d, s - (2.24)

a.‘ form of the dissipa.tion-fluctua.tioﬁtheorem. Our result (2.22) is thus

a genera.llzatlon of it to the Vla.sov non-equlllbrlwn casee .
xpllc1t evalua.tlon of o is a.ccompllshed by thc introduction of a.rtlon-

angle va.riables, with J = ¢ p dx in the unperturbed state, and

aw/at = v(J) = <t/dJ. After same algebra we find

o(x,x'; ®) = - ie?‘/:j.] fg {[ sin ® Ty (x,x%; J) - sin ® -r?(x_,x'; J.)] '

+‘[coé ,w-rl'(x,,x'; J) -~ cos ® T, (x,k'; Jz)j cot [@/21/(3)]}, (2.25)

where T, (x,x'; J) is the direct route f.ransit time between x and x' for
.an unperturbed pa.rtlcle of a.ct1on Js _whlle To (x,x'; J) is the transit time
including a bounce off one end. This formula is valid in the complex u»-plane;
on the real axis, approaching from- above,
cot (m/ev)—>/ [cot (w/zv)] - 12 5(L - wf2nw) - (2.26)
==00 ’ .

Therefore on the real w-axis, the real part of o is
| 2 0. : o | .
o' (x,x'; ,.a)) == e de fJ (cos w Tl - cos @ 72) ; 8[.3 - q)/mb(J)], (2.27)

where. , (7) = 2x v(J). We note that contributions to o' (®) (which'is .
re5ponsz.blc for dlss1pat10n) come only from those J whose bounce-frequenc:Les

are submultiples of w g Qb (7) = w/z.

3. NORMAL MODES AND THE GREEN'S FUNCTION

The linear respénse of the plasma to an external current density
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je (x,t) is given by

(x,0)/36 + b [36,8) + 35,80 = 0,
or o A '

o ; ot ' ', it TR S (>

E(x,®) + by i0 ™ fax' o(x,x'; ®) E(x', ®) = = hx io " j (x,0). (3.1)
The solution of this equation is

E(x,0) = - lx ia;%J{;x"G(x;xf;Aa» 3%(x*, @), S (3.2)
in terms of the Green's function, which satisfies = '

G(x,x'5 ®) + b ‘iw—l/dx" a(x,x" ; o) 6(x",x*; ®) = 8(x - x').  (3.3)
In this section we derive a representation for G in terms of the normal

modes, i.e, the soluﬁions of (3.1) when je = 0g
: ; "i v v. 1Y = 0 o - (= 14'
Ea(x) + b i [d.x U(X,.X H wa) Ea(x ) = 0. | o (rj- )

We note that since ¢ is in general complex, the eigenfrcquencies W
and the eigenfunctions Eé(x) are also in general caomplex. However, the

- reality condition (2.5) shcms‘that they occur in pairs ((Da, _aia"), with

W= - Ww¥.

a a ’ C
(3-5)
B (x) =B (x).
We consider first the‘i'éla:hed eigépval.ue‘pro.blém, wheréin. u}-appea.rs |
merely as a.f‘ixed complex parameter: | , , | | ) .
(@ Ey50) + i 16 ot oGt o) B (3 @ =0 (3.6)

Using the _symmetryl3 of o, we find that

[ Ag(@) = Ay ((u)] [dx B (x; a.s)'}s‘,m(x; @) = 0. | - (3.7)
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Thus the eigenfunctions En(x; ®) are orthogonal:

/:ix E (x; @) E (x; @) =0 (m#n) | ‘ (3.8)
By standard techniques, the Green's function is Tound to be
o En(x; w) En(x'; w) -1 _— .

G(x,x"; @) =37 now (o), | (3.9)

- L=, (0

where_‘Nn(w) -E./ix_En(' (x3 w).

Now we assume that Aﬁ(dﬂ and En(x§ w) are analytic functions of ux
(Tt may be hélpful here to think about the special case of a uniform plosmae
Then the eigenfunctions of (3.6) are Ek(x) = exp (ikx), independent of w,
o , -1 '
while the eigenvalues are Ak(w) = - bx i o o(k,w). 1In this case at least

they are analytic in o.) By Cauchy's theorem, (3.9) may be written as

dat .

w
.
!_J
o

~

Glx,x's @) = (2x1)71 § Glx,x'; o), o o

T
where thelqontour éncircles oniy the pole”at W' = d» We then defbrm_thn
contour to exclude this pole, in order to encircle the singularities of the
Green's function. [There is no singuiarity ét infinity; as we=—ecq o(x,x";0)—>
i(ez/mw) n(x) 8(x - x'), and G(x,x'; @)= 5(x - x').]
We ﬁote’that ¢(x,x'; @) has simple poles at those  for which_xn(w) = 1.
By comparing (3-6) and-(3;4),'we see that these are just the eigenfrequencies

ua., (In general, there will be many aa_for each ‘xnf as we recogniZe from the

case of the uniform plasma.) The possible singularities of the numerator and

the possible branch points of A n(co) are not known to us, and depend on the
particular problem studied. We shall herc arbitrarily exclude their contribution

N
to (3.10).1‘ We then obtain
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1. ) Ea(x) Ea.(x'”-) . -1 , T ¥ ;
choxts @) =220 Toaaga), % 0 G

a .

where, for each n, the sum over a. :anludes only that .,et of’ a)a satz.afylngr

)\n(w ) = 1; where E (x) =E (x, C_b ), a.nd where N = fax E (x)
From (3. 6) and (3. 8), we see that _ . :
M (@), (@) = - i axﬁ ol 50) B, (x50) B w)  (.12)
leferentla.tmg, and us:mg (3. 6) , we obtaln !
S ax_(w) 1
N, chxl) - = - 4x iﬁxfdx' E (x) E (x ) 9 [w o(x x'; m)]
_ loy
(3.13),-
When we substitute this into (3. ll), the result is
. E(X)E(X) : SR
G(x,x';0) =2 ' s (3.14)
T a (a»-w W&&' E (x) B L0 )3 (x,x*3 w)/aw] .
where the dielectiic Jcernel
C(rx's @) = 8(x - x') 4 nnw Volexts @) (35)

‘has been int_roducjed for the sake ef f_amilia.rity. This form (3ll+) is -
manifestly independent of the normalization of the normal modes. We shall

now simplify the expression by choosing the normalization 3

®, /ﬁxdx' Ea(x) Ea(_x'-)_-[»Be:(x,:x"; w)/aw]wa= l...' | | i _ .(_3_- 16)
l‘Then (3.14) reads | | |
G(x,x';_ W) = E "w_z')a Ea(x) Ea,(x')_; . o N 0 (3.17)

We note that the reality conditions (3.5) ensure that G satisfies the Sa.me

reality condition

G*(x,x'3 ®) = G(x,x'; - a*) | o E -  (3.18)

I 4P, S Y

vy
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: contlnuatlon, it follows that the zero-order e1genfrequenc1es w

1l

4. NEARLY REAL EIGENFREQUENCIES AND MODE-PARTICLE COUPLING
If the dielectric'kernel isbnearly real for real ®w, i.e.,

e(x,x'; w) = e'(x x'; o) + i é"(x x¥s w), ' (4.1)
with |e" [<<|e'|, perturbation theory may be used to obtain addltlonal

results. The zero-order eigenvalue equation (3.6), using only €’ (or o® ), is
[A(o)(w - 1] E, (o) (x‘ w) J{hx' '(x x?; w) E (o )(x’° ®) = Q. (k.2)

Since €' is Hermitian (being real and symmetric), the zero-order eigenvalues

( )(m) are real functions for real w. Considering their analjtlc

(o)

n

[solutions of xn(O)(w) = l] occur in complex—conjugate pairs. Hence the
system, to zero-order, either is unstable or has only real eigenfrequencies.
We proceed then to study the effect of the small €¢", in the laﬁter case

only. Equation (3.12) may be written, ﬁsing (3.15), as

M@ [ 1 -2, @] = ffaxaxt cloxts @) B x5 @) 5 (x5 @) (83)
The perturbation in An(w), due to €", is #hus |

Nn‘°)<w}‘xn‘1>(as)= -3 j] axax' ¢"(x,x5 0) BV @) 5 OVets ) )
The first order perturbation in aﬁ is then

N T QN PN

a

]

- hﬂiﬂdxdx'c'(x,x_"; wa(q))Ea(o)(x) Ea(o)(x')9 o (4.5)

where we have used (3.13). (These results are clearly generalizations of

well-known formulas for the uniform plasma.) Thus the damhing of the mode
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is proportional to the real part of the conductivity.

With the form (2.22) for of, the damping rate T, = - Im @ becomes .
Y, = - 2x dI‘ f T /éx J(X, r, @ (o )) E (°)(x) (4.6) oy

Eﬂe have used the reallty of E ( )(x), Wthh follows from the reallty
of the 1ntegra1 equation (h 2) Tt 1s now convenient to define a coupling
coefficient, representing the resonant coupling of a»particle of action J

to the normal mode a:

I

; n C 2 R ,
q;(J) 'Z_nT'lds dw fdx ,5("5 3, W, wé(°.))_ Ea(o)(x) - )

The damping rate is then simply
-fas i2~vaa(J). | - | o (h8)

It is clear that a system with monotonically decreasing £° is stable.

Explicit evaluation of a (J), using the particle orbit, ylelds

2 4o
a (J) he u%(J)[/;x E (o )(x) sin @ (o )?(x<1ﬂ 2:‘ 5[1 » (0)/a%(J)]
bme | C(4.9)

where 7(x,J) is the transit time fbf.a paiticle'bf action J to reach the
posmtmon X from either turning point. For a glven mode, this is a singular
function of J, belng 1nf1n1te at the resonant values u%(J) = w (o /z and
* zero elsewhere. |
waever,jif the eigenfrequency’da(o) is much la;gef than'typical_bounc¢
frequencies, these singularities are spaced very close together; A sligh£
amount of coarse-graining in Jy representing almost aﬁy higher;Order effect, 

allows.us then to replace the sum over £ by an integral over £, whence the
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summation equals one.- Thus for u%(J)<< aa(o), we have the approximation

: : 2
aa(J) = heza%(J)[J{éx Ea(o)(x) sin aa(o) T(X,J)] . (4.10)

5. WAVE EMISSION AND THE WAVE KINETIC EQUATION

The rate of spontaneous emission of wave energy may be calculated by
considering the particles as uncorrelated current sources 9’10. We therefore
first calculate the rate at which an'arbitrary external current je(x,t)

does work on the plasma, in the linear-response approximation. The rate

of increase of plasma energy is
. v-l ., .e _ "
W=-7T"fdt fax B(x,t) j (x,t), , (5.1)

where E(x,t) is the mean field,_given.by (3.1). Since the rate of ﬁave
emission is independent of the wave dampihg or growth rate, if the latter
is small, we take the formal limit of YA"" 0, for modes with small IY&',
and discard strongly damped modes. Then the poles of the Green's'function‘

(3.17) are at aa(o), and lie on the real w-axis. We may then write (5.1) as

i 2 fox mew 5000, | - (5.2)

where the w-contour lies just above the real axis. By (3.2)and (3.17), this is

W= b %ﬁx[ﬁx' G(x,x'; w) Je*(x,w);je(’x',w). L (543)
w (o): '

: L2 §
bgei T-Jf%%) g_ aé E)-—}U?O) fdx je(x,w)an(°)(x)‘ . (5-‘1})

. The contribution of the poles at dE(O) yields
° ’ -1 2 o » . y
W= hgT g ’ ' (5.5)

Jax 1°x,0,) B, ()




1
where we have included the pair (da(o), - ah(o)) for each term in the sum,

and let the superscript zero be implicit.. Theie is no pole at w0, because

' je vanishes at w=0. The contributioh of the contour between poles vahishes;

P

because the integrand is odd in w.
The test particle theoreh? now allows'usvto obtain the mean rate of
wave emission by replacing je(x,aﬂfby the sum of'contributions from un~

correlated unperturbed particlés:
r’e .e-x. ' ‘ o - ‘ ) ,.’ . .*‘, .'.v - 6 )
<38(x,0) 35 (x ,w)>—»fa.r £9>3) daw J(xs J,w,) 5 (x'; T,w,w)e  (5.6)
The wave emission is thus a sum of terms:

W=z ﬁa , | o - (6D |

with the emission of mode a given by
W= %,EJ £23) a (), - SRR o (548)
a , a ’ o o .
in terms of the coupling coefficient (h.?); The appearance -of aa(J) in
both emission (5.8) and damping (%.8) may be thought of as "detailed
“balance." ' |
Including both emission and damping (or growth), the wave kinetic
equatibn is |

.:dwa/dt =W, - 2y W | . , | (5.9)

1f £° is changing slowly compared to W, and if Y; is positive, a quasi-
stationary state is reached for wa given by
1 e
W =32 Wa/ré '

=[fdJ £°(3) aa(q)]/[ﬁr(-fé) o:a(J)] 5 _ | (5_ib)



‘then wa>VarieS in time adiabatically with £°,

In any case, equation (5.9) may be written, with (4.8) and (5.3), as
dwa/dt = ZfdJ aa(J) (£ + W, fé.). | ..()-ll)

Thisvform may be used in particular for ah'unétable mode (y;FO), so long as
higher order effects may be neglected, and when £° varies on the same scale
as wa, 50 iong as their variation is sﬁfficiently»slow (d/3t« aa) to retain
ihe validity of the formulas for Ya'gnd ﬁé, | |

--Since energy must be conserved, if is clear-that £° must vary when Wa

does; the particle kinetic équation analogous to (5.11) is derived in Section 7.
6. THE SPECTRAL DENSITY

' To determine the particle kinetic equation in terms of the wave energies

in the next section, it is necessary to express the field correlation functior

S(x,x'5 1) = < EGet) B(et ter)), | O (6a)

in terms of the set':wa } . We assume a (quasi-) steady state, so that
(6.1) is independent of t. By the Wiener-khinchin theorem, its Fourier

transform:
+o0

s(x,x"; o) Ede ™ g(x,x'; 1) -» (6.2)
' ~-c0 , . : :
is the spectral density, expressible in terms of the Fourier transform of the

random field:

-1

s(x,x'; @) = T I< E(x,w) E*(xv,a» > . | | | | (6.3)
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Again keeping only the cAontribut.i'on of modes with small l Ya l s and
taking the limit ¥ —» O, we have |
I ) O N N ¢ 1,
E(x,w) = g E, (x)[Aa B(w »q)a. ) + A, B(w + @], (6a1)

where A is the complex random amplltude of mode a, the sum . being over
positive eigenfrequencies. Dropplng the supercrlpt again, we substzltute

(6.4) into (6.3):
S(x,x'; @) = {2n)” E<|A l >E (x)E (x [6((0—0) ) + B(ww )] | (6.5)

The total electric energy in the modes is

hi

W = (807" fax < BP(x,00)

1l

(807 fax s (x,x; 1=0)
(l6n2v)-lfdx/:1w S(x,x; w)

v 3yl o 2 . o _
= (161: ) - i( IAa.I_ D N 3 - | . }(6.-0)

we have used (6.1), the inverse of (6.2), (6.5), and the definition of b,
below (3.11). By an extension of the method of Klimomov:ich2 , it may
be shown tha.t the ra.tlo of electrlc energy to total energy in a wave is

a a a' » ’ N . v ) . [ ]
where the one represents the normallza.tlon 1ntegral (3. 16) Since, by

(6 6), the electric energy of mode a is W = (l6:t ( IA l ) N,, its total

energy ‘is thus

W = (16¢3)“l <’|Aa|2} . ,‘ 7: | | | (6.8)
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Eliminating the amplitude A, from (6.5), we obtain the desired expression

« for the spectral density:
- LRy 2 . . - y
. _ S(x,x'; w) = 8n i Wa Ea(x) Ea(x')[f)(w cua) + 5(w + u)a)]. (6.9)

We note that the correlation function is even in T: -

S(x,x’; T) = 8x ;Z.Wa Ea(x) Ea(k') cos wa Te (6.10)

{. THE PARTICLE KINETIC EQUATION

The particle distribution £° varies in time from two effects: a
quasi-linear diffusion in action due to resonant energy exchange with waves;
and a loss of energy due to discrete-particle wave emission. We study the -

former effect first, from the nonlinear Viasov equation:
A(3,w; £)/3 = - 3 (L) - 3 (ur) | (7-1)

Averaging with respect to w, and averaging over fluctuations, this
becones

(35 t)/3t = - 3, 6 aw {&F 5fd (7.2)
The factor & is

5J (J,w,t)

it

- B[e ¢(x,t')]/8w‘
- d(e @)/x x(J,w)/w

i

eE(x,t) v(7,u) v71(s)

-1, ) ' 3
Vo) fax BGt) 305, (1.3)
where E(x,t) is the fluctuating field. For the factor &f in (7.2), we may

use the linear expression (2.13). Equation (7.2) then reads
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3t°(7; t) = 3, D(J)fJ9], N | . (7.1)
a diffusion'eqﬁation, with the'aCtion-diffdsivity

D(7) = v-z(J)ﬁTﬁ(fdx' S(x,x'3 1) 6 & G(x3T) G(x'5T, = 1)e (T.5)

Since the correlation function (6.10) is even in T, and the w-integral
is invariant with respect to time-translation of its argument, the diffusivity

may be written:

() =% vE(3) 1 %:?—fdxfdx' S(,x's @) (x5 § ) (x'; § o).
: | | (1.6

With the form (6.9) for the spectral density, this becomes
-2 ) o ) ‘ ’
D) =2 v %) gaa(J) W, , : (7.7)

in terms of the mode-pa?ticie coupling coefficients (4.7), and the
wave energies.

The effect of wave emission may be 1ncluded by con51der1ng the J of
(7.1) to include, not only the fluctuat1on effect (7.3), but also the drag
due to the self-conulstent fleld of a discrete particle. In analogy to

(7.3), we have

. -1 R : : .

I, w, t) = v (J)fdx E(x,t) (x5 J,w,6), . . (7.8)
wherevE(x,t) is now given by (3. 2)[ with j in (3.2) repLaced by the discrete-
partlcle current j(x'; J,w, a@} We average with respect to w and t, and obtaln

by mannpulatlons identical to those leading from (5.1) to (5.5), the result

<G> @) =-2vh) 2a ) o - (19)
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The complete kinetic equation is now
3033 ©)/3% = - 3.((5) £°) + 3, @) f§]. N  (7.10)

Incorporating the formulas (7.7) for the diffusivity, and (7.9) for the

drag, this reads

x°(3; £)/3 = aJ{zv-l(J PR e )_+_waf2.]}. | (7.11)

. The Markov assumption has been made implicitly,vby the use ofv(2.l3) for

5f, and in the calculation of <:I> .
8. ENERGY CONSERVATION AND THE H-THEOREM

The coupled kinetic equations for particles and waves (7.11) and (5.11)

have two important properties. First, the total energy‘of particles and waves,
1 o - ' . ro
W) = far £230) ¢ () + Fu (), | | (6.1)

is independent of time. Secondly, the entropy of the system of particles

: 16
and waves,

S6) = - far 22035 ©) 4n £2(I54) +2 s (v), (8.2)
is a monotonically increasing function of time. ' ‘
The proof that dw/dt = 0 is trivial. It is_aiso sfraightfcward to
shdw that: |
| ' ) | -
aS/at = zg:[dr o, (3) v'(J)[f"(J) wa]' [fo(J) su fé"] . (8.3)
Since the integrand is never negative, it follows that.dﬁ/dt = 0. ‘
It is clear fram (8.3) that a neceésary_and sufficient condition fqr a '

steady state is that-

o v : -
£ (3) + W, ﬁ2<= 0 : ' : : (b.#)
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for all J, a which are coupled by o (J) # O. In'generai, we éﬁpect that
'a given mode a couples to many J, which in turn couple to other modes,
and so on. Then condition (8.4) must be valid for all J and a (for Wthh
our basic assumptlons---no collls1ons, small Ir |, etc.--—are valld) It

follows that the only steady state of the kinetic, equatlons is given by

d tn f°/aé' = -

for all J, §§ i.e., by
afo/Q =" 5f0, wa = B-l;_ - IR » (8-5)

which is‘a‘thermal distribution.of particleé and waves. |

It is a well-known fact of statistical mechahics}that'the entropy is
maximized (subject to enefgy conservation) by a thermal distribution. It
follows then from (8.3) that the system ﬁends monotonically and asymptotically
to a thermal distribution. | | |

Thus, if the conditions for our formalism remain valid, a system approaches
thermal equlllbrlum eventually, from an initial stable or unstable state.. This .
result does not hold in the one-dlmensional uniform case, where there is a one-
to-one correspondence of reSOnant particles and waves; but it is true in the
two-or threefdimensional case;?;7‘ where a particlé oouplés to many waves, and

~ a wave to many particles.
9. LOCAL LANDAU RESONANCE
In the expression (k.9) for aa(J) there appears the integral

Ia(J) Efdx Ea(x)_ sin (l)aT(x,J). ' (9.1)
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. When the wave length of Ea(x) is short campared to the scale length for the

confining potential, this integral may be evaluated approximately by the method

of stationary phase. In general, we may express Ea(x) as

: o x
B (x) = A (x) _sjmf kG ar, (9.2)

whereiqé(x) and‘ka(x) are real and positive, while the lower limit of the

intggral is at some node of Ea(x)..'(Explicitvepressions fériqé(x) and

ka(x) may be found in the work of’other authors,ls‘based.on thé.extension of

WKB techniques to integial equations. ) Substituting (9.2) into (9.1), we

ha?e | | | | '

o x : _
Ia(J) = Re-zl- i(?lZde' Aa(x) exp 1[f ka(x') ax*® ¥ @, 'r(x,J)]. (9.3)

The dominant contribution is from the neighborhood of the point (or points,

in geherél) of stationary phase (occuring for the upper sign only):

k,(x) = o /v(3,x), | | : (9.4)
where v(J,x) is the positive velocity of particle J at x. Denoting the point
of stationary phase‘by xa(J), we see that at this point the ILandau resonance
condition @ = kav is satisfied. Expanding the exponent in (9.3) to secondr

order in x -'xa(J), we find
| x.(3)

;a(J)’= (ﬂ/zluvl )l Aa[xa(J)]cos{f ka(x') dx?_ - w7 [xa(J:)’J];t L ,;}, (9.5)

where

g
]

e o v k@I oy, - (9:6)
. CAN -

the two signs in (9.5) refer to the sign of p, and a Sum_over the stationary

points (if more than one) is implied.
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Upon squaring (9.5) and substituting into (4e9), we have

o, () ﬁ‘Znezﬂlo(J)lul-l /‘I: v[:vca(J)] cos?...} i‘,f{z - fna/wb(J)] o i
, , < B | 1
= 2ne2<ub(J)./'dx v(J,x) /4;(x) cosz{f k (x') ax' - o 7(x,J) ¢ g} .
: S[ma - ].;a(x.) V(J,X)}' i}s [z‘— wa/wb(J)] .  n o (9.7)

2 1
Upon coa.rue—gra.lnlngr in J, the cos  becames 3 5 the sum over £ becomes one,

while 74 (x) equals o(P (x)), averaged over one local wave lengths

aa(J) = Zﬁezmb(J)fdx_V(.J,x) "(Ea-‘z(éc)) 5 {U;a. - ka(x) V(J,x)] . (9.8)

From (6.7), the electric energy density in mode a, averaged over a local
wave length, is -
WEx) =w (8 2(x)). - S
a (X)v Wa.(Ea. (?‘” o _ , ' (.9-'9_)’
We substitute (9.9) into (9.8), and then (9.8) into (7.7), obtaining

D(s) = 8x%e” v (a) -zfax v(3,%) W E(x) o '[mal-.ka(;c) -V(J,x?)] 5 (9.10)

the actiOn_-diffusivity is eéxpressed as an integral over local Landau re:oha,nces,
It ma.y be further expressed in terms of the local velocity-diffu: ,1v1ty.

In a uniform medium, the velocity-diffusivity is

1 2 dk. dw ) : e ‘
= (‘e/m)-[/_. : S(k,w)fd'r-_ cexp i(kv - @) T
2N (2n)2 . & A ,

o (e/m) | T2 WP (x,0) (o - i) BERRNCRIS

To make the transition to a set of modes, we let

"

D(v)

It

(2n)"2 WP _<k,£u>-—»§ W sl - ) 35[6@ S w) + b+ “’a)] »
(9.12)
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With this replacement, the velocity—diffusivity.becor'nes
2 2 _E | |
D(v) = hn(e/m)* s W |6(w. - k v) +8(w +%k v)|. (9.13)
: a a, a a a a.‘ .

Comparing (9.10)-and (9.13), where M/a » k , and v are now functions of x,

we see that
D(J) = 2m’ v'l(J)fcix' v(J,x) D[V(J,x); x].' , . : (9.14)

This relation between action - and local velocity-diffusivities is

Jjust as one would expect from elementary considerations. Since &J = v_l E)C =

- - 2 ,
v ~ mv 5v, we expect that D(J) = v 2 mz (v" D(v)) , with averaging over a

complete bounce: (...) =v 2 f(ax/v) ( .. ). This leads,dirécfi;ly to (9.1k4).

10. THE QUANTUM PICTURE -

Our understanding of the kinetic equations may be enhanced by
considering their derivation from the corresponding set of postulated quantum

master equations.l These are

| Haf(J; t)/ot =fdJ'.‘ﬁj"[a.(J' -J) - 5" - J)}g /’(J"a%»J,', a) x

x 26" G +2) - 060 0] 8 - e - &) (0)

an, /at =fdedJ' Pg=s3', a) [f(J) (v, +1) - £(3") Na]- x
x 8( CJ -‘éJ, -la )y o - : (10.2)

: - = i - Al
where Ca. = hwa is the energy of a normal mode quantum, Na. = wa,/('a. is the

mean number of quanta in the system, and /2(J'e——sJ', a) is a postulated

transition probability (on the energy shell) for emission of a quantum of mode
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a by ?article J", or for its absorption by particle J'.
If, in these equations, we take the limit fi~»0, we obtain (after a bit

of algebra)

3 (73 t)/3t = aJ{v'z(J) Z no, Plremss, 2)[£(3) + W, f.,:]} »  (10.3)

¢

a, Jat = o fdJ v Pge—sg,02) [f(;r)'_ M fC; 1. o (o)

Camparing these equations with (7.11). and (5.11),_we see that they are

identical if we make the correspondence

ﬁma‘v"l. (=7, a) = z"aa(J')‘.' - S | o (10.5)

between fhé quantum transition probability and the classical coupling coefficient.

1l. TIME SCALES

- There are five characteristic timeé_in this.préblemﬁl'(l) the ﬁarticlé '
bounce-time,'v-l(J);'(Z) thé_normal mode oscillation pefiod; aa-lgi(3) the
normal mode decay (Or grqwth)’time,|7 flI; (&) the'radiétioﬁ reactioﬁlﬁime;
Ts EIJ/I(j)I' and (5) the quasi-linear evolution time for £°, |

= JZ/D(J). From equations (4.8), (7.9), and (7 7), we may estlmate the ’

© latter three as

me M, o N (1.2)
T~ E M) TS o @y

where é:is a typical particle energy, aa a typical coupling coefficient, Bp

the total number of‘resohant particles,'Nw the total number of resonant modes,

(%)

.
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and W a typical mode energy.

Our analysis is valid only if the former two times, v ' and o™, are

‘short compared to the latter three. From (11.1), we see that this hinges on
the number of reéonant particles.being not too large, or on the resonant coupling

‘belng not too large. Typlcally we expect that N > NW’ so that ¥, is long

J
compared to IT |. In the unstable case, we expect that B&)(ﬁ and Nwwa are

of the same order; then Iyé -| and Ty are comparable. In the stable regime ‘

however, eventually' éfanﬂ W, are of the same order, ‘so s and T, are comparable.
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