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ABSTRACT 

When a one-dimensional plasma is confined by a static potential, the 

electric field fluctuations can be described in terms of normal modes. a 

mode interacts resonantly with a particle whose bounce frequency is an in-

tegral submultiple of the mode eigenfrequency. This leads to energy ex-

change and quasi-linear diffusion of particles. Kinetic equations are de-

rived. for the evolution of mode energy, due to wave emission and to damping 

or growth; and for the evolution of the particle distribution in action-

space, due to radiation reaction and quasi-linear diffusion. These equationz 

have an H-theorem, implying an approach to thermal equilibrium (in the absence 

of neglected effects). The mode-particle coupling coefficient is expressed. 

explicitly, and is approximated for the limiting cases of high eigerifrequency 

and of short wave length. 
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1. INTRODUCTION 

The kinetic theory of the interaction of particles and waves in a 

l-4 uniform medium is now well understood, 	at least when perturbation theory 

is valid. In a regime where collisions and wave-wave interactions may be 

neglected, one has coupled kinetic equations for particles and waves, re-

presenting the effect of wave emission and absorption by particles. This 

set of equations has an H-theorem 5  , leading to the conclusion that a system 

of interacting waves and particles approaches a state of thermal equilibrium, 

characterized bya Maxwell distribution of particles, and Rayleigh-Jeans 

energy for the waves. 

The present work extends these results to an inhomogeneous system. In 

the interests of simplicity, 7  we treat here only the one-dimensional case, 

wherein all the particles are confined by a static potential x). The in-

homogeneous plasma supports a set of electrostatic normal modes, which 

interact resonantly with particles whose bounce-frequency is an integral 

sub-multiple of the wave-frequency. 8  This interaction produces, for the 

particles, an energy loss (from spontaneous wave emission) and a quasi-

linear diffusion in action. For the wave energy, there is correspondingly 

a source (from emission) and a linear decay or gro'zth rate. Again the kinetic 

equations satisfy an H-theorem; here, even in the one-dimensional case, one 

can in general deduce an approach to thermal equilibrium. 

The methods used in this paper rely on the test-particle philosophy. 

We do not concern ourselves with mathematical rigor, since we believe that 

recent techniques, developed for the uniform case, 1 '9110  can be extended 

to the inhomogeneous case to justify our approach. 

In the following section, the conductivity kernel is derived, for the 

linear response of the frthomogeneous Vlasov plasma. it is exhibited in a 
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form (2.16) which generalizes the Kubo relation 11  to the non-equilibrium 

case. An explicit expression (2.25) for the coñduOtivity is then obtained, 

whose real part (2.27) exhibits the bounce-resonance phenomenon. 

In section 3, the Green's function for the electric field equation 

(3.1) is expressed, first in terms of the normal modes of an associated 

eigenvalue problem (3.6), and then in terms of the actual normal modes, 

satisfying (3.11). The result, equation (3.17),  is similar to the form 

postulated by Leavens and Love12  on the basis of numerical calculations, and 

has explicit normalization (3.16)  of the normal modes appearing in it. 

In section 11, we study the case of nearly real eigenfrequencies, and 

obtain an expression (11.8) for the linear damping (or growth) rate in terms 

of a mode-particle coupling coefficient, defined in (4.7).  Its explicit 

evaluation (1.9)  shows that only bounce-resonant particles couple to a mode. 

In the limit of high frequency, it is a continuous function of particle energy 

In section 5,  the spontaneous (incoherent) wave emission by particles 

is calculated, using the test-particle philoshy.. The result, equation 

(5.8), is expressed in terms of the coupling coefficient introduced earlier. 

The wave kinetic equation is then immediately obtained (5.11). 

To prepare for the particle kinetic equation in section 7, the electric 

field spectral density is studied in section 6, and is expressed.(6.9) in 

terms of the normal modes and the wave energies, in the limit of infinitesimal 

damping rate. 

The following section then derives the quasi-linear diffusivity of action 

(7.7), again in terms of the coupling coefficient. Including the drag due to 

emission, the particle kinetic equation (7.11) is obtained. 

In section 8, the energy conservation law and the IT-theorem are derived. 

The conclusion that thermal equilibrium is approached asenptotically hinges 

S 
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on the properties of the.eoupling coefficient0 

In section 9, we study the limiting case that the wave length of a 

normal mode is small cnpared to the size of the system. The coupling 

coefficient can then be expressed (9.8) in terms of local Indau resonance, 

and the action-difTusivity related (9.14) to the local velocity-diffusiVitv. 

In section 10, the form of the coupled ki.netic equations is derived by 

taking the classical limit of the quantum master equations. The quantum 

transition probability is related to the classical coupling coefficient. 

In section11, the five characteristic time scales of the 

problem are estimated. 

2. TKE CONDUCTIVITY KERNEL 

The conductivity represents the linear response of the stationary 

inhomogeneous plasma to a time-dependent electric field. It is defined 

by the equivalent relations 

j(x,t)fdTfrn a (x,x'; ) 	(x', t-.), 	 (2.1) 

j(x,x) =jxt a (x,x'; w) E (x'; w);  

where E(x,t) is the linearly perturbing self-consistent electric field, 

a j (x,t) is the mean current density, E(x,a.) and j (x,a) are their Fouriex' 

transforms: 

E(x ,)) nt e 	E(x,t); (2.3) 

and 	
CO 

a(x,x';w) Jd 
iwT  a(x,x'; i) 	 (2.) 



is a one-sided Fourier tansfoTm, analrtic in the upper half of the 

w-plane. 	On the real u.-axis :and. in the lower half-plane, one is to use 

not (2.4) but its analytic continuation. 	The reality of .E(x,t) and j (x,t) 

iniplies the reality of a(x,x'; r), and the relation .. 	 . 

cvf(X,X'; 	CO) 	= 	a(x,x'; 	.- 	(J)3f) 	.. 	 .. 	 . 	.•. 	 . . 	. 	. 	(2.5). 

from the definition 	(2.4). 	... .... . . 	. 	. . 	. 	. 

In the Vlasov model,. the phase-space density f(x,p; t), for a single 

species, satisfies the equation 	. 	. 	. 	. 	., 

+ {f, 	H} 	0, 	 .. 	 . 	. . 	.. 

where the Hamultonian is 	 .. 	 . 	. 	. . 	.. . 	. 

H(x,p; 	t) 	=(x,p) + e$(x,t). 	 •.. 	 ... (2.7) 

The unperturbed energy is 	.. 	 . 	 . . 	. 	. 

8x,p) .= p2/2m + e(x), 	. 	. . 	. . 	 (2.8) 

where 	(x) is the confining potential, while 	(x,t) is the self-consistent 

perturbing potential. ; 	Inthe absence of 	, the stationary .Vlasov equation 

is 	 . 	 . 

= 0; (2.9) 

its general solution is  

f°(x,p) = f0(ã. (2.10) 

(We shall not be concerned here with the self-consistency relations between 

r° ) and 	x).) 	 . . 



In the presence of $, the linearized Vlasov equation is 

+ {bf' 
eJ = - { r° , e$} 

0 =-fev](x,t) 

	

= - 	jdx' j(x'; F ).E(x',t).  

The subzcript denotes differentiation, and 

j(x'; F) 	e v(r) b[ x' - x(F)]  

is the current density at x', when a particle is at the phase-point 

F 	(x,p). The so:Lution of (2.11) is 

00 

or(r; t) 	fjdfdx j(x!; F,. - ) E(x',t-T),  

where 

-7) --j[x';F' (F, - 
	 (2.1)4) 

is the current density at x' and time t-r, when an unperturbed particle 

is at r at time t. [In (2.14), F' denotes the phase-point at t-T, for an 

unperturbed orbit through Fat t.] 

The mean current density is 

j(x,t) afar j(x, r ) 
or(c , t),  

where a sum over species will henceforth be implicit. Inserting (2.13), we 

obtain the conductivity kernel for (2.1): 

a(x,x V 	 . O j 
; i- ) =. -,

I dl' ± 	(x; F) j(x ; r, - 7). 	. 	. 	 (..it) 
J 
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For the special case of a thermal distribution (r= - 	f°), this 

reduces to 	 . 

i(x,x'; ,-) =P <j(x,t) j(x't- -r)>0  , (2.17) 

11• 
an analogue of the Kubo relation 	between conductivity and current 

fluctuations in equilibrium. .. Our.equatio.n (2.16) is itO gèneraiizatibn 

to an inhomogeneous Vla.sov system. 

Examining the result (2.16 .), we see first that 

a(x,x'; - 	r) = 	c(x, x;  (2.18) 

this follows from the invariance of f °  with respect to the time-translation 

F—+ I" . 	Next, the invariance, of fwith respect to time-reversal (p-. -p) 

leads to 

a(x,x'; 	- 	r) 	= 	c(x,x'; 	,-). 	 . 	. 	. (2.19) 

It follows from these two relations, that a is a symmetric kernel: 

a(x,x'; 	r) 	= a(x,x; 	r), 	. 	 . 	 . 	. (2.20) 

a(x,x', w) = a(x',x; cn) (2.21) 

(This important result is lost, if the unperturbed system' includes Un- 

trapped particles, with f °  depending also on the sign of p.) 

Without using the symmetry condition (2.21), we may derive.a useful . 

expression.for the Herxnitia.n part of ci at real a, from (2.) and (2.16): - 

c,r(x,x, u) 	 w) + a*(x',x, u)] 

= - 	TJdf f°  j(x, ç w) j*(x', j 	u)  

where 	. 	4r12 

j (x; 	, w) 	/it 	c' j (x;  
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and the limit T—.- is implied. For a thermal distribution, this beccines 

a'(x,x'; u) = 	T 1  <j(x; w) j*(x')>0  , 	 (2.2) 

a form of the dissipatlOfl-flUCtUAt].ofl theorem. Our result (2.22) as thus 

a generalization of it to the Vlasov non-equilibrium case. 

Ecp1icit evaluation of a is acccinplished by the introduction of action-

angle variables, with J 	p dx in the unperturbed state, and 

d.w/dt = v(J) 	/dJ. After.some algebra we find: 

a(x,x 9 ; a) = 	ieJ f{[sin w T (x,x'; r) - sinwT2 (x,x'; .r.)] 

+[cos C)T1  (x,x'; j) - cos OT 2  (x,x'; )j cot[w/2v(J)]}, 	(2.25) 

where T1  (x,x'; j) is the direct route transit time between x and x' for 

an unperturbed particle of action j, while r2  (x,x'; j) is the transit time 

including a bounce off one end. This formula is valid in the cnplex plane; 

on the real axis, approaching from above, 

cot (u/2v)-_14cot (u/2v)] - E o(2 - c/2ni) 	 (2.26) 

Therefore on the real w-axis, the real part of a is 

a'(x,x'; w) = - e2fci f (cos w 	- cos D 'r2 ) E 	- w/Ub(J), (2.27) 

where % (j) 2,t v(J). Ue nate that contributions to a' (w) (which is 

responsible for dissipation).COme only from those J whose bounce-frequencies 

are sutmultiples of u 1 c 	w/2. 

3. NO1MAL MODES AND THE GEEEN' S FUNCTION 

The linear response of the plasma to an external current density 
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j (x,t) is given by 

+ ) [jx,t + je(X,t)] = 

or 

E(x,w) + 1 	 a(x,x', w) i'(i' 	) 	- 	
l JC() 

(3.1) 

The solution of this equation is 

E(x,W) 	- 	t iuJ"d.xt G(x,x';.w) 	), (3.) 

in terms of the Green's function, which satisfies 

G(x,x'; w) + lt iaclfaxtt 	cl(x,x"; 	u) G(x",x'; a) = b(x - x'). (3.3) 

In this section we derive a representation.for G in terms of the normal 

modes, i.e, the solutions of (3.1) when a 	0: 

Ea(X) + 1 3t 1U) 	fdX 	cm(x,x'; °a 	Ea(xI)•= 

We note that since cm is in general complex, the eigenfrequencies Wa 

and the eigenfunctions E(x) are also in general complex. 	However, the 

reality condition (2.5) showsthat they occur in pairs 	a' °a' 	
with 

a 	a' 
(3.5) 

E' 	(x) = E* () 

We consider first the related eigenvalue problem, wherein U) apnears 

merely as a fixed complex parameter: 

Xn 
 (w) E(x;U)) + t,t iU)lfdx? a(x,x'; w) E(x'; w) 	0. (3.6) 

Using the symmetry 13  of cm, we find that 

[ 

X(U)). 	X m 	(U))] f dx E(x; o) E(x; 	) (3.7) 
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Thus the eigenfu.nctions E(x; w) are orthogonal: 

Jdx E(x; (u) E(x; w) = 0 (m n).  

By standard techniques, the Green*s  funct.on is foun1 to be 

E (x; w) E Cx' ; w) 14 
G(x,x'; o) =• 
	

I 	() 
 

where N(0).xE2 (x; )• 

Now we assume that X((D) and .E(x; w) are analytic functions of w. 

(It may be helpful here to think about the special ease of a uniform plasma. 

Then the elgenfunctions of (3.6) are Ek(x) = exp(ikx), independent of w, 

while the eigenvalues are Xk(w) =. - 471 I w a('k,w). In this case at least 

they are analytic in w.) By Cauchy's theorem, (3.9.) may be written a 

G(x,x'; w) = (2i 	
dw' 	

c(x,x';  
WV  - U) 

where the contour encircles only the pole at w' = w. We then defOrm the 

contour to exclude this pole, in order to encircle the singularities of the 

Green's function. [There is no singularity at infinity; as w--o 

i(e 1mw) n(x) §(x - x ), and G(x,x ; w)—ø (x - x ).] 

We note that G(x,x'; w) has simple poles at those w for which X(U)) 	1. 

By comparing (3.6) .and.(3.li),  we see that these are just the eigenfrequencies 

w. (In general, there will be many w for each X, as we recognize from the 

case of the uniform plasma.) The possible singularities of the numerator and 

the possible branch points of X (w) are not known to us, and depend on. the 

particular problem stud ed. We shall here arbitrar:Uy ex'1ude the:i.r contribution 

to 
(310)•L 

 We then obta.n 



ic 

	

E(x)E(x') 	- 
G(x,x'; a) 	F 	an'& 	Na  

where, for each n, the sum over a includes only that setofw sat sfying 

"ria = 1; where E(X) E(x; 
'a' 

 and where Na fdx E 2 (x). 

From (3.6) and (3.8), we see that 

N(w) A (w) 	- 41dc jdxfic'c1(x,x t ;a)) E(x;a)) E(x'; w). 	(3.12) 

Differentiating, and using (3.6), we obtain 

dA(w) 	 ____ 

N dw 	= - ' ifxftx' Ea (X) Ea(X') 	[(C l  cr(x,x'; )L• 
a 	

. 	(3.13).. 

When we substitute this into (3,11), the result is 

E(x)E(x') 	. 
G(x,x';a)) =2 	 a 	a 

a 	)ff' Ea (x) 	x')[&(x,x', U))/W a 	 a) 

where the dielectric kernel 	. 

€(x,x'; a)) M 5 (x - x') + 4,da).a(x,xt; a)) 	 . 	(3.15) 

has been introduced for the sake of familiarity. This form (3.14). is 

manifestly independent of the normalization of.the normal modes. We shall 

now simplify the expression by choosing the normalization15  

affi"' 
E(X) E(x')[&(x,x', a))/w] = 1. 	 (3.16) 

Then (3.14) reads 	 . . . 

G(x,x', a) 	
:a Ea (X) Ea(x ' ) s 

We note that the reality conditions (345) ensure that G satisfies the same 

reality condition 	 . 

G*(x,x'; a)) = a(x,x'; - ai)  

r 
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14 NEARLY REAL EIGENFREQUENCIES AND MODE-PARTICLE COUPLING 

If. the dielectric kernel is nearly real for real w, i.e., 

€(x,x'; u) 	€t(x,xt;  w) + i E"(X,)C'; w),  

with 	"(IE', perturbation theory may be used to obtain additional 

results. The zero-order eigenvalue equation (3.6), using only E 0  (or a ), is 

[X(0) M 	1] E (9 (x; ) +fdx 2  €'(x,x; w) E ° (x; n) = 0. 	(4.2) 

Since € is Hermitian (being real and symmetric), the zero-order eigenvalues 

are real functions for real n. Considering their analytic 

continuation, it follows that the zero-order eigen±'requencies 

[solutions of X(0)(cD) = i] occur in complex-conjugate pairs. Hence the 

system, to zero-order, either is unstable or has only real elgenfrequencies. 

We proceed then to study the effect of the small€", in the latter case 

only. Equation (3.12) may be written, using (3.15),  as 

N(U))[l _X (o-)] =ffdxdx' €(x,x'; w) E(x; a) E(x'; w). 	(4-3) 

The perturbation in X(W), due to €", is thus 

Nn(°(0)) A(1)()= - ijfdxdx' €"(x,x; u) E ° (x; w) E 	(x'; w). 	(14.1i) n 

The first order perturbation in Wa  is then 

	

- 	(CU(o)) I 	a] 

	

= - 	iffdxdxt?(x,x.; )a Ea ° 	Ea(°)(x') 	 (.5) 

where we have used (3.13).  (These results are clearly generalizations of 

well-known formulas for the uniform plasma.) Thus the damping of the mode 
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is proportional to the real part of the conductivity. 

With the form (2.22) for a', the damping rate Ta E  Im
a  beàomes 

a•= 2f' f f'fax j(x; r, 	
Ea(0)(x)F 	

J4.6) 

[We have used the reality of E ° (x), which follows from the reality 

of the integral equation (I.?)] It is now convenient to define a coupling 

coefficient, representing the resonant coupling of a particle of actionJ 

to the normal mode a: 

2  a(J) 	2T 1  dw fdx j(x, j, w, 	E (° (x) 1 	(4-7) 

The damping rate is then simply 

ra = fdJ 
f 

 a(r).  

It is clear that a system with monotonically decreasing f 0 is stable. 

Explicit evaluation of a(J), usIng the particle orbit, yields 

a(j) = ite2a(J)[f& E ° (x) 	 2W ° /U(J)] 

(1i.9) 

where T(x,J) is the transit time for a particle of action J to reach the 

position x from either turning point. For a given mode, this is a singular 

	

function of J, being infinite at the resonant values c%(J) 	a
(0) /1, and 

zero elsewhere. 

However, if the eigenfrequency cu 	is much larger than typical bounce 

frequencies, these singularities are spaced very close together. A slight 

amount of coarse-graining in J, representing almost any higher-order effect, 

allows us then to replace the sum over 2 by an integral over 2, whence the 
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summation equals one. Thus for %(Jk< 	we have the approximation 

2Ef 	() 	
2 

a (J) = e 	dx E 	(x) sari w 	.r(x,J)] . 	 (1 .iO) a 	 a 	 a 

5. WAVE EMISSION AND THE WAVE KtHETIC EQUATION 

The rate of spontaneous emission of wave energy may be calculated by 

considering the particles as uncorrelated current sources 9,10  We therefore 

first calculate the rate at which an arbitrary ecternal current j e(X,t) 

does work on the plasma, in the linear-response approximation. The rate 

of increase of plasma energy is 

W = - T ifdtfdx E(x,t) e(X,t), 	 (5.1) 

where E(x,t) is the mean field, given by (3.1).  Sinc.e the rate of wave 

emission is independent of the wave damping Or growth rate, if the latter 

is small, we take the formal limit of r & 0, for modes with small 

and discard strongly damped modes. Then the poles of the Green' s function 

(3.17) are at 	and lie on the real uaxis. We may then write (5.1)  as 

W = - T1ffdx E(x,w) j e*, 
	

(5.2) 

where the u'-contour lies just above the real axis. By (3.2)and (3.17), this is 

= ri T 1J 	fdxfdx l  G(x,x'; ) e*(XW)e(X,). 

= iti TJ 	 Jdx Je(X,()) E ° (x) 	. 

The contribution of the poles at 	yields 

W =4it T1Z 
fdx .e() E(x) 
	 (5.5)  

12 
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where we have included the pair a°' 	
for each term in the sum, 

and let the superscript zero be implicit. There is no pole at O, because 

vanishes at uO. The contribution of the contour between poles vanishes, 

because the integrand is odd in . 

The test particle theorem9  now allows us to obtain the mean rate of 

wave emission by replacing j e(X,W)  by the sum of contributions from Un-

correlated unperturbed particles: 

<J(X,w) 
jex(x,w)>.......fdJ r° (j.) dw j(x;J,w,) j*(xt. J,w,w). 	(5.6) 

The wave emission is thus a sum of terms: 

* = W 

with the emission of mode a given by 

W = 2fdJ f°(J) aa(J),  

in terms of the coupling coefficient (lt..7). The appearance of cx(1r) in 

both emission (5.8) and damping (4.8) may be thought of as "detailed 

balance." 

Including both emission and damping (or growth), the wave kinetic 

equationis 

dW/dt ='1a - 2IaWa  

If f°  is changing siowly compared to W and if r is positive, a quasi-

stationary state is reached for Wa  given by 

1 ' 
W=Wa/Ta  

=[fdJ f°(j) 	 aa(J)] ; 	 (5.10) 
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0 then W varies an time adiabatically with I 
a 

In any case, equation (59) may be written, with (4.8) and (5.3), as 

dW aIdt = 2fdJ a(J) ° + W 

This form may be used in particular.for an unstable mode 	30 long as 

higher order effects may be neglected, and when 1 °  varies on the same scale 

as W, so long as their variation is sufficiently slow (/t< Cl)) to retain 

the validity of the formulas for y and W 

Since energy must be conserved, it 1: clear that fo  must vary when W 

does; the particle kinetic equation analogous to (5.11) is derived in Section 7. 

6. THE SPECTRAL DENS TLY 

To determine the particle kinetic equation in terms of the wave energies 

in the next section, it is necessary to express the field correlation function 

s(x,x'; ) 	< E(x,t) E(x',t-T)> 	 (6.1) 

in terms of the setW } . We assume a (quasi-) steady state, so that 

(6.1) is independent of t. Byhe Wiener-thinchin theorem, its Pourier 

transform: 

s(x,x'; w) fdT e 	s(x,xo; T) 	 (6.2) 
- 00 

is the spectral density, expressible in terms of the Fourier transform of the 

random field: 

s(x,x'; w) = T 1  <E(x,w) E*(xq,u) > . 	 (6.3) 
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Again keeping only the contribution of modes with small J y , and 
taking the limit r— 0 1  we have 

E(x,0) = 	Ea(°)X)[A 	- 	+ Aa 6(w+ wa(°] 	
:(6.) 

where Aa  is the cozmplex, random amplitude of mode a, the sum being over 

positive eigenfrequencies. Dropping the supercript again, we substitute 

(6.4).into (6.3): 

S(x,x' ;  CO) 	(2icY' I <IA j 2 >E (x)E (x0)Jo(a)..ci)) + 6fü]. 	(6.5) 

The total electric energy in the modes is 

wE= (8)f 

(8)_fdx S (x,x; r=O) 

= (16i2)_lfdxfdo S(x,x, w) 

= (16,t3 Y 1 	< IAI 2  > N; 	 (6.6) 

we have used (6.1), the inverse of (6.2), (6.), and the definition of 11 

below (3.11). By an extension of the method of Klimontovich 2  , it may 

be shown that the ratio of electric energy to total energy in a wave is 

WE/lw = N/i, 	 (6.7) 

where the one represents the normalization inteal (3.16). Since, by 

(6.6), the electric energy of mode a is WaE  = (i62t3( 	2> Na its total 

energy is thus 

w a = (16c3 ) 	( 	. 	 (6.8) 
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Eliminating the amplitude Aa  from (6.5), we obtain the desired expression 

for the spectral density: 

s(x,x'; ü)= 82 Z W Ea(X)  E(x')[b(w - w) 	6(u+ w)]. 	(6.9) 

We note that the correlation function is even in : 

s(x,x; T) = 8,t Z W E (x) E (x e ) COS U) T. 	 (6.10) a a a 	a 	a 

70 THE PARTICLE KINETIC EQUATION 

The particle distribution f °  varies in time from two effects: a 

quasi-linear diffusion in action due to resonant energy exchange with waves; 

and a loss of energy due to discrete-particle wave emission. We study the 

former effect first, from the nonlinear Vlasov equation: 

f(J,w; t)/t = - 	(3f) - 	 (7.1) 

Averaging with respect to w, and averaging over fluctuations, this 

becomes 

f°(j; t)/t = - 
	dw< EJ ef> 	 (7.2) 

The factor 	is 

(J,w,t) = - [eØ(x,t)]/w 

= - (e Ø)/c 

1 = eE(x,t) v(J,w) v
-

(j) 

= v(J)jdx E(x,t) j(x; I), 	 (7.3) 

where E(x,t) is the fluctuating field. For the factor of in (7.2), we may 

use the linear expression (2.13). 	Equation (7.2) then reads 



f°(j; t)  

a diffusion equation, with the action-diffusivity 

00 	 p 

D(J) 	v 2 (J)jrJxfdx S(x,x'; 7) 	dw j(x; I') j(x'; r, - r). 	(7.5) 

Since the correlation function (6.10) is even in T, and the w-integral 

is invariant with respect to time-translation of its argument, the difTusivity 

may be written: 

D(J) =. v2(J) T1J9_Jdxfdxt S(x,x'; w) j*(x; jr, w) j(x'; F, (i)). 

(7.6) 

With the form (6.9) for the spectral density, this becnes 

D(J) = 2 v 2 (J) 	a(j) W 
	

(7.7) 

in terms of the mode-particle Côuplingcoefficjents (.4.7), and the 

wave energies. 

The effect of wave emission may be included by considering the J of 

(7.1) to include, not only the fluctuation effect (7.3), but also the drag 

due to the self-consistent field of a discrete particle. In analogy to 

(7.3), we have 

w, t) = v_i  (J)fdx E(x,t) j(x; J,w,t), 	 (78) 

where E(x,t) is now given by (3.2)[ with j e  in (3.2) replaced by the discrete-

particle current j(x'; ,w,c4 We average with respect to w and t, and obtain 

by manipulations identical to tho3e leading from (5.1) to (5.5), the result 

< 3 > (j) = -2 v(j) 	a(j). 

18 
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The complete kinetic equation is now 

f°(j; t)/t 	- 	 f° ) + 	[D(J) f]. 	 (7.10) 

Incorporating the formulas (7.7) for the diffusivity, and (7.9) for the 

drag, this reads 

f°(j; t)/t 	A2v(J) . Z aa(J)[f0(J) 	
a]} 	

(7.11) 

The Markov assumption has been made implicitly, by the use of (2.13) for 

6f, and in the Calculation of <J>. 

8. ENERGY CONSERVATION AND THE H-THEOREM 

The coupled kinetic equations for particles and waves (7.11) and (5.11) 

have two important properties. First, the total energy of particles and waves, 

W(t) JdJ f°(J;t) 	(j) + 
	

(8.1) 

is independent of time. Secondly, the entropy of the system of particles 

and waves, 16 

S(t) 	.fdJ f° (j; ) In f° (j; t) + 	n w(t), 	 (8.2) 

is a monotonically increasing function of time. 

The proof that dW/dt = 0 is trivial. It is also straightfoward to 

show that 

dS/dt = 2fdJ aa(J) v(J)[f °(j) Wa] 	°(j) + W r]. 	(8.3) 

Since the integrand is never negative, it follows that &S/dt ~ 0. 

It is clear from (8.3) that a necessary. and sufficient condition for a 

steady state is that 

(j) + Wa 	0 
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for all J, a which are coupled by aa(J) Oa In general, we expect that 

a given mode a couples to many J, which in turn couple to other modes, 

and so on. Then condition (8.1) must be valid for all J and a (for which 

our basic assumptions---no collisions, small'a'' etc.-.-are valid). It 

follows that the only steady state of the kinetic equations is given by 

flf°/=_Wa  

for all J, , i.e., by 

Pf 
- 	

W = 	 (8.5) 

which is a thermal. distribution of particles and waves. 

It is a well-known fact of statistical mechanics that the entropy is 

maxized (subject to energy conservation)by a thermal distribution. It 

follows then from (8.3) that the system tends monotonically and asymptotically 

to a thermal distribution. 

Thus, if the conditions for our formalism remain valid, a system approaches 

thermal equilibrium eventually, from an initial stable or unstable state. This 

result does not hold in the one-dimensional uniform case, where there is a one-

to-one correspondence of resonant particles and waves; but it is true in the 

two-or three-dimensional case,5 ' 7  where a particle couples to many waves, and 

a wave to many particles. 	 . . . 	. 	. 	. 

9. LOCAL LA1DAU RESONAI'TCE 

In the expression (4.9) for a(J) there appears the integral 

1(J) =Jdx Ea(x)  sin a1 (CJ 	 (9.1) 
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• When the wave length of E(x) is short compared to the scale length for the 

confining potential, this integral may be evaluated approximately by the method 

of stationary phase. In general, we may express E(x) as 

x 

E(X) = A(s) sinf k(X') dx', 	 (9.2) 

where4(x) and kaX)  are real and positive, while the lower limit of the 

integral is at some node of E(x). (1xplicit expressions f'órA (x) and 

kaX) may be found in the work of other authors,18 based on the extension of 

WKB techniques to integral equations.) Substituting (9.2)  into  (9.1),  we 

have 

1(J) = Be Z (;1)fdx 4a 	exp i[f  Xk 
(x') dx' Wa T(X,J)]. 

The dominant contribution is from the neighborhood of the point (or points, 

in general) of stationary phase (occuring for the upper sign only): 

k (x) = CO /v(J,x), 
a 	a 

(9.1) 

where v(J,x) is the positive velocity of particle J at x. Denoting the point 

of stationary phase by xa(J) we see that at this point the Landau resonance 

condition °a kat is satisfied. Fcpanding the exponent in (9.3) to second 

order in x - x (j),  we find a 	
•x(J) 

• 	1(J) = (,r/2fJ 	4axa]cosf ka(X') dx! 	Wa Xa ,J]± 4 74, (9.5) 
where 

	

[v(j,x) k] }x(J) ' 	 (9.6) 

the two signs in (9.5) refer to the sign oC 	and a sum over the stationary 

pnints (if more than one) is implied. 
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upon squaring (9.5) and substituting into .(.9), we have 

a(J) 21ce20%(J)h4 -1 1a2 [x()
] 	4 	4 	(D/Q)(J)] 

	

= 2ice2 %(J)fdx v(J,x) 	cos!f k(x') 	' - a T(x,J) ± 

	

1(x) v(J,x) 	[ - w/(J)]. 	 (9.7) 

Upon coarse-graining in J, the cos becomes , the sum over 2 becomes one, 

while A 2 () equals 2(E 2 (x)), averaged over one local wave length: 

aa(J) = 2ce2 %(J)f dx v(J,x) 	
[°a - 1ca 	v(Jx)] . 	(9.8) 

From (6.7), the electric energy density in mode a, averaged over a local 

wave length, is 	 : 

WaE(x) =Wa (E 2 (x))• 	 (9.9) 

We substitute (9.9) into (9.8), and then (9.8) into (7.7), obtaining 

D(J) = 8r2e2 v(j) zfdx v (J, x ) L1 E(x) [za k(x) v(Jx)] ; 	(9.10) 

the action-diffusivity is expressed as an integral over local landau reónances. 

It may be further expressed in terms of the local velocity-di.ffsivitj. 

In a.uniform medium, the velocity-diffüsivity is 

D(v) = (e/m)2ff 	s(k,)JdT exp i(kv - ) 

= 8it2 (e/m) 2ff 	U(k,w) o(w - kv) 	 (9.11) 

To make the transition to a set of modes, we let 

(2, 2  WE  (k,(0)_._ 	 (k 	
'a 	

[o(w - w) + o(w + U))] 
a 	

(9.12) 
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With this replacement, the velocity-diffusivity becomes 

D(v) 42(e/m)2Y, LU E E8 (wa _ ka v) + 	
+ k v)] 	 (9.13) 

Comparing (9.10)and (9.13), where UJaE ka  and v axe now functions of x, 

we see that 

D(J) = 2m2 v_1(J)fdx  v(J,x) +(J.,x); x]. 	 (9.14 ) 

This relation between action - and local velocity-diffusivities is 

just as one would expect from elementary considerations. Since bJ = V 3 	= 

v mv 8v, we expect thatD(J) = v m (v D(v) , with averaging over a 

complete bounce: (...) 	 v 2 f(dx/v) ( ... ). This leads directly to (9.14). 

10. THE QUANTUM PICTURE 

Our understanding of the kinetic equations may be enhanced by 

considering their derivation from the corresponding set of postulated quantum 

master equations. 1  These are 

f(J; t)/t =fdJ!fJt[o(Je - j) -.8(J" - J)]z J(J'!.i._*_j', a) x 

[f(J' t ) (N + i) - f(J') N] 	- 	- 	) 	 (10.1) 

and 

dN/dt =fdJfdJ P(j 	j' )  a) [r(J) (N + 1) - f(j') Na]• x 

x ( 	- 	- 4a 
	 (10.2) 

whereM is the energy of a normal mode quantum, N 	W /1' is the 
a 	a 	 a a"a 

mean number of quanta in the system, and P(J'.. - j', a) is a postulated 

transition probability (on the energy shell) for emission of a quantum of mode 
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a by particle J", or for its absorption by particle J'. 

If, in these equations, we take the limit. h0, we obtain (after a bit 

of algebra) 	 . 	 . 	 .. 

=a)[f(J) +w 	f. J 	, 
a 	.a 	 a 

(10.3) 

dW/dt 	hw fdJ v 1  P(j-4__' j, a) [f(J) + W 	f 	I. (10.11-) 

Comparing these equations with (7.11) and (5.11), we see that they are 

identical if we make the correspondence 

v 	/)(J4 	j , a) = 2 aa(J) a 
(10.5) 

between the quantum transition probability and the classical coupling coefficient. 

11. 	TflvIE SCALES 	 . 	 . 

There are five characteristic times in this. problem: 	(1) the particle 

bounce-time, v(J);  (2) the normal mode oscillation period, Wa ; () the 

normal mode decay (or growth) .tirne,Jra'I; (4) the radiation reaction time, 

r. 	/I (3)1, and (5) the quasi-linear evolution time for f op 

rf 	J2/D(J). 	From equations (li..8), (7.9), and  (7.7), we may estimate the 

latter three as 	. 	. 	 . 	 . 	 .. 

I1aI 	a 

/r 	a 
a. 

(11.2) 

Tf 	( 	./W) 	to.; 	 . 	 . 	
. (11.3) 

where 	is a typical particle energy, a 	a typical coupling coefficient, N.p  

the total number of resonant particles, Nw  the total number of resonant modes, 
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and W a typical mode energy. 

Our analysis is valid only if the former two times, v and z are 

short compared to the latter three. From. (11.1), we see that this hinges on 

the number of resonant particles being not too large, or on the resonant coupling 

being not too large. Typically we expect that N>> NW,  so that 	is long 

compared to JiJ. In the unstable case, we expect that N< and NWWa  are 

of the same order; then rI and 	are comparable. In the stable regime 
however, eventually C aifi Wa  are of the same order, 50 T. and 	are comparable. 
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