
UC Riverside
UC Riverside Previously Published Works

Title
Predicting relative efficiency of amide bond formation using multivariate linear 
regression

Permalink
https://escholarship.org/uc/item/8xg8r945

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
119(16)

ISSN
0027-8424

Authors
Haas, Brittany C
Goetz, Adam E
Bahamonde, Ana
et al.

Publication Date
2022-04-19

DOI
10.1073/pnas.2118451119
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xg8r945
https://escholarship.org/uc/item/8xg8r945#author
https://escholarship.org
http://www.cdlib.org/


Predicting relative efficiency of amide bond formation using
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Amides are ubiquitous in biologically active natural products and commercial drugs.
The most common strategy for introducing this functional group is the coupling of a
carboxylic acid with an amine, which requires the use of a coupling reagent to facilitate
elimination of water. However, the optimal reaction conditions often appear rather
arbitrary to the specific reaction. Herein, we report the development of statistical mod-
els correlating measured rates to physical organic descriptors to enable the prediction
of reaction rates for untested carboxylic acid/amine pairs. The key to the success of
this endeavor was the development of an end-to-end data science–based workflow to
select a set of coupling partners that are appropriately distributed in chemical space to
facilitate statistical model development. By using a parameterization, dimensionality
reduction, and clustering protocol, a training set was identified. Reaction rates for a
range of carboxylic acid and primary alkyl amine couplings utilizing carbonyldiimida-
zole (CDI) as the coupling reagent were measured. The collected rates span five orders
of magnitude, confirming that the designed training set encompasses a wide range of
chemical space necessary for effective model development. Regressing these rates with
high-level density functional theory (DFT) descriptors allowed for identification of a
statistical model wherein the molecular features of the carboxylic acid are primarily
responsible for the observed rates. Finally, out-of-sample amide couplings are used to
determine the limitations and effectiveness of the model.

data science j amide coupling j reactivity

Amide bonds are ubiquitous in proteins, commercial drugs, and biologically active
molecules. In fact, amide bond–forming reactions account for approximately a quarter
of all reactions performed in drug discovery programs and are an attractive disconnec-
tion due to the ease of compound diversification and the variety of conditions that can
be utilized (1). This functional group is most commonly introduced by reacting amines
with carboxylic acids, which although thermodynamically favorable, does not readily
occur under mild conditions. Thus, activating reagents are routinely used to form reac-
tive intermediates (e.g., acid chlorides, mixed anhydrides, carbonic anhydrides, and
activated esters) that serve as acyl electrophiles for nucleophilic attack by the amine (2).
Despite the prevalence of amide coupling reactions, identifying the optimal condi-

tions for a specific target can be challenging due to the number of reaction parameters
(e.g., activating reagent, solvent, temperature, stoichiometry, mode of addition, etc.)
that can be varied (3). Furthermore, in multistep synthesis, an amide coupling can be
implemented at various stages, requiring the exact identity of the acid and amine com-
ponents to be considered, since different structural features can influence the overall
success of a coupling reaction. Typically, multiple iterations of high-throughput experi-
mentation (HTE) are used to explore many activating reagents and conditions for a
given set of reaction partners, but insights from one screen are not always transferable
when the acid or amine component is modified. Given that HTE is well precedented
at exploring different reaction parameters for a set of reaction partners, we sought to
develop a statistical model to understand how structural features of the acid and amine
fragments contribute to the success of a given amide coupling.
In this context, predicting rates is a task that chemists routinely perform, though

often only in a relative sense for cases where significant steric or electronic differences
exist (e.g., substrate A will be faster than substrate B). De novo prediction of absolute
bimolecular rate constants (k) is a challenging problem, even when high-level ab initio
computational methods are employed. In cases where multiple steric and/or electronic
factors are in competition, we hypothesized that even relative comparisons would be
difficult for trained chemists (1). Simply stated, considering the diversity of possible
amide couplings, it is not easy to intuitively determine which substrate features impact
the rate of a given amide coupling reaction. To probe this hypothesis, we designed a
survey (see SI Appendix for details) that asked participants to order the relative rates of
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five amide couplings performed under identical conditions but
with a unique acid and amine fragment for each reaction. The
results revealed that no consensus was achieved for predicting
rates, even among expert synthetic chemists (SI Appendix, Fig.
S1). Notably, out of >65 chemists surveyed, not a single partic-
ipant successfully ordered the rates of all five reactions.
The ubiquity of amide-forming reactions and the results of

this survey indicated to us that there is a general need for meth-
ods that provide greater insight into the structural features of
the acid and amine fragments that contribute to the rate of the
desired coupling reaction. Such methods could serve to stream-
line time- and resource-intensive HTE screens by avoiding sub-
strate combinations that show poor reactivity. They could also
prove useful in early development and medicinal chemistry
when quantities (and time) are limited, providing insight into
reaction conditions with the least number of iterations. Addi-
tionally, this type of tool would be especially beneficial when
implemented in the late stages of multistep syntheses, where
complex precursors are not readily available for screening in
large quantities, or to derisk proposed synthetic routes during
brainstorming efforts.
To inform these goals, we surmised that a method to predict

the observed second order rate constant (k) for a hypothetical
combination of acid and amine partners would provide the nec-
essary insight into how the molecular features of each compo-
nent contributed to the overall reaction. The k for a reaction is
not directly related to the overall yield; however, it is propor-
tional to the activation energy and therefore provides informa-
tion on the overall ease of bringing the two species together.
From a practical perspective, working at concentrations of 0.5
M, any k below 0.01 M�1�min�1 is less attractive, as it would
take over 24 h to reach 90% conversion. While multiple studies
exploring kinetic analysis of amide couplings have been
reported, such studies lack the systematic and simultaneous var-
iation of both coupling components that would encompass the
reaction space necessary for predictive capacity (4, 5). Given
that literature data are highly biased toward positive results and
do not ensure chemical diversity of the substrates, we elected to
collect experimental rate data for our statistical model–building
efforts under a standardized set of conditions.
The project workflow consists of five key steps (6) (Fig. 1A):

1) dataset design (7–10), 2) measurement of reaction kinetics
(11), and 3) acquisition of molecular descriptors (6), followed
by 4) development of a statistical model correlating the kinetic
outputs with physical organic molecular descriptors (6) and 5)
model implementation to predict outcomes of untested amide
coupling reactions (11, 12). This data science workflow was
employed to develop quantitative structure-property relation-
ships that provide insight to the reaction rates of carboxylic
acid/amine pairs that have not been tested. Additionally, use of
interpretable molecular descriptors allows the model to extend
beyond predicting reaction rates and provide chemists with a
general understanding of the important structural features that
govern the rate of a given amide coupling. Through application
of this workflow, we have developed a model that predicts the
rate of amide couplings for previously unseen substrates within
reasonable error.

Results and Discussion

Substrate Selection. Given the number of commercially avail-
able carboxylic acids and amines, collecting kinetic data for
even a portion of the possible coupling combinations would
not be feasible. Thus, we implemented a workflow to select a

representative subset of substrates that would reduce the num-
ber of measurements necessary while maintaining the diversity
crucial to ensuring the system is amenable to statistical model-
ing (9, 13, 14). The system chosen for study utilized coupling
reactions between commercially available carboxylic acids and
primary alkyl amines, with carbonyldiimidazole (CDI) as the
coupling reagent and tetrahydrofuran (THF) as the solvent
(Fig. 2A). Primary alkyl amines were selected for this initial
demonstration to narrow the substrate scope while still being
ubiquitous in amide couplings. CDI was chosen as the cou-
pling reagent as it is synthetically easy to work with, generates
readily removable byproducts, does not require an additional
base, and is commonly employed in industrial settings (3).

For substrate selection, the web platform Reaxys was used to
identify a list of commercially available carboxylic acids and
primary alkyl amines. Additional filtering of the results was
performed to limit molecular weight to <500 g/mol (to avoid
peptides) and eliminate incompatible functional groups (e.g.,
diamines, diacids, hydroxyl groups, compounds that contain
both an acid and an amine, etc.). The remaining compounds
encompassed >5,000 carboxylic acids and >3,500 amines to
evaluate for training set selection. Of note, the number of pos-
sible amine and acid combinations is still greater than 107,
which far exceeds experimental viability.

Developing a comprehensive model requires a system that
provides a wide range of descriptor values and experimental
reaction outputs (i.e., variance in reaction rate: fast, moderate,
and slow) (15). In order to select representative carboxylic acid
and amine substrates, chemical space was first defined using the
dimensionality reduction technique of principal component
analysis (PCA) (16–21). Molecular descriptors [i.e., Sterimol
values, natural bond orbital (NBO) partial charges, and mini-
mum electrostatic potential (22)] used for PCA were obtained
by submitting the filtered substrates to a molecular mechanics
(MM) gas-phase conformational search using the OPLS3e force
field (23). The lowest energy conformer identified was submit-
ted for a Gaussian density functional theory (DFT) single-
point calculation [B3LYP/6-31G*, SMD(THF)]. Fig. 1B is a
representative depiction of the acid and amine substrates plot-
ted in three-dimensional principal component (PC) space (21).

K-means clustering (24, 25) was employed on five-
dimensional PC space for both the carboxylic acids and amines.
The number of clusters defined was largely informed by consid-
ering future experimental work that would demand a feasible
number of substrates for rate collection. We also strived to
include a proportionate number of clusters from the possible
acids and amines and to employ the elbow method (SI
Appendix, Fig. S2) to provide insight into the optimal number
of clusters (26). As a result, we hypothesized that 22 acids (Fig.
1C) and 16 amines (Fig. 1D) would provide adequate diversity
for statistical modeling and practicality for experimental work.
From the identified clusters, substrates were selected to maxi-
mize the diversity in the sample set by picking one substrate
from each cluster based on its proximity to the centroid (i.e.,
cluster center), cost of the material, and assay compatibility.

Experimental Data Collection. The k (in M�1�min�1) of the
coupling reaction between the amine 4 and the activated acid 3
was selected as the reaction output. Though yield could be
employed as the measured output, meaningful measurements
of low-yielding reactions would be difficult, and yields would
not distinguish between rapid reactions with low barriers and
slow reactions with high barriers. By contrast, reaction rate can
reliably be measured across many orders of magnitude. A
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reaction k at a given temperature and known initial reactant
concentrations can be used to determine yield at different time-
points when side reactions are mitigated and the product is
stable. The ability to predict reaction rate (even as a range of
values due to model uncertainty) has benefits in terms of
kinetic modeling, as well as practical considerations for experi-
mentalists (i.e., what concentration/temperature and how long
a reaction should be performed) (27).
Reaction rates were collected by monitoring the concentration

of remaining amine 4 upon addition to the pregenerated acti-
vated acid 3 at 25 °C (Fig. 2A). Amide couplings can often pro-
ceed with near-stoichiometric conversion due to the lack of side
reactions; however, reactions that are inherently slow allow other
pathways to compete. In our assay, the unreacted amine was
quenched with 2,4-dinitrofluorobenzene (6, Sanger’s reagent) to
yield the colored adduct 7 (Fig. 2B), which was quantified by
ultra-performance liquid chromatography (UPLC) coupled to a
photodiode array detector and normalized against an internal
standard (8, 2,6-dinitrotoluene) (28).
Mitigation of amine side reactions is necessary in order to

ensure meaningful reaction rate measurements were collected.
In some cases, we observed unexpectedly high amine conver-
sion after 1 min, which we attributed to either reaction of cer-
tain amines with carbon dioxide to form ammonium carbamate
salts (4fi9) (29, 30) or the presence of unreacted CDI, result-
ing in formation of urea-type products (4!10) (31) (Fig. 2C).
Since CO2 is generated during acid activation Fig. 2A and is
known to impact the rate of amide couplings (30), we utilized
three freeze-pump-thaw cycles following activation to remove
any CO2 from the system. For acid activation, control studies
using 1H-NMR showed that a modified protocol using a more
concentrated reaction mixture (0.2 M) for an extended time
(18 h) consistently showed complete activation for a variety of
substrates. While exhaustive mass balance analysis was not per-
formed for every coupling, experiments that showed unexpect-
edly high initial amine conversion or a premature plateau in
amine consumption were repeated to obtain reliable kinetic val-
ues. The product for each combination of acid and amine was
also isolated and characterized to confirm that the desired
amide coupling occurred (SI Appendix).
The sheer number of acid/amine combinations (352 in total)

precluded exhaustive rate measurements of each combination.
We therefore pursued further curation to a sufficient number
of diverse couplings representative of reactivity, with the goal of
ultimately predicting behavior for substrates outside of the

training set. Our objective was twofold: collect as few rates as
possible while ensuring 1) every acid and amine in the training
set was represented in the dataset and 2) the collected rates
spanned a wide range. This was achieved by collecting 44 abso-
lute rates in duplicate, which spanned five orders of magnitude.
For reference, assuming a reaction performed at 0.5 M, this
span in rates translates to the difference between requiring 5
min vs. 4 d to achieve 97% conversion. This rate range suggests
that the training set encompasses the range of chemical space
presumably required for model development.

Molecular Descriptor Acquisition. Physical organic molecular
descriptors serve to quantify steric and electronic substrate fea-
tures using mathematical relationships (6, 32). In turn, reaction
rate can be correlated to interpretable molecular descriptors. Our
approach exploits descriptors from either the acid or amine com-
ponent individually, which allows for a mix-and-match approach
to subsequent rate predictions rather than requiring descriptors
be calculated for each specific combination of substrates. Compu-
tational analysis of both acid 1 and amine 4 are key variables, but
the acid also assumes several other forms during the course of the
reaction, such as a carboxylate (deprotonated 1) and acyl imidaz-
ole 3. Thus, we obtained molecular descriptors for these four crit-
ical reaction components (1, carboxylate form of 1, 3, and 4).
This was accomplished through modification of the computa-
tional procedure initially used for PCA. We employed a higher
level of theory and included conformational flexibility, since
many molecular descriptors can differ considerably as a function
of conformation (33). A MM gas-phase conformational search
using the OPLS3e force field produced a representative ensemble
of conformers (23). All conformations within 3 kcal/mol of the
lowest energy conformer were subjected to DFT optimization
[B3LYP/6-311++G(d,p)] and single-point energy [M062X/6-
311++G(d,p), SMD(THF)] calculations using Gaussian. Molec-
ular descriptors appropriate for the various forms of the substrates
were determined, and from the optimized structures for all con-
formers of a given substrate, the molecular descriptors were
extracted. Molecular descriptors (SI Appendix and Dataset S2)
acquired include NMR chemical shifts, infrared (IR) frequencies,
NBO partial charges, bond lengths, bond angles, dihedral angles,
percent buried volume (%Vbur), and Sterimol values (6). Each
descriptor was calculated as the Boltzmann weighted average to
convey the dynamic nature of experimental chemistry, combat-
ting the static picture of a single conformer. The maximum/mini-
mum values for each descriptor, as well as the descriptor values
from the lowest energy conformer, were also collected.

Model Development. Multivariate linear regression (MLR)
analysis using a forward stepwise algorithm was performed by
regressing the DFT-derived molecular descriptors to the mea-
sured ln(k), as it is proportional to the Gibb's free energy of
activation (ΔG‡) (6). The original 44 couplings were split
70:30 into training (31 couplings, black squares) and test (13
couplings, red squares) sets using a pseudorandom automated
process in the algorithm. Model candidates were subsequently
evaluated using statistical metrics: [R2, leave one out (LOO),
k-fold (k = 5)] (6). While data collection was in progress, pre-
liminary models were utilized to predict couplings not yet
included in the dataset, allowing us to identify acid and amine
combinations that would provide rate data in regions where
experimental data were sparse (10).

A model for the coupling of carboxylic acids and primary
alkyl amines with CDI using Boltzmann averaged descriptors is
shown in Fig. 3. Models using descriptors from the lowest

Fig. 2. (A) Reaction under study. (B) Amine-quenching reaction, noting colored
amine adduct 7 and internal standard (8, 2,6-dinitrotoluene). (C) Alternative
amine consumption pathways by CO2 and CDI.
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energy conformer, maximum and minimum descriptor values,
and Boltzmann averaged descriptors are statistically similar and
are presented in SI Appendix. Given that descriptors are first
normalized, the relative signs and magnitudes of equation coef-
ficients can be analyzed to indicate the relative importance of
such features. We have presented the model using Boltzmann
averaged descriptors as it is hypothesized to most accurately
reflect the relevant species involved in the amide bond–forming
step (34). In this model, the carboxylate NBO partial charge at
the carbonyl carbon (Fig. 3, red) has the largest contribution to
determining the reaction rate. It reveals that a more positive
partial charge results in a slower reaction. While this may seem
counterintuitive, the same dependence on NBO charge for the
acyl imidazole intermediate is also observed. We interpret this
to indicate that while a greater positive charge on the central
carbon may be more susceptible to attack from the amine, it is
also less prone to expulsion of the imidazole leaving group as
required by the mechanism. The amine Sterimol B1 (Fig. 3,
blue) refers to the minimum distance perpendicular to the pri-
mary L axis, which was defined along the N–Cα bond. This ste-
ric descriptor indicates that the bulkier the amine, the slower
the reaction will proceed. The amine B1 term also classifies the
amine as α-branched or not, which affects both the steric and
electronic nature of the coupling partner. A steric descriptor for
the acid component also arises, indicating that the greater
%Vbur within a 2.0 Å sphere about the carbonyl carbon of the
carboxylate (Fig. 3, red) reduces the rate. Lastly, the higher the
carbonyl stretching frequency of the activated acid (Fig. 3,
green), the faster the reaction rate. This describes the amine
attack of the activated acid to form the tetrahedral intermedi-
ate, which is likely rate determining.
Notably, three terms in the model equation describe the acid

component, whereas only one term describes the amine. This
suggests that the rate is largely dictated by the molecular fea-
tures of the acid coupling partner. Examination of experimental

rates reveals that the acid component largely determines the
magnitude of the rate and the amine has only a modest impact.
For a chemical system to be amenable to statistical modeling,
overlapping structural features must be present to provide a
means to compare reactions (e.g., carboxylic acid functional
group, primary amine functional group, and CDI as a coupling
agent). Thus, we hypothesize that the subtle differences in rate
that arise from the various primary alkyl amines do not merit a
significant contribution to the model. More dramatic amine
differences (i.e., primary vs. secondary amines and aryl amines)
would likely cause other amine terms to be required in model
construction. Of note, some of the least hindered amines show
the slowest overall rate, which further reinforces that for pri-
mary amines, the size of this component is not a major contrib-
utor to the overall rate. Regarding the statistical metrics, we
obtained reasonable values for R2, LOO, and k-fold even
though our training set comprised <10% of the possible com-
binations of amines and acids (31 out of 352), which further
highlights the success of our PCA and clustering protocols.

The effectiveness of the model was further explored by exter-
nal validation. A set of substrates with motifs that are com-
monly found in pharmaceuticals and that were structurally
unique from those in the original training set were selected to
probe the model’s ability to make predictions for diverse cou-
plings. The DFT-derived molecular descriptors of the external
validation amine and acid fragments are computed. These
descriptor values are then inserted into the MLR model (Fig.
4A) to predict the rate of the untested reaction. The model in
Fig. 4A is fit using all the training set data by no longer with-
holding a test set, ensuring the model is provided as much data
as possible to make accurate out-of-sample predictions. The
updated model utilizes the same general features, albeit with
slightly different coefficients. This model is used in conjunction
with the unseen substrates’ molecular descriptors to predict the
external validation coupling rates (red stars).

The evaluation of several external couplings (Fig. 4A, red
stars) demonstrates the utility and limitations of the model. A
total of seven reactions (Fig. 4C) using acid and amine sub-
strates not provided for the initial model construction were
evaluated. Overall, the predictions were found to be consistent
within one order of magnitude of the measured value, with a
few exceptions. Compared to the experimental rates, the rela-
tive ordering of predicted rates is in agreement for five out of
seven external validation couplings. It should be noted that
amine substrates similar to those used in couplings AcC-NC
and AcE-NE are found in the training set, but as stated earlier,
the amine component has less impact on the reaction rate.
Coupling AcC-NC was predicted well, but coupling AcE-NE
fails to be predicted within a reasonable degree of error. The
differences in the model’s predictive capacity for these two cou-
plings can be explained by the nature of the training set. There
are α-tertiary carboxylic acids (i.e., Ac6 and Ac17) included in
the training set that resemble the acid substrate used in cou-
pling AcC-NC. In contrast, there are no ortho substituents on
the acid larger than a methoxy group in the training set. Thus,
the model has not been trained to anticipate the impact of
larger groups, namely, the ortho-phenyl group from the acid,
used in coupling AcE-NE. The modest performance of predic-
tions involving amine diastereomers NBendo and NBexo is con-
sistent with the low sensitivity given to amine sterics by the
current model. Perhaps of most consequence, the CDI-
mediated amide coupling used in the synthesis of sunitinib, a
U.S. Food and Drug Administration (FDA)-approved cancer
drug, was effectively predicted (29). The model was able to

Fig. 3. MLR equation and model plotted as predicted vs. measured
ln(k) and representations of the molecular descriptors used in the model.
Reaction half-life (t1/2) calculated for second-order kinetics and time to 97%
conversion (denoted with superscript letters a and b, respectively) for reac-
tions with initial amine and CDI concentrations of 0.5 M.
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predict this coupling rate within one order of magnitude. This
is particularly significant as the measured rate falls outside the
range of the training set, requiring the model to extrapolate in
order to make the prediction.
As the model utilizes sparse data in its construction, one can

envision feeding this model more data as they are obtained. In
short, we intend to build a living model to which data can be
added for continuous improvement through retraining of the
model (Fig. 4D). To demonstrate the value of doing so, the col-
lective training set and external validation set data were com-
bined to generate another model (Fig. 4B). This is an added
benefit of our training set design approach, as it allows any iden-
tified shortcomings in the model to be trained in using the next
iteration of substrates. Fig. 4B shows that while the retrained
model’s general mechanistic features are similar, the subtle differ-
ences in the selected descriptors can better incorporate what
were previously outliers from the external validation set (Fig. 4B,

x; predictions tabulated in Fig. 4C), resulting in an improvement
to the test R2 from 0.715 to 0.752.

Conclusion. In summary, we have demonstrated the ability to
use a rationally designed series of carboxylic acids and primary
alkyl amines under standardized conditions to construct interpret-
able, mechanistically insightful, and predictive statistical models
for the rate of amide couplings. The molecular features important
to determining reaction rate were elucidated, indicating electronic
descriptors are necessary to explain the acid component, and
steric descriptors for both reaction components are required. The
dataset design results in coupling rates that span five orders of
magnitude, which allows our MLR model to predict untested
coupling reaction rates within a large range using substantially
fewer data points than would be required by HTE. We report
most rate predictions of previously unseen couplings within one
order of magnitude. Further expansion of the training set to

Fig. 4. (A) MLR model, using the same descriptors as the Fig. 3 model, used to predict rates of external validation amide couplings. (B) Model retrained
on all training and external validation data (pseudorandom 70:30 training/test split), where x indicates a coupling previously in the external validation set.
(C) External validation couplings with their measured rates and predicted rates based on the MLR model in A and B. (D) Living model concept schematic.
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include more diverse substrates, as well as additional substrate
classes such as secondary amines, will improve accuracy and offer
greater insight into the factors controlling these ubiquitous reac-
tions. We believe these results validate our data science–based
workflow for creating a predictive model to cover a diverse chem-
ical space while minimizing extensive data collection and believe
that this strategy can be applied to other classes of reactions that
are of interest to chemists.

Materials and Methods

Substrate and activated acid conformational searches were performed using MM
gas-phase computations implemented via MacroModel (35). All DFT-level molec-
ular descriptors were extracted from Gaussian (36) output files using an
in-house Python script. PCA was performed on DFT molecular descriptors at the
B3LYP/6-31G*, SMD(THF) level of theory (Dataset S1). DFT descriptors from a
geometry optimization [B3LYP/6-311++G(d,p)] and single-point energy
[M062X/6-311++G(d,p), SMD(THF)] calculation were used to for model genera-
tion (Dataset S2). Kinetic data were collected by monitoring unreacted amine
quenched with 2,4-dinitrofluorobenzene to yield a colored adduct, which was
quantified by UPLC coupled to a photodiode array detector and normalized

against an internal standard (2,6-dinitrotoluene). Beginning with a set of molec-
ular descriptors hypothesized to have mechanistic significance for the selected
training set substrates, stepwise linear regression was performed using in-house
Python scripts. Statistical models identified were evaluated for robustness by
both cross- and external validation. Greater detail for PCA, the experimental pro-
cedure for rate determination, computational methods used to obtain molecular
descriptors, and the model development process are provided in SI Appendix.

Data Availability. All study data are included in the article and/or supporting
information.
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