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Background: Current TB treatment for children is not optimized to provide adequate drug levels in TB lesions.
Dose optimization of first-line antituberculosis drugs to increase exposure at the site of disease could facilitate
more optimal treatment and future treatment-shortening strategies across the disease spectrum in children
with pulmonary TB.

Objectives: To determine the concentrations of first-line antituberculosis drugs at the site of disease in children
with intrathoracic TB.

Methods: We quantified drug concentrations in tissue samples from 13 children, median age 8.6 months, with
complicated forms of pulmonary TB requiring bronchoscopy or transthoracic surgical lymph node decompres-
sion in a tertiary hospital in Cape Town, South Africa. Pharmacokinetic models were used to describe drug pene-
tration characteristics and to simulate concentration profiles for bronchoalveolar lavage, homogenized lymph
nodes, and cellular and necrotic lymph node lesions.
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Results: Isoniazid, rifampicin and pyrazinamide showed lower penetration inmost lymph node areas compared
with plasma, while ethambutol accumulated in tissue. None of the drugs studied was able to reach target con-
centration in necrotic lesions.

Conclusions: Despite similar penetration characteristics compared with adults, low plasma exposures in chil-
dren led to low site of disease exposures for all drugs except for isoniazid.

Introduction
Adequate exposure of antituberculosis drugs at the site of
disease is required for sterilization of tuberculous lesions.
Only half of the one million children estimated to have TB are
treated each year.1 Those who do receive treatment are often
underdosed using current weight-based treatment guide-
lines.2 Children typically have lower plasma concentrations
for the same milligrams per kilogram dose compared with
adults for most first-line antituberculosis drugs, particularly
for rifampicin, an important sterilizing drug.3 Additionally,
young children, those with the highest risk of TB, are also at
risk of developing more severe forms of TB, with increased
mortality.

The treatment of paediatric intrathoracic TB (the most com-
mon formof TB in children, occurring in.75%of cases), including
drug regimens, dosing and treatment duration, has historically
been extrapolated from efficacy trials in adults, with limited con-
sideration of differences in the clinical spectrum of disease or the
pharmacokinetic (PK) variability observed in children.Whilemany
children with TB have paucibacillary disease limited to the medi-
astinal lymph nodes (LN), many (up to 40%) have more exten-
sive forms of disease, including miliary TB, parenchymal
pathology or complicated LN involvement with breakthrough
to endobronchial disease.4 Although a shorter treatment of
4 months at standard doses was recently shown to be non-
inferior to the currently recommended first-line 6 months treat-
ment in children with non-severe intrathoracic and extrathoracic
LN disease in the SHINE trial,5 children with TB currently still re-
ceive the same regimen, regardless of disease spectrum, sever-
ity and bacillary burden.

Antituberculosis drug dosing is based on target drug concen-
trations measured in plasma, despite evidence showing a low
correlation between drug concentration measured in plasma
versus at sites of disease, where penetrationmay be both lesion-
and drug-specific.6,7 To date, few studies in humans have
evaluated the penetration of drugs into intrathoracic TB lesions.
The limited studies to date have been in adults and have focused
on lung tissue,6,8–10 despite the fact that TB can be thought of as
a lymphatic disease.11

Understanding drug exposure at the site of disease could fa-
cilitate the design of more-effective and potentially shorter regi-
mens in children across the disease spectrum, and may have
broader therapeutic implications, including for adults. We aimed
to characterize the concentrations of first-line antituberculosis
drugs at the site of disease in children with complicated in-
trathoracic TB requiring bronchoscopy or surgical LN decompres-
sion (SD), and to compare drug exposures in children with adult
levels in plasma and lesions, against current targets correlated
with efficacy.6,7,12–20

Patients and methods
Study design and setting
From November 2018 through March 2019, we prospectively enrolled
children with complicated intrathoracic TB routinely referred to
Tygerberg Hospital, Cape Town, South Africa. Children underwent bron-
choscopy or transthoracic surgical LN decompression (SD) for diagnosis
or to establish airway patency. Children were eligible if they were on a
rifampicin-containing regimen for at least 10 days.

Ethics statement
The Health Research Ethics Committee at Stellenbosch University (N18/
05/059) approved this study. Written informed consent was obtained
from parents/legal guardians.

Clinical procedures
On the day of the procedure, antituberculosis treatment was adminis-
tered by the study team after an overnight fast. The study was designed
to ensure that different participants contributed samples at different
timepoints, from peak plasma to the end of the distribution phase, to
reconstruct the PK profile at the site of disease, with dosing times
planned at 2 h before SD, or randomized to 2, 4 or 6 h prior to bronchos-
copy. Randomization in the SD group was not feasible owing to the
complexity and duration of the procedure. Treatment consisted of
weight-banded once-daily oral doses of isoniazid (10–15 mg/kg), rifam-
picin (10–20 mg/kg) and pyrazinamide (30–40 mg/kg) using fixed-dose
dispersible paediatric combinations (Table S1, available as
Supplementary data at JAC Online). Ethambutol (15–25 mg/kg) was
added in children who were HIV-coinfected and at clinical discre-
tion.21,22 Children with significant airway obstruction received oral
prednisone (2 mg/kg daily).

Plasma and tissue sampling
Venous or arterial blood sampleswere collected pre-dose, and at approxi-
mately 2, 4 and 6 h post-dose. Blood sampling was targeted to be
coupled to the site of disease sample and was recorded in relation to
the time of bronchoscopy/SD. Bronchoalveolar lavage (BAL) samples
were taken from children undergoing bronchoscopy and, when available,
endobronchial LN biopsy specimens were collected for PK analysis and
microbiological investigation. Lymph node tissue samples were collected
during SD for PK, histology and microbiology. Depending on the size and
consistency of lymph node fragments, samples were collected in either
homogenizing tubes or in Cryomold for PK analysis. Further details are de-
scribed in the Supplementary data.

Analytical methods
Assays to quantify rifampicin, isoniazid, pyrazinamide and ethambutol
concentrations in plasma, BAL and LN tissue used validated methods.6

Plasma and BAL samples were analysed using a validated high-
performance liquid chromatography-tandem mass spectrometry
(LC-MS/MS) assay.6,8 LN material obtained through endobronchial biopsy
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and liquefied LNs from SD were analysed using previously described vali-
dated LC-MS/MS methods.6,8 Solid SD specimens larger than 5 mm were
further classified by histology on frozen section into cellular, necrotic, and
mixed lesions (cellular with necrosis in the background). For these speci-
mens, drug concentrations were measured from pathologically distinct
regions using laser capture microdissection (LCM) combined with
LC-MS/MS as previously described.8

PK modelling and simulations
Published rifampicin, isoniazid and pyrazinamide population PK mod-
els in children, and an adult ethambutol model, were optimized, and
the final models were fit to the new data.23,12 All drug PK models in-
cluded weight-based allometric scaling on clearance and volume,
and for rifampicin and isoniazid, included postmenstrual age as a cov-
ariate on clearance.23 To model ethambutol in children, South African
adult PK parameters from Jönsson et al.12 were scaled allometrically
to the children’s weights. The parameters from these models were
fixed and the model fit evaluated and subsequently re-estimated
where necessary.

Using an established method,7 site of disease PK was described by
equation 1 where each lesion compartment was linked to the plasma
PK model (see Figure S1).

dCSOD
dt

= kpl−SOD × RSOD−pl ×
Aplasma

Vplasma
− CSOD

( )
(1)

CSOD represents the drug concentration in LNs or BAL, kpl−SOD are inter-
compartment rate constants for the transfer of drug from the plasma
to the site of disease, RSOD–pl are the penetration coefficients between
site of disease and plasma, and Aplasma/Vplasma is the drug concentration
in plasma at time t.

Concentration–time profiles and derived area under the concentra-
tion–time curve from 0 to 24 h (AUC0–24) at steady-state were simulated
for the median age and weight of children in the cohort (8.6 months,
8.2 kg) using our cohort plasma and tissue estimates. To compare these
outputs with adult exposure from the same population, we used pub-
lished population PKmodels from South African adults for rifampicin, iso-
niazid, pyrazinamide and ethambutol.12–15 Concentration profiles for the
four drugs in the different compartments were compared with appropri-
ate inhibitory and bactericidal target concentrations. We used published
distributions of wild-type MIC for plasma, BAL, homogenized LN and
mixed tissue, intracellular macrophage IC50 for cellular lesions, and case-
um MBC for necrotic tissue or caseum (Table S2). Further details are de-
scribed in the Supplementary data.

Data sharing
Data underlying these findingsmay be requested from the corresponding
author.

Results
Participant characteristics
Weenrolled 13 childrenwho collectively underwent 15 procedures
including eight bronchoscopies and seven SDs to resolve severe
airway obstruction due to complicated TB. Baseline clinical and
radiological characteristics are shown in Table 1, and individual
participant characteristics in Table S3. All children had evidence
of severe extensive intrathoracic disease on chest imaging
(Figure S2). All were bacteriologically confirmed; one child had iso-
niazid monoresistant TB and a second had multidrug-resistant TB
which was only diagnosed following the procedure.

Plasma and tissue samples
LN samples were obtained in 4/8 (50%) of the bronchoscopy
cases through endobronchial biopsy, and in all seven (100%)
SD cases (Table S3). Histological examination of all SD tissue

Table 1. Patient characteristics at the time of procedure by study group in
children with complicated pulmonary tuberculosis

Characteristic
Bronchoscopy

(N=8)
Surgical decompression

(N=7)

Male sex, n (%) 3 (37.5) 4 (57.1)
Median age, months (IQR) 17.6 (6.3–41.0) 6.9 (3.4–17.2)
Median weight, kg (IQR) 9.9 (8.2–12.4) 7.1 (4.1–8.3)
Median weight-for-age
Z-scorea (IQR)

0.1 (−1.3 to 0.8) −1.0 (−4.2 to −0.1)

HIV-positiveb, n (%) 1 (12.5) 0 (0.0)
Child has current TB source
case, n (%)

5 (62.5) 5 (71.4)

TB disease type, n (%)
PTB only 6 (75.0) 6 (85.7)
PTB and EPTBc 2 (25.0) 1 (14.3)

Previous TB episode, n (%) 1 (12.5) 0 (0.0)
Median days on treatment
(IQR)

64 (60–73) 34 (28–74)

Regimen, n (%)
HRd 2 (25.0) 0 (0.0)
HRZe 2 (25.0) 1 (14.3)
HRZE 3 (37.5) 5 (71.4)
RZELf 1 (12.5) 1 (14.3)

Median dose, mg/kg (IQR)
Rifampicin 12.8 (12.1–16.0) 12.3 (11.1–15.0)
Isoniazid 12.8 (11.4–14.8) 12.2 (11.1–12.7)
Pyrazinamide 28.5 (23.8–30.9) 30.5 (25.3–34.2)
Ethambutol 20.2 (18.6–22.8) 20.8 (20.2–24.1)

Receiving oral steroids,n (%) 6 (75.0) 7 (100.0)
Chest X-ray
characteristics, n (%)
Consolidation 7 (87.5) 4 (57.1)
Collapse 3 (37.5) 1 (14.3)
Cavity 1 (12.5) 0 (0.0)
Paratracheal nodes 3 (37.5) 4 (57.1)
Hilar nodes 6 (75.0) 5 (71.4)
Airway compression 6 (75.0) 6 (85.7)
Pleural effusion 1 (12.5) 0

Abbreviations: EPTB, extrapulmonary TB; PTB, pulmonary TB; H, isoniazid;
R, rifampicin; Z, pyrazinamide; E, ethambutol; L, levofloxacin.
aAnthropometric Z scores were calculated based on WHO growth stan-
dards.
bHIV-infected child on abacavir, lamivudine and Lopinavir/ritonavir.
cEPTB included: group 1– disseminated (N=1) and miliary (N=1); group
2– abdominal (N=1).
dOne case without prior bacteriological confirmation was diagnosed with
multidrug-resistant TB detected on the day of the procedure.
eOne child received HRZ plus ethionamide for disseminated disease.
fOne case of isoniazidmono-resistance diagnosed at the time of TB treat-
ment initiation.
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fragments showed that most specimens were characterized by
necrotizing granulomatous inflammation. None to minor
residual normal tissue was identified in LNs, and only one had
preserved architecture displaying reactive follicular hyperplasia.
Ziehl-Neelsen staining revealed acid-fast bacilli in four of the se-
ven samples, of which two had numerous bacilli, which were
more abundant in necrotic foci. While none of the BAL samples
was culture-positive, 4/7 SD cases were culture-positive. MICs
were obtained for two of the Mtb isolates and values were within
normal MIC range (Table S3).

The concentrations of rifampicin, isoniazid, pyrazinamide and
ethambutol were measured in 44 plasma, and in 65 BAL and LN
samples collected at 2 to 8 h post-dose. Drug concentrations in
BAL could only be determined in 4/8 (50%) children due to urea
concentrations below the limit of quantification in BAL, a require-
ment for dilution factor calculation. LCM was performed in nine
frozen LN specimens from four participants, allowing for the spa-
tial quantification of drugs within the spectrum of different tissue
compartments identified (necrotic, cellular, or mixed lymphoid)
(Figure 1). The longitudinal PK profiles showed that there was
large variability in the concentrations of all drugs amongst tissue
compartments, between participants, and within similar lesions
in the same participant (Figure 2).

Modelling of plasma PK and tissue distribution
Model building used prior published paediatric population PK
models and estimates for the plasma PK model were similar to
published parameters (Table S4). The final PK estimates are
shown in Table 2. The rate and penetration coefficient estimates
for each drug are shown in Table 3. Simulated PK profiles with
their relevant concentration targets and AUC0–24 values for tissue
compartments are shown in Figure S3 and Table S5, respectively.

Rifampicin
Rifampicin had high exposure in cellular tissue with higher
concentration and AUC0–24 levels compared with plasma.
Modelling results showed a penetration coefficient of 1.37 (95%
CI: 0.87–1.87) for cellular tissue. Necrotic regions had the lowest

rifampicin concentrations and the lowest penetration coefficient
(0.55, 95% CI: 0.477–0.641). Rifampicin concentrations were be-
low the upper endof theMIC range for.50%of the dosing interval
in all tissue compartments except necrotic regions (Figure S3).

Isoniazid
Isoniazid had good penetration into necrotic tissue with an esti-
mated penetration coefficient of 0.84 (95% CI: 0.80–0.88), but
did not reach the high caseum MBC (casMBC) target of 128 mg/
kg. The penetration coefficient was lower in the cellular region
of granulomas (0.56, 95% CI: 0.32–0.79), but concentration le-
vels were above the MIC for 75% of the 24 h dosing profile.
Overall, isoniazid exposure was above the MIC for approximately
50% of the dosing interval for all tissue compartments except
necrotic lesions.

Pyrazinamide
Drug penetration coefficient estimates were relatively low and
similar for cellular (0.42, 95% CI: 0.36–0.48) and necrotic lesions
(0.40, 95% CI: 0.30–0.50). Despite low plasma pyrazinamide con-
centrations, our simulations showed pyrazinamide exposure was
above the ‘acidic’macrophage MIC for approximately 54% of the
dosing interval in cellular compartments and below target
casMBC for necrotic lesions.

Ethambutol
High penetration into all compartmentswas observed for etham-
butol, and penetration coefficients ranged from 1.11 (95% CI:
0.43–1.95) in necrotic lesions, to 6.17 (95% CI: 0.91–14.4) in cel-
lular tissue. In all compartments except for necrotic lesions, eth-
ambutol appeared to accumulate in tissue. However, similar to
other first-line drugs, ethambutol concentrations were never
higher than its casMBC target and in other tissue types were
above the lower range of their respective targets for only 29%–

50% of the dosing interval.

Figure 1. Laser capturemicrodissection in a representative lymph node specimen. Haematoxylin and eosin-stained lymph node (frozen section) con-
taining two lesions (A) and its corresponding serial section taken for laser capture microdissection (B). Regions 1–3 represent the areas dissected for
drug quantification by LC-MS/MS. Example histology of the different areas dissected are shown and correspond to necrotic areas of the lesion (A, B1
and C), the cellular layer of the lesion (A, B2 and D), and a lymphocyte rich region (A, B3 and E). This figure appears in colour in the online version of JAC
and in black and white in the print version of JAC.
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Paediatric exposures compared with adult predictions
Penetration coefficient values for necrotic lesions were similar
between children and adults (Table 3). Additional simulations
to compare first-line drug concentration–time profiles of lesions
in adults and children are shown in Figure 3. Mean values of the
simulated steady-state AUC0–24 in children compared with
adults for plasma, cellular and necrotic lesions are shown
in Table 4.

Plasma rifampicin exposures were similar to adult reference
values (AUC0–24 of 41.7 versus 38.3 mg·h/L).15 However, only
15% of the 1000 simulated rifampicin AUC0–24 in plasma
were above the proposed adults target of approximately
42 mg·h/L.24–26 Children did appear to have more favourable
drug penetration in LNs compared with penetration into lung le-
sions observed in adults, particularly in cellular regions, where the
penetration coefficientwas 1.37 (95%CI: 0.874–1.87) resulting in
an AUC0–24 of 55.2 mg·h/L.

Isoniazid plasma concentrations were similar in children com-
pared with the simulated adult values (AUC0–24 of 25.3 versus
27.7 mg·h/L). Particularly low plasma pyrazinamide exposures
were observed compared with adult data (AUC0–24 of 248 versus
466 mg·h/L) and resulted in children having approximately only
half the exposure levels of adults in cellular and necrotic lesions.
For ethambutol, the AUC0–24 in children was six-fold lower than
the simulated adult value of 78.5 mg·h/L. There were no prior
adult data on ethambutol concentrations at pulmonary site of
disease to allow comparison with paediatric data.

Discussion
We report for the first time, data on drug concentrations and ex-
posure into intrathoracic LNs and BAL in children with severe in-
trathoracic TB. Penetration into the site of disease was similar
in children compared with adults. However, the standard

Figure 2. Raw PK data for each drug in each lesion type. Log-scale concentration–time profiles are shown for five lesion types and four drugs by re-
spective panel. Plasma concentrations over time for each individual were measured at multiple timepoints after the time of drug administration and
before bronchoscopy or surgical decompression and are shown as individual lines of different colours. Lesion concentrationsweremeasured at a single
timepoint (time of resection) per subject and are represented by circles of different colours that correspond to their individual subject plasma line. The
number of patients (and observations) for each lesion and drug are shown in the bottom, right corner of each image. Abbreviations: BAL, bronchoal-
veolar lavage; LN, lymph node; INH, isoniazid; RIF, rifampicin; PZA, pyrazinamide; EMB, ethambutol. This figure appears in colour in the online version of
JAC and in black and white in the print version of JAC.
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Table 2. Final plasma pharmacokinetic parameters of first-line antituberculosis drugs in children with complicated pulmonary tuberculosis

Parameter Isoniazid Rifampicin Pyrazinamide Ethambutol

Tlag (h) 0.4 (1.00) 0.961 (14.3) NA 0.493 (13.8)
ka (h

−1) 0.654 (15.1) 0.592 (13.3) 0.586 (14.9) 0.324 (7.00)
CL/F (L/h) 7.36 (29.8) 4.64 (8.90) 0.977 (9.90) 15.8 (18.0)
Vc/F (L) 8.72 (36.8) 8.27 (11.2) 5.23 (13.3) 8.59 (5.60)
Q (L/h) 0.0751 (76.2) NA NA 7.65 (2.30)
Vp/F (L) 12.1 (59.5) NA NA 87.2 (2.30)
TM50 (weeks) 49.0 (FIXED) 58.2 (FIXED) NA NA
Hill 2.19 (FIXED) 2.21 (FIXED) NA NA
IIV CL/F 0.817 (41.5) 0.187 (47.9) 0.0538 (59.7) 0.24 (36.8)
IIV Vc/F NA 0.48 (48.3) 0.0629 (68.2) NA

Abbreviations: Tlag, lag in absorption time; NA, not applicable; ka, rate of absorption; CL, clearance; Vc, central volume of distribution; Q, inter-
compartmental clearance; Vp, peripheral volume of distribution; F, bioavailability; TM50, post-menstrual age at 50% of adult clearance; Hill, steepness
of the maturation function; IIV, inter-individual variability. Parameters scaled to 8.6 month, 8.2 kg individual. Individual clearance and volume of dis-
tribution values were adjusted according to allometric scaling on weight, CLi=CLstd·(WT/8.2)0.75, V1i=V1std·(WT/8.2)1, Qi=Qstd·(WT/8.2)0.75, V2i=
V2std·(WT/8.2)1.
Values in parentheses are the percentage relative standard error (RSE).

Table 3. Pharmacokinetic parameters of antituberculosis drugs according to the site of disease in children with pulmonary tuberculosis

Rate

Ratio

Children estimate Adult reference

Isoniazid
BAL 20a 2.86 (1.53–2.91)
Homogenized LN 20a 0.513 (0.28–0.75)
Cellular 20a 0.556 (0.32–0.79) [0.228] (0.223–0.233)
Necrotic 20a 0.843 (0.80–0.88) [0.824] (0.776–1.01)
Mixed 2.58 (0.684–4.416) 0.486 (0.46–0.80)

Rifampicin
BAL 20a 1.13 (0.998–1.262)
Homogenized LN 20a 1.17 (1.044–1.296)
Cellular 0.639 (0.568–1.008) 1.37 (0.874–1.87) [0.348] (0.122–0.574)
Necrotic 20a 0.552 (0.477–0.641) [0.443] (0.251–0.635)
Mixed 20a 0.873 (0.725–1.07)

Pyrazinamide
BAL 0.218 (0.124–0.314) 20.4 (16–25)
Homogenized LN 20a 0.753 (0.63–0.88)
Cellular 20a 0.416 (0.36–0.48) [0.698] (0.597–0.799)
Necrotic 20a 0.395 (0.30–0.50) [0.394] (0.266–0.522)
Mixed 20a 1.4 (0.91–1.9)

Ethambutol
BAL 20a 1.34 (0.248–2.92)
Homogenized LN 20a 3.16 (0.16–6.74)
Cellular 0.574 (0.384–1.368) 6.17 (0.914–14.4)
Necrotic 20a 1.11 (0.430–1.95)
Mixed 20a 5.44 (2.15–10.5)

Abbreviations: BAL, bronchoalveolar lavage; LN, lymph node; NA, not applicable.
The rate (kpl in h−1, inter-compartmental rate constants for the transfer of drug from the plasma to the site of disease) and ratio (Rpl, the penetration coefficients
(ratios) between site of disease and plasma) for each drug and site of disease are shown together with the adult ratio coefficient (Strydom et al.7) in parentheses,
when available.
The following definitions were used for adult lesion: Cellular (defined as small cellular nodules); necrotic (caseum from closed nodule).
Values in parentheses are 95% CI. Values in square brackets are the adult reference.
aValues were fixed in model to assume an almost instantaneous penetration of the drug.
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WHO-recommended antituberculosis drug dosing resulted in low
plasma and consequently, low site of disease exposures for all
drugs except for isoniazid.

In our study, histopathological examination of SD tissue frag-
ments showed predominantly necrotizing granulomatous in-
flammation, with little residual recognizable LN tissue. This was
probably a reflection of the nature of the procedure (decompres-
sion rather than complete LN excision) and disease severity, as
these LN were affected to the extent of causing airway compres-
sion. Acid-fast bacilli were seen on Ziehl-Neelsen staining in four
of seven SD samples, including two that were acid-fast bacilli
negative, after at least 4 weeks of TB therapy. Although
Ziehl-Neelsen staining does not differentiate viable from non-
viable organisms, it is possible that some viable organisms re-
mained in LNs after more than a month of treatment. Bacilli

were more numerous in necrotic foci. This is similar to data pre-
viously reported in animal models27 and in human adults.28

The histological spectrum of the tissue samples between
adults and children was similar, despite different excision loca-
tions. The penetration coefficients of necrotizing LNs in children
were remarkably similar to those of adult lung granulomas, sug-
gesting that penetration properties translate well between chil-
dren and adults for these lesions. The penetration was highest
for the two drugs with limited activity against quiescent myco-
bacteria: isoniazid and ethambutol. Conversely, the two drugs
with sterilizing activity, rifampicin and pyrazinamide, had caseum
exposures below their target concentrations (casMBC). A recent
ex vivomodel has shown that only rifampicin fully sterilizes bacilli
in caseum,29with a casMBCof 6.5 mg/L. In the in vivo rabbitmod-
el of active TB, pyrazinamide was reported to exert bactericidal
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activity on phenotypically drug-tolerant bacilli in hard-to-reach
caseous lesions.30

We present, to our knowledge, the first human data on pene-
tration of ethambutol into sites of disease compartments. Our re-
sults support the hypothesis that, despite its poor plasma-based
PK/pharmacodynamic (PD) profile, the efficacy of ethambutol
might be explained by the favourable penetration of this drug
into TB lesions.8 Despite being a polar drug,31 ethambutol accu-
mulated in all compartments relative to plasma and particularly
in the cellular areas where ethambutol targets intracellular ba-
cilli.17 Overall, ethambutol exposures in different compartments
were limited by the low plasma concentrations, which were sig-
nificantly lower than in adults (Cmax 2.3 versus 6.4 mg/L) and be-
low the MIC target. This is consistent with previous paediatric
studies, which showed erratic absorption and low concentrations
of ethambutol in children dosed at 10–20 mg/kg per day.32

Given our results, antituberculosis treatment in children could
benefit from higher ethambutol and rifampicin doses. The fa-
vourable penetration of ethambutol into LNs suggests that eth-
ambutol should be dosed at 25 mg/kg (that is, at the higher
end of the recommended 15–25 mg/kg) to achieve higher site
of disease exposure. This dose is considered safe but doses be-
yond 25 mg/kgmay be too high given ocular toxicity.33 For rifam-
picin, only 15% of simulated plasma AUC0–24 in children reached
the proposed adult target.24–26 These data again emphasize the
need for higher doses of rifampicin.34 Low exposure to rifampicin
is associated with worse treatment outcomes in children.35–39

Several ongoing trials are evaluating higher doses of rifampicin
of up to 50 mg/kg in adults, and short-term dosing of up to
70 mg/kg in children.40 In accordance with the national guide-
lines at the time of the study, pyrazinamide was administered
at 25 mg/kg rather than the current WHO recommended weight
bands of 30–40 mg/kg. Higher dosing will likely improve time
above the acidic MIC in cellular compartments butwill still remain
below the casMBC for necrotic lesions. We recommend that
where possible pyrazinamide should be dosed at the higher
end of its dosing range to maximize coverage in cellular lesions.

Future studies should include sample times that will better
characterize the absorption phase of the drugs studied and later

trough levels. For this initial study, the sample times were opti-
mized around the planned medical procedure time and Cmax to
ensure measurable drug concentration. Peripheral volume and
intercompartmental clearance estimates of isoniazid were
not consistent with previously reported parameters. Data
were collected only up to 6 h making this compartment difficult
to parameterize. Therefore, isoniazid simulations used previous-
ly published PK parameters with lesion parameters from our
model to ensure accurate prediction of terminal concentrations.
The macrophage IC50 and casMBC potency assays used to
measure drug potency at the site of disease are performed
in matrices that reproduce in vivo drug binding and correct for
protein binding. Therefore, our results are presented as total
concentrations.

Limitations of our study include the fact that we studied
a small sample of young children with severe forms of pulmon-
ary TB undergoing surgery at a single site, and thus external
generalizability should be evaluated further. All children were
anaesthetized at the time of the procedure, and particularly
those from the SD group received a significant number of con-
comitant drugs and intravenous fluids, all of which could have
affected drug disposition. The classification of the LN histology
on the fresh frozen tissue selected for PK into cellular, mixed
and necrotic was challenging in some of our study samples
due to freezing artefacts, absence of clear area demarcation
and the fragmented nature of the tissue samples. However, rou-
tine histology samples (formalin-fixed paraffin-embedded)
were usually available and provided guidance on interpretation
in areas that were difficult to classify on frozen section. Finally,
our PK/PD simulations in BAL should be interpreted with caution
given the limited number of children in whom BAL urea concen-
tration was successfully measured and the technical caveats
such as dwelling time and volume of instilled lavage fluid.

In conclusion, we have shown thatmeasuring the penetration
of antituberculosis drugs in intrathoracic LN compartments and
BAL in young childrenwas feasible and that the penetration coef-
ficients of first-line antituberculosis drugs into these compart-
ments were similar to adults. The overall plasma exposures of
all the drugs were low, particularly for ethambutol. Similarly, all

Table 4. Area under the curve (0–24 h) values comparing exposure of first-line antituberculosis drugs in children compared with adults

AUC0–24, mg·h/L, median (95% CI)a

Drug Subject Plasma Cellular Necrotic

Isoniazid Adult23 27.7 (23.8–32) 11.8 (10.1–13.6) 23.3 (20–26.9)
Child 25.3 (22.4–28.6) 10.8 (9.53–12.1) 21.6 (19.1–24.3)

Rifampicin Adult24 41.7 (35.8–49.4) 14.5 (12.5–17.2) 18.5 (15.9–21.9)
Child 38.3 (33.5–43.7) 55.2 (48.3–63) 21.2 (18.5–24.1)

Pyrazinamide Adult22 466 (395–539) 194 (165–225) 184 (157–214)
Child 248 (213–294) 103 (88.6–122) 97.9 (84.1–116)

Ethambutol Adult21 105 (91.6–124) NA NA
Child 12.3 (10.6–14.6) 76.8 (66.6–91.1) 13.7 (11.9–16.3)

Abbreviations: AUC0–24, area under the curve from dosing time to 24 h after dose; NA, not applicable.
aMedian of simulation of 1000 individuals with individual variability is shown with 95% CI. Adults received South Africa standard of care doses assum-
ing 60 kg patient (doses were: rifampicin 600 mg; isoniazid 300 mg; pyrazinamide 1600 mg and ethambutol 1100 mg). Children were 8.2 kg and re-
ceived: rifampicin 120 mg; isoniazid 120 mg; pyrazinamide 250 mg; ethambutol 200 mg.
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the first-line drugs had exposure in necrotic tissue at levels lower
than current adult target concentrations. Our results indicate
that current paediatric dosing guidelines do not reach target ex-
posures at sites of disease. An improved understanding of lesion
penetration, and the use of a data-driven modelling approach
will allow for more-appropriate dosing in children and improved
efficacy of current regimens. Our data also informs the design
of novel regimens for TB treatment-shortening in children across
the spectrum of pulmonary disease.
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