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Abstract

Exact tensor network ansatz for strongly interacting systems

by

Michael P Zaletel

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

It appears that the tensor network ansatz, while not quite complete, is an efficient
coordinate system for the tiny subset of a many-body Hilbert space which can be real-
ized as a low energy state of a local Hamiltonian. However, we don’t fully understand
precisely which phases are captured by the tensor network ansatz, how to compute
their physical observables (even numerically), or how to compute a tensor network
representation for a ground state given a microscopic Hamiltonian. These questions
are algorithmic in nature, but their resolution is intimately related to understanding
the nature of quantum entanglement in many-body systems.

For this reason it is useful to compute the tensor network representation of vari-
ous ‘model’ wavefunctions representative of different phases of matter; this allows us
to understand how the entanglement properties of each phase are expressed in the
tensor network ansatz, and can serve as test cases for algorithm development. Con-
densed matter physics has many illuminating model wavefunctions, such as Laugh-
lin’s celebrated wave function for the fractional quantum Hall effect, the Bardeen-
Cooper-Schrieffer wave function for superconductivity, and Anderson’s resonating
valence bond ansatz for spin liquids. This thesis presents some results on exact
tensor network representations of these model wavefunctions. In addition, a ten-
sor network representation is given for the time evolution operator of a long-range
one-dimensional Hamiltonian, which allows one to numerically simulate the time
evolution of power-law interacting spin chains as well as two-dimensional strips and
cylinders.
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Chapter 1

Introduction

It’s a remarkable property of quantum mechanics that the lowest energy state of
a system can be interesting. For example, consider particles whose coordinates are
constrained to a square grid, with a density of one particle per two sites. Classically,
the lowest energy state of the system must form a crystalline pattern (or perhaps,
with sufficient frustration, there may be extensive degeneracy). Very little informa-
tion is required to specify the state, just the location of the particles within a unit
cell. In a quantum mechanical system, the space of states is vastly larger, as we
can linearly superpose different density configurations with amplitudes and phases.
By superposing enough states, the crystalline order may melt, resulting in a liquid.
Since the state arises by superposing configurations that differ in space, the liquid
is necessarily entangled, and neighboring regions of the system become correlated by
the fluctuating density. These liquids are distinguished not by any crystalline pattern
(there is none), but rather by structures in the quantum mechanical amplitudes and
phases.

Since there are exponentially many density configurations, scaling as O(dV ) for
a system of volume V (with d = 2 for the half-filled example above), allowing for
superposition at first makes the space of quantum states seem prodigious. But taking
into account locality, the relevant part of Hilbert space is much smaller (and less
linear) than it first appears. This is because it is only energetically favorable to
superpose states which are connected by an element of the Hamiltonian, and a local
Hamiltonian is exponentially sparse. The interplay between the vastness of Hilbert
space and the tight constraints of locality gives rise to the richness of quantum many-
body theory.

We can heuristically calculate the amount of information required to parameter-
ize the space of all possible eigenstates of all local Hamiltonians. To do so, we just
parameterize the space of all Hamiltonians, followed by a number n specifying the
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eigenstate. Restricting the range of each local term in H =
∑

iHi to a volume VH ,
each Hi is specified by a matrix of dimension dVH , with V such terms in the Hamil-
tonian. Hence the space of local Hamiltonians is parameterized by an amount of
information SH ∝ V d2VH . Since there are dV eigenstates, specifying which eigenstate
requires an additional amount Sψ = V log(d) of information. In total, we require
SH + Sψ = V (d2VH + log(d)) numbers to specify the space of all local eigenstates.
In contrast to the dV numbers required to specify an arbitrary state, this is only an
extensive amount of information, so the space of such states is a vanishing fraction
of the full many-body Hilbert space.

Since the manifold of relevant states is so small, it must not be linear. Indeed,
the superposition of two macroscopically different states is a ‘cat state’ like a| ↑↑
· · ·〉+b| ↓↓ · · ·〉. Any two states which are uniform (for example, translation invariant)
are macroscopically distinct, as their overlap must decrease exponentially as (1− ε)V
in the system size V . While such a state is formally allowed, no observer can ever
detect they are in such a superposition. The superposition of two states | ↑ · · ·〉, | ↓
· · ·〉 is only physically detectable if there are local operators O and local evolution
U(t) which can connect the two states, 〈↓ · · · |U(−t)OU(t)| ↑ · · ·〉 6= 0, over a
time scale t relevant to the observer. This overlap always vanishes if the states are
macroscopically different, as any two states generically are in the thermodynamic
limit.

To make the counting more precise, fix an initial state | ↑ · · ·〉. In Ref. [85] it
was proven that the set of states that can be generated by arbitrary local evolution
U(t)| ↑ · · ·〉 occupies a tiny fractional volume O(V V εd

V
) of the total Hilbert space

for some ε < 1. This realization was called the ‘convenient illusion’ of Hilbert space;
while the evolution is linear, only a vanishing portion of Hilbert space can ever be
reached.[85]

Specifying a local Hamiltonian is a rather useless coordinate system - finding its
spectrum is the difficult problem we wish to solve, and the coordinate system is full of
discontinuities (phase transitions). But since the space of relevant states is relatively
small, there may be a more manageable way to coordinatize it, which would provide
the most general possible variational ansatz for relevant quantum states. Recently
there has been rapid progress towards finding such a coordinate system, called tensor
networks, at least for the low energy part of Hilbert space. [31, 137, 75, 123, 30,
78] These ansatz obey an ‘area law:’ the amount of quantum entanglement between
a region A and its environment must scale no faster than the area of the boundary
∂A. Most low energy states indeed obey an area law, [109] with some exceptions
for critical systems.[51] 1 For now this rules out capturing highly excited states at

1Progress has also been made in towards capturing logarithmic violations of the area law oc-
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a) b)

Figure 1.1: Depiction of a tensor network for a 2x2 lattice. a) Each tensor is a node
with a ‘leg’ for each index. b) Contraction over indices is graphically represented by
connecting legs; the dangling legs are the indices mi of the 4-site wave function.

finite energy density, which generically obey a volume law. In one-dimension, tensor
networks fully parameterize the ground states of all gapped, short-ranged interacting
lattice models, [48] though it is not known what states are captured in two-dimensions
and higher.

For lattice systems, the tensor network ansatz is specified on a graph, with vertices
at each site i of the lattice and edges ī with an approximately isotropic density. The
onsite Hilbert spaces are indexed by 1 ≤ mi ≤ di, and on each edge ī of the lattice
we associated an ‘auxiliary’ Hilbert space indexed by 1 ≤ φī ≤ χī. The variational
space is parameterized by a tensors B

[i]
mi,{φ}i on each site, with a ‘physical index’ mi

and a set of auxiliary indices {φ}i for each edge attached to the site. As illustrated
in Fig. 1.1 , the ansatz wave function is given by

Ψ{m} =

χ∑
φ=1

∏
i

B
[i]
mi,{φ}i . (1.1)

The χī are the ‘bond dimensions’ of the ansatz; increasing χ increases the variational
space, along with the difficulty of computing observables.

For completeness, in Chapter 1 I review some of the algorithmic aspects of 1-
dimensional tensor networks, though the focus of this work is not an algorithms
(for a recent review, see Ref. [74]). Instead I consider the relation between ten-
sor networks and several famous variational ansatz in condensed matter, including
the Bardeen-Cooper-Schrieffer wavefunction for superconductivity [6], Anderson’s
resonating valence bond state for spin systems [3], and Laughlin’s state for the quan-
tum Hall effect. [64] In this thesis I show why all three of these ansatz fall nicely
within the framework of tensor networks.

curring for critical systems and Fermi surfaces, [30] but such violations are far weaker than the
volume-law behavior generically expected at finite energy density.
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Before proceeding to the rigorous results of the subsequent Chapters, I’ll paint
an idiosyncratic sketch (in water colors) of recent developments combining tensor
networks, their entanglement properties, and topological order.

1.1 Tensor networks and generating functions

An important feature of a gapped ground state is that the wave function Ψ[m]
is a local functional of the configuration m. To see why the tensor network ansatz
incorporates this result, we rewrite the tensor network ansatz as

Ψ[m] =

χ∑
φ=1

∏
i

B
[i]
mi,{φ}i =

∑
{φ}

e−
∑
i Si[{φ}i]+V [mi,{φ}i] ∝ 〈eV [m,φ]〉φ. (1.2)

where 〈〉φ is an average with respect to the ‘action’ S. The sum over the D-
dimensional lattice of auxiliary degrees of freedom φ looks like the path integral
or statistical sum over a local D-dimensional system. The V [mi, {φ}i] are source
fields for the path integral: the wave function Ψ[m] is the generating functional of
the auxiliary system. Recall that for standard continuum field theories we define the
generating functional

Z[J ] =

∫
D[φ]e−S[φ]+Jφ = Z〈eJφ〉φ. (1.3)

For the tensor networks, we generalize slightly the interaction between the ‘source
field’ m, which is the physical degree of freedom, and the auxiliary fields φ. The
cluster decomposition principle asserts that such generating functions depend locally
on m.

The wave function Ψ[m] of a D + 1 dimensional tensor network is conceptually
equivalent to the generating functional of the D-dimensional auxiliary system. This
rewriting is purely a matter of notation. What can we learn about the physical state
from the ‘auxiliary’ theory?

The bulk-boundary mapping

An important concept in tensor networks is the existence of a ‘bulk boundary’
mapping between configurations of the auxiliary φ and the physical states. Consider
a region A with boundary ∂A cutting through auxiliary bonds {φ1, φ2 · · · } ∈ ∂A, as
shown in Fig. 1.2. Summing over the auxiliary bonds interior to A, while holding
the boundary φ ∈ ∂A fixed defines a state |φ〉A. The mapping Γ : φ ∈ ∂A→ |φ〉A is
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A

Figure 1.2: The bulk boundary mapping. Each region A with boundary ∂A defines a
set of ‘dangling bonds’ {φ1, φ2 · · · } ∈ ∂A which cross the boundary. Fixing the value
of these dangling bonds, but summing over the bonds in the interior of A generates
a state which we call |φ〉A, where φ indicates the dependence on the state of the
boundary value. This map {φ1, φ2 · · · } → |φ〉A is the bulk-boundary mapping.

the bulk boundary map. It is natural to treat the boundary configurations φ as the
basis states of a boundary Hilbert space, so Γ can then be extended to a linear map
from the boundary Hilbert space to the bulk Hilbert space. Because of the area-law,
for large enough regions the map is not surjective (onto), since the number of bulk
state grows with the volume of A while the number of boundary states grows with
the area ∂A. Γ is ‘injective’ if Γ|φ〉 = 0 if and only if |φ〉 = 0, or equivalently, no to
boundary states map to the same bulk state. A tensor network is called ‘injective’ if
there is a sufficiently large size such that all the bulk-boundary mappings for regions
above that size are injective.

A generic tensor network (such as those drawn from random entries) is injective,
and such networks are quite well understood.[77] An injective tensor network is
always the unique ground state of some local ‘parent’ Hamiltonian made from a sum
of projectors, but may or may not be gapless.[79, 98] It turns out that states with
both symmetry protected [17] and intrinsic topological order cannot be injective, a
theme we will return to.
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Entanglement properties

The Hilbert space H of a system is a tensor product of its subregions L,R,
H = HL ⊗HR. The Schmidt decomposition

|Ψ〉 =
∑
i

e−Ei/2|i〉L ⊗ |i〉R, ρL/R =
∑
i

e−Ei |i〉〈i|L/R (1.4)

encodes how the degrees of freedom in L are entangled with those in R. The Schmidt
decomposition requires that |i〉L/R be orthonormal vectors. Those with lower ‘en-
tanglement energy’ Ei receive higher weight in the decomposition. While studied in
other contexts for some time, a prescient paper of Kitaev and Preskill [58] noted that
for certain 2D topological phases the spectrum Ei should be related to the energy
spectrum of a physical edge; subsequently Li and Haldane called Ei the ‘entanglement
spectrum, and first explored this relation for quantum Hall systems.[66]

In a gapped system, the degrees of freedom in L which are entangled with R
should only reside in the vicinity of the cut. If we fix a ‘entanglement cutoff’ Ei < Λ,
then far from the boundary the |i〉R under the cutoff must look identical. To be
precise, for any local operator O a distance x from the boundary,

lim
x→∞
〈i|O(x)|j〉R ∼ δij〈Ψ|O(x)|Ψ〉+Oije

−|x|/`(Λ) (1.5)

for all i, j under the cutoff. Since the allowed fluctuations in the low lying Schmidt
states are localized near the cut, the density of entanglement energies must be pro-
portional to the length of the cut, not the volume of L,R: this is the area law.
[109]

Calculating the entanglement spectrum of a tensor network can be reduced to
certain properties of the auxiliary theory. Using the bulk boundary mapping, a
tensor network has a natural ‘bipartition,’ |Ψ〉 =

∑
φ∈∂L |φ〉L|φ〉R, where |φ〉L/R is

a non-orthogonal basis. As shown in Fig. 1.3, we can contract all auxiliary indices
φ ∈ L, leaving ‘dangling’ indices on ∂L. Fixing the value of the dangling indices
φ ∈ ∂L defines a state in the left ΨL[mL, φ] ↔ |φ〉L, and likewise on the right. In
the notation of the previous section,

Ψ[mL,mR] =
∑

{φ}∈L⊗R

e−S[φ]+V [m,φ] (1.6)

=
∑
{φ}∈∂L

ΨL[mL, φ]ΨR[mR, φ] (1.7)
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a) b)

Figure 1.3: Partial contraction of the network to obtain a bipartition Ψ[mL,mR] =∑
{φ}∈∂L ΨL[mL, φ]ΨR[mR, φ]. By tracing out all auxiliary indices apart for those

along the boundary between L,R, we isolate the degrees of freedom entangling the
two regions.

This is not generally a Schmidt decomposition, as the basis is not orthogonal. If the
reader will indulge just one further change of notation,

〈m|Ψ〉 = 〈eV [m,φ]〉φ =
∑
α

〈eV [mL,φL]|α〉〈α|eV [mR,φR]〉. (1.8)

The bipartition can be understood as inserting a resolution of the identity
∑

α |α〉〈α|
in the auxiliary space - this is just the some over the auxiliary indices α crossing the
cut.

From Overlaps to Schmidt States

The bipartition of the state discussed above bounds the rank of the entanglement
spectrum, as well as the number of Schmidt states of a specified charge, but doesn’t
provide the spectrum itself. To find Ei, suppose we have a bipartition of a state, but
in a non-orthogonal basis:

|Ψ〉 =
∑
i

|i;L〉 ⊗ |i;R〉, Gii′;L/R = 〈i;L/R|i′;L/R〉 (1.9)

Using the positive-semidefinite, hermitian, Gram matrix G, we can find an orthonor-
mal basis ‘a’, via 〈a| = G

−1/2
ai 〈i| (interpreted as a pseudo-inverse if G is not full rank).
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Now consider the reduced density matrix for the left, as expressed in this new basis:

|Ψ〉 = |a;L〉
[
G

1/2
L G1/2T

R

]
aa′
|a′;R〉 (1.10)

ρL = |a;L〉
[
G

1/2
L GT

RG
1/2
L

]
aa′
〈a′;L| (1.11)

Hence the combination G
1/2
L GT

RG
1/2
L is unitarily-equivalent to the reduced density

matrix. If a reflection symmetry guarantees the left and right are equivalent accord-
ing to GT

R = GL, then G2
L ∼ ρL is itself unitarily equivalent to the reduced density

matrix.

Calculating the Gram matrices

To calculate the overlap matrix 〈φ̄|φ〉R = GR of a tensor network, we first calcu-
late the overlap of the tensor network for a single site, which leaves behind auxiliary
indices φ from the ket-|Ψ〉 and φ̄ from the bra-〈Ψ|. As shown in Fig. 1.3b, this defines
a ‘doubled’ tensor T ,

T [i][{φ}i, {φ̄}i] =
∑
mi

B
[i]
mi,{φ}iB̄

[i]

mi,{φ̄}i
= e−Si[{φ}i]−S̄i[{φ̄}i]+Vi[{φ}i,{φ̄}i] (1.12)

〈Ψ|Ψ〉 ∝ 〈eV [φ,φ̄]〉φ,φ̄. (1.13)

By taking the overlap the physical index m disappears, but the summation over m
couples the copies φ, φ̄. Remarkably, the doubled tensor T uniquely determines |Ψ〉
up to a 1-site local unitary. It is fitting and proper to call the doubled auxiliary
theory the ‘plasma’ theory for system, by analogy Laughlin’s observation that the
norm of the Laughlin state is the classical partition function of a one-component
plasma. We will see this analogy is exact!

The Gram matrix GR can be computed by summing over the φ, φ̄ restricted to
the right of the cut R; this again leaves ‘dangling indices’ on the cut ∂R which I
denote by φ(0), φ̄(0). The dangling legs are a boundary condition on the trace,

GR,φ̄φ = 〈φ̄|φ〉R =
∑
φ∈R

∏
i∈R

T [i][{φ}i, {φ̄}i] (1.14)

∼
∫ ∞
φ(0)=φ,φ̄(0)=φ̄

D[φ, φ̄]e−S[φ]−S[φ̄]+V [φ,φ̄] (1.15)

This is the same trick we use to calculate the ground state in a field theory: perform
the path integral subject to boundary conditions on some time slice τ = 0.
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Choosing coordinates for the lattice such that τ runs perpendicular to the en-
tanglement cut, we can pass to a ‘Hamiltonian’ picture by treating the integration
over one column of the tensor network as a transfer operator taking τ → τ + 1.
There is no reason the transfer operator must arise from a Hermitian generator, so
the spectrum of the transfer matrix may be complex. Nevertheless, the dominant
eigenvalue (the eigenvalue of largest magnitude) must be 1 if Ψ is normalized and not
a cat-state. The corresponding right eigenvector is precisely GR; in this sense GR is
the ‘ground state’ of the doubled auxiliary theory. Furthermore, one can show that
along the direction τ all correlations in the physical system decay with a correlation
length set by the gap of the transfer matrix. So for short-range correlated states, the
transfer matrix is gapped. This suggests GR will have the same locality properties as
a gapped ground state, but currently nothing rigorous can be said since it is difficult
to characterize non-Hermitian transfer matrices.

Before proceeding further, I will introduce a concrete test case - the fractional
quantum Hall effect.

1.2 The fractional quantum Hall effect:

conformal block wavefunctions as continuum

tensor networks

When a strong magnetic field is applied perpendicular to a very clean two-
dimensional electron gas, a zoo of distinct incompressible phases is observed de-
pending on the density of electrons ρ relative to the density of magnetic flux quanta,
ν = ρ/2π`2

B, where `B is the magnetic length. [118] In their seminal paper, Moore
and Read proposed that trial wave functions for the FQHE can be generated from
the data of a conformal field theory (CFT), with a resulting topological order which
can be read off from the CFT when certain conditions are met. [70] Recall Laughlin’s
ansatz for the first quantized wave function of electrons at a density ν = 1/3, [64]

Ψ[{z}] =
∏
i<j

(zi − zj)3e−
1
4

∑
j |zj |2 , (1.16)

where z = x + iy are complex coordinates for the 2DEG. Moore and Read noted
that the Laughlin wave function for N particles is the N -point function of a chiral
conformal field theory (CFT),

Ψ[{zj}] = 〈eObc
N∏
j=1

Ve(zj)〉CFT. (1.17)
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The operator Ve(z) is a suitably chosen local operator in the CFT called the ‘electron
operator,’ which has either integral or half-integral conformal spin depending on
whether the physical particles are bosonic or fermionic respectively. The insertion
Obc is a ‘background charge’ required to preserve U(1). For the Laughlin state at
ν = 1/q, the CFT is a free chiral boson φ(z), with electron operator Ve(z) = ei

√
qφ(z)

and background charge Obc = −iρe√qφ, with ρe the electron density. The two-point
function of a free chiral boson is

〈ei
√
qφ(z1)ei

√
qφ(z2)〉CFT ∼ (z1 − z2)q, (1.18)

and using Wick’s theorem this result can repeated to generate the full (zi − zj)
q

Jastrow factor. The interactions with the pesky (but important) background charge
produces the additional Gaussian.

In general, each choice of CFT and electron operator Ve gives a trial wave function
for the quantum Hall effect, and there is a highly developed art to determine which
wave functions are sensible and what topological order they possess. One aim of this
thesis is to explain why the Moore-Read construction is a continuous version of a
tensor network, and that this insight can be used to develop highly efficient numerical
properties to study the resulting states. To make the relation clear, it is helpful to
use the second-quantized formalism for the electron system. Recall that the coherent
states are defined by |ψ〉 = e

∫
dDxψ(x)ĉ†(x)|0〉, where |0〉 is the Fock vacuum, ĉ† is the

creation operator, and ψ(x) is a complex or Grassmann valued field. The coherent
state wave functional for a state |Ψ〉 is Ψ[ψ] = 〈ψ|Ψ〉. Using coherent states, we can
rewrite Eq. 1.17 as

Ψ[ψ] = 〈e
∫
d2zVe(z)ψ(z)+Obc〉CFT, (1.19)

which is confirmed by Taylor expanding the exponential. Note that Eq. (1.19) is
precisely the generating function of the CFT for the source Ve. It is a continuum
version of a tensor network as summarized in Eq. (1.2). Here the ‘physical indices’
which we earlier called m is the coherent state index ψ; the ‘auxiliary’ theory φ is a
chiral boson; and the coupling V [ψ, φ] = ψeiφ

√
q.

Entanglement properties

Since the Moore-Read construction is a continuous tensor network, we can apply
the same tricks to compute its entanglement spectrum. A detailed analysis is given
in the work of Dubail and Read, [28] as well as my unpublished notes which were
rendered duplicative by that work. Using the fundamental rule of coherent states,
〈ψ̄|ψ〉 = e−ψ̄ψ, we compute the doubled action T . The auxiliary field φ(z) is right
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moving, while conjugated field φ̄(z̄) is left moving, so the two copies can be combined
into a single non-chiral boson, φ(z, z̄) = φ(z) + φ̄(z̄). The doubled theory is

〈Ψ|Ψ〉 ∝
∫
D[φ]e

∫
d2z[ 1

4π
(∇φ)2+eiφ

√
q−i√qρeφ] (1.20)

where φ is a non-chiral boson. This is the sine-Gordon representation of a one-
component plasma, the Lagrangian formulation of Laughlin’s plasma. To compute
the ground state |G〉, and hence the Gram matrix, we note that if the plasma screens,
it behaves like a metal which imposes the Dirichlet constraint ∂xφ = 0 (an equi-
potential). So we expect that |G〉 behaves approximately like a Dirichlet boundary
condition |D〉, which can be analyzed using the machinery of boundary conformal
field theory. It can be argued that, up to certain irrelevant terms, the main correction
to the Dirichlet state is to displace the Dirichlet boundary condition by the Debye
length of the plasma, `D: |G〉 ∼ e−`DH |D〉. [86] Note however that the Dirichlet
condition ∂xφ does not fully specify the state, due the the U(1) shift - we expect this
ambiguity should be related to the topological degeneracy. We will return to this
issue in more detail in the next section. Letting |α〉/|ᾱ〉 denote states in the right /
left moving CFTs, the resulting state |G〉a in topological sector a is

|G〉a =
∑
α∈Ha

e−`DH+···|α〉|ᾱ〉 (1.21)

The same analysis holds for the left / right Gram matrices, so using Eqn.(1.11) we
conclude the entanglement Hamiltonian is in fact H, up to some irrelevant correc-
tions.

1.3 Topological order, minimally entangled

states, and tensor networks

Minimally entangled states

A topologically ordered phase is characterized by a set of m anyonic excitations
which we label by a. [56] Each anyon corresponds to an emergent topological su-
perselection sector: if a region contains an anyon a, there is no local operator which
can remove the excitation. By definition, all excitations which arise by acting with
local operators on the ground state, such as a spin flip or electron creation operator,
are in the same superselection sector as the ground state, which we give the ‘trivial’
label a = 1. If two anyons a, b approach each other, by acting with local operators
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that encompass both excitations they may ‘fuse’ together into an anyon c; if this
process is allowed we write N c

ab > 0. The theory is non-Abelian if there are anyons
a, b with distinct possible outcomes,

∑
cN

c
ab > 1. These distinct outcomes can be

used to robustly store quantum information, since no local operator can measure the
actual result of fusing the anyons until they approach each other.

A theory with m-anyon types has a ground state degeneracy of m when placed
on a torus or infinitely long cylinder. [135] On an infinite cylinder, there is a canon-
ical basis, which has been called the ‘minimally entangled basis,’ [143] and can be
constructed in two equivalent ways.

In the first construction, let x denote the periodic direction of the cylinder, and
y a coordinate along its length. Let γ̂ax(y) denote the adiabatic process of generating
an a − ā pair from the vacuum in the vicinity of y, dragging a around the cycle x
(localized in a strip near y) and re-annihilating the pair to return to the vacuum. In
general, this may have a non-trivial action on ground state manifold.2 The minimally
entangled basis is the unique basis in which γ̂ax(y) is diagonal for all anyon types a. A
helpful picture for this basis is given in terms of ‘topological flux,’ as made precise in
Abelian Chern-Simons theory. The operator γ̂ax(y) ∼ ei

∫
dxAax(x,y) is a Wilson-loop in

the theory; the path taken by the anyon pair defines an Amperian loop which detects
the flux threading through the cylinder. Creating an anyon pair b− b̄ and separating
the pair out to y = ±∞, a process we denote γ̂by(x), behaves like topological flux
insertion through the cylinder. When the anyon b crosses the Amperian loop γ̂ax(y),
it will detect that additional topological flux now threads the cylinder. The changed
eigenvalue it determined by the mutual statistics Sab:

γ̂axγ̂
b
y = Sabγ̂

b
yγ̂

a
x. (1.22)

The minimally entangled basis has definite topological flux threading the cylinder,
diagonalizing γx; dragging anyon pairs out to infinity with γy permutes the minimally
entangled basis. Because of the non-degeneracy of braiding, each MES is uniquely
labeled by it’s set of eigenvalues under γx.

In the second construction, consider the Schmidt decomposition of one of the
ground states, |ψ〉 =

∑
i si|i〉L|i〉R. Let us define an equivalence relation on Schmidt

states |i〉R ∼ |j〉R, if there exists a local operator with non-trivial overlap between
i, j. This equivalence relation allows us to decompose the Schmidt decomposition

2There are some exotic lattice theories in which dragging an anyon a around x permutes the
anyon type, so it cannot be immediately re-annihilated - we ignore this case.
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into equivalent sectors,

|ψ〉 =
∑
i∈a

si|i〉L|i〉R +
∑
i∈b

si|i〉L|i〉R · · · (1.23)

=
√
pa|a〉+

√
pb|b〉+ · · · (1.24)

where i ∈ a denotes a particular equivalence class. It follows that if |ψ〉 is an
eigenstate, the |a〉, |b〉 · · · must also be eigenstates. This is because the Hamiltonian
H is a local operator, so 〈a|H|b〉 = 0 by the definition of the equivalence class. By
construction, the states |a〉 cannot be further decomposed - they are the minimally
entangles states. If the entanglement entropy of |a〉 is Sa, then

Sψ =
∑
a

paSa −
∑
a

pa log(pa). (1.25)

Superimposing the minimally entangled states generates an additional entropy−∑a pa log(pa),
so the ME basis states are local minima of the entanglement entropy.

Let’s see why these two definitions are equivalent. In the first definition, each
MES a is an eigenstate of γbx(y)|a〉 = Sba(y)|a〉. If we temporarily view the infinite
cylinder as a 1D system, the operators γ behave like order parameters to detect
the ground state. If we consider Schmidt state |i〉Ra, |j〉Rb from different MES basis
states a, b (according to definition 1), then we see that no local operator can connect
them. This is because, for y very far from the cut,

〈i|γbx(y)|i〉Ra = Sba(y) 6= 〈j|γbx(y)|j〉Rac = Sbc(y) (1.26)

Since the Schmidt states have a different expectation value for any y far from the
cut, the two states must be macroscopically distinct, so cannot be connected by any
local operator. Hence the 1st definition is equivalent to the 2nd definition.

In the MES basis for a cylinder of circumference L, the entanglement entropy of
sector |a〉 scales as [58, 65]

Sa(L) = αL− log(D/da) +O(e−L/ξ)), D =

√∑
a

d2
a. (1.27)

The subleasing correction γa = log(D/da) is known as the ‘topological entanglement
entropy,’ and measures the quantum dimensions da of the anyons.

MES in the conformal block picture

Like any tensor network, there is a bipartition of the quantum Hall states in
correspondence with the states of the auxiliary CFT. Working on a cylinder, do all
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states in the CFT appear in this bipartition? Let us suppose that the vacuum state
|1〉 appears in the bipartition. The rest of the states in the bipartition are built up
from |1〉 by acting with various powers of the electron operator Ve(z), as this is the
only operator coupling to physical fluctuations. It follows that only states in the
CFT which are generated from Ve(z) acting on |1〉 need appear in the bipartition.
This Hilbert space, H1 ∈ HCFT , is a representation of the ‘chiral algebra’ generated
by Ve(z); it includes the action of the Virasora algebra and the current ∂φ as sub-
algebras. But H1 is not the entire Hilbert space of the CFT. For example, the state
eiφ/

√
q|1〉 /∈ H1. Under the action of the chiral algebra generated by Ve(z), the Hilbert

space of the CFT decomposes into irreducible representations HCFT =
∑m

a=1Ha. If
there are m anyons, there will be m sectors.

The restriction of the bipartition to states in a particular sectorHa gives precisely
the minimally entangled basis.

Anyons

Given a region A with boundary ∂A, we have discussed why the tensor network
generates a map from configurations of the auxiliary field φ ∈ ∂A on the boundary to
a physical state in A, which we call |φ〉A. An interesting test for topological order is
to test whether this map is injective, meaning that each distinct φ leads to a distinct
|φ〉A. In the case of quantum Hall, where φ is the configuration of a chiral boson,
consider states |φ〉A, |φ+ 2π/

√
q〉A. The action of the chiral boson is invariant under

this shift, as is the electron operator Ve = eiφ(z)
√
q. Only the background charge

Obc = −i√qρeφ is sensitive to the shift, so we find

|φ+ 2π/
√
q〉A = e−i2πρeVA|φ〉A, (1.28)

where VA is the volume of region A. Hence the map is not injective, and implies
a sort of ‘gauge symmetry’ of the tensor network, since we can insert closed string
operators which shift φ → 2π/

√
q with impunity anywhere in the auxiliary theory.

This suggests that if we shift φ→ 2π/
√
q along a string that terminates as some z,

there will be an excitation at z, since the string is invisible elsewhere.
In the Hamiltonian formalism, the operator Vqh = eiφ(x)/

√
q takes φ → φ +

2π/
√
qθ(−x), so is exactly the desired non-local string operator. As pointed out

by Moore and Read, Laughlin’s ansatz for a quasi-hole position η is indeed gener-
ated by the insertion of Vqh:

Ψqp[z; η] =
∏
i

(zi − η)
∏
i<j

(zi − zj)qe−
1
4

∑
i |zi|2 =

〈
eiφ(η)/

√
q
∏
i

Ve(z)eObc

〉
CFT

.

(1.29)
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This suggests the following general principle: if a tensor network has a gauge
symmetry in the auxiliary degrees of freedom, meaning that there are closed string-
like operators that can be inserted into the tensor network while leaving the physical
state unchanged, then the insertion of an open string into the auxiliary theory gen-
erates an anyon at the endpoint of the string. To rule out trivial counterexamples
(such as the CZX model of Ref. [17]) it is important to specify that the dimension
of the bulk-boundary map’s kernel should saturate with the length of the boundary,
rather than growing extensively. Otherwise there will be extensively many short
open auxiliary strings which do nothing, rather than produce anyons.

This picture is consistent with the Moore-Read construction, where these string
operators are precisely the primary fields in one-to-one correspondence with the
anyons, like Vqh for the Laughlin state. For a variety of tensor networks models, such
as those for Levin-Wen string-net models and Dikgraaf-Witten theories, it has been
indeed been shown the gauge symmetry of the auxiliary theory is a necessary and
sufficient condition for topological order.[114, 98, 18, 12]

This concludes my sketch.

1.4 Organization

This thesis is organized as follows.
In Chapter 1, I review 1D tensor networks (matrix product states), the algorithms

used to work with them, and their behavior near quantum critical points.
In Chapter 2, I elaborate on the exact tensor network representation of the FQHE,

work done in collaboration with Roger Mong. To make the tensor network practi-
cally useful, the physical Hilbert space is mapped to a 1D fermion chain by using
the Landau gauge on a cylinder. Using the resulting 1D tensor network, a variety
of properties can be efficiently computed, such as the entanglement spectrum and
statistical Berry phases of the anyons.

In Chapter 3, I consider a different class of model wavefunctions, the parton
ansatz for spin-systems. In the construction studied here, a spinful fermionic BCS
superconductor is projected onto an occupation of one fermion per site, leaving be-
hind a spin-1/2 wavefunction. I show that for an arbitrary BCS superconductor, we
can obtain an exact tensor network representation of the ground state, which can triv-
ially be projected to get a spin wave function. This will be useful for various studies
of potential quantum spin-liquids, such as the Kagome Heisenberg anti-ferromagnet.

Finally, in Chapter 4, I show how to approximate a time evolution operator e−itH

using a tensor-network representation. The inspiration for this result is an exact
representation for Hamiltonians which can be decomposed into commuting or anti-
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commuting terms. In the more general case, this reduces to an approximate scheme
which can be used to efficiently simulate time evolution for arbitrary Hamiltonians.
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Chapter 2

Matrix Product States and
Algorithms

In this section I review the matrix product state (MPS) ansatz as well as algo-
rithms for finding ground states and simulating time evolution. The infinite time
evolving block decimation (iTEBD) [126] and the infinite density matrix renormal-
ization group (iDMRG) [69] algorithms are both based on the infinite matrix-product
state (iMPS) representation. [126] As we explain shortly, MPSs can efficiently repre-
sent many-body wave functions with the accuracy controlled by the bond dimension
χ (the error decreases rapidly with increasing χ). Methods which work with infinite
systems have a number of advantages: no extrapolation to the thermodynamic limit
is needed; there are no edge modes which can complicate the convergence of the algo-
rithm; and, as shown later on in this section, finite entanglement scaling can be used
to extract quantities such as the central charge. We begin by reviewing some details
of this infinite system representation focusing on translationally invariant systems,
and then contrast and compare the two numerical methods using a consistent nota-
tion. We do not aim to provide a complete discussion of the techniques but rather a
clear and compact introduction to the methods used. 1

2.1 Matrix product states

The concept of entanglement is central to the MPS representation and the al-
gorithms based on it. The so-called entanglement spectrum [66] is obtained from
the Schmidt decomposition (singular value decomposition): Given a bipartition
H = HL ⊗ HR of the Hilbert space (below HL and HR, respectively, represent the

1Portions of this work appear in Phys. Rev. B 87, 235106
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states on sites to the left and right of a bond), any state |Ψ〉 ∈ H can be decomposed
as

|Ψ〉 =
∑
α

Λα|α〉L ⊗ |α〉R, |α〉R/L ∈ HR/L. (2.1)

The Schmidt coefficients (singular values) Λα can always be chosen positive. The
states {|α〉L} and {|α〉R} form orthonormal sets in HL and HR respectively, i.e.,
〈α|β〉L = 〈α|β〉R = δαβ, and by normalization

∑
α Λ2

α = 〈Ψ|Ψ〉 = 1. The Schmidt
decomposition is related to the reduced density matrix for one half of the system,
ρR = TrHL (|ψ〉〈ψ|). In particular, the Schmidt states |α〉R are the eigenstates of
ρR and the Schmidt coefficients are the square roots of the corresponding eigen-
values, i.e., ρR =

∑
α Λ2

α|α〉〈α|R (and analogously for ρL). This directly gives the
entanglement entropy through

SE = −
∑
α

Λ2
α log Λ2

α. (2.2)

Finally, the entanglement spectrum {εα} is related to the spectrum {Λ2
α} of the

bipartition by Λ2
α = exp(−εα) for each α.

Matrix-product states

A general quantum state |Ψ〉 on a chain with N sites can be written in the
following MPS form: [31, 75, 94]

|Ψ〉 =
∑

j1,...,jN

A[1]j1A[2]j2 . . . A[N ]jN |j1, . . . , jN〉. (2.3)

Here, A[n]jn is a χn−1×χn matrix and |jn〉 with jn = 1, . . . , d is a basis of local states
at site n. We call the indices of the matrices “bond” indices. The matrices at the
boundary, i.e., n = 1 and n = N , are vectors, that is χ0 = χN = 1, such that the
matrix product in (2.3) produces a scalar coefficient. The superscript [n] denotes the
fact that for a generic state, each site is represented by a different set of matrices.
Ground states of one dimensional gapped systems can be efficiently approximated
by an MPS,[38, 100] in the sense that the value of the χ’s needed to approximate
the ground state wave function to an arbitrary precision is finite as N → ∞. The
physical insight that allows us to make this statement is the area law, which holds
for this class of systems. [122, 48, 122]
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Figure 2.1: Diagrammatic representation of (a) the tensors Γ and Λ. The horizontal
lines represent the bond indices α ∈ {1, . . . , χ} and the vertical lines the physical
indices j ∈ {1, . . . , d}. (b) An MPS formed by the tensors Γ and Λ. Connected lines
between tensors (or within a single tensor) denote summation over the corresponding
indices. (c) Definition of the right and left (Schmidt) basis states with respect to a
partition on a bond with index α. (d) Condition for the MPS to be in the canonical
form. The transfer matrix T of Eq. (2.6) has been shaded. The upside-down triangles
are the complex conjugate of the Γ tensors. (e) If the state is in canonical form, then
the dominant right eigenvector of T is the ‘identity matrix’ with eigenvalue equal
to 1. A similar condition applies for the left transfer matrix T̃ . (f) The correlation
function defined in Eq. (2.9). The squares correspond to the operators F (0) and
G(r).

Canonical form. Without a loss of generality, we write the matrices Aj as a
product of χj−1×χj complex matrices Γj and positive, real, square diagonal matrices
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Λ,

|Ψ〉 =
∑

j1,...,jN

Γ[1]j1Λ[1]Γ[2]j2Λ[2] · · ·Λ[N−1]Γ[N ]jN

× |j1, . . . , jN〉 , (2.4)

which is pictorially illustrated in Figs. 2.1(a) and 2.1(b). A rank-n tensor is repre-
sented by a symbol with n protruding lines. (For example, Γ, a rank-3 tensor, has
three indices and is represented by a triangle with three lines protruding from it.)
Connecting the lines among tensors symbolizes a tensor contraction, i.e., summing
over the relevant indices. In the following we will motivate the choice (2.4) for the
MPS form.

Equation (2.4) allows for many possible representation of the same wave function,
as we can insert a resolution of the identity 1 = XX−1 into any bond. This freedom
can be used to define a ‘canonical form’ of the MPS.[128, 126]. Any bond n defines
a bipartition of the system into sites L = {1, . . . , n} and R = {n+ 1, . . . , N} to the
left and right of the bond. From the form of the MPS, we can define a set of χn wave
functions |α〉[n]

L/R to the left/right of the bond [see Fig. 2.1(c)] such that state takes
the form

|ψ〉 =

χ∑
α=1

Λ[n]
α |α〉[n]

L ⊗ |α〉
[n]
R , |α〉[n]

R/L ∈ HR/L. (2.5)

The MPS representation {Γ[1],Λ[1], . . . ,Γ[N ]} is in canonical form if: For every bond,

the set of wave functions |α〉[n]
L/R along with Λ[n] form a Schmidt decomposition of

Ψ. In other words we must have 〈ᾱ|α〉[n]
L = δᾱα and 〈ᾱ|α〉[n]

R = δᾱα, along with∑
(Λ

[n]
α )2 = 1 on every bond. For finite systems, a generic MPS can be transformed

into canonical form by successively orthogonalizing the bonds starting from either
the left or right end of the chain. [97]

Infinite matrix product states. In this paper we are most interested in infinite
chains, N → ∞. In this case, translational invariance is restored and the set of
matrices on any given site becomes the same, that is Γ[n]j = Γj and Λ[n] = Λ for all
integers n. To check if the iMPS is in canonical form, we need to compute the overlaps
〈ᾱ|α〉R, which would appear to require an infinite tensor contraction. Alternatively,
we can use the translation invariance to proceed inductively. For an infinite MPS,
the orthogonality condition (i.e., canonical form) is conveniently expressed in terms
of the transfer matrix T [illustrated in Fig. 2.1(d)] defined as

Tαᾱ;ββ̄ =
∑
j

Γjαβ
(
Γj
ᾱβ̄

)∗
ΛβΛβ̄, (2.6)
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where ‘∗’ denotes complex conjugation (pictorially represented by an upside-down
triangle). The transfer matrix T relates the overlaps defined on bond n with overlaps

defined on bond n + 1. Given that the right basis states |β〉[n+1]
R on bond n + 1 are

orthonormal, the states |α〉[n]
R on bond n will also be orthonormal if T has a right

eigenvector δββ̄(= 1) with eigenvalue η = 1, as illustrated in Fig. 2.1(e). For the left

set of states we define an analogous transfer matrix T̃ ,

T̃αᾱ;ββ̄ =
∑
j

ΛαΛᾱ Γjαβ
(
Γj
ᾱβ̄

)∗
(2.7)

which must have a left eigenvector δαᾱ with η = 1. These eigenvector criteria are
clearly necessary conditions for all bonds to be canonical; in fact, assuming in addi-
tion that η = 1 is the dominant eigenvalue, they are sufficient. There is an algorithm
to explicitly transform an arbitrary infinite MPS to the canonical form.[73].

If the infinite MPS is not translational invariant with respect to a one-site unit
cell, all the above can be simply generalized by considering a unit-cell of L sites
which repeats itself, e.g., in the case of L = 2 the tensors are given by

Γ[2n] = ΓA, Λ[2n]j = ΛA,
Γ[2n+1] = ΓB, Λ[2n+1] = ΛB,

(2.8)

for n ∈ Z. Reviews of MPSs as well as the canonical form can be found in Refs. [78,
73, 126].

Calculations of observables from an iMPS. If the MPS is given in canonical
form, we can use the orthogonality of the Schmidt states to evaluate local expectation
values by contracting the tensors locally.[126] Correlation functions can be obtain
using the transfer matrix Eq. (2.6). For this we evaluate 〈P (0)Q(r)〉 of an iMPS.
Let r > 0, then

〈P (0)Q(r)〉 = ΥL(P )T r−1ΥR(Q),

ΥL(P )αᾱ =
∑
γ

Λ2
γ

(
Γiγᾱ
)∗
P ijΓjγαΛαΛᾱ,

ΥR(Q)ββ̄ =
∑
γ

Λ2
γ

(
Γiβ̄γ
)∗
QijΓjβγ. (2.9)

ΥL/R are the “stubs” which measures the operators P and Q locally, in between
which we put r − 1 copies of the transfer matrix T , see Fig. 2.1(f) for a pictorial
representation. Local observables 〈P (0)〉 can be obtained from the same expression,
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replacing ΥR(Q)ββ̄ with the identity operator δββ̄. By generalizing the transfer matrix
to include one-site operators

Tαα′;ββ′ [R] =
∑
jj′

Rjj′Γ
j′

αβ

(
Γjα′β′

)∗
ΛβΛβ′ , (2.10)

non-local order parameters can be obtained with the same approach. For example,
calculating the correlation function with P = Q = Sz and R = eiπS

z
, we obtain a

“string order” parameter. The resulting correlation functions generically take the
form of a sum of exponentials, with the slowest decaying exponential determined by
the second largest (in terms of absolute value) eigenvalue ε2 of the transfer matrix.
We define the correlation length of the MPS as

ξ = − 1

log |ε2|
, (2.11)

which is readily obtained using a sparse algorithm to find the eigenvalues of the
transfer matrix. A degenerate largest eigenvalue indicates that the state is in a ‘cat
state,’ i.e., in a superposition of different superselection sectors, which can occur
when there is spontaneous symmetry breaking.[80]

In systems with a conserved quantum number (e.g., the total Sz), one can cal-
culate the correlation length for operators (P,Q) corresponding to different sectors
from the corresponding eigenvalues of the transfer matrix. In this paper we denote
the two correlation lengths corresponding to operators which change the quantum
numbers by Sz = 0 (e.g. 〈SzSz〉) as ξ0 and Sz = ±1 (e.g. 〈S+S−〉) as ξ1. The
correlation length ξ is given by the largest one, i.e., ξ = max(ξ0, ξ1, ...).

2.2 Infinite Time Evolving Block Decimation

(iTEBD)

In the iTEBD algorithm, we are interested in evaluating the time evolution of a
quantum state:

|ψ(t)〉 = U(t)|ψ(0)〉. (2.12)

The time evolution operator U can either be U(t) = exp(−iHt) yielding a real time
evolution, or an imaginary time evolution U(τ) = exp(−Hτ). The latter is used to
find ground states of the Hamiltonian H through the relation

|ψGS〉 = lim
τ→∞

e−τH |ψ0〉. (2.13)
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Figure 2.2: In iTEBD each time step δt of a time evolution is approximated using
a Trotter-Suzuki decomposition, i.e., the time evolution operator is expressed as a
product of unitary two-site operators.

To achieve this, one makes use of the Trotter-Suzuki decomposition, which approxi-
mates the exponent of a sum of operators, with a product of exponents of the same
operators. For example, the first order expansion reads

e(V+W )δ = eV δeWδ +O(δ2). (2.14)

Here V and W are operators, and δ is a small parameter. The second order expansion
similarly reads

e(V+W )δ = eV δ/2eWδeV δ/2 +O(δ3). (2.15)

To make use of these expressions, we assume that the Hamiltonian is a sum of two-site
operators of the form H =

∑
n h

[n,n+1] and decompose it as a sum

H = Hodd +Heven

=
∑
n odd

h[n,n+1] +
∑
n even

h[n,n+1]. (2.16)

Each term Hodd and Heven consists of a sum of commuting operators.
We now divide the time into small time slices δt � 1 (the relevant time scale is

in fact the inverse gap) and consider a time evolution operator U(δt). Using, as an
example, the first order decomposition (2.14), the operator U(δt) can be expanded
into products of two-site unitary operators

U(δt) ≈
[∏
n odd

U [n,n+1](δt)

][ ∏
n even

U [n,n+1](δt)

]
, (2.17)

where

U [n,n+1](δt) = e−i δt h
[n,n+1]

(2.18)
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Figure 2.3: The iTEBD update scheme for a unitary two-site transformation of a
two-site unit cell MPS in canonical form (see Sec. 2.2 for details).

This decomposition of the time evolution operator is shown pictorially in Fig. 2.2.
One notices that even if the underlying system has a translation invariance of one
site, the decomposition breaks this temporarily into a two site translation symmetry.
Therefore, one needs to keep at least two sets of matrices ΓA,ΛA and ΓB,ΛB. The
successive application of these two-site unitary operators to an MPS is the main part
of the algorithm.

Local unitary updates of an MPS. One of the advantages of the MPS repre-
sentation is that local transformations can be performed efficiently. Moreover, the
canonical form discussed above is preserved if the transformations are unitary.[128]

A one-site unitary U simply transforms the tensors Γ of the MPS

Γ̃jαβ =
∑
j′

U j
j′Γ

j′

αβ. (2.19)

If we consider an infinite, translational invariant MPS, this transformations implies
the application of the unitary to all equivalent sites simultaneously. In such case the
entanglement of the wave-function is not affected and thus the values of Λ do not
change.
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The update procedure for a two-site unitary transformation acting on two neigh-
boring sites is shown in Fig. 2.3. We focus on an update of an AB bond between
two neighboring sites n and n + 1 for an MPS with a unit cell of size N = 2. The
inequivalent BA bonds are updated similarly by simply exchanging A and B. The
generalization to an L-site unit cell is straightforward. We first find the wave function
in the basis spanned by the left Schmidt states on bond n− 1 : n, the 1-site Hilbert
space of sites n and n+ 1, and the right Schmidt states on bond n+ 1 : n+ 2, which
together form an orthonormal basis {|αn−1〉L, |jn〉, |kn+1〉, |γn+1〉R}. Calling the wave
function coefficients Θ, the state is expressed as

|ψ〉 =
∑
α,j,k,γ

Θjk
αγ|αn−1〉L|jn〉|kn+1〉|γn+1〉R. (2.20)

Using the definitions of |α〉L/R shown in Fig. 2.1(b), Θ is given by

Θjk
αγ =

∑
β

ΛB
αΓA,jαβ ΛA

βΓB,kβγ ΛB
γ . (2.21)

Writing the wave function in this basis is useful because it is easy to apply the
two-site unitary in step (ii) of the algorithm:

Θ̃jk
αγ =

∑
j′k′

U jk
j′k′Θ

j′k′

αγ . (2.22)

Next we have to extract the new tensors Γ̃A, Γ̃B and Λ̃A from the transformed tensor
Θ̃ in a manner that preserves the canonical form. We first ‘reshape’ the tensor Θ̃ by
combining indices to obtain a dχ× dχ dimensional matrix Θjα;kγ. Because the basis
|αn−1〉L|jn〉 is orthonormal, as for the right, it is natural to decompose the matrix
using the singular value decomposition (SVD) in step (iii) into

Θjα;kγ =
∑
β

Xjα;βDβYβ;kγ, (2.23)

where X, Y are isometries and D is a diagonal matrix. The isometry X relates
the new Schmidt states |βn〉L to the combined bases |αn−1〉L|jn〉. Analogously, the
Schmidt states for the right site are obtained from the matrix Y . Thus the diagonal
matrix D contains precisely the Schmidt values of the transformed state, i.e., Λ̃A =
D. The new tensors Γ̃A, Γ̃B can be extracted directly from the matrices X, Y using
the old matrices ΛB and the definition of Θ in Eq. (2.21). In particular we obtain
the new tensors in step (iv) by

Γ̃A,jαβ = (ΛB)−1
α Xjα;β, (2.24a)

Γ̃B,jβγ = Yβ;kγ(Λ
B)−1

γ . (2.24b)
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After the update, the new MPS is still in the canonical form. Note that as in the
one-site update, if we apply the algorithm to an MPS, the update is performed
simultaneously to all matrices at equivalent bonds. Thus the iTEBD algorithms ex-
ploits the translational invariance of the systems by effectively performing an infinite
number of parallel updates at each step.

The entanglement at the bond n, n+ 1 has, in the update, changed and the bond
dimension increased to dχ. Thus the amount of information in the wave function
grows exponentially if we successively apply unitaries to the state. To overcome this
problem, we perform an approximation by fixing the maximal number of Schmidt
terms to χ. After each step, only the χ most important states are kept, i.e., if we
order the Schmidt states according to their size we simply truncate the range of the
index β in (2.23) to be 1 . . . χ. This approximation limits the dimension of the MPS
and the tensors Γ have at most a dimension of d× χ× χ. Given that the truncated
weight is small, the normalization conditions for the canonical form will be fulfilled
to a good approximation. In order to keep the wave function normalized, one should

divide by the norm after the truncation, i.e., divide by N =
√∑

i,j,α,γ

∣∣Θij
αγ

∣∣2.

If we perform an imaginary time evolution of the state, the operator U is not
unitary and thus it does not conserve the canonical form. It turns out, however, that
the successive Schmidt decompositions assure a good approximation as long as the
time steps are chosen small enough.[73] One way to obtain very accurate results is
to decrease the size of the time steps successively. [126]

The simulation cost of this algorithm scales as d3χ3 and the most time consuming
part of the algorithm is the SVD in step (iii). If the Hamiltonian has symmetries, we
can considerably accelerate this step by explicitly conserving the resulting constants
of motion. The anisotropic spin model we study has for example a global U(1)
symmetry and conserves the total magnetization. Thus the matrix Θiα;jγ has a block-
diagonal form and the SVD can be performed in each block individually, yielding a
considerable speed up. See Refs. [106, 105, 104] for details of an implementation
of symmetries into the algorithm. Numerically, the algorithm can become unstable
when the values of Λ become very small since the matrix has to be inverted in order
to extract the new tensors in step (iv) of the algorithm. This problem can be avoided
by applying a slightly modified version of this algorithm as introduced by Hastings
in Ref. [49].

2.3 Matrix-Product Operators

The iDMRG algorithm explained in the next section relies on expressing the
Hamiltonian of the system in terms of matrix product operator (MPO). An MPO
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Figure 2.4: (a) An operator O acting on an entire chain expressed as a matrix product
operator. (b) A matrix product operator acting on a matrix product state O|ψ〉. (c)
The expectation value 〈ψ|O|ψ〉 expressed in an MPO form.

is a natural generalization of an MPS to the space of operators. An operator in an
MPO form, acting on a chain with L sites, is given by

O =
∑
j1,...,jL
j′1,...,j

′
L

~vleftM
[1]j1j′1 M [2]j2j′2 · · ·M [L]jLj

′
L ~vright

×|j1, . . . , jL〉〈j′1, . . . , j′L| ,
(2.25)

where M jnj′n, are D × D matrices, and |jn〉, |j′n〉 represent local states at site n, as
before. At the boundaries we initiate and terminate the MPO by the vectors ~vleft

and ~vright.
A pictorial representation of an MPO is given in Fig. 2.4(a). The notation is very

similar to the one for an MPS: the horizontal line corresponds to the indices of the
virtual dimension and the vertical lines represent the physical states |jn〉 (bottom)
and 〈j′n| top. The advantage of the MPO is that it can be applied efficiently to a
matrix product state as shown in Fig. 2.4(b). All local Hamiltonians with only short
range interactions can be represented using an MPO of a small dimension D. Let us
consider, for example, the MPO of the anisotropic Heisenberg model in the presence
of an on-site anisotropy. Expressed as a tensor product, the Hamiltonian takes the
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following form:

H = Sx ⊗ Sx ⊗ 1⊗ · · · ⊗ 1 + 1⊗ Sx ⊗ Sx ⊗ · · · ⊗ 1 + . . .

+ Sy ⊗ Sy ⊗ 1⊗ · · · ⊗ 1 + 1⊗ Sy ⊗ Sy ⊗ · · · ⊗ 1 + . . .

+ ∆Sz ⊗ Sz ⊗ 1⊗ · · · ⊗ 1 + . . .

+ [D2(Sz)2 +D4(Sz)4]⊗ 1⊗ 1⊗ · · · ⊗ 1 + . . . (2.26)

The corresponding exact MPO has a dimension D = 5 and is given by

M [i] =


1 0 0 0 0
Sx 0 0 0 0
Sy 0 0 0 0

∆Sz 0 0 0 0
D2(Sz)2+D4(Sz)4 Sx Sy Sz 1

 , (2.27)

with

~vleft =
(
0, 0, 0, 0, 1

)
, ~vright =

(
1, 0, 0, 0, 0

)T
. (2.28)

By multiplying the matrices (and taking tensor products of the operators), one can
easily see that the product of the matrices does in fact yield the Hamiltonian (2.26).
Further details of the MPO form of operators can be found in Refs. [97, 68].

2.4 Infinite Density Matrix Renormalization

Group (iDMRG)

We now discuss the infinite Density Matrix Renormalization Group (iDMRG)
algorithm. Unlike iTEBD, the iDMRG is a variational approach to optimizing the
MPS, but the algorithms have many steps in common. One advantage of the iDMRG
is that it does not rely on a Trotter-Suzuki decomposition of the Hamiltonian and
thus applies to systems with longer range interactions. We assume only that the
Hamiltonian has been written as an MPO. Secondly, the convergence of the iDMRG
method to the ground state is in practice much faster. This is particularly the case
if the gap above the ground state is small and the correlation length is long.

The schematic idea for the iDMRG algorithm is as follows (see Fig. 2.6). Like in
iTEBD, the state at each step is represented by an MPS. We variationally optimize
pairs of neighboring sites to minimize the ground state energy 〈ψ|H|ψ〉, while keeping
the rest of the chain fixed. To do so, at each step we represent the initial wave
function |ψ〉 using the two site tensor Θjk

αγ (as previously defined in the iTEBD
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Figure 2.5: Pictorial representation of a contraction of the left and right envi-
ronments. The boundaries are initiated by the tensors R0

αᾱ,a = δαᾱ~vright;a and
L0
αᾱ,a = δαᾱ~vleft;a.

section), project the Hamiltonian into the space spanned by the basis set |αjkβ〉,
and use an iterative algorithm (e.g. Lanczos) to lower the energy. Repeating this step
for each pair, the wave function converges to the ground state. For simplicity, only
the details of the algorithm with a unit cell of two sites, A and B, will be described
below.

Two-site update algorithm. We start by describing the update of an AB bond
between two neighboring sites n and n+1 (the update on a BA bond can be performed
analogously by exchanging the role of A and B), and return later to the initialization
procedure. Step (i) is identical to the first step in the iTEBD method; we contract
the tensors for two neighboring sites to obtain the initial wave function Θjk

αγ. The

orthonormal basis |αjβk〉 spans the variational space |ψ̃〉 = Θ̃jk
αγ|αjβk〉 of the update,

in which we must minimize the energy E = 〈ψ̃|H|ψ̃〉 in order to determine the optimal
Θ̃. Because H is written as an infinite MPO, it appears at first that to evaluate the
energy we will have to contract an infinite number of tensors starting from left and
right infinity, as illustrated in Fig. 2.4(c). For the sake of induction, however, suppose
we have already done this contraction on the left through bond n − 1 : n, and on
the right through bond n + 1 : n + 2. As illustrated in Fig. 2.5, the result of these
contractions can be summarized in two three leg tensors we call the left and right
“environments.” The left environment Lαᾱ,a has three indices: the MPO index a, and
the indices α, ᾱ corresponding to the bond indices of |ψ̃〉 and 〈ψ̃|. Likewise, on the
right we have Rγγ̄,c. Each bond of the system has a similarly defined environment;
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Figure 2.6: A pictorial representation of an iDRMG iteration step update. Refer to
Sec. 2.4 for details.

for a unit cell of two, we have in total {LA, LB}, {RA, RB}. These environments are
nothing other than the MPO for the Hamiltonian projected into the space of left and
right Schmidt states about each bond.

With the environment in hand, we can project the Hamiltonian into the or-
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thonormal basis |αjγk〉; to minimize the energy of Θ we find the ground state of the
χ2d2 × χ2d2 “Hamiltonian”:

Hαjkγ;ᾱj̄k̄γ̄ =
∑
a,b,c

LBαᾱ,aM
j,j̄
abM

k,k̄
bc R

B
γγ̄,c. (2.29)

To find this ground state, we use an iterative procedure such as Lanczos or Jacobi-
Davidson at a cost of χ3Dd2 per multiplication, as illustrated in step (ii) of Fig. 2.6,
and obtain an improved guess for the wave function Θ̃ and energy E0. By using
the initial wave function Θ as the starting vector for the minimization procedure,
convergence is typically reached with only a couple of steps. This can be compared
to the iTEBD optimization where we obtain a new wave-function Θ̃ after applying
the imaginary time-evolution operator. As with iTEBD, the bond dimension grows
as χ→ dχ, which we must truncate using SVD, shown in step (iii). It is important
that the left and right Schmidt basis about any bond remain orthogonal, because we
assume |αjβk〉 is an orthogonal basis at each step. Assuming this was the case on
bonds of type B, the isometry properties of the SVD matrices X and Y imply that
the orthogonality condition holds for the updated Schmidt states defined about the
central bond A, and hence will remain so throughout the simulation. At this point,
we have improved guesses for the matrices Γ̃A/B, Λ̃A in step (iv).

The last step is to update the environment. At a minimum, we must update
the environments on the bond which we just optimized by simply multiplying new
tensors to the left and right as shown in Fig. 2.6 step (v):

L̃Aββ̄,b = LBαᾱ,aΛ
B
α Γ̃AαβjM

j,j̄
ab ΛB

ᾱ (Γ̃Aᾱβ̄j̄)
∗, (2.30a)

R̃A
ββ̄,b = RB

γγ̄,aΓ̃
B
βγkΛ

B
γM

k,k̄
ab (Γ̃Bγ̄β̄k̄)

∗ΛB
γ̄ . (2.30b)

This concludes the update on bond AB and we move over by one site, exchanging
the roles of A and B, and repeat until convergence is reached.

Initializing the environment. We now return to the problem of initializing the
algorithm. The initial MPS can be arbitrary (though it should be in canonical form).
A fine choice is a χ = 1 tensor product state which either preserves or breaks the
symmetries as desired. To form the initial environment, we suppose when computing
the left/right environment that Ĥ is zero to the left/right of the bond, which is
captured by tensors of the form

R
[n]
αᾱ,a = δαᾱ~vright;a, (2.31a)

L
[n]
αᾱ,a = δαᾱ~vleft;a, (2.31b)
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where the ~vleft/right are the MPO terminal vectors defined in Eq. (2.25). Referring
to Eq. (2.28) as an example, recall that ~vright specifies the MPO index such that no
further operators will be inserted to its right; likewise, ~vleft indicates no operators
have been inserted to its left. Because all terms in the Hamiltonian then act as
the identity to the left/right of the bond, the orthogonality of the Schmidt vectors
implies that projecting the identity operator into the left/right Schmidt basis trivially
gives δαᾱ. When symmetry breaking is expected it is helpful to further initialize
the environments by repeatedly performing the iDMRG update without performing
the Lanczos optimization, which builds up environments using the initial symmetry
broken MPS.

Ground state energy from iDMRG. One subtlety of the above prescription
lies in the interpretation of the energy EGS obtained during the diagonalization step.
Is it the (infinite) energy of the infinite system? Using the initialization procedure
just outlined, the Lanczos energy EGS after the first step is the energy of the two-site
problem. While we motivated the environments as representing infinite half chains,
it is more accurate to assign them a length of 0 after the initialization procedure, and
at each optimization step the length of the left/right environment about the central
bond increases because a site has been appended. Keeping track of the length `R/L of
each environment (for a unit cell of two, each grows on alternate steps), we see that
the energy EGS corresponds to a system of size ` = `L + 2 + `R. By monitoring the
change in EGS with increased `, we can extract the energy per site. This is convenient
for problems in which there is no few-site Hamiltonian with which to evaluate the
energy.

As for the iTEBD algorithm, we can achieve a considerable speed-up by using
the symmetries of the Hamiltonian, which requires assigning quantum numbers to
the tensors of the MPO in addition to the MPS.

2.5 Finite entanglement scaling

An advantage of the infinite system methods introduced above is that no artifacts
from the boundary appear. On the other hand, finite size effects can be very useful for
performing a scaling analysis. In this section we show that critical properties of the
system can be extracted by performing a “finite-entanglement scaling” in the infinite
systems. This means, one can perform simulations with different bond-dimensions
χ at a critical point and use the induced finite correlation length ξχ as a scaling
variable analogous to a finite system size.
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To motivate this notion, consider the entanglement entropy SE, which for an
infinite system diverges logarithmically as a function of the correlation length as
criticality is approached. [13] In an MPS, however, SE is bounded by SE ≤ logχ,
and an infinite χ is needed to accurately represent critical states. Clearly we cannot
perform simulations with an infinite χ, raising the question: what happens if we
nevertheless optimize a finite dimensional MPS for a critical system? This question
has been addressed by a series of papers. [115, 84, 83] It turns out that simulating
critical systems using finite χ cuts off long distance correlations a finite length ξχ.
If we define the correlation length of the MPS ξ to be the length obtained from the
second largest eigenvalue of the transfer matrix, Eq. (2.11), then at criticality the
correlation length of the MPS scales as

ξ ∝ χκ (2.32)

where κ ≈ 1
c

6√
12
c

+1
. [84] Because χ introduces a length scale in a universal way, we

can define the ‘finite entanglement length’ by ξχ ≡ Cχκ, where C is independent
of χ, and extract various quantities of interest using a finite ξχ scaling analysis, or
“finite entanglement scaling.” In an infinite system at criticality, the scaling relations
are generally obtained from the analogous scaling relations in a finite size system by
replacing the finite length L by ξχ. For example, for a critical point with central
charge c, the entanglement entropy SE between two halves of a finite system of
length L scales as SE = c

6
log(L/a) + s0, with a the lattice spacing and s0 a non-

universal constant. If we instead measure SE for an infinite system, but with finite
χ, we can substitute L→ ξχ, [13]

SE =
c

6
log(ξχ/a) + s′0. (2.33)

The additive constant is again non-universal, and unrelated to s0. One should note,
though, that while ξχ and L have the same scaling dimension (i.e., that of length),
the actual scaling functions are not guaranteed to be the same.

Another useful quantity at criticality for systems with a U(1) symmetry is the
‘stiffness,’ here parameterized as the Luttinger parameter K. [36] For Hamiltonians
that conserve the total magnetization, it can be obtained from the scaling of bipartite
spin fluctuations of a half chain

F = 〈(SzL)2〉 − 〈SzL〉2, (2.34)

where SzL is the z-component of the total spin to the left of a cut (for example, the
total magnetization of the sites i < 0). The spin fluctuations satisfy [107, 108]

F =
K

2π2
log(ξχ/a) + const, (2.35)
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Figure 2.7: (Color online) A schematic plot illustrating the idea of finite-
entanglement scaling. The black solid line shows the exact correlation length ξphys

of the Hamiltonian, which diverges at the critical point. The dotted lines show the
correlation lengths ξ of the optimized iMPS at a finite χ2 > χ1. The horizontal
dashed lines are the correlation lengths ξχ1(χ2) from Eq. (2.32), which are induced by
the finite-entanglement cut-off at the critical point. The color shaded background
indicates the two different regimes: Blue is the regime in which the iMPS is con-
verged to the exact ground state using bond dimensions χ1, χ2 and red is the scaling
regime which shrinks with increasing χ (see main text for further details).

allowing us to extract K by measuring the scaling of F with increased χ.
The above discussion holds at criticality. Next we discuss the situation in the

vicinity of a critical point, where the physical correlation length ξphys is finite but
much larger than the correlation length induced by finite χ, i.e. ξχ � ξphys. For our
purposes, we can define ξphys by the MPS correlation length ξ in the limit χ → ∞,
where the MPS represents the true ground state. In this regime the MPS is still
cutoff by ξχ, rather than the true correlation length ξphys, so the finite-entanglement
scaling relations Eqs. (2.33) and (2.35) can still be used to obtain quantities like
c and K. We will refer to this parameter range as the finite entanglement scaling
region and it is shown as the red area in the schematic plot in Fig. 2.7.

Further away from criticality, as ξphys � ξχ, we can fully converge the MPS
and the state ‘knows’ it is not at the critical point. In this regime ξ → ξphys is
independent of χ, and all other observables are converged in χ. If we measure the
critical quantities c and K using Eq. (2.33) and Eq. (2.35), we find they renormalize
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to zero.
The crossover can be analyzed by a general finite entanglement scaling form.

Let gi be a set of physical parameters, such as the coupling constants or the physical
dimension of the system, and let O be a scaling observable. Near criticality, O(g) has
a scaling form determined by the scaling dimensions of O and gi. When the system
is approximated by an MPS of finite χ, a new length scale ξχ is introduced. While χ
itself has fixed scaling dimension, since ξχ ∼ χκ, we find that it is numerically more
stable to parameterize the effect of χ through the MPS correlation length ξ. We then
measure O using the MPS, O(g; ξ).

The finite entanglement scaling procedure asserts that the usual scaling theory
still applies to O(g; ξ), with the addition of a single parameter of mass dimension
[ξ] = −1. As usual, the scaling hypothesis allows us to rescale O, g, ξ in order to
eliminate the dependence on one parameter. In the usual case in which there are no
marginal operators, we can linearize the renormalization flow equations to determine
the scaling dimensions yi, yF , and find

O(gi, ξ) = eyO`O(eyi`gi, e−`ξ). (2.36)

Note that ξ is in principle determined both by the physical correlation length ξphys

and the finite entanglement length ξχ as discussed above; at criticality, ξ = ξχ, while
at infinite χ, ξ = ξphys. Regardless, (gi, ξ) remains a valid coordinate system for the
parameters.

In summary, in the finite entanglement scaling regime, 1� ξχ � ξphys, we expect
Eqs. (2.33) and (2.35) to produce the critical values c and K, but as ξphys � ξχ, the
MPS converges and we cross over to the true, non-critical values c = K = 0.
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Chapter 3

Exact Matrix Product States for
the Quantum Hall Effect

3.1 Introduction

The purpose of this chapter is to show that the venerable model wave functions
for the fractional Quantum Hall effect, such as the Laughlin wave function, are MPSs
in disguise. By this I mean that they have an exact, and very elegant, description as
MPSs, and the entries of the tensors can be calculated analytically using the data of
a conformal field theory. Many of the remarkable properties of these wavefunctions
stem from their relationship to the CFT describing their edge theory, and in this
chapter I show that this relationship implies precisely that they are MPSs. 1

The fractional quantum Hall (FQH) effects are exotic phases of matter that ap-
pear when interacting 2D systems are subject to large magnetic fields. They are
the foremost example of topologically ordered phases, which are characterized by
long range entanglement rather than by local order parameters.[135] Topological or-
der has many signatures such as gapless edge excitations, fractional or non-abelian
statistics, and ground state degeneracy on a cylinder or torus. Many of these proper-
ties were discovered or demonstrated using “model wave functions” as ansatz for the
ground state. The first example was Laughlin’s wave function[64] at filling ν = 1/q
argued to explain the first FQH experiments,[118] which has since been followed by
many other successful ansatz.[45, 42, 70, 89] The model wave functions have also
served as a diagnostic for exact diagonalization (ED) studies by checking the model
states’ overlap with the ED ground state.

Recently new ideas originating from quantum information, such as the entangle-

1Portions of this work appear in Phys. Rev. B 86, 245305
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ment spectrum, have become important tools for detecting and characterizing the
topological order of these phases.[58, 65, 2] Given a bipartition of the system into
two sub-Hilbert spaces, H = HA ⊗ HB, we can decompose any wave function |Ψ〉 in
terms of wave functions which live solely in A or B:

|Ψ〉 =
∑
a

e−
1
2
Ea|ΨA

a 〉 ⊗ |ΨB
a 〉, (3.1)

with the restriction that the ‘entanglement spectrum’ Ea is real and that the ‘Schmidt
vectors’ |ΨA

a 〉 form an orthonormal set (as do the |ΨB
a 〉). It was suggested in Ref. [58],

and later thoroughly investigated in Ref. [66] that when A,B are chosen to be regions
in space, the low lying entanglement spectrum of a FQH state can be identified with
the energy spectrum of the conformal field theory (CFT) describing its gapless edge
excitations.[86, 76] It was observed that for certain model wave functions, such as the
Moore-Read (MR) state,[70] the entire entanglement spectrum could be identified
as states of the edge CFT. [66]

A second realm in which entanglement has come to play an important role is
for a set of variational wave functions called ‘matrix products states’ (MPS) [31]
in one-dimension (1D) or ‘tensor networks’ [123] in higher dimensions. These are
the variational states of the highly successful density matrix renormalization group
(DMRG) method,[137, 75] which succeeds because MPS efficiently capture the struc-
ture of entanglement in many body wave functions.[78] The precise relationship be-
tween topological order and tensor network representations is a subject of ongoing
work, but in 1D at least a complete classification of symmetry protected topological
(SPT) order for both gapped 1D spin and fermion chains was recently accomplished
using the MPS representation of the ground state. [16, 34, 119, 99] Given a set
of sites labeled by i, each with local basis |mi〉, an MPS |ψ〉 is defined by a set of
‘B-matrices’,

|ψ〉 =
∑
{α,m}

[
· · ·Bm2

α3α2
Bm1
α2α1
· · ·
]
| · · · ,m2,m1, · · ·〉. (3.2)

The indices 0 ≤ αi < χ to be traced over are called ‘auxiliary’ indices, which we
consider to be states in an ‘auxiliary Hilbert space’ defined on the bonds between
sites. With the proper normalization, the auxiliary states are in one to one corre-
spondence with the entanglement spectrum of a cut on the bond. An important
insight from the classification scheme is that a suitable renormalization procedure
[125, 16] can be defined which produces a representative state of the smallest possible
χ. For example, the χ = 2 state of Affleck, Lieb, Kennedy and Tasaki (AKLT) [1] is
representative of the SPT ordered Haldane phase [43] of the spin-1 Heisenberg chain.
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The observed simplicity of the FQH model states’ entanglement spectrum sug-
gests they play an analogous role for the FQH effects as the AKLT state does for the
Haldane phase. To pursue the analogy further, the 1+1D AKLT wave function can
be written as a time ordered correlation function of a single ‘0 + 1D’ spin-1

2
, which

leads to its simple expression as an MPS whose χ = 2 auxiliary Hilbert space is a
spin-1

2
.[4] The 2+1D FQH model wave functions can be written as the correlation

function of a 1+1D CFT. Does it follow that the model FQH states have exact rep-
resentations as an MPS with an auxiliary Hilbert space in one to one correspondence
with the CFT, and if so, can they be implemented and manipulated numerically?

In this paper we show that the model FQH wave functions and their quasiparticle
excitations indeed have exact representations as MPSs. As expected the requisite
structure of the model states is that their wave functions are the correlation functions
of a 1+1D CFT, which implies essentially by definition that they are MPSs whose
auxiliary Hilbert space is the CFT. We also explain how the edge excitations and
ground state degeneracy arise in the MPS picture.

Working on a cylinder in the Landau gauge, we can view the system as a 1D
chain of orbitals for which the B-matrices of Eq. (3.2) are the matrix elements of
local operators of the CFT. We have implemented these MPSs numerically for both
the fermionic Laughlin and Moore-Read states on the geometry of an infinitely long
cylinder of circumference L, allowing us to measure arbitrary real-space correlation
functions using the standard infinite MPS algorithms. The infinite cylinder has a
number numerical advantages, including the absence of boundaries, full translation
invariance and no curvature effects. Compared to the torus geometry,[63, 62, 67]
only a single cut is required to study the entanglement, greatly simplifying the iden-
tification of the entanglement spectrum. As we show in Sec. 3.3, the computational
complexity of the MPS representation is on the order O(bL) for b ∼ O(1). However,
to achieve the same type of scaling in the traditional Hilbert space representation
(say on a sphere[47, 144, 66, 117, 110, 29]) would require N ∼ O(L2) particles and
a Hilbert space dimension scaling as bL

2
. We note that previously a conceptually

distinct approach found an MPS for the Laughlin state in which there is one matrix
per particle, rather than per orbital.[52] However, the construction does not easily
generalize to other FQH states and again results in a complexity bN , which implies
it cannot be implemented on the infinite cylinder geometry. A 2D tensor network
construction for observables has also been constructed for lattice FQH states,[9] but
the feasibility of its implementation is unclear.

Furthermore, we introduce an algorithm for calculating the real-space entangle-
ment spectrum of any state given as an MPS in the orbital basis. We first use the
larger system sizes provided by the MPS representation to extract the topological
entanglement entropy (TEE) γ using four different methods; first using the conven-
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tional scaling of the entanglement entropy,[58, 65]

S =
∑
a

Eae
−Ea = aSL− γ +O(L−1), (3.3)

and second from a similar scaling form we derive for the lowest entanglement energy,
E0 = aEL − γ + O(L−1), for both the orbital and real-space cuts. 2 We find using
E0 in the orbital cut converges most quickly, and as this form is applicable to other
topologically ordered phases, it may prove useful in cases where small system sizes
are a constraint. We are able to definitively determine γ using all four methods for
the ν = 1

3
, 1

5
and 1

7
Laughlin states, as well as the ν = 1

2
Moore-Read state (cf.

Tab. 3.1), which proved difficult in previous studies.[47, 144, 62, 110]
Finally, we perform a detailed scaling analysis of the spectrum for both the orbital

and real-space cuts. During the final preparation of this work, a recent preprint [28]
has conclusively demonstrated earlier arguments that the real-space entanglement
spectrum of the model wave functions takes the form of the chiral Hamiltonian
H perturbed by local, irrelevant boundary operators.[86, 29] This implies a scaling
collapse of the entanglement spectrum in the limit L→∞ for fixed CFT level n. The
large system sizes available here give the first detailed demonstration of this principle,
allowing us to extract the entanglement velocities for both the Majorana and U(1)
modes of the MR state, as well as the form of the leading irrelevant corrections.

In contrast, in the orbital cut each entanglement eigenvalue scales as Ea − E0 ∼
L−ζa which precludes the possibility of collapsing the spectrum. This is contrary
to earlier indications that the orbital spectrum showed the same linear dispersion,
[117] though the case studied there was the ‘conformal limit’ of bosonic ν = 1

2
wave

function on a finite sphere.

3.2 Model Wavefunctions and Matrix Product

States

A number of gapped model wave functions, including those of the FQH, can be
written as the correlation functions of a field theory in one lower dimension.[101] In
the 2+1D FQH effect, for example, the model wave functions are correlation func-
tions of a 1+1D chiral conformal field theory (CFT).[70] Other examples with this
structure include the AKLT states, the Toric code,[57] spin chains,[19, 72] and cer-
tain BCS superconductors.[130, 88, 27, 101] As we will illustrate in the case of the
FQH effect, this structure implies that the state has an exact implementation as an

2The lowest entanglement energy E0 is equal to the Rényi entropy[91] S∞ at infinite order.
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Figure 3.1: The infinite cylinder geometry for model FQH wave functions. L is the
circumference, x and τ are the coordinates around and along the cylinder respectively.

δτ =
2π`2B
L

is the spacing between Landau level orbitals, where `B = (~/qB)1/2 is the
magnetic length. A real-space entanglement cut between regions A,B would be made
along some fixed τ .

Filling vφ vχ D2 = e2γ

Laughlin

1 2.2568± 0.0003 |γ| < 10−7

1/3 1.2956± 0.0006 2.996
1/5 0.672± 0.009 4.96
1/7 0.28± 0.02 6.88

Moore-Read 1/2 1.33± 0.01 0.21± 0.01 7.77

Table 3.1: Extracted real-space entanglement velocities and TEE γ for various model
wave functions. vφ is the velocity of the chiral boson, and for the MR case, vχ the
velocity of the chiral Majorana, in units of the magnetic length `B. For the ν = 1
integer quantum Hall state, the exact value of the velocity is known to be 4/

√
π. In

the column for total quantum dimension D, we present the value extracted via the
orbital cut E0 around L = 25`B. (For ν = 1 integer case, we use the real-space cut
S instead.) Refer to Sec. 3.6 for details on our numerical methods.

MPS or a tensor network. The auxiliary Hilbert space of the tensor network is in
correspondence with the Hilbert space of the associated lower dimensional field the-
ory. In turn, the edge excitations and the entanglement spectrum of tensor networks
are known to be closely related; [20] this relationship takes a particularly elegant
form for the FQH effect due to the stringent constraints of conformal invariance in
2D.[28]
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The simplest example is the Laughlin state on an infinite cylinder, which can be
written as the correlation function of a chiral boson φ(z) 3

ΨL(za) =
N∏
a<b

sin
(
(za − zb) πL

)q
e
− 1

2`2
B

∑
aτ

2
a

(3.4)

=

〈
exp

[
i
√
q

N∑
a=1

φ(za)− i
√
qρ

∫
d2z φ(z)

]〉
φ

as elucidated by Moore and Read.[70] Throughout we will use z = x+iτ as a complex
coordinate on the cylinder, where x runs around its circumference of length L and
τ runs along its length, as illustrated in Fig. 3.1. The filling fraction is ν = p

q
, the

magnetic length is `2
B = ~

eB
, and the density of electrons is ρ = ν

2π`2B
. The chiral boson

φ is a free field characterized by its correlation function on the plane or cylinder,

〈φ(z)φ(z′)〉plane = − log(z − z′),
〈φ(z)φ(z′)〉cyl = − log sin

[
π
L

(z − z′)
]
. (3.5)

In the Laughlin state, for each electron we insert the operator V(za) = :ei
√
qφ(za) : ,

where : : denotes normal ordering. Other quantum Hall states, such as the Moore-
Read state or the Read-Rezayi sequence,[70, 89] can be obtained by letting V be an
operator in a more general CFT. It is also necessary to include a neutralizing ‘back-
ground charge’ Obc = −iρ

∫
d2z φ(z)/

√
ν.The background charge introduces some

subtleties, as the branch cut in the bosonic propagator has a phase ambiguity equiv-
alent to a choice of gauge for the electrons, which we will address at a later point.

We write a second quantized version of Eq. (3.4) using a coherent state wave func-
tion in the variable ψ (which is a complex/Grassmann number for bosons/fermions),
which in the thermodynamic limit is

ΨL[ψ] = 〈0|e
∫
d2z ψ(z)Ψ̂(z)|ΨL〉

=
〈
e
∫
d2z[V(z)ψ(z)−iρφ(z)/

√
ν]
〉

CFT
. (3.6)

The notation is rather subtle as we are tying together two theories: the physical
particles in 2+1D, with coherent state coordinate ψ(z), and the path integral over

3The normal ordering prescription is as follows. Each insertion :ei
√
qφ(za) : is normal ordered,

which eliminates a contraction that would produce (za − za)q = 0, and the self interaction of the
background charge

∫
d2z φ(z) is ignored, which would contribute an overall divergent constant.
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the auxiliary space of the 1+1D CFT, characterized by the correlation functions
〈·〉CFT. Number conservation is enforced by the U(1) symmetry of the chiral boson.

The structure of Eq. (3.6) is identical to that of a ‘continuous matrix product
state’ (cMPS) defined in Ref. [121], which we review briefly. Starting with an MPS
for a chain of bosons or fermions at sites with positions τ , we first pass from the
occupation basis {|mτ 〉} to the coherent state basis {|ψτ 〉} by defining

Bαα′ [ψτ ] ≡
∑
mτ

〈ψτ |Bmτ
αα′|mτ 〉. (3.7)

Second, we note that the trace over the auxiliary states {α} is formally equivalent to
a path integral over a 1D system, with the B playing the role of transfer matrices.
Anticipating the continuum limit, we assume there are matrices H, V in the auxiliary
Hilbert space such that B[ψ(τ)] = eH(τ)+V (τ)ψ(τ). We can then take the continuum
limit of the MPS by analogy to the usual time-ordered path integral, which defines
a cMPS,

Ψ[ψ] = Traux

[
T e

∫ Lτ
0 dτ [H(τ)+V (τ)ψ(τ)]

]
. (3.8)

Comparing the cMPS to the second quantized version of the Laughlin state, (3.6), we
see that they are equivalent if we take the physical Hilbert space at each slice to be
that of particles on a ring of circumference L, and the auxiliary Hilbert space to be
that of a chiral boson. In this case, H is precisely the Hamiltonian of the CFT (plus
the background charge Obc), while V is the electron operator, V . This structure was
also recently noted in Ref. [28], where, in the MPS language, they find the dominant
eigenvector of the ‘transfer matrix’[78] of the cMPS, from which the entanglement
Hamiltonian follows.

While the cMPS representation is convenient from an analytic perspective, com-
putationally it is desirable to have the discrete version expressed in the basis of
lowest Landau level (LLL) orbitals. Defining a coordinate w = e−

2πi
L
z for notational

convenience, in Landau gauge the orbitals can be written as

ϕn(z) ∝ e
− 1

`2
B

(iτnx+ 1
2

(τ−τn)2)
= wne

− 1

2`2
B

(τ2
n+τ2)

, (3.9)

where τn = 2πn
L
`2
B is the guiding center for the nth orbital. Viewing the orbitals as

the sites of an infinite 1D chain, we want to arrive at a discrete MPS as defined in
(3.2), which requires finding the appropriate matrices Bm

αα′ . Based on the cMPS, we
expect α will be in one-to-one correspondence with the states of the associated CFT.

In order to extract the occupation number at orbital n, we take advantage of
the fact that orbitals of the LLL (in the Landau gauge) are labeled by momentum.
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(a) Structure of the orbital MPS.

(b) Definition of the B-matrix.

(c) Structure of MPS with a quasihole insertion Q.

Figure 3.2: The structure of the orbital MPS. (a) U is free time evolution of the
CFT, punctuated by perturbations T at τ = τn. (b) The B-matrices in (3.2) are
defined by combining U and T . (c) A quasiparticle is inserted by placing the matrix
elements of the vertex operator Q in the correct time-ordered positions. It can be
absorbed into either of the adjoining B-matrices.

When acting on a many-body state in the LLL, we can then replace the destruction
operator ψ̂n for orbital n with a contour integral around the cylinder,

ψ̂n −→ e
τ2
n
`2
B

∮
τ=τn

dw

2πi
w−n−1ψ̂(w). (3.10)

We chose to perform the integrals at τn, though with an appropriate change in
normalization a different location could be chosen.

The gauge of the cMPS, however, depends on a branch cut prescription for the
background charge. It is convenient to choose the cut to consistently occur at some
fixed x coordinate, such as the boundary of −L/2 < x < L/2. This choice of gauge

does not produce the Landau gauge; they differ by a phase eixτ`
−2
B . Choosing this

branch cut prescription for φ(z), but keeping ψn to be the destruction operators for
the Landau gauge, we find Eq. (3.6) can be brought to the form

Ψ[ψn] =

〈
e

∑
n

∮
τ=τn

dw
2πi

w−1[V(w)ψn−i
√
νφ(w)]

〉
CFT

. (3.11)

Eq. (3.11) looks like unperturbed time evolution governed by the Hamiltonian of the
chiral CFT, H, punctuated by interactions at τn. As orbital ordering coincides with
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time ordering, we can pass to the Hamiltonian picture by inserting resolutions of the
identity 1 =

∑
α |α〉〈α| at positions τ = τn ± ε, where α label all states of the CFT.

A resulting unit cell looks like

Ψ[ψn] =
∑
{α}

[
· · · 〈αn+1|e−δτH |αn〉

〈αn|eV0ψn−i
√
νφ0|αn−1〉 · · ·

]
, (3.12)

where the operator 4

V̂0 ≡
∮

dw

2πi
w−1V(w)

is precisely the ‘0th mode’ of the electron operator V(w), and likewise φ0 is the zero-
mode of the chiral boson. The resulting transfer operators are of two types. For the
unperturbed segments τ ∈ (τn, τn−1), the transfer operator is

U(δτ) ≡ e−δτH , U(δτ)αβ = δαβe
−δτEα (3.13)

where α again runs over states of the CFT, with energies Eα, and δτ = 2π
L
`2
B. At the

location of each site we define a transfer operator 5

Tαβ[ψn] ≡ 〈α|e V̂0ψn−i
√
νφ0|β〉. (3.14)

Stringing the transfer matrices together, we arrive at the exact MPS,

Ψ[ψn] =
∏
n

U(δτ)T [ψn] (3.15)

as illustrated in Fig. 3.2a. We have suppressed the implicit summation over the CFT
states α.

The above is in ‘coherent state’ form; to convert to the occupation basis {|m〉},
we define the B-matrices of Eq. (3.2) to be∑

m

Bm(m!)
3
2ψm ≡ U(1

2
δτ)T [ψ]U(1

2
δτ) (3.16)

4While we have expressed the definition in terms of the coordinate w, we are taking only a
Fourier mode on the cylinder, not a conformal transformation to the plane. If we were to conformally
map the expression to the plane we would recover the familiar modes of radial quantization, but
that is not necessary here.

5Note that the boundary condition of the CFT on the auxiliary bond is not necessarily periodic,
due to the zero mode which ‘twists’ the boundary condition.
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as shown in Fig. 3.2b. Explicitly,

Bm = U(1
2
δτ)e−i

√
νφ0/2

(
V̂0

)m
√
m!

e−i
√
νφ0/2U(1

2
δτ). (3.17)

While the result is general, for the Laughlin and Moore-Read states, which are
described by free CFTs with electron operators

V(w) = :ei
√
qφ(w) : (Laughlin), (3.18a)

V(w) = χ(w) :ei
√
qφ(w) : (Moore-Read), (3.18b)

(χ is a chiral Majorana field), both T and U , and hence B, can be calculated exactly
at negligible numerical cost (for the details of this calculation, we refer to Appen-
dices 3.9 and 3.10). For an arbitrary CFT, their calculation is more involved but
nevertheless tractable using formulas developed for the ‘truncated conformal space’
approach to perturbed CFTs.[141]

In summary, we have demonstrated how to take a model wave function written
in terms of a correlator of a CFT and convert it to a discrete MPS [Eq.(3.2)] in the
orbital basis, characterized by a set of Bm

αβ. The auxiliary indices α, β label states
of the CFT, such that each matrix Bm is an operator of the CFT. The operator
Bm consists of three pieces: the (imaginary) time-evolution of the CFT (U), the
background charge (e−i

√
νφ0), and the insertion of m electron operators (Vm0 ). This

is the chief result of this paper.

Discussion

In order to obtain wave functions on a half or finite cylinder, one simply truncates
the MPS using the vacuum of the CFT as a boundary condition for the severed
auxiliary bonds. If excited states are used as the boundary condition, these produce
the corresponding model edge excitations.[133] This structure is analogous to the
spin-1

2
degree of freedom at the boundary of an AKLT chain, which arises from the

two choices of boundary condition for the χ = 2 MPS.
To understand the ground state degeneracy of the phase, note that if the phase

is m-fold degenerate on an infinite cylinder, there are m-primary fields in the CFT,
and the states of the CFT partition into m families which ‘descend’ from each of
these primary fields.[33] Each family is invariant under the action of the electron
operator V(w), so it follows that the CFT states on a given auxiliary bond can be
consistently truncated to one of these m families. The m choices on the bond provide
the m ‘minimal entanglement states’.[143]
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The ‘thin torus’ wave functions are also a limiting case of our construction.[116, 8]
As L→ 0, we can truncate the MPS by keeping only the states of the CFT with the
lowest energy within each family (the ‘highest weight states’), which generates a χ =
1 MPS. The construction intuitively connects how the operator product expansions
in the CFT are related to the orbital occupation numbers in the thin torus limit, the
so called “pattern of zeros”[136] or the “root configuration.”[10] We also note that
an approximate χ = 2 MPS for the Laughlin state was recently found;[71] in our
language this results from a truncation of the CFT to the states |P | ≤ 1.

We now explain how the two conserved quantities of the LLL problem, particle
number and momentum (sometimes called ‘center of mass’), can be assigned to the
states of the CFT. In the orbital basis we define the conserved quantities to be

Ĉ =
∑
j

(qN̂j − p) (particle number), (3.19a)

K̂ =
∑
j

j(qN̂j − p) (momentum), (3.19b)

where j is the orbital index and we have included a filling factor dependent scaling
(ν = p/q) so that both remain finite in the thermodynamic limit. If a state is
invariant under a U(1) symmetry transformation, the states of the Schmidt spectrum
can be assigned definite charge. Consequently, the entanglement spectrum on bond
n̄ ∈ Z + 1

2
can be labeled by pairs (Cn̄, Kn̄). The states of the auxiliary CFT have

quantum numbers as well, in particular the total momentum |P | of the CFT and
the winding number N of the boson (see Appendix 3.9 for detailed definitions). The
pairs (N, |P |) and (Cn̄, Kn̄) are related by

Cn̄ = N, (3.20a)

Kn̄ = q|P |+ 1

2
N2 + n̄N, (3.20b)

which explains how the previously observed offsets of the |P | = 0 levels depend on
the number sector and bond location.

3.3 Convergence properties and computational

complexity

For numerical purposes we must truncate the MPS by keeping only the χ most
important states in the entanglement spectrum. Most MPS algorithms (such as
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Figure 3.3: Numerically computing the TEE γ for the ν = 1/5 Laughlin state (top)
and the ν = 1/2 Moore-Read state (bottom). γ is extracted from both orbital
(squares) and real-space (circles) cut, via the entanglement entropy S (filled) and
the lowest entanglement energy E0 (empty), by performing windowed fits to the form
S(L), E0(L) = aS,EL − γ at various circumferences L. The horizontal lines marks
the values of γ = logD where D2 = 4, 5, 6 (top) and 7, 8, 9 (bottom). As L → ∞,
the extracted value of γ approaches their theoretical values of 1

2
log 5 and 1

2
log 8

respectively. In the latter case we can see that L & 20`B is required for the TEE to
be extracted with reasonable accuracy. (Insets) S vs. L/`B for the four cases.

measuring correlation functions) can then be computed with time O(Mχ3) and stor-
age O(χ2), where M is the number of sites involved in the measurement. In this
section we argue that to simulate the state at some fixed precision we must keep
χ ∼ eαcL/v(cL/v)−1/2 where c is the central charge of the entanglement spectrum,
v is its ‘entanglement velocity,’ and α is a non-universal constant of order 1. In
contrast to exact diagonalization, the complexity scales exponentially only in the
circumference of the cylinder, rather than its area. Use of the conserved quantum
numbers drastically reduces the computational time, but does not alter the expo-
nential complexity.

Following Kitaev and Preskill’s derivation of the topological entanglement en-
tropy,[58] we proceed under the assumption that the ‘thermodynamic’ properties of
the entanglement spectrum, such as the entanglement entropy, take the same form as
those of the auxiliary CFT. However, there is no reason to expect the velocities that
appear will be universal, so in what follows all powers of L/v should be understood
to have non-universal coefficients. The exact status of this assumption for the orbital
basis is somewhat unclear, because as we will show the orbital spectrum does not
collapse to the CFT; nevertheless the appearance of γ in the entropy S, the scaling
form of the lowest eigenvalue E0, and the collapse we find for the convergence of S
with increased χ appear to behave as expected.
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The density of states ρ(E) for a modularly invariant CFT is given by the ‘Cardy’
formula.[15] However, when working with the ‘minimally entangled’[143] ground
states naturally provided by the MPS construction, we must take into account the
fact that only one sector of the CFT, ‘a,’ belongs to the entanglement spectrum,
where the sector a depends on a choice of one of the m ground states. The corre-
sponding partition function and density operator are defined as

Za = Tra e
−βHe , (3.21)

ρ̂ = Z−1
a Tra e

−He . (3.22)

The derivation of the Cardy formula requires a modular transformation, but the
required partition function is not modularly invariant. This results in the explicit
appearance of the modular S matrix, − log(S1a ) = γa, where γa is the topological
entanglement entropy of the ground state a. Taking this term into account, the
density of states is

ρ(E)dE =
dE

4E

√
2

π
e−γae

√
π(c+c̄)EL

3v

(
π(c+ c̄)EL

3v

)1/4

. (3.23)

All the other thermodynamic properties follow from ρ(E). It is convenient to intro-
duce the dimensionless variable µ,

µ ≡
(
π(c+ c̄)EL

3v

)1/4

. (3.24)

We can calculate the partition function and entanglement entropy,

Za(β) =

∫
ρ(E)e−βEdE

=

√
2

π
e−γa

∫
eµ

2− 3v
π(c+c̄)

β
L
µ4

dµ

= e
π(c+c̄)

12
L
βv
−γa+..., (3.25)

S = ∂β−1(−β−1 lnZa)
∣∣
β=1

=
π(c+ c̄)

6

L

v
− γa + . . . . (3.26)

The partition function (3.25) is evaluated via steepest descent about the saddle point

µ∗ =
√

π(c+c̄)
6v

L
β

. As the entanglement spectrum is pi = e−Ei/Za(1), a particular

consequence of Eq. (3.25) is that the lowest entanglement level is p0 = e−[aEL−γa] for
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Figure 3.4: Convergence of the orbital entanglement entropy SΛ for the q = 3 Laugh-
lin state as the number of Virasoro levels kept (nΛ) is increased. (Inset) For various
circumferences 19`B ≤ L ≤ 40`B, we calculate the entanglement SΛ of the MPS
keeping only the lowest nΛ Virasoro levels of the CFT. For large enough nΛ, SΛ

converges to the exact entanglement entropy S∞. We expect the convergence to be
controlled by the parameter µ−µ∗ ∝ n

1/4
Λ −(aL)1/2 for some a. (Main figure) We plot

the convergence of the entanglement entropy, eSΛ−S∞ as a function of n
1/4
Λ − (aL)1/2,

with a ≈ 0.0875 giving a good collapse.

some non-universal aE. A similar result was recently obtained in [28]. As illustrated
in Fig. 3.3, for both the orbital and real-space cuts γ can be extracted from the
scaling of p0 with equivalent or better accuracy as from S.

The steepest descent analysis shows that the bulk of the probability comes from
a region within O(1) of the saddle point µ∗. Up to this point the number of states
χ with E < E∗ is

χ(E∗) =

∫ E∗

ρ(E) dE . (3.27)

Alternately, we can define the number of CFT Virasoro levels n∗ required above the
vacuum state,

n∗ ≡ n(E∗) =
E∗L

2πv
=

(c+ c̄)

24

(
L

v

)2

. (3.28)
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To study the convergence properties, suppose we only keep states such that E < EΛ.
The cutoff partition function ZΛ is

ZΛ(β) =

∫ EΛ

dE ρ(E) e−βE

∼ Z∞(β)
1

2
erfc

(
−
√

2(µΛ − µ∗)
)
, (3.29)

with resulting truncation error

εΛ ≡ 1− ZΛ(1)

Z∞(1)
=

1

2
erfc

(√
2(µΛ − µ∗)

)
. (3.30)

While the specific functional form may not remain universal, it suggests that conver-
gence is controlled by the dimensionless factor µΛ−µ∗ ∼ n

1/4
Λ − (aL)1/2. In the inset

of Fig. 3.4, we plot the convergence of the entanglement entropy SΛ as a function of
the number of Virasoro levels nΛ kept at various circumferences L. We then scale
the data horizontally by plotting as a function of n

1/4
Λ − (aL)1/2 for a numerically fit

value of a. Without any further vertical scaling, the data appears to collapse. This is
somewhat surprising given the irregular structure of the orbital spectrum, but does
validate the predicted form nΛ ∼ L2. Choosing an acceptable fractional error for SΛ,
in large L limit we then conclude from the Cardy formula the required dimension of
the MPS to simulate at fixed accuracy is

χ ∼ eαcL/v(cL/v)−1/2 (3.31)

as claimed. Equivalently the number of Virasoro levels required is ∼ O(L2).

3.4 Quasi-particle excitations

We now discuss how to introduce quasiparticles into the MPS. In the ‘confor-
mal block’ approach to model wave functions,[70] a quasiparticle excitation at η is
introduced by inserting an appropriate operator Q(η) into the CFT correlator,

Ψ[ψn; η] =
〈
Q(η) e

∑
n[V0(τn)ψn−i

√
νφ0(τn)]

〉
CFT

. (3.32)

We will focus on the Laughlin and Moore-Read quasiholes, for which Q is a local
operator that takes a particularly simple form,

Q(η) = :eiφ(η)/
√
q : (Laughlin), (3.33a)

Q(η) = σ(η) :eiφ(η)/2
√
q : (Moore-Read). (3.33b)
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Figure 3.5: The real-space density ρ(τ, x) of a q = 5 Laughlin state with five quasi-
holes on an infinite cylinder of circumference L = 30`B. Distances are measured in
units of `B. (The top and bottom edges are identified.)

Here σ(η) is the chiral part of the Ising order operator. Quasiparticles require ‘quasi-
local’ operators,[46] which can also be included in the MPS, but we have deferred
their implementation.

To incorporate the quasihole into the MPS, we first explicitly time order Eq. (3.32)
by bringing the insertionQ(η) between the orbitals τn+1 ≥ ητ ≥ τn. For fermions, this
introduces a sign for each electron in the region τ > ητ . As detailed in Appendix 3.12,
this sign can be written as sπ̂0/

√
q, where π̂0 is conjugate to the bosonic zero-mode

and s = ±1 for bosons and fermions respectively.
We calculate the matrix elements of Q at τ = 0,

Qα,β = 〈α|sπ̂0/
√
qQ(ηx)|β〉, (3.34)

and then insert Q into the ‘unperturbed’ evolution on the bond between sites n, n+1,

U(δτ)→ U(τa)QU(τb), τa + τb = δτ, (3.35)

where τa = τn+1 − ητ . The structure of the resulting MPS is illustrated in Fig. 3.2c.
For further details on calculating Q for the Laughlin and MR states we refer to
Appendix 3.12.

We have implemented the Laughlin quasiholes numerically, with a resulting den-
sity profile for a collection of quasiholes in the q = 5 state shown in Fig. 3.5. As a
simple test of the result, we can explicitly evaluate the Berry connection associated
with the transport of one q = 3 Laughlin quasihole around another,

θ =

∮
dA =

∮
dη 〈η|(−i∂η)|η〉. (3.36)
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Figure 3.6: The splitting and swapping[103] procedure performed on an MPS. The
two operations allow us to compute the real-space entanglement cut from an orbital
MPS.

We keep one quasihole fixed at η = 0, while a second follows a discretized path
ηi chosen to wind around the other, which defines a discretized connection eiAij =
〈ηi〉 ηj. We then integrate the connection after subtracting out a similar phase in the
absence of the second particle. Calculating the inner product between two matrix
product states can be computed with complexity O(A/`2

B χ3), where A is the area
of the region enclosing the quasiholes in question. Working on an L = 16`B cylinder
and ensuring the quasiparticles remain at least a distance of 8`B apart, we find a
statistical angle θq=3 = 2.0992, compared to the prediction of 2π

3
≈ 2.0944. The

computation takes about 1 minute.
While the result is already well established for the Laughlin states,[5] it would be

worthwhile to explicitly calculate the non-abelian Berry connection for the Moore-
Read quasiparticles. As we have computed the form of the Q-matrices, we believe
this would be tractable.

3.5 Real-space entanglement spectrum

Finally, we present an algorithm for computing the real-space entanglement spec-
trum (RSES) of quantum Hall states on both finite and infinite cylinders. In contrast
to the orbital cut which divides the system into two sets of LLL orbitals,[47] the real-
space cut partitions the system into two regions of physical space. Previously this
was accomplished analytically for the free ν = 1 case, [120, 92] and numerically using
Monte Carlo[93] and large scale singular value decomposition (SVD) of explicit wave
functions.[29, 110] Our technique is not specific to the model wave functions, and pro-
vides a means for computing the RSES of non-model states calculated from DMRG.
As the scaling form of the entanglement spectrum only appears for the real-space
cut, this may prove an important diagnostic for non-model states. For simplicity,
we assume a wave function in the LLL, and consider an entanglement cut running
around the cylinder at τ = τc.
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The first step of the algorithm is to ‘split’ each orbital ϕn(z) [Eq. (3.9)] into
components ϕnR/L supported on the right and left of a cut at τc,

ϕn(z) = θ(τ − τc)ϕn(z) + θ(τc − τ)ϕn(z)

= gnLϕnL(z) + gnRϕnR(z). (3.37)

We normalize the split orbitals by factors gL/R such that {ϕnL, ϕnR} remains an
orthonormal basis. Expressing the state in terms of the ‘split’ basis amount to
appending isometries I onto the B-matrices,

Bm
αβ → Bm

αβI
kl
m , Iklm =

√(
m

k

)
gkL g

l
R δk+l,m, (3.38)

where the factors g implicitly depend on the orbital location. Because the orbitals

ϕn are exponentially localized about τn =
2π`2B
L
n, we can work at some fixed accuracy

by splitting only the M ∼ O
(
L
`B

)
orbitals nearest to the cut. In practice, we find

M = 1.5L/`B is sufficient to obtain a converged spectrum. As illustrated in Fig. 3.6a,
the affected B matrices are then split using a SVD equivalent to the truncation step
of time evolving block decimation (TEBD).[126] As with TEBD, the splitting step
preserves the ‘canonical’ form of the MPS, implying that the bipartition about the
new bond is a Schmidt decomposition.

After the splitting step we have added M B-matrices to the chain, with orbitals
alternating between the left and right sides of the cut. Choosing some particular
bond to represent the location of the cut (usually the bond at the center of the set of
sites we have split), we sort the MPS through a series of O(M2) swapping procedures,
bringing all indices associated to the left region to the left of the cut, and likewise
for the right. To accomplish this, we employ the swapping algorithm described in
Ref. [103] to exchange each pair of neighboring sites in the MPS. As illustrated in
Fig. 3.6b, for each swap we form a two-site wave function, permute the right and
left legs to bring them to the desired order, and then split the wave function using
SVD to obtain a new pair of B-matrices. Again, the canonical form of the MPS is
preserved during this procedure, so after performing the required swaps the bond
designated as the cut gives the real-space Schmidt decomposition.

Depending on the initial bond dimension χ, it may be necessary to truncate the
new B-matrices by keeping only the largest singular values of the SVD. It appears
that the low lying states are not affected by truncation of the highest lying states,
but the convergence with increased χ should be checked on a case by case basis.
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3.6 Entanglement spectrum: orbital cut vs.

real-space cut

In this section we study the scaling form of the RSES, then contrast it to the
orbital spectrum. As illustrated for the q = 3 Laughlin state in Figs. 3.7, and for
the MR state in Figs. 3.11, the orbital and real-space cuts agree in their counting,
which is that of the CFT, but differ in the scaling of the energy levels Ei present in
the spectrum.

Kitaev and Preskill[58] first noted that the known universal features of topolog-
ical entanglement entropy could be explained if the energies of the entanglement
spectrum coincided with those of the chiral CFT. A physical argument was later
provided in Ref. [86]. Recall that the states of the CFT are grouped into ‘families’
associated with each primary field φh,[33] in this context one per degenerate ground
state on a cylinder, and let P̂φh denote a projection operator onto the corresponding
family. The basic conclusion of Ref. [86] was that the reduced real-space density
matrix of a topological state with gapless chiral edge modes takes the form

ρ̂L =
∑
h

phP̂φhe
−vĤ+O(k`B)P̂φh . (3.39)

Here Ĥ is the Hamiltonian of the CFT, which we will take to have velocity 1, so an
‘entanglement velocity’ is included as a factor v. Ĥ is perturbed by more irrelevant
boundary operators of order (k`B)δ for δ > 1. The coefficients ph depend on the
degenerate ground state being considered. During the final preparation of this work,
this scaling form was put on firm footing for the model FQH states.[28]

While the irrelevant operators generally introduce ‘interaction terms’ to the en-
tanglement Hamiltonian, to illustrate the expected behavior we consider the simplest
type of correction, a dispersive term. For the Laughlin state this takes the form

Ẽa ≡ Ea − E0 ∼ v

[∑
n>0

ε(kn)a†nan +
2π

L

N̂2

2q

]
, (3.40)

ε(k) = k[1 + u2k
2 + u4k

4 + · · · ], kn =
2π

L
n. (3.41)

which accounts for the ‘branches’ apparent in the real-space spectrum (Fig. 3.7 right),
each of which is associated with the presence of a new mode a†n. The dispersion
relation can be fit from the heights of these branches. Note that only odd powers
of k can appear in the dispersion of a chiral boson. In general, if the irrelevant
perturbations descend from the identity boundary operator, only odd powers in k
should appear.
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Figure 3.7: Entanglement spectra (in the neutral charge sector) of the orbital (left)
and real-space (right) cut of the q = 3 Laughlin state at L = 32`B. The energies
E are plot against their momentum in units of ∆k = 2π

L
. Both spectra have the

counting 1, 1, 2, 3, 5, 7, 11, etc., consistent with that of a chiral boson CFT.
However, the energy levels E have vastly different quantitative behaviors in the
two cases, which we investigate in Fig. 3.8. The dashed line on the right is of the
form vε(k) = vk[1 +u2k

2 +u4k
4], with u2, u4 fit from the highest level of each sector,

which we associate to the state a†n|0〉. The fits appear to rule out a similar term u1,
but larger sizes and a treatment of the ‘interactions’ would be required to rule out
u3 if it is indeed absent.

In order to accurately extract the entanglement velocity, we consider the scaling
of the shifted spectrum ẼL

2π
with increased L. Based on these scaling ideas, a state

with momentum k = 2π
L

(nφ + nχ) should have an energy

ẼaL

2π
= vφ(∆φh + nφ) + vχ(∆χh + nχ)

+ t2aL
−2 + t4aL

−4 + · · · (3.42)

where nφ and nχ are integers corresponding to the momenta of the U(1) and Ma-
jorana sectors. The offsets ∆φ/χh are the scaling dimensions of the highest weight
state in the sector, which depends on the bond and number sector in question (for the
Laughlin states, it is N2

2q
). For the MR case we have included a detailed exposition

of this structure in Appendix 3.11.
Focusing on the identity sector ∆h = 0 of the real-space q = 3 Laughlin cut,

Fig. 3.8a tracks the scaled relative entanglement energy levels ẼL
2π

as a function of L−2,
extrapolating their value as the circumference approaches infinity. As indicated by
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L

2
π

(a) Real-space cut: plot of ẼL/2π vs. −1/L2.
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(b) Orbital cut: log-log plot of ẼL/2π vs. L.

Figure 3.8: The relative entanglement energies for the real-space cut and orbital cut
of the Laughlin state at ν = 1/3. (Data shown for the charge neutral sector, L shown
in units of `B.) The states at different momenta are distinguished by their colored

symbols. (a) For the real-space cut, we plot ẼL
2π

; the relative entanglement energy
(relative to E0) times the cylinder radius, as a function of −1/L2. The energies are
extrapolated to L =∞ using a quadratic fit t0 +t2L

−2 +t4L
−4, and land on multiples

of the entanglement velocity v ≈ 1.2956. (b) For the orbital cut, we show ẼL
2π

on a
log-log plot, showing that the data has a linear behavior with negative slopes. The
lines shown results from a linear fit to the last few data points. This demonstrates a
power-law relation Ẽa ∝ L−ζa with ζa > 1.

the right-most tics of the figure, ẼL
2π

approaches nφvφ for large L, where vφ ≈ 1.2956.
The data clearly confirms that the real-space entanglement spectrum approaches a
linear dispersion with fixed velocity, and the success of the fit justifies the absence
of L−1 and L−3 perturbative terms. We have tabulated the velocities for the q = 1,
3, 5 and 7 in Tab. 3.1. The relation vq=1/vq=3 ≈

√
3 noted previously[110] appears

not to continue to higher q.
This same technique can be used for more complicated wave functions such as

the Moore-Read state, as shown in Fig. 3.9. We extrapolate the velocities of both
the charge and neutral modes to be vφ ≈ 1.33 and vχ ≈ 0.21 respectively. We note
that the extrapolation is only possible for sufficiently large circumferences L & 20`B,
which is well within reach using the MPS representation of the wave function.

Figure 3.8b shows that in the orbital-cut, Ẽ does not extrapolate to the CFT
linear dispersion. Rather, they appear to follow power law decays Ẽa ∼ L−ζa with
different ζa for each state a. For example, the fit for k = 2π

L
gives ζ ≈ 3.0, while

ζ ≈ 2.3, 2.1 for the two set of states at k = 22π
L

. (In the real-space case, ζ = 1 for
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Figure 3.9: Extrapolating the entanglement energies ẼL/2π for the Moore-Read
state at ν = 1/2, using a cut associated with counting 1, 1, 3, 5, 10, etc. for N = 0
charge sector (cf. App. 3.11). (Left) Here we show that the energies for the first
three momenta extrapolate to integral combinations of vφ and vχ, the velocities of
the chiral boson and Majorana mode respectively. The major tics on the vertical
axis labels multiples of vφ, the minor tics label combinations nφvφ+nχvχ for integers
nφ and nχ (and `B set to 1). States with momentum 42π

L
extrapolate near, but not

exactly, to the theoretical prediction, which we attribute to smallness of the system
sizes. The superimposed lines are quadratic fits over the largest few circumferences,
extrapolating to give vφ ≈ 1.33, vχ ≈ 0.21. (Right) The theoretical placement of the
energy levels for the state. Here the boson counting (1,1,2,3,5) and the Majorana
counting (1,0,1,1,2) are apparent. See App. 3.11 for detailed explanation of the
counting in this plot and data for other charge sectors.

all the levels.) Unfortunately, the range of data available is insufficient to draw any
conclusions.

Finally, we note that one can extract the topological entanglement entropy in
either types of cut. This was shown in Fig. 3.3 where we used both the entropy
S and the zero momentum state E0 as a function of L. For each L we perform a
windowed fit; presenting the intercept of the best line fit through the neighboring
points. While it is possible to extract γ from any of the four computed quantities,
we can see that the real-space cut is less oscillatory than the orbital cut. At the
same time, using the orbital cut E0 seems to give a much better convergence of γ
than any of the other methods, i.e., the system size L required to computed D = eγ

via the orbital E0 to accuracy ±0.5 is the smallest. Table 3.1 lists the entanglement
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velocities and TEE for various Laughlin states and the q = 2 MR state, as well as
the velocities extracted via the method used in Figs. 3.8a and 3.9.

3.7 Conclusion

We have shown how the CFT structure in model FQH wave functions enable us
to represent them as matrix product states. These MPSs can be evaluated numer-
ically on an infinite cylinder; the distinct advantages of this geometry, as well as
the efficiency of the MPS, allow us to study in detail the scaling properties of the
Moore-Read entanglement spectrum, including a definitive identification of the U(1)
and Majorana modes and their velocities.

There are several future directions. The MPS representation is well suited for
studying the screening properties of the states as well as their Berry connections,
so it would be valuable to numerically implement the MR quasiholes in order to
verify various screening arguments.[87, 11] As we have noted, our construction also
generalizes to other topological phases whose model states can be expressed as a
correlation function of a lower dimensional field theory. The resulting picture is
strikingly similar to the ‘entanglement renormalization’ classification of 1D phases
exemplified in the AKLT state. In particular, it would appear that the fixed points
of the entanglement renormalization scheme may be interpreted as some form of
fixed point for the auxiliary field theory when expressed as a tensor network – for
topological phases, a massless fixed point, while for trivial phases, a massive fixed
point. Making this connection precise would be an intriguing development.

We would like to acknowledge helpful conversations with Joel E. Moore, Tarun
Grover, Frank Pollmann, Sid Parameswaran, and Jérôme Dubail, as well as support
from NSF GRFP Grant DGE 1106400 (MZ) and NSF DMR-0804413 (RM).
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3.8 Appendix A. Details on the conversion from

real space to orbital space MPS

Here I go over the technical details required to prove that the CFT wavefunctions
can be brought from real space form, in which the wave function is obtained in the
position basis, to an orbital form, in the basis of the LLL orbitals. The basic intuition
is that because the LLL orbitals are distinguished by momentum, we do not need to
perform the full 2D overlap integrals to extract the occupation number of an orbital
- we can do a contour integral. The chief technical difficulty is figuring out what
gauge the CFT state is actually in.

Recall the ‘coherent state’ wave functional of the CFT wave functions is

Ψ[ψ(z)] =
〈
e
∫
d2z[Ve(z)ψ(z)−iρφ(z)/

√
ν]
〉
CFT

, (3.43)

where ψ(z) is the coherent state coordinate (it is Grassmann or complex valued for
fermions and bosons respectively). The electron operator is generally of the form
Ve = eiφ/

√
νχ. The first part is the ‘U(1)’ part, which generates a Jastrow term

(zi− zj)1/ν , while χ is the ‘statistics’ part, such as a Majorana for the Pfaffian state.
All of the subtleties in what follows arise from the U(1) part and its background
charge, so I will assume the Laughlin case χ = 1.

Introducing the orbitals

The usual way to convert between bases is with overlap integrals using the LLL
basis states

φn ∝ e−iknx−
1
2

(τ−kn)2

= e−iknze−
1
2(k2

n+τ2), kn =
2πn

L
. (3.44)

But if the state is already entirely in the LLL, it is sufficient to do a contour integral,
because the states are labeled by momentum. When acting on a state that is in
Landau gauge, and entirely in the LLL, you can replace the destruction operator of
orbital n with a contour integral around the cylinder,

ψ̂n ⇒
∮
τ=τn

dx

L
eiknxψ̂(x, τn), τn =

2πn

L
= kn (3.45)

= eτ
2
n

∮
τ=τn

dw

2πi
w−n−1ψ̂(w) (3.46)

up to an n independent normalization. I have chosen to perform the integrals at
τn, though with an appropriate change in normalization a different location could
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be chosen. However - we can’t just substitute in this mode expansion and be done.
First, we wouldn’t get an equation that was manifestly translation invariant (due
to the n dependence). Second it’s not obvious what gauge the state Eq. (3.43) is
actually in!

Branch cuts and the background charge

We first need to understand how the background charge makes a gauge choice.
The correlation function on a cylinder can be decomposed into the fluctuating part
(first) and zero mode (second):

〈φ(w1)φ(w2)〉cyl = − log(1− w2

w1

) +
1

2
log(

w2

w1

) for τ1 > τ2 (3.47)

In Sec.3.8 I have included the mode expansion of the boson from which this can be
derived. For τ1 < τ2, we exchange 1 ↔ 2. The fluctuating part does not have a
branch cut, but the zero mode does. The VeVe interaction doesn’t see the branch
cut, but because Obc is a continuous smear of charge, there is a branch cut in the
VeeObc interaction. This ambiguity is what determines the gauge of the state, which
we can fix by a choice of branch cut.

Let’s consider the interaction between an electron at w1 and the background
charge at w2, with τ1 > τ2. Because we will eventually integrate around

∫
dx2, we

can ignore the fluctuating part of the background charge, leaving〈
eiφ(w1)/

√
ν−iρφ(w2)/

√
ν
〉
φ

= e
− 1

2ν
ρ log(

w2
w1

)
= e−

1
2L

[τ1−τ2−i(x1−x2)] for τ1 > τ2 (3.48)

Note the result is not periodic in x1 - this is the branch. The most natural choice for
the CFT is to consistently choose the discontinuity at some fixed x, say, x = ±L/2.
As a result, the total interaction with the background charge, given by integrating
over d2z, is 〈

eiφ(z)/
√
ν−iρ

∫
d2uφ(u)/

√
ν
〉
φ

= e−
τ2

2 eixτ (3.49)

We see that the background charge properly produces the Gaussian e−
τ2

2 , but includes
a phase as well! Apparently our choice has produced a state in the gauge A = (0, x)
rather than A = (−τ, 0). The CFT gauge (‘CFT’) use related to the Landau gauge
(‘LG’) according to

ΨCFT (wi) = ΨLG(wi)
∏
i

w
−Lτi/2π
i e

∑
i τ

2
i . (3.50)



CHAPTER 3. EXACT MATRIX PRODUCT STATES FOR THE QUANTUM
HALL EFFECT 61

Note that here τi is the location of the ith particle - not τn = kn.
Comparing with Eq. (3.45), this is actually convenient at the ring locations τn,

where Lτn/2π = n. So if we let ψn still denote orbitals in the Landau gauge, but
act on a state in the CFT gauge, we can replace the destruction operator of orbital
n with a contour integral around the cylinder,

ψ̂n ⇒
∮
τ=τn

dw

2πi
w−1 ψ̂(w) (CFT gauge) (3.51)

This expansion is manifestly translation invariant.
At this stage we have the form

Ψ[ψn] =
〈
e
∑
n

∫
dx
L
Ve(x,τn)ψn−i

√
ν−1ρ

∫
d2zφ(z)

〉
CFT

, (3.52)

The last trick is to make the background charge discrete as well. Because we chose
contours at τn, it will be sufficient to reproduce the wave function only at τn. With
this in mind, we can redistribute the uniform background charge into a set of discrete
rings at locations τn:

ρ

∫
d2zφ(z)/

√
ν →

√
ν

L

∑
n

∫
dxφ(x, τn) (3.53)

Just to check we get the correct result, we do an elementary electrostatics calculation
to find the potential of a set of charged rings:〈

eiφ(w)/
√
ν− i

√
ν
L

∑
n

∫
dx2φ(x2+iτn)

〉
φ

∣∣∣∣
w=x+iτm

= e−τ
2
m/2eixτm = w−meτ

2
m (3.54)

which is identical to the continuous case, so the same substitution for ψ̂n applies.
Technical point - the expression must be Weyl ordered on the slice τm, distributing
the background charge 50/50 on either side of Ve.

All together,

Ψ[ψn] =
〈
e
∑
n

∮
dx
L [Ve(x,τn)ψn−i

√
νφ(x,τn)]

〉
CFT

(3.55)

=
〈
e
∑
n[Ve;0ψn−i

√
νφ0]

τn

〉
CFT

(3.56)

where O0 =
∮

dx
L
O(x) are the ‘zero modes’ of an operator.
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Reference for chiral boson conventions

At g = 1
4π

, where G(z) = − log(z) (on the plane), we have the following mode
expansion on a cylinder:

φ(w) =
∑
n6=0

w−n√
|n|
an + φ0 +

π0

i
log(w), (3.57)

[φ0, π0] = i, [an, am] = δn+m.

The field is composed of the fluctuating part φ′(w) and the ‘zero mode’,

φ(w) = φ′(w) + φ0 +
π0

i
log(w) . (3.58)

The Hamiltonian is

H =
2π

L

[∑
n>0

n a−nan +
1

2
π2

0

]
(3.59)

3.9 Appendix B. Evaluation of B-matrices for

Laughlin states

Here we provide more detail on the precise form of the Laughlin MPS and its
numerical implementation. The mode expansion of the chiral boson is

φ(w) =
∑
n6=0

w−n√
|n|
an + φ0 +

π0

i
log(w), (3.60)

[φ0, π0] = i, [an, am] = δn+m.

The field is composed of the fluctuating part φ′(w) and the ‘zero mode’,

φ(w) = φ′(w) + φ0 +
π0

i
log(w) . (3.61)

The states of the fluctuating sector can be labeled by occupation numbers, which
we denote by a string of positive integers P . For example, |0〉 denotes the ground
state, |221〉 = 1√

2
a†2a

†
2a
†
1|0〉, etc. We define |P | to be the total momentum of the

fluctuations in |P 〉, given by the sum of the integers. The states of the zero-mode
sector are labeled by the eigenvalues of π0. For convenience, we define ‘charge’ by
N̂ =

√
qπ0, chosen such that the electron has charge q. The states of the zero-mode

sector are labeled by |N〉, so the full CFT is then spanned by |P,N〉.
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Treating first the ‘free’ evolution U , we find

H =
2π

L

[
|P |+ N2

2q

]
,
2π

L

[
|P |+ 1

2q
N2

]
, (3.62)

U(δτ)P,N ;P ′,N ′ = δP,P ′δN,N ′e
−(2π`B/L)2[|P |+ 1

2q
N2]. (3.63)

Now we calculate the on-site term T , first by converting from the coherent state form
T [ψ] to the occupation basis, Tm:

T [ψ] = e
− i

2
√
q
φ0eV̂0ψe

− i
2
√
q
φ0

=
∑
m

Tm(m!)3/2ψm. (3.64)

Tm ≡ 1√
m!
e
− i

2
√
q
φ0
(
V̂0

)m
e
− i

2
√
q
φ0 . (3.65)

We next compute the matrix elements of the vertex operator,

〈P,N |V̂0|P ′, N ′〉
= 〈P,N |ei

√
qφ′(w)+i

√
qφ0+N log(w)]|P ′, N ′〉. (3.66)

The zero-mode part depends only on N ,

〈N |ei
√
qφ0+N̂ log(w)|N ′〉 = δN−N ′,q w

N+N ′/2. (3.67)

The fluctuating part depends only on the oscillators |P 〉, so we define

AnP,P ′ = 〈P |
∮
dw

2πi
w−n−1ei

√
qφ′(w)|P ′〉. (3.68)

Hence An is simply the nth coefficient of a Taylor expansion in w. The matrices
A are non-zero only for P − P ′ = −(N + N ′)/2, due to momentum conservation.
Numerically, we impose a cutoff Λ such that we only keep states |P 〉 with |P | ≤ Λ,
which allows us to evaluate A for only a finite number of states. The time to compute
A is proportional to its number of entries, so the construction of the MPS is an
insignificant part of the computational cost (i.e., compared to matrix multiplication).
Combining the zero-mode and fluctuations,

〈P,N |V̂0|P ′, N ′〉 = A
−N+N′

2

PP ′ δN−N ′,q. (3.69)

Finally, the sandwiching background charge contributes e
− i√

q
φ0 = δP,P ′δN−N ′,−1 to

each site.
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Focusing on the case of fermions where there is at most one particle per orbital,

T 0
P,N ;P ′,N ′ = δP,P ′δN−N ′,−1 (unoccupied), (3.70a)

T 1
P,N ;P ′,N ′ = A

−N+N′
2

PP ′ δN−N ′,q−1 (occupied). (3.70b)

For case of bosons, the higher occupation states involve products of the A’s.
The q fold ground state degeneracy of the Laughlin states can be seen by noting

that on a particular bond, e2πiN/q is a constant, and can be chosen to take one of q
values.

3.10 Appendix C. Evaluation of B-matrices for

Moore-Read state

The CFT associated with the Moore-Read state is a tensor product of a chiral
boson φ and a Majorana mode χ. We first give a brief review of the structure of
the chiral Majorana CFT on a cylinder.[37] The states form four sectors according
to their boundary condition (bc), (periodic ‘P’ or antiperiodic ‘AP’) and number
parity (even ‘+1’ or odd ‘−1’). We denote the lowest energy states of these four
sectors by ‘|1〉’ for AP/1, ‘|χ〉’ for AP/−1, ‘|σ〉’ for P/1 and ‘|µ〉’ for P/−1. In the
periodic sector the Majorana has modes χn : n ∈ Z, while in the anti-periodic sector
it has modes χm : m ∈ Z + 1

2
. The states of the P/AP sectors can be obtained by

acting with the P/AP modes χ−m on |σ〉/|1〉 respectively. Within a given sector,
the states can then be labeled by a string of numbers Pχ; they are either integers
or half-integers depending on the bc, and do not repeat because of the fermionic
statistics. Letting |Pχ| denote the total momentum of the Majorana,

Hχ =
2π

L
[|Pχ|+ ∆] (3.71)

where ∆ = {0, 1
16
} for the AP and P sectors respectively, though ∆ can be ignored

as it only changes the normalization of the state.
The operator ei

√
qφ(z)χ(z) must be periodic in z at the location of the Landau

orbitals τn (our choice of gauge has a twist boundary condition in between). This
introduces a constraint between the zero mode of the boson, N̂ =

√
qπ̂0, and the

boundary condition of the Majorana. We find that for q even (the fermionic case),
at the bond of the MPS the CFT boundary condition is such that if the Majorana is
in P, we must have N ∈ Z + 1

2
, while for AP, we must have N ∈ Z. The boundary

conditions will correspond to different degenerate ground states, with 4 states of type
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AP and 2 of type P, for a total of 6 on the infinite cylinder (for a torus, the P sector
acquires an additional 2 states depending on the parity of the electron number).[88]

The total energy of the combined CFT is

H =
2π

L

[
|Pχ|+ |Pφ|+

1

2q
N2

]
(3.72)

with |Pφ| and N arising for the boson. As for the Laughlin state, U = e−δτH is
diagonal if we work in the occupation basis. Constructing the T matrices proceeds
as for the Laughlin case, but we must include the Majorana sector in the computation
of V̂0 =

∮
dw
2πi
w−1χ(w)ei

√
qφ(w). Letting

χmPχ,P ′χ = 〈Pχ|χm|P ′χ〉 (3.73)

denote the matrix elements of the Majorana operators, the required matrix element
is

〈Pφ, Pχ, N |V̂0|P ′φ, P ′χ, N ′〉

=
∑
m

χ−mPχ,P ′χA
m−N+N′

2

Pφ,P
′
φ

δN−N ′,q , (3.74)

with A defined as for the Laughlin case.
For fermions, where there is at most one particle per orbital,

T 0
(Pφ,Pχ,N),(P ′,P ′χ,N

′) (3.75a)

= δPφ,P ′φδPχ,P ′χδN−N ′,−1 (unoccupied),

T 1
(Pφ,Pχ,N),(P ′,P ′χ,N

′) (3.75b)

=
∑
m

χ−mPχ,P ′χA
m−N+N′

2

Pφ,P
′
φ

δN−N ′,q−1 (occupied).

For the case of bosons, the higher occupation states involve products of the V0’s.
The 3q fold ground state degeneracy of the MR states can be seen by first choosing

a bc sector for the Majorana, P or AP. In the AP sector, on any given bond
(−1)F eiπN/q is constant, with N ∈ Z and F the Majorana number. The quantity has
2q allowed values, each leading to a distinct state. (−1)F eiπN/q is also constant in
the P sector, where N ∈ Z + 1

2
. However, here the 2q values only lead to q distinct

states. This is because while inserting the Majorana zero-mode χ0 at past infinity
changes the assignment of F , it does not actually change the physical state. As
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(a) (b)

Figure 3.10: The thin torus orbital wave functions for the (a) antiperiodic and (b)
periodic sectors. Each site corresponds to an orbital, which is either filled (black) or
empty (white). Each bond has only a single state of the CFT, which we decompose
into the Majorana part, shown above the bond, and zero mode of the boson N ,
shown below the bond.

illustrated in Fig. 3.10, this can be understood as a simple relabeling µ↔ σ, which
are equivalent so produces the same state.

In the small L limit, these 3q states evolve into ‘thin torus’ wave functions.[8]
In this limit, we restrict the Majorana CFT to the states {|1〉, |χ〉, |σ〉, |µ〉}, and fix
|Pφ| = 0 for the boson, which projects onto the charges N = {−1,−1

2
, 0, 1

2
, 1}. The

6 resulting states are precisely the ‘highest weight’ states of the CFT, as illustrated
in Fig. 3.10.

3.11 Appendix D. The counting of the

Moore-Read state

As explained in the last section, the chiral Majorana CFT may be separated into
four sectors, by periodicity of the boundary as well as the particle number parity.

In the periodic sectors σ and µ, the excitations have momenta which are integral
multiples of ∆k = 2π

L
, hence the counting of level n is the number of partitions of n

into an even/odd number of distinct non-negative integers. The number of states at
momenta 0,∆k, 2∆k, ... are as follows,6

µ, σ : 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, ... (3.76a)

(Because the presence of the zero-momentum mode, the counting of the two P sectors
are identical.)

In the antiperiodic sectors the excitations have momenta which are integer-plus-
half multiples of ∆k, or in other words, twice the momentum is always an odd
multiple of ∆k. Hence in the 1 sector the counting of level n is given by the partitions

6The sequence (3.76a) is given at oeis.org/A000009.

http://oeis.org/A000009
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of 2n into positive odd integers. 7

1 : 1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, ... (3.76b)

The same definition also hold for the χ sector, with counting as follows,8

χ : 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, ... (3.76c)

Note that since there are an odd number of excitations, the lowest energy state is
|χ〉 = χ1/2|1〉 with momentum 1

2
∆k. The counting in this sector corresponds to the

number of states at momenta 1
2
∆k, 3

2
∆k, 5

2
∆k, ....

Combined with the chiral boson, the counting of the Moore-Read edge spectra
are[134]9

1 : 1, 1, 3, 5, 10, 16, 28, 43, 70, ... , (3.77a)

χ : 1, 2, 4, 7, 13, 21, 35, 55, 86, ... , (3.77b)

µ, σ : 1, 2, 4, 8, 14, 24, 40, 64, 100, ... . (3.77c)

(Again, in the χ sector, the momenta are shifted by 1
2
∆k.) Figure 3.11 shows the

orbital and real-space cut of the q = 2 MR state giving the 1 sector.
Notice that in the AP case, the Majorana sector alternates between 1 and χ

sectors whenever an orbital is filled (see Fig. 3.10). Hence the entanglement spectrum
with different charges would also alternate between the countings (3.77a) and (3.77b),
shown clearly in Fig. 3.11. Figure 3.12 shows the relative entanglement energies of
q = 2 MR state at the N = ±q charge sectors, contrast this to the N = 0 sector of
Fig. 3.9.

3.12 Appendix E. Evaluation of Q-matrices for

Laughlin and Moore-Read quasiholes

Evaluation of the Q-matrices for the Laughlin state can be done in a similar
manner to the bulk B-matrices, but omitting the contour integration:

QP,N ;P ′,N ′ = δN−N ′,1 (sw)
N+N′

2q 〈P |eiφ′(w)/
√
q|P ′〉 (3.78)

7The fact that we require an even number of integers in the partition is automatically enforced.
The sequence (3.76b) is given at oeis.org/A069910.

8The sequence (3.76c) is given at oeis.org/A069911.
9The sequence (3.77c) is given at oeis.org/A015128. The sequences (3.77a) and (3.77b) inter-

laced together is given at oeis.org/A006950.

http://oeis.org/A069910
http://oeis.org/A069911
http://oeis.org/A015128
http://oeis.org/A006950
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E

N = 2

0 5 10 15
|P |

N = 2

Figure 3.11: The entanglement spectra of the q = 2 Moore-Read state at L = 25`B,
with the orbital (left) and real-space (right) cut, in the N = 0 (top) and N = 2
(bottom) charge sectors. In the orbital case, the cut takes place on the bond with
|1〉 Majorana and N = 0 boson state in the thin torus limit (cf. Fig. 3.10). The
real-space cut takes place at the τ centered on that bond. For N = 0, the counting
of the states are 1, 1, 3, 5, 10, 16, etc, while for N = 2, the counting are 1, 2, 4, 7,
13, etc.

where w = e−
2πi
L
ηx and s = ±1 for bosons or fermions respectively. Note that the

momentum is no longer conserved.
The Moore-Read case is more complex. In the context of the Majorana CFT, the

Ising order and disorder fields σ, µ are ‘twist’ fields, interpolating between AP and
P periodic bc’s. We take the point of view that the fields σ and µ have fixed fermion
parity +1 and −1 respectively. The resulting fusion rules are

[σ][σ] = [µ][µ] = [χ][χ] = [1], (3.79a)

[µ][σ] = χ, [µ][χ] = [σ], [σ][χ] = [µ]. (3.79b)

In this approach, there are two possible quasihole insertions, σ(η)eiφ/
√
q, and µ(η)eiφ/

√
q.

As χ0σ ∼ µ, this is a direct realization of the picture in which each vortex has a Ma-
jorana zero-mode. The non-trivial vector space of quasihole excitations arises from
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the freedom of choosing σ or µ, subject to the constraint that they fuse properly to
the vacuum.

Fortunately the techniques for evaluating matrix elements of the type

σPχ,P ′χ = 〈Pχ|σ(0)|P ′χ〉 (3.80)

have already been developed in the ‘truncated-fermionic-space-approach’ to the per-
turbed Ising CFT.[142]

Consider, for example, the AP to P case. Arbitrary states can be built by acting
with the modes χ−n, so without loss of generality we consider the matrix element

〈σ|
∏

{mi∈Pχ}

χmiσ(η)
∏

{ni∈P ′χ}

χ−ni |1〉. (3.81)

The chief technical result of Ref. [142] Eqs. 2.9-2.13 is that there exists an easily
computed matrix C(η) such that

〈σ| · · ·χmσ(η) · · · |1〉 = 〈σ| · · ·σ(η)Cmn(η)χn · · · |1〉. (3.82)

After commuting all χ across the insertion, the Majoranas are brought to normal
ordered form, reducing the problem to Wick contractions and the matrix elements

〈σ|σ|1〉 = Cσσ1 (3.83a)

〈σ|µ|χ〉 = Cσµχ etc. (3.83b)

We have not as of yet implement the MR quasiholes numerically, which would be a
worthwhile check given the subtleties of this case.
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Chapter 4

Exact Matrix Product States for
Quantum Spin Liquids and BCS
Superconductors

4.1 Introduction

The parton construction [7, 132] allows for a mean field description of spin sys-
tems. While a mean field theory is usually only capable of describing ordered (sym-
metry broken) phases, remarkably the parton construction provides a mean field
theory of spin liquids, which lack any order parameter.[132] The particular parton
approach considered here constructs a spin-1/2 from spin-1/2 fermions by substitut-
ing

Sx ⇒ f †x,σSσρfx,ρ (4.1)

and restricting the fermions to an occupation of one per site,
∑

σ nx,σ = 1. After
this substitution, the Hamiltonian is quartic in fermions, so isn’t any easier to solve
exactly than the original spin system. However, we can try treating the fermions
using a (free) mean field Hamiltonian. A mean field Hamiltonian introduces fluctua-
tions in

∑
σ nx,σ, so to get back a sensible spin wave function |Ψ〉 we must Gutzwiller

project the mean-field fermion wavefunction |MF〉:

〈{σ}|Ψ〉 = Ψ[σx] = 〈0|
∏
x

fx,σx|MF〉. (4.2)

The resulting wavefunctions can be treated as a variational class parameterized by
the mean-field Hamiltonian. After Gutzwiller projection, the states are no longer
free, and computing their microscopic properties is non-trivial.
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There are two reasons tensor network representations of parton states would be
useful. First, one can use tensor network methods to efficiently evaluate variational
energies (usually done using variational Monte-Carlo) in order to estimate gaps, ob-
tain length scales, or other microscopic details. Second (and more importantly), the
‘model’ tensor networks can be use to initialize DMRG and its higher dimensional
generalizations. The reliability of the current algorithms for finding the tensor net-
work representation of a 2D ground-state is much more suspect than in 1D. Among
other reasons, tensor networks can have qualitatively different structures depend-
ing on the patterns of entanglement; for example their auxiliary bonds may develop
gauge symmetries, projective representations of the physical symmetries, etc. Since
the existing algorithms are iterative and local, it is reasonable (and currently an open
question!) to suspect that the existing algorithms can get stuck in metastable states
if the initial guess has an incompatible entanglement structure. These metastability
issues could be examined in detail if the algorithm can be initialized by a represen-
tative in each topological class; the parton states serve this purpose perfectly.

The special case of free-fermion states with a nearest neighbor pairing function
has been discussed elsewhere.[39] In this Chapter I consider MPS representations
for arbitrary states, even though the relevant states are in 2D and higher. For a
state on a 2D cylinder, we can always turn it into a 1D system by choosing an
ordering of sites ( the ‘snake’). Despite the ugliness of this procedure, currently the
most competetive tensor network approach for 2D systems is currently DMRG on
cylinders.[112] Finding the optimal 2D tensor network is a very interesting (and more
difficult) item for future study.

The particular class of spin liquids I will consider here are the gapped, Z2-spin
liquids. The topological order of these models is Z2 gauge theory, where the ‘electric
charges’ carry spin-1/2 and are called spinons. The parton construction for these
states is a Gutzwiller projected BCS wave function:

|Ψ〉 = 〈P|MF〉 = 〈Pe
1
2

∑
c†Gc†|0〉. (4.3)

Here c† denotes a vector of creation operators for the single-particle states, and G is
an anti-symmetric matrix, the pairing function (I suppress indices). The Gutzwiller
projection

〈P = 〈0|
∏
i

fiσi |MF〉. (4.4)

is an on-site isometry, so is trivial to apply once given an MPS for |MF〉 (as it is
on-site).

This bring us to our main question: how do we obtain an MPS for |MF〉?
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4.2 General approach for finding an analytic

MPS representation

Our central tool is what I will call a ‘bipartition’ of a state. Let H = HLi ⊗HRi

be the division of the Hilbert space into the sites to the left/right of bond i. We have
a rank χi ‘bipartition’ of Ψ if we can find χi states {|η〉Li}, {|η〉Ri}, not necessarily
orthonormal, such that

|Ψ〉 =

χi∑
η=1

|η〉Li ⊗ |η〉Ri . (4.5)

This is similar to a Schmidt decomposition, but we have relaxed the requirement of
orthonormality, and in fact the rank of the Schmidt decomposition is bounded from
above by χi. Now suppose we have such a bipartition on each bond i. The Hilbert
spaces of HRi ,HRi+1

differ by the addition of one site (which I will call i+1), spanned
by an orthornormal basis |ξ〉i+1 of dimension d. There must be a recursion relation
between the bases defined on each bond:

|η〉Ri =
d∑
ξ=1

χi+1∑
η′=1

W ξ
ηη′ |ξ〉i|η′〉Ri+1

, (4.6)

which defines the tensor W . If the state is translation invariant, with a unit-cell of 1,
W defines an equivalent recursion on bond i+ 1, i+ 2, etc. So, repeating for |η′〉Ri+1

ad infinitum, we obtain

|Ψ〉 =
∑
{ξi},{ηi}

[
· · ·W ξi

ηi−1ηi
W ξi+1
ηiηi+1

· · ·
]
| · · · ξiξi+1 · · ·〉 (4.7)

where | · · · ξiξi+1 · · ·〉 is a basis for the entire physical Hilbert space.
If there is a non-trivial unit cell of L, then there are L distinct recursions of the

form Eq. (4.6), defining W [n] for n = 1, · · ·L, which are inserted periodically into
Eq. (4.7)

In summary, our general plan of attack is to a) find a bipartition on each bond
b) find the recursion relation W between the bipartitions. These W are the desired
MPS.

4.3 MPS for BCS states

We assume the sites are given an ordering i, and each site contains arbitrary
orbital degrees of freedom (such as spin). Because we’re dealing with fermionic
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states, I find it most natural to use the formalism of Grassmann tensor networks,
which ensures the fermionic sign structure is handled properly. [60, 39] Our goal is
to find an fermionic MPS representation for |MF〉, with one matrix ‘W ’ per site i.

For notational simplicity, we find an MPS for the coherent state wavefunction.
Recall the coherent states are defined by |ξ〉 ≡ eξc

†|0〉, where ξ = (ξ1, ξ2, · · · ) is a
vector of Grassmann numbers, one for each single-particle state. Actually - we let ξi
denote all degrees of freedom on site i (such as spin), so it is itself a vector, but we
will suppress these internal indices. The coherent wave function is

Ψξ = 〈ξ|MF〉 = e
1
2

∑
ξGξ. (4.8)

and we want to find matrices W such that

Ψξ =
∑
{n}

[
· · ·W ξ1

n0n1
W ξ2
n1n2
· · ·
]

(4.9)

I’ll use an indexing scheme in which bond i is to the right of site i. This coherent
state rewriting is entirely trivial, you can always make the replacement ξi → c†i within
Ψ and let it act on the Fock vacuum.

Finding the bipartition

To find a bipartition, start at a bond i which cuts the system into halves Li, Ri.
The pairing function G (which is anti-symmetric) splits into sub matrices for the
inter/intra-region pairing:

ξGξ = (ξLi , ξRi)

(
GLi GLRi

−GT
LRi

GRi

)(
ξLi
ξRi

)
(4.10)

Here ξLi is a Grassmann basis for the left (and likewise for the right). We now SVD
the inter-region pairing:

GLRi = V̄iSiVi (4.11)

There is no relation between V, V̄ absent other symmetries. The singular value
decomposition isolates the degrees of freedom entangling the two edges:

Ψξ = e
1
2
ξLiGLiξLi eξLi V̄iSiViξRi e

1
2
ξRiGRiξRi (4.12)

eξLi V̄iSiViξRi =
∏
b

(1 +
∑
a,c

ξLi,aV̄i,abSi,bVi,bcξRi,c) (4.13)
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The Taylor expansion of Eq. (4.13) holds because the ξ are Grassmann numbers
and V, V̄ are unitary. For each state b in the SVD, upon expanding the exponential
we obtain two contributions to the wave function, so if the rank of the SVD is
dim(Si) = Ni we have obtained a rank χi = 2Ni bipartition of the state. Note,
however, that the above is not precisely a Schmidt decomposition as the contributions
need not be orthonormal.

The single particle states b of the SVD are a bit like the single-particle orbitals
of the entanglement spectrum. Corresponding to these states b, let us introduce Ni

complex Grassmann variables on each bond i, ηi = (ηi,1, · · · ηi,Ni), η̄i = (η̄i,1, · · · η̄i,Ni).
We define a set of wave functions Ψηi on the right and Ψη̄i to the left by

Ψ
ξRi
ηi = eηiViξRi+

1
2
ξRiGRiξRi (4.14)

Ψ
ξLi
η̄i = eξLi V̄iη̄i+

1
2
ξLiGLiξLi (4.15)

Using the rules of Grassmann integration, we obtain a bipartition:

Ψξ =

∫
dηidη̄iΨ

ξLi
η̄i e

η̄S−1
i ηiΨ

ξRi
ηi (4.16)

(strictly speaking there is a factor of |S| here but it will be canceled later). While the
Grassmann notation may be unfamiliar, the integration over Ni complex Grassmann
variables is entirely equivalent to tensor contraction on the Hilbert space of an Ni-
particle fermion system, with dimension 2Ni , which enumerate the 2Ni terms in Eqn.
(4.13). Compared to our earlier discussion, Eq.(4.5), we have weighted the sum with
the diagonal factor S, but this could be absorbed into either the left or right so
doesn’t change the required structure.

Finding the recursion

Now consider two bonds i, j = i+1. There must exist a tensor Γξiηi,η̄j which relates
the basis defined on bonds i, j, which differ by the addition of site ξj:

Ψ
ξRi
ηi =

∫
dη̄jdηjΓ

ξj
ηiη̄je

η̄jS
−1
j ηjΨ

ξRj
ηj . (4.17)

By repeating Eqn.(4.17), we will obtain an fermionic MPS of the form

Ψξ =

∫
D[η, η̄] · · ·Γξ0η−1η̄0

eη̄0S
−1
0 η0Γξ1η0η̄1

eη̄1S
−1
1 η1Γξ2η1η̄2

· · · (4.18)

which I will later rewrite in the usual MPS form.
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To find Γ, we isolate the contribution of site i + 1 = j, using ξRi = (ξj, ξRj),
ξLj = (ξj, ξLi):

ηiViξRi = ηiCjξj + ηiYjξRj , Vi =

 Cj Yj

 (4.19)

ξLj V̄j η̄j = ξjBj η̄j + ξLiȲj η̄j, V̄j =


Bj

Ȳj

 (4.20)

ξRiGRiξRi = ξjDjξj + 2ξjTjξRj + ξRjGRjξRj , GRi =


Dj Tj

−T Tj GRj


(4.21)

From the above data we define

Aj ≡ YjV
†
j S
−1
j = S−1

i V̄ †i Ȳj (4.22)

Then substituting these definitions into Eqn. (4.17), we find:

Γ
ξj
ηiη̄j = exp

[
ηiAj η̄j + ξjBj η̄j + ηiCjξj + 1

2
ξjDjξj

]
(4.23)

Combined with the the diagonal operator eη̄S
−1
i ηi on each bond, these Γ make up the

fermionic MPS. I will obtain the explicit matrix elements for W ∼ ΓeS later.

4.4 Non-optimal truncation and relation to

Hankel SVD and control theory

If the rank of the singular value decomposition is Ni = rank(Si), the required
MPS bond dimension is mi = 2Ni . For a generic pairing function, Ni =∞. So some
form of truncation is necessary.

The optimal approximation would be to find the Schmidt spectrum and drop
the high lying states - we return to this shortly. In the meantime, suppose G is
very small; then, to lowest order in G, Eq. (4.13) is a Schmidt decomposition, so we
expect for a gapped system S will fall off rapidly (depending on the circumference of
the system), and a good approximation is obtained by keeping the most significant
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singular values. This corresponds to dropping the corresponding rows and columns
of A,B,C,D, reducing the rank of Γ.

For a translation invariant system, the approximation obtained by keeping the
most significant S is related to a technique in control theory. When the system is
translation invariant, the pairing function has the form Gij = G(i−j). Each G(i−j)
is a p×pmatrix in the internal space of sites i, j. We can view this sequence as a signal
in time t = i− j and ask what ‘state space system’ (see Wikipedia ) gives an optimal
approximation to the p × p signal G(t). A state space system represents a linear
system with inputs and outputs (like a first order ODE or its discrete generalization)
through a set of matrices denoted (A,B,C,D). For a rank-N system, A is a N ×N
matrix, B is a p×N matrix, C is N × p, and D is p× p. We want the signal G to
be the Green’s function for the linear system, which is given by

G(t) = θ(t > 0)BAt−1C +Dδt=0 (4.24)

For a generic G, we might need a system of infinite rank, so we can instead look for
the optimal rank-N approximation. For a particular definition of optimal (defined
by the ‘Hankel norm’), the solution is given by a technique called balanced model
reduction. [61] The intra-region pairing is a Hankel matrix, GLR,ij ≡ G(i + j). The
SVD of a Hankel matrix determines the ‘Hankel singular values,’ which we have
called S. It turns out that the optimal (A,B,C,D) spit out by balanced model
reduction is precisely the (A,B,C,D) defined in Eq. (4.23) for Γ, after a) truncating
to the N rows and columns corresponding to the most significant Hankel singular
values S; b) rescaling rows and columns to incorporate S into (A,B,C,D).

So apparently the MPS approximation to a BCS states is closely related to ap-
plying balanced model reduction to the pairing function G(i− j). To my knowledge,
there is no (developed) generalization of balanced model reduction to a ‘2D signal’ -
this would be worth pursuing.

For strong-pairing phases (short ranged G) it appears that the Hankel singular
values S are in indeed very close to the true single-body entanglement eigenvalues.
Hence, in addition to keeping only a finite number of the S (equivalent to truncating
the single-particle entanglement Hilbert space), one should further perform a trunca-
tion in the many-body entanglement space, with weights approximately proportional
to by

e
−E{nβ} ∼ e−

∑
β Eβnβ =

∏
β

(Sβ)2nβ . (4.25)

For weak-pairing phases, G is long ranged: limr→∞G(r) 6= 0. This can lead to
topological Majorana modes at the boundary. Numerically one has to treat this
special case carefully.

http://en.wikipedia.org/wiki/State_space_(controls)
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4.5 Converting the fMPS to the usual bosonic

MPS matrices.

We’ve written the MPS in a fancy, obfuscating Grassmann notation, but all can
be converted to a bosonic MPS for the Jordan-Wigner representation of the fermions.
Recall that any Grassmann tensor in N Grassmann variables γa can be written as
usual rank-N tensor of total size 2N via Taylor expansion:

M [γ1, γ2, · · · , γN ] =
∑
{na}

Mn1,n2,···

N∏
a=1

γnaa , na ∈ {0, 1} (4.26)

Note that changing the order of expansion for the indices a = 1, · · · will change the
sign structure. The rules for Grassmann integration are

∫
dη η = 1,

∫
dη = 0. So for

a single variable,∫
dγdγ̄Aγ̄e

γ̄γBγ =
1∑

n,n̄=0

An̄Bn

∫
dγdγ̄ γ̄n̄(1 + γ̄γ)γn (4.27)

=
1∑

n=0

AnBn (4.28)

Now for several variables, let us choose our expansion to run in opposing orders, so
that ∫

dγdγ̄Aγ̄Bγ =
∑
{n},{n̄}

An̄N ,··· ,n̄1Bn1,··· ,nN γ̄
nN
N · · · γ̄n1

1 eγ̄γγn1
1 · · · γnBN (4.29)

=
∑
{n}

A{n}B{n} (4.30)

This is the usual tensor contraction over a fermionic Hilbert space of dimension 2N .
So to put the fMPS on a computer, we need to calculate this expansion for Γ.

The key equation is

e
1
2
γHγ =

∑
{na}

Pf(H|na)
∏
a

γnaa (4.31)

where H|na is a matrix formed from H by keeping all rows and columns for which
na = 1 and Pf is the Pfaffian. Note that it is very important that if the rows/columns
of H are ordered a = 1, 2, · · · , then

∏
a γ

na
a = γn1

1 γn2
2 · · · . As far as I can tell, these 2N
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coefficients can be computed in a total time of O(N2N) using the recursive properties
of the Pfaffian.

Carefully consideration of the Grassmann integrals in the fMPS, Eq. (4.18),
reveals it is very important that we compute the expansion (4.31) for the ordering

γ = (ηi, ξj, η̄j) = (ηi,1, · · · , ηi,Ni , ξj,1, · · · , ξj,dj , η̄Nj , · · · , η̄1). (4.32)

Note the η̄ are inverted compared to η. Applying Eqn. (4.31) to Γ,

Γ = e
1
2

(ηi,ξj ,η̄j)H(ηi,ξj ,η̄j), H =

 0 C A
−CT Dj B
−AT −BT 0

 (4.33)

we obtain a rank-3 tensor Γ
mj
ni,n̄j , where mj is the physical occupation index. Likewise,

on the bonds we define

sn̄j ,nj = δn̄j ,nj
∏
b

(Sj,b)
nj,b . (4.34)

Then

Wmj
nj−1,nj

= Γmjni,nj

∏
b

(Sj,b)
nj,b (4.35)

are the bosonic matrices of the MPS in the Jordan-Wigner transformed occupation
basis {mj}.

4.6 Simplification for S= 1/2 Gutzwiller

projection.

The pairing ansatz for a T and SU(2) symmetric BCS state is

|MF〉 = e
∑
i,j c
†
i↑gijc

†
i↓ (4.36)

G = g ⊗ iσy (4.37)

with g real symmetric. Since the system has a tensor product structure between site
and spin, we define from the lowercase g the same data as in Eqn.(4.17), all denoted
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in lowercase. We have

GLR = v̄sv ⊗ σzσx (4.38)

S = s⊗ 1 (4.39)

D = gjj ⊗ iσy (4.40)

C = c⊗ σx (4.41)

B = b⊗ σz (4.42)

A = a⊗ 1 (4.43)

4.7 Optimal approximation

Finally we briefly discuss the problem of finding the optimal truncation, which
requires us to compute the Schmidt spectrum. While this is in some sense ‘trivial’
since the state is free, the standard algorithm requires inverting a matrix the size
of the system. [128, 81] We want an algorithm that works in the thermodynamic
limit. The key is to find the Gram matrix which encodes the non-orthonomality
of the bipartition |η〉L/R in Eq. (4.5). Defining Gram matrices for the left / right

of the by X
L/R
ᾱ,α = 〈ᾱ|α〉L/R, we can verify that the entanglement Hamiltonian HE

is isospectral to e−HE ∼
√
XLXR

√
XL. Hence if we can compute the X, we can

recover the entanglement spectrum and hence the optimal basis in which to truncate
the MPS.

For simplicity, we will consider only the case when D = 0, and assume a unit
cell of 1. To calculate the Gram matrix, we calculate the overlap of Γ matrices on a
single site, ∫

dξ̄dξΓ̄ξ̄
ᾱβ̄
e−ξ̄ξΓξαβ, J̄ = αC + βBT , J = ᾱC∗ + β̄B† (4.44)

=

∫
dξ̄dξ exp

[
αAβ + ᾱA∗β̄ + J̄ξ + Jξ̄ − ξ̄ξ

]
(4.45)

= exp
[
αAβ + ᾱA∗β̄ − (αC + βBT )(C†ᾱ +B∗β̄)

]
(4.46)

Now we wish to treat entries r = (α, ᾱ) as a row in N+N dimensional Hilbert space,
and c = (β, β̄) as a column. The overlap takes the general form

Γ̄.Γ = exp
[
−αCC†ᾱ

]
exp

[(
α ᾱ

)( A −CB∗
C∗B A∗

)(
β
β̄

)]
exp

[
−βBTB∗β̄

]
(4.47)
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The full MPS is a combination of Γ with the diagonal bond contribution S. We can
rescale fields all fields by η →

√
Sη, taking A →

√
SA
√
S,B → B

√
S,C →

√
SC.

Then, after this rescaling,

Tαᾱ;ββ̄ = (W̄ .W )αᾱ;ββ̄ = exp
[
−αCC†ᾱ

]
exp

[(
α ᾱ

)( A −CB∗
C∗B A∗

)(
β
β̄

)]
exp

[
−βBTB∗β̄

]
(4.48)

is the transfer matrix of the MPS. The left / right dominant eigenvectors of T are
the Gram matrices XL/R, from which we can find the entanglement spectrum and
optimal MPS truncation.

4.8 Conclusion

I have proposed a method to obtain MPS for a variety of quantum spin liquids
and BCS superconductors. This result can be extended to bosonic parton states
as well as fermionic band insulators (as would be relevant to the chiral-spin liquid
phase). In the future, it will be useful to work out the most efficient representation
in terms of 2D tensor networks, which may shed light on the behavior of realistic 2D
tensor networks and their optimization.
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Chapter 5

Exact and good enough Matrix
Product Operators for time
evolving long range Hamiltonians

5.1 Introduction

The ability to study dynamical properties in and out of equilibrium is essential
for understanding the physics of strongly interacting systems. Following the success
of the density-matrix renormalization group (DMRG) for finding one-dimensional
(1D) ground states [137], a number of closely related techniques have been devel-
oped to explore the dynamical properties of short-ranged 1D systems [127, 138, 24,
96, 53]. This exciting development has given access to experimentally relevant ob-
servables, such as dynamical correlation functions which can be compared with data
from neutron scattering and ultracold atomic gasses, and non-equilibrium dynamics,
providing insight into long standing questions about thermalization [97]. Simulta-
neously, large-scale DMRG has begun to study ground-state properties of quasi-two
dimensional (2D) quantum systems, such as strips and cylinders, allowing one to
probe much larger systems than accessible to exact diagonalization [112]. For exam-
ple, DMRG studies provide solid evidence for the existence of a spin-liquid ground
state in the S = 1/2 kagome antiferromagnet [140, 25]. The 2D-DMRG method
orders the sites of a 2D lattice into a 1D chain with long-ranged interactions; truly
2D tensor network methods may eventually supplant this approach [54, 21], but
2D-DMRG is currently a standard tool due to its reliability.

It is desirable to combine these two developments in order to evaluate dynamical
properties of quasi-2D systems (e.g., the time evolution of bosons in a 2D optical trap
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Figure 5.1: Quasi-exact time evolution of interacting hard-core bosons in a 14 × 14
lattice trap. The bosons hop with bandwidth t = 1 and interact with nearest-
neighbor repulsion V . 16 bosons begin in an un-entangled product state, and evolve
in time from left to right. In the top row, V = 1, and the bosons expand outward. In
the bottom row, t < V = 5, the bosons remain trapped in a bound state due to the
strong interactions. A similar effect has been observed experimentally in cold-atom
optical lattices [139, 95].

as shown in Fig. 5.1). However, the existing DMRG-based time-evolution methods
cannot be easily applied to a quasi-2D system. This is mainly due to the long-ranged
interactions that occur when representing a 2D system as a 1D chain; a similar
difficulty exists for 1D systems with power-law Coulombic and dipolar interactions.

In this work we address this problem by providing a method to time-evolve long-
ranged Hamiltonians. The unique advantage of the method is that it simultaneously
(a) can be applied to any long-ranged Hamiltonian while preserving all symmetries,
(b) has a constant error per site in the thermodynamic limit at fixed computational
effort, (c) can be applied to an infinitely long system assuming translation invariance
and (d) can be easily implemented using standard DMRG methods.

Like other 1D methods, we work in the framework of matrix product states
(MPSs) [31, 75, 94], a variational ansatz for finitely entangled states within which
we wish to simulate the full many-body dynamics.The structure of an MPS can be
generalized to operators, called matrix product operators (MPOs) [124]. An MPO
can be efficiently applied to an MPS using standard methods [82, 111, 97]. If a long-
ranged Hamiltonian H has a compact MPO approximation for etH , then the time
evolution can be efficiently simulated by successively applying the MPO to the MPS.
The most naive time-stepper, an Euler step 1 + tH, as well as its Runge-Kutta [32]
and Krylov [96, 55, 131] improvements, indeed have an efficient MPO representation.
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But these global methods have an error per site which diverges with the system size L,
for example as O(Lt2) for the Euler step, which eventually renders them impractical
as L→∞. For certain simple H, such as a nearest neighbor interactions or a sum of
commuting terms[82], a compact MPO with finite error per site exists, which is the
basis behind the highly successful time evolving block decimation (TEBD) [127] and
tDMRG [24, 138]. However, these methods do not generalize well for long-ranged
Hamiltonians, which is the focus of this work.

The basic insight of this work is that a Hamiltonian which is expressed as a sum
of terms H =

∑
xHx admits a local version of a Runge-Kutta step; for instance we

could improve the Euler step by taking

1 + t
∑
x

Hx →
∏
x

(1 + tHx). (5.1)

The error is still at O(t2), so it is formally a 1st-order time stepper. But any set of
distant regions all receive the correct 1st-order step in parallel. Hence, in contrast
to the naive Euler step, the total error scales as Lt2, rather than as L2t2. The main
result of this work is that an improved version of Eq. (5.1) has a very compact MPO
representation which can easily be extended to higher-order approximations in O(tp).

In Fig. 5.2, we compare the accuracy of the methods proposed here, called W I

and W II , against TEBD and global 2nd order Runge-Kutta. TEBD works for short-
ranged Hamiltonians, so we compare by quenching from product states into the
spin-1/2 nearest-neighbor Heisenberg chain, where a high order TEBD calculation
serves as a quasi-exact reference. Runge-Kutta is orders of magnitude less accurate,
with an error that scales as L5 compared to L for TEBD and W I/II . Both TEBD
and W I/II are comparable in accuracy; for evolution starting from a Neel state, W II

is slightly more accurate than TEBD, while from a random state TEBD is more
accurate. Any such difference can be easily mitigated by a small decrease in time
step. But unlike TEBD, W I/II can be immediately applied to a long-ranged problem
without a Trotter decomposition.

To our knowledge, the other existing method which can time-evolve long-ranged
interactions with a constant error per site is the recently developed time dependent
variation principle (TDVP), which projects the exact Schrödinger equation into the
MPS variational space and numerically integrates the resulting equations [40, 26].
While the method has yet to be applied to quasi-2D systems, a version was suc-
cessfully applied to the long-ranged transverse field Ising model [50]. However, in
contrast to the proposal here, which involves the standard tensor network technique
of applying an MPO, the TDVP requires one to implement an entirely distinct and
relatively complex set of algorithms. It will be a useful subject for future work to
make a detailed comparison between TDVP and the present MPO approach.
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Figure 5.2: Comparison of 2nd-order MPOs W I , W II , TEBD, and global Runge-
Kutta for the spin-1/2 Heisenberg chain. 4th-order TEBD serves as a quasi-exact
reference for calculating errors. Panels (a), (b) show quenches starting from a L = 20
Neel state and random state respectively. In the inset, we show the scaling of the
errors for system sizes L = 20, 40. For W I/II we find perfect collapse to the expected
scaling Lt4, as the error per site remains constant in the thermodynamic limit. In
contrast, for global Runge-Kutta the error increases as L5t4.

The first application presented here is a calculation of a dynamical correlation
function of the Haldane-Shastry spin chain, which is a 1D spin-half antiferromagnet
with power-law long-ranged interactions [41, 102]. Our numerical simulations agree
with the analytic exact results [44] up to long times, which serves as a check of the
method’s accuracy , and show a ballistic spreading of correlations consistent with
the model’s integrability. The second application is the simulation of dynamics in
a 2D Bose-Hubbard model. Here we focus on a class of experiments with ultracold
atomic gases that study expansion of a cloud that is initially confined to a small
region of the lattice [139, 95]. The main qualitative surprise in the experiments is
that even repulsive interactions can lead to self-trapped states, which is reproduced
in our model calculation along with several other features, shown in Fig 5.1. We will
further elaborate on these applications later.

5.2 Matrix product operators

In order to understand our main result, we review some basic facts regarding
MPOs. An operator Z acting on a 1D chain with physical sites labeled by i has an
MPO representation

Z = · · · Ŵ(1)Ŵ(2)Ŵ(3) · · · (5.2)
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where each Ŵ(i) is a matrix of operators acting on the Hilbert space of site-i (with
physical indicides mi,m

′
i),

[Ŵ(i)]ai−1ai =
∑
mi,m′i

[W(i)]
mim

′
i

ai−1ai|mi〉〈m′i|, (5.3)

with [W(i)]
mim

′
i

ai−1ai ∈ C. In Eq. (5.2), the matrices are contracted by summing over all
indices ai = 1, . . . , χi. These indices live in the space between sites (i, i + 1), which
refer to as a bond. The χis are called the MPO bond dimensions, and they denote
the size of the Ŵ matrices. Several algorithms have been developed for efficiently
applying an MPO to an MPS, with effort of either O(χ2) or O(χ3) [82, 111, 97].

Two classes are of interest to us; sums of local operators (such as a Hamiltonian),
and exponentials of such sums (evolution operators). We first review the structure of
the former. For the bond between sites (i, i+ 1) that divides the system into regions
Li and Ri, any Hamiltonian H can be decomposed as

H = HLi ⊗ 1Ri + 1Li ⊗HRi +

Ni∑
ai=1

hLi,ai ⊗ hRi,ai . (5.4)

Here HLi/Ri are the components of the Hamiltonian localized purely to the left/right
of the bond, while the hLi,ai ⊗ hRi,ai run over Ni interaction terms which cross the
bond. There is a recursion between the decompositions on bond (i−1, i) and (i, i+1),
which differ by the addition of site i:

 HRi−1

hRi−1,ai−1

1Ri−1

 =


1 Ni 1

1 1̂ Ĉ D̂

Ni−1 0 Â B̂

1 0 0 1̂


(i)

⊗

 HRi

hRi,ai
1Ri

 . (5.5)

Here (Â, B̂, Ĉ, D̂)(i) are matrices of operators acting on site i, with dimensions in-
dicated on the border. This recursion is in fact the MPO: the block matrix in the
middle is Ŵ(i), with size χi = Ni + 2. (See App. 5.6 for explicit examples of MPOs.)

The optimal (Â, B̂, Ĉ, D̂)(i) can be obtained using the block Hankel singular value
decomposition, a well known technique in control theory known as balanced model
reduction [61].

We can view the recursion relation of Eq. (5.5) as a finite state machine [22]; the
transitions of the machine sequentially place the operators at each site, as illustrated
in Fig. 5.3a. The first/last indices of the MPO, which we denote by L/R respectively,
play a special role, as they indicate that no non-trivial operators have been placed to
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...
...

a) b)

Figure 5.3: Graphical depictions of MPOs for (a) the Hamiltonian H and (b) the
time-stepper Ŵ I(t). As explained in Ref. [22], by analogy to a finite-state-machine
the indices of the MPO (labeling rows and columns) are represented as nodes of a
graph, while the entries of the MPO are edges.

the left/right of the bond. Due to the block-triangular structure of Ŵ , once the MPO
state transitions into the first index L, it remains there in perpetuity, placing only
the identity operator 1̂ with each Ŵ . The transition from R to L (not necessarily in
one step) places some local operator Hx; the sum over all such paths generates the
Hamiltonian.

5.3 Time evolution operators

Given the decomposition H =
∑

xHx, our goal is to find an efficient MPO for

U(t) = 1 + t
∑
x

Hx +
1

2
t2
∑
x,y

HxHy + · · · . (5.6)

In the most general case, an approximation for U(t) is necessary, which brings us to
our main result.

While the local Euler step defined in Eq. (5.1) does not have a simple MPO
representation, a slight modification does. Let us define x < y if the sites affected by
Hx are strictly to the left of those affected by Hy. Consider an evolution operator
which keeps all non-overlapping terms:

U I(t) = 1 + t
∑
x

Hx + t2
∑
x<y

HxHy (5.7)

+ t3
∑
x<y<z

HxHyHz + . . .

These contributions are a subset of Eqs. (5.1) and (5.6). The first error occurs
at order t2, for terms Hx, Hy which overlap. For a system of length L, there are
O(L) such terms, so the error is O(Lt2); a constant error per site. Remarkably, U I
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has an exact compact MPO description “W I”, and is trivial to construct from the
(A,B,C,D) of H, illustrated in Fig. 5.3b. It has a block structure of total dimension
χi = Ni + 1:

Ŵ I
(i)(t) =

( 1 Ni

1 1̂(i) + tD̂(i)

√
tĈ(i)

Ni−1

√
tB̂(i) Â(i)

)
. (5.8)

The MPO bond dimension of Ŵ I is one less than that of H, so it can be simply
constructed and efficiently applied to the state.

While Ŵ I is trivial to construct and performs well, it is not quite optimal. For
example, a purely onsite Hamiltonian has a trivial χ = 1 MPO representation for
etH . Yet the MPO constructed from Ŵ I would only produce the approximation
U I =

∏
x(1 + tHx) in this case.

We can improve Eq. (5.7), by keeping terms which may overlap by one site. Let
〈x, . . . , z〉 denote a collection of terms in which no two cross the same bond. Arbi-
trarily high powers of a single site term, for example, can appear in these collections.
Consider an evolution operator which keeps all such terms:

U II(t) = 1 + t
∑
x

Hx +
t2

2

∑
〈x,y〉

HxHy (5.9)

+
t3

6

∑
〈x,y,z〉

HxHyHz + . . . .

Again, the first error occurs at t2, with L such terms, so the error is still formally
O(Lt2). But for typical interactions far fewer terms are dropped than in U I ; in
particular onsite terms are captured to all orders. While there is not an exact
compact MPO representation for U II , we can construct an MPO approximation Ŵ II

which differs from U II at O(Lt3). Because the difference is at higher order than
the accuracy of U II , Ŵ II still gives a noticeably better approximation than Ŵ I ,
and retains the feature that an onsite interaction is kept exactly. As Ŵ II is just as
compact as Ŵ I , it is always the preferred choice.

The MPO Ŵ II is more complicated to construct, so for a detailed derivation of
Ŵ II and an algorithm to compute it we refer to App. 5.8. It takes the form

Ŵ II =

( 1 Ni

1 Ŵ II
D Ŵ II

C

Ni−1 Ŵ II
B Ŵ II

A

)
. (5.10)
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To define the sub-blocks, introduce two vectors of formal parameters φa, φ̄b, with
a = 1, . . . , Ni−1, b = 1, . . . , Ni. Let φ · Â(i) · φ̄ denote a dot product of these formal

parameters into the MPO indices of Â(i). The sub-blocks are defined by a Taylor
expansion in terms of φ, φ̄,

eφ·Â·φ̄+φ·B̂
√
t+
√
tĈ·φ̄+tD̂ (5.11)

= Ŵ II
D + Ŵ II

C · φ̄+ φ · Ŵ II
B + φ · Ŵ II

A · φ̄+ . . .

Notice Ŵ II
D = etD̂ is simply the onsite term, which is kept exactly. We also note that

H has many different MPO representations, and at 2nd-order Ŵ II is not invariant
under different choices. This choice can be exploited to further reduce errors (cf.
App. 5.11). Finally, if H is a sum of commuting terms, there is an analytic MPO
representation for etH given in App. 5.9.

As with TEBD, we want to construct approximations with errors at higher order
O(Ltp) in t, which allow one to use much larger time steps. In fact, simply by cycling
through a carefully chosen set of step constants {ta} we can obtain approximations
of arbitrarily high order. MPS compression can be applied between steps so that
the over-all complexity of the algorithm increases only linearly in the number of
stages, though higher-order approximations presumably depend more sensitively on
the accuracy of the intervening compression. In particular, there is a 2nd-order order
approximation which alternates between two complex time steps t1, t2.

Each stage of the approximation should have a compact MPO expression (other-
wise the increased complexity cancels the gains of a larger time step), so we consider
an ansatz of the form

W II(t1)W II(t2) · · ·W II(tn) = U(t) +O(Ltp), (5.12)

where p − 1 is the approximation order. Our goal is to determine a set of step
constants {ta} which produce the desired order. For example, to find a 2nd-order
step (p = 3), we expand Eq. (5.12) order by order and find constraints∑

a

ta = t,
∑
a<b

tatb =
1

2
t2,

∑
a

t2a = 0 (5.13)

which can be solved by t1 = 1+i
2
t, t2 = 1−i

2
t. One can continue to arbitrary order; a set

of 4 ta’s is required at 3rd order, a set of 7 at 4th order. Thus, by alternating between
two compact MPOs, W II(t1) and W II(t2), we obtain a 2nd-order approximation. The
same result folds for W I . As shown in Fig. 5.2, the 2nd-order behavior is preserved
even when truncation to the MPS ansatz intervenes between steps, so the 2nd-order
time step is no more demanding than the 1st-order one.
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Figure 5.4: Time evolution of the response function Czz(t, x) = 〈0|Sz(t, x)Sz(0, 0)|0〉
for the Haldane-Shastry model. Discrete data points are evaluated numerically us-
ing the 2nd-order MPO time stepper W II (dt = 0.025), shown here for positions
x = 0, 2, 4, 6. The exact analytic prediction shown in solid curves, giving beautiful
agreement with the MPO. The inset shows a density plot of Czz(t, x) in the t–x plane.

5.4 Applications

Our first system beyond the reach of TEBD is the spin-1/2 Haldane-Shastry
model, an exactly solvable critical spin chain with long-ranged Hamiltonian

HHS =
∑
x,r>0

Sx · Sx+r

r2
. (5.14)

The model can be viewed as a lattice form of the Calogero-Sutherland continuum
model of fractional statistics [14, 113] and is connected to the Laughlin fractional
quantum Hall wavefunction with an exact MPS representation [19]. The dynamical
correlation function Czz(t, x) was first calculated analytically by Haldane and Zirn-
bauer [44]. As the system is critical and the Hamiltonian long-ranged, numerically
obtaining Czz is a stringent test of the proposed method. We use an MPO approxi-
mation of the Hamiltonian to capture the r−2 power law with high accuracy out to
about 200 sites [23]. After using infinite DMRG [68, 23, 59] to obtain the ground
state with infinite boundary conditions, we act with Sz and time evolve via W II . As
described in Fig. 5.4, the numerically computed Czz is nearly identical to the analytic
prediction (cf. App. 5.12) out to significant time scales.

Finally, one of the most interesting potential applications is time-evolving finitely-
entangled 2D systems. We make a preliminary study by considering the 2D Bose-
Hubbard model with a hard-core interaction and nearest neighbor repulsion V . Re-



CHAPTER 5. EXACT AND GOOD ENOUGH MATRIX PRODUCT
OPERATORS FOR TIME EVOLVING LONG RANGE HAMILTONIANS 90

cently there have been several experimental and theoretical studies of the expansion
of strongly-interacting clouds [139, 95, 35, 129, 90]. The repulsion V can generate
many-body bound states if it exceeds the bandwidth t, because there is no way for
the interaction energy to transform into kinetic energy. Here we let a 16-boson n = 1
product state expand into a 14× 14 grid. As shown in Fig. 5.1, the repulsion V has
a dramatic effect on the expansion, trapping the bosons into a bound state. Be-
cause the 2D lattice has been turned into a 1D chain, the errors in W II are highly
anisotropic. Nevertheless we find that with a time step dt = 0.01, the density remains
rotationally symmetric to within 4% at t = 2.

5.5 Conclusion

We have introduced an MPO based algorithm to simulate the time-evolution of
long-ranged Hamiltonians. Our method was benchmarked against existing numerical
methods for 1D short ranged models, as well as analytic results for the long-ranged
Haldane-Shastry model. We also presented results of a preliminary study of the
expansion of interacting bosons in a 2D trap. Given the recent successes of DMRG
for investigating gapped 2D ground state and their gapless edges, the techniques
presented here could open the door to numerically calculating experimentally relevant
dynamic quantities such as spectral functions.

We are grateful to J. H. Bardarson, E. M. Stoudenmire, D. Varjas for helpful
conversations. The authors wish to thank NSF DMR-1206515 (M.Z. and J.E.M.), the
Sherman Fairchild Foundation (R.M.), the Nanostructured Thermoelectrics program
of DOE BES (C.K.), and the Simons Foundation (J.E.M.).

5.6 MPO examples

In this section, we provide explicit examples of MPOs for pedagogical purposes.
To reiterate from the main text, an MPO describes an operators written as a

product of Ŵ ’s

· · · Ŵ(1)Ŵ(2)Ŵ(3) · · · , (5.15)

where each Ŵ(i) is a matrix of operators acting on site i. An MPO for a Hamiltonain
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can always be casted in the form

Ŵ(i) =


1 Ni 1

1 1̂ Ĉ D̂

Ni−1 0 Â B̂

1 0 0 1̂


(i)

. (5.16)

D̂ is simply an operator, Ĉ and B̂ are, respectively, a row and column vector, an Â
is an Ni−1 ×Ni matrix of operators.

Consider the transverse field Ising model with Hamiltonian

HTFI = −J
∑
i

ẐiẐi+1 − h
∑
i

X̂i, (5.17)

where X̂ and Ẑ are Pauli operators. This Hamiltonian may be constructed as an
MPO with

Ŵ(i) =

1̂ Ẑ −hX̂
0 0 −JẐ
0 0 1̂


(i)

. (5.18)

Hence Ni = 1 for all bonds, and the MPO has bond dimension χi = 3. We can also
read off the (Â, B̂, Ĉ, D̂) operators as (0,−JẐ, Ẑ,−hX̂). We note that this MPO
is not unique for Hamiltonian Eq. (5.17) (cf. App. 5.11). Due to the absence of Â,
the Hamiltonian consists of only onsite and nearest-neighbor terms. Here D̂ always
denote the onsite term, and the pair terms are given by ĈiB̂i+1.

Our second example is a long-ranged XY-chain, with exponentially decaying cou-
plings.

H = J
∑
i<j

e−α|i−j|
(
X̂iX̂j + ŶiŶj

)
. (5.19)

A corresponding MPO with Ni = 2 is as follows,

Ŵ(i) =


1̂ e−αX̂ e−αŶ 0

0 e−α1̂ 0 JX̂

0 0 e−α1̂ JŶ

0 0 0 1̂


(i)

. (5.20)

Here Â is a non-trivial 2×2 matrix of operators, which allows terms to reach beyond
two neighboring sites. Each insertion of the Â matrix increases the separation of the
bookends X̂/Ŷ by 1 site, and also reduces its amplitude by e−α factor.
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5.7 Characterizing errors

Here we make a brief remark on the correct way to characterize the errors in an
approximation Ũ(t) to the exact evolution U(t). We say an approximation has an
error per site of order tp if

U(−t)Ũ(t) = e
∑∞
j=p t

jOj ∼ eL(aptp+ap+1tp+1+··· ) (5.21)

where each operator Oj is a sum of local terms, so its spectral radius goes as |Oj| ∼
L. One can see that Suzuki-Trotter and W I follow this form, while global Runge-
Kutta does not. The locality of the operator generating the error implies that (after
normalizing the state) the error in local observables should scale as tp.

Now consider the expansion of U(t)− Ũ(t), which is more natural to calculate:

U(t)− Ũ(t) ∼
∑
nm

tnmL
ntm (5.22)

where Lntm denotes a term of spectral radius Ln and order tm. For an approximation
with constant error tp per site, we see that tnm 6= 0 only if m−n ≥ p−1. Order p−1
Runge-Kutta has errors of the form Lmtm for m ≥ p, which violates this constraint.

5.8 Computing WII

We defer the derivation of Ŵ II until after App. 5.9, but first give an algorithm
to compute it. We must compute objects of the form

Ŵ [φ, φ̄] = eφ·Â·φ̄+φ·B̂
√
t+
√
tĈ·φ̄+tD̂ (5.23)

= ŴD + ŴC · φ̄+ φ · ŴB + φ · ŴA · φ̄+ · · ·

For certain cases where the Hamiltonian is free, so that A contains no field operators,
B,C are linear in field operators, and D is quadratic in field operators, the result
can be obtained using Pfaffians or permanents for fermionic and bosonic theories
respectively. Here we discuss only the most general case, where the result must be
obtained numerically.

Let’s compute ŴA;aā, where a, ā index the rows and columns in correspondence
with φa, φ̄ā. At this order, we can consider φa, φ̄ā to be formal objects defined by the
property φ2

a = φ̄2
ā = 0, and they commute with all other objects. For computational

purposes, we can then represent φa as a hard-core boson creation operator φa → c†a,
and likewise φ̄ā → c̄†ā, restricted to an occupation of at most 1 c-type and 1 c̄-type



CHAPTER 5. EXACT AND GOOD ENOUGH MATRIX PRODUCT
OPERATORS FOR TIME EVOLVING LONG RANGE HAMILTONIANS 93

boson. We denote the Hilbert space of the c/c̄ type bosons by Hc/c̄, and Hphys the

Hilbert space of the physical site. The desired entries of ŴA, which are operators
in Hphys, can be obtained by calculating a vacuum expectation values in the Hilbert
space of the Hc/c̄ coupled to the physical site:

ŴA;aā = 〈0, 0̄|cac̄āec
†·Â·c̄†+c†·B̂

√
t+
√
tĈ·c̄†+tD̂|0, 0̄〉 (5.24)

= 〈0, 0̄|cac̄āec
†
ac̄
†
āÂab+c

†
aB̂a
√
t+
√
tĈbc̄

†
ā+tD̂|0, 0̄〉

To be more explicit, the argument of the exponential is an operator in the space
Hc ⊗ Hc̄ ⊗ Hphys. The desired entry ŴA;a,ā is the transition amplitude from the
vacuum |0, 0̄〉 of the Hc⊗Hc̄ into the occupied state 〈0, 0̄|cac̄ā. Because the operators
are restricted to single occupation, c2 = c̄2 = 0, when computing the particular
entry ŴA;aā we only need the Hilbert space of two hard-core bosons ca, c̄ā as well
as the physical Hilbert space of a single site; if the latter dimension is d, the total
dimension is 22d. Thus the matrix elements can be obtained by exponentiating a
matrix of dimension 4d, which is trivial. This is repeated for the N2 entries of ŴA;aā.

Results for ŴB;a follow as a byproduct by calculating the transition into 〈0, 0̄|ca, and
similarly for C,D.

All together, Ŵ II can be computed with complexity O(N2d3).

5.9 Exact MPO exponentiation for commuting

Hamiltonians

Here we obtain the exact MPO description for eH when H is a sum of commuting
terms such as

∑
i,j X̂iX̂jtij. This result generalizes the nearest-neighbor case inves-

tigated in Ref. [82]. to long range interactions. First, we address the stricter case in
which Â, B̂, Ĉ, D̂ all commute, then comment briefly on the more general case.

Suppose the data (A,B,C,D)(i) of the MPO representation for H is given, with
bond dimensions χi = 2 +Ni. On each bond (i, i+ 1), introduce a vector of complex
fields φi = (φi,1, . . . , φi,Ni), with complex conjugate φ̄i and indices ai = 1, . . . , Ni in
correspondence with the non-trivial MPO indices in H. (That is, any MPO indices
that is not L or R.) Using the fundamental rule of complex Gaussian integrals,

1

π

∫
d2φ e−φ̄φ+Jφ̄+φJ̄ = eJJ̄ , (5.25)

the exponential factors as

eH =

∫
D[φi, φ̄i] e

HLi+hLi ·φ̄ie−φ̄i·φieφi·hRi+HRi (5.26)
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where the dot-product is the sum
∑Ni

ai=1, andD[φi, φ̄i] is shorthand for
∏

ai
(d2φi,ai/π).

This identity requires that all terms commute; otherwise discrepancies arise at second-
order in H.

Now using the MPO recursion of Eq. (5.5), we can peel off one site:

HRi + φi · hRi = φi · Âi+1 · hRi+1
+ φi · B̂i+1 + Ĉi+1 · hRi+1

+ D̂i+1 +HRi+1
. (5.27)

Thus if we introduce a new vector of fields φi+1,ai+1
which runs over ai+1 = 1, . . . , Ni+1,

we can write

eφi·hRi+HRi =

∫
D[φi+1, φ̄i+1] Ûφi,φ̄i+1

e−φ̄i+1φi+1eφi+1·hRi+1
+HRi+1 ,

where Ûφi,φ̄i+1
≡ eφi·Âi+1·φ̄i+1+φi·B̂i+1+Ĉi+1·φ̄i+1+D̂i+1 .

(5.28)

By repeating this step on all the bonds, we find

eH =

∫
D[φ, φ̄]

[
· · · e−φ̄iφiÛφi,φ̄i+1

e−φ̄i+1φi+1Ûφi+1,φ̄i+2
· · ·
]
. (5.29)

This is a matrix product operator in which the auxiliary bonds are labeled by
a set of continuous numbers φi, rather than discrete indices; it is a “coherent state
MPO.” To bring the result to a discrete form, we note that an integral of the form
Eq. (5.29) is a discretized coherent state path integral for Ni bosons, so the integrals
can be converted to discrete sums over the many-body Hilbert space of Ni bosons.
The basic manipulation is the Taylor expansion:

Yφ ≡
∞∑
n=0

Yn
φn√
n!

(and likewise for any tensor) (5.30)

1

π

∫
d2φXφ̄e

−φ̄φYφ =
1

π

∑
n̄,n

Xn̄Yn

∫
d2φ

φ̄n̄φn√
n̄!n!

e−φ̄φ

=
∑
n

XnYn (5.31)

The integer n is the ‘occupation.’ Note that if a tensor depends on multiple variables
(such as the vector φi,ai ), then the above rule extends via a simple product. So if we
define a vector of occupations ni = (ni,1, . . . , ni,Ni), whose values index the Hilbert
space of Ni bosons, we can Taylor expand U as

Ûφi,φ̄i+1
≡

∑
{ni},{n̄i}

Ûni,n̄i+1

φnii φ̄
n̄i+1

i+1√
|ni!||n̄i+1!|

(5.32)
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with |ni!| =
∏

ai
(ni,ai)!. The MPO for the exponential is

eH =
∑
{ni}

[
· · · Ûni,ni+1

Ûni+1,ni+2
· · ·
]

(5.33)

Now in principle each sum on the bonds is over the many-body Hilbert space of Ni

bosons, which is infinite. But there will be “Boltzmann factors” associated to these
states which allows for a sensible truncation.

Furthermore, in certain situations, such as for a nearest-neighbor interaction of
Pauli-matrices, H =

∑
i X̂iX̂i+1, Ûni+1,ni+2

only has rank 2, resulting in the χ = 2
MPO reported previously [82].

We must slightly modify the procedure if the Hamiltonian is a sum of commuting
terms but Â, B̂, Ĉ, D̂ do not commute (for instance, in the Toric code). Then on
each bond we can arbitrarily order the φa, and when expanding the exponential for
Ûφi,φ̄i+1

, order the terms accordingly.

5.10 Derivation of Ŵ II

Comparing Eq. (5.23) with Eq. (5.28), we see that Ŵ II is precisely a truncation
of Ûni,ni+1

to an occupation of at most a single boson on each bond. The occupation
number of bosons across a bond encodes the number of terms in the Hamiltonian
which cross the bond in the Taylor expansion of e

∑
xHx . Hence by truncating Û to

a maximum occupation of 1, we keep all non bond-overlapping terms. However, in
the derivation of the exact MPO etH we required all terms to commute. Careful
inspection shows that the non-commutivity only shows up at 3rd-order in H. Hence
in general Ŵ II is only an approximation to the sum of all non bond-overlapping
terms, with errors at O(t3). But these errors are subleading in comparison to the
terms dropped (by the truncation) at O(t2), so are unimportant.

5.11 Taking advantage of different MPO

decompositions

There are numerous ways to decompose a Hamiltonian as H =
∑

xHx, and hence
many decompositions into an MPO. For instance, a ferromagnetic interaction can be
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written as

HF = −
∑
i

ẐiẐi+1 (5.34)

= −
∑
i

[
(Ẑi − h)(Ẑi+1 − h) + 2hẐi − h2

]
with MPO

ŴHF =

1 −Ẑ 0

0 0 Ẑ
0 0 1

 or

1 −(Ẑ − h) h2 − 2hẐ

0 0 (Ẑ − h)
0 0 1

 . (5.35)

The MPO Ŵ II is not invariant under such shifts (at 2nd-order). This can be used to
improve the effective accuracy of Ŵ II .

In principle one could try to optimize over all the MPO representations of H in
order to minimize the error in Ŵ II . It is an open question whether there is a practical
method to do this. As a toy model we compute the error |(U(dt)−W II(dt))|ψ〉| for
the ferromagnet HF as a function of the shift h given in Eq. (5.35). To leading order,∣∣∣(U(dt)−W II(dt))|ψ〉

∣∣∣2
∝ dt2

∑
i

〈ψ|(Ẑi − h)2(Ẑi+1 − h)2|ψ〉,
(5.36)

since W II drops these two-site terms at 2nd-order. So, in principle, the optimal h
minimizes this expression.

One possible heuristic is to make a mean field approximation and instead mini-
mize 〈(Ẑi−h)2〉〈(Ẑi+1−h)2〉 by setting h = 〈Ẑi〉. With this choice the onsite term of
Eq. (5.35) is D̂ = h2−2hẐ, the mean field Hamiltonian. Since W II treats D̂ exactly,
it’s not surprising this can reduce the error.

To generalize this heuristic mean field criteria, we can always choose the MPO
for H such that the Hamiltonian cut across any bond (cf. Eq. 5.4) satisfies 〈hRi,ai〉 =
〈hLi,ai〉 = 0 by shuffling the mean field component into HLi , HRi . Then the errors in

Ŵ II at 2nd-order will depend only on the connected part of
∑

ai
hLi,aihRi,ai . For many

relevant models, such as a Heisenberg spin model, this heuristic does not help since
〈hRi,ai〉 = 0 due to the SU(2) symmetry of S. But for a model with a long-ranged
density-density interaction like 1

2

∑
x,y nxV (x − y)ny, the mean field approach will

treat the ‘direct’ part of the evolution,
∑

x,y nxV (x− y)〈ny〉, exactly.
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5.12 Analytical expressions for dynamical

correlation functions of Haldane-Shastry

spin chain

We provide here the expression found by Haldane and Zirnbauer [44] for the
ground-state dynamical correlations

Gab
mn(t, t′) ≡ 〈0|Sam(t)Sbn(t′)|0〉 (5.37)

of the Haldane-Shastry spin chain [41, 102] with Hamiltonian

HHS = J
∑
m<n,a

SamS
a
n

|m− n|2 . (5.38)

(The superscript of S operators denote the spin direction and the subscript denote
the lattice site.) The arguments leading to the forms below are somewhat involved
and we refer the reader to the original paper for details. In the following ~ = 1. Gab

mn

is diagonal in spin indices, and translation invariance allows us to define

Gab
mn(t, t′) =

1

4
δab(−1)m−nC(m− n, t− t′). (5.39)

The function C(x, t) is related to the spinon spectrum in the solution for the ground-
state wavefunction and can be simplified to two integrals:

C(x, t) =
1

4

∫ 1

−1

dλ1

∫ 1

−1

dλ2 e
iπλ1λ2x−πvt2

(λ1
2+λ2

2−2λ1
2λ2

2). (5.40)

Here v is the spinon velocity, v = πJ/2, and the prefactor of 1/4 can be understood
by noting that C(0, 0) = 1 as (Sa)2 = 1/4 for each spin direction a. The numerical
integrations used to obtain the comparison curves in Fig. 5.4 are straightforward and
were carried out using commerical software.
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Chapter 6

Conclusion

One of the outstanding problems in the theory of higher dimensional tensor net-
works is to design an efficient and stable method to variationally minimize the en-
ergy of a 2D tensor network given a microscopic Hamiltonian. Since the invention of
DMRG [137], optimizing 1D tensor networks has essentially been a solved problem.
There are a variety of competing proposals in 2D, but all are made quite complex
by the need to work with non-orthogonal bases. In 1D, one can easily guarantee
that the boundary map |φ〉L is an orthogonal basis (the ‘canonical form’ of an MPS),
which drastically simplifies the algorithm. There is currently no equivalent canon-
ical form in 2D, which has proved the essential difficulty. It seems to me that the
‘right’ algorithm will be found only once the properties of the bulk-boundary map
|φ〉L are fully understood, and in particular what normalization conditions can be
imposed during the variational optimization. If the network is non-injective dur-
ing the intermediate stages of the algorithm, can one efficiently require that |φ〉L
is orthogonal basis about some particular bond? Such a result would drastically
simplify the algorithm. Extending the techniques developed here to 2D, particularly
the fermionic and bosonic parton ansatz, will prove very useful in understanding the
tensor network representations of realistic states and the resolution of these issues.
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[93] Iván D. Rodŕıguez, Steven H. Simon, and J. K. Slingerland. “Evaluation
of Ranks of Real Space and Particle Entanglement Spectra for Large Sys-
tems”. In: Phys. Rev. Lett. 108 (25 June 2012), p. 256806. doi: 10.1103/
PhysRevLett.108.256806. url: http://link.aps.org/doi/10.1103/
PhysRevLett.108.256806.

http://dx.doi.org/10.1103/PhysRevLett.106.170501
http://link.aps.org/doi/10.1103/PhysRevLett.106.170501
http://link.aps.org/doi/10.1103/PhysRevLett.106.170501
http://dx.doi.org/10.1103/PhysRevLett.108.196402
http://link.aps.org/doi/10.1103/PhysRevLett.108.196402
http://link.aps.org/doi/10.1103/PhysRevLett.108.196402
http://dx.doi.org/10.1103/PhysRevB.79.045308
http://link.aps.org/doi/10.1103/PhysRevB.79.045308
http://link.aps.org/doi/10.1103/PhysRevB.79.045308
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.59.8084
http://link.aps.org/doi/10.1103/PhysRevB.59.8084
http://dx.doi.org/10.1103/PhysRevLett.110.033001
http://dx.doi.org/10.1103/PhysRevLett.110.033001
http://link.aps.org/doi/10.1103/PhysRevLett.110.033001
http://link.aps.org/doi/10.1103/PhysRevLett.110.033001
http://dx.doi.org/10.1103/PhysRevB.80.153303
http://dx.doi.org/10.1103/PhysRevLett.108.256806
http://dx.doi.org/10.1103/PhysRevLett.108.256806
http://link.aps.org/doi/10.1103/PhysRevLett.108.256806
http://link.aps.org/doi/10.1103/PhysRevLett.108.256806


BIBLIOGRAPHY 109
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