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Abstract 

We advocate that the orbifold Z2 symmetry of the gravity trapping model proposed 
by Randall and 8undrum can be seen, in appropriate coordinates, as a symmetry that 
exchanges the short distances with the large ones. Using diffeomorphism invariance, 
we construct extensions defined by patch glued together. A singularity occurs at the 
junction and it is interpreted as a brane, the jump brane, of co dimension one. We give 
explicit realization in ten and eleven dimensional supergravity and show that the lower 
dimensional Planck scale on the brane is finite. The standard model would be trapped 
on a supersymmetric brane located at the origin whereas the jump brane would sur­
round it at a finite distance. The bulk interactions could transmit the supersymmetry 
breaking from the jump brane to the 8M brane. 



1 Introduction 

Since the works of Kaluza and Klein [1], we know that, if there exists some extra-dimensions 
to our universe, an infinity of massive states will be associated to each usual 4D field. Because 
these. KK modes have not yet been observed, necessarily their masses must be beyond the 
experimental range of energies resolved in accelerators ('" 1 Te V). That is why the size 
of extra-dimensions cannot exceed such a ridiculously tiny scale ('" 1 TeV-1 

'" 10-19 m). 
However recent progresses in string theories [2] have corrected this old scenario suggesting 
that the Standard Model gauge interactions are confined to a four dimensional hypersurface 
while gravity can still propagate in the whole bulk space-time. Since the gravity has not 
yet been tested for energy beyond 10-4 e V [3], the bounds on the size of extra-dimensions 
are now much lower ('" 1 mm). This lack of experimental data allows for a modification 
of gravitational interactions at submillimetric distances i.e. far away from the Planck scale 
(rv 1019 Ge V) where quantum gravity were usually thought to take place. This proposal, 
in a sense, nullifies! the gauge hierarchy problem [4]. However this analysis was not yet 
complete essentially because it assumes a particular factorizable geometry associated to the 
higher-dimensional space-time being a direct product of a 4D space-time with a compact 
space. Recently this last assumption has been overcome [5] unwarping a very rich potential 
of physical effects. The most exciting one reveals the non-incompatibility between non­
compact extra-dimensions and experimental gravity [6]. The crucial point is the existence, 
in some curved background, of a normalizable bound state for the metric fluctuations which 
can be interpreted as the usual 4D graviton. Of course, there still exists an infinite tower of 
KK modes, even a continuum spectrum without gap, but the shape of their wave functions is 
such that they almost do not overlap with the 4D graviton and thus maintain the deviations 
to the Newton's law in limits which are still very far from experimental bounds. Subsequent 
to studies of thin shells in general relativity [7] and their revival in a low-energy M -theory 
context [8], a toy model was constructed by Randall and Sundrum that exhibits the previous 
properties (see [9] for previous related works). The question whether this scenario reproduces 
the usual 4D gravity beyond the Newton's law has been addressed in [10]. The cosmological 
aspects have been intensively studied [11]. This model brings new approach to tackle the 
more severe hierarchy encountered in physics, namely the cosmological constant problem 
[12,13]. Whereas phenomenological aspects of warped compactifications with one compact 
extra-dimension have raised some interesting works [14], the case of one and many infinite 
extra-dimensions still waits for further investigations. 

The initial model by Randall-Sundrum involves only one extra-dimension. Several subse­
quent works [15] extend it by considering many intersecting co dimension one branes. Three 
papers [16] consider branes of co dimension two. In a previous publication [13], we have 
proposed an effective action inspired from the brane construction in supergravity that leads 
to warped compactification with many extra..;dimensions, however it fails to localize gravity. 
The present paper gives a generic method that leads to warped geometry trapping gravity: 

1 More precisely, this proposal translates the gauge hierarchy problem in energy into its Fourier dual, 
namely a hierarchy between the size of extra-dimensions and the electroweak scale. 
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the idea consists in taking a solution of the equations of motion in the bulk and using the 
diffeomorphism invariance in the transverse space to construct a new solution, defined by 
patch, gluing together two slices of the initial solution. By applying a transformation that 
exchanges the radial distance to the brane with its inverse, namely imposing a kind of T 
duality i. e. a symmetry between the short and the long distances, we can keep the region 
of the space-time that naturally confines gravity and we throwaway the domain where the 
lower dimensional Planck mass diverges. The next section is devoted to enlighten our method 
while reproducing the RS scenario. In section 3, the Ramond-Ramond fields of low energy 
effective action of superstring theories are introduced in the bulk and our method is used to 
T dualize the usual p-brane solutions of supergravity. 

2 Randall-Sundrum scenario as a T dualization of the 
transverse space 

In this section we would like to present our method on a simple example which leads us to 
the Randall-Sundrum scenario of gravity trapping. We will be mainly interested here in the 
dynamics of the gravitational fields assuming that the dynamics of the other fields results in 
an effective cosmological constant in the bulk - the next section will be devoted to a more 
elaborated scenario taking into full account the massless modes of the low energy effective 
action of superstring theories. Thus the space-time physics is governed by the following 
action2

: 

(1) 

It is well known for a long time that, when the cosmological constant is negative, Abk < 0, 
the solution of Einstein equations corresponds to an Anti-de-Sitter space-time: 

ds' ~ (R:,J' ~JW dx" ® dxv + (R;" )' dr ® dr J1. ~ O ... D - 1. (2) 

where the radius RAdS is related to the bulk cosmological constant by: 

-2 2,..;2 Abk 

RAdS = - (D - 2)(D -1) (3) 

The aim of this section is to describe a method to construct new solutions to Einstein 
equations using a regular solution such as the previous one. These new solutions will develop, 
on hypersurfaces, some discontinuities in the first derivatives of the metric which will be 
interpreted as branes. In the vain of the works of extra-dimensions, we are looking for 
solutions that preserve a Poincare invariance in some space-time directions hereafter called 

20ur conventions correspond to a mostly plus Lorentzian signature (- + ... +) and the definition of 
the curvature in terms of the metrics is such that an Euclidean sphere has a positive curvature.D is the 
space-time dimension. 
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longitudinal directions and that could be identified as the dimensions associated to our world; 
the remaining dimensions will be extra-dimensions transverse to us. Notice that the AdS 
solution already exhibits a Poincare invariance in D - 1 dimensions. The most general D 
dimensional metric that preserves a PoincareD_l symmetry can be written as: 

ds2 = A2(r) 'f/Jl.1I dxJl. ® dx" + B2(r) dr ® dr . (4) 

In terms of the two functions A and B, the Einstein equations read: 

(D _ 2) A" + (D - 2)(D - 3) (A') 2 _ (D _ 2) A' B' = -K2AbkB2 . 
A· 2 A AB ' 

(5) 

(D - 2)(D -1) (A')2 = ~ 2A B2 
2 A Kbk, (6) 

where primes denote derivatives with respect to the transverse coordinate r. The AdS 
solutions simply corresponds to AAds(r) = r/RAdS and BAdS(r) = RAdS/r. 

The key observation is that, even after requiring a Poincare invariance, the equations 
of motion still· possess a reparametrization invariance in the transverse space. In our one 
extra-dimension example, this invariance is associated to diffeomorphism in the coordinate 
r and insures that, if Ao(r) and Bo(r) are a solution of the Einstein equations (5)-(6), thus 
A(r) = Ao(f(r)) and B(f) = ±Bo(f(f))f'(f) are also a solution, as it can be explicitly 
checked, for any diffeomorphism f whose image falls in the support of the original Ao and 
Bo. Of course these two solutions correspond to the same physical space if they are used for 
covering the whole space-time. However they can be used separately in order to construct 
new solution defined by patch on two non-overlapping regions: this construction mimics 
the procedure used by Randall and Sun drum and consists in taking two identical slices of 
space-time and gluing them together. Explicitly, the solution can be defined, starting from 
any solution Ao{r) and Bo{r), as: 

for r ~ ro 

for r;:::: ro 

(7) 

(8) 

The requirement that the metric remains continuous at r 0 gives a constraint between r 0 and 
the function f, namely: 

(9) 

In the present case where r represents a radial distance that remains positive, there is a 
particular change of coordinate that fulfills the constraint (9) whatever the value of r 0 is: 
f(r) = r~/r. The significance of this change of coordinate is very clear: the original solution 
near infinity is cut and replaced by a copy of the origin and the long distance solution 
becomes just a mirror of the short distance region. In that sense the new solution is T self­
dual. Notice that the r ++ r~/r symmetry is just a Z2 symmetry in the Randall-Sundrum 
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coordinate, y = -Rln(r/RAds), when ro = RAdS • In the RS coordinate, the full AdS metric 
(2) reads: 

ds2 = e-2y/RAdS77pv dxP ® dxv + dy ® dy. (10) 

Randall and Sundrum have looked for a Z2 symmetric configuration and have obtained: 

(11) 

when a brane with a positive and fine-tuned cosmological constant is placed at y = 0 i.e. 

r ~ RAdS • This Z2 symmetrization is nothing but the procedure of T dualization of the 
transverse space described above: the region of negative y, that would correspond to r ~ 
RAdS ' is cut and replaced by a copy of the region of positive y i.e. r ~ RAdS • This procedure 
of cutting and pasting is not specific to the T dualization of transverse space, for instance it 
has been used in the first reference in [15] to generalize the RS construction with cosmological 
constants on a setup of intersecting co dimension one branes. The notion of T transformation 
will be important for trapping gravity on higher co dimension branes like those appearing in 
supergravity theories. 

The diffeomorphism invariance insures that (7)-(8) is a solution bf the Einstein equations 
in the bulk. However, even if the metric is continuous at r = ro, its first derivatives are 
usually not and thus a Dirac singularity appears in the left hand side of (5) which has to be 
associated to a singular stress-energy tensor. In our example it is not difficult to see that 
this singular stress-energy tensor can be derived from a term interpreted as a cosmological 
constant on the hypersurface r = r 0: 

(12) 

where Abr is given by: 

8(D - 2) 
- (D - 1)/'i;2 A

bk • 
(13) 

The above procedure of T dualization has the nice property to lead to a finite D - 1 
dimensional Planck mass. Indeed, whereas in the original solution it would be: 

M p
D- 3 = \ tx) dr AD-3(r) B(r) = roo dr (Rr ) D-4 

/'i; Jo . Jo AdS 

(14) 

which diverges near infinity, our solution that throws away the region near infinity and paste 
a copy of the region near the origin, naturally gives a finite D -1 dimensional Planck mass3 : 

M p
D- 3 = 12 (.ITO dr (_r_)D-4 + 100 dr~~D-;_4) = ( 2) 2 ro (_r_o_)?-4 

/'i; Jo RAds To rD 2RAds D - 3 /'i; RAdS 

(15) 

3Notice that we could have cut the horizon of AdS and kept two copies of the infinite boundary but this 
geometry would not lead to a finite lower dimensional Planck scale. 
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At this stage, the position To of the fixed point under the T symmetry is arbitrary. It is 
believed that a dynamical description of the brane beyond its effective description in terms 
of a cosmological constant (12) should allow to stabilize the value of To. Notice that, when 
To = RAdS ' the expression (15) coincides with the Planck mass on the brane computed in the 
RS model. 

In the next section, we extend our procedure of T dualization to solutions of the equations 
of motion of supergravity. 

3 Gravity trapping from the branes of supergravity 

In this section, we apply our procedure of T dualization to the brane solutions of supergrav­
ity theories. An electric p-brane couples to a (p + 1) differential form. While preserving a 
Poincare invariance in the dimensions parallel to the brane, the electric field strength curves 
the transverse space. Nice solutions of the equations of motion have been constructed [17]. 
Their remarkable supersymmetric and BPS properties insure their stability. They are in­
terpreted as collective excitations of perturbative string theories and they become the el­
ementary objects of dual theories capturing part of the non-perturbative aspects. In [13], 
it was argued that the brane configurations can be seen as warped geometry of space-time. 
Unfortunately, the shape of the warp factor along the infinite extra-dimension associated to 
the radial distance to the brane in the transverse space does not localize gravity as in the RS 
scenario. The origin of such a discrepancy is due to the geometry of space-time far away from 
the brane. For example in the particular case of vanishing dilaton coupling, the geometry 
corresponds4 to a product AdSdll +1 x SdL -1, where dll is the dimension of the longitudinal 
space and dL , the dimension of the transverse space, dll + dL = D. Whereas the region 
near the brane is the horizon of AdS, the region near infinity is associated to the confor­
mal boundary of AdS which is precisely the part of space-time cut in the RS configuration. 
Our solution will consist in T dualizing the AdS horizon in the region near infinity. A new 
singularity will appear where the two slices are glued and we will describe this singularity. 

We begin with a review of the brane construction in supergravit¥ theories. A p-brane 
is coupled to the low-energy effective theory of superstrings. Below the fundamental energy 
scale, identified as the energy of the first massive excitations of the string, the theory can be 
described by supergravity theories whose bosonic spectrum contains the metric, a scalar field 
(the dilaton) and numerous differential forms. The bosonic effective action, in supergravity 
units where the curvature term is canonically normalized, takes the general form (we will 

4Usually the solution constructed in supergravity theories asymptotes AdSdn+1 x Sd.!.-1 near the brane 
only and it is normalized such as to recover a D dimensional Minkowskian fiat space at infinity. As we will see 
in eq. (28), this normalization corresponds to a particular choice of constant of integration. AdSdn+1 x Sd.!.-1 
provides also a solution in the full space. The physical relevance of this solution is suggested by the fact that 
the dynamics of a brane becomes free near the conformal boundary of AdS [18]. Our argument concerning 
the gravity localization is unchanged if the solution with a fiat space at infinity is considered since the dn 
Planck mass also diverges in that case. 
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use ,.,,2 = M 2- D where M is the Planck mass in ten or eleven dimensions): 

saugra = ! dDx II:Ilgl (_1 n _ ~ o.iPofLiP _ ~ 1 eOn~ F. • Ffrl ... frn+2) (16) 
ell V IYI 2fi,2 2 /L L...J (n + 2)! O"l···O"n+2 , 

n 

where Fp,l ... fLn+2 = (n + 2) O[fLl Cp,2 ... Pn+2] is the field strength of the (n + I)-differential form 
C, whose coupling to the dilaton is measured by the coefficient an. The allowed values of n 
depends on the theory we consider. The coefficients an are explicitly determined by a string 
computation: the coupling of the dilaton to differential forms from the Ramond-Ramond 
sector appears at one loop and thus a!;R/V2fi,2 = (3 - n)/2 in supergravity units, while the 
Neveu-Schwarz-Neveu-Schwarz two-form couples at tree level, so afB /V2fi,2 = -1. In some 
cases, we can also add a Chern-Simons term (C /\ F /\ F) to the action, but it does not have 
any effect on the classical solutions and we will neglect it in our analysis. 

This bulk effective action can couple to some branes. And th~ total action is: 

s - ssngra + Sbranes 
- ell ell (17) 

The equations of motion are derived form this action and can be read (il, iJ = 0 ... D - 1): 

2 2: 
2fi,2... . . 

G - o.iF..{).iF.. + On'*' F F. O"l···O"n+l 
{Lv - fi, {L'J! v'J! (n + I)! e {L(h",un+l v 

n 

+ - -fi, O·iPaO"iP - eOn,*, F. . FO"l ... O"n+2 1 ( ·2 . 2: 2fi,2;r,. . . ) 
2 0" (n + 2)! O"l···O"n+2 

gfLv + Ti~ ; (18) 
n 

(19) 

(20) 

The brane stress-energy tensor Ti~, the electric currents Jbr and the dilatonic current T:r 
are formally given by: 

(n + I)! bS:jies 

2 . bAfL1"'fLn+l 

bSbranes 
Tbr _ eff 
~ - - biP (21) 

and can be derived whenever the effective action describing the dynamics of the branes is 
known. 

We would like now to construct a solution of these equations of motion with particular 
symmetries namely a Poincare invariance in dll = P + 1 dimensions that will be identified 
as longitudinal dimensions and also a rotational invariance in the dJ. dimensional transverse 
space. Such a solution has been known for a long time in supergravity theories and it is 
expressed as (p" v ~ 0 ... dll - 1 and i,j = 1 ... dol): 

ds2 = H 2n
., "I/LV dxl-' ® dxv + H 2n

y "Iij dyi ® dyj ; 

e ~ = Hn
4> erPo ( </>0 is a constant) ; 

C = -f _I_e-oPrPoo/2 H-1 . 
/Ll···!Lp+l /Ll···l-'p+l A ' wz 

6 
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where H is a function of the radial distance in the transverse space only. Notice that the 
POincaredll symmetry allows only for a non-vanishing dll differential form and furthermore all 
the fermionic fields have to vanish. The consistency of the whole set of equations of motion 
determines the powers nx , ny and n<l>: 

ap 
n<l>=-A2 ' 

wz 

and the coefficient Aw z which has to be related to the dilaton coupling by: , 

A2 _ 2 2 dll (dJ. - 2) a; 
wz- K +-. 

dll + dJ. - 2 2 

(25) . 

(26) 

In supergravity theories, according to the particular values of the dilaton coupling previously 
given, the coefficient Awz is a constant independent of the dimension of the brane: 

The function H is harmonic in the transverse space: 

Q 
H=l+-d 2 r J.-

(27) 

(28) 

where l is an arbitrary dimensionless constant and Q is a constant with a dimension dJ. - 2 
in length. 

This solution solves the bulk equations of motion everywhere except at the origin where 
occurs a singularity, interpreted as a p-brane. We know exactly the brane action generating 
such a singularity: 

S:;je = TpH ! dPH~ ( _~v1Yf1'abaaXjtabxii 9jtii(X) efJp<l> + P; 1 v1Yf 

+ Awz al.··ap+l a xjtl a Xjtp+lC ) (p + 1)! E al'" ap+l . jtl ... jtp+l . (29) 

And the corresponding constant Q in the expression (28) of the harmonic function H is 
related to the tension Tp+1 of the brane by: 

. A2 T. 
Q = WZ pH e-optPo/2 (30) 

2(dJ. - 2)f2dJ.-1 

where f2dJ. -1 is the volume of SdJ. -1, the sphere with dJ. - 1 angles. 
Using this solution, we will now construct a new solution by patch. The most general 

solution that respects Poincaredll x SO(dJ.) can be written as: 

ds2 = A2(r) 'fJJ1.V dx J1. ® dxv + B2(r) dr ® dr + D2(r)d2 f2dJ. -1 ; (31) 
~ = ~(r); (32) 

CJ1.1".J1.P+l = -EJ1.1 .. .J1.p+lAii!z C(r) ; (33) 
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where cPnd.i. -1 = 9o/Jd()O" ® d()/J is the metric on the Sd.!. -1 described by the angles ()O, 

a = 1 ... d.!. - 1. In terms of these functions, the equations of motion (18)-(20) in the bulk, 
i. e. dropping any singularity, read: 

where the primes denote derivative with respect to the radial distance r. 
The brane solution of supergravity corresponds to Asg = Hn"" Bsg = Hny, Dsg = r Hny, 

e<l>sg = Hn<f> etPo and Gag = H-1 etPo /2 where cpo is an arbitrary constant and H is given in 
(28). The diffeomorphism invariance insures that 

for r ~ ro 

for r 2:: ro 

A(r) = Hn"(r) B(r) = HnY(r) D(r) = r Hny (r) 
<p(r) = cpo + 11.<1> InH(r) G(r) = etPo /2 H-1(r) 

(39) 

A(r) = Hn"(r;/r) B(r) = r;/r2HnY(r;/r) D(r) = r;/r Hny(r;/r) 40 
<p(r) = cpo + n<l> In H(r;/r) G(r) = etPo /2 H-1(r;/r) ( ) 

is also a solution of the equations of motion in the bulk, as it can be checked explicitly. 
Whereas this T dualization of the transverse space provides a continuous junction between 
the two patches, the first derivatives of the fields have a jump and thus lead to a Dirac 
singularity. We can interpret this singularity as a brane of co dimension one located at the 
junction region: we will call it the jump brane5. Among the dimensions on this brane, d ll 
ones are non-compact and are parallel to the dimensions of the brane at the origin, while 
the d.!. - 1 remaining directions are compact and describe a sphere of radius D(ro) and thus 
at energies below D-1(ro), the second brane will also appear as a (d ll - l)-brane. From the 

5This geometry reminds some aspects of the model of concentric branes constructed in the third reference 
in [16] with a discontinuous cosmological constant in a 6D bulk. 
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explicit expression of the equations of motion, we can derive the singularity associated to 
the second brane in terms of the original supergravity solution: 

T:p 
T~ 

JP.l ... P.p+l 
br 

(41) 

(42) 

(43) 

(44) 

where we remind that ga/3 has been defined as the metric on sd.l.. -1. An interesting and 
opening problem that we will not address in this letter is to determine the effective action 
S~fine describing the second brane that would lead to the currents (41)-(44). In the particular 
case where the integration constant, l, of the supergravity solution (28) has been chosen 
to vanish, the stress-energy tensor on the brane can be parametrized by two cosmological 
constants along the compact and non-compact directions: 

where 

A~T ex: (d.l.. - 1 - 2(d.l.. - 2)ARlz K2) r;a~Aw2z/2 
A~ ex: (d.l.. _ 2)r;a~Aw2z/2 

(46) 

(47) 

Notice that the cosmological constants in the two directions are equal only when the Wess­
Zumino coupling is given by: 

z.e. (48) 

This is never the case in supergravity. 
The most attractive feature of the solution we have just constructed is that, just as 

in the RS model, it provides a finite d ll dimensional Planck mass in spite of the infinite 
extra-dimension. Indeed, this scale is now given by: 

M p
dll-2 = K-2! dd.l..yAdll-2BDd.l..-l= 2K-2nd.l.._llTo drrd.l..-lH4t;.2A'Viz = K-2nd.l.._1Qr~ 

(49) 
In the last equality, we have used the supersymmetric value of Awz and set the constant 
of integration, l, to zero. The fact that Mp converges is a good indication that the gravi­
tational force will mainly follow a Newton's law in d ll dimensions, up to deviations beyond 
experimental bounds, and suggests the existence of a normalizable bound state for the met­
ric fluctuations that will be interpreted as a 4D graviton [19,20] .. The deviations to the 
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Newton's law can be obtained form the KK spectrum of the 4D graviton. The equations of 
motion for the fluctuations will be greatly simplified by noticing that, in the RS gauge, the 
stress-energy tensor in the bulk derived from (16) satisfies, at the first order in perturbation: 

T(l) = (T(O) h + T(O) h ) 'I1pu 
~v ~u pv uv P~ ., (50) 

where 

ds2 = A2(r)(TJ~v + hJl.v(x, r, B))dxJl. ® dxv + B 2(r) dr ® dr + D2(r)d2ndJ._1 (51) 

As noticed in [19], this relation, that is here rather non-trivial since the stress-energy tensor 
is non-linear in the metric, is what is needed to cancel all the non-derivative terms in h in 
the Einstein equations. However, without knowing the effective action for the second brane, 
it is impossible to derive the full equations of motion for the fluctuations near the second 
brane. We leave this question for further investigations. 

Since the supersymmetric extension of the RS model has been debated with rather con­
fusion [13,21], it is important to comment about this issue regarding the solutions we have 
constructed. Concerning the brane located at the fixed point of the T symmetry, we are 
missing some elements to make any statement. However the conclusions are positive for the 
bulk and the p-brane located at the origin: since locally they correspond to the usual solu­
tions encountered in supergravity theories, they preserve eight supercharges. If the second 
brane breaks part of these supercharges, it would be interesting to study the transmission of 
this breaking to the first brane. 

In conclusion, we hope that our construction has shed light on the geometrical origin of 
the gravity trapping scenario proposed by Randall and Sundrum. It provides insight on how 
to extend it to higher-co dimensional brane worlds. We have studied an explicit realization in 
supergravity models exhibiting finite lower dimensional Planck mass on the brane des)?ite the 
non-compact transverse space. Our solution is invariant under a T symmetry that exchanges 
the short distances with the large ones in the transverse space. Two singularities occur that 
are interpreted as a p-brane at the origin and, at a finite distance, the jump brane, a (D - 2)­
brane with dJ. -1 compact dimensions. The bulk, as well as the brane at the origin where the 
standard model can propagate, preserves half of the sixteen supercharges. The warp factor 
is maximum on the jump brane that can be taken as a Planck brane, i. e. a brane where the 
energy scale would be ofthe order of the Planck scale (I'V 1019 Ge V). In this case, the natural 
energy scale on the brane at the origin would be suppressed by a factor A(ro)jA(O) which 
can lead to the electroweak scale depending on the location of the T self-dual point roo A 
dynamical description of the jump brane should help to address some interesting questions 
like the stabilization of its position, the supersymmetry breaking transmission to the first 
brane and the determination of the KK spectrum associated to the 4D graviton which would 
allow to compute the deviations to the Newton's law. 
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