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Abstract
This article focuses on the implications of the recently developed commu-
tative formulation based on branch-cutting cosmology, the Wheeler–DeWitt
equation, and Hořava–Lifshitz quantum gravity. Assuming a mini-superspace
of variables, we explore the impact of an inflaton-type scalar field 𝜙(t) on
the dynamical equations that describe the trajectories evolution of the scale
factor of the Universe, characterized by the dimensionless helix-like func-
tion ln−1[𝛽(t)]. This scale factor characterizes a Riemannian foliated space-
time that topologically overcomes the big bang and big crunch singularities.
Taking the Hořava–Lifshitz action as our starting point, which depends on
the scalar curvature of the branched Universe and its derivatives, with run-
ning coupling constants denoted as gi, the commutative quantum gravity
approach preserves the diffeomorphism property of General Relativity, main-
taining compatibility with the Arnowitt–Deser–Misner formalism. We inves-
tigate both chaotic and nonchaotic inflationary scenarios, demonstrating the
sensitivity of the branch-cut Universe’s dynamics to initial conditions and
parameterizations of primordial matter content. The results suggest a con-
tinuous connection of Riemann surfaces, overcoming primordial singularities
and exhibiting diverse evolutionary behaviors, from big crunch to moderate
acceleration.
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1 INTRODUCTION

The chronology of the Universe is based on the Big Bang
model, which indicates that in primordial times there was
an era dominated by inflation, followed by eras domi-
nated by the presence of radiation and matter. At present,
the dominant phase would correspond to the dark energy
era, which supposedly drives the accelerated expansion
of the Universe. The first observed light would then cor-
respond to relics of the cosmic microwave background
(CMB), composed of photons that would have originated
during the recombination phase, marked by the dissocia-
tion between matter and radiation. The recombination era
would have occurred approximately 380 million years after
cosmic inflation when the Universe reached a temperature
of approximately T∼0.26 eV.

Branch cut gravity (BCG) corresponds to an extension
of the ontological domain of General Relativity to the com-
plex plane (Bodmann et al. 2022; Bodmann et al. 2023a;
Bodmann et al. 2023b; de Freitas Pacheco et al. 2022;
Einstein 1916, 1917; Hess et al. 2023; Zen Vasconcellos
et al. 2019; Zen Vasconcellos et al. 2021a, 2021b; Zen Vas-
concellos et al. 2023), having been developed as a theoreti-
cal alternative proposal to the inflation model (Guth 1981,
2004). BCG is based on the mathematical technique of
augmentation and the notion of closure and existential
completeness (Manders 1989), which have proven to be
extremely useful in both quantum mechanics (Aharonov
& Bohm 1959; Dirac 1937; Wu et al. 2021) and in pseu-
docomplex general relativity (pc-GR) Hess (2017); Hess &
Boller (2020); Hess & Greiner (2009), with direct physical
and cosmological manifestations.

In the classical scenario, the universe described by
branch-cutting cosmology continually evolves from the
negative complex cosmological time sector, prior to a
primordial singularity, to the positive sector, continually
bypassing a branch-cutting, and no primordial singulari-
ties occur in the imaginary sector, only branch points. The
branching universe involves a continuous sum of an infi-
nite number of infinitely (originally) separated poles, sur-
rounding a primordial branching point, organized along
a line in the complex plane with infinitesimal residues.
And just like the primordial branch point singularity, the
resulting analytic function argument can be mapped from
a single point in the domain to multiple points in the range,
characterized by the scale factor, ln−1[𝛽(t)], analytically
continued to the complex plane.

In an earlier contribution included in this volume
(Weber et al. 2024), on the basis of the branch-cutting
cosmology, the Wheeler–DeWitt equation, and the
Hořava–Lifshitz quantum gravity, in an environment con-
figured by a mini-superspace structure with an inflaton
field, we have analized the evolution of the wave function

of the Universe. In this contribution, we investigate the
implications of an inflaton-type scalar field (Guth 1981,
2004) on the dynamical equations, which describe the
time-evolution of the branch-cut scale factor ln−1[𝛽(t)],
which characterizes a topological foliated spacetime struc-
ture. Like standard cosmology, its evolution over time
can shed some light on understanding a crucial aspect
of cosmic evolution, what drives the acceleration of the
Universe.

2 HO ̌RAVA–LIFSHITZ
BRANCH- CUT ACTION

The starting point of our formulation is the action of
Hořava–Lifshitz:

HL =
M2

P

2 ∫
d3x dtN

√
g
(

KijKij − 𝜆K2 − g0M2
P

− g1 − g2M−2
P 

2 − g3M−2
P ij

ij − g4M−4
P 

3

− g5M−4
P 

(


i
𝑗


𝑗

i

)
− g6M−4

P 
i
𝑗


𝑗

k
k
i

− g7M−4
P ∇

2
 − g8M−4

P ∇ijk∇iRjk
)
.

(1)

This action depends on the scalar curvature, , of the
branched Universe and its derivatives in different orders.
Here, gi represents running coupling constants, MP is the
Planck mass, ∇i denotes covariant derivatives, and the
branching Ricci components of the three-dimensional
metrics can be determined by imposing a maximum
symmetric surface foliation. In expression (1), K = Kijgij
represents the trace of the extrinsic curvature tensor Kij
(see (Abreu et al. 2019; Bertolami & Zarro 2011; Bodmann
et al. 2023a; Bodmann et al. 2023b; Cordero et al. 2019;
García-Compeán & Mata-Pacheco 2022; Hess et al. 2023;
Hořava 2009; Vieira et al. 2020)). The Hořava–Lifshitz
approach to commutative quantum gravity preserves
the diffeomorphism property of General Relativity
(Kiefer 2012), which characterizes an isomorphism of
smooth varieties, as well as the usual foliation of the
Arnowitt–Deser–Misner (ADM) formalism at the limit of
the infrared region of the spectrum (García-Compeán &
Mata-Pacheco 2022).

3 MINI-SUPERSPACE OF
VARIABLES

We consider in the following a mini-superspace of vari-
ables (u(t), 𝜙(t)), adopting the variable change u(t) ≡
ln−1[𝛽(t)], with du ≡ dln−1[𝛽(t)], and 𝜙(t) denoting the
scalar-inflaton field minimally coupled to gravity but
with a nonlinear self-interaction described by a coupling
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function F(𝜙). The action of the scalar field, S
𝜙

, may be
written as (Kiritsis & Kofinas 2009; Tavakoli et al. 2021) in
homogeneous and isotropic cosmological settings (Kiritsis
& Kofinas 2009; Tavakoli et al. 2021; Weber et al. 2024)

S
𝜙

=
∫


d3x dtN
√

gF(𝜙)g𝜇𝜈𝜕
𝜇

𝜙𝜕
𝜈

𝜙. (2)

In the following, from the total action determined by
adding the Hořava–Lifshitz and the scalar field actions, the
Hamiltonian associated with the mini-superspace of vari-
ables may be obtained (for details, see Weber et al. (2024)).

Applying standard canonical quantization procedures,
the following super-Hamiltonian results

 = 1
2

N
u

[
−p2

u + gr − gmu − gku2 − gqu3 + gΛu4 +
gs

u2

]

+ 1
2

N
u

[
1

u3𝜔−1F(𝜙)
p2
𝜙

]
.

(3)

In this expression, gk, gΛ, gr, and gs, gm, and gq rep-
resent, respectively, the curvature, cosmological constant,
radiation, stiff matter, and quintessence running coupling
constants (Bertolami & Zarro 2011; Maeda et al. 2010;
Weber et al. 2024).

3.1 Hamilton equations

Hamilton equations may be synthesized in the form

u′ = 𝜕

𝜕pu
and p′u = −

𝜕

𝜕u
, (4)

and
𝜙

′ = 𝜕

𝜕p
𝜙

and p′
𝜙

= −𝜕
𝜕𝜙

. (5)

Combining these equations with (3), we obtain the
following Hamilton equations:

u′ = −N
pu

u
; 𝜙

′ = N
p
𝜙

u3𝜔F(𝜙)
; p′

𝜙

= N
2

[
p2
𝜙

u3𝜔
F′(𝜙)
F2(𝜙)

]

,

(6)
with F′(𝜙) = dF(𝜙)∕d𝜙, and

p′u = −
N
2

[
p2

u

u2 − gk − 2gqu + 3gΛu2 −
gr

u2 − 3
gs

u4 −
3𝜔

u3𝜔+1

p2
𝜙

F(𝜙)

]

.

(7)

From Equations (6), we get:

p
𝜙

= 1
N

F(𝜙)u3𝜔(t)𝜙′(t) while pu = −
u(t)u′(t)

N
. (8)

Adopting 𝜔 = 1 and the time gauge N = un(t), by
eliminating p

𝜙

on the𝜙′ and p′
𝜙

equations above, we obtain

𝜙

′′(t)
𝜙

′(t)
− 1

2
F′(𝜙)
F(𝜙)

𝜙

′(t) + F′(𝜙)
F(𝜙)

+ (3 − n)u
′(t)

u(t)
= 0. (9)

Integrating this equation we obtain

log

(
𝜙

′
√

F(𝜙)
F(𝜙)𝜙′(t)

)

= log
(

u(t)n−3)
. (10)

Expanding F(𝜙)𝜙′(t), around t = 0, it results

F(𝜙)𝜙′(t) = F(𝜙)𝜙′(0)
{

1 + log(F(𝜙))𝜙′′(0)F(𝜙))

+ 1
2

log(F(𝜙))
(
log(F(𝜙))𝜙′′(0)2 + 𝜙′′(0)(3)

)
F2(𝜙) …

}
.

(11)

Adopting the boundary condition ̇

𝜙(0) = 1, we obtain
from the expression above, in first order of𝜙(t) time deriva-
tive (for convergence reasons) (see for instance Tavakoli
et al. (2021)),

𝜙

′2(t)F(𝜙) = u(t)2(n−3)
, (12)

where represents an integration constant.
From Equation (6), the following expression follows,

pu = −u(t)1−nu′(t) → p′u = −(1 − n)u
′(t)2

u(t)n
− u(t)1−nu′′(t),

(13)
so

− 2
N

p′u = 2(1 − n) u′(t)2

u(t)2n + 2 u′′(t)
u(t)2n . (14)

With respect to the p
𝜙

-dependent term in Equation (7),
from (6) and (12), the following expression holds

3𝜔
u3𝜔+1

p2
𝜙

F(𝜙)
→ 3u(t)2(1−n)F(𝜙) ̇𝜙(t)2 = 3

u(t)4
, (15)

with 𝜔 = 1.
Using Equation (6) to remove the dependence of the

momenta pu and p
𝜙

in Equation (7), in combination with
Equations (12), (14), and (15) we obtain

(1 − 2n)u′(t)2 + 2u(t)u′′(t)
+u(t)2n

[
gk + 2gqu − 3gΛu2 + gr

u2 + 3 gs+
u4

]
= 0.

(16)

A common aspect throughout the evolutionary process
of the scale factor concerns the origin of the current phase
of the branch-cut Universe. BCG successfully addresses
the issue of the primordial singularity. It consistently
portrays the early Universe as a Riemannian foliation
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4 of 9 WEBER et al.

F I G U R E 1 Typical u(t) − 𝜙(t) trajectory
solutions of Equation (12) in the case of chaotic
inflation.

in which the singularities of the multiverse merge, giv-
ing rise to a smooth branching topological structure that
resembles continuously connected Riemann surfaces.
This structure introduces a new cosmic scale factor that is
analytically continued into the complex plane that
describes a transition region between the present stage
of the Universe and its mirror counterpart. Our findings
concerning the dynamics of the scale factor reveal that
they are highly sensitive to both the initial conditions and
the different parameterizations of the primordial matter
content. The branch-cut Universe begins its expansion
from a quantum leap in the mirror sector. Depending on
the initial conditions, the branch-cut Universe presents
an evolutionary behavior of the big crunch or moderate
acceleration type.

3.1.1 Chaotic inflation

In the context of the early universe’s evolution, chaotic
inflation emerges as a phase positing that this period is a
natural and potentially inevitable outcome of the chaotic
initial conditions in the early cosmos. To simulate the
inflationary field’s presence, we employ chaotic inflation
to parameterize the coupling function, denoted as F(𝜙),
expressed as

F(𝜙) = 1
2

g2
𝜙

𝜙

2(t). (17)

This choice of chaotic inflation serves as a method for
modeling the inflationary phase, capturing the dynam-
ical behavior resulting from quantum fluctuations and
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WEBER et al. 5 of 9

F I G U R E 2 Additional typical
u(t) − 𝜙(t) trajectory solutions of
Equation (12) in the case of chaotic
inflation.

providing insights into the impact of initial conditions on
cosmic evolution.

3.1.2 Modeling inflation with a Fubini-type
potential

In an alternative approach, we introduce the Fubini poten-
tial to model nonchaotic inflation and establish the cou-
pling function F(𝜙). The Fubini potential is defined as

F(𝜙) = 𝛽

4
(𝜙 − 𝜙c)4 −

1
2

g2
𝜙

(𝜙 − 𝜙c)2. (18)

This nonchaotic inflationary model adds valuable
insights into the analysis of the scalar field’s role in the

universe’s evolution. Utilizing Equation (12), Figures 1
and 2 depict the trajectories in the u(t) − 𝜙(t) plane for
chaotic inflation scenarios, while Figures 3 and 4 show
the corresponding nonchaotic inflation trajectories in the
u(t) − 𝜙(t) plane.

The observed patterns shown in Figures 1 and 2 suggest
that the scalar field, coupled with the chaotic inflationary
potential, facilitates a moderate expansion of the universe.
This expansion is driven by the dynamics resulting from
quantum fluctuations during the early stages of the cos-
mos. The trajectories indicate a relatively stable and sus-
tained inflationary phase, portraying a scenario where the
universe undergoes a gradual and controlled expansion.

Conversely, in the case of nonchaotic inflation scenar-
ios, as shown in Figures 3 and 4, the trajectories exhibit
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6 of 9 WEBER et al.

F I G U R E 3 Typical u(t) − 𝜙(t)
trajectory solutions of Equation (12) in
the case of nonchaotic inflation.

different patterns, indicating distinct behavior compared
to chaotic inflation. The scalar field, influenced by the
Fubini-type potential, plays a role in driving processes that
may lead to outcomes reminiscent of the big crunch. This
suggests that nonchaotic inflationary scenarios can result
in more varied and potentially dramatic evolutionary paths
for the universe. The trajectories in Figure 4 imply that the
scalar field, under the influence of specific potentials, may
not always lead to a gradual and stable expansion but could
contribute to more dynamic and diverse evolutionary out-
comes.

The comparison of potential shapes in Figure 5 further
emphasizes the differences between chaotic and

nonchaotic inflation. On the left, the generic form of the
potential for chaotic inflation indicates a relatively smooth
and gradual rise. On the right, the Fubini potential (de
Alfaro et al. 1976) for nonchaotic inflation shows a more
complex shape, suggesting that the scalar field dynamics
in nonchaotic scenarios may involve more intricate and
nonlinear behavior.

In summary, Figures 1–5 provide a visual representa-
tion of the distinct trajectories and potential shapes associ-
ated with chaotic and nonchaotic inflation scenarios. The
implications extend to our understanding of how the scalar
field, coupled with specific potentials, influences the evo-
lution of the universe. This offers valuable insights into
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WEBER et al. 7 of 9

F I G U R E 4 Additional typical
u(t) − 𝜙(t) trajectory solutions of
Equation (12) in the case of nonchaotic
inflation.

F I G U R E 5 On the left, a generic form of the potential for the chaotic inflationary scenario. On the right, a typical form of the potential
of the original nonchaotic inflationary model, based on the Fubini formulation.
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8 of 9 WEBER et al.

the range of possible outcomes during the early stages of
cosmic evolution.

4 SUMMARY AND FINAL
REMARKS

In this paper, we provide an exploration of the
Hořava–Lifshitz Branch-Cut Action, shedding light on the
intricate dynamics of the branched Universe, its inflation-
ary scenarios, and the role of the scalar field in shaping
cosmic evolution.

The Hořava–Lifshitz Branch-Cut Action encompasses
various terms, each dependent on the scalar curvature
 of the branched Universe and its derivatives in dif-
ferent orders. Key components include running coupling
constants denoted as gi, the Planck mass MP, covari-
ant derivatives ∇i, and branching Ricci components of
three-dimensional metrics. The Hořava–Lifshitz approach
maintains the diffeomorphism property of General Rela-
tivity and aligns with the Arnowitt–Deser–Misner (ADM)
formalism in the infrared limit.

In a mini-superspace of variables (u(t), 𝜙(t)), where
u(t) ≡ ln−1[𝛽(t)] and 𝜙(t) represents the scalar-inflaton
field with a nonlinear self-interaction described by the
coupling function F(𝜙), we formulate the action of the
scalar field, S

𝜙

. Combining the Hořava–Lifshitz and scalar
field actions yields the Hamiltonian associated with this
mini-superspace.

Canonical quantization procedures lead to the
super-Hamiltonian , revealing the intricate interplay of
terms involving the scale factor u(t) and the scalar field
𝜙(t). The ensuing Hamilton equations express the dynam-
ical evolution of u(t) and 𝜙(t), providing insights into the
evolution of the branched Universe.

We present a detailed analysis of the trajectories in
the u(t) − 𝜙(t) plane, exploring its solutions for different
initial conditions. Figures 1–4 depict the evolution of the
trajectories under various scenarios. The branch-cut Uni-
verse displays a complex and highly sensitive evolutionary
behavior, influenced by both initial conditions and param-
eterizations of the primordial matter content. The model
successfully addresses the issue of the primordial singular-
ity, presenting a smooth branching topological structure
that emerges from the merging singularities of the multi-
verse.

We differentiate between chaotic and nonchaotic
inflation scenarios. Chaotic inflation is modeled
through the coupling function F(𝜙) = 1

2
g2
𝜙

𝜙

2(t), while
nonchaotic inflation employs the Fubini potential
F(𝜙) = 𝛽

4
(𝜙 − 𝜙c)4 − 1

2
g2
𝜙

(𝜙 − 𝜙c)2. Figures 1–4 visualize
the u(t) − 𝜙(t) trajectories for both scenarios. These tra-
jectories illustrate how the scalar field’s interplay with

the chosen potentials contributes to the evolution of the
scale factor, influencing either a moderate expansion or
processes reminiscent of the big crunch.
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