
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Configurable and Sound Static Analysis of JavaScript: Techniques and Applications

Permalink
https://escholarship.org/uc/item/8xm5m45s

Author
Kashyap, Vineeth

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xm5m45s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Santa Barbara

Configurable and Sound Static Analysis of
JavaScript: Techniques and Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Vineeth Kashyap

Committee in Charge:

Professor Ben Hardekopf, Chair

Professor Chandra Krintz

Professor Tim Sherwood

March 2015

The Dissertation of
Vineeth Kashyap is approved:

Professor Chandra Krintz

Professor Tim Sherwood

Professor Ben Hardekopf, Committee Chairperson

December 2014

Configurable and Sound Static Analysis of JavaScript: Techniques and Applications

Copyright c© 2015

by

Vineeth Kashyap

iii

I dedicate this thesis to my parents.

iv

Acknowledgements

I am heavily indebted to a lot of people who positively influenced my PhD in a

variety of ways. Words cannot fully express how thankful I am for having our paths

crossed. I thank the following people, and for a lot more than just what I give them

credit for here.

Ben Hardekopf; for being a dream PhD advisor—while it would take at least a few

paragraphs to thank him, I will resort to being short and and say this PhD would not

have happened without him.

Chandra Krintz; for instilling the much required enthusiasm in me through her own.

Tim Sherwood; for making me believe that it is okay to have crazy ideas in research.

Ben Wiedermann; for showing me how to have rigor in research and writing.

Kyle Dewey; for being available to bounce off my half-baked ideas and being of

tremendous help in many of my research projects.

Current and previous members of the PL Lab at UCSB (Madhukar Kedlaya, Lawton

Nichols, Dianne Wagner, Jared Roesch, Berkeley Churchill, Kevin Gibbons, Kevin

Francis); for making our lab fun (τ.ρ.ω.λ.λ) and interesting.

John Sarracino and Tommy Ashmore; for a nice summer of collaborations.

Dave Herman; for bringing JavaScript into my research and mentoring me for two

beautiful Mountain View summers.

Anand Kodaganur; for planting the crazy idea of pursuing a PhD in me.

v

Parents; for my existence, and always being there for me with their unconditional

support.

I am sorry if I have missed any names—it is not deliberate. I would also like to

thank the NSF whose generous funding made my research possible, and SIGPLAN and

SIGSOFT for funding my conference travels.

vi

Curriculum Vitæ

Vineeth Kashyap

Education

2009 – 2014 PhD in Computer Science, UCSB

2003 – 2007 BE in Computer Science, RVCE, India

Academic Experience

2010 – 2014 Research Assistant, University of California Santa Barbara

2009 – 2010 Teaching Assistant, University of California Santa Barbara

Industry Experience

2012 Summer Research Intern, Mozilla Research

2011 Summer Research Intern, Mozilla Research

2007 – 2009 Software Engineer, National Instruments R&D, India

Conference Publications

2015 A Parallel Abstract Interpreter for JavaScript

Kyle Dewey, Vineeth Kashyap, and Ben Hardekopf

International Symposium on Code Generation and Optimization

(CGO).

vii

2014 JSAI: A Static Analysis Platform for JavaScript

Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wag-

ner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and Ben

Hardekopf

ACM SIGSOFT International Symposium on the Foundations of

Software Engineering (FSE)

2014 Sapper: A Language for Hardware-Level Security Policy

Enforcement

Xun Li, Vineeth Kashyap, Jason Oberg, Mohit Tiwari, Vasanth

Ram Rajarathinam, Ryan Kastner, Tim Sherwood, Ben Hard-

ekopf, and Frederic T. Chong

International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS)

2014 Security Signature Inference for JavaScript-based Browser

Addons

Vineeth Kashyap and Ben Hardekopf

International Symposium on Code Generation and Optimization

(CGO)

2014 Widening for Control-Flow

Ben Hardekopf, Ben Wiedermann, Berkeley Churchill, and Vi-

viii

neeth Kashyap

International Conference on Verification, Model Checking, and

Abstract Interpretation (VMCAI)

2013 Type Refinement for Static Analysis of JavaScript

Vineeth Kashyap, John Sarracino, John Wagner, Ben Wieder-

mann, and Ben Hardekopf

Dynamic Languages Symposium (DLS)

2011 Timing- and Termination-Sensitive Secure Information Flow:

Exploring a New Approach

Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf

IEEE Symposium on Security and Privacy (S&P)

2011 Caisson: a Hardware Description Language for Secure In-

formation Flow

Xun Li, Mohit Tiwari, Jason Oberg, Vineeth Kashyap, Fred Chong,

Tim Sherwood, and Ben Hardekopf

ACM Conference on Programming Language Design and Imple-

mentation (PLDI)

ix

Abstract

Configurable and Sound Static Analysis of JavaScript:
Techniques and Applications

Vineeth Kashyap

JavaScript is widespread. Web developers use JavaScript to enrich user experi-

ence via dynamic content ranging from scripts to enhance a web page’s appearance,

to full-blown web applications, to extending the functionality of web browsers in the

form of browser addons. Desktop developers use JavaScript, e.g., for OS applications

in Windows 8. JavaScript’s growing prominence means that secure, correct, and fast

JavaScript code is becoming ever more critical. Static analysis traditionally plays a

large role in providing these characteristics: it can be used for security auditing, error-

checking, debugging, optimization, and program refactoring, among other uses. Thus,

a sound, precise static analysis platform for JavaScript can be of enormous advantage.

In this thesis, we present our work on creating a sound, precise, configurable and

fast static analysis for JavaScript called JSAI that we have made openly available to the

research community. JSAI is both a practical tool for JavaScript static analysis and also

a research platform for experimenting with static analysis techniques. JSAI showcases

a number of novel techniques to soundly compute a combination of type inference,

pointer analysis, control-flow analysis, string analysis, and integer and boolean con-

x

stant propagation for JavaScript programs. It also provides a unique method for modu-

larly configuring analysis precision that is based on fundamental new insights into the

theory of static analysis. We describe precision-increasing techniques for the analysis

using type refinement; and performance-increasing techniques for the analysis based on

parallelization of JSAI. As an example use-case for JSAI, we discuss a novel security

analysis for JavaScript-based browser addon vetting.

xi

Contents

Acknowledgements v

Curriculum Vitæ vii

Abstract x

List of Figures xv

List of Tables xviii

1 Introduction 1
1.1 Key Insights and Thesis Statement 4
1.2 Contributions and Overview of the Thesis 6

2 Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow 8
2.1 Introduction . 8
2.2 Separating Control-Flow Sensitivity from an Analysis 12

2.2.1 Starting Point . 12
2.2.2 Widening Operator . 14
2.2.3 Control-Flow Sensitivity . 16
2.2.4 Semantic Requirements . 19

2.3 Related Work . 21
2.4 Conclusions and Future Work . 26

3 JSAI: The JavaScript Abstract Interpreter 28
3.1 Introduction . 28
3.2 Related Work . 31

xii

3.3 JSAI Design . 35
3.3.1 Designing the notJS IR . 36
3.3.2 Designing the Abstract Semantics 41
3.3.3 Novel Abstract Domains . 48

3.4 Showcasing Configurability . 51
3.5 Evaluation . 54

3.5.1 Implementation and Methodology 55
3.5.2 Observations . 60
3.5.3 Discussion: JSAI vs. TAJS 64

3.6 Conclusion . 65

4 Improving Precision of JavaScript Static Analysis via Type Refinement 67
4.1 Introduction . 67

4.1.1 Key Insight . 69
4.1.2 Contributions . 70

4.2 The Potential for Refinement in JavaScript 71
4.2.1 Key Insight . 73
4.2.2 Refinement on Implicit Conditions 75

4.3 Refining Types in JavaScript Analyses 78
4.3.1 Type-based Abstract Domain 78
4.3.2 Identifying Relevant Type-based Conditions 81
4.3.3 Filtering Type Information 82
4.3.4 Sound Type Refinement . 84

4.4 Evaluation . 86
4.4.1 JavaScript Analysis Framework 86
4.4.2 Benchmark Suite . 86
4.4.3 Experimental Methodology 88
4.4.4 Potential Opportunity for Type Refinement 90
4.4.5 Effects of Various Type Refinements 92

4.5 Related Work . 95
4.6 Conclusion and Future Work . 99

5 Improving Performance of Static Analysis via Parallelization 101
5.1 Introduction . 101
5.2 Background and Related Work . 106

5.2.1 Sequential Dataflow Analysis 106
5.2.2 Parallelizing Program Analysis 108
5.2.3 Problems with the DFA Approach for Parallelism 111

5.3 Designing for Parallelism . 112
5.3.1 The STSO Approach to Program Analysis 112

xiii

5.3.2 Parallelism Design Space 116
5.4 Parallel JavaScript Analysis . 122

5.4.1 JavaScript Features . 122
5.4.2 Sequential JSAI . 124
5.4.3 Parallelism Strategies . 125

5.5 Evaluation . 127
5.5.1 Experimental Methodology 127
5.5.2 Benchmarks . 129
5.5.3 Worklist-Parallel Results 133
5.5.4 Per-Context Parallel Results 134

5.6 Conclusions . 135

6 Application of JSAI to Security of JavaScript-based Browser Addons 137
6.1 Introduction . 137

6.1.1 Key Challenges . 138
6.1.2 Our Contributions . 140

6.2 Background . 141
6.3 Annotated PDGs for JavaScript . 145

6.3.1 Defining the Annotated PDG 147
6.3.2 Constructing the Annotated DDG 150
6.3.3 Constructing the Annotated CDG 154

6.4 Generating Security Signatures . 156
6.4.1 Description of Security Signatures 156
6.4.2 Inferring Signatures . 159

6.5 Inferring Network Domains . 162
6.6 Evaluation . 165

6.6.1 Implementation . 165
6.6.2 Benchmarks and Methodology 166
6.6.3 Results and Discussion . 170

6.7 Related Work . 172
6.8 Conclusion . 176

7 Conclusions 177

Bibliography 179

xiv

List of Figures

1.1 The semantics of var x = myString[i]; 3

3.1 The abstract syntax of notJS provides canonical constructs that sim-
plify JavaScript’s behavior. The vector notation represents (by abuse of no-
tation) an ordered sequence of unspecified length n, where i ranges from 0
to n− 1. 38
3.2 Abstract semantic domains for notJS. 44
3.3 A small subset of the abstract semantics rules for JSAI. Each smallstep
rule describes a transition relation from one abstract state ς to the next state
ς̂ ′. The phrase πb̂(JeK) means to evaluate expression e to an abstract base
value, then project out its boolean component. 47
3.4 Our default number abstract domain, further explained in Section 3.3.3. 49
3.5 Our default string abstract domain, further explained in Section 3.3.3. . 50
3.6 A heat map to showcase the performance characteristics of different
sensitivities across the benchmark categories. For more details on how to
read this map, please refer to the corresponding prose. 58
3.7 A heat map to showcase the precision characteristics (based on num-
ber of reported runtime errors) of different sensitivities across the benchmark
categories. For more details on reading the heap please refer to the corre-
sponding prose. 59
3.8 Precision vs. performance of various sensitivities, on the opensrc bench-
mark linq dictionary. Interestingly, 5.4-stack (the most sensitive Stack-
CFA analysis) is not only tractable, it exhibits the best performance and the
best precision. 62

xv

4.1 A simplified version of an abstract domain suitable for type refine-
ment. The abstract domain Store maps variables to their abstract types. The
abstract domain ObjType maps object properties to a set of possible types.
The abstract domain FuncType includes a closure (the function to be called)
and a property map (to model the function object). 79
4.2 Type-based conditions for refinement. These conditions precisely de-
scribe the conditonal expressions that trigger refinement. An access is a
low-level primitive—the simplest form of a variable or property access. Our
analysis can handle any conditional expression that reduces to this form. . . 80
4.3 Filters for refinement conditions. The analysis uses these filters to re-
fine information along a condition’s branches. 83
4.4 Graph to show size distribution (along y-axis) of benchmarks in each
category (x-axis). Size is measured in terms of number of JavaScript AST
nodes created by the Rhino parser [1]. For each benchmark category, the
blue box gives the 25%-75% quartiles, the blue line gives the range of sizes,
and median and mean are denoted by red and black dots respectively. 88
4.5 Analysis precision (in number of reported type-errors) with and with-
out refinement; lower is better. Benchmarks are grouped by category. Un-
der the TPUNF analysis with refinement, many of the standard benchmarks
(cryptobench to crypto-sha1) and the opensrc benchmarks (rsa to
linq action) achieve more than 50% improvement in precision, relative
to the B analysis without refinement. 94

5.1 Worklist-parallel speedups for the trace stack-5-4. The number of
hardware threads used is on the x axis, and the speedup is on the y axis. . . 131
5.2 Per-context parallel speedups for the trace stack-5-4. The number
of hardware threads used is on the x axis, and the speedup is on the y axis. . 132

6.1 An example program to show the various annotations of the PDG. We
assume the following for this example: doc.loc is the current browser url;
the send method sends it arguments over the network; the base analysis
infers obj to either reference an object or null; func is inferred to be
either a callable function or undefined; and the call to getString()
returns an unknown string. 153
6.2 A subset of the annotated PDG for the example program in Figure 6.1,
to illustrate the interesting edges and nodes. 154
6.3 Grammar for a security signature sign. Pre is the prefix string domain
described in Section 6.5; it is used to indicate the network domain being com-
municated with. We give a subset of the complete list of interesting sources
and sinks. The eight flow types are described in the text and Figure 6.4. . . 157

xvi

6.4 Flow types ordered in a lattice of perceived strength. Higher in the
lattice indicates a more important type of flow. Each flow type is associated
with an annotation from the PDG. A flow has a given type if there is a path
from source to sink using only PDG edges annotated with any annotation at
a level equal or higher in the lattice. 158

xvii

List of Tables

4.1 The table that shows for each category of benchmarks, the kind of
branches that the analysis encounters. The numbers represent number of
program locations. The abbreviations are further detailed in Section 4.4.4.
The way to interpret this table is as follows: for example, the number un-
der column NDC, and row T represents the number of program locations
with branches that have typeof checks in them, and are non-deterministic
and match our grammar for type refinement. 92
4.2 Table summarizing the precision and performance benefits of various
type refinement optimizations. 96

5.1 A summary of our benchmark suite. The linq* benchmarks all exe-
cute different APIs from the same common library in a manner that causes
vastly different code paths to be analyzed between the three benchmarks.
Benchmarks of the mixed kind have both imperative and functional charac-
teristics based on subjective observation. 130

6.1 Real addons from Mozilla addon repository [2] used as benchmarks
for our evaluation. We manually sort addons into categories based on their
behavior, the category descriptions are given in Section 6.6.2. The size of
the benchmarks give the number of AST nodes parsed by Rhino [1]. 167
6.2 Addon signature inference result summary. An addon is marked pass if
the inferred signature has no more flows than the manual signature; fail if it
has more flows and they are false positives; and leak if it has more flows and
they are real. The last three columns indicate the time taken by the inference
analysis, divided into three phases as outlined in Section 6.6.2. All times are
given in seconds. 172

xviii

Chapter 1

Introduction

JavaScript is pervasive. While it began as a client-side webpage scripting language,

JavaScript has grown hugely in scope and popularity and is used to extend the func-

tionality of web browsers via browser addons, to develop desktop applications (e.g., for

Windows 8 [3]) and server-side applications (e.g., using Node.js [4]), and to develop

mobile phone applications (e.g., for Firefox OS [5]). JavaScript’s growing prominence

means that secure, correct, maintainable, and fast JavaScript code is becoming ever

more critical. Sound static analysis traditionally plays a large role in providing these

characteristics: it can be used for security auditing, error-checking, debugging, opti-

mization, program understanding, refactoring, and more.

However, JavaScript’s inherently dynamic nature and many unintuitive quirks cause

great difficulty for static analysis. For example, a simple line of code in JavaScript to

access an index of a string as given in Figure 1.1 results in potentially several implicit

type checks and implicit type conversions, that can lead to invocation of user-defined

1

Chapter 1. Introduction

code (lines 16 and 27 call methods that can be overridden by the user). Thus, unlike

other traditional languages like C/C++ and Java, the static analysis cannot rely on exis-

tence of a control flow graph to begin with1—we need to perform an detailed analysis

to compute the control flow graph.

In addition, static analysis of JavaScript is a very young research field, and the

right analysis abstractions are not yet known. The abstractions in a static analysis (like

abstract data domains and control-flow sensitivities like context-, heap-, and path- sen-

sitivities) can have a significant impact on the performance and precision of the anal-

ysis. Such abstractions vary between programming languages—even between differ-

ent application domains within the same language. All the existing static analyses for

JavaScript (and for most other languages) bake-in such abstractions, making it hard to

explore and experiment to find the right abstractions.

Our goal is to overcome these difficulties and provide a formally specified, well-

tested, configurable and sound static analysis platform for JavaScript, immediately use-

ful for a variety of client analyses.

1One can start the analysis with an unsound control flow graph and dynamically add edges during the
analysis, but this is ad-hoc and is prone to errors.

2

Chapter 1. Introduction

1: if myString is null or undefined then
2: type-error

3: else
4: // convert myString to an object first?
5: if myString is a primitive then
6: obj = toObject(myString)
7: else
8: obj = myString
9: end if

10: // convert i to a string

11: // case 1: i is a primitive
12: if i is a primitive then
13: prop = toString(i)
14: else
15: if i.toString is callable then
16: tmp = i.toString()
17: else
18: goto line 26
19: end if
20: end if

21: // case 2: i is not a primitive, but i.toString() is
22: if tmp is a primitive then
23: prop = toString(tmp)

24: // case 3: i.toString() is not a primitive; try i.valueOf()
25: else
26: if i.valueOf is callable then
27: tmp2 = i.valueOf()
28: else
29: type-error
30: end if

31: if tmp2 is a primitive then
32: prop = toString(tmp2)
33: else
34: type-error
35: end if
36: end if

37: // retrieve the property from the object
38: x = obj.prop
39: end if

Figure 1.1: The semantics of var x = myString[i];

3

Chapter 1. Introduction

1.1 Key Insights and Thesis Statement

There were several key ideas and insights that shaped this thesis; we discuss the

most important of them here.

• Control-flow sensitivity (ex: flow-, context-, heap-, path-sensitivity, predicate

abstraction, property simulation) can expressed modularly from the rest of the

analysis specification. This is achieved by describing control-flow sensitivity

as a widening operator parameterized by an equivalence relation that partitions

states according to an abstraction of the program’s history of computation.

• A sound analysis for JavaScript can be achieved by formally specifying the con-

crete and abstract semantics for JavaScript and connecting the two semantics

using abstract interpretation. Specifying semantics in a executable manner using

small-step operational abstract machine semantics allows for testing and modu-

lar specification of the analysis. The validity of the given concrete semantics for

JavaScript can be claimed by thorough testing against a commercial JavaScript

engine. Modular control-flow sensitivity allows for experimentation with a wide

range of sensitivities for JavaScript analysis.

• Viewing analysis of JavaScript as a state transition system shows that it is highly

amenable to parallelization. One can think of control-flow sensitivity used in

the analysis as selection of states to merge (by over-approximating the merged

4

Chapter 1. Introduction

states)—introducing points of synchronization in a embarrassingly parallel ex-

ploration.

• The concept of type refinement—where the abstract type information propagated

by the static analysis is refined within each branch of a conditional—can vastly

aid the precision of JavaScript analysis, particularly when applied to the implicit

conditional checks that do not show up in surface syntax.

• Specifying security policies for JavaScript-based browser addons using security

signatures (detailed summary of interesting information flows and API usages)

and automatically inferring them can help security auditing of third-party addons

submitted for code-review in more automated manner. Our sound JavaScript

analysis can be used to build such an automatic security signature inference en-

gine.

These insights lead us to my thesis statement: Configurable, sound, precise, and

fast static analysis for JavaScript is feasible. We demonstrate this by building a

formalized abstract interpreter for JavaScript called JSAI. JSAI forms the basis

for a multitude of useful client analyses including security, error- checking, and

program understanding.

5

Chapter 1. Introduction

1.2 Contributions and Overview of the Thesis

The main contributions of this thesis (and the chapters that detail them) include:

• We provide a formal theoretical foundation for building configurable (with a

wide-range of control-flow sensitivities) abstract interpreter [82] using widening

for control flow (Chapter 2)2.

• We build a configurable and sound abstract interpreter for JavaScript called JSAI [95].

JSAI is open-source, and includes a formally specified concrete and abstract se-

mantics for JavaScript. The abstract semantics specifies a fundamental static

analysis for JavaScript that can be used to build a variety of clients on top—the

analysis is a combination of type inference, pointer analysis, control-flow analy-

sis, string, number and boolean analysis with novel abstract string and object do-

mains for JavaScript. Our formalisms and code have been positively evaluated by

the FSE 2014 Artifact Evaluation Committee. We evaluate JSAI’s performance

and precision on a comprehensive benchmark suite comprising of multiple appli-

cation domains and obtain novel insights by experimenting with a large number

of context-sensitivities (Chapter 3).

• We improve the precision of JSAI using type refinement [97]—in particular by re-

fining based on implicit checks on types by the JavaScript semantics—and show

2The first author of this work is Ben Hardekopf, I am a co-author.

6

Chapter 1. Introduction

that up to 86% precision improvement can be obtained on a static type-error de-

tection client without affecting performance (Chapter 4).

• We parallelize JSAI [57] based on the insights highlighted in the previous section

to obtain speedups between 2 − 4× on average with a super-linear maximum of

36.9× on 12 hardware threads when compared to the sequential version (Chap-

ter 5)3. Our parallelized version of JSAI has been positively evaluated by the

CGO 2015 Artifact Evaluation Committee.

• We show the usefulness of JSAI by building a client security auditing analysis

for vetting JavaScript-based browser addons [96]. We describe a novel notion

of security signature for browser addons and construct an analysis to infer these

automatically, and empirically evaluate it on benchmark consisting of real-world

addons from the official Mozilla addon repository (Chapter 6).

3The first author of this work is Kyle Dewey, I am a co-author.

7

Chapter 2

Constructing Configurable and Sound
Abstract Interpreters via Widening for
Control-Flow

2.1 Introduction

A program analysis designer must balance three opposing characteristics: sound-

ness, precision, and tractability. An important dimension of this tradeoff is control-

flow sensitivity: how precisely the analysis adheres to realizable program execution

paths. Examples include various types of path sensitivity (e.g., property simulation [54]

and predicate abstraction [39]), flow sensitivity (e.g., flow-insensitive [42] and flow-

sensitive [101]), and context sensitivity (e.g., k-CFA [131] and object sensitivity [120]).

By tracking realizable execution paths more precisely, the analysis may compute more

precise results but also may become less tractable. Thus, choosing the right control-flow

8

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

sensitivity for a particular analysis is crucial for finding the sweet-spot that combines

useful results with tractable performance.

We present a set of insights and formalisms that allow control-flow sensitivity to be

treated as an independent concern, separately from the rest of the analysis design and

implementation. This separation of concerns allows the analysis designer to empirically

experiment with many different analysis sensitivities in a guaranteed sound manner,

without modifying the analysis design or implementation. These sensitivities are not

restricted to currently known strategies; the designer can easily develop and experiment

with new sensitivities as well. Besides allowing manual exploration of potential new

sensitivities, we also describe a mechanism to automatically create new sensitivities,

based on the insight that the space of control-flow sensitivities forms a lattice. The

meet and join operators of this lattice can be used to construct novel sensitivities from

existing ones without requiring manual intervention.

Key Insights. Our key insight is that control-flow sensitivity is a form of widening,

and that we can exploit this to separate control-flow sensitivity from the rest of the

analysis. This chapter describes control-flow sensitivity as a widening operator param-

eterized by an equivalence relation that partitions states according to an abstraction of

the program’s history of computation. This widening-based view of control-flow sen-

sitivity has both theoretical and practical implications: it generalizes and modularizes

9

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

existing insights into control-flow sensitivity, and provides the analysis designer with a

method for implementing and evaluating many possible sensitivities in a modular way.

A common technique to formalize control-flow sensitivity is to abstract a program’s

concrete control flow as an abstract trace (i.e., some notion of the history of computa-

tion that led to a particular program point). There are many ways to design such an

abstraction, including ad-hoc values that represent control-flow (e.g., the timestamps

of van Horn and Might [138]), designed abstractions with a direct connection to the

concrete semantics (e.g., the mementoes of Nielson and Nielson [123]), and calculated

abstractions that result from the composition of Galois connections (e.g., the 0-CFA

analysis derived by Midtgaard and Jensen [118]). Existing formalisms are also tied to

the notion of abstraction by partitioning [51]: the control-flow abstraction partitions the

set of states into equivalence relations, the abstract values of which are merged.

Our formalisms follow this general approach (tracing and partitioning). However,

prior work starts from a subset of known control-flow approximations (e.g, context-

sensitivity [102,123,132], 0-CFA [118], or various forms of k-limiting and store value-

based approximations [112,125]) and seeks to formalize and prove sound those specific

control-flow approximations for a given analysis. In addition, most prior work calcu-

lates a series of Galois connections that leads to a specific (family of) control-flow

sensitivity. In contrast, our work provides a more general view that specifies a superset

of the control-flow sensitivities specified by prior work and exposes the possibility of

10

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

many new control-flow sensitivities, while simplifying the required formalisms and en-

abling a practical implementation based directly on our formalisms. As such, our work

has similar goals to Might and Manolios’ a posteriori approach to soundness, which

separates many aspects of the precision of an analysis from its soundness [119]; how-

ever, our technique relies on a novel insight that connects widening and control-flow

sensitivity.

Contributions. This chapter makes the following contributions:

A new formulation of control-flow sensitivity as a widening operator, which gener-

alizes and modularizes existing formulations based on abstraction by partitioning. This

formulation leads to a method for designing and implementing a program analysis so

that control-flow sensitivity is a separate and independent component. The chapter de-

scribes several requirements on the form a semantics should take to enable separable

control-flow sensitivity. Individually these observations are not novel; in fact, they may

be well-known to the community. When collectively combined, however, they form an

analysis design that permits sound, tunable control-flow approximation via widening.

(Section 2.2)

11

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

2.2 Separating Control-Flow Sensitivity from an Anal-

ysis

In this section, we describe how to use widening to separate control-flow sensitivity

from the rest of the analysis and make it an independent concern. We first establish our

starting point: an abstract semantics that defines an analysis with no notion of sensitiv-

ity. We then describe a parameterized widening operator for the analysis and show how

different instantiations of the parameter yield different control-flow sensitivities. Fi-

nally, we discuss some requirements on the form of semantics used by the analysis that

make it amenable to describing control-flow sensitivity. The discussion in this section

leaves the exact language and semantics being analyzed unspecified.

2.2.1 Starting Point

This subsection provides background and context on program analysis, giving us a

starting point for our design. Nothing in this subsection is novel, the material is adapted

from existing work [49]. For concreteness, we assume that the abstract semantics is

described as a state transition system, e.g., a small-step abstract machine semantics;

Section 2.2.4 will discuss more general requirements on the form of the semantics.

The abstract semantics is formally described as a set of states ς̂ ∈ Σ] and a transition

relation between states F] ⊆ Σ] × Σ]. The semantics uses a transition relation instead

12

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

of a function to account for nondeterminism in the analysis due to uncertain control-

flow (e.g., when a conditional guard’s truth value is indeterminate, and so the analysis

must take both branches). The set of states forms a lattice L] = (Σ],v,u,t). We leave

the definition of states and the transition relation unspecified, but we assume that any

abstract domains used in the states are equipped with a widening operator.1

The program analysis is defined as the set of all reachable states starting from some

set of initial states and iteratively applying the transition relation. This definition is

formalized as a least fixpoint computation. Let F̊](S)
def
== S ∪ F](S), i.e., a relation

that is lifted to remember every state visited by the transition relation F]. The analysis

of a program P is defined as JPK] def
== lfpΣ]

I
F̊], i.e., the least fixpoint of F̊] starting

from an initial set of states Σ]
I derived from P .

The analysis JPK] is intractable, because the set of reachable states is either infinite

or, at the least, exponential in the number of nondeterministic transitions made during

the fixpoint computation. The issue is control-flow—specifically, the nondeterministic

choices that must be made by the analysis: which branch of a conditional should be

taken, whether a loop should be entered or exited, which (indirect) function should be

called, etc. The analysis designer at this point must either (1) bake into the abstract

semantics a specific strategy for dealing with control-flow; or (2) ignore the issue in the

formalized analysis design and use an ad-hoc strategy in the analysis implementation.

1If the domain is a noetherian lattice then the lattice join operator is a widening operator.

13

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

Our proposed widening operator is a means to formalize control-flow sensitivity in

a manner that guarantees soundness, but does not require that a sensitivity to be baked

into the semantics. On a practical level, it also allows the analysis designer to experi-

ment with many different sensitivities without modifying the analysis implementation.

2.2.2 Widening Operator

Our goal is to limit the number of states contained in the fixpoint, while still retain-

ing soundness. We do so by defining a widening operator for the fixpoint computation,

which acts on entire sets of states rather than on individual abstract domains inside

the states. This widening operator: (1) partitions the current set of reachable states

into disjoint sets; (2) merges all of the states in each partition into a single state that

over-approximates that partition; and (3) unions the resulting states together into a new

set that contains only a single state per partition. The widening operator controls the

performance and precision of the analysis by setting a bound on the number of states

allowed: there can be at most one state per partition. Decreasing the number of par-

titions can speed up the fixpoint computation, thus helping performance, but can also

merge more states together in each partition, thus hindering precision.

Formally, the widening operator for control-flow sensitivity is parameterized by a

(unspecified) equivalence relation ∼ on abstract states. Given a widening operator O

on individual abstract domains, our new widening operator O] is defined as:

14

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

O] ∈ P(Σ])× P(Σ])→ P(Σ])

A O] B =

{
∇ς̂∈X ς̂

∣∣∣∣ X ∈ (A ∪B)
/
∼
}

where for a set S the notation S/∼ means the set of partitions of S according to equiv-

alence relation ∼, and the widening operator O on individual abstract domains is used

to merge the states in each resulting partition into a single state. Note that if the number

of partitions induced by ∼ is finite, then the number of states in each partition is also

finite because we apply the widening operator at each step of the fixpoint computation.

Theorem 2.2.1 (WIDENING). If the number of partitions induced by ∼ is finite, then

O] is a widening operator.

Proof. Follows from the definition of a widening operator [50].

We now lift the transition relation F] in a similar fashion as before, except instead

of using set union we use our widening operator:
O
F](S)

def
== S O] F](S). Then the

control-flow sensitive abstract semantics is defined as JPK]O
def
== lfpΣ]

I

O
F].

Even though we have not specified the equivalence relation that parameterizes the

widening operator, we can still prove the soundness of the analysis. Informally, because

the widening operator merges the states within each partition using O , the reachable

15

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

states using
O
F] over-approximate the reachable states using F̊]. Thus, the control-flow

sensitive abstract semantics is sound with respect to the original abstract semantics:

Theorem 2.2.2 (SOUNDNESS).

γ(JPK]) ⊆ γ(JPK]O)

Proof. We must show that (1) the least fixpoint denoted by JPK]O exists; and (2) it

over-approximates JPK].

1. The existence of the fixpoint follows from part 2 of the definition of a widening

operator as given by Cousot and Cousot [50, def. 9.1.3.3].

2. That the widened fixpoint over-approximates the original fixpoint follows from

part 1 of the definition of a widening operator as given by Cousot and Cousot [50,

defs. 9.1.3.1–9.1.3.2].

2.2.3 Control-Flow Sensitivity

It remains to show how our widening operator determines the control-flow sensi-

tivity of the analysis. The determining factor is how the states are partitioned, which

is controlled by the specific equivalence relation on states ∼ that parameterizes the

16

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

widening operator. The question is, what constitutes a good choice for the equivalence

relation? For Theorem 2.2.1 to hold, it must induce a finite number of partitions, but

what other characteristics should it have? Our goal is tractability with a minimal loss

of precision; this means we should try to partition the states so that there are a tractable

number of partitions and the states within each partition are as similar to each other as

possible (to minimize the information lost to merging).

A reasonable heuristic is to partition states based on how those states were com-

puted, i.e., the execution history that led to each particular state. The hypothesis is that

if two states were derived in a similar way then they are more likely to be similar. This

heuristic of similarity is exactly the one used by existing control-flow sensitivities, such

as flow-sensitive maximal fixpoint, k-CFA, object-sensitivity, property simulation, etc.

These sensitivities each compute an abstraction of the execution history (e.g., current

program point, last k call-sites, last k allocation sites, etc.) and use that abstraction to

partition and merge the states during the analysis.

Therefore, the widening operator should partition the set of states according to their

control-flow sensitivity approximation:

ς̂1 ∼ ς̂2 ⇐⇒ πτ̂ (ς̂2) = πτ̂ (ς̂2)

17

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

where each state contains an abstract trace τ̂ describing some abstraction of the ex-

ecution history, and πτ̂ (ς̂) projects a state’s abstract trace. This definition causes the

widening operator to merge all states with the same trace, i.e., all states with the same

approximate execution history. The widened analysis can be defined without specifying

a particular abstract trace domain; different trace domains can be plugged in after the

fact to yield different sensitivities.

Trace Abstractions. We have posited that control-flow sensitivity is based on an ab-

straction of the execution history of a program, called a trace. This implies that the trace

abstraction is related to the trace-based concrete collecting semantics, which contains

all reachable execution paths, i.e., sequences of states, rather than just all reachable

states. An abstract trace is an abstraction of a set of paths in the concrete collecting

semantics. For example, a flow-sensitive trace abstraction records the current program

point, abstracting all paths that reach that program point. A context-sensitive trace ab-

straction additionally records the invocation context of the current function, abstracting

all paths that end in that particular invocation context (e.g., as in Nielson and Nielson’s

mementoes [123]). Different forms of context-sensitivity define the abstract “context”

differently: for example, traditional k-CFA defines it as the last k call-sites encoun-

tered in the concrete trace; stack-based k-CFA considers the top k currently active (i.e.,

18

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

not yet returned) calls on the stack; object sensitivity considers abstract allocation sites

instead of call-sites; and so on.

We note that it is not necessary for the trace abstraction to soundly approximate

the concrete semantics for the resulting analysis to be sound. The trace abstraction is

a heuristic for partitioning the states; as long as the number of elements in the trace

abstraction domain is finite (and hence the number of partitions enforced by the widen-

ing operator is finite), the analysis will terminate with a sound solution. In fact, it isn’t

strictly necessary for ∼ to be based on control-flow at all—exploring other heuristics

for partitioning states would be in interesting avenue for future work.

2.2.4 Semantic Requirements

To benefit from widening-based control-flow sensitivity, an abstract semantics must

satisfy certain requirements. To abstract control, the analysis must be able to introduce

new program execution paths that over-approximate existing execution paths. To make

this possible, we argue that there should be some explicit notion in the program seman-

tics of the “rest of the computation”—i.e., a continuation. When the analysis abstracts

control, it is abstracting these continuations. The explicit control-flow representation

can take a number of possible forms. For example, it could be in the form of a syn-

tactic continuation (e.g., if a program is in continuation-passing style then the “rest of

the computation” is given as a closure in the store) or a semantic continuation (e.g.,

19

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

the continuation stack of an abstract machine). Since the abstract states form a lattice,

any two distinct states must have a join, and (according to our requirement) this joined

state must contain a continuation that over-approximates the input states’ continuations.

Thus, by joining states the analysis approximates control as well as data.

Some forms of semantics do not meet this requirement, including various forms

proposed as being good foundations for abstract interpretation [115, 129, 130]. For ex-

ample, big-step and small-step structural operational semantics implicitly embed the

continuations in the semantic rules. Direct-style denotational semantics similarly em-

beds this information in the translation to the underlying meta-language. This means

that there is no way to abstract and over-approximate control-flow; the analysis must

use whatever control-flow the original semantics specifies (or, alternatively, use ad-hoc

strategies baked into the analysis implementation to silently handle control-flow sen-

sitivity). Some limited forms of control-flow sensitivity may still be expressed when

the analysis takes care to join only those states that already have the same continua-

tion (e.g., flow-sensitive maximal fixpoint), but many other forms (e.g., k-CFA or other

forms of context-[in]sensitivity) remain difficult to express.

20

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

2.3 Related Work

In abstract interpretation, there is a relatively small but dedicated body of research

on trace abstraction and on formalizing control-flow sensitivity as partitioning. What

distinguishes our work from most prior efforts is a different focus: prior work focuses

on the integration of control-flow abstractions into an existing analysis; our work fo-

cuses on the separation of control-flow abstractions from an existing analysis, so that

it is easier for analysis designers to experiment with different control-flow sensitivities.

In this section, we discuss the implications of these differences. Broadly, no prior work

has couched control-flow sensitivity in terms of a widening operator based on abstrac-

tions of the program history, which permits a simpler, more general, and more tunable

formulation of control-flow sensitivity.

A Posteriori Soundness. Our work is most similar to Might and Manolios’ a pos-

teriori soundness for non-deterministic abstract interpretation [119], which also seeks

to separate the aspects of an analysis that affect its precision from those that affect

its soundness. Both techniques achieve this separation by introducing a level of in-

direction, although the mechanisms are different. Our technique uses an equivalence

relation that partitions abstract states. Might and Manolios’ uses an abstract alloca-

tion policy that can dynamically allocate the resources that determine how to partition

abstract states. We accomplish soundness by leveraging the soundness of widening.

21

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

Might and Manolios accomplish soundness via their technique of an a posteriori proof:

their abstract allocation policies induce a non-deterministic abstract semantics that can

be shown to produce sound analysis results, even though the abstract semantics do

not conform to the traditional simulation of the concrete semantics. Our work also

re-formulates one of Might and Manolios’ insights: that most control-flow (or heap-

allocation) approximations are already sound because they add only extra information

to the analysis. A particular strength of Might and Manolios’ work is that it makes it

easy to express sound, adaptable analyses. A particular strength of our work is that it

makes it easy to declaratively describe many forms of analyses and to systematically

combine them. It is not clear whether the two techniques are equally expressive, nor

whether they are equally useful in practice. An interesting line of research would be

to explore how well each technique is suited to the practical discovery, design, and im-

plementation of precise analyses and how the two techniques might compete with or

complement each other.

Trace Partitioning. Our work is similar in some respects to the trace partitioning

work by Mauborgne and Rival [112, 125], which itself builds on the abstraction-by-

partitioning of control-flow by Handjieva and Tzolovski [81]. Trace partitioning

was developed in the context of the ASTRÉE static analyzer [52] for a restricted subset

of the C language, primarily intended for embedded systems. Mauborgne and Rival

22

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

observe that usually abstract interpreters are (1) based on reachable states collecting

semantics, making it difficult to express control-flow sensitivity; and (2) designed to

silently merge information at control-flow join points2—what in dataflow analysis is

called “flow-sensitive maximal fixpoint” [92]. They propose a method to postpone

these silent merges when doing so can increase precision; effectively they add a con-

trolled form of path-sensitivity. They formalize their technique as a series of Galois

connections.

Mauborgne and Rival describe a denotational semantics-based analysis that can use

three criteria to determine whether to merge information at a particular point: the last k

branch decisions taken (i.e., whether an execution path took the true or false branch);

the last k while-loop iterations (effectively unrolling the loop k times); and the value

of some distinguished variable. These criteria are guided by syntactic hints inserted

into a program prior to analysis; the analysis itself can choose to ignore these hints and

merge information regardless, as a form of widening. This feature is a form of dynamic

partitioning, where the choice of partition is made as the analysis executes. Our sum

abstraction (Section ??) is another form of dynamic partitioning.

The analysis described by Mauborgne and Rival requires that the program is non-

recursive; it fully inlines all procedure calls to attain complete context-sensitivity. Be-

cause the semantics they formulate does not contain an explicit representation of con-

2By which they mean that the abstract semantics say nothing about merging information, but the
implementation does so anyway.

23

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

tinuations, there is no way in their described system to achieve other forms of context-

sensitivity (e.g., k-CFA, including 0-CFA, i.e., context-insensitive analysis) without

heavily modifying their design, implementation, and formalisms (cf. our discussion

in Section 2.2.4). Because our method seeks more generality, it can express all of the

sensitivities described by Mauborgne and Rival.

Predicate Abstraction. Fischer et al. [67] propose a method to join dataflow analy-

sis with predicate abstraction using predicate lattices to gain a form of tunable intra-

procedural path-sensitivity. At a high level these predicate lattices perform a similar

“partition and merge” strategy as our own method. However, our method is more gen-

eral: we can specify many more forms of control-flow sensitivity due to our insights

regarding explicit control state. One can consider their work as a specific instantiation

of our method using predicates as the trace abstraction. On the other hand, Fisher et al.

use predicate refinement to automatically determine the set of predicates to use, which

is outside the current scope of our method. In order to do the same, our method would

need to add a predicate refinement strategy.

Context Sensitivity. There are several papers that describe various abstract interpreta-

tion-based approaches to specific forms of context sensitivity, including Nielson and

Nielson [123], Ashley and Dybvig [36], Van Horn and Might [138], and Midtgaard and

Jensen [117, 118]. Nielson and Nielson describe a form of context-sensitivity based

24

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

on abstractions of the history of a program’s calls and returns [123]. Although this

formulation is separable, it is not as general as the one described in this chapter. For

example, it cannot capture calls and returns in obfuscated binaries (which may contain

no explicit calls and returns); to capture such behavior, a different formulation similar

to property simulation is required [102]. Our parameterized, widening-based approach

we describe is general enough to capture either of these formulations (and many more).

Ashley and Dybvig [36] give a reachable states collecting semantics formulation

of k-CFA for a core Scheme-like language; they instrument both the concrete and ab-

stract semantics with a cache that collects CFA information. The analysis as described

in the paper is intractable (i.e., although it yields the same precision as k-CFA, the

number of states remains exponential in the size of the program). Ashley and Dybvig

implement a tractable, flow-insensitive version of the analysis independently from the

formally-derived version, rather than deriving the tractable version directly from the

formal semantics.

Van Horn and Might [138] also give a method for constructing analyses, using an

abstract machine-based, reachable states collecting semantics of the lambda calculus.

Their analysis includes a specification of k-CFA. An important contribution of their pa-

per is a technique to abstract the infinite domains used for environments and semantic

continuations using store allocation. As with Ashley and Dybvig, the analysis as de-

scribed in their paper does not directly yield a tractable analysis. Van Horn and Might

25

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

describe a tractable version of their analysis (not formally derived from the language

semantics) that uses a single, global store to improve efficiency, but disallows flow-

sensitive analysis because it computes a single solution for the entire program.

Midtgaard and Jensen [117] derive a tractable, demand-driven 0-CFA analysis for

a core Scheme-like language using abstract interpretation. Their technique specifically

targets 0-CFA, rather than general k-CFA. They employ a series of abstractions via Ga-

lois connections, the composition of which leads to the final 0-CFA analysis. In a later

paper, Midtgaard and Jensen derive another 0-CFA analysis to compute both call and

return information [118]. We illustrate how to achieve a sound analysis with arbitrary

control-flow sensitivity, without having to derive the soundness for each sensitivity.

2.4 Conclusions and Future Work

We have presented a method for program analysis design and implementation that

allows the analysis designer to parameterize over control-flow abstractions. This sepa-

ration of concerns springs from a novel theoretical insight that control-flow sensitivity

is induced by a widening operator parameterized by trace abstractions. Our method

makes it easier for an analysis designer to specify, implement, and experiment with

many forms of control-flow sensitivity, which is critical for developing new, practical

analyses. Our future work involves exploring these ideas further, for example, using

26

Chapter 2. Constructing Configurable and Sound Abstract Interpreters via Widening
for Control-Flow

combinatorial optimization to explore the vast space of possible trace abstractions. Ad-

ditionally, our method applies not only to control-flow but to any property of a program

that can be abstracted and that might be useful to partition the analysis state-space.

Ultimately, the goal of our work is to raise the level of abstraction for analysis

designers so that we spend less time specifying and implementing new ideas, and more

time formulating and evaluating them.

27

Chapter 3

JSAI: The JavaScript Abstract
Interpreter

3.1 Introduction

JavaScript is pervasive. While it began as a client-side webpage scripting language,

JavaScript has grown hugely in scope and popularity and is used to extend the func-

tionality of web browsers via browser addons, to develop desktop applications (e.g., for

Windows 8 [3]) and server-side applications (e.g., using Node.js [4]), and to develop

mobile phone applications (e.g., for Firefox OS [5]). JavaScript’s growing prominence

means that secure, correct, maintainable, and fast JavaScript code is becoming ever

more critical. Static analysis traditionally plays a large role in providing these charac-

teristics: it can be used for security auditing, error-checking, debugging, optimization,

program understanding, refactoring, and more. However, JavaScript’s inherently dy-

namic nature and many unintuitive quirks cause great difficulty for static analysis.

28

Chapter 3. JSAI: The JavaScript Abstract Interpreter

Our goal is to overcome these difficulties and provide a formally specified, well-

tested static analysis platform for JavaScript, immediately useful for many client anal-

yses such as those listed above. In fact, we have used JSAI in previous work to build

a security auditing tool for browser addons [96] and to experiment with strategies to

improve analysis precision [97]. We have also used JSAI to build a static program slic-

ing [141] client and to build a novel abstract slicing [143] client. These are only a few

examples of JSAI’s usefulness.

Several important characteristics distinguish JSAI from existing JavaScript static

analyses (which are discussed further in Section 6.7):

• JSAI is formally specified. We base our analysis on formally specified concrete

and abstract JavaScript semantics. The two semantics are connected using ab-

stract interpretation; we have soundness proof sketches for our most novel and

interesting abstract analysis domain. JSAI handles JavaScript as specified by the

ECMA 3 standard [62] (sans eval and family), and various language extensions

such as Typed Arrays [6].

• JSAI’s concrete semantics have been extensively tested against an existing com-

mercial JavaScript engine, and the JSAI abstract semantics have been extensively

tested against the concrete semantics for soundness.

29

Chapter 3. JSAI: The JavaScript Abstract Interpreter

• JSAI’s analysis sensitivity (i.e., path-, context-, and heap-sensitivity) are user-

configurable independently from the rest of the analysis. This means that JSAI

allows arbitrary sensitivities as defined by the user rather than only allowing a

small set of baked-in choices, and that the sensitivity can be set independently

from the rest of the analysis or any client analyses.

JSAI’s contributions include complete formalisms for concrete and abstract seman-

tics for JavaScript along with implementations of concrete and abstract interpreters

based on these semantics. While concrete semantics for JavaScript have been proposed

before, ours is the first designed specifically for abstract interpretation. Our abstract

semantics is the first formal abstract semantics for JavaScript in the literature. The

abstract interpreter implementation is the first available static analyzer for JavaScript

that provides easy configurability as a design goal. All these contributions are available

freely for download as supplementary materials1. JSAI provides a solid foundation on

which to build multiple client analyses for JavaScript. The specific contributions of this

chapter are:

• The design of a JavaScript intermediate language and concrete semantics in-

tended specifically for abstract interpretation (Section 3.3.1).

• The design of an abstract semantics that enables configurable, sound abstract

interpretation for JavaScript (Section 3.3.2). This abstract semantics represents a
1http://www.cs.ucsb.edu/˜pllab, under Downloads.

30

http://www.cs.ucsb.edu/~pllab

Chapter 3. JSAI: The JavaScript Abstract Interpreter

reduced product of type inference, pointer analysis, control-flow analysis, string

analysis, and number and boolean constant propagation.

• Novel abstract string and object domains for JavaScript analysis (Section 3.3.3).

• A discussion of JSAI’s configurable analysis sensitivity, including two novel con-

text sensitivities for JavaScript (Section 3.4).

• An evaluation of JSAI’s performance and precision on the most comprehensive

suite of benchmarks for JavaScript static analysis that we are aware of, includ-

ing browser addons, machine-generated programs via Emscripten [7], and open-

source JavaScript programs (Section 3.5). We showcase JSAI’s configurability

by evaluating a large number of context-sensitivities, and point out novel insights

from the results.

We preface these contributions with a discussion of related work (Section 6.7) and

conclude with plans for future work (Section 5.6).

3.2 Related Work

In this section we discuss existing static analyses and hybrid static/dynamic analy-

ses for JavaScript and discuss previous efforts to formally specify JavaScript semantics.

31

Chapter 3. JSAI: The JavaScript Abstract Interpreter

JavaScript Analyses. The current state-of-the-art static analyses for JavaScript usually

take one of two approaches: (1) an unsound2 dataflow analysis-based approach using

baked-in abstractions and analysis sensitivities [41, 75, 85], or (2) a formally-specified

type system requiring annotations to existing code, proven sound with respect to a spe-

cific JavaScript formal semantics but restricted to a small subset of the full JavaScript

language [46, 77, 84, 135]. No existing JavaScript analyses are formally specified, im-

plemented using an executable abstract semantics, tested against a formal concrete se-

mantics, or target configurable sensitivity.

The closest related work to JSAI is the JavaScript static analyzer TAJS by Jensen et

al [87, 89, 90]. While TAJS is intended to be a sound analysis of the entire JavaScript

language (sans dynamic code injection), it does not possess any of the characteristics

of JSAI described in Section 6.1. The TAJS analysis is not formally specified and the

TAJS papers have insufficient information to reproduce the analysis; also the analysis

implementation is not well documented, making it difficult to build client analyses

or modify the main TAJS analysis. In the process of formally specifying JSAI, we

uncovered several previously unknown soundness bugs in TAJS that were confirmed

by the TAJS authors. This serves to highlight the importance and usefulness of formal

specification.

2Most examples of this approach are intentionally unsound as a design decision, in order to handle the
many difficulties raised by JavaScript analysis. Unsound analysis can be useful in some circumstances,
but for many purposes (e.g., security auditing) soundness is a key requirement.

32

Chapter 3. JSAI: The JavaScript Abstract Interpreter

Various previous works [34, 70, 72, 85, 109, 134, 135] propose different subsets of

the JavaScript language and provide analyses for that subset. These analyses range

from type inference, to pointer analysis, to numeric range and kind analysis. None of

these handle the full complexities of JavaScript. Several intentionally unsound analy-

ses [8,41,65,110,139] have been proposed, while other works [75,85] take a best-effort

approach to soundness, without any assurance that the analysis is actually sound. None

of these efforts attempt to formally specify the analysis they implement.

Several type systems [46, 77, 84, 135] have been proposed to retrofit JavaScript (or

subsets thereof) with static types. Guha et. al. [77] propose a novel combination of

type systems and flow analysis. Chugh et. al. [46] propose a flow-sensitive refinement

type system designed to allow typing of common JavaScript idioms. These type sys-

tems require programmer annotations and cannot be used as-is on real-world JavaScript

programs.

Combinations of static analysis with dynamic checks [47, 72] have also been pro-

posed. These systems statically analyze a subset of JavaScript under certain assump-

tions and use runtime checks to enforce these assumptions. Schäfer et al. [128] use a

dynamic analysis to determine information that can be leveraged to scale static analysis

for JavaScript. These ideas are complementary to and can supplement our purely static

techniques.

33

Chapter 3. JSAI: The JavaScript Abstract Interpreter

JavaScript Formalisms. None of the previous work on static analysis of JavaScript

have formally specified the analysis. However, there has been previous work on provid-

ing JavaScript with a formal concrete semantics. Maffeis et. al [111] give a structural

smallstep operational semantics directly to the full JavaScript language (omitting a few

constructs). Lee et. al [104] propose SAFE, a semantic framework that provides struc-

tural bigstep operational semantics to JavaScript, based directly on the ECMAScript

specification. Due to their size and complexity, neither of these semantic formulations

are suitable for direct translation into an abstract interpreter.

Guha et. al [76] propose a core calculus approach to provide semantics to JavaScript—

they provide a desugarer from JavaScript to a core calculus called λJS , which has a

smallstep structural operational semantics. Their intention was to provide a minimal

core calculus that would ease proving soundness for type systems, thus placing all the

complexity in the desugarer. However, their core calculus is too low-level to perform a

precise and scalable static analysis (for example, some of the semantic structure that is

critical for a precise analysis is lost, and their desugaring causes a large code bloat—

more than 200× on average). We also use the core calculus approach; however, our

own intermediate language, called notJS, is designed to be in a sweet-spot that favors

static analysis (for example, the code bloat due to our translation is between 6 − 8×

on average). In addition, we use an abstract machine-based semantics rather than a

34

Chapter 3. JSAI: The JavaScript Abstract Interpreter

structural semantics, which (as described later) is the prime enabler for configurable

analysis sensitivity.

Configurable Sensitivity. Bravenboer and Smaragdakis introduce the DOOP frame-

work [45] that performs flow-insensitive points-to analysis for Java programs using a

declarative specification in Datalog. Several context-sensitive versions [98, 132] of the

points-to analysis are expressible in this framework as modular variations of a common

code base. Their framework would require significant changes to enable flow-sensitive

analysis (especially for a language like JavaScript, which requires an extensive analysis

to compute a sound SSA form) like ours, and they cannot express arbitrary analysis

sensitivities (including path sensitivities) modularly the way that JSAI can.

3.3 JSAI Design

We break our discussion of the JSAI design into three main components: (1) the

design of an intermediate representation (IR) for JavaScript programs, called notJS,

along with its concrete semantics; (2) the design of an abstract semantics for notJS that

yields the reduced product of a number of essential sub-analyses and also enables con-

figurable analysis; and (3) the design of novel abstract domains for JavaScript analysis.

We conclude with a discussion of various options for handling dynamic code injection.

35

Chapter 3. JSAI: The JavaScript Abstract Interpreter

The intent of this section is to discuss the design decisions that went into JSAI,

rather than giving a comprehensive description of the various formalisms (e.g., the

translation from JavaScript to notJS, the concrete semantics of notJS, and the abstract

semantics of notJS). All of these formalisms, along with their implementations, are

available in the supplementary materials.

3.3.1 Designing the notJS IR

JavaScript’s many idiosyncrasies and quirky behaviors motivate the use of formal

specifications for both the concrete JavaScript semantics and our abstract analysis se-

mantics. Our approach is to define an intermediate language called notJS, along with

a formally-specified translation from JavaScript to notJS. We then give notJS a formal

concrete semantics upon which we base our abstract interpreter.3

Figure 3.3.1 shows the abstract syntax of notJS, which was carefully designed with

the ultimate goal of making abstract interpretation simple, precise, and efficient. The IR

contains literal expressions for numeric, boolean values and for undef and null. Object

values are expressed with the new construct, and function values are expressed with the

newfun construct. The IR directly supports exceptions via throw and try-catch-fin; it

supports other non-local control flow (e.g., JavaScript’s return, break, and continue)

via the jump construct. The IR supports two forms of loops: while and for. The

3Guha et al [76] use a similar approach, but our IR design and formal semantics are quite different.
See Section 6.7 for a discussion of the differences between our two approaches.

36

Chapter 3. JSAI: The JavaScript Abstract Interpreter

for construct corresponds to JavaScript’s reflective for..in statement, which allows

the programmer to iterate over the fields of an object. A method takes exactly two

arguments: self and args, referring to the this object and arguments object; all

variants of JavaScript method calls can be translated to this form. The toobj, tobool,

tostr, tonum and isprim constructs are the explicit analogues of JavaScript’s implicit

conversions. JavaScript’s builtin objects (e.g,. Math) and methods (e.g., isNaN) are

properties of the global object that is constructed prior to a program’s execution, thus

they are not a part of the IR syntax.

Note that our intermediate language is not based on a control-flow graph but rather

on an abstract syntax tree (AST), further distinguishing it from existing JavaScript anal-

yses. JavaScript’s higher-order functions, implicit exceptions, and implicit type con-

versions (that can execute arbitrary user-defined code) make a program’s control-flow

extremely difficult to precisely characterize without extensive analysis of the very kind

we are using the intermediate language to carry out. Other JavaScript analyses that do

use a flow-graph approach start by approximating the control-flow and then fill in more

control-flow information in an ad-hoc manner as the analysis progresses; this leads to

both imprecision and unsoundness (for example, one of the soundness bugs we discov-

ered in TAJS was directly due to this issue). JSAI uses the smallstep abstract machine

semantics to determine control-flow during the analysis itself in a sound manner.

37

Chapter 3. JSAI: The JavaScript Abstract Interpreter

n ∈ Num b ∈ Bool str ∈ String x ∈ Variable ` ∈ Label

s ∈ Stmt ::= ~si | if e s1 s2 | while e s | x := e

| e1.e2 := e3 | x := e1(e2, e3) | x := toobj e

| x := del e1.e2 | x := newfun m n

| x := new e1(e2) | for x e s | throw e

| try-catch-fin s1 x s2 s3 | ` s | jump ` e

e ∈ Exp ::= n | b | str | undef | null

| x |m | e1 ⊕ e2 | �e
d ∈ Decl ::= decl −−−−→xi = ei in s

m ∈ Meth ::= (self, args)⇒ d | (self, args)⇒ s

⊕ ∈ BinOp ::= + | − | × | ÷ | % | << | >> | >>> | <
| ≤ | & | ′|′ | Y | and | or | ++ | ≺ | �
| ≈ | ≡ | . | instanceof | in

� ∈ UnOp ::= − | ∼ | ¬ | typeof | isprim | tobool

| tostr | tonum

Figure 3.1: The abstract syntax of notJS provides canonical constructs that simplify
JavaScript’s behavior. The vector notation represents (by abuse of notation) an ordered
sequence of unspecified length n, where i ranges from 0 to n− 1.

38

Chapter 3. JSAI: The JavaScript Abstract Interpreter

An important design decision we made is to carefully separate the language into

pure expressions (e ∈ Exp) that are guaranteed to terminate without throwing an excep-

tion, and impure statements (s ∈ Stmt) that do not have these guarantees. This decision

directly impacts the formal semantics and implementation of notJS by reducing the size

of the formal semantics4 and the corresponding code to one-third of the previous size

compared to a version without this separation, and vastly simplifying them. This is

the first IR for JavaScript we are aware of that makes this design choice—it is a more

radical choice than might first be apparent, because JavaScript’s implicit conversions

make it difficult to enforce this separation without careful thought. Other design deci-

sions of note include making JavaScript’s implicit conversions (which are complex and

difficult to reason about, involving multiple steps and alternatives depending on the cur-

rent state of the program) explicit in notJS (the constructs toobj, isprim, tobool, tostr,

tonum are used for this); leaving certain JavaScript constructs unlowered to allow for

a more precise abstract semantics (e.g., the for..in loop, which we leave mostly intact

as for x e s); and simplifying method calls to make the implicit this parameter and

arguments object explicit; this is often, but not always, the address of a method’s

receiver object, and its value can be non-intuitive, while arguments provides a form

of reflection providing access to a method’s arguments.

4Specifically, the number of semantic continuations and transition rules.

39

Chapter 3. JSAI: The JavaScript Abstract Interpreter

Given the notJS abstract syntax, we need to design a formal concrete semantics

that (together with the translation to notJS) captures JavaScript behavior. We have

two main criteria: (1) the semantics should be specified in a manner that can be di-

rectly converted into an implementation, allowing us to test its behavior against actual

JavaScript implementations; (2) looking ahead to the abstract version of the semantics

(which defines our analysis), the semantics should be specified in a manner that allows

for configurable sensitivity. These requirements lead us to specify the notJS semantics

as an abstract machine-based smallstep operational semantics. One can think of this

semantics as an infinite state transition system, wherein we formally define a notion of

state and a set of transition rules that connect states. The semantics is implemented

by turning the state definition into a data structure (e.g., a Scala class) and the transi-

tion rules into functions that transform a given state into the next state. The concrete

interpreter starts with an initial state (containing the start of the program and all of the

builtin JavaScript methods and objects), and continually computes the next state until

the program finishes.

We omit further details of the concrete semantics for space and because they have

much in common with the abstract semantics described in the next section. The main

difference between the two is that the abstract state employs sets in places where the

concrete state employs singletons, and the abstract transition rules are nondeterministic

40

Chapter 3. JSAI: The JavaScript Abstract Interpreter

whereas the concrete rules are deterministic. Both of these differences are because the

abstract semantics over-approximates the concrete semantics.

Testing the Semantics. We tested the translation to notJS, the notJS semantics, and im-

plementations thereof by comparing the resulting program execution behavior with that

of a commercial JavaScript engine, SpiderMonkey [9]. We first manually constructed

a test suite of over 243 programs that were either hand-crafted to exercise various parts

of the semantics, or taken from existing JavaScript programs used to test commer-

cial JavaScript implementations. We then added over one million randomly generated

JavaScript programs to the test suite. We ran all of the programs in the test suite on Spi-

derMonkey and on our concrete interpreter, and we verified that they produce identical

output. Because the ECMA specification is informal we can never completely guaran-

tee that the notJS semantics is equivalent to the spec, but we can do as well as other

JavaScript implementations, which also use testing to establish conformance with the

ECMA specification.

3.3.2 Designing the Abstract Semantics

The JavaScript static analysis is defined as an abstract semantics for notJS that over-

approximates the notJS concrete semantics. The analysis is implemented by computing

the set of all abstract states reachable from a given initial state by following the abstract

transition rules. The analysis contains some special machinery that provides config-

41

Chapter 3. JSAI: The JavaScript Abstract Interpreter

urable sensitivity. We illustrate our approach via a worklist algorithm that ties these

concepts together:

Algorithm 1 The JSAI worklist algorithm
1: put the initial abstract state ς̂0 on the worklist
2: initialize map partition : Trace → State] to empty
3: repeat
4: remove an abstract state ς̂ from the worklist
5: for all abstract states ς̂ ′ in next states(ς̂) do
6: if partition does not contain trace(ς̂ ′) then
7: partition(trace(ς̂ ′)) = ς̂ ′

8: put ς̂ ′ on worklist
9: else

10: ς̂old = partition(trace(ς̂ ′))
11: ς̂new = ς̂old t ς̂ ′
12: if ς̂new 6= ς̂old then
13: partition(trace(ς̂ ′)) = ς̂new
14: put ς̂new on worklist
15: end if
16: end if
17: end for
18: until worklist is empty

The static analysis performed by this worklist algorithm is determined by the defini-

tions of the abstract semantic states ς̂ ∈ State], the abstract transition rules5 next states ∈

State] → P(State]), and the knob that configures the analysis sensitivity trace(ς̂).

Abstract Semantic Domains. Figure 3.2 shows our definition of an abstract state for

notJS. An abstract state ς̂ consists of a term that is either a notJS statement or an abstract

value that is the result of evaluating a statement; an environment that maps variables to

(sets of) addresses; a store mapping addresses to either abstract values, abstract ob-
5Omitted for space; available in supplementary materials.

42

Chapter 3. JSAI: The JavaScript Abstract Interpreter

jects, or sets of continuations (to enforce computability for abstract semantics that use

semantic continuations, as per Van Horn and Might [138]); and finally a continuation

stack that represents the remaining computations to perform—one can think of this

component as analogous to a runtime stack that remembers computations that should

completed once the current computation is finished.

Abstract values are either exception/jump values (EValue], JValue]), used to han-

dle non-local control-flow, or base values (BValue]), used to represent JavaScript val-

ues. Base values are a tuple of abstract numbers, booleans, strings, addresses, null,

and undefined; each of these components is a lattice. Base values are defined as tu-

ples because the analysis over-approximates the concrete semantics, and thus cannot

constrain values to be only a single type at a time. These value tuples yield a type infer-

ence analysis: any component of this tuple that is a lattice ⊥ represents a type that this

value cannot contain. Base values do not include function closures, because functions

in JavaScript are actually objects. Instead, we define a class of abstract objects that

correspond to functions and that contain a set of closures that are used when that object

is called as a function. We describe our novel abstract object domain in more detail in

Section 3.3.3.

Each component of the tuple also represents an individual analysis: the abstract

number domain determines a number analysis, the abstract string domain determines a

string analysis, the abstract addresses domain determines a pointer analysis, etc. Com-

43

Chapter 3. JSAI: The JavaScript Abstract Interpreter

n̂ ∈ Num] ŝtr ∈ String] â ∈ Address] �̂ ∈ UnOp] ⊕̂ ∈ BinOp]

ς̂ ∈ State] = Term] × Env] × Store] ×Kont]

t̂ ∈ Term] = Decl + Stmt + Value]

ρ̂ ∈ Env] = Variable → P(Address])

σ̂ ∈ Store] = Address] → (BValue] + Object] + P(Kont]))

b̂v ∈ BValue] = Num] × P(Bool)× String] × P(Address])×
P({null})× P({undef})

ô ∈ Object] = (String] → BValue])× P(String)×
(String → (BValue] + Class + P(Closure])))

c ∈ Class = {function, array, string,boolean,number,date,

error, regexp, arguments,object, . . .}

ĉlo ∈ Closure] = Env] ×Meth

êv ∈ EValue] ::= exc bv

ĵv ∈ JValue] ::= jmp ` b̂v

v̂ ∈ Value] = BValue] + EValue] + JValue]

κ̂ ∈ Kont] ::= ĥaltK | ŝeqK ~si κ̂ | ŵhileK e s κ̂ | l̂blK ` κ̂

| f̂orK
−→
ŝtr i x s κ̂ | r̂etK x ρ̂ κ̂ ctor

| r̂etK x ρ̂ κ̂ call | t̂ryK x s s κ̂ | ĉatchK s κ̂

| fînK v̂ κ̂ | âddrK â

Figure 3.2: Abstract semantic domains for notJS.

44

Chapter 3. JSAI: The JavaScript Abstract Interpreter

posing the individual analyses represented by the components of the value tuple is not a

trivial task; a simple cartesian product of these domains (which corresponds to running

each analysis independently, without using information from the other analyses) would

be imprecise to the point of being useless. Instead, we specify a reduced product [50]

of the individual analyses, which means that we define the semantics so that each indi-

vidual domain can take advantage of the other domains’ information to improve their

results. The abstract number and string domains are intentionally unspecified in the se-

mantics; they are configurable. We discuss our specific implementations of the abstract

string domain in Section 3.3.3.

Together, all of these abstract domains define a set of simultaneous analyses: control-

flow analysis (for each call-site, which methods may be called), pointer analysis (for

each object reference, which objects may be accessed), type inference (for each value,

can it be a number, a boolean, a string, null, undef, or a particular class of object),

and extended versions of boolean, number, and string constant propagation (for each

boolean, number and string value, is it a known constant value). These analyses com-

bine to give detailed control- and data-flow information forming a fundamental analysis

that can be used by many possible clients (e.g., error detection, program slicing, secure

information flow, etc).

Abstract Transition Rules. Figure 3.3 describes a small subset of the abstract transi-

tion rules to give their flavor. To compute next states(ς̂), the components of ς̂ are

45

Chapter 3. JSAI: The JavaScript Abstract Interpreter

matched against the premises of the rules to find which rule(s) are relevant; that rule

then describes the next state (if multiple rules apply, then there will be multiple next

states). The rules 1, 2 and 3 deal with sequences of statements. Rule 1 says that if the

state’s term is a sequence, then pick the first statement in the sequence to be the next

state’s term; then take the rest of the sequence and put it in a seqK continuation for the

next state, pushing it on top of the continuation stack. Rule 2 says that if the state’s term

is a base value (and hence we have completed the evaluation of a statement), take the

next statement from the seqK continuation and make it the term for the next state. Rule

3 says that if there are no more statements in the sequence, pop the seqK continuation

off of the continuation stack. The rules 4 and 5 deal with conditionals. Rule 4 says

that if the guard expression evaluates to an abstract value that over-approximates true,

make the true branch statement the term for the next state; rule 5 is similar except it

takes the false branch. Note that these rules are nondeterministic, in that the same state

can match both rules.

Configurable Sensitivity. To enable configurable sensitivity, we build on the insights

of Hardekopf et al [82]. We extend the abstract state to include an additional compo-

nent from a Trace abstract domain. The worklist algorithm uses the trace function to

map each abstract state to its trace, and joins together all reachable abstract states that

map to the same trace (see lines 10–11 of Algorithm 4). The definition of Trace is left

to the analysis designer; different definitions yield different sensitivities. For example,

46

Chapter 3. JSAI: The JavaScript Abstract Interpreter

Current State ς̂ Next State ς̂ ′

1 〈s ::~si, ρ̂, σ̂, κ̂〉 〈s, ρ̂, σ̂, ŝeqK ~si κ̂〉
2 〈b̂v , ρ̂, σ̂, ŝeqK s ::~si κ̂〉 〈s, ρ̂, σ̂, ŝeqK ~si κ̂〉
3 〈b̂v , ρ̂, σ̂, ŝeqK ε κ̂〉 〈b̂v , ρ̂, σ̂, κ̂〉
4 〈if e s1 s2, ρ̂, σ̂, κ̂〉 〈s1, ρ̂, σ̂, κ̂〉 if true ∈ πb̂(JeK)

5 〈if e s1 s2, ρ̂, σ̂, κ̂〉 〈s2, ρ̂, σ̂, κ̂〉 if false ∈ πb̂(JeK)

Figure 3.3: A small subset of the abstract semantics rules for JSAI. Each smallstep rule
describes a transition relation from one abstract state ς to the next state ς̂ ′. The phrase
πb̂(JeK) means to evaluate expression e to an abstract base value, then project out its
boolean component.

suppose Trace is defined as the set of program points, and an individual state’s trace

is the current program point. Then our worklist algorithm computes a flow-sensitive,

context-insensitive analysis: all states at the same program point are joined together,

yielding one state per program point. Suppose we redefine Trace to be sequences of

program points, and an individual state’s trace to be the last k call-sites. Then our

worklist algorithm computes a flow-sensitive, k-CFA context-sensitive analysis. Arbi-

trary sensitivities (including path-sensitivity and property simulation) can be defined in

this manner solely by redefining Trace, without affecting the worklist algorithm or the

abstract transition rules. We explore a number of possibilities in Section 3.5.

47

Chapter 3. JSAI: The JavaScript Abstract Interpreter

3.3.3 Novel Abstract Domains

JSAI allows configurable abstract number and string domains, but we also provide

default domains based on our experience with JavaScript analysis. We motivate and

describe our default abstract string domain here. We also describe our novel abstract

object domain, which is an integral part of the JSAI abstract semantics.

Abstract Strings. Our initial abstract string domain String] was an extended string

constant domain. The elements were either constant strings, or strings that are definitely

numbers, or strings that are definitely not numbers, or> (a completely unknown string).

This string domain is similar to the one used by TAJS [89], and it is motivated by the

precision gained while analyzing arrays: arrays are just objects where array indices

are represented with numeric string properties such as "0", "1", etc, but they also

have non-numeric properties like "length". However, this initial string domain was

inadequate.

In particular, we discovered a need to express that a string is not contained within

a given hard-coded set of strings. Consider the property lookup x := obj[y], where

y is a variable that resolves to an unknown string. Because the string is unknown,

the analysis is forced to assign to x not only the lattice join of all values contained in

obj, but also the lattice join of all the values contained in all prototypes of obj, due

to the rules of prototype-based inheritance. Almost all object prototype chains termi-

48

Chapter 3. JSAI: The JavaScript Abstract Interpreter

>

−∞ ∞ NaN · · · −1.5 · · · 1.5 · · ·

Real

⊥

Figure 3.4: Our default number abstract domain, further explained in Section 3.3.3.

nate in one of the builtin objects contained in the global object (Object.prototype,

Array.prototype, etc); these builtin objects contain the builtin values and methods.

Thus, all of these builtin values and methods are returned for any object property access

based on an unknown string, polluting the analysis. One possible way to mitigate this

problem is to use an expensive domain that can express arbitrary complements (i.e., ex-

press that a string is not contained in some arbitrary set of strings). Instead, we extend

the string domain to separate out special strings (valueOf, toString etc, fixed ahead

of time) from the rest; these special strings are drawn from property names of builtin

values and methods. We can thus express that a string has an unknown value that is not

one of the special values. This is a practical solution that improves precision at minimal

cost.

The new abstract string domain depicted in Figure 3.5 (that separates unknown

strings into numeric, non-numeric and special strings) was simple to implement due to

JSAI’s configurable architecture; it did not require changes to any other parts of the im-

plementation despite the pervasive use of strings in all aspects of JavaScript semantics.

49

Chapter 3. JSAI: The JavaScript Abstract Interpreter

>

SNotSpl SNotNum

SNum SNotNumNorSpl SSpl

"1" · · · "2" · · · "foo" "bar"· · · "valueOf"· · ·

⊥

Figure 3.5: Our default string abstract domain, further explained in Section 3.3.3.

Abstract Objects. We highlight the abstract domain Object] given in Figure 3.2 as

a novel contribution. Previous JavaScript analyses model abstract objects as a tuple

containing (1) a map from property names to values; and (2) a list of definitely present

properties (necessary because property names are just strings, and objects can be mod-

ified using unknown strings as property names). However, according to the ECMA

standard objects can be of different classes, such as functions, arrays, dates, regexps,

etc. While these are all objects and share many similarities, there are semantic differ-

ences between objects of different classes. For example, the length property of array

objects has semantic significance: assigning a value to length can implicitly add or

delete properties to the array object, and certain values cannot be assigned to length

without raising a runtime exception. Non-array objects can also have a length field,

but assigning to that field will have no other effect. The object’s class dictates the se-

mantics of property enumerate, update, and delete operations on an object. Thus, the

analysis must track what classes an abstract object may belong to in order to accurately

50

Chapter 3. JSAI: The JavaScript Abstract Interpreter

model these semantic differences. If abstract objects can belong to arbitrary sets of

classes, this tracking and modeling becomes complex, error-prone, and inefficient.

Our innovation is to add a map as the third component of abstract objects that con-

tains class-specific values. This component also records which class an abstract object

belongs to. Finally, the semantics is designed so that any given abstract object must

belong to exactly one class. This is enforced by assigning abstract addresses to objects

based not just on their static allocation site and context, but also on the constructor used

to create the object (which determines its class). The resulting abstract semantics is

much simpler, more efficient, and precise.

3.4 Showcasing Configurability

Analysis sensitivity (path-, context-, and heap-sensitivity) hsa a significant impact

on the usefulness and practicality of the analysis. The sensitivity represents a tradeoff

between precision and performance: the more sensitive the analysis is the more precise

it can be, but also the more costly it can be. The “sweet-spot” in this tradeoff varies

from analysis to analysis and from program to program. JSAI allows the user to easily

specify different sensitivities in a modular way, separately from the rest of the analysis.

A particularly important dimension of sensitivity is context-sensitivity: how the

(potentially infinite) possible method call instances are partitioned and merged into a

51

Chapter 3. JSAI: The JavaScript Abstract Interpreter

finite number of abstract instances. The current state of the art for JavaScript static

analysis has explored only a few possible context-sensitivity strategies, all of which are

baked into the analysis and difficult to change, with no real basis for choosing these

over other possible strategies.

We take advantage of JSAI’s configurability to define and evaluate a much larger

selection of context-sensitivities than has ever been evaluated before in a single paper.

Because of JSAI’s design, specifying each sensitivity takes only 5–20 lines of code; pre-

vious analysis implementations would have to hard-code each sensitivity from scratch.

The JSAI analysis designer specifies a sensitivity by instantiating a particular instance

of Trace; all abstract states with the same trace will be merged together. For context-

sensitivity, we define Trace to include some notion of the calling context, so that states

in the same context are merged while states in different contexts are kept separate.

We implement six main context-sensitivity strategies, each parameterized in various

ways, yielding a total of 56 different forms of context-sensitivity. All of our sensitiv-

ities are flow-sensitive (JavaScript’s dynamic nature means that flow-insensitive anal-

yses tend to have terrible precision). We empirically evaluate all of these strategies in

Section 3.5; here we define the six main strategies. Four of the six strategies are known

in the literature, while two are novel to this work. The novel strategies are based on

two hypotheses about context definitions that might provide a good balance between

precision and performance. Our empirical evaluation demonstrates that these hypothe-

52

Chapter 3. JSAI: The JavaScript Abstract Interpreter

ses are false, i.e., they do not provide any substantial benefit. We include them here

not as examples of good sensitivities to use, but rather to demonstrate that JSAI makes

it easy to formulate and test hypotheses about analysis strategies—each novel strategy

took only 15–20 minutes to implement. The strategies we defined are as follows, where

the first four are known and the last two are novel:

Context-insensitive. All calls to a given method are merged. We define the context

component of Trace to be a unit value, so that all contexts are the same.

Stack-CFA. Contexts are distinguished by the list of call-sites on the call-stack. This

strategy is k-limited to ensure there are only a finite number of possible contexts. We

define the Trace component to contain the top k call-sites.

Acyclic-CFA. Contexts are distinguished the same as Stack-CFA, but instead of k-

limiting we collapse recursive call cycles. We define Trace to contain all call-sites on

the call-stack, except that cycles are collapsed.

Object-sensitive. Contexts are distinguished by a list of addresses corresponding to

the chain of receiver objects (corresponding to full-object-sensitivity in Smaragdakis

et al. [132]). We define Trace to contain this information (k-limited to ensure finite

contexts).

Signature-CFA. Type information is important for dynamically typed languages, so

intuitively it seems that type information would make good contexts. We hypothesize

53

Chapter 3. JSAI: The JavaScript Abstract Interpreter

that defining Trace to record the types of a call’s arguments would be a good context-

sensitivity, so that all k-limited call paths with the same types of arguments would be

merged.

Mixed-CFA. Object-sensitivity uses the address of the receiver object. However, in

JavaScript the receiver object is often the global object created at the beginning of

the program execution. Intuitively, it seems this would mean that object sensitivity

might merge many calls that should be kept separate. We hypothesized that it might

be beneficial to define Trace as a modified object-sensitive strategy—when object-

sensitivity would use the address of the global object, this strategy uses the current

call-site instead.

3.5 Evaluation

In this section we evaluate JSAI’s precision and performance for a range of context-

sensitivities as described in Section 3.4, for a total of 56 distinct sensitivities. We run

each sensitivity on 28 benchmarks collected from four different application domains

and analyze the results, yielding surprising observations about context-sensitivity and

JavaScript. We also briefly evaluate JSAI as compared to TAJS [89], the most compa-

rable existing JavaScript analysis.

54

Chapter 3. JSAI: The JavaScript Abstract Interpreter

3.5.1 Implementation and Methodology

We implement JSAI using Scala version 2.10. We provide a model for the DOM,

event handling loop (handled as non-deterministic execution of event-handling func-

tions), and other native APIs used in our benchmarks. The baseline analysis sensitivity

we evaluate is fs (flow-sensitive, context-insensitive); all of the other evaluated sen-

sitivities are more precise than fs. The other sensitivities are: k.h-stack, h-acyclic,

k.h-obj, k.h-sig, and k.h-mixed, where k is the context depth for k-limiting and h is

the heap-sensitivity (i.e., the context depth used to distinguish abstract addresses). The

parameters k and h vary from 1 to 5 and h ≤ k.

We use a comprehensive benchmark suite to evaluate the sensitivities. Most prior

work on JavaScript static analysis has been evaluated only on the standard SunSpi-

der [10] and V8 [11] benchmarks, with a few micro-benchmarks thrown in. We evalu-

ate JSAI on these standard benchmarks, but we also include real-world representatives

from a diverse set of JavaScript application domains. We choose seven representative

programs from each domain, for a total of 28 programs. We partition the programs

into four categories, described below. For each category, we provide the mean size

of the benchmarks in the suite (expressed as number of AST nodes generated by the

Rhino parser [1]) and the mean translator blowup (i.e., the factor by which the number

of AST nodes increases when translating from JavaScript to notJS). The benchmark

55

Chapter 3. JSAI: The JavaScript Abstract Interpreter

names are shown in the graphs presented below; the benchmark suite is included in the

supplementary material.

The benchmark categories are: standard: seven of the largest, most complex bench-

marks from SunSpider [10] and V8 [11] (mean size: 2858 nodes; mean blowup: 8×);

addon: seven Firefox browser addons selected from the official Mozilla addon repos-

itory [2] (mean size: 2597 nodes; mean blowup: 6×); generated: seven programs

from the Emscripten LLVM test suite, which translates LLVM bitcode to JavaScript [7]

(mean size: 38211 nodes; mean blowup: 7×); and finally opensrc: seven real-world

JavaScript programs taken from open source JavaScript frameworks and their test suites [12,

13] (mean size: 8784 nodes; mean blowup: 6.4×).

Our goal is to evaluate the precision and performance of JSAI instantiated with

several forms of context sensitivity. However, the different sensitivities yield differing

sets of function contexts and abstract addresses, making a fair comparison difficult.

Therefore, rather than statistical measurements (such as address-set size or closure-set

size), we choose a client-based precision metric based on a error reporting client. This

metric is a proxy for the precision of the analysis.

Our precision metric reports the number of static program locations (i.e., AST

nodes) that might throw exceptions, based on the analysis’ ability to precisely track

types. JavaScript throws a TypeError exception when a program attempts to call a

non-function or when a program tries to access, update, or delete a property of null or

56

Chapter 3. JSAI: The JavaScript Abstract Interpreter

undef. JavaScript throws a RangeError exception when a program attempts to update

the length property of an array to contain a value that is not an unsigned 32-bit integer.

Fewer errors indicate a more precise analysis.

The performance metric we use is execution time of the analysis. To gather data

on execution time, we run each experimental configuration 11 times, discard the first

result, then report the median of the remaining 10 trials. We set a time limit of 30

minutes for each run, reporting a timeout if execution time exceeds that threshold. We

run all experiments on Amazon Web Services [14] (AWS), using M1 XLarge instances;

each experiment is run on an independent AWS instance. These instances have 15GB

memory and 8 ECUs, where each ECU is equivalent CPU capacity of a 1.0-1.2 GHz

2007 Opteron or 2007 Xeon processor.

We run all 56 analyses on each of the 28 benchmarks, for a total of 1,568 trials

(multiplied by an additional 10 executions for each analysis/benchmark pair for the

timing data). For reasons of space, we present only highlights of these results. In some

cases, we present illustrative examples; the omitted results show similar behavior. In

other cases, we deliberately cherry-pick, to highlight contrasts. We are explicit about

our approach in each case.

57

Chapter 3. JSAI: The JavaScript Abstract Interpreter

(a) addon benchmarks

tryagain
odesk_job_wat…
less_spam_ple…
live_pagerank
coffee_pods_d…
chess
pinpoints

(b) generated benchmarks

fasta
llubenchmark
fourinarow
aha
sgefa
hashtest
fannkuch

(c) opensrc benchmarks

rsa
linq_aggregate
aes
linq_enumerable
linq_functional
linq_action
linq_dictionary

(d) standard benchmarks

crypto-sha1
richards
splay
3d-cube
access-nbody
3d-raytrace
cryptobench

 1
.0

-s
ta

ck
 5

.4
-s

ta
ck

 4
-a

cy
cl

ic
 1

.0
-o

bj
 5

.4
-o

bj
 1

.0
-s

ig
 5

.4
-s

ig
 1

.0
-m

ix
ed

 5
.4

-m
ix

ed fs

Figure 3.6: A heat map to showcase the performance characteristics of different sen-
sitivities across the benchmark categories. For more details on how to read this map,
please refer to the corresponding prose.

58

Chapter 3. JSAI: The JavaScript Abstract Interpreter

(a) addon benchmarks

tryagain 0% 0% 0% 0% 0% 0% 0% 0% 0% 16
odesk_job_wat… 0% 0% 0% 0% 0% 0% 0% 0% 0% 18
less_spam_ple… 77% 77% 77% 13% 13% 0% 65% 16% 16% 62
live_pagerank 15% 15% 15% 0% 0% 0% 0% 15% 15% 13
coffee_pods_d… 0% 0% 0% 0% 0% 0% 0% 0% 0% 5
chess 17% 17% 17% 8% 8% 0% 8% 8% 8% 24
pinpoints 2% 2% 2% 0% 0% 0% 0% 4% 4% 54

(b) generated benchmarks

fasta 92% 94% 94% 17% 17% 0% 17% 92% 92% 36
llubenchmark 99% 99% 99% 0% 0% 21% 99% 99% 287
fourinarow 88% 92% 92% 0% 0% 0% 0% 88% 88% 24
aha 67% 70% 70% 0% 0% 7% 7% 67% 67% 27
sgefa 99% 99% 99% 0% 0% 21% 99% 99% 287
hashtest 91% 94% 94% 17% 17% 0% 17% 91% 91% 35
fannkuch 91% 94% 94% 18% 18% 0% 18% 91% 91% 33

(c) opensrc benchmarks

rsa 29% 32% 32% 0% 0% 0% 6% 9% 9% 34
linq_aggregate 88% 1% 2% 267
aes 0% 0% 0% 0% 0% 0% 0% 0% 0% 4
linq_enumerable 95% 99% 99% 2% 2% 7% 88% 0% 374
linq_functional 73% 89% 1% 12% 0% 0% 335
linq_action 92% 93% 96% 9% 10% 66% 75% 90% 90% 169
linq_dictionary 81% 85% 84% 1% 3% 1% 5% 73% 73% 376

(d) standard benchmarks

crypto-sha1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
richards 0% 26% 26% 2% 2% 0% 0% 12% 12% 42
splay 0% 0% 0% 0% 0% 0% 0% 0% 0% 30
3d-cube 8% 8% 8% 0% 0% 0% 4% 8% 8% 53
access-nbody 0% 0% 0% 0% 0% 0% 0% 0% 0% 6
3d-raytrace 29% 29% 29% 6% 6% 0% 8% 27% 27% 48
cryptobench 27% 76% 76% 6% 14% 21% 63% 10% 28% 329

 1
.0

-s
ta

ck
 5

.4
-s

ta
ck

 4
-a

cy
cl

ic
 1

.0
-o

bj
 5

.4
-o

bj
 1

.0
-s

ig
 5

.4
-s

ig
 1

.0
-m

ix
ed

 5
.4

-m
ix

ed fs

Figure 3.7: A heat map to showcase the precision characteristics (based on number of
reported runtime errors) of different sensitivities across the benchmark categories. For
more details on reading the heap please refer to the corresponding prose.

59

Chapter 3. JSAI: The JavaScript Abstract Interpreter

3.5.2 Observations

For each main sensitivity strategy, we present the data for two trials: the least precise

sensitivity in that strategy, and the most precise sensitivity in that strategy. This set

of analyses is: fs, 1.0-stack, 5.4-stack, 4-acyclic, 1.0-obj, 5.4-obj, 1.0-sig, 5.4-sig,

1.0-mixed, 5.4-mixed.

Figure 3.6 contains performance results, and Figure 3.7 contains the precision re-

sults. The results are partitioned by benchmark category to show the effect of each

analysis sensitivity on benchmarks in that category.

Figure 3.6 is setup to easily depict how the sensitivities perform relative to each

other. Figure 3.6 is heat map that lays out blocks in two dimensions—rows represent

benchmarks and columns represent analyses with different sensitivities. Each block

represents relative performance as a color: darker blocks correspond to faster execu-

tion time of a sensitivity compared to other sensitivities on the same benchmark. A

completely blackened block corresponds to the fastest sensitivity on that benchmark,

a whitened block corresponds to a sensitivity that has ≥ 2× slowdown relative to the

fastest sensitivity, and the remaining colors evenly correspond to slowdowns in be-

tween. Blocks with the red grid pattern indicate a timeout. A visual cue is that columns

with darker blocks correspond to better-performing sensitivities, and a row with blocks

that have very similar colors indicates a benchmark on which performance is unaffected

by varying sensitivities.

60

Chapter 3. JSAI: The JavaScript Abstract Interpreter

Figure 3.7 provides a similar heat map (with similar visual cues) for visualizing rel-

ative precisions of various sensitivity strategies on our benchmarks. The final column

in this heat map provides the number of errors reported by the fs strategy on a particular

benchmark, while the rest of the columns provide the percentage reduction (relative to

fs) in the number of reported errors due to a corresponding sensitivity strategy. The

various blocks (except the ones in the final column) are color coded in addition to pro-

viding percentage reduction numbers: darker is better precision (that is, more reduction

in number of reported errors). Timeouts are indicated using a red grid pattern.

Breaking the Glass Ceiling. One startling observation is that highly sensitive variants

(i.e., sensitivity strategies with high k and h parameters) can be far better than their

less-sensitive counterparts, providing improved precision at a much cheaper cost (see

Figure 3.8). For example, on linq dictionary, 5.4-stack is the most precise and

most efficient analysis. By contrast, the 3.2-stack analysis yields the same result at a

three-fold increase in cost, while the 1.0-stack analysis is even more expensive and less

precise. We see similar behavior for the sgefa benchmark, where 5.4-stack is an order

of magnitude faster than 1.0-stack and delivers the same results. This behavior violates

the common wisdom that values of k and h above 1 or 2 are intractably expensive.

This behavior is certainly not universal,6 but it is intriguing. Analysis designers

often try to scale up their context-sensitivity (in terms of k and h) linearly, and they

6For example, linq aggregate times out on all analyses with k > 1.

61

Chapter 3. JSAI: The JavaScript Abstract Interpreter

5.4-stack

1.0-stack 5.4-obj

1.0-obj

fs

Figure 3.8: Precision vs. performance of various sensitivities, on the opensrc bench-
mark linq dictionary. Interestingly, 5.4-stack (the most sensitive Stack-CFA
analysis) is not only tractable, it exhibits the best performance and the best precision.

stop when it becomes intractable. However, our experiments suggest that pushing past

this local barrier may yield much better results.

Callstring vs Object Sensitivity. In general, we find that callstring-based sensitivity

(i.e., k.h-stack and h-acyclic) is more precise than object sensitivity (i.e., k.h-obj).

This result is unintuitive, since JavaScript heavily relies on objects and object sensi-

tivity was specifically designed for object-oriented languages such as Java. Through-

out the benchmarks, the most precise and efficient analyses are the ones that employ

stack-based k-CFA. Part of the reason for this trend is that 25% of the benchmarks are

machine-generated JavaScript versions of procedural code, whose structure yields more

62

Chapter 3. JSAI: The JavaScript Abstract Interpreter

benefits to callstring-based context-sensitivity. Even among the handwritten open-

source benchmarks, however, this trend holds. For example, several forms of call-

string sensitivity are more efficient and provide more precise results for the open-source

benchmarks than object-sensitivity, which often times out.

Benefits of Context Sensitivity. When it comes to pure precision, we find that more

context sensitivity sometimes increases precision and sometimes has no effect. The

open-source benchmarks demonstrate quite a bit of variance for the precision metric. A

context-sensitive analysis almost always finds fewer errors (i.e., fewer false positives)

than a context-insensitive analysis, and increasing the sensitivity in a particular family

leads to precision gains. For example, 5.4-stack gives the most precise error report for

linq enumerable, and it is an order of magnitude more precise than a context-

insensitive analysis. On the other hand, the addon domain has very little variance

for the precision metric, which is perhaps due to shorter call sequence lengths in this

domain. In such domains, it might be wise to focus on performance, rather than in-

creasing precision.

Summary. Perhaps the most sweeping claim we can make from the data is that there is

no clear winner across all benchmarks, in terms of JavaScript context-sensitivity. This

state of affairs is not a surprise: the application domains for JavaScript are so rich and

varied that finding a silver bullet for precision and performance is unlikely. However,

63

Chapter 3. JSAI: The JavaScript Abstract Interpreter

it is likely that—within an application domain, e.g., automatically generated JavaScript

code—one form of context-sensitivity could emerge a clear winner. The benefit of

JSAI is that it is easy to experiment with the control flow sensitivity of an analysis. The

base analysis has already been specified, the analysis designer need only instantiate and

evaluate multiple instances of the analysis in a modular way to tune analysis-sensitivity,

without having to worry about the analysis soundness.

3.5.3 Discussion: JSAI vs. TAJS

Jensen et al.’s Type Analysis for JavaScript [89, 90] (TAJS) stands as the only pub-

lished static analysis for JavaScript whose intention is to soundly analyze the entire

JavaScript language. JSAI has several features that TAJS does not, including con-

figurable sensitivity, a formalized abstract semantics, and novel abstract domains, but

TAJS is a valuable contribution that has been put to good use. An interesting question

is how JSAI compares to TAJS in terms of precision and performance.

The TAJS implementation (in Java) has matured over a period of five years, it has

been heavily optimized, and it is publicly available. Ideally, we could directly compare

TAJS to JSAI with respect to precision and performance, but they are dissimilar enough

that they are effectively noncomparable. For one, TAJS has known soundness bugs that

can artificially decrease its set of reported type errors. Also, TAJS does not implement

some of the APIs required by our benchmark suite, and so it can only run on a subset of

64

Chapter 3. JSAI: The JavaScript Abstract Interpreter

the benchmarks. On the flip side, TAJS is more mature than JSAI, it has a more precise

implementation of the core JavaScript APIs, and it contains a number of precision and

performance optimizations (e.g., the recency heap abstraction [37] and lazy propagation

[90]) that JSAI does not currently implement.

Nevertheless, we can perform a qualitative “ballpark” comparison, to demonstrate

that JSAI is roughly comparable in terms of precision and performance. For the subset

of our benchmarks on which both JSAI and TAJS execute, we catalogue the number of

errors that each tool reports and record the time it took for each tool to do so. We find

that JSAI analysis time is 0.3× to 1.8× that of TAJS. In terms of precision, JSAI reports

from nine fewer type errors to 104 more type errors, compared to TAJS. Many of the

extra type errors that JSAI reports are RangeErrors, which TAJS does not report due to

one of the unsoundness bugs we uncovered. Excluding RangeErrors, JSAI reports at

most 20 more errors than TAJS in the worst case.

3.6 Conclusion

We have described the design of JSAI, a configurable, sound, and efficient abstract

interpreter for JavaScript. JSAI’s design is novel in a number of respects which make

it stand out from all previous JavaScript analyzers. We have provided a comprehen-

sive evaluation that demonstrates JSAI’s usefulness. The JSAI implementation and

65

Chapter 3. JSAI: The JavaScript Abstract Interpreter

formalisms are freely available as a supplement, and we believe that JSAI will provide

a useful platform for people building JavaScript analyses.

Our future work includes (1) taking advantage of JSAI’s configurability to further

investigate what control-flow sensitivities are most useful for JavaScript; (2) writing a

number of clients on top of JSAI, including program refactoring, program compression;

and (3) extending JSAI to handle language features from the latest ECMA 5 standard.

66

Chapter 4

Improving Precision of JavaScript
Static Analysis via Type Refinement

4.1 Introduction

Dynamic languages have become ubiquitous. For example, Java-Script is used to

implement a large amount of critical online infrastructure, including web applications,

browser addons/extensions, and interpreters such as Adobe Flash. In response to the

growing prominence of dynamic languages, the research community has begun to in-

vestigate how to apply static analysis techniques in this domain. Static analysis is used

to deduce properties of a program’s execution behavior; these properties can be used

for a variety of useful purposes including optimization [79, 109], error checking [144],

verification [46], security auditing [73, 74], and program refactoring [64], among other

uses. However, dynamic languages present a unique challenge to static analysis, inher-

67

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

ent in their very name: the dynamic nature of these languages makes creating precise,

sound, and efficient static analyses a daunting task.

In this chapter we focus on the static analysis of JavaScript, though in principle

our proposed techniques are applicable to other dynamic languages as well. Our work

is complementary to other recent work on JavaScript analysis, which has focused on

understanding a program’s types by proposing various novel abstract domains to track

type information [89, 109]. This focus on types is essential for JavaScript analysis;

because JavaScript behavior relies heavily on the runtime types of the values being

operated on, understanding types is a necessary prerequisite to understanding many

other properties of program behavior. However, with one exception (discussed further

in Section 6.7) this prior work on JavaScript analysis has ignored an observation that

has been profitably exploited in more traditional static analyses: that branch conditions

(i.e., predicates that determine a program’s control flow) necessarily constrain the set

of values that can flow into the corresponding branches. This observation can be used

to refine the abstract information propagated by the static analysis within each branch,

thus improving the precision of the analysis. The details of how this concept works

and how it can be applied to improve the precision of static analysis are explained

in Appendix 6.2 (for any analysis in general) and Section 4.2 (for JavaScript analysis

specifically).

68

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

While this general observation is well-known in the static analysis community, ap-

plying it specifically to JavaScript raises several important questions that must be an-

swered to gain any useful benefit: (1) what kinds of conditions provide the most useful

information for refinement; (2) how prevalent are these kinds of conditions in realistic

JavaScript programs; and (3) how can we best exploit these conditions, based on their

prevalence and usefulness, to substantially increase the precision of static analysis?

4.1.1 Key Insight

Our key insight that informs our proposed technique is that the most prevalent and

useful conditional branches are not explicit in the text of JavaScript program, i.e., these

conditions do not show up syntactically as if or while statements. Rather, they are im-

plicit in the JavaScript semantics themselves. As an example, consider the statement

var result = myString.length;. While syntactically there are no conditional

branches in this statement, during execution there are several conditional branches

taken by the JavaScript interpreter:

• Is myString either null or undefined? If so then raise a type-error exception,

otherwise continue execution.

69

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

• Is myString a primitive value or an object? If it’s a primitive value then convert

it to an object first, then access the length property; otherwise just access the

length property.

• Does the object (or one of its prototypes) contain a length property? If so then

return the corresponding value, otherwise return undefined.

Our thesis is that JavaScript static analysis can take advantage of these implicit

conditional executions to refine the type information of the abstract values being propa-

gated by the analysis, and that this type refinement can provide significant improvement

in analysis precision.

4.1.2 Contributions

Our specific contributions are:

• A definition of type refinement for static analysis of JavaScript, including several

variations that use different kinds of conditions to refine types (Section 4.2).

• An empirical evaluation of the proposed type refinement variations (Section 6.6).

This evaluation is carried out on a more comprehensive set of JavaScript bench-

marks than any presented in previous literature on JavaScript static analysis; it

includes not only the standard SunSpider and V8 benchmark suites, but also a

70

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

number of open-source JavaScript applications [13,26] and a number of machine-

generated JavaScript programs created using Emscripten [7].

• A set of recommendations for including type refinement in JavaScript analyses

(Section 4.6). Our evaluation shows that taking advantage of implicit conditional

branches provides a critical precision advantage for finding type errors, while the

explicit typeof conditional branches exploited in previous work [78] provide

only marginal benefit.

We conclude that type refinement is a promising technique for JavaScript analy-

sis. This technique’s design is informed by the semantics of JavaScript, enabling it to

take advantage of language features hidden from plain sight and thus gain precision

that would be lost by a technique that does not specifically exploit JavaScript seman-

tics. Furthermore, type refinement is orthogonal to the question of designing abstract

domains for JavaScript analysis; this means that it can profitably be combined with

interesting new abstract domains in the future to achieve even better results.

4.2 The Potential for Refinement in JavaScript

Refinement allows an analysis to safely replace a less-precise answer with a more-

precise answer. Appendix 6.2 gives suitable background on static analysis and the

concept of refinement; readers unfamiliar with these notions may wish to refer to that

71

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

appendix before continuing. Refinement can apply to many different abstract domains

for analysis, but we hypothesize that, for JavaScript, the abstract domain of types is

a particularly fruitful target for refinement. In JavaScript, as with many dynamic lan-

guages, the type of a value strongly influences the behavior of a program. Thus, refining

type information intuitively would seem likely to improve the precision of JavaScript

static analysis (and our empirical results bear out this intuition).

This observation means that we should focus our attention on those conditionals

in the JavaScript program that are based on type information, i.e., conditionals whose

truth or falsity constrain the set of types allowed in the corresponding branches. An

obvious candidate is the set of conditionals that use the typeofoperator to test value’s

types. For example, consider the following code:

if (typeof x == "number") { x = x + 42; }

Suppose that immediately before the conditional, the static analysis has computed

that x may be a number or a string. Then inside the true branch of the conditional,

we can safely refine the type of x to be a number. This strategy is similar to the one

employed by Guha et al [78] (discussed further in Section 6.7), though they were at-

tempting to typecheck a subset of JavaScript rather than to improve the precision of

JavaScript static analysis.

72

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

4.2.1 Key Insight

While the typeof check is an obvious candidate for refinement, our key insight

is that most of the conditionals involving types aren’t even syntactically present in

the JavaScript program—rather, they are implicit in the semantics of the JavaScript

language itself.

Consider the following statement:

var x = myString[i];

This seemingly simple statement requires a large number of implicit type checks.

Example 2 makes all of these checks explicit. None of these checks involve typeof.

Instead, we see three new kinds of conditions that involve type information.

One condition (e.g., at line 1 in Example 2) checks whether a value is either null or

undefined. JavaScript performs this check whenever a program attempts to access a

property of a value; if the value is null or undefined it is a type-error. JavaScript also

performs this check whenever a program attempts to add, update, or delete a property

of some value. We abbreviate this condition as isUndefNull.

Another condition (e.g., at lines 5, 12, 22, and 31) checks whether a value is primi-

tive rather than an object, i.e., that it is either a number, a boolean, a string, undefined,

or null1. JavaScript performs this check whenever the runtime might need to implic-

itly convert a value into another type. We abbreviate this condition as isPrim.
1Confusingly, typeof null == ”object”, but null is not an object.

73

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

Example 2 The semantics of var x = myString[i];

1: if myString is null or undefined then
2: type-error

3: else
4: // convert myString to an object first?
5: if myString is a primitive then
6: obj = toObject(myString)
7: else
8: obj = myString
9: end if

10: // convert i to a string

11: // case 1: i is a primitive
12: if i is a primitive then
13: prop = toString(i)
14: else
15: if i.toString is callable then
16: tmp = i.toString()
17: else
18: goto line 26
19: end if
20: end if

21: // case 2: i is not a primitive, but i.toString() is
22: if tmp is a primitive then
23: prop = toString(tmp)

24: // case 3: i.toString() is not a primitive; try i.valueOf()
25: else
26: if i.valueOf is callable then
27: tmp2 = i.valueOf()
28: else
29: type-error
30: end if

31: if tmp2 is a primitive then
32: prop = toString(tmp2)
33: else
34: type-error
35: end if
36: end if

37: // retrieve the property from the object
38: x = obj.prop
39: end if

74

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

A third condition (e.g., at lines 15 and 26) checks whether a value is callable (i.e.,

that it is actually a function). If so, then the runtime calls the function; otherwise it

can throw a type error exception. We abbreviate this check for callable as the isFunc

condition.

The key insight of this work is to focus refinement on those implicit conditionals—

isPrim, isUndefNull, and isFunc—which abound in JavaScript programs.

4.2.2 Refinement on Implicit Conditions

JavaScript’s implicit conditions restrict the types of values that flow along their

branches. Refinement can take advantage of these restrictions as follows:

• isPrim: On the true branch, the checked value must be a primitive value; on the

false branch it must be an object.

• isUndefNull: On the true branch, the checked value must be either undefined

or null; on the false branch it cannot be undefined or null.

• isFunc: On the true branch, the checked value must be a function; on the false

branch it cannot be a function.

The benefits become evident when we consider a static analysis that does not use

refinement for these conditions. For isPrim the benefit comes from the false branch

of the conditional, for example, line 15 in Example 2. Suppose that on line 12 the

75

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

analysis computes that imay be either undefined or an object. In the false branch, i’s

properties are accessed to make method calls (e.g., the .toString and/or .valueOf

methods used to convert objects to primitives). However, since i may be undefined,

the analysis conservatively computes that these calls may raise a type error exception.

If i had been refined, then the analysis would know that it cannot be undefined on

that branch, and hence there cannot be a type error exception.

The benefit for isUndefNull and isFunc is more subtle. Consider the following

program fragment:

d e l e t e o b j . p1 ;

o b j . p2 = 2 ;

Example 3 The semantics of delete obj .p1; obj .p2 = 2;

1: if obj is null or undefined then
2: type-error
3: else
4: delete obj.p1
5: if obj is null or undefined then
6: type-error
7: else
8: obj.p2 = 2
9: end if

10: end if

The implicit behavior of this fragment is described by the pseudocode in Exam-

ple 3.This example illustrates how implicit checks and exceptions can lead to spurious

type-errors. Concretely, the code performs two sequential property modifications. If

76

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

obj is null or undefined, the first statement causes a type-error, and the second

statement never executes. Otherwise, both statements execute successfully. An analy-

sis that uses refinement can capture this behavior, while an analysis that does not use

refinement cannot, as explained below.

Consider an analysis of this fragment that has imprecise information: obj might be

null or an object. In this case, the isUndefNull conditions in lines 1 and 5 of Exam-

ple 3 are non-deterministic, and the analysis must conservatively propgate obj’s type

to both branches. An analysis that does not use refinement must then conservatively

report that two type-errors might occur: at lines 2 and 6. In reality, if the first statement

of the program fragment successfully executes, so will the second. Refinement can

detect this invariant: in the false branch of lines 4–9, the type of obj cannot be null

or undefined. The isUndefNull condition at line 5 is therefore deterministic, so the

analysis will not follow the branch to the error at line 6. Thus, a refined analysis can

give the most precise result for imprecise data: if a type-error occurs, it occurs only as

a result of the delete statement.

The isFunc check is similar to the isUndefNull check in that the cost comes from

potentially passing unrefined values to successor nodes, causing the analysis to con-

servatively compute type error exceptions whereas an analysis using refinement would

not. In general, the benefit of refinement in the presence of implicit exceptions is poten-

tially tremendous: When exploring the path along which the exception does not occur,

77

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

the analysis can refine the type of the value so that it does not cause any more implicit

exceptions along that path. Our empirical evaluation demonstrates that, if an analysis

focuses on these simple implicit type checks, refinement can dramatically increase the

precision of a type-error analysis.

4.3 Refining Types in JavaScript Analyses

The previous section discusses type refinement at a conceptual level. In this section

we make the discussion concrete, describing specifically how we perform type refine-

ment for JavaScript. Type refinement takes place in the context of some particular static

analysis, however type refinement itself is largely independent of that surrounding con-

text. Therefore we describe type refinement using a generic type-based abstract domain

that would be common to any JavaScript static analysis, which in the actual analysis

can be augmented to provide whatever additional information is relevant.

4.3.1 Type-based Abstract Domain

We now describe the abstract domain that we will be using to describe type refine-

ment. A JavaScript value can be a primitive value (i.e., number, boolean, string,

undefined, or null), an object, or a function2. The abstract domain of Figure 4.1

2Functions are also objects, but we distinguish them separately because some implicit checks are
specific to functions.

78

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

σ ∈ Store : Variable → P(Type)

PropertyMap : Property → P(Type)

τ ∈ Type : PrimType + ObjType + FuncType

PrimType : num + bool + +null + undefined

ObjType : PropertyMap

FuncType : Closure × PropertyMap

Figure 4.1: A simplified version of an abstract domain suitable for type refinement.
The abstract domain Store maps variables to their abstract types. The abstract do-
main ObjType maps object properties to a set of possible types. The abstract domain
FuncType includes a closure (the function to be called) and a property map (to model
the function object).

describes an approximation of these types. This abstract domain is deliberately simpler

than one that would be used in an actual analysis, in order to make the exposition more

clear by focusing on the aspects relevant to type refinement. A specific static analysis

would augment this abstract domain with more information relevant to the purpose of

that analysis (for examples of such augmented abstract domains, see [89, 109]).

The abstract domain in the figure represents the relevant type information that is

propagated by the analysis from program point to program point. An abstract store

Store maps variable names to sets of abstract types. We uses sets of types because, as

discussed in Section 6.2, the analysis is approximating the concrete program behavior—

e.g., the analysis may be able to determine that a variable is either num or undefined,

but not be able to narrow the type information down any further. An abstract object

79

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

x ∈ Variable p ∈ Property

a ∈ Access ::= x | x.p
c ∈ Condition ::= typeof(a) = tag | isFunc(a)

| isUndefNull(a) | isPrim(a)

tag ::= ”number” | ”boolean” | ”string”

| ”undefined” | ”object” | ”function”

Figure 4.2: Type-based conditions for refinement. These conditions precisely describe
the conditonal expressions that trigger refinement. An access is a low-level primitive—
the simplest form of a variable or property access. Our analysis can handle any condi-
tional expression that reduces to this form.

type ObjType maps property names to their abstract types. An abstract function type

FuncType consists of a closure (the function to be called) and a property map (to model

the fact that JavaScript functions are also objects).

A type-based static analysis operates over this abstract domain. Abstract stores flow

along the program’s control-flow graph (where each node is a program statement), and

at each statement the analysis interprets the effect of that statement relative to a specific

input σ flowing from that statement’s predecessors, in order to determine the new σ′

that is the output of that statement, which is then passed to that statement’s successors.

If the analysis encounters a type-based condition, the analysis may be able to increase

the precision of the information contained in the store by refining the type information

based on the condition, as described below.

80

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

4.3.2 Identifying Relevant Type-based Conditions

When using type refinement, the analysis interprets a branch condition as a filter

along each branch of the conditional; these filters are used to refine the type informa-

tion of the stores passed to each respective branch. In theory, any branch condition

that constrains the types contained in the store can be used to perform type refinement.

However, in practice some conditions are much more complicated to translate into fil-

ters than others. Therefore the analysis designer must make a tradeoff, by syntactically

restricting the set of conditions from which the analysis extracts filters. The goal is to

balance the additional precision that may be gained by interpreting certain conditions

against the complexity of generating filters from those conditions.

Figure 4.2 shows the tradeoff that we have made in our type refinement implemen-

tation. The figure gives a restricted syntax for branch conditions (which also makes

certain implicit checks explicit in the syntax rather than implicit in the language se-

mantics). Our analysis only attempts refinement using conditions that are contained in

this restricted syntax; any other conditions are treated the same as if the analysis were

not doing type refinement. We chose this syntax to match the categories of explicit and

implicit type checks from Section 4.2. The typeofcondition corresponds to implicit

and explicit checks on type equality. The isFunc condition corresponds to the implicit

check for whether a value is a function. The isUndefNull condition corresponds to the

implicit check that the JavaScript interpreter performs when accessing or modifying

81

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

an object property. The isPrim condition corresponds to the implicit check that the

JavaScript interpreter performs as part of implicit type conversion.

Each condition contains exactly one access. An access can have two forms: a

variable or a direct property access. A direct property access x.p gives the precise

property name being accessed. The program need not literally contain a direct access;

the program might specify the property access using a complex expression. As long as

the static analysis can recover the direct access from the expression, the analysis will

attempt to apply refinement. In practice, for typeofconditions, our analysis handles

any conditions of the form typeofe1 == e2, where e1 and e2 are arbitrary JavaScript

expressions. Our analysis currently does not handle more complex expressions than

these. In particular, it does not handle logical combinations of these conditions. In

Section 6.6, we demonstrate that the conditions in Figure 4.2 are sufficient to achieve

significant increases in the precision of a type-based analysis; creating useful filters for

more complicated expressions is left to future work.

4.3.3 Filtering Type Information

Each condition induces a filter that captures the types described by that condition.

Figure 4.3 defines the filter for each possible condition. These filters match the descrip-

tion of the explicit and implicit information encoded in the scenarios from Section 4.2.

82

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

c ∈ Condition filter(c)

typeof(a) = ”number” {num}
typeof(a) = ”boolean” {bool}
typeof(a) = ”string” {str}
typeof(a) = ”undefined” {undefined}
typeof(a) = ”object” {null} ∪ObjType
typeof(a) = ”function” FuncType

isFunc(a) FuncType

isUndefNull(a) {undefined,null}

isPrim(a) {τp ∈ PrimType}

Figure 4.3: Filters for refinement conditions. The analysis uses these filters to refine
information along a condition’s branches.

The analysis uses a condition’s filters to refine the values that flow along the condition’s

branches. Specifically, for each type-based condition c:

1. The analysis interprets condition c relative to an input store σ, to determine which

branches (i.e, the true and false branches) to execute.

2. The analysis uses the input store σ to retrieve the abstract type τ of the condition’s

access a.

3. When the analysis executes the true branch, it computes a new abstract type for a

as follows: τ ∩ filter(c). In other words, it intersects the current set of possible

types for a with the set of possible types for a allowed by the branch condition.

The analysis updates the type for a in σ and sends the updated store along the

true branch.

83

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

4. When the analysis executes the false branch, it computes a new abstract type for

a as follows: τ −filter(c). In other words, it removes from the current set of pos-

sible types for a those types which would have meant that the branch condition

was true. The analysis updates the type for a in σ and sends the updated store

along the false branch.

For example, suppose the analysis reaches a condition isUndefNull(a) with a store

that maps a to the abstract type {undefined,num}. In this case the condition evalu-

ates to both true and false, and so the analysis must execute both the true and false

branches. Along the true branch, the analysis sends a store that assigns a the type

{undefined,num} ∩ filter(isUndefNull(a)) = {undefined}. Along the false branch,

the analysis sends a store that assigns a the type {undefined,num}−filter(isUndefNull(.)) =

{num}.

4.3.4 Sound Type Refinement

Type refinement is sound if and only if the filtered set of types sent to a branch is

a superset of all types that might ever be seen at that branch over all possible concrete

executions. Our refinement rules are sound as long as they are only applied to accesses

that correspond to a single concrete access. This is the standard static analysis issue

of strong vs weak updates: a strong update can replace a value with a completely new

value (potentially more precise than the previous value), while a weak update can only

84

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

replace a value with a weaker (i.e., less precise) value. This issue is best explained by

example.

Suppose that a variable x is mapped by the abstract store to the set of types {[foo 7→

{num, str}], [foo 7→ {num,bool}]}. This abstract value means that the type of x may

be one or the other of the two object types, but the analysis does not know which

one. Now suppose that the analysis is considering a branch condition typeof(x.foo) =

”number”. In the true branch, the type of x.foo must be num. However, the analysis

does not know which of the two possible object types for x is correct, so it cannot

determine which of the two object types has been constrained by the condition. Thus,

the analysis cannot refine either object type because if it refines the wrong one, the

analysis becomes unsound. When this is the case, any update to the abstract value for

x must be weak: an analysis cannot replace the abstract value of x with a more precise

version.

If, on the other hand, x refers to only a single possible object type, e.g., {[foo 7→

{num, str}]}, then an analysis knows that this is the type constrained by the condition.

Thus, the analysis can safely refine x’s value in the true branch to {[foo 7→ {num}]}.

When this is the case, an update to the abstract value for x can be strong: the analysis

can replace x’s abstract value with a more precise value. Our analysis applies type

refinement—which overwrites abstract values—only when the refinement corresponds

to a strong update.

85

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

4.4 Evaluation

We have implemented our proposed ideas and evaluated their effect on a static anal-

ysis for JavaScript that detects potential type-error exceptions. We find that an analysis

that performs type refinement on all of the conditions described in Section 4.3.2 can

achieve a significant increase in analysis precision, with a minimal impact on the anal-

ysis performance. In this section we demonstrate the effectiveness of our ideas by

comparing the type-error analysis with type refinement relative to the same analysis

without type refinement, for a variety of JavaScript programs.

4.4.1 JavaScript Analysis Framework

We use the JSAI JavaScript static analyzer for our experiments. The source code

for JSAI can be found at http://www.cs.ucsb.edu/˜pllab under Downloads.

JSAI is implemented in Scala version 2.10.1 using the Rhino parser as a front-end [1].

JSAI does not currently handle eval and related mechanisms for dynamic code injec-

tion, however none of our benchmarks use these mechanisms.

4.4.2 Benchmark Suite

JavaScript can be written in a number of different styles, and these styles can affect

the usefulness of our type refinement technique. In order to explore this issue, we select

86

http://www.cs.ucsb.edu/~pllab

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

benchmarks from a variety of application domains. We group the selected bencharks

into three categories:

• standard: These are the standard benchmark suites, SunSpider [?] and Oc-

tane [27], that are used by browser vendors to test the correctness and perfor-

mance of their JavaScript implementations.

• opensrc: These are real-world, handwritten JavaScript programs taken from vari-

ous open source projects such as LINQ for JavaScript [26] and Defensive JS [13].

• emscripten: These are machine-generated JavaScript code, obtained by compil-

ing C/C++ programs using the Emscripten [7] LLVM→JavaScript compiler.

We select seven benchmarks from each category for our evaluation. This benchmark

suite is available for download3. The benchmarks exercise a wide range of JavaScript

features, including core objects and APIs, typed arrays, etc. However, none of these

benchmarks contain eval or equivalent features that allow dynamic code injection.

Figure 4.4 shows the distribution of program sizes in each benchmark category,

based on the number of AST nodes created for the programs by the Rhino parser. We

use AST nodes as the metric for program size because it correlates with the amount of

work done by the analysis, which operates over AST nodes. The standard benchmarks,

while not large, exercise several key features of the language, and we use them to test
3Available with the rest of the repository under Downloads at http://www.cs.ucsb.edu/

˜pllab.

87

http://www.cs.ucsb.edu/~pllab
http://www.cs.ucsb.edu/~pllab

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

IQR Median Mean

emscripten opensrc standard
0

10,000

20,000

30,000

40,000

50,000

R

hi
no

 A
S

T
N

od
es

file:///Users/vineethkashyap/Downloads/benchstats.html

1 of 1 6/8/13 4:43 PM

Figure 4.4: Graph to show size distribution (along y-axis) of benchmarks in each cate-
gory (x-axis). Size is measured in terms of number of JavaScript AST nodes created by
the Rhino parser [1]. For each benchmark category, the blue box gives the 25%-75%
quartiles, the blue line gives the range of sizes, and median and mean are denoted by
red and black dots respectively.

the correctness of our implementation. The opensrc and emscripten benchmarks are

significantly larger, however it should be noted that the emscripten benchmarks contain

a large amount of unreachable code because the Emscripten compiler automatically

includes a large amount of unused library code.

4.4.3 Experimental Methodology

Our base analysis is flow-sensitive and context-sensitive, using a stack-based 1-

CFA context-sensitivity strategy (i.e., it distinguishes function contexts by the callsite

from which the function was invoked). The heap model uses static allocation sites to

88

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

model abstract addresses. Starting from this base type-error analysis, we implement

new analyses that incrementally add support for refining various kinds of conditions.

We implement and evaluate a total of four type-error analyses:

• B: a base flow-sensitive, context-sensitive type-error analysis that does not per-

form refinement.

• T: the B analysis, extended with type refinement for conditionals that contain

typeofchecks.

• TP: the T analysis, extended to include type refinement for conditionals that

contain isPrim checks.

• TPUNF: the TP analysis extended to include type refinement for conditionals

that contain isUndefNull and isFunc checks.

We compare the precision and performance of these analyses for all the benchmarks

in our suite. The metric we use to measure precision is the number of program locations

(i.e., AST nodes) that the analysis computes may potentially throw type-error excep-

tions. The analysis that reports the fewest locations is the most precise. This metric

correlates with the usefulness of a static type-error reporting tool: although false posi-

tives are inherent in a static analysis, the fewer the number of reported errors (i.e., the

fewer the false positives) the more useful the tool is.

89

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

The metric we use to measure performance is execution time in seconds. We per-

form a trial for each (analysis, benchmark) pair. Each trial runs in its own invocation of

the JVM. A trial starts with a warm-up run whose results are discarded. We then per-

form 10 runs in sequence and report the mean execution time of these 10 runs. All our

experiments execute on an Ubuntu 12.04.2 LTS machine with CPU speed of 1.9GHz

and 32GB RAM on JVM version 1.7.

4.4.4 Potential Opportunity for Type Refinement

In this section, we explore the potential benefits of type refinement across our

benchmark categories. Type refinement is potentially useful for a given branch con-

dition when the analysis treats that condition as non-deterministic—i.e., the analysis

cannot determine for certain which branch is taken, and so must execute both branches.

To gain an understanding of how many opportunities various flavors of type refinement

can take advantage of in these benchmarks, we distinguish three kinds of branches:

• T: Branches with a typeofcheck in them.

• P: Branches with a isPrim check in them.

• UNF: Branches with a isUndefNull or isFunc check in them.

We also qualify each kind of branch to be:

90

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

• D: a deterministic branch.

• NDC: a non-deterministic branch where the branch condition follows our re-

stricted syntax for type refinement, and therefore is a candidate for our type re-

finement.

• NDNC: a non-deterministic branch where the branch condition does not match

our restricted syntax for type refinement, and therefore is not a candidate for our

type refinement.

Deterministic branches D provide no opportunity for type refinement at all. Non-

deterministic, non-candidate branches NDNC could potentially benefit from type re-

finement if we extended our technique to include more complicated branches, but do

not benefit from our current type refinement implementation. The non-deterministic

candidate branches NDC are the branches that can benefit from our current implemen-

tation of type refinement.

We provide the above information about each qualified kind of branch for each

benchmark category, using the B version of the analysis, and summarize the data in Ta-

ble 4.1. The data shows that the deterministic branches far exceed the non-deterministic

ones. This might seem surprising, but the reason is because the analysis must perform

a number of checks that are almost always trivially true. For example, in the code

a[0] = 0, the analysis checks that a is not undefined or null, and in a vast major-

91

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

category branch kind D NDC NDNC

standard
T 469 87 104
P 2408 141 0
UNF 5692 571 0

opensrc
T 408 82 50
P 2048 80 0
UNF 9456 374 0

emscripten
T 149 14 9
P 595 3 0
UNF 7120 12 0

Table 4.1: The table that shows for each category of benchmarks, the kind of branches
that the analysis encounters. The numbers represent number of program locations. The
abbreviations are further detailed in Section 4.4.4. The way to interpret this table is
as follows: for example, the number under column NDC, and row T represents the
number of program locations with branches that have typeof checks in them, and are
non-deterministic and match our grammar for type refinement.

ity of cases this is true, making this conditional deterministic. This is particularly true

of the emscripten benchmarks, which makes sense because they were generated from

statically-typed languages. Although most branch points are deterministic, there are

still a significant number of non-deterministic branches that can be exploited by type

refinement.

4.4.5 Effects of Various Type Refinements

Table 4.2 presents the raw data of our evaluation, including the total number of

type errors reported for each benchmark and the mean runtimes for the B and TPUNF

92

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

analyses. Figure 4.5 extracts and summarizes the precision results from Table 4.2.

For each benchmark, we provide the number of type-errors reported by the analysis

under the four configurations (B, T, TP and TPUNF—columns 2–5), the percentage

reduction in number of type errors reported when run with TPUNF version over the B

version (column 6), the mean runtime in seconds when run with B and TPUNF versions

(columns 7 and 8, respectively), and the percentage increase in time taken of TPUNF

version over B version (column 9). We also summarize for each benchmark category,

the total number of error reports across benchmarks in that category for each version

of the analysis, and the mean runtime for running the analysis under B and TPUNF

versions across the benchmarks in that category. The mean performance data has a

relative standard deviation of at most 30%.

For the standard and opensrc benchmarks, the T configuration yields almost no ben-

efit over the B configuration, meaning that doing type refinement over this kind of con-

dition is not useful for reducing type-error exceptions. However, the TP configuration

does yield a fair amount of benefit, and the TPUNF configuration yields significant

benefit. For example, on the cryptobench benchmark in the standard category the

TPUNF configuration reports 253 fewer type errors than the B, and for rsa in open-

src category, 124 fewer errors are reported by TPUNF configuration when compared

to B. In general, across benchmarks in the standard and opensrc categories, most of

93

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

BTTPTP
U
N
F

50

100

150

200

250

300

350

400

450

cryptobench

3d-raytrace

access-nbody
splayrichards3d-cube

crypto-sha1
rsa

aes

linq_dictionary

linq_aggregate

linq_functional

linq_enum
erable

linq_actionlzm
a-full

lifefannkuch

helloworld

helloworld-fasthashtest
fasta

0

Type errors

file:///U
sers/vineethkashyap/D

ow
nloads/precision.htm

l

1 of 1
6/8/13 11:17 PM

Figure
4.5:

A
nalysis

precision
(in

num
ber

of
reported

type-errors)
w

ith
and

w
ithout

refinem
ent;

low
er

is
better.

B
enchm

arks
are

grouped
by

category.
U

nder
the

T
PU

N
F

analysis
w

ith
refinem

ent,m
any

of
the

standard
benchm

arks
(c
r
y
p
t
o
b
e
n
c
h

to
c
r
y
p
t
o
-
s
h
a
1)

and
the

opensrc
benchm

arks
(r
s
a

to
l
i
n
q
a
c
t
i
o
n)

achieve
m

ore
than

50%
im

provem
entin

precision,relative
to

the
B

analysis
w

ithoutrefinem
ent.

94

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

the benefits arise from type refinement for isPrim, isUndefNull and isFunc implicit

checks.

For the emscripten benchmarks, type refinement does not make a significant impact

on precision—this is expected based on the low potential available in these benchmarks

for type refinement (see Figure 4.1), and because there are very few type-errors reported

in the B version already. Because emscripten benchmarks are generated by compiling

from a statically-typed language, the values in the program tend to be very monomor-

phic.

From Table 4.2, specifically the column giving the percentage increase in time, we

observe that type refinements have a negligible effect on performance.

4.5 Related Work

Static analysis of dynamic languages is an active research area. Recent innova-

tions include: a type analysis that relies on an abstract domain that is highly tuned for

JavaScript [89]; various static type inference algorithms [34, 69] and hybrid type in-

ference algorithms [33], including those that prevent access to undefined fields [144],

enable program optimizations [79, 109], or are suitable for IDEs [124]; static analy-

ses to secure the Web [72–74]; alias analyses for JavaScript [85, 133] and Python [71];

an analysis to support JavaScript refactoring [64]; and analysis frameworks for dy-

95

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

B
enchm

ark
N

um
berofTypeE

rrors
R

eduction
in

M
ean

R
untim

e
(s)

Slow
dow

n
B

T
T

P
T

PU
N

F
TypeE

rrors
B

T
PU

N
F

cryptobench
4
5
0

448
3
2
1

1
9
7

5
6
%

47.46
46
.30

−
2.4%

3d–raytrace
8
7

87
8
4

3
5

6
0
%

3.92
4
.07

4%

access–nbody
4
3

43
4
3

6
8
6
%

0.41
0
.41

0%

splay
5
5

55
5
5

3
1

4
4
%

0.78
0
.78

0%

richards
7
3

73
6
2

4
5

3
8
%

2.23
2
.44

9%

3d–cube
6
0

60
6
0

4
9

1
8
%

3.77
3
.72

−
1%

crypto–sha1
0

0
0

0
0
%

0.30
0
.29

−
3%

standard
7
6
8

7
6
6

6
2
5

3
6
3

5
3
%

8
.4
1

8
.2
9

−
1
.4
%

rsa
1
4
8

148
1
2
9

2
4

8
4
%

10.73
10
.46

−
3%

aes
79

79
6
4

2
3

7
1
%

0.82
0
.81

−
1%

linq
dictionary

1
0
2

102
1
0
2

6
6

3
5
%

81.00
79
.35

−
2%

linq
aggregate

66
66

3
3

3
1

5
3
%

3
08.29

314
.23

2%

linq
functional

1
0
1

101
8
8

8
7

1
4
%

5
30.94

536
.41

1%

linq
enum

erable
17

17
1
7

1
7

0
%

85.55
84
.49

−
1%

linq
action

11
11

1
1

1
1

0
%

21.61
21
.99

2%

opensrc
5
2
4

5
2
4

4
4
4

2
5
9

5
1
%

1
4
8
.4
2

1
4
9
.6
8

−
1
%

lzm
a–full

12
12

9
5

5
8
%

0.39
0
.39

0%

life
4

4
4

4
0
%

1.53
1
.61

5%

fannkuch
4

4
4

4
0
%

1.97
2
.01

2%

hellow
orld

4
4

4
4

0
%

1.46
1
.47

1%

hellow
orld–fast

4
4

4
4

0
%

1.44
1
.38

−
4%

hashtest
4

4
4

4
0
%

3.66
3
.73

2%

fasta
4

4
4

4
0
%

3.21
3
.50

9%

em
scripten

3
6

3
6

3
3

2
9

1
9
%

1
.9
5

2
.0
1

3
%

Table
4.2:

Table
sum

m
arizing

the
precision

and
perform

ance
benefits

ofvarious
type

refinem
entoptim

izations.

96

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

namic languages [28, 104]. All these techniques are orthogonal to type refinement. As

such, they all may benefit from the idea of refinement in general, and the analyses for

JavaScript would benefit directly from our contribution.

Two existing techniques for type inference of dynamic languages rely in partic-

ular on a notion of refinement: flow typing [78] and occurrence typing [136, 137].

Flow typing is a technique for JavaScript type inference that uses type tags in explicit

typeof conditionals to filter type information [78]. Occurrence typing is another

technique for refining types in branches based on the conditionals that govern those

branches [136, 137]. Occurrence typing takes into consideration a more complex set

of filters than flow typing and type refinement, including the effects of selectors (e.g.,

car). These filters are encoded in a propositional logic that forms the basis of a type

system for Scheme.

Our work, type refinement, leverages a similar insight as does flow typing and oc-

currence typing, namely that runtime types in a dynamically typed language are con-

strained by branch conditions. Perhaps the most important distinction between our

work and prior work is the focus on which branch conditions are mined by the analysis

to obtain more precise information. Flow and occurrence typing focuses on branches

that occur in common coding idioms: explicit behavior, encoded by a programmer, that

follows a particular pattern. The reasoning behind this focus is that the programmers

are communicating information by using an idiom, and automated understanding can

97

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

take advantage of this high-level semantic information. Type refinement focuses on

implicit behavior driven by the runtime: behavior encoded not by the programmer, but

by the semantics of the language itself. The reasoning behind this focus is that implicit

behavior (i.e., the semantics of the language) appears in every program, and if the anal-

ysis can take advantage of this behavior the potential benefit can be huge. In the context

of type errors, our study shows that a focus on the implicit JavaScript behavior provides

more benefit that the focus on only explicit JavaScript behavior.

Type refinement also differs from prior work in its goals and methods. The goal

of flow and occurrence typing is a sound static type system for a dynamic language.

Hence, Guha et al. and Tobin-Hochstadt et al. focus on type soundness (although

Guha et al. also validate their work against a corpus of Scheme code). In contrast, the

goal for our work is to provide more precise information for JavaScript static analyses,

which we validate by performing an evaluation of several variants against a large corpus

of JavaScript programs. Operationally, our work differs from prior work in that prior

work encodes the extra type information in the abstract domain, explicitly representing

the information and essentially delaying the refinement. Ours work filters the results

along a path, essentially applying the refinement immediately.

Type refinement should not be confused with refinement types [46, 68]. Although

they have similar names and share other superficial similarities, they are different con-

cepts. Type refinement is an action that occurs during program analysis: it filters the

98

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

analysis values that flow along paths in the program’s abstract execution. An analysis

with type refinement is more precise than one without it. A refinement type is an entity,

placed in a program by its author to express a restriction on the set of values that can be

computed by a particular expression. A type system with refinement types can prove

stronger properties about programs than one without them.

4.6 Conclusion and Future Work

We show in this work that type refinement is a useful precision optimization for

static analysis of JavaScript. In particular, type refinement for implicit conditionals in

JavaScript can have a significant impact on precision (upto 86% for a static type-error

client). We also show that type refinement does not cause any adverse performance

impact.

We can do type refinements only if the refinement can be a strong update, thus, we

can increase the precision due to type refinement by implementing orthogonal tech-

niques that can increase the number of strong updates. We are currently exploring re-

cency abstraction [37, 84], which is a technique that can increase the number of strong

updates in the analysis. It would be interesting to study the effect of combining type

refinement with recency abstraction.

99

Chapter 4. Improving Precision of JavaScript Static Analysis via Type Refinement

We would also like to extend our type refinement to more complicate conditionals,

and explore how far we can increase precision benefits without affecting adversely

performance.

100

Chapter 5

Improving Performance of Static
Analysis via Parallelization

5.1 Introduction

JavaScript is prevalent on a wide variety of platforms, including the web, mobile

phones, desktops, and servers. Static analysis for JavaScript is a necessity to help

build developer tools to construct and review secure, fast, maintainable, and correct

JavaScript code. In order to be useful, such JavaScript analyses need to be precise and

to run within a reasonable amount of time. However, JavaScript’s inherently dynamic

nature makes precise static analysis very expensive. As an anecdotal example, we have

observed a particular 2,800 line JavaScript program1 on which a sequential JavaScript

analysis that computes data and control dependencies takes over 22 hours to complete.

While in the early days of its introduction JavaScript programs tended to be small, sim-

1linq aggregate with stack-5-4

101

Chapter 5. Improving Performance of Static Analysis via Parallelization

ple scripts, today there are many complex JavaScript applications with tens to hundreds

of thousands of lines of code. Thus, there is a need to increase JavaScript analysis

performance while maintaining high levels of precision.

A heretofore unexplored option is to parallelize the JavaScript analysis, thus ex-

ploiting the prevalence of modern multicore architectures. The idea of parallel pro-

gram analysis is not novel; there are many existing parallel program analysis frame-

works [30, 61, 63, 103, 105, 113, 114, 121, 140]. However, most of these efforts are

aimed at first-order, statically-typed, highly imperative languages such as C or Fortran;

JavaScript presents new challenges that must be addressed. Our novelty lies not only

in the first parallel JavaScript static analysis, but also in the approach with which we

design our parallel analysis, which potentially could benefit parallel analysis of other

languages.

Key Insight. We focus on parallel analyses that are flow- and context-sensitive, be-

cause we need a high level of precision to successfully analyze JavaScript. Almost all

such precise parallel analyses in existing work are based on traditional dataflow anal-

ysis (DFA) [93, 100]. Our key insight is that the DFA framework inextricably mixes

decisions about synchronization and granularity with the definition of the analysis it-

self, thus limiting opportunities to fully exploit possible parallelism in such analyses.

We identify an alternate approach to program analysis more amenable to paralleliza-

102

Chapter 5. Improving Performance of Static Analysis via Parallelization

tion, based on ideas from abstract interpretation. Using this approach, we can phrase

an analysis as two separate and independent components:

• An abstract semantics that represents the static analysis as a state transition sys-

tem (STS). The analysis is defined as a reachable-states computation on the STS:

given a program and its initial state, the analysis finds all abstract program states

potentially reachable from that initial state. This reachable-states computation is

embarrassingly parallel in nature, because each state is inherently independent

from all other states.

• A separate mechanism for selectively merging multiple abstract states into a

single abstract state by over-approximating the information in the states being

merged together. This merging takes place during the reachability computation

and is used to bound the reachable state space in a sound manner. This mech-

anism effectively merges branches of the computation tree formed by the STS,

turning it into a DAG and thus adding sequential behavior (and synchronization

points) into the otherwise parallel reachable-states computation.

From this perspective the static analysis itself is trivially a massively parallel prob-

lem; this parallelism is then limited by a strategy that determines how and when states

are merged (introducing synchronization into the analysis). Using this approach, op-

portunities for parallelizing the analysis become more obvious than the previous DFA-

103

Chapter 5. Improving Performance of Static Analysis via Parallelization

based approaches. In fact, existing approaches can be re-defined as limited instances

of our framework. While it is possible to derive this overall insight purely from a DFA

standpoint, it is not possible to act upon it within the DFA framework because DFA

intertwines and conflates the two above-described components in an inseparable way.

Our new perspective provides a useful framework for designing parallel analyses,

but there is still a large design space to be explored. The strategy for merging states

controls the level of synchronization required by the analysis, as well as the size of the

state space being explored; thus it has a strong impact on parallelism. In addition, while

the normal reachable-states computation is embarassingly parallel, that does not nec-

essarily mean that taking full advantage of its inherent parallelism is the best course—

there are many different possible levels of granularity which may provide performance

benefits and tradeoffs.

In essence, in our approach the problem of parallelizing an analysis boils down to

two decisions: determining a strategy for merging states, and selecting a particular level

of granularity at which to operate. In this work we explore several such design points,

discussing their rationales and implications. We include a novel parallelization strategy

based on function contexts.

Contributions. The specific contributions of this work are the following:

104

Chapter 5. Improving Performance of Static Analysis via Parallelization

1. A new perspective on the design of parallel program analyses, based on formulat-

ing the analysis as a state transition system plus a separate state merging strategy.

(Section 5.3.1)

2. A language-agnostic exploration of the design space of this parallelization frame-

work, including a novel parallelization strategy based on function contexts. (Sec-

tion 5.3.2)

3. Our implementation of these ideas for JSAI, an abstract interpreter for JavaScript

that computes a fundamental analysis for JavaScript—performing a combination

of type inference, alias analysis, control-flow analysis, and string, numeric, and

boolean value analysis. (Section 5.4)

4. An evaluation of our resulting parallel JavaScript abstract interpreter. Speedups

are typically in the 2-4× range on 12 hardware threads, ranging as high as 36.9×

. (Section 6.6)

5. A publicly available implementation2.

2In the Downloads section of http://cs.ucsb.edu/˜pllab

105

http://cs.ucsb.edu/~pllab

Chapter 5. Improving Performance of Static Analysis via Parallelization

5.2 Background and Related Work

In this section we provide a brief background on sequential dataflow analysis (DFA)

and describe related work on parallelizing program analysis, much of which is based

on DFA.

5.2.1 Sequential Dataflow Analysis

DFA-based analysis is carried out on the program’s control-flow graph (CFG),

which is a directed graph G = 〈N,E〉 where N is a finite set of nodes corresponding

to program statements and E ⊆ N ×N is a set of edges corresponding to the possible

control-flow between statements. The possible analysis solutions are structured into a

lattice L = (Solns ,v,t,u), where the most-precise solution is at the bottom ⊥ of the

lattice and the least-precise solution is at the top > of the lattice.3

Each node k of the CFG maintains two lattice elements corresponding to the anal-

ysis solutions immediately before and immediately after that statement: INk represents

the incoming solution, and OUTk represents the outgoing solution. At the beginning of

the analysis INk = OUTk = ⊥ for every k. Each node k has a transfer function Fk that

transforms INk to OUTk. For all nodes k, the analysis iteratively computes the following

two functions until the analysis reaches a fixpoint:

3This is actually opposite of the convention usually used by DFA, which reverses the lattice described
above; we do this to be consistent with the abstract interpretation convention used later in the chapter.

106

Chapter 5. Improving Performance of Static Analysis via Parallelization

INk =
⊔

x∈pred(k)

OUTx (5.1)

OUTk = Fk(INk) (5.2)

In other words, for each node merge the outgoing information from all immediate

predecessor nodes (using the lattice join operator) to get that node’s incoming solution,

and then apply that node’s transfer function to get that node’s outgoing solution. The

fixpoint computation is usually performed using a worklist. The worklist is initialized

to contain the program’s entry node; the analysis iteratively performs the following

actions until the worklist is empty (signaling the fixpoint has been reached): pop a

node k from the worklist; compute INk and OUTk; if OUTk is changed from its previous

value then put all successor nodes of k onto the worklist.

The Importance of Node Ordering. The order in which the worklist processes nodes

is irrelevant in terms of correctness, i.e., the analysis will compute the same solution

regardless of node ordering. However, it turns out to have significant impact on analysis

performance. Intuitively, a bad node ordering can cause paths in the CFG to be redun-

dantly recomputed many times. Suppose a node k is computed to have OUTk = `where

lattice element ` ∈ Solns , and this information is propagated by the worklist down the

107

Chapter 5. Improving Performance of Static Analysis via Parallelization

CFG paths starting from k. Later the worklist processes a node that is a predecessor to

k, causing k to be processed again, and now OUTk = `′ where ` v `′. Then this new in-

formation must be propagated down the CFG again, subsuming the previous solutions

along those paths. In the worst case those paths could be recomputed h times where h

is the height of the lattice. Thus, a good node ordering is important for performance.

5.2.2 Parallelizing Program Analysis

We categorize the related work on parallelizing flow- and context-sensitive program

analysis into three general approaches. We leave out work on parallelizing flow- or

context-insensitive analysis, such as that by Méndez-Lojo et al. [113, 114], Edvinsson

et al. [63], and Nagaraj et al. [122].

Worklist-Based Parallelism. This parallelization strategy operates by processing all

nodes currently enqueued on the analysis worklist in parallel. Dwyer et al. [61] discuss

a worklist-parallel implementation of the FLAVERS DFA toolset [60] for C. They start

a new thread for each node in a global worklist and each thread enqueues its result back

in that worklist. The authors report average speedups of 3.8× on 6–9 hardware threads.

However, the paper’s evaluation is problematic in two respects, making it difficult to

interpret the results: (1) the sequential analysis they compare against used an arbitrary

node ordering for the worklist, which in our experience can cause slow-downs from 2–

108

Chapter 5. Improving Performance of Static Analysis via Parallelization

5× relative to a more optimized node ordering strategy; and (2) their evaluation reports

analysis runtimes rather than speedups.4

Nondeterminism-Based Parallelism. This parallelization strategy looks for nonde-

terministic branch points in the analysis (e.g., conditional guards with indeterminate

truth values) and executes the branches in parallel until control-flow merges again (e.g.,

after the conditional is finished). This approach is taken by Monniaux [121], who

describes a parallel implementation of the Astrée static analyzer [53] for embedded

controller code written in C. The parallel implementation exploits the fact that, in this

particular application domain, programs often contain dispatch loops over a switch

statement, and each case within the switch requires significant analysis effort and

is independent of all other cases. Thus each case is analyzed in parallel, achieving

speedups between 2–3× on five processors. The usefulness of this method is highly

specific both to C and to idioms common in the C programs that Astrée targets. Mon-

niaux claims that a version for general-purpose programs was attempted which paral-

lelized at arbitrary nondeterministic points, and the results were dissappointing [121].

Partition-Based Parallelism. This parallelization strategy partitions the analysis in

some way and computes the analysis of each partition in parallel. This strategy is

extremely general, with a number of distinct instantiations in the literature.

4Speedups speak of both speed and scalability whereas runtimes tell us only about how fast something
went.

109

Chapter 5. Improving Performance of Static Analysis via Parallelization

Lee et al. [105, 106] partition their parallel Fortran analysis by strongly-connected

components (SCC) in the program’s CFG. Each SCC is analyzed in parallel using sepa-

rate worklists; the SCC solutions are combined using elimination-based techniques [126].

They achieve an average speedup of 4.6× in 8 threads. However, the speedups were

relative to their parallel analysis running on a single thread rather than to a specialized

sequential version of the analysis.

Weeks et al. [140] partition a parallel analysis for a custom purely-functional lan-

guage (used to write concurrent applications) using dynamically-discovered dependen-

cies. If statement s1 is found to be dependent on statement s2, then s1 will be put into

s2’s partition (unless this would increase s2’s partition size beyond some threshold).

The authors report runtimes, but we were able to compute speedup from the provided

data. These average 9.4× on 16 threads on two trivial benchmarks handcrafted by the

authors.

Albarghouthi et al’s parallel C analysis. [30] is query-based (i.e., they do not com-

pute a solution for the entire program, only enough to answer a specific query). They

frame the analysis in terms of MapReduce [56], with a parallel map phase and a se-

quential reduce phase. During the map phase, multiple functions are analyzed intrapro-

cedurally in parallel. If a function call is encountered, then the call is enqueued to be

analyzed later. During the reduce phase, sequential dependencies are accounted for.

110

Chapter 5. Improving Performance of Static Analysis via Parallelization

The process is repeated on the enqueued function calls until a fixpoint is reached. They

achieve an average speedup of 3.71× on 8 hardware threads.

5.2.3 Problems with the DFA Approach for Parallelism

A number of the existing approaches to parallelizing analysis, as described above,

require a CFG as input. For languages such as C and Fortran this is a reasonable as-

sumption; however, for a language like JavaScript it is not reasonable at all. Javascript’s

higher-order functions, prototype-based inheritance, implicit type conversions and im-

plicit exceptions, and other language features mean that a computing a useful CFG

requires extensive, precise, and costly analysis—the very kind of analysis we are trying

to optimize via parallelization.

In addition, the DFA approach itself can make it more difficult to see opportunities

for parallelization. The traditional formulation of DFA is inherently sequential. We

observe that equations (1) and (2) in Section 5.2.1 implicitly impose synchronization

points into the very definition of the analysis itself, as they require multiple nodes to

cooperate in order to merge and propagate information between themselves. Synchro-

nization is (almost) unavoidable for a tractable analysis, but the DFA framework makes

it difficult to separate synchronization out as a separate concern from the analysis itself.

111

Chapter 5. Improving Performance of Static Analysis via Parallelization

5.3 Designing for Parallelism

Our key insight is that by designing and implementing the program analysis in a

certain way, the design space of parallelization strategies becomes clearer and imple-

menting the parallelization strategies effectively becomes easier. In particular, we take

advantage of an approach to program anaysis based on abstract interpretation which we

call STSO; this approach divides the analysis into two separate components: an embar-

rassingly parallel reachability computation on a state transition system, and a strategy

for selectively merging states during that reachability computation. We describe this

program analysis approach below, and then discuss the parallelism design space ex-

posed by this anaysis perspective.

5.3.1 The STSO Approach to Program Analysis

The basis for the STSO approach to program analysis is described in [82]; we sum-

marize the approach in this section. Note that everything in this section refers to a

completely sequential definition of program analysis; there is no parallelism. Funda-

mentally, the STSO model specifies a static analysis in two parts: (1) the underlying

analysis itself, described as a state transition system (STS); and (2) a strategy for when

to merge states together, used to bound the reachable state space while maintaining the

soundness of the analysis.5 The solution to the analysis is the set of reachable states in

5As described in [82] this strategy is a widening operator O in the abstract interpretation sense.

112

Chapter 5. Improving Performance of Static Analysis via Parallelization

the STS from some given initial state; the state merging strategy specifies the control

flow sensitivity of the analysis, i.e., its path-, flow-, context-, and heap-sensitivity. Thus,

the analysis and its sensitivity are treated as two separate and independent concerns.

The key insight of this work, as opposed to [82], is that this separation of concerns can

greatly benefit parallelism in a way described in later sections of this chapter.

An abstract machine-based smallstep operational semantics is a useful way to de-

scribe a static analysis [138], and can easily be seen as a STS. Such a semantics defines

a notion of abstract state (e.g., a program point together with the current abstract values

of all variables in scope at that program point) and a set of transition rules that uses the

semantics of the program statement at that program point to map an abstract state to a

new abstract state. For example, if the abstract state is 〈pp3, [x 7→1]〉 and the statement

at program point 3 is “x += 1”, then the next state would be 〈pp4, [x 7→2]〉. The exact

definition of an abstract state and the transition rules would vary depending on the lan-

guage being analyzed and the analysis being defined. Without going into details on the

exact state definition and transition rules for a particular language and analysis, we can

formalize this idea as the following:

ς̂ ∈ Σ] abstract states

F] ⊆ Σ] × Σ] transition relation

113

Chapter 5. Improving Performance of Static Analysis via Parallelization

The abstract states form a lattice L = (Σ],v,u,t), where v is the ordering rela-

tion, u is the meet operator, and t is the join operator. The solution to the program

analysis is defined as the least fixpoint (lfp) of the abstract semantics from some set

of initial states Σ]
I . Define the operator ·̊ so that for set S and any function on sets F ,

F̊(S) = S ∪ F(S). Then the analysis solution JPK] for program P is defined by:

JPK] = lfpΣ]
I
F̊]

An operational view of this least fixpoint definition is as a worklist algorithm: it

initializes the worklist with the states in Σ]
I , then iteratively it (1) removes the current

states from the worklist; (2) applies F] to them to get a set of new states; (3) filters out

any states it has seen already; and (4) puts the remaining states into the worklist. This

continues until the worklist is empty, at which point it has computed the entire set of

possible states, thus concluding the program analysis.

However, the analysis as defined is intractable (in fact, potentially uncomputable).

The issue is control-flow—specifically, the nondeterministic choices that must be made

because of the analysis’ over-approximations: which branch of a conditional should

be taken, whether a loop should be entered or exited, which (indirect) function should

be called, etc. The number of abstract states grows exponentially with the number of

114

Chapter 5. Improving Performance of Static Analysis via Parallelization

nondeterministic choices, and is potentially unbounded. We must extend the analysis

to control this behavior.

Therefore, we apply a widening operator O to the analysis which bounds the ab-

stract state space by selectively merging abstract states, thus losing precision but mak-

ing the analysis tractable. This widening operator will, at each step of the fixpoint com-

putation: (1) partition the current set of reachable states into disjoint sets; (2) for each

partition, merge all of the abstract states in that partition into a single abstract state that

over-approximates the entire partition; (3) union the resulting abstract states together

into a new set that contains only a single abstract state per partition. This allows us to

limit the number of states by fixing a particular number of partitions. By defining differ-

ent strategies for partitioning the abstract states, we can control how states are merged

and thus control the precision and performance of the analysis. As shown in [82], this

partitioning strategy is actually synonymous with the analysis control flow sensitivity.

Operationally, this means that we modify the worklist algorithm so that it maintains

a memoization table with one entry (i.e., abstract state) per partition. At each step the

algorithm selects a state from the worklist, uses F] to compute a new set of states,

merges them into the appropriate partition entries using O, and if any of those parti-

tion entries have changed due to the newly-merged information, adds them back into

the worklist. In pseudocode, this operational view of the STSO model looks like the

following:

115

Chapter 5. Improving Performance of Static Analysis via Parallelization

Example 4 The sequential worklist algorithm
put the initial abstract state ς̂0 on the worklist
initialize map memo : Partition → State] to empty
repeat

remove an abstract state ς̂ from the worklist
for all abstract states ς̂ ′ in next states(ς̂) do

if memo does not contain partition(ς̂ ′) then
memo(partition(ς̂ ′)) = ς̂ ′

put ς̂ ′ on worklist

else
ς̂old = memo(partition(ς̂ ′))
ς̂new = ς̂old t ς̂ ′
if ς̂new 6= ς̂old then

memo(partition(ς̂ ′)) = ς̂new
put ς̂new on worklist

end if
end if

end for
until worklist is empty

The next states function applies the state transition rules to determine the next

abstract state(s) reachable from the given abstract state—this entails the computational

core of the analysis logic. The partition function maps an abstract state to its par-

tition as defined by the state merging strategy. The algorithm computes the analysis

fixpoint exactly as described earlier.

5.3.2 Parallelism Design Space

The STSO program analysis model provides a useful perspective for parallelizing

analysis, because it boils the problem down to two questions: (1) what strategy should

116

Chapter 5. Improving Performance of Static Analysis via Parallelization

we use to merge states during the reachability computation (thus injecting synchro-

nization points); and (2) what granularity should we use to parallelize the reachability

computation itself?

Recall that the state merging strategy is synonymous with the flow- and context-

sensitivity of the analysis—merging fewer states means greater sensitivity and thus

greater precision, while merging more states means less sensitivity and thus less pre-

cision. With respect to parallelization, there is a tradeoff between merging strategies

that merge fewer states (reducing synchronization but increasing the number reachable

states), versus strategies that merge fewer states (increase synchronization but reducing

the number of reachable states). We explore a small part of this space in our evaluation,

however, there is interesting future work in exploring this trade-off further.

Besides state merging, the remaining question is granularity, which we explore in

the rest of this section. We first discuss an obvious point in this space, the worklist-

parallel strategy, and why it is not a satisfactory solution. We then introduce a novel

point in this space, the per-context strategy, that has not been explored before.

Worklist-Parallel Strategy. The most straightforward granularity strategy is to par-

allelize the worklist loop by processing each node on the worklist in parallel. In essence,

we explore the reachability of each node independently until the various states reach

some merge point specified by the merge strategy (but not necessarily the same merge

117

Chapter 5. Improving Performance of Static Analysis via Parallelization

point for all states), whereupon the merged states are inserted back into the global work-

list for the process to be repeated. The pseudocode of the analysis for this strategy looks

like the following:

Example 5 The worklist parallel algorithm
put the initial abstract state ς̂0 on the worklist
initialize templist to empty
initialize map memo : Partition → State] to empty
repeat

for all abstract states ς̂ in the worklist do in parallel
for all abstract states ς̂ ′ in next states(ς̂) do

begin thread-safe
if memo does not contain partition(ς̂ ′) then

memo(partition(ς̂ ′)) = ς̂ ′

put ς̂ ′ on templist

else
ς̂old = memo(partition(ς̂ ′))
ς̂new = ς̂old t ς̂ ′
if ς̂new 6= ς̂old then

memo(partition(ς̂ ′)) = ς̂new
put ς̂new on templist

end if
end if

end thread-safe
end for

end parallel for
swap worklist and templist

until worklist is empty

The thread-safe block is run atomically using synchronization primitives.

There are three major drawbacks to this strategy. First, it can cause a great deal of

redundant computation because of node ordering issues (as described in Section 5.2.1).

If multiple states are being processed in parallel but one subsumes the others, then

118

Chapter 5. Improving Performance of Static Analysis via Parallelization

the parallel computations are not actually useful and there is no gain in performance.

Second, all of the parallel computations must be synchronized together, even those that

reach different merge points (and hence are independent). This is because the analysis

doesn’t know which threads will reach which merge points, and thus must wait until all

threads reach some merge point before it can continue at any one merge point. Finally,

this strategy introduces a large number of short-lived threads, which can be detrimental

to performance.

Per-Context Parallel Strategy. We propose a novel point in the granularity design

space based on function contexts, one that attempts to address some of the issues of

the worklist-parallel strategy and is motivated by empirical observation. We want to

reduce node ordering issues, limit synchronization between independent parts of the

analysis, and increase the granularity of the thread computations. Context-sensitive

analyses have desirable properties which can be exploited for these goals. Context-

sensitive analyses clone functions based on some notion of abstract calling context (the

exact definition of “context” defines the particular type of context-sensitivity used by

the analysis). Each clone is specialized to a particular context and, most importantly,

analyzed separately. Different clones can be analyzed in parallel, while analysis of

a single clone can be done sequentially. This strategy allows a more optimal node

ordering, because within each context we can sequentially analyze nodes in reverse

119

Chapter 5. Improving Performance of Static Analysis via Parallelization

postorder (the best possible node ordering). Different contexts are independent of each

other, which limits synchronization. Finally, threads now compute an entire function

rather than a single statement or basic block, increasing work granularity per thread

and reducing thread management overhead. The pseudocode of the analysis using this

strategy is as follows:

In the above algorithm, a unique thread is used to run ANALYSISTHREAD per con-

text. The global map backlog maps each context to a synchronized queue, while

worklist is local to each thread. The function context extracts the context under

which an abstract state needs to be analyzed. Note that no synchronization is required

on access to memo (because each thread is run sequentially and multiple threads do not

access same parts of memo). The procedure PROCESS checks if no thread correspond-

ing to context is running, which can happen under two circumstances: (1) the context

has never been seen before, thus a new thread is used to run ANALYSISTHREAD with

that context (2) the thread corresponding to the context has marked itself as potentially

done, in which case the thread is unmarked and woken up back again to run ANALY-

SISTHREAD. The analysis begins by calling MAIN, and the analysis ends when each

of the threads mark themselves as potentially done and each of the backlog queues are

empty.

While a per-context strategy has been previously mentioned in the literature [63], to

our knowledge this is the first time it has ever been detailed and implemented. Addition-

120

Chapter 5. Improving Performance of Static Analysis via Parallelization

Example 6 The per-context parallel algorithm
procedure ANALYSISTHREAD(ctxt)

move abstract states from backlog(ctxt) to worklist

repeat
remove an abstract state ς̂ from the worklist
for all abstract states ς̂ ′ in next states(ς̂) do

if context(ς̂ ′) 6= ctxt then
PROCESS(context(ς̂ ′), ς̂ ′)

else if memo does not contain partition(ς̂ ′) then
memo(partition(ς̂ ′)) = ς̂ ′

put ς̂ ′ on worklist

else
ς̂old = memo(partition(ς̂ ′))
ς̂new = ς̂old t ς̂ ′
if ς̂new 6= ς̂old then

memo(partition(ς̂ ′)) = ς̂new
put ς̂new on worklist

end if
end if

end for
until worklist is empty
if backlog(ctxt) is empty then

mark this thread as potentially done
else

ANALYSISTHREAD(ctxt)
end if

end procedure

procedure PROCESS(ctxt, ς̂)
begin thread-safe

enqueue ς̂ into backlog(ctxt)
if no thread corresponding to ctxt is running then

ANALYSISTHREAD(ctxt)
end if

end thread-safe
end procedure

procedure MAIN

initialize map memo : Partition → State] to empty
ANALYSISTHREAD(context(ς̂0))

end procedure

121

Chapter 5. Improving Performance of Static Analysis via Parallelization

ally, thanks to the STSO representation of the analysis, using the per-context strategy is

simple. Instead of a global worklist, use one worklist per context encountered during

the analysis. Each worklist has a dedicated thread computing a fixpoint. When a thread

processes a function call leading to a new context, it passes the resulting state on to the

appropriate thread and continues processing its own worklist. The only synchronization

required is this thread communication. When all worklists are empty, the analysis has

reached a global fixpoint.

5.4 Parallel JavaScript Analysis

In this section we briefly describe the JavaScript language and the existing sequen-

tial JavaScript analysis that we adapted for our parallel analysis. We then describe the

modification to that sequential analysis necessary to implement our parallel analysis

design.

5.4.1 JavaScript Features

JavaScript is an imperative, dynamically-typed language with objects, prototype-

based inheritance, higher-order functions, implicitly applied type-conversions, and ex-

ceptions. JavaScript programs only have two scopes (global scope and function scope),

though variables and functions are allowed to be defined anywhere; these declara-

122

Chapter 5. Improving Performance of Static Analysis via Parallelization

tions (but not the corresponding initializations, except for functions) are automatically

hoisted to the appropriate scoping level. JavaScript is designed to be as resilient as

possible: when a program performs some action that doesn’t make sense (e.g., access-

ing a property of a non-object, or adding a boolean and a function together) JavaScript

uses implicit conversions and default behaviors when possible in order to continue the

execution without errors rather than raising an exception.

Objects are the fundamental JavaScript data structure.6 Object properties can be

dynamically inserted and deleted, and when performing a property access the specific

property being accessed can be computed at runtime. JavaScript features such as the

for..in loop and the in operator allow for reflective introspection of an object’s con-

tents. Object inheritance is handled via delegation: when accessing a property that is

not present in a given object obj, the property lookup algorithm determines whether

obj has some other object proto as its prototype; if so then the lookup is recursively

propagated to proto.

These features have two important implications for static analysis: (1) computing

a precise CFG requires careful and costly analysis, because higher-order functions,

prototype-based inheritance, implicit type-conversions, and implicit exceptions make

control-flow non-obvious, thus analysis techniques based on the CFG are problematic;

6Even functions and arrays are just special kinds of objects, and can be used in the same ways as
other objects.

123

Chapter 5. Improving Performance of Static Analysis via Parallelization

and (2) JavaScript’s inherent dynamism means that high precision is important to get

useful results, implying that any useful analysis will be expensive.

5.4.2 Sequential JSAI

We build on an existing sequential abstract interpreter for JavaScript called JSAI [96].

The analysis performs type inference, control-flow analysis, pointer analysis, and nu-

meric, string, and boolean value analysis. JSAI is designed and implemented as an

abstract machine-based smallstep operational semantics, which can be thought of as

a state transition system. Rather than baking in a specific flow-, context-, and heap-

sensitivity strategy, JSAI is designed around the STSO model in order to have config-

urable control flow sensitivity [82]: the basic analysis computes the reachable states of

the STS defined by the abstract semantics, while a separate modular component deter-

mines a strategy for selectively merging states. States are represented as tuples holding

relevant components such as the values on the stack and heap, the current continuation,

and a trace recording the execution history. The set of states forms a lattice; states are

merged using the lattice join operator which operates pointwise on the state compo-

nents. The choice of which states to merge and when is determined by JSAI’s merging

strategy, which can be chosen independently from the rest of the analysis. A given

merging strategy determines the flow-, context-, and heap-sensitivity of the analysis;

indeed, merging strategies and sensitivities are synonymous.

124

Chapter 5. Improving Performance of Static Analysis via Parallelization

JSAI is formally specified and the code is designed to have a close correspondence

with the formalisms, using immutable states and written using mostly pure functional

style, making it easy to follow and manipulate. Alternatively, we could have used

TAJS [87, 89, 90], a competing sequential JavaScript analysis framework, whose run-

times are in the same order of magnitude as JSAI (between 0.3× and 1.8×). However,

TAJS does not use the STSO model, does not offer configurable sensitivity, and lacks a

formal specification.

5.4.3 Parallelism Strategies

We implement two specific parallelism strategies as discussed in Section 5.3: the

worklist-parallel strategy and the per-context strategy. We describe for each one the

necessary changes to JSAI, which were minimal in both cases. Our experience is that

implementing different strategies is a simple task, making it easy to explore the design

space of the STSO model. For each strategy we use a single global thread pool [15, 35]

of a fixed size and create new thread tasks for the pool on demand. We also replace

JSAI’s memoization table (which holds the computed solution as the analysis executes,

mapping program points to the abstract states computed at that program point so far)

with a thread-safe version that requires no locking for table lookups [16].

125

Chapter 5. Improving Performance of Static Analysis via Parallelization

Worklist-Parallel Strategy. This strategy is the simplest to implement. Rather than

iteratively popping elements off of the worklist and processing them sequentially, in-

stead we pop all elements of the worklist and process each element in parallel, having

them enqueue the resulting abstract states back onto the global worklist. This strategy

is, in concept, the same strategy used by Dwyer et al [61], and we implement it to use

as a comparison point for our novel proposed strategy given below.

Per-Context Parallel Strategy. We observe that for the JavaScript benchmarks we

have tested, if N states are on a non-empty worklist, and those N states are members

of M contexts (where 1 ≤ M ≤ N), then typically M >> 1. In other words, many

contexts are typically enqueued for processing at once. This indicates that the per-

context strategy described in Section 5.3 has promise for anayzing JavaScript. Instead

of a global worklist, we use one worklist per context, with one thread for each work-

list. Each worklist has an associated non-blocking, lock-free [17, 116] backlog queue

that other threads use to enqueue work for that thread; whenever a thread runs out of

elements in its worklist, it puts its backlog queue into its worklist and continues. When

a thread processes a function call that belongs to a new context, it puts the resulting ab-

stract state into that context’s backlog queue. The analysis has reached a fixpoint when

all worklists and backlog queues are empty. The memoization table is global; because

contexts are independent from each other, there will never be a conflict between threads

126

Chapter 5. Improving Performance of Static Analysis via Parallelization

when updating the memoization table. We also tried an alternative to the backlog queue

strategy for thread communication, wherein threads directly enqueued work into other

threads’ worklists; we saw results ranging from 30% faster to 18% slower performance

relative to the backlog queue implementation, with most benchmarks being slower; thus

we only use the backlog queue implementation in our evaluation.

5.5 Evaluation

We evaluate our parallel JSAI implementation using a set of real-world JavaScript

benchmarks, detailed in Section 5.5.2. We decribe the benchmarks and our experimen-

tal methodology, then present and discuss our results for the worklist-parallel strategy

and the per-context strategy.

5.5.1 Experimental Methodology

System Under Test. Our testbed is equipped with two 6-core Intel Xeon processors

running at 1.9 Ghz with hyperthreading enabled. We only report data for 1-12 threads,

with one thread per core. While utilizing hyperthreading with 13-24 threads usually

did yield better speedups, these tended to be minimal and with high variability. The

machine is equipped with a total of 32 GB of memory, and we ran with a maximum

127

Chapter 5. Improving Performance of Static Analysis via Parallelization

JVM heap size of 25,600 MB for all experiments. During the course of the experiments,

we had exclusive access to the machine, and all non-essential services were disabled.

Calculating Speedups. The speedups we report are relative to the sequential JSAI

implementation, as per the usual definition of speedup. This is an important point

for comparing against related work. In several cases, authors have instead focused

on runtimes [140], speedups relative to the framework itself [105, 106, 114], percent

improvement in performance [103], or atypical presentations of speedups [121].

Configuration Focus. Previous experiments [96] have shown that stack-based CFA

tends to work well for JavaScript, both in terms of precision and performance. We

specifically use stack-k-h CFA, in which the top k callsites on the call stack are

used as the context (this is the standard “callstring context sensitivity” used in DFA).

The parameter h controls the heap sensitivity, which distinguishes each abstract object

allocation by a context of depth h, in addition to its program location. We show results

for stack-5-4 (most precise) in this section.

Testing. In order to test the correctness of our implementation, we annotated the

benchmarks with special statements to print out the final abstract values for certain

program points. In all cases, the solutions from our parallel implementation were equiv-

alent to the solutions produced by the sequential interpreter. In addition, we ran several

128

Chapter 5. Improving Performance of Static Analysis via Parallelization

hundred handcrafted tests on both the sequential and parallel analyzers to compare their

results; in all cases they agree.

5.5.2 Benchmarks

We focus on ECMA3-compliant JavaScript programs which do not exercise the doc-

ument object model (DOM). While SunSpider and other concrete performance bench-

mark suites meet the above criteria, most of their constituents complete analysis within

seconds. Given that short-running benchmarks can be improved little by the addition

of parallelism, such benchmarks have been omitted from our evaluation.

In an attempt to derive more complex benchmarks which are more time-consuming

for our analysis to handle, we have turned to open source JavaScript programs in the

wild. This allows us to benchmark against a more realistic suite. Additionally, we have

intentionally selected benchmarks representing a variety of coding styles, with both

imperative and functional code. This allows us to determine whether or not our paral-

lel analysis performance is dependent on coding style, which is important considering

that JavaScript allows for very different styles to be used and to coexist. A complete

description of our benchmark suite is given in Table 5.1.

129

Chapter 5. Improving Performance of Static Analysis via Parallelization

B
enchm

ark
D

erived
From

G
eneralK

ind
N

um
ber

ofFunctions
L

O
C

SequentialR
untim

e
U

nder
s
t
a
c
k
-
5
-
4

(s)
c
r
y
p
t
o
b
e
n
c
h

[18](SunSpiderorigin)
im

perative
132

1699
508.082

m
d
5

[19]
im

perative
37

365
778.061

b
u
c
k
e
t
s

[20]
m

ixed
168

2472
73.801

n
u
m
b
e
r
s

[21]
m

ixed
90

1870
145.082

j
s
p
a
r
s
e

[22]
functional

74
878

515.239
l
i
n
q
a
c
t
i
o
n

[?]
functional

381
2783

32.097
l
i
n
q
a
g
g
r
e
g
a
t
e

[?]
functional

396
2830

80722.088
l
i
n
q
f
u
n
c
t
i
o
n
a
l

[?]
functional

378
2790

4516.588

Table
5.1:

A
sum

m
ary

of
our

benchm
ark

suite.
T

he
l
i
n
q
*

benchm
arks

all
execute

different
A

PIs
from

the
sam

e
com

m
on

library
in

a
m

anner
that

causes
vastly

different
code

paths
to

be
analyzed

betw
een

the
three

benchm
arks.

B
enchm

arks
ofthe

m
ixed

kind
have

both
im

perative
and

functionalcharacteristics
based

on
subjective

observation.

130

Chapter 5. Improving Performance of Static Analysis via Parallelization

Figure 5.1: Worklist-parallel speedups for the trace stack-5-4. The number of
hardware threads used is on the x axis, and the speedup is on the y axis.

131

Chapter 5. Improving Performance of Static Analysis via Parallelization

Figure 5.2: Per-context parallel speedups for the trace stack-5-4. The number of
hardware threads used is on the x axis, and the speedup is on the y axis.

132

Chapter 5. Improving Performance of Static Analysis via Parallelization

5.5.3 Worklist-Parallel Results

The performance results for the worklist-parallel strategy on the configuration stack-5-4

is given in Figure 5.1. Under stack-5-4 the worklist-parallel results show real

promise with the linq aggregate and linq functional benchmarks. Both linq aggregate

and linq functional benchmarks show superlinear speedup for less than 10 hard-

ware threads. The superlinear speedup seems to be the result of two factors. First, both

the linq aggregate and linq functional benchmarks are highly functional in

implementation style, containing more than one function per ten lines of code. More-

over, many of these functions are used in a higher-order style, are largely independent

of each other, and are of small to moderate length. Intuitively, this leads to many con-

texts of a granularity level well-suited to parallel processing. Second, node ordering

is also probably a factor. The sequential analyzer enforces an arbitrary, possibly far-

from-optimal ordering between states in different contexts (it uses reverse post-order

within a context, but without the results of the analysis it isn’t possible to order be-

tween contexts). It is possible that our worklist-parallel implementation just happens

to choose better node orderings on these benchmarks. The somewhat erratic nature of

our speedup curves serves as further evidence of these ordering issues. It is unclear

how to measure the effects of ordering in a structured way, therefore, we do not have

any experiments that can backup our conjecture. There are many examples from the

literature where either superlinear or otherwise better than predicted performance has

133

Chapter 5. Improving Performance of Static Analysis via Parallelization

been recorded [30, 61, 63, 105], and different node orderings were commonly cited as

the reason.

In stark contrast to the excellent speedups of linq aggregate and linq functional

on stack-5-4, the rest of the benchmarks see rather dismal performance. No other

benchmark was able to reach a speedup higher than 1.45×, irrespective of the number

of hardware threads used. This implies that for these benchmarks, the worklist-parallel

approach duplicates a significant amount of work. One exception to this seems to be

linq action, which was derived from the same codebase as linq aggregate

and linq functional. Given that linq action has a fairly short sequential run-

time at around 32 seconds, it seems that it is simply too short to see much improvement

from the worklist-parallel strategy.

5.5.4 Per-Context Parallel Results

Speedups for the per-context parallel implementation with our stack-5-4 trace

on our benchmark suite are shown in Figure 5.2. Once again, linq aggregate and

linq functional stand out, unconditionally showing higher speedups in all cases

than any other benchmark. Moreover, both benchmarks show superlinear behavior

for less than 10 hardware threads, presumably for the same reasons as detailed in the

previous section. Of particular interest is that based on the performance results, it

appears that there are three buckets in which data can be distributed based on their

134

Chapter 5. Improving Performance of Static Analysis via Parallelization

relative performance to each other. This bucketing shows that functional programs tend

to perform better than non-functional programs, with all of our functional benchmarks

being either in the top-performing or moderate-performing bucket. However, this is not

to say that non-functional programs can not perform well; the moderately-performing

bucket holds cryptobench, a highly imperative benchmark.

With the trend of functional programs generally performing better, speedups under-

neath stack-5-4 in Figure 5.2 is particularly interesting. The linq aggregate

and linq functional benchmarks both show superlinear speedup, with linq aggregate

seeing speedups higher than 34× on 10 cores. linq aggregate shows strong ev-

idence that node ordering is to blame, given the sudden drop in performance at 8

hardware threads under stack-5-4. It seems likely that the sequential interpreter

chooses a particularly poor context ordering for linq aggregate underneath the

stack-5-4 trace. This same sort of performance drop is also seen with the numbers

benchmark underneath stack-5-4. As such, context ordering plays a significant role,

even for the parallel abstract interpreter.

5.6 Conclusions

We have presented a alternative program analysis model to the more usual DFA

approach, called STSO. This framework makes it easy to reason about and explore

135

Chapter 5. Improving Performance of Static Analysis via Parallelization

different parallelization strategies, as well as being more applicable than DFA to lan-

guages with difficult control-flow that make the program CFG hard to compute. Us-

ing this framework we have implemented a parallel analysis for JavaScript and ex-

plored two points in the parallel design space: a naive worklist-parallel strategy and

a novel per-context strategy. Our results show that our parallel implementation pro-

vides speedups comparable or better than the speedups reported in our related work for

realistic JavaScript programs.

136

Chapter 6

Application of JSAI to Security of
JavaScript-based Browser Addons

6.1 Introduction

The web-browser addon framework is a powerful and popular mechanism for ex-

tending browser behavior—thousands of third-party developers are creating addons,

and browser users have downloaded billions of copies [23]. These addons have al-

most complete access to a user’s information: browser history, cookies, passwords,

clipboard, geo-location, mouse and keyboard actions, the local filesystem, and more.

Malicious addons are trivially easy to write, and yet can be difficult to detect. Thus,

vetting third-party addons is critical both for users (whose information is at risk) and for

browser providers (whose reputations are at risk). However, the current vetting process

for addons submitted to official addon repositories is mostly manual and completely

ad-hoc.

137

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

Our goal is to help automate this vetting process by creating an analysis to auto-

matically infer security signatures for JavaScript-based browser addons. A security

signature captures both (1) information flows between interesting sources and sinks,

for example, from the current browser URL to a network message; and (2) interesting

API usage, for example, to detect deprecated or unsafe APIs. API usage inference is

treated as a special case of information flow—in essence, can any information poten-

tially flow to a use of that API. This signature inference analysis can be used by official

addon repositories upon addon submission (and also by third-party developers prior to

submission) to detect potential security problems, thus reducing the vetting burden and

increasing addon security.

6.1.1 Key Challenges

We must address three key challenges to enable security analysis of browser addons:

1. Flexible Security Policies: Naively, we might expect to use a standard infor-

mation flow analysis [127] to establish the security of an addon. For such an

analysis, we would use a security lattice to specify a security policy describing

allowable information flows, and report any information flows in the addon that

violate the specified policy. Unfortunately, there is no single security policy (and

hence no single security lattice) that is suitable for all addons. Whether an ad-

don’s information flow is secure or not depends largely on that addon’s intended

138

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

purpose. For example, the current URL being browsed by the user should usu-

ally be private. However, if an addon’s intended purpose is send URLs over the

network to an URL shortener service, then this information flow is expected and

allowed. There are many other examples of information flows that would usually

be considered insecure, but that are allowable given the intended purpose of the

addon. Thus, we need a more flexible solution than traditional information flow

analysis.

2. Classifying Information Flows: Traditional information flow analysis simply

reports whether a leak (a flow violating the given security policy) might occur.

However, this information alone is not useful for our purpose—there are many

possible ways for information flow to happen, with varying levels of importance

and concern. We must be able to classify the information flows to aid the addon

vetter in their task and enable them to understand exactly what the addon is doing.

This requires a more discriminating analysis than traditional information flow.

3. Inferring Network Domains: A large part of addon security concerns the net-

work domains that the addon communicates with. In JavaScript, these domains

are created and passed around in the form of strings. It requires careful and pre-

cise analysis to recover the actual network domains from these strings.

139

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

6.1.2 Our Contributions

To meet these challenges, we present the following contributions:

1. Annotated Program Dependence Graph: We base our analysis on the Pro-

gram Dependence Graph (PDG) [66]. Defining and implementing a PDG for

JavaScript is novel; moreover, we extend the classic definition with a novel set of

graph annotations that allow us to classify various information flows according

to their natures. We use the annotated PDG specifically for information flow in

this work, but it can be more generally useful, e.g., for program slicing, code

obfuscation, code compression, and various code optimizations. The annotated

PDG definition and construction algorithm are described in Section 6.3.

2. Security Signatures: To accomodate the fluid nature of addon security policies,

we develop a novel notion of addon security signatures. Rather than attempting

to enforce a specific policy, instead we infer interesting flows and API usages

and present them to the vetter, allowing them to compare the inferred signature

against the addon description to decide whether the addon should be accepted.

We define what constitutes a signature and how to construct a signature from the

annotated PDG. The definition of security signatures and their construction are

described in Section 6.4.

140

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

3. Prefix String Analysis: Inferring network domains from strings requires precise

analysis, but that analysis must also remain tractable. We have defined a sweet-

spot in this space by developing a prefix string analysis that is precise enough to

compute most of the statically-determinable network domains while still retain-

ing practical performance. This analysis is described in Section 6.5.

4. Evaluation: Finally, we evaluate the usefulness and practicality of our work by

inferring security signatures for a set of ten real browser addons taken from the

Mozilla Firefox offical addon repository. The evaluation and results are described

in Section 6.6.

6.2 Background

In this section we provide necessary background information on addons, as well as

illustrative examples (taken from real addons) of how addons can violate user privacy.

Addon Security Context Modern web-browsers offer the ability to extend browser

behavior with user-installed addons (also called extensions). Addons1 are written in

JavaScript by third-party developers; they have much higher privileges than client-side

JavaScript programs, and they are not subject to the sandboxing and other security re-

1Extensions to browsers written in native code are referred to as browser plugins, and they are not the
focus of our work.

141

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

strictions that exist for client-side programs. Proof-of-concept malicious addons have

been developed that demonstrate how easily such privileges can be misused [24, 25],

and other researchers have demonstrated that even non-malicious addons can be ex-

ploited to break security [40,108]. These are not just theoretical problems; for example,

the Mozilla vetting team has seen a number of submitted addons that contain malicious

code copied from these published exploits [32].

Addon Execution Addons use an event-driven programming model: they continu-

ously execute a loop responding to events such as mouse movement and clicks, key-

board entry, page loads, network responses, timeouts, etc. When the browser first starts

up the addon code is fully evaluated, during which a set of event handlers are registered.

Then the addon enters an loop in which the following two steps are executed infinitely

often: (1) if the event queue is not empty, then an event is pulled off the event queue;

(2) if there is an event handler corresponding to the given event, then the handler is in-

voked and evaluated to completion. More event handlers can be registered and existing

handlers can be de-registered during the event handling phase.

Addon Vetting The current addon vetting process for official addon repositories em-

ploys volunteers who manually inspect addon code. There are no fully documented

or precisely specified security policies, rather, the vetters look for “code smells”. Any

addon that does not pass the sniff test is rejected. Dynamic code injection is particu-

142

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

larly discouraged, given the difficulty in statically determining what the dynamically-

injected code will do. This fact is encouraging for static analysis, because unlike client-

side JavaScript (which uses eval and related APIs heavily) we can safely disallow ad-

dons from using dynamic code. Our analysis reports any potential use of these restricted

APIs.

Privacy Leaks An addon’s elevated privileges make it trivial to leak private user

information. We concern ourselves with two kinds of information flows: explicit flows

(due to data dependencies) and implicit flows (due to control dependencies). Timing

and termination flows are beyond the scope of this work. We give two examples derived

from actual information flows discovered by our analysis in real addons that have been

downloaded millions of times. In these examples, the current URL being browsed

by the user is accessed by the addon via content.location.href, and the call

XHRWrapper(publicServer) sets up a cross site request to the network domain

publicServer. Consider the code:

function ajax(params) {

var data = params["data"];

request = XHRWrapper(publicServer);

request.send("url is: " + data);

143

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

}

ajax({ data: content.location.href });

Here, the current URL is used to construct the data field of an object literal passed

as an argument to ajax. The function ajax creates a network request to publicServer

over which the data field of its formal parameter is sent, thus explicitly leaking the pri-

vate URL information. Now consider the code:

window.addEventListener("load", check, false);

function check(e) {

var seen = false;

if (content.location.href == "sensitive.com")

seen = true;

var request = XHRWrapper(publicServer);

request.send(seen);

}

Here check is registered as an event handler for page load events, thus, when-

ever the user loads a new page check is executed. check sets seen to true only

if the current URL is sensitive.com, and then sends seen over the network to

publicServer. This code implicitly leaks private information about whether the user

visits sensitive.com.

144

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

These are just two—certainly non-exhaustive—ways in which privacy can be breached

by addons. Our main goal in this work is to develop a static analysis for JavaScript

addons that can reliably and precisely detect these kinds of privacy leaks, as well as

distinguish between various kinds of leaks.

6.3 Annotated PDGs for JavaScript

A Program Dependence Graph (PDG) [31, 38, 66] is an explicit representation of a

program’s data and control dependencies. We use an novel extended variant of PDGs as

a basis for our security signature inference (described in Section 6.4). The relation be-

tween information flow and program dependencies has been noted before (e.g., Abadi

et al [29]) and has previously been exploited for information flow analysis of Java byte-

code [80]. Our novel contributions are (1) defining PDG construction for JavaScript;

and (2) a set of annotations for the PDG that allow us to classify the various types of

information flows found in a program.

We assume we are given a base analysis for JavaScript that is flow- and context-

sensitive and computes a reduced product of pointer analysis (what objects a reference

may point to), string analysis (what set of strings a value may represent), and control-

flow analysis (what functions a call may refer to). Any such base analysis can be used

for our technique; two existing analyses that meet these requirements are JSAI [96]

145

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

and TAJS [89]. From this information we compute the following as input to our PDG

construction:

1. A context-sensitive interprocedural control flow graph (CFG), with one node per

statement per context.

2. Read and write sets for each statement under each context, consisting of the set

of variables and the set of (object, property) pairs that the statement may read

from or write to. JavaScript uses computable property accesses, i.e., an object

property name is a string that can be computed at runtime, unlike languages such

as Java where object fields are statically known. Therefore, the object properties

in the read/write sets are actually abstract strings (elements from the abstract

string domain used in the base analysis) representing potentially multiple possible

concrete property names.

In the rest of this section, we explain how to use this information to construct an an-

notated PDG. We first define the annotated PDG, then describe the two stages of PDG

construction: constructing the annotated data dependence graph (DDG) and construct-

ing the annotated control dependence graph (CDG).

146

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

6.3.1 Defining the Annotated PDG

A classic PDG is a graph (V,E) such that v ∈ V are the program statements and

there is an edge v1 → v2 ∈ E if there is a data or control dependence from v1 to v2.

Statement v2 is data dependent on statement v1 if v1 writes to a location in memory, v2

reads from that location in memory, and the value read by v2 could potentially be the

value written by v1. Statement v2 is control dependent on statement v1 if the execution

of v1 controls the number of times that v2 is executed (e.g., v1 is the guard of a condi-

tional and v2 is contained in one branch of that conditional). Information can flow from

statement v1 to statement v2 if there is a path in the PDG from v1 to v2.

In order to classify information flows, we annotate the edges of the PDG to denote

how each particular edge was derived from the program. We can broadly classify edges

based on whether they correspond to data or control dependencies, but an even finer

granularity of classification is useful. We describe and motivate the different possible

annotations here.

Data Dependence Annotations We can classify data dependence edges as strong

or weak. A strong data dependence arises between v1 and v2 if v1 writes to a single

memory location, v2 definitely reads from that exact same memory location, and the

value it reads is definitely the value written by v1. A weak data dependence arises

between v1 and v2 if either v2 only possibly reads from the same memory location as v1

147

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

writes to, or if that memory location was possibly over-written by another value during

the execution between v1 and v2. The idea behind this classification is that information

flow along strong data dependence edges is more likely to be interesting/relevant than

that along weak data dependence edges.

Control Dependence Annotations We can classify control dependence edges as lo-

cal or non-local. We can further subdivide non-local control edges into explicit or

implicit. A local control edge arises from structured local control flow, such as condi-

tionals or loops; all other control edges are classified to be non-local. An explicit non-

local control edge arises from explicit (i.e., syntactically visible) control-flow jumps

in the code, such as a break or continue instruction inside a loop, or an exception

thrown using the throw instruction, or returning from a function using a return in-

struction. An implicit non-local control edge arises from implicit (i.e., syntactically

invisible) exceptions that can be thrown by various JavaScript instructions (e.g., ac-

cessing a property of the undefined value, or attempting to call a non-function). It is

useful to distinguish these categories; for example, consider line 20 in Figure 6.1, and

suppose that the analysis infers obj to be potentially undefined at this line. Since

this statement may raise an implicit exception, the statement at line 21 and all the state-

ments that follow inside the try block are control dependent on the conditional on line

19 (because the conditional evaluation of statement 19 dictates whether or not these

148

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

statements execute), causing many additional edges to be added to the PDG. Most of

these additional edges are a gross over-approximation of the actual control-flow during

program execution. Thus, information flow along local control edges is likely to be

more interesting/relevant than that along non-local control edges, and information flow

along explicit non-local control edges are in turn likely to be more interesting/relevant

than that along implicit non-local control edges.

Amplified Control Finally, we can also classify control edges (independently from

the classifications above) as amplified or unamplified. An amplified control edge is

contained within a cycle of the CFG, whereas an unamplified control edge is not. This

is interesting for information flow because an unamplified control edge can convey at

most one bit of information (i.e., whether a statement is executed or not), whereas an

amplified control edge could potentially convey an arbitrary number of bits of informa-

tion (one for each iteration of the loop or recursive call).

Annotation Grammar From these various classifications, we define the following

annotation grammar:

149

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

ann ∈ Annotation ::= data | control

data ∈ DataDep ::= datastrong | dataweak

control ∈ CtrlDep ::= ctrl | ctrlamp

ctrl ∈ Ctrl ::= local | nonlocexp | nonlocimp

The annotated PDG is then a graph (V,E) such that v ∈ V are the program state-

ments and there is an edge v1
ann−−→ v2 ∈ E if there is a data or control dependence

from v1 to v2 that matches the criteria of annotation ann. The remaining subsections

describe how we construct the PDG and assign the appropriate annotations to its edges.

6.3.2 Constructing the Annotated DDG

The first phase of PDG construction creates the Data Dependence Graph, which

contains all of the data dependence edges of the eventual PDG. In JavaScript, data

dependencies arise from reads and writes to variables and to object properties. For

statement v, let ReadVar(v) be the set of variables that v can read from, ReadProp(v)

be the set of (object, property) pairs that v can read from, WriteVar(v) be the set of

variables that v can write to, and WriteProp(v) be the set of (object, property) pairs

that v can write to; these sets are computed from the base analysis described earlier.

150

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

Dynamically adding, updating, or deleting a property are all considered object property

writes. Recall that the properties in these (object, property) pairs are actually abstract

strings representing possibly multiple concrete property names.

Each element of these sets is qualified as strong (a definite read or write) or weak

(a possible read or write). Definite reads/writes occur for a variable when its associated

abstract memory location is guaranteed to correspond to a single concrete memory lo-

cation. Definite reads/writes occur for a (object, property) pair when a similar criterion

holds for the object and the property abstract string corresponds to a single, exact con-

crete string. Note that definite writes correspond to strong updates in static analysis,

and thus write sets that are qualified to be strong are singleton sets. We use normal

set intersection for the ReadVar(·) and WriteVar(·) sets, but for the ReadProp(·) and

WriteProp(·) sets we must define a new set intersection operator that accounts for the

abstract string property names (which abstractly represent sets of concrete strings). We

define the operator e as: S1 e S2 = {(obj , prop) | (obj , prop1) ∈ S1, (obj , prop2) ∈

S2, prop = prop1 u prop2 , prop 6= ⊥}.

There is a DDG edge v1
datastrong−−−−−→ v2 if there is a CFG path from v1 to v2 and both

of the following conditions hold:

• WriteVar(v1) ∩ ReadVar(v2) = {var} and var is strong in both sets, or

WriteProp(v1) ∩ ReadProp(v2)

151

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

= {(obj , prop)} and (obj , prop) is strong in both sets. In other words, v2 defi-

nitely reads from the memory location written by v1.

• There is no statement v3 along any path from v1 to v2 such that WriteVar(v1) ∩

WriteVar(v3) 6= ∅ or WriteProp(v1) e WriteProp(v3) 6= ∅, i.e., the value read

by v2 is definitely the value written by v1.

There is a DDG edge v1
dataweak−−−−−→ v2 if there is a CFG path from v1 to v2, there is not

an edge v1
datastrong−−−−−→ v2, and both of the following conditions hold:

• WriteVar(v1) ∩ ReadVar(v2) 6= ∅ or WriteProp(v1) e ReadProp(v2) 6= ∅. In

other words, v2 possibly reads from the memory location written by v1.

• There at least one path from v1 to v2 such that for any statement v3 on that path,

WriteVar(v1) ∩WriteVar(v3) is empty or contains only weak elements and

WriteProp(v1) e WriteProp(v3) is empty or contains only weak elements. In

other words, the value read by v2 is possibly the value written by v1.

Figure 6.1 and Figure 6.2 give an example program and the associated PDG to il-

lustrate these points. The edge 1
datastrong−−−−−→ 2 exists because we can determine definitely

that the call argument at line 2 refers to the (object, property) pair created at line 1. The

edge 1
dataweak−−−−−→ 3 exists because (assuming the analysis cannot exactly determine the

return value of getString) we don’t know which property of the object defined at line

1 is being accessed.

152

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

1 var data = { url: doc.loc };
2 send(data.url);
3 send(data[getString()]);
4 func();
5 if (doc.loc == "secret.com")
6 send(null);
7 var arr = ["covert.com", "priv.com"/*,...*/];
8 var i = 0, count = 0;
9 while(arr[i] && doc.loc != arr[i]) {
10 i++;
11 count++; } // end while
12 send(count);
13 try {
14 if (doc.loc != "hush-hush.com")
15 throw "irrelevant";
16 send(null);
17 } catch(x) {};
18 try {
19 if (doc.loc != "mystic.com")
20 obj.prop = 1;
21 send(null);
22 /* */
23 } catch(x) {}

Figure 6.1: An example program to show the various annotations of the PDG. We as-
sume the following for this example: doc.loc is the current browser url; the send
method sends it arguments over the network; the base analysis infers obj to either
reference an object or null; func is inferred to be either a callable function or
undefined; and the call to getString() returns an unknown string.

153

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

1

2 3

5

6

9

11

12

14

16

20

21

datastrong dataweak
local localamp

localamp

dataweak

nonlocexp nonlocimp

Figure 6.2: A subset of the annotated PDG for the example program in Figure 6.1, to
illustrate the interesting edges and nodes.

6.3.3 Constructing the Annotated CDG

The final phase of PDG construction creates the Control Dependence Graph (CDG);

the PDG is the union of the DDG and CDG. The CDG is constructed using standard

techniques [66], but we stage its construction in order to properly annotate the CDG

edges. We also omit from the CDG all edges due to uncaught exceptions (for example,

in Figure 6.1, we omit edges due to a potential implicit exception at line 4). If we

included those edges, then for all statements that may throw an exception outside of a

try/catch block we would need an edge to every other reachable statement in the CFG.

For our purposes omitting these edges is sound because uncaught exceptions result in

termination, and we are not considering termination leaks in our security analysis.

We construct the annotated CDG in four stages in the following order:

154

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

1. Create a pruned CFG by removing all edges arising from non-local control-flow

(i.e., exceptions and jumps). Compute CDG1 from the pruned CFG using stan-

dard techniques, and annotate all edges with local.

2. Create another pruned CFG from the original CFG by removing all non-local

control-flow edges arising from implicit exceptions. Compute CDG2 from this

pruned CFG, subtract any edges present in CDG1, and annotate all remaining

edges with nonlocexp .

3. Compute CDG3 from the full CFG, subtract any edges present in CDG1 or CDG2,

and annotate all remaining edges with nonlocimp .

4. Update all three CDGs so that any annotation ctrl for an edge whose source

node is contained within a CFG cycle is updated to ctrlamp . The final CDG is

CDG1 ∪ CDG2 ∪ CDG3.

When creating a pruned CFG some nodes may become unreachable from the CFG

entry node; we add a new edge in the pruned CFG from the entry to any such node

before computing the CDG.

In the previous example, the edge 5
local−−→ 6 exists because line 6’s execution de-

pends on line 5 but there is no loop, and 9
localamp

−−−−−→ 11 exists because line 11’s execution

depends on line 9 and there is a containing loop. Line 16’s execution is control depen-

dent on line 14, because along its true branch, the explicit non local control flow at

155

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

line 15 can cause line 16 to not execute. Hence the edge 14
nonlocexp−−−−−→ 16. Line 20 can

potentially throw an implicit exception, because the base analysis is assumed to infer

obj to either be a reference an object or null. Hence the edge 20
nonlocimp−−−−−→ 21.

6.4 Generating Security Signatures

From the annotated PDG described in the previous section, we can infer interesting

information flows to report to the addon vetter and classify them according to types

based on the annotations. In this section we describe the form of the signature and how

we infer signatures from the annotated PDG.

6.4.1 Description of Security Signatures

Figure 6.3 gives the formal description of a security signature. A signature consists

of zero or more entries, where each entry describes either a particular information flow

from an interesting source to an interesting sink, or an interesting API usage. API usage

is a special case of information flow that indicates there exists some source (interesting

or not) that may flow to an instance of that API. The set of interesting sources, sinks,

and APIs is given to the analysis; in our implementation we have used the sources,

sinks, and APIs considered interesting by the Mozilla vetting team (where the interest-

ing APIs include various script injection APIs such as Services.scriptloader and

156

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

sign ∈ Signature ::=
−−−→
entry

entry ∈ Entry ::= src
type−−→ sink | sink

type ∈ FlowType ::= type1 | . . . | type8
src ∈ Source ::= url | key | geoloc | . . .
sink ∈ Sink ::= send(Pre) | scriptloadr | . . .

Figure 6.3: Grammar for a security signature sign. Pre is the prefix string domain
described in Section 6.5; it is used to indicate the network domain being communicated
with. We give a subset of the complete list of interesting sources and sinks. The eight
flow types are described in the text and Figure 6.4.

various deprecated APIs), but they are easily configurable if desired. The send sink

(corresponding to a network send using XMLHttpRequest) takes a parameter indicat-

ing the network domain being communicated with. Each information flow entry also

has one of eight types, described further below.

An information flow between source and sink is derived from a path in the PDG

from the source to the sink. The type of flow is derived from the annotations on the

PDG edges along that path. We order the flow types by the kinds of edges (i.e., edges

with particular annotations) we allow the associated flow to traverse in the PDG: the

more kinds of edges allowed, the weaker the flow type. We have structured the set of

flow types into a lattice, pictured in Figure 6.4. Each flow type is associated with an

annotation from Annotation; the meaning is that a flow of a given type only traverses

PDG edges annotated with the given annotation or some annotation at a higher level in

157

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

type1 (datastrong)

type2 (dataweak)

type3 (localamp)

type4 (local) type5
(

nonlocamp
exp

)
type6 (nonlocexp) type7

(
nonlocamp

imp

)
type8 (nonlocimp)

Figure 6.4: Flow types ordered in a lattice of perceived strength. Higher in the lattice
indicates a more important type of flow. Each flow type is associated with an annotation
from the PDG. A flow has a given type if there is a path from source to sink using only
PDG edges annotated with any annotation at a level equal or higher in the lattice.

the lattice. This lattice is based on our perceived strength of the type of flow—obtained

by manually examining the commonly intended and commonly accidental kinds of

flows. This lattice is the one we use in our analysis, but the lattice is independently

configurable to accommodate changes in perceived strength of the flow types.

Consider the examples below to better interpret the various flow types in the lattice

in the Figure 6.4. The strongest flow type, type1, is assigned to information flows that

only traverse PDG edges annotated with datastrong . The type4 flow type is assigned to

information flows that only traverse PDG edges annotated with local, localamp , dataweak , or

datastrong . The weakest flow type, type8, is assigned to information flows that traverse

any kind of PDG edge. One can think of a particular flow type as corresponding to a

sub-graph of the PDG containing only the allowed kinds of edges; an information flow

158

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

is assigned that flow type if (1) there is a path from the source to the sink contained in

that sub-graph; and (2) there is not a path from the source to the sink in the sub-graph

of any higher flow type.

6.4.2 Inferring Signatures

Given an annotated PDG, we must infer signatures of the form described above.

Inferring the API usage part of a signature (i.e., is there any information flow to an

interesting API) is straightforward: if there a reachable call statement in the CFG whose

call expression is data dependent on any node (including itself) with a ReadProp(·) set

containing a designated interesting sink snk, then the snk API may be used. Note that

for inferring API usage we consider all call expressions that are data dependent on reads

to APIs because functions can be copied and passed around in JavaScript. Inferring the

information flow entries of the signature is more involved; the rest of this subsection

explains how this is done.

We wish to characterize the set of paths between interesting sources and sinks with

a flow type. For each (source, sink) pair there is a set of paths between them in the PDG;

we need to compute the strongest flow type(s) possible that are consistent with that set

of paths and their edge annotations (because some flow types are noncomparable in

strength, there may not be a single strongest flow type). To describe this computation,

we first define two helper functions:

159

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

extend : (FlowType × Annotation)→ FlowType

max : P(FlowType)→ P(FlowType)

The extend function takes a flow type t and extends it with an annotation ann—the

function returns the strongest flow type t′ which includes all the edge annotations cor-

responding to the flow type t as well as ann. For example, extend(type4, nonlocamp
exp) =

type6, and extend(localamp , nonlocamp
exp) = type5. The max function takes a set of flow

types and returns the strongest flow types in that set (again, since there are noncompa-

rable flow types there may not be a single strongest flow type in the set). For example,

max ({type4, type5, type6}) = {type4, type5}.

For each source we will compute a set of flow types for each statement in the PDG

reachable from that source; the final set of flow types are taken from the statements

corresponding to interesting sinks. Let FlowType(v) be the set of flow types assigned

to statement v, and initialize FlowType(v) = {type1} for all statements v. Then

compute the fix point over all v of the following equation:

FlowType(v) = max

 ⋃
v′

ann−−→v∈E
t∈FlowType(v′)

{extend(t, ann)}



160

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

Intuitively, FlowType(v) gives the strongest set of flow types using which the source

under consideration can reach v. To compute this, we look at all the predecessors v′ of

v, and extend of the flow types computed at v′ with the edge annotation ann between

v′ and v, and keep only the strongest flow types amongst these. Because we consider

all the predecessors v′ of v and edges between v′ and v, we account for all the possible

paths from the source to v. Due to the presence of cycles in PDG, we compute a fixpoint

of these equations.

Consider the following PDG example to illustrate the flow type equation. Let the

PDG include the edges v1

nonlocamp
exp−−−−−−→ v3 and v2

nonlocamp
exp−−−−−−→ v3, with FlowType(v1) =

{type4, type5} and FlowType(v2) = {type3}. To compute

FlowType(v3), we first extend the flow types at predecessors v1 and v2 with the corre-

sponding edge annotations, and take their union to obtain {type6, type5}. We then

pick the strongest flow types from these to obtain FlowType(v3) = {type5}.

We compute the above fixpoint for the various statements with respect to each inter-

esting source in turn; the signature is created by taking the flow types at each interesting

sink. If for source src the sink snk has flow types {type1, type2}, then the signature

contains the entries src
type1−−−→ snk and src

type2−−−→ snk .

161

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

6.5 Inferring Network Domains

The most common way in which addons communicate with network domains is to

create a network request object XMLHttpRequest and pass it a string that contains

the desired URL. To generate precise signatures, our analysis should statically infer as

many of these URL strings as possible. However, a string constant analysis (analogous

to the traditional integer constant analysis) is insufficient to determine many of these

strings. Often an addon will communicate with the same domain, but dynamically

extend that domain’s URL with different suffixes, e.g., different arguments to the same

web application. Consider the following code which exemplifies a common pattern

found in addons:

var baseURL = "www.example.com/req?";

if (...) baseURL += "name"; else baseURL += "age";

// communicate with baseURL

A string constant analysis would infer baseURL to be an unknown string after the

conditional. Our insight is that, for inferring the network domain contained in the

string, we only need the URL’s prefix rather than the entire URL; e.g., in the example

above we need to infer only the base domain www.example.com/req? and not the

two URLs constructed from that base domain.

162

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

Therefore, we augment the base JavaScript analysis (which uses a constant string

analysis) with a prefix string analysis in order to infer these network domain prefixes.

Our abstract prefix string domain is similar in concept to the prefix domain described

by Costantini et al. [48], except that we also track exact strings whenever possible—

because we use the same string domain for inferring URLs as well as object properties,

this is an important distinction for precision. We describe our abstract prefix string

domain and one example abstract string operation for that domain, string concatena-

tion. The complete prefix domain formalization and proof sketches of soundness are

contained in the supplemental materials.2

The prefix string abstract domain is a lattice L]p = (Pre,v,t,u). Let � mean

string prefix and let ⊕ mean the greatest common prefix; then:

• Pre is a set of (string, boolean) pairs augmented with a bottom element: (str , b) ∈

Pre = (String × Boolean) ∪ {⊥}, such that b = true means str is an exact

string and b = false means str is a prefix of an unknown string.

• The bottom of the lattice ⊥ represents an uninitialized string value, and the top

of the lattice > = (ε, false) represents all possible strings.

• ⊥ v (str , b) v > for all (str , b) ∈ Pre, and (str 1, b1) v (str 2, b2) iff either

b2 = false and str 2 � str 1, or b1 = true, b2 = true, and str 1 = str 2

2Available under the Downloads link at http://www.cs.ucsb.edu/˜pllab.

163

http://www.cs.ucsb.edu/~pllab

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

• (str 1, b1) t (str 2, b2) =


(str 1, b1) if str 1 = str 2, b1 = b2 = true

(str 1 ⊕ str 2, false) otherwise

• (str 1, b1) u (str 2, b2) =



(str 1, b1) if b2 = false, str2 � str1

(str 2, b2) if b1 = false, str1 � str2

⊥ otherwise

The lattice is noetherian, i.e., it meets the finite ascending chain condition. We

describe the abstract string concatenation operation + on the prefix domain as a repre-

sentative example of the set of required abstract operations. Let X be any element of

L]p; then:

• ⊥+X = X +⊥ = ⊥

• (str 1, true) + (str 2, b2) = (str 1 · str 2, b2)

• (str 1, false) + (str 2, b2) = (str 1, false)

164

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

6.6 Evaluation

In this section we first briefly describe our analysis implementation and our bench-

marks and experimental methodology; we then describe and discuss our evaluation

results.

6.6.1 Implementation

We implement our signature inference analysis on top of JSAI [96], a flow- and

context-sensitive abstract interpreter for JavaScript. JSAI, and hence our analysis, is

implemented in Scala. The analysis is performed in three passes: (1) use JSAI to

compute the CFG and read/write sets; (2) construct the annotated PDG as described in

Section 6.3; and (3) infer the signature as described in Section 6.4.

We extend JSAI in two ways for our analysis. First, we augment JSAI’s abstract

string domain with the prefix string domain described in Section 6.5. Second, we ex-

tend JSAI to handle browser-embedded code: we provide manually-written stubs for

the native APIs (e.g., DOM and XPCOM APIs) used by our benchmarks, and sim-

ulate the addon event-handling loop by adding a loop at the end of the addon that

non-deterministically executes all registered event handlers. Our implementation is

available under the Downloads link at http://www.cs.ucsb.edu/˜pllab.

165

http://www.cs.ucsb.edu/~pllab

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

6.6.2 Benchmarks and Methodology

Our benchmark suite consists of real addons taken from the Mozilla addon reposi-

tory [2]. All of these addons were vetted manually by Mozilla before being added to the

repository, and have been present in the repository for years. Table 6.1 lists the addons,

their intended purpose, and their size. The size is given as the number of AST nodes

parsed by Rhino [1], a more accurate representation than number of lines of code. All

of these addons, along with a set of tests showing various kinds of information flows,

are bundled with our implementation.

For expository purposes, we classify the addons into three categories based on each

addon’s summary submitted by its developer:

Category A: Addons intended to explicitly send the current URL information to

a specified domain. For example, LivePageRank, which sends the active URL

over the network to find out its page rank.

Category B: Addons intended to implicitly send information about the current

URL or user key presses to a specified domain. For example, YoutubeDownloader

will check whether the current URL is in fact youtube.com before attempting

to download a video.

Category C: Addons intended to communicate with a specified domain, but

without sending any interesting information. For example, Chess.comNotifier

166

youtube.com

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

A
ddon

N
am

e
L

isted
Purpose

C
ategory

Size
L
i
v
e
P
a
g
e
r
a
n
k

D
isplay

PageR
ank

foractive
U

R
L

A
3,900

L
e
s
s
S
p
a
m
P
l
e
a
s
e

G
enerates

a
reusable

anonym
ous

realm
ailaddress

A
3,696

Y
o
u
t
u
b
e
D
o
w
n
l
o
a
d
e
r

Y
outube

video
dow

nloader
B

3,755
V
K
V
i
d
e
o
D
o
w
n
l
o
a
d
e
r

D
ow

nloads
videos

from
sites

B
2,016

H
y
p
e
r
T
r
a
n
s
l
a
t
e

Translates
selected

textw
hen

key
shorts

are
pressed

B
3,576

C
h
e
s
s
.
c
o
m
N
o
t
i
f
i
e
r

N
otifies

yourturn
on

c
h
e
s
s
.
c
o
m

C
1,079

C
o
f
f
e
e
P
o
d
s
D
e
a
l
s

Indicates
coffee

pods
forsale

C
1,670

o
D
e
s
k
J
o
b
W
a
t
c
h
e
r

Indicates
oD

esk
job

opening
C

609
P
i
n
P
o
i
n
t
s

Save
clips

(addresses)from
w

eb
text

C
2,146

G
o
o
g
l
e
T
r
a
n
s
l
i
t
e
r
a
t
e

A
llow

s
userto

type
in

Indian
languages

C
4,270

Table
6.1:

R
ealaddons

from
M

ozilla
addon

repository
[2]

used
as

benchm
arks

for
our

evaluation.
W

e
m

anually
sort

addons
into

categories
based

on
their

behavior,
the

category
descriptions

are
given

in
Section

6.6.2.
T

he
size

of
the

benchm
arks

give
the

num
berofA

ST
nodes

parsed
by

R
hino

[1].

167

chess.com

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

will communicate with chess.com to find out whose turn it is to play. These

addons exemplify API usage discovery, using network communication as the API

of interest.

In order to check the precision of our inferred signatures, we first manually write a

signature for each addon based on its developer-provided summary (this is done before

we automatically infer any signatures). We can then use the manual signatures to com-

pare against the automatically inferred signatures: if the inferred signatures are weaker

(allow more flows) than the manual signature, it indicates either a false positive or a

misleading addon summary. We give an example manual signature for one addon in

each category:

• LivePageRank (A): url
type1−−−→ send(toolbarqueries.google.com).

Rationale: its stated purpose is to display the page rank of the active URL, com-

puted by sending the URL to toolbarqueries.google.com.

• HyperTranslate (B): key
type3−−−→ send(translate.google.com). Ra-

tionale: it translates selected text by using a web service, but only if the keys

pressed by the user match its defined keyboard shortcuts. Thus, the addon can

implicitly reveal information about key presses to the domain translate.

google.com. Because the addon continuously listens for key presses, this in-

formation flow can be amplified.

168

chess.com
toolbarqueries.google.com
toolbarqueries.google.com
translate.google.com
translate.google.com
translate.google.com

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

• Chess.comNotifier (C): send(chess.com). Rationale: it does not reveal

information about any interesting sources over the network, but it does commu-

nicate with chess.com about game status.

We also measure the time taken by the analysis to infer signatures for each bench-

mark. Our main purpose is to show that the analysis time is reasonable; our prototype

implementation is written with emphasis on correctness rather than performance, and

there are multiple opportunities for improving the performance of our implementation.

We divide the time taken into three phases:

Phase 1 (P1): time taken by the base analysis to compute information assumed

as input to our annotated PDG construction.

Phase 2 (P2): time taken to construct the annotate PDG as described in Sec-

tion 6.3.

Phase 3 (P3): time taken to convert the annotated PDG into a signature as de-

scribed in Section 6.4.2.

To compute the timing results we run the analysis 11 times on each benchmark,

discard the first result, and report the median of the remaining runs. The timing in-

formation is obtained on a Mac OS X 2.3 GHz Intel Core i7 machine with 8GB of

RAM.

169

chess.com
chess.com

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

6.6.3 Results and Discussion

Table 6.2 summarizes the result of signature inference analysis on the benchmarks.

For each addon, the analysis result is summarized as pass (the inferred signature matches

the manual signature); fail (the inferred signature has more flows than the manual signa-

ture, and manual inspection determined they were false positives); or leak (the inferred

signature has more flows and manual inspection determined they were real). The times

are given separately for each analysis phase, as described in Section 6.6.2. The total

time taken by the analysis for each of the addons is under one minute.

Five of the addons passed. Of the remainder, two failed and three had unintended

leaks. We discuss the failures and leaks in more detail below.

Failed Addons The inferred signatures for LessSpamPlease and

VKVideoDownloader fail simply because the analysis was not able to determine the

exact network domain being communicated with. For example, VKVideoDownloader

checks whether the current URL is one of three different video player domains, and

communicates with the corresponding domain. Our prefix abstract string domain is

not expressive enough to precisely represent all three domains, and hence infers the

final domain to be unknown. It is worth noting that in the remaining eight out of the

ten addons, our prefix string analysis can determine the exact domains with which the

170

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

addons communicate. Both failed signatures had the correct information flow sources,

sinks, and flow types; the only imprecision was in the network domain.

Leaky Addons YoutubeDownloader computes a video id taken directly from the

current URL and sends it to youtube.com; this is a real explicit information flow.

While this is probably an acceptable flow, it was not described in the developer’s addon

summary and hence was unexpected. GoogleTransliterate communicates with

the transliterate web API only if the current URL is not about:blank (i.e., the empty

page); this is an real implicit information flow, though again probably harmless. These

examples highlight the usefulness of using security signatures rather than checking

against a fixed policy: rather than a simple pass/fail result, the signature allows the

addon vetter to easily determine what types of flows are present and whether they are

acceptable or not.

Pinpoints is an interesting case. Besides communicating with yourpinpoints.

com (as indicated in the developer summary), it also communicates with maps.google.

com. It required careful reading of the extended addon description and the addon code

to determine that this was actually intended behavior that should have been included in

the addon summary (the addon uses information from the Google Maps API to improve

the information it saves). This illustrates another benefit of our signature inference, by

171

youtube.com
about:blank
yourpinpoints.com
yourpinpoints.com
maps.google.com
maps.google.com

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

Addon Name Result Time Taken(s)
P1 P2 P3

LivePagerank pass 15.9 30.3 0.5
LessSpamPlease fail 4.0 24.0 0.1
YoutubeDownloader leak 13.2 22.4 0.2
VKVideoDownloader fail 0.7 8.7 0.1
HyperTranslate pass 9.6 30.9 0.3
Chess.comNotifier pass 0.8 2.1 0.1
CoffeePodsDeals pass 0.4 2.7 0.1
oDeskJobWatcher pass 0.4 0.9 0.1
PinPoints leak 3.6 16.9 0.1
GoogleTransliterate leak 1.8 10.87 0.1

Table 6.2: Addon signature inference result summary. An addon is marked pass if
the inferred signature has no more flows than the manual signature; fail if it has more
flows and they are false positives; and leak if it has more flows and they are real. The
last three columns indicate the time taken by the inference analysis, divided into three
phases as outlined in Section 6.6.2. All times are given in seconds.

highlighting flows that are undocumented or only documented in the addon’s fine print.

6.7 Related Work

There have been a number of previous efforts targeting either information flow se-

curity, security analysis specific to JavaScript, or browser addon security. In this section

we discuss those efforts most relevant to our own work.

Secure Information Flow There are decades of work on secure information flow; for

details see the survey by Sabelfeld and Myers [127]. Most of this work is based on type

172

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

systems. There is some existing work on using abstract interpretation [43,55], however

they do not target any language nearly as complex and difficult to analyze as JavaScript.

Abadi et al. [29] establish a close connection between secure information flow and

program slicing using dependencies. Hammer et al. [80] present an information flow

analysis for Java bytecode using PDGs. They use a traditional lattice-based approach

for their analysis, and apply it to a different language and domain than we do. They

also do not attempt to distinguish between the different kinds of information flows.

Security Analysis for JavaScript There have been both static and dynamic (e.g.,

[83, 86]) approaches to JavaScript analysis; here we focus specifically on those that

contain some static component (e.g., [34,85,88,89,134,142]), as well as some security

component. These analyses target client-side webpage JavaScript programs rather than

JavaScript-based browser addons, which present different challenges and opportunities.

Justet al. [91] blend static and dynamic analyses; they track information flow dy-

namically as much as possible, but resort to static analysis to capture implicit flows.

Because of dynamic tracking, their approach requires changes to the JavaScript run-

time and incurs an average overhead of 150%.

Guarnieri and Livshits [72] define a statically analyzable subset of JavaScript and

implement a tool to enforce certain security and reliability policies on JavaScript wid-

gets. They use dynamic checks to make certain the executing widget code is within the

173

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

defined subset language. Their security policy is not formally specified and it is not

clear whether they handle only explicit flows or also track implicit flows.

Chugh et al. [47] propose a hybrid mechanism to check certain specific types of

malicious information flow in client-side JavaScript. Since client-side JavaScript (un-

like browser addons) are allowed to dynamically load new code, they cannot perform

a whole-program analysis. Instead, their tool performs a static analysis on all available

code and infers a set of dynamic checks necessary to enforce security. Their technique

does not scale to more general information flow policies.

Keil and Theimann [99] propose a type-based dependency analysis for JavaScript,

and formalize their analysis for a subset of JavaScript. Their analysis can be viewed as

static counterpart to data tainting, and they build a tool over the TAJS [89] framework.

While not a security analysis, they claim that their analysis could be used as a basis for

investigating various security properties.

Browser Addon Security Browser addon security has also attracted much attention.

Barth et al. [44] propose a new browser addon architecture (which is now adopted by

the Chrome web browser) that reduces the attack surface of addons. They achieve this

by separating out addons into components with different privileges and isolating the

components by running them in different processes. While Chrome requires the addon

to explicitly request access for different privileges, it does not perform any information-

174

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

flow based reasoning to figure out what the addons do with accessible information and

whether any confidential information is being leaked.

Guha et al. [77] describe IBEX, a framework to develop and verify secure browser

addons. IBEX requires developers to write browser addons in a dependently-typed

language called Fine. Their tool can statically check if addons conform to policies

specified in a Datalog-like policy language, but only if the addons are written in Fine,

requiring extensive developer effort.

Dhawan and Ganapathy [58] describe SABRE, a system that guards against Firefox

addon security flaws by performing in-browser dynamic information flow tracking of

JavaScript addons. SABRE requires extensive modifications to the browser and the

execution-time cost of SABRE is high. Djeric and Goel [59] present another dynamic

taint tracking analysis for Firefox addons which has similar characteristics. In contrast,

we perform a static analysis of the addons; this means that there is no runtime cost

and that reviewers can use their discretion to ignore warnings that turn out to be false

positives.

Bandhakavi et al. [40] describe VEX, a static tool for highlighting potential secu-

rity vulnerabilities in Firefox addons. VEX performs an unsound (by design) static

taint analysis of JavaScript code (tracking only explicit leaks) with the intent of finding

certain types of vulnerability bugs.

175

Chapter 6. Application of JSAI to Security of JavaScript-based Browser Addons

Beacon [94] is a static analysis tool to detect capability leaks in Firefox Jetpack

extensions (which is a library of modules that makes writing addons much easier).

While Beacon detects capability leaks between modules and over-privileged modules,

their analysis is unsound by design, and cannot perform information-flow reasoning.

Lerner et. al. [107] present a type-system based approach to verify compliance of

JavaScript-based addons with Private-Browsing mode. This requires some annotation

effort and cannot perform information-flow reasoning.

6.8 Conclusion

Browser addons written using JavaScript are extremely popular, but they can be

easily exploited by malicious developers. We develop a static analysis to automatically

infer security signatures for browser addons. Security signatures summarize uses of

security critical APIs, as well as interesting information flows augmented with how they

occur in addons. These signatures can be used to understand the behavior of addons

with regard to security much more easily than having to go through the entire addon

source code manually. Inference of security signatures can be employed to automate

addon vetting with very little manual intervention. In our evaluation, we demonstrate

the usefulness of our strategy by applying our analysis to ten real browser addons from

the official Mozilla addon repository.

176

Chapter 7

Conclusions

JavaScript’s popularity has virtually spread to every platform, no longer making it

just a language for the web. This has created an urgent need for semantic tools for

JavaScript—a static analysis platform for JavaScript can fuel such tools. This the-

sis shows that our open-source artifact JSAI is a sound, configurable, fast and precise

static analysis platform for JavaScript, with formally specified concrete and abstract se-

mantics for JavaScript. We show how to systematically construct abstract interpreters

that are widely configurable with arbitrary control-flow sensitivities in a modular fash-

ion, and use these insights in building JSAI. We use type refinement to improve JSAI’s

precision, and novel parallelization techniques to improve JSAI’s performance. We

build multiple clients for JavaScript using JSAI, including a security auditing client for

vetting browser addons written in JavaScript.

We envision JSAI to form a research platform for easy experimentation with ab-

stract domains, context-, heap-, path-sensitivities and other control-flow sensitivities

177

Chapter 7. Conclusions

that might be novel to JavaScript. JSAI also computes rich amount of semantic in-

formation needed to fuel a number of clients. We are currently working on multiple

clients (some in collaboration with other teams), including, amongst others, a DOM-

based XSS detection client for the web, and a program understanding client with the

intent to identify analysis false-posties quickly.

178

Bibliography

[1] https://developer.mozilla.org/en-US/docs/Rhino.

[2] https://addons.mozilla.org/en-US/firefox/.

[3] http://www.drdobbs.com/windows/microsofts-javascript-move/
240012790.

[4] http://nodejs.org/.

[5] http://www.mozilla.org/en-US/firefox/os/.

[6] http://www.khronos.org/registry/typedarray/specs/
latest/.

[7] http://www.emscripten.org/.

[8] http://doctorjs.org/.

[9] https://developer.mozilla.org/en-US/docs/
SpiderMonkey.

[10] http://www.webkit.org/perf/sunspider/sunspider.html.

[11] http://v8.googlecode.com/svn/data/benchmarks/v7/run.
html.

[12] http://linqjs.codeplex.com/.

[13] http://www.defensivejs.com/.

[14] http://aws.amazon.com/.

[15] http://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ExecutorService.html.

179

https://developer.mozilla.org/en-US/docs/Rhino
https://addons.mozilla.org/en-US/firefox/
http://www.drdobbs.com/windows/microsofts-javascript-move/240012790
http://www.drdobbs.com/windows/microsofts-javascript-move/240012790
http://nodejs.org/
http://www.mozilla.org/en-US/firefox/os/
http://www.khronos.org/registry/typedarray/specs/latest/
http://www.khronos.org/registry/typedarray/specs/latest/
http://www.emscripten.org/
http://doctorjs.org/
https://developer.mozilla.org/en-US/docs/SpiderMonkey
https://developer.mozilla.org/en-US/docs/SpiderMonkey
http://www.webkit.org/perf/sunspider/sunspider.html
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
http://linqjs.codeplex.com/
http://www.defensivejs.com/
http://aws.amazon.com/
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html

Bibliography

[16] http://docs.oracle.com/javase/6/docs/api/java/util/
concurrent/ConcurrentHashMap.html.

[17] http://docs.oracle.com/javase/6/docs/api/java/util/
concurrent/ConcurrentLinkedQueue.html.

[18] http://octane-benchmark.googlecode.com/svn/latest/
crypto.js.

[19] https://github.com/blueimp/JavaScript-MD5.

[20] https://github.com/mauriciosantos/buckets.

[21] http://github.com/sjkaliski/numbers.js.

[22] https://github.com/doublec/jsparse.

[23] https://blog.mozilla.org/blog/2012/07/26/
firefox-add-ons-cross-more-than-3-billion-downloads/.

[24] http://azurit.elbiahosting.sk/ffsniff/.

[25] http://www.subhashdasyam.com/2011/04/
mozilla-firefox-strategies-mozilla.html.

[26] LINQ for JavaScript. http://linqjs.codeplex.com/. Accessed: 2013-
06-05.

[27] Octane JavaScript Benchmark. http://code.google.com/p/
octane-benchmark/. Accessed: 2013-06-05.

[28] T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net. Ac-
cessed: 2013-06-05.

[29] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of depen-
dency. In Symposium on Principles of Programming Languages, 1999.

[30] A. Albarghouthi, R. Kumar, A. V. Nori, and S. K. Rajamani. Parallelizing top-
down interprocedural analyses. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2012.

[31] M. Allen and S. Horwitz. Slicing java programs that throw and catch excep-
tions. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based
Program Manipulation, 2003.

180

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentHashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentHashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://octane-benchmark.googlecode.com/svn/latest/crypto.js
http://octane-benchmark.googlecode.com/svn/latest/crypto.js
https://github.com/blueimp/JavaScript-MD5
https://github.com/mauriciosantos/buckets
http://github.com/sjkaliski/numbers.js
https://github.com/doublec/jsparse
https://blog.mozilla.org/blog/2012/07/26/firefox-add-ons-cross-more-than-3-billion-downloads/
https://blog.mozilla.org/blog/2012/07/26/firefox-add-ons-cross-more-than-3-billion-downloads/
http://azurit.elbiahosting.sk/ffsniff/
http://www.subhashdasyam.com/2011/04/mozilla-firefox-strategies-mozilla.html
http://www.subhashdasyam.com/2011/04/mozilla-firefox-strategies-mozilla.html
http://linqjs.codeplex.com/
http://code.google.com/p/octane-benchmark/
http://code.google.com/p/octane-benchmark/
http://wala.sf.net.

Bibliography

[32] AMO Team at Mozilla. Personal Communication, 2011.

[33] J.-h. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic inference of
static types for ruby. In ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL), 2011.

[34] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference
for javascript. In European Conference on Object-Oriented Programming
(ECOOP), 2005.

[35] G. R. Andrews. Concurrent programming: principles and practice. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1991.

[36] J. M. Ashley and R. K. Dybvig. A practical and flexible flow analysis for higher-
order languages. ACM Transactions on Programming Languages and Systems
(TOPLAS), 20(4), July 1998.

[37] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage. In
International conference on Static Analysis, 2006.

[38] T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow. In Inter-
national Workshop on Automated and Algorithmic Debugging, 1993.

[39] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2001.

[40] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. VEX: Vetting
Browser Extensions for Security Vulnerabilities. In USENIX Conference on Se-
curity, 2010.

[41] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and
M. Winslett. Vetting browser extensions for security vulnerabilities with vex.
Commun. ACM, 54(9), Sept. 2011.

[42] J. P. Banning. An efficient way to find the side effects of procedure calls and the
aliases of variables. In ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL), 1979.

[43] R. Barbuti, C. Bernardeschi, and N. De Francesco. Abstract Interpretation of
Operational Semantics for Secure Information Flow. Inf. Process. Lett., 2002.

181

Bibliography

[44] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting Browsers from
Extension Vulnerabilities. In Annual Network & Distributed System Security
Symposium, 2010.

[45] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophis-
ticated points-to analyses. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM, 2009.

[46] R. Chugh, D. Herman, and R. Jhala. Dependent types for javascript. In Inter-
national Conference on Object Oriented Programming Systems Languages and
Applications, 2012.

[47] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for
javascript. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2009.

[48] G. Costantini, P. Ferrara, and A. Cortesi. Static analysis of string values. In
ICFEM, 2011.

[49] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL).
ACM Press, New York, NY, 1977.

[50] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
ACM Symposium on Principles of Programming Languages, 1979.

[51] P. Cousot and R. Cousot. Invited Talk: Higher Order Abstract Interpretation
(and Application to Comportment Analysis Generalizing Strictness, Termina-
tion, Projection, and PER Analysis. In IEEE Computer Society International
Conference on Computer Languages, 1994.

[52] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. The ASTRÉE Analyser. In European Symposium on Programming (ESOP),
2005.

[53] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. The astrée analyzer. In European Symposium on Programming (ESOP),
2005.

[54] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in
polynomial time. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2002.

182

Bibliography

[55] N. De Francesco and L. Martini. Abstract interpretation to check secure infor-
mation flow in programs with input-output security annotations. In International
Conference on Formal Aspects in Security and Trust, 2006.

[56] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clus-
ters. 2004.

[57] K. Dewey, V. Kashyap, and B. Hardekopf. A parallel abstract interpreter for
javascript. In International Symposium on Code Generation and Optimization,
2015.

[58] M. Dhawan and V. Ganapathy. Analyzing Information Flow in JavaScript-Based
Browser Extensions. In Annual Computer Security Applications Conference,
2009.

[59] V. Djeric and A. Goel. Securing Script-based Extensibility in Web Browsers. In
USENIX Conference on Security, 2010.

[60] M. B. Dwyer and L. A. Clarke. Data flow analysis for verifying properties of
concurrent programs. 1994.

[61] M. B. Dwyer and M. Martin. Practical parallelization: Experience with a com-
plex flow analysis. Technical Report KSU CIS TR 99-4, Kansas State University,
1999.

[62] ECMA. ECMA-262: ECMAScript Language Specification. Third edition, Dec.
1999.

[63] M. Edvinsson, J. Lundberg, and W. Löwe. Parallel points-to analysis for multi-
core machines. 2011.

[64] A. Feldthaus, T. D. Millstein, A. Møller, M. Schäfer, and F. Tip. Tool-supported
refactoring for JavaScript. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2011.

[65] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Efficient con-
struction of approximate call graphs for javascript ide services. In International
Conference on Software Engineering. IEEE Press, 2013.

[66] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., July 1987.

[67] J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with predicates. In
European Software Engineering Conference, 2005.

183

Bibliography

[68] T. Freeman and F. Pfenning. Refinement types for ML. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), 1991.

[69] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static type inference for ruby.
In ACM symposium on Applied Computing, 2009.

[70] P. A. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for
javascript. In ACM SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), 2012.

[71] M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, and T. K. Tekle. Alias
analysis for optimization of dynamic languages. 2010.

[72] S. Guarnieri and B. Livshits. Gatekeeper: mostly static enforcement of security
and reliability policies for javascript code. In Conference on USENIX security
symposium, 2009.

[73] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg. Saving
the world wide web from vulnerable javascript. In International Symposium on
Software Testing and Analysis (ISSTA), 2011.

[74] A. Guha, S. Krishnamurthi, and T. Jim. Static analysis for ajax intrusion detec-
tion. 2009.

[75] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis for Ajax intrusion
detection. In World Wide Web Conference, 2009.

[76] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of javascript. In Euro-
pean Conference on Object-Oriented Programming (ECOOP), 2010.

[77] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state using
flow analysis. In European conference on Programming languages and systems,
2011.

[78] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state using
flow analysis. In European Symposium on Programming (ESOP), 2011.

[79] B. Hackett and S. Guo. Fast and precise hybrid type inference for javascript. In
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), 2012.

[80] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-
sensitive information flow control based on program dependence graphs. Int.
J. Inf. Secur., Oct. 2009.

184

Bibliography

[81] M. Handjieva and S. Tzolovski. Refining static analyses by trace-based parti-
tioning using control flow. In Symposium on Static Analysis (SAS), 1998.

[82] B. Hardekopf, B. Wiedermann, B. Churchill, and V. Kashyap. Widening for
control-flow. In International Conference on Verification, Model Checking, and
Abstract Interpretation, 2014.

[83] D. Hedin and A. Sabelfeld. Information-flow security for a core of javascript. In
IEEE Computer Security Foundations Symposium, 2012.

[84] P. Heidegger and P. Thiemann. Recency types for analyzing scripting languages.
European Conference on Object-Oriented Programming (ECOOP), 2010.

[85] D. Jang and K.-M. Choe. Points-to analysis for javascript. In Symposium on
Applied Computing, 2009.

[86] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of privacy-
violating information flows in JavaScript web applications. In Conference on
Computer and Communications Security, 2010.

[87] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the Eval that Men Do.
In International Symposium on Software Testing and Analysis, 2012.

[88] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM and
Browser API in Static Analysis of JavaScript Web Applications. In European
Conference on Foundations of Software Engineering, 2011.

[89] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for Javascript. In
International Symposium on Static Analysis, 2009.

[90] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural Analysis with Lazy
Propagation. In International Symposium on Static Analysis, 2010.

[91] S. Just, A. Cleary, B. Shirley, and C. Hammer. Information flow analysis for
javascript. In International Workshop on Programming Language and Systems
Technologies for Internet Clients, 2011.

[92] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7, 1977.

[93] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7:309–317, 1977.

185

Bibliography

[94] R. Karim, M. Dhawan, V. Ganapathy, and C.-c. Shan. An analysis of the mozilla
jetpack extension framework. In European Conference on Object-Oriented Pro-
gramming, 2012.

[95] V. Kashyap, K. Dewey, E. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wie-
dermann, and B. Hardekopf. JSAI: A static analysis platform for javascript.
2014.

[96] V. Kashyap and B. Hardekopf. Security signature inference for javascript-based
browser addons. In Symposium on Code Generation and Optimization, 2014.

[97] V. Kashyap, J. Sarracino, J. Wagner, B. Wiedermann, and B. Hardekopf. Type re-
finement for static analysis of javascript. In Symposium on Dynamic Languages,
2013.

[98] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for points-to anal-
ysis. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 2013.

[99] M. Keil and P. Thiemann. Type-based Dependency Analysis for JavaScript. In
ACM Workshop on Programming Languages and Analysis for Security, 2013.

[100] G. A. Kildall. A unified approach to global program optimization. In Symposium
on Principles of Programming Languages (POPL), 1973.

[101] G. A. Kildall. A unified approach to global program optimization. In ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL), 1973.

[102] A. Lakhotia, D. R. Boccardo, A. Singh, and A. Manacero. Context-sensitive
analysis of obfuscated x86 executables. In ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM), 2010.

[103] W. Le and M. L. Soffa. Parallel path-based static analysis. Technical Report
CS-2010-6, University of Virginia, 2010.

[104] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu. Safe: Formal specification and
implementation of a scalable analysis framework for ecmascript. In International
Workshop on Foundations of Object-Oriented Languages, 2012.

[105] Y.-F. Lee and B. G. Ryder. A comprehensive approach to parallel data flow
analysis. 1992.

[106] Y.-F. Lee, B. G. Ryder, and T. J. Marlowe. Experiences with a parallel algorithm
for data flow analysis. The Journal of Supercomputing, 1991.

186

Bibliography

[107] B. S. Lerner, L. Elberty, N. Poole, and S. Krishnamurthi. Verifying web browser
extensions’ compliance with private-browsing mode. In ESORICS, 2013.

[108] R. S. Liverani and N. Freeman. Abusing Firefox Extensions. Defcon 17, 2009.

[109] F. Logozzo and H. Venter. Rata: Rapid Atomic Type Analysis by Abstract In-
terpretation – Application to Javascript Optimization. In Joint European Confer-
ence on Theory and Practice of Software, International Conference on Compiler
Construction, 2010.

[110] M. Madsen, B. Livshits, and M. Fanning. Practical static analysis of JavaScript
applications in the presence of frameworks and libraries. In ACM Symposium on
the Foundations of Software Engineering, Aug. 2013.

[111] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for javascript.
In Asian Symposium on Programming Languages and Systems, 2008.

[112] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based
static analyzers. In European conference on Programming Languages and Sys-
tems, 2005.

[113] M. Méndez-Lojo, M. Burtscher, and K. Pingali. A gpu implementation of
inclusion-based points-to analysis. 2012.

[114] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel inclusion-based points-
to analysis. In ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2010.

[115] D. L. Metayer and D. Schmidt. Structural operational semantics as a basis for
static program analysis. ACM Computing Surveys, 28:340–343, 1996.

[116] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. 1996.

[117] J. Midtgaard and T. Jensen. A calculational approach to control-flow analysis by
abstract interpretation. In Symposium on Static Analysis (SAS), 2008.

[118] J. Midtgaard and T. P. Jensen. Control-flow analysis of function calls and returns
by abstract interpretation. Information and Computation, 211(0):49 – 76, 2012.

[119] M. Might and P. Manolios. A posteriori soundness for non-deterministic abstract
interpretations. In Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 260–274, 2009.

187

Bibliography

[120] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity
for points-to analysis for Java. ACM Transactions on Software Engineering and
Methodology (TOSEM), 14(1), Jan. 2005.

[121] D. Monniaux. The parallel implementation of the astrée static analyzer. 2005.

[122] V. Nagaraj and R. Govindarajan. Parallel flow-sensitive pointer analysis by
graph-rewriting. In Proceedings of the 22nd international conference on Parallel
architectures and compilation techniques, PACT ’13, pages 19–28, Piscataway,
NJ, USA, 2013. IEEE Press.

[123] F. Nielson and H. R. Nielson. Interprocedural control flow analysis. In European
Symposium on Programming (ESOP), 1999.

[124] F. Pluquet, A. Marot, and R. Wuyts. Fast type reconstruction for dynamically
typed programming languages. 2009.

[125] X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 29(5), Aug. 2007.

[126] B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis.
1986.

[127] A. Sabelfeld and A. C. Myers. Language-based information-flow security. Se-
lected Areas in Communications, IEEE Journal on, 2003.

[128] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dynamic determinacy analysis.
In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). ACM, 2013.

[129] D. A. Schmidt. Natural-Semantics-Based abstract interpretation. In Interna-
tional Static Analysis Symposium (SAS), 1995.

[130] D. A. Schmidt. Abstract interpretation of small-step semantics. Lecture Notes in
Computer Science, 1192:76–99, 1997.

[131] O. Shivers. Control-Flow Analysis of Higher-Order Languages, or Taming
Lambda. PhD thesis, School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-CS-91-145.

[132] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well: un-
derstanding object-sensitivity. In ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), 2011.

188

Bibliography

[133] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation tracking
for points-to analysis of javascript. In European Conference on Object-Oriented
Programming (ECOOP), 2012.

[134] A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated
analysis of security-critical javascript apis. In IEEE Symposium on Security and
Privacy, 2011.

[135] P. Thiemann. Towards a Type System for Analyzing Javascript Programs. In
European Conference on Programming Languages and Systems, 2005.

[136] S. Tobin-Hochstadt and M. Felleisen. The design and implementation of typed
scheme. In ACM SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), 2008.

[137] S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages. In
ACM SIGPLAN International Conference on Functional programming (ICFP),
2010.

[138] D. Van Horn and M. Might. Abstracting abstract machines. In International
Conference on Functional Programming, 2010.

[139] D. Vardoulakis. CFA2: Pushdown Flow Analysis for Higher-Order Languages.
PhD thesis, Northeastern University, 2012.

[140] S. Weeks, S. Jagannathan, and J. Philbin. A concurrent abstract interpreter. Lisp
and Symbolic Computation, 1994.

[141] M. Weiser. Program slicing. In International Conference on Software Engineer-
ing. IEEE Press, 1981.

[142] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript Instrumentation for
Browser Security. In Symposium on Principles of Programming Languages,
2007.

[143] D. Zanardini. The semantics of abstract program slicing. In IEEE International
Working Conference on Source Code Analysis and Manipulation, 2008.

[144] T. Zhao. Polymorphic type inference for scripting languages with object exten-
sions. 2011.

189

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Key Insights and Thesis Statement
	Contributions and Overview of the Thesis

	Constructing Configurable and Sound Abstract Interpreters via Widening for Control-Flow
	Introduction
	Separating Control-Flow Sensitivity from an Analysis
	Starting Point
	Widening Operator
	Control-Flow Sensitivity
	Semantic Requirements

	Related Work
	Conclusions and Future Work

	JSAI: The JavaScript Abstract Interpreter
	Introduction
	Related Work
	JSAI Design
	Designing the notJS IR
	Designing the Abstract Semantics
	Novel Abstract Domains

	Showcasing Configurability
	Evaluation
	Implementation and Methodology
	Observations
	Discussion: JSAI vs. TAJS

	Conclusion

	Improving Precision of JavaScript Static Analysis via Type Refinement
	Introduction
	Key Insight
	Contributions

	The Potential for Refinement in JavaScript
	Key Insight
	Refinement on Implicit Conditions

	Refining Types in JavaScript Analyses
	Type-based Abstract Domain
	Identifying Relevant Type-based Conditions
	Filtering Type Information
	Sound Type Refinement

	Evaluation
	JavaScript Analysis Framework
	Benchmark Suite
	Experimental Methodology
	Potential Opportunity for Type Refinement
	Effects of Various Type Refinements

	Related Work
	Conclusion and Future Work

	Improving Performance of Static Analysis via Parallelization
	Introduction
	Background and Related Work
	Sequential Dataflow Analysis
	Parallelizing Program Analysis
	Problems with the DFA Approach for Parallelism

	Designing for Parallelism
	The STS Approach to Program Analysis
	Parallelism Design Space

	Parallel JavaScript Analysis
	JavaScript Features
	Sequential JSAI
	Parallelism Strategies

	Evaluation
	Experimental Methodology
	Benchmarks
	Worklist-Parallel Results
	Per-Context Parallel Results

	Conclusions

	Application of JSAI to Security of JavaScript-based Browser Addons
	Introduction
	Key Challenges
	Our Contributions

	Background
	Annotated PDGs for JavaScript
	Defining the Annotated PDG
	Constructing the Annotated DDG
	Constructing the Annotated CDG

	Generating Security Signatures
	Description of Security Signatures
	Inferring Signatures

	Inferring Network Domains
	Evaluation
	Implementation
	Benchmarks and Methodology
	Results and Discussion

	Related Work
	Conclusion

	Conclusions
	Bibliography

