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Abstract 

The causal-contrast approach is a new teaching method that 
recruits learners’ implicit causal discovery process to improve 
math learning by juxtaposing contrasting information critical 
to discovering the goal of each solution step. Students often 
blindly memorize mathematical procedures and have 
difficulty transferring their knowledge to novel problems. By 
enabling learners to infer the goal of each step, the causal-
contrast approach substantially improved high-school algebra 
problem solving compared to a traditional instructional 
control (Walker, Cheng & Stigler, 2014). The present study 
developed Walker et al.’s instructional materials into a 
computer-based teaching program and tested the new 
approach on community-college students, a population for 
whom the traditional approach is often ineffective. The study 
added two new conditions: a baseline that received no 
instruction and a condition using a teaching video from Khan 
Academy, a well-regarded online educational website 
representative of the traditional approach. A delayed post-test 
indicated that the causal-contrast condition produced 
dramatically greater success in solving transfer problems than 
the other three conditions.  

Keywords: causal contrasts; causal induction; implicit 
learning; knowledge transfer; mathematics education 

Introduction 
Compared to previous years, U.S. students’ ranking in 
science, technology, engineering, and math (STEM) 
subjects has been improving gradually; however, students’ 
performance on the international mathematics assessments 
continue to fall below the international average (PISA, 
2003, 2006, 2009, 2012). A massive amount of research has 
studied this issue, with the goal of improving students’ 
mathematical learning and understanding.  

One of the most common yet ineffective strategies that 
students use to learn mathematics is to blindly memorize the 
solution steps without truly understanding the reason behind 
each step (e.g., Stigler, Givvin, & Thompson, 2010). 
Without connecting the procedures to goals or concepts, 
repeatedly solving a large number of conventional problems 
may not be helpful for fostering the flexible use of 
mathematical knowledge (Cooper & Sweller, 1987; 
Schwartz et al., 2011). Previous research have suggested 
various ways to enhance mathematics education, such as 

emphasizing worked examples to support schema 
acquisition (Carroll, 1994; Sweller  & Cooper, 1985), self-
generating explanations during learning to improve 
understanding and knowledge integration (e.g., Chi et al., 
1989; Chi, 2000), labeling subgoals to illustrate the reason 
why certain solution steps should be applied to promote 
learning and transfer (e.g., Catrambone, 1998) and using 
comparisons and contrasting examples in the instruction to 
improve the learning of concepts and procedures (e.g., 
Hattikudur & Alibali, 2010; Rittle-Johnson & Star, 2007; 
Richland & McDonough, 2010).  

Fewer studies have examined the use of causal learning to 
support mathematical learning and problem solving. 
Whereas mathematics is traditionally taught using explicit 
instruction to convey analytic knowledge, the causal 
contrast approach is an instructional method that recruits an 
implicit empirical-learning process to help students discover 
the reasons underlying mathematical procedures (Walker et 
al., 2014). Humans have a natural capacity for learning 
cause-and-effect relations (Cheng, 1997; Gopnik et al., 
2004; Leslie & Keeble, 1987). The causal-contrast approach 
hypothesizes that operation-outcome relations in 
mathematics can be thought of as causal. The approach 1) 
induces students to formulate the goal of an operation in a 
mathematical procedure by allowing them to fail to solve a 
challenging problem using their prior mathematical 
knowledge and 2) promptly provides the relevant 
conditional contingency information (Cheng & Holyoak, 
1995) by adding a contrasting problem, one that controls for 
confounding factors by being as similar as possible to the 
challenging problem but with the features causing the 
difficulty removed. “No confounding” is a pre-requisite for 
causal learning.  The goal is for students to readily discover 
the goal of each step in the solution.  It is not the use of 
comparison per se that characterizes the causal-contrast 
approach, but rather the targeting of critical concepts by 
juxtaposing contrasting information designed to enable 
discovering the causes of outcomes. The causal-contrast 
approach is also distinct from subgoal-learning in that it 
does not explicitly mention what the subgoals are.  Instead, 
it recruits the student’s natural causal reasoning to construct 

480



	

 2 

the goals and subgoals within a causal structure that 
supports the application of solution steps.  

 Traditional instructional approaches teach students 
analytically and explicitly the rules and steps for solving 
specific types of problems.  Figure 1 illustrates how this 
approach teaches how to solve quadratic equations. 

 

 
Figure 1. A cumulative static screen shot of sequentially 

presented and narrated traditional instructions. 
 

For example, a student presented with the top equation in 
the figure is shown how to re-arrange the equation into 
standard form (second equation in the figure), factor the 
expression on the left-hand side, then determine the possible 
values of x, the desired unknown, using the zero-product 
property (i.e., if a • b = 0, then a  = 0 or b  = 0). For a 
substantial fraction of students, as evidenced by their failure 
to flexibly generalize their learning to novel problems, this 
approach does not lead to an understanding of the causal 
structure of the solution, the reason behind each step in the 
procedure and how the steps work together. For example, 
what is the purpose of factoring the expression on the left-
hand side of the equation? And what is the relationship 
between factoring and the zero-product property? 

Opportunities to compare worked examples (Rittle- 
Johnson & Star, 2007) to explain solutions (e.g., Chi et al., 
1989; Chi, 2000) or to isolate subgoals (e.g., Catrambone, 
1998) may enable understanding of the causal structure of a 
problem.  However, even then a student may not identify all 
the concepts in the causal structure, or have all the requisite 
information to infer the causal relations when the concepts 
are identified. While Sfard (2007) emphasizes the use of 
teacher-student discourse (students compare their own 
solution to teacher’s and explain the differences) to help 
students identify and correct misconceptions, the students 
may not discover the purposes of the concepts critical to 
transfer their success to novel problems. 

 The causal-contrast approach more directly targets 
specific links in the causal structure that make use of critical 
mathematical concepts essential to the solution of relevant 
types of problems. For example, students are first asked to 
try solving a quadratic equation (see top equation in Figure 
2). If they fail to solve it, they are presented with the next 
two equations in the figure and asked to solve them. After 
students solve these, they are asked why these problems are 
easier for them to solve than the top equation. This 
comparison enables students to readily discover a cause of 

their failure: unlike the second and third equations, the top 
equation has both an x and an x2 term, preventing one from 
isolating x by simply rearranging the equation. The newly 
formulated cause – namely, having both x and an x2   terms – 
in turn becomes an “effect” for a subsequent operation, 
namely, factoring, to remove. Without their initial attempt to 
isolate x, learners would have no “effect” for which to 
discover its cause. This effect – failure to isolate x by 
rearranging the equation – is often not explicitly noted in 
traditional instruction. Similarly, without comparing the top 
equation with the next two equations, a learner who is asked 
to explain why the top equation is difficult may mention the 
effect alone, “I’m unable to rearrange the equation to isolate 
x”, omitting to identify its “cause”: having both x and x2 

terms in the same equation. Thus, each comparison is 
designed to direct attention to the accurate formulation of an 
essential causal relation in the structure of the solution. 

 

 
Figure 2. A screen shot of the causal-contrast intervention. 

  

The process repeats as the student proceeds through the 
solution.  In Figure 3, the pair of equations enclosed by the 
light gray rectangle illustrates the use of causal contrast for 
inferring a perceptual feature that causes a difficulty.  
Students are asked to solve the factored form of the 
quadratic equation (see top equation inside rectangle). If 
they fail to solve the problem, they are asked to solve a 
variant of the problem that has the difficulty removed 
(bottom equation inside rectangle), and to answer the 
question, “What values of x would make x • y = 0 true, 
regardless of the value of y?” In this simple form, most 
students have no difficulty. They are then asked to compare 
the two equations. The comparison may allow them to 
discover why they initially failed, for example, that the 
perceptual complexity of the product prevented them from 
recognizing that the expression on the left-hand side is a 
product, that inside each pair of parentheses is “just a 
number”. At this point, the perceptual complexity can 
switch causal roles, taking on the role of an effect that the 
student can prevent or remove in the future, for example, by 
pausing to take note of the perceptual complexity and to 
register the perceptual cues indicating when the zero-
product property applies. 

In more general terms, the comparisons we construct 
provide conditional contingency information (Cheng & 
Holyoak, 1995) consisting of the state of an effect (e.g., 
succeeding to solve a problem or not) in the presence of a 
candidate cause (a feature of the math problem, e.g., an 
equation having both an x and an x2 term) and in its absence 
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(an equation not having both an x and an x2 term), with 
alternative causes held constant.   

 

 
Figure 3.  A later causal-contrast screen shot. 

 

Comparing Causal-Contrast and 
Traditional Instruction 

We conducted the present study on community-college 
students using a pretest/ intervention/posttest design to test a 
computer-based version of the Causal-Contrast instructional 
method (CC) against two computer-based traditional 
instructional methods and a baseline condition that received 
no instruction. The computer programs both animated and 
narrated the teaching materials for clearer and less attention-
demanding instructions, reducing learners’ cognitive load 
(Mayer & Moreno, 2003). By equating the instructions and 
feedback across conditions in the programs, we eliminated 
potential bias due to the human experimenter interacting 
with participants in Walker et al. (2014).   

Although the causal approach was found to benefit both 
university students (at UCLA) and community-college 
students (Walker et al., 2014), the latter are less likely to 
benefit from traditional mathematics education. Causal 
induction is an implicit and evolutionarily old process 
(Hollis, 1997) and should be more uniformly available 
across the population than explicit reasoning processes.   

One of the Traditional conditions (T) used materials 
identical to the causal contrast condition except for the 
instructional approach. The other traditional condition 
(Khan Academy; K) used an algebra teaching video from 
Khan Academy, a popular and well-regarded online 
educational website representative of traditional teaching. 
Khan Academy has become the largest school in the world; 
over 10 million students have watched its teaching videos 
online (Noer, 2012). Additionally, a Baseline condition (B) 
that did not receive any instruction was used as a control. 
All participants received information on the same 
mathematical concepts, solved the exact same set of 
problems with the same feedback.  

The causal-contrast hypothesis predicts that students 
receiving the causal-contrast instructional intervention 
would have better performance in the post-test compared to 
students in the two traditional intervention conditions and in 
the baseline condition.   

Participants 
Sixty-eight community-college students recruited in 
Southern California and Downstate New York participated 
in our study. Participants (N=68) were randomly assigned 
into one of the three experimental conditions: Causal-
Contrast (N=17), Traditional (N=18), Khan Academy 
(N=18), or the Baseline (N=15) control condition.  

Study Design 
This study consisted of two sessions, which were scheduled 
one to three weeks apart. In the first session, all participants 
were given a pretest measure assessing their knowledge of 
algebraic notation and of solving quadratic equations. 
Participants in the three experimental conditions received a 
lesson on solving quadratic equations on a computer 
followed by practice with an identical set of problems with 
identical feedback. For the baseline control group, 
immediately after the pretest, without receiving any 
instruction, participants were randomly assigned to receive 
one of two highly similar problem sets (Set A and Set B), 
which were the post-tests given to the experimental groups.   
The two sets consisted of analogous problems, and both 
assessed students’ algebra problem solving mostly on 
quadratic equations. There was no time limit on the pretest 
and post-test, and the intervention lasted 25 minutes on 
average across the three experimental conditions. The 
groups did not differ in intervention time: MCausal-Contrast = 
24.4, sd = 8.76, MTraditional = 23.3, sd = 7.55, and MKhan Academy 
= 29.5, sd = 12.3, F (2, 50) = 2.05, p = .14. After a one- to 
three-week delay, participants in the experimental 
conditions were given one or the other post-test set 
alternately in the second session, and those in the Baseline 
condition received their second post-test set.  

Instructional Materials 
  Causal-Contrast Approach. The causal-contrast 
instructional materials are as explained earlier.  Participants 
in the causal-contrast approach were given three challenging 
problems that students tend to fail to solve. If the 
participants failed to solve a problem, a feedback slide 
informed them that they solved the problem incorrectly. A 
branching function was used to identify the nature of the 
failure (e.g., lack of understanding vs. careless mistakes) to 
enable the appropriate feedback. Instead of showing the 
correct solution, a contrasting problem was then presented. 
If the student solved a challenging problem successfully, the 
next challenging problem was presented. 
 

Traditional Instructional Method. The instructional 
materials used in this condition were designed to make use 
of techniques that are representative of traditional 
instruction and were based on a popular textbook (Sullivan 
& Sullivan, 2007). Participants in this condition were shown 
step-by-step procedures through worked examples, written 
solutions of example problems that provide justifications for 
each procedural step (see Figure 1). The examples were 
followed by practice problems. Combining worked 
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examples and problem solving has been proved to facilitate 
learning (Sweller & Cooper, 1985). The instructions stated 
the subgoals of the critical steps in the procedure; for 
example, subjects were told that a quadratic equation is 
rearranged to standard form (having a zero on one side and a 
polynomial on the other) so that it could be factored and 
solved using the zero-product property. Emphasizing 
subgoals in problem solving has been shown to promote 
learning and transfer (Eiriksdottir & Catrambone, 2011). 

 

Khan Academy.  The instructional material for this 
condition was an online video from Khan Academy’s 
website: https://www.youtube.com/watch?v=uktzcTg_N7U.  
It makes use of animated digital technology designs. The 
video covers the necessary techniques for solving a 
quadratic equation, including factoring techniques and use 
of the zero-product property.  

Measures 
Post-test. The post-test included two types of problems: 
instructed and transfer. Instructed problems could be solved 
using the same solution procedures as the study problems. 
Transfer problems required generalization of concepts 
learned in the intervention. These problems included 
factorable quadratics in non-standard form.  Table 1 lists the 
transfer problems: 

Table 1. Transfer Problems 

  

Results 

Pretest 
A one-way between-subjects ANOVA performed on 
participants’ pretest performance shows that the four groups 
did not differ in their pretest performance: MCausal-Contrast = 
73.2 (sd = 19.4),  MTraditional = 76.1 (sd = 16.0), MKhan Academy 

= 68.6 (sd = 18.1), and MBaseline = 70.3 (sd = 25.0), F (3, 64) 
= .497, p = .686).  

Delay Interval 
A one-way between-subjects ANOVA performed on time 
between instruction and post-test (in days) shows that the 
four conditions did not differ in their average delay time: 
MCausal-Contrast   =14.5, sd = 5.37, MTraditional = 13.1, sd = 
5.61, MKhan Academy  = 12.9, sd = 4.83, and MBaseline  = 
13.9, sd = 5.85, F (3, 64) = .318, p = .812.  

Post-test 
   Explanation of Analyses. Before evaluating the effects of 
instruction type on participants’ post-test performance, a 
correlation analysis was conducted to test whether the post-
test performance was correlated with the pretest score. 
Pearson’s correlation confirmed that the pretest and post-test 
scores were strongly correlated, r (68) = .711, p < .01, 
suggesting that the participants’ post-test performance was 
in part due to their prior mathematical knowledge as 
indicated by their pretest scores.  

Baseline Group’s Post-test Sets A and B. To examine 
whether our two post-test sets in the Baseline group 
produced different performance, a one-way repeated 
measures ANCOVA with pretest as a covariate was 
conducted on the post-test scores, separately for the 
instructed problems and for the transfer problems. For 
neither type of problems was there a significant difference 
between the scores of Post-test Sets A and B, F(1,13) = 
.090, p = .768 ηp2 

= .007 and F (1,13) = 1.15, p = 0.303, 
ηp2= .081 for the instructed and transfer problems 
respectively. Because the two sets produced highly similar 
performance, our analyses below collapsed across both sets. 

Comparison across Conditions. Because the effect of 
mathematical instructions is strongly influenced by learners’ 
prior knowledge (Clarke, Ayres & Sweller, 2005; Rittle-
Johnson et al., 2009), to show a clearer picture of the effect 
of the interventions, we separated the participants into three 
groups based on their pretest scores: low-pretest (i.e., pretest 
< or = 50%), medium-pretest (i.e., 50% < pretest < 90%), 
and high-pretest (i.e., pretest > or = 90%). Tables 2, 3, and 4 
show the respective means of pretest scores, instructed 
problems scores, and transfer problems scores in each 
subgroup for each intervention condition. 

 

Table 2. Descriptive Statistics for Pretest Performance 

            
 

  As shown in Table 2, there were relatively few low-pretest 
participants. Relative to other groups, these participants’ 
pre-test scores varied substantially across conditions, 
making the assessment of the effectiveness of training in 
this group problematic.  In view of the nature our pretest 
problems, these participants’ pretest performance suggests 
that they lack sufficient arithmetic or algebra knowledge to 
benefit from the interventions. In contrast, the high-pretest 
participants can potentially still benefit because the transfer 
problems are considerably harder than the pretest problems.  
    In the following analyses, to better assess the 
instructional interventions in their effective range, we 
excluded the low-pretest participants. We combined the rest 
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of the participants because of our small sample sizes. Figure 
4 shows these participants’ post-test performance results. 
 

 
Figure 4. Estimated marginal means for medium- or high-

pretest participants’ Post-test scores.  
 

Instructed Problems. A one-way ANCOVA on the post-
test scores using pretest score as a covariate shows no 
significant difference in scores among the four conditions, F 
(3, 51) = 2.37, p = .081, ηp2= .122, perhaps due to our small 
sample size.  

 

Table 3. Descriptive Statistics for Instructed Problems  

 
 

Transfer Problems. A one-way ANCOVA with pretest 
score as a covariate conducted on the transfer problems 
shows a significant difference among the intervention 
conditions, F (3, 51) = 8.22, p < .001, ηp2= .326. Follow-up 
pairwise comparisons using the Bonferroni correction 
indicate that the CC group outperformed the T group (p = 
.002), the K group (p < .001), and the B group (p = .023). 
The CC group transferred their knowledge about as well as 
UCLA students given similar training in our previous 
studies (Walker et al., 2014), with mean scores ranging from 
80% to 82%. There was no statistically significant 
difference between the other three groups, p > .50.     

 

Table 4. Descriptive Statistics for Transfer Problems  

             
Figure 5 shows performance on individual transfer problems 
for the four intervention groups.  The CC group consistently 
outperformed the other three groups.  

Comparing the frequency of participants who solved a 
problem correctly versus incorrectly, we see that the CC 

group greatly outperformed the other three groups on 
Transfer Problem 6, χ2(1, N=56) = 8.13, p=.004. This 
superiority is notable in that the CC instructions could have 
misled the participants into formulating a simplistic rule 
regarding the joint presence of x and x2, one that ignores 
whether they are terms or factors. They could have been 
stymied, for example, because the factored equation still 
contains both x and x2 terms, as they saw in the pair of 
contrasting problems in Figure 2.  Instead, the intervention 
enhanced their correct flexible use of the relevant concepts 
and procedures. 

Performance on Transfer Problem 3 is also notable in that 
this problem does not involve a quadratic equation.  And yet 
the CC group outperformed the other three groups, χ2(1, 
N=56) = 9.71, p=.002. The CC group’s deeper 
understanding of the causal structure of solving quadratic 
equations might have allowed them to reason more flexibly 
on another type of algebra problem. An intriguing 
possibility, which of course requires further research, is that 
the causal-contrast approach may awaken students’ natural 
causal inference processes so that they create and test their 
own causal contrasts as they encounter new mathematical 
domains. 

This possibility was collaborated by the CC group’s  
superior performance on Transfer Problem 7, χ2(1, N=56) = 
6.21, p=.013. This problem involved an x2 term with a 
fractional coefficient, and there was no training on fractional 
coefficients in any of the interventions. 

 

 
Figure 5.  Performance on transfer problems in the four 

conditions. 

Discussion 
  The causal contrast instructional approach invokes learners’ 
natural causal induction process to identify the cause-and-
effect relationships in a mathematical procedure. This 
approach decomposes the causal structure in a mathematical 
problem and accordingly caters the learning materials to 
allow learners to formulate the purposes of mathematical 
operations. These purposes are often not explicitly 
mentioned in traditional mathematical training.  
  Our current findings testing community-college students 
replicated and extended the results of previous studies 
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conducted on university students and community-college 
students (Walker et al., 2014).  These studies show large 
improvements in solving algebra problems due to causal-
contrast training. The improvements were especially 
dramatic in the community-college students.  
  Our comparison conditions now included a baseline 
condition and instructions from the Khan Academy as a 
benchmark. We eliminated the potential for experimenter-
bias by incorporating all materials as animated computer 
programs, with no experimenter-participant interaction 
during the interventions. 
  Our results show that even when explicit analytic 
instruction focuses on teaching the reasons for mathematical 
procedures, students still often fail to learn in a way that 
promotes generalization to novel problems after a one-to-
three week delay. In contrast, by allowing students to use an 
implicit, empirical learning process to discover the causal 
structure of solutions, students are able to fill in the missing 
links of their causal structure, need not rely on their rote 
memory of procedures, and become able to flexibly use 
their mathematical knowledge. 
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