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| A Numerical Dual-Porosity Model
with Semi-Analytical Treatment of Fracture/Matrix Fldw‘

Robert W. Zimmevrman, Gang Chen, Teklu Hadgu, and Gudmundur S. Bodvarsson
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- University of California
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Abstréct

A new dual-porosity model is developed for singlé-phase fluid flow in
fractured/porous media. Flow is assumed to take place through the fracture network,
and between the fractures and matrix blocks. The matrix blocks are treated in a
lumped-parameter manner, with a single average pressure used for each matrix block.
Rather than assuming that fracture/matrix flux is proportional to the difference between
the fracture pressure and matrix pressure at each point, as is done in the Warren-Root
;nodel, we use a nonlinear equation which more accurately models the flux over all
~time regimes, including both early and late times. This flux equation is compared with
analytical solutions for spherical blocks with prescribed pressure variations on their
‘boundaries. The nonlinear flux equation is also used as a source/sink term in the
numerical simulator TOUGH. The modified code allows more accurate simulations
than the conventional Warren-Root method, with a large savings (about 90%) in com-
putational time compared to methods which explicitly discretize the matrix blocks.

Revised version, submitted (2/'22/93)‘ to Water Resources Research
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Introduction

Numerical simulation of flow processes in fractured rock masses is a formidable
task, due to the often complex geological and hydrological characteristics of suéh for-
mations. The specific geometry and other characteristics of the fracture system are |
generally hot known, so it is not possible to explicitly model individual fractures or
individual matrix blocks. To circumvent this difficulty, so-called ‘‘double-porosity”’
models are often used [Barenblatt_et dl., 1960; Warren and Root, 1963]. In double (or
dual)-porosity models, knowledge of the actual geometric and hydrologiéal features of
the fracture network is not required, but instead only ‘‘average’’ properties, such as a
typiéal_fracmre spacing, are needed. In a numerical simulation of a flow process in a
dual—pOrosify system, the individual computational cells are .assumed to be sufficiently -
large so that it is meaningful to assign suitably-averaged ‘‘effective’’ properties to
them. Despite this simpliﬁcation, numerical modelixig of dual-porosity reservoirs is
still a complicated and costly piocess. In genéral, fairly fine spatial discretization is .
needed in the matrix blbcks [cf., Pruess aﬁd Narasimhan, 1985] in order to resolve the
mai:rix block pressure gradient‘sv. Hence modeling of a fractured réservoir requires

about an order-of-magnitude more computational cells than would be needed for an -

unfractured porous medium simulation of a reservoir of the same overall size.

In this paper we present a new method for modeling fluid flow in fracfured Teser-
voirs that simulates reseri'oir behavior more efficiently and economically than methods
in which the matrix blocks are discretized. The new method involves a semi-analytical
treatment of fracture/matrix interflow, eliminating the need for infernal discretization of

matrix blocks. This allows one to perform accurate dual-porosity simulations, using a

'substantially smaller number of cells than would be needed in a fully-discretized simu-

lation.



Dual-Porosity Models

When a single-phase, slightly compressible fluid flows through a

macroscopically-homogeneous fractured medium, the fluid pressure in the fractures is

 governed 'by the following diffusion equation used in reservoir enginéering [Matthews

and Russell, 1967}:

COP,(xs,t) k |
e A RN L T o)

In this equation, ¢ is the time, x is the position vector of a point in the fracture con-
tinuufn, ks is the absolute permeability [m?] of the fracture continuum, ¢r is the Atotal
fracture porosity, énd Ef [Pa~!] is the total .compressibility of the fractures and the
fluid within them. @ is a volumetric source/sink term that represents the net addition
of fluid to the fractufe system from the matrix blocks, perb uhif of total volume; its
dimensions are tﬁ3/m3s]. The pfessure P, represents the fluid pressure in the frac-
tures, averaged over some sufficiently large representative _elemehtary volume [REV;
see Chen, 1989]. (It is not clear that such’ a length scgle will always exist [Long and
Witherspoon, 1985; see also Neuman and Orr,v 1993], since heterogeneities in fracture
spacing, aperture, etc. may occur'at‘ all length scales.. For our present pui'poses, we
will cénsider only fractured formations which are macrbscopically homogeneous on
somé scale). The V2 operator represents thcha'placian', which is the divergence of the
gradient. The fracture continuum is assumed to occupy all of the phyéical space
spanned by the va_ria‘ble Xs, with the actuél pore volume of the fractures accounted for

by the porosity factor.

A dual-porosity model can be formulated by first imagining that, at each point x,

. there is located a matrix block of some specified shape. Inside each block the fiuid

pressure P,, will, in general, vary from point to point. Two position variables are
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needed to identify a point inside a matrix block; x,, will locate the point within the
block, relative to, say, the block’s center of gravity, while x; is needed as a label to
fix the location of that particular block within the fracture continuum. Fluid flow
within each matrix block is governed by an equation of a similar form as (1), which

can be written as

oP,(x,,t;xs) k,, .
O Cp —— vg‘t ! =:V2Pm(xm,t;xf). o

In this equation, the parameters have meanings analogous to those in eq. (1). The
derivatives implicit in the ope;rator V2 are taken with respect to the local vériable X »
while the variable Xy is merely used as a label. “The fracture/matrix interflow term Q
does not appear explicitly in eq. (2) since, whereas the interflow is assumed to be dis-
tfibuted throughout the fracture continuum as a source/sink term, the interflow enters
the matrix blocks only at their boundaries. The pressures at the outer'boundary of a
given matrix bldck located at point x in the fracture continuum are always assumed '
to be equal to the fracture pressure at that point - i.e., if x,, is on the boundary of the
matrix block, then P, > 15X )=Pp (Xf,1). This is equivalent to i.gnoring» the |
existence of fra=cture skin effects [see Moench, 1984], which if present wouid cause a -
finite préssure change across a small localized region of the matrix block adjacent to

the fractures.

The set of equations (1) and (2) actually represents a single cqﬁation_ for the frac-
ture continuum, along with a family of equations for the matrix blocks that are located
at each point x;. These equations are coupled through the term Q,. which can be
found by integrating the flux out of the boundary of each matrix block, using Darcy’s

law [see Duguid and Lee, 1977}:
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. -1 ke 9P,
QGxp.1) = V, a‘[; L on

dA , | 3)

~where the derivative of P, is taken in the direction of the outward unit normal vector

to the boundary dV,, of the block, and the integral is taken over the entire boundary.

‘A well-poeed boundary-value problem for the system of equations (1-3) would typi-

: caily require initial conditions for P, and Pf, as well as boundary conditions for the

pressures at the outer boundafy of the macroscopic region under investigation, i.e., at
the outer boundafy of the x; domain. If the initial state \.;vere one of local eqﬁ_ilibrium,
as would .eften be the case, we would have Pf (xf,t =0) =P, (x,,,,t =0;xf )- at each
point x;.

Dual-porosity models of the type discussed above, in which diffusion equations

are solved in both the fracture and the matrix systems, are sometimes used in numeri-

cal simulations. An example is the MINC (Multiple INteracting Continua) method

- [Pruess and Narasimhan, 1985], in which the matrix blocks are discretized into nested

shell-like cells. This approach is much more efficient, and under most conditions as

accurate, than using a three-dimensional discretization of the matrix blocks. In order to

- achieve high accuracy over all time scales, however, we have found that about ten

computational cells are needed in each matri)'( block. If only one cell is used to model .

‘ each matrix block, the. approach is basically a numerical implementation of the

Warren-Roet model, which is discussed below. As is well known, when solving prob- '
lems in dual-porosity media, - the Wénen—Root mbdel is inaceurate during a certain
interrnediate time regime [cf, Najurieta, 1980). The MINC method approaches vthe
exact fesponse as the number of nested matrix shells increases. The accuracy of the
method we have developed, which tre_ats fracture/manix "ﬁow with a nonlinear ordinary

differential equation, will be tested by comparison with MINC-type simulations.



-6 -

Warren-Root Lumped-Parameter Models

The Warren and Roét [1963] model is a simplified form of the dual-porosity
model in which no attempt is made to solve the diffusion equation within each block,
but instead.the blocks are treated in a ‘‘lumped parameter’” fashion. The pressure in
. the matrix blocks is governed by an ordinary, rather than partial, differential equation.
If implemented in numericai simulators in the form of a soufce/sink term for the frac-
ture elements, the amount of computational time spent on solving for the matrix block
pressufe, and the fluid-interaction term Q, becomes negligible compared to the time
épent solving the diffusion equation (1) in the fracture continuum. This model can be
derived by.ﬁrst replacing the pressure diétribution in each block, P,, (x,, 2;Xf), by the

average pressure within the block,
— 1 - S
Py iyst) = 5 [ PG, t3x7) AV @)
mYyV, ’

A more rigorous definition of P,, would involve some sort of weighted average over
the block, to account for the fact that the fluid >compre'ss_ibility varies wifh_ the thermo-
dyna/lmic state of th¢ fluid. However, for isothérmal singlé—phase flow, with moderate

pressure variations, the ﬂﬁid compressibility is nearly constant, and definition (4) |
suffices. Eq. (1) can still be used for-the pressure within the fracture network, but eq.
(2) governing the pressure distribution within the matrix blocks is no longer meaning-
ful, since the pressure Pm is no longer defined at each point x,, within the matrix
block. Instead, we integrate eq. (2) over an entire matrix block centered at point Xfs
use fhe divergence theorem to convert the volume integral of VZP,,l into a surface

integral of dP,,/dn, and divide the resulting equation by V,,, to arrive at

aﬁm(Xf,t) _ 1 km aPm
ot v, av, B on

O Cm ®)
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Comparison of eq. (5) with eq. (3) shows that the mean pressure in the matrix block is

governed by the following ordinary differential equation:

1

o dPL ) | |
Omen—"L= = =007.1). | ©

Equations (1) and (6) now govern the behavior of a lumped-parameter type dual- -
porosity model. Note that since the local variable x,, within each matrix block has
been removed by integration, O cannot be evaluated as in eq. (3), but must somehow

be related to the two pressures Py and P,,.
In order td maintain the linearity and relative simplicity of the system of

-~ differential equations, Warren and Root [1963] chose to model the ﬂux.term Q by

: assﬁmin’g'that it is directly proportional td the difference between P; and P,:

m

0(s,1) = Pr—Pn), m

where o is a paramc_ter'that depends on block shape, and has dimensions of area™!

[m~?]. The governing equation (6) for P, then takes the form

dP,, (x;,t) ok, _

Omm—— m Pr—P,). ®)

Expressions (7) and (8) for the flux and the matrix pressure are often refexr_ed to as the
- “‘quasi-steady-state’’ approximation [Barker, 1985; Chen, 1989]. This terminology can
be understood by considering the basic problem in which the fracture pressure P,

which serves as the boundary condition for the matrix block, increases abruptly at z =0
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.from its initial value P; to a new value P,. In this example, and in much of the fol-
lowing discussion, we assume that the matrix block is a sphere of radius a,,; extension
to other block geometries is discussed in Appendix A. The exact pressure distribution

within the block can then be found by solving eq. (2), subject to the conditions
Pm(xm yt=0)=P;: (9)
P, (x,l=a,.t>0=P,. (10)

The solution to this problem is found in many standard texts on diffusion or heat
transfer, such as Crank [1975, p. 91]. The average pressure in the block is found by

integrating the pressure_distribugion’, as in eq. (4), to yield .

.
|

6 =1 :
—=1- = ) Texp(—nznzkmt/(bmucma,,%); . (11)
n=11 .

~v
]
~ |~

For sufficiently large times, say ¢ > ¢, lic,, a,,%/nzkm, all terms in the series beyond the

first are negligible, and the pressure varies asymptotically as
i 6 2. -

S5 =1= 5 exXp(-Tky t 1P L), a.). . 12)
i n

If we now differentiate eq. (12) with respect to ¢, and eliminate ¢ from the resulting

expression, we arrive at the following differential equation for 17,,,:



~

nzk;,, —
(Po=Pp). 13

dP,

m

dt " ¢,uc,al

We now make the assumption .that eq. (13) will govern the mean pressure in the

matrix block, regardless of whether or not Py varies with time, to arrive at

~

= = Py -P,). . (14

This equatidn is of the same form as eq. (8), and shows that, for a spherical block, the
parameter o is equal to .1t2/a,3.

Potential difficulties With eq. (14) can be anticipated from the fact that this equa-
tion only strictly. holds for large times; and even then only for step-function boundary
conditions. ' The errors incurred by using eq. (14) will gcherally be quite large at
“‘small”’ times, for ar}y type of boundary 'conditi.on, as will be demonstrated below.
The aim of our work is to incorporate an equatioh analogous to eq. (14) into a dual-

porosity simulator, but which will be accurate over all ranges of time scales, and for.

more general boundary conditions.

Fully-Transie_n_t Coﬁpling Term

Interaction equations that are more accurate than the quasi-steady-state Warren-
Root equation have appeared in the petroleum engincéring literature in conjunction
with the development of analytical solutions for prbblems such as flow to a well in a

radially symmetric dual-porosity reservoir [deSwaan, 1976; Najurieta, 1980]. These

interaction equations are usually found, for example, by taking the Laplace transform

of the step-function response, eq. (11). Step-function responses are typically much

simpler-in algebraic form when written in the Laplace domain, as opposed to the time
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domain [cf., Barker, 1985]. These methods, however, seem to be restricted to simple
TeServoir geometries, in which case the solution can be developed analytically. Our
intention is to develop the capability ef solving dual-porosity problems in macroscopi- -
cally irregular geometries, which requires a numerical simulator. We therefore want to

maintain the computational simplicity ‘inherent in a lumped-parameter formulation of a

.dual-porosity model, but with egs. (7) and (8) replaced by equations that more accu-

rately account for fracture/matrix flow interactions. This approach requires the deriva-

tion of an equation for \Q,.which depends on Py and P,,, as well as the various physi-

cal parameters of the problem, but which does not necessarily have the same exact

form as egs. (7) and (8).

One approach to achieving this goal is that taken 'by_Dykhuizén [1990,1991], who

used the ‘integral method’’ [see Goodman, 1964; Zimmerman and Bodvarsson, 1989]

to derive an approximate solution for diffusion into a slab-like matrix block, under the

- same step-function beundary conditions given by eqs. (9) and (iO). This solution is

given by twe separate algebraic expressions, the choice of which depends on whether
or not ¢ is greater or less than some critical value ¢, which is the tim.e at which the

diffusing front reaches the center of the block. Dykhuizen [1990] then foupd the

differential equation satisfied by each solutidn, and assumed that one Of the other of
these differential equations can be used for the ge_rieral case of time-varying P;. vThe

criterioh for deciding which differential equation to use is whether or not P, is

greater, in some normalized sense, than some critical value that corresponds to

fm (t =t,) for the step-function fesponse. This approach was found to be greatly supe-

rior to the Warren-Root model for the step-function boundary condition, and somewhat

superior for a ramp-function boundary condition, in which P increases linearly With

t. Dykhuizen [1990] treated only slab-like blocks, which have one dimension much

smaller than the other two; extension of this approach to other geometries, such as

spheres, would be considerably more complicated [see Zimmerman and Bodvarsson,
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1989].

Another approach to mofe accurate treatment ef fracture/matrix flow in a dual-
porosity model was taken by Pruess and Wu [1989]. They used a version of the
integral method that was developed by Vinsome and Westerveld [1980], in which the

pressure distribution in a matrix block is approximated by a function of the form
Py (i) = Py + (Py—P; +72 +522)e 7", | (15)

where 8=+k,,?/49,,1Lc,, is a measure of the depth to which the pressure disturbance
has penetrated the matrix block,'and z,, is the distance from a point in the block to the
outer boundary. | The coefficients r and s are recalculated at each time-step so that the
‘assumed prpﬁle (15) satisﬁes eq. (2) in an integrated sense over the entire matrix
block, and at the oater-boundary. The form chosen for the ‘prvessure proﬁle in eq. (1-5)
assures that no pressure change is felt ahead of the propagating pressure front, since
t‘he. exponential term will be very small when Z,, >48. Prﬁess and Wu [1989] veriﬁec_i
the accuracy of thjs method for a step-function variation in tﬁe pressure at the boun-
dary of a cubical block. Their approach also has the advantage of being extendable to
blocks of varioas' -sﬁapes, through the introduction of‘ a *‘proximity function” that
measures the amount- of Bleck volume within a certain distance from the outer boun-
dary.  Nevertheless, difﬁculties can be foreseen for certainvtypes of boundary pressure
variations, including cases in which the boundary pressure oscillates at .a frequency
high enough thaf the peneuaﬁoh distance of the.pressure pulse into the block is much
sfnallef_ than the block radius. At sufficiently long times, & will beeom'e much greater
than z,, at all points in the block, and exp(-z,/d) =1, so the approximate pressure
profile (15) will essentially be an undamped quadratic polynomial. This type of func-
tion can never be localized near the outer boundary of the block, as would be required

to match the true pressure profile [¢f., Carslaw and Jaeger, 1959, p 81].
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Our approach is similar to that taken by Dykhuizen [1990], exéept that we would
like to use a single differential eqqation for the coupling term, that would be valid for
all imes. An advantage of usiﬁg a single differential equation is that it can be more
readily incorporated into an implicit numerical reservoir simulator. The Warren-Root
equation is of this form, but is only aécurate in the quasi-steady-state regime. Since
the Warren-Root interaction equation can be deﬁved by differentiating the large-time -
approximation to ﬂlc step-function pressure response, it might be thought that a more
general interaction equétion could be derived by differentiating the exact step-function

pressure response, which is [Crank, 1975, p.91]

6 = 1 '
=1-—= 3 — exp(-n2nknt Dplicnal), (16)

_Pi T p=t

- where P; is the initial pressure in the block, and P, is the pressﬁre imposed at the

outer boundary of the block at ¢t =0. Unfortuhately, if we attempt this procedure, it is
not possible to eliminate ¢ from explicitly appearing in the resulting differential’ equa-
tion. A related apprdach is to first find an algebraically simple approximétion to the
step-function response, and then find the first-order differential equation that it satisfies.
The resulting equation would then necessarily be accurate over all time scales for the
step-function boundary condition, but would still need to be tested for other boundary
conditions. This approach was initiated by Vermeulen [1953], who was working on
the problem of absorption in ion exchange columns, which is mathematically similar to
that of diffusion in a dual-i)orqsity medium. Vermeulen found that the exact step-

function pressure response (16) could be approximated, over all time scales, by

P,—P;

i

_Pi 5 : | 2 1/2
= [1 —exp(—nk,, t /10, UCy, a,,,)] . an.

[]
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Differentiating eq (17) with respect to ¢, and then eliminating ¢ from the result, leads

to

P, - Tk,  (Py=P;)=(P,—P;)*
dt 20,, Ucp, arr% (ﬁ m—Pi)

(18)

We now generalize eq. (18) by assuming that P, represents the_fracturé pressure Pg,

regardless of whether or not Py varies with time:

dP, Tk,  (Py—P))?=(P,—P;)?
dt 20, lc,, a2 B (Pn—P;) '

19

When Fm is very close to Pf,.eq. .,(‘19) can be shown to reduce to eq. (14), which
shows that the quasi—steady-étate response of the Vermeulen equation is the samé as
- that of the Warreﬁ-Root équation, and so‘will be accﬁrate in the lérge—time limit. | We
will demonstrate below that eq. (19) is also very accurate in the small-time limit, in

which case it reduces to a form very different from that of the Warren-Root equation.

For the step-function boundaxy conditions, eq. (19) integrates .’tov eq. (17), which is
a Qe’ry close approximation tb the exact step-function response, €q. (16). This is illus-
‘trated in Fig. 1, in which the exact step-function resﬁonse, eq. (16); is conipared to the
““Vermeulen’’ step-function res‘ponse, eq. an. 'For'compai'ison, we can also define
the following ‘‘Warren-Root’* step-function response as the solution of eq. (14) subject

to boundary condition (10) and initial condition (9):

m 1

PP,
o_Pi

a1 N

=1—exp(-nk,, t/duc,,a,2) . - Q0)
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This solution is not ‘quite the same as the large-time approximation to the exact solu-

tion, eq. (12), since that approximation does not satisfy the intial conditions. Fig. 1
shows that the. Warren-Root step-function response is very»inaccura;eﬂ at small times,
since it does not predict the correct exponent for the variation of P,, with z. This can
be demonstrated by expanding eqs. (19) and (20) for small times. The Vermeulen

small-time step-function response is

‘ P,—P; 2k, t
Z = —| . , 1)
P,-P; OmHCr Oy ' '
The Warren-Root small-time step-function response is
P,-P;, = 1wk,
- = — . (22) -
PO —Pi ‘bm WCp

The exact solution (16) is not in a form that is easily interpreted for small times, since
in this limit each term in the series is non-negligible. However, a different form for
the exact step-function response, in terms of error functions [Crank, 1975, p. 91}, can

be used to show that

P, -P; 36k, |2 |
A = . : (23)
Po _Pi 1[¢mu_cma”% .

The numerical coefficient in the Vermeulen solution, which is w, is smaller than the
exact numerical coefficient, 6w, by only 7%. More importantly, the Vermeulen

equation predicts the correct /2 behavior for the matrix pressure. In contrast, the
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Warren-Root differential equation predicts that the -rise in matrix pressure will initially.
v be proportlonal to ¢, 1nstead of 12, This incorrect exponent leads to large errors at
very small times (see F1g 1). This error cannot be remedied by choos1ng a dlfferent
numerical constant for a, as is sometimes done [cf., deSwaan, 1990], since this would

merely alter the multiplicative constant in eq. (22).

It ean also be shown that the Vermeulen equation 'o'ffers an improvement over the
Warren-Root equau'on for the case of a ramp-function increase in Pg; this and other
boundary conditions were not considered by Vermeulen [1953] Let the initial and’

“boundary conditions’’ for-the matrix block be
PL.a=0)=P, | 24)
P;(t>0)=P; + Bt , : ' (25)

where B is some constant with dimensions of pressure/time. The exact solution for

P in this case is [Crank, 1975, p. 93]

knPr—P;)  kyt
2

= —-exp(-n 7tk t/ Crn O ) - (26)
OmHenalB  OphCna, 255 $rmHcm

,_L _6_
15 1t4n=1n

R

The ramp-function response predicted by the Warren-Root equation can be found by

solving eq. (14), subject to conditions (24) and (25), to yield

k(B -P) - k.t . a2 |
m Pm —Pi) — m _ L + —lz—exp(—nzkmt /¢mllcman%) . @7
b

OnMCnaB  Onlicna; T
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The Vermeulen equation cannot be solved in closed-form for the ramp-function boun-
dary condition, but can be integrated numerically to yield the results plotted in Fig. 2.
As was the case for the step-function boundary condition, the Vermeulen equation is
more accurate than the Warren-Root equation in predicting the matrix block pressures.
(Strictly speaking, in lumped-parameter formulations such as those embodied in the
Warren-Root and Vermeulen equations, the boundary pressures enter directly into the
. differential equations as forcing‘ functions, not as boundary conditions. However, in a
physical sense, Pf is still the pressure at the boundary of the matrix block).

We have shown that the Vermeulen equation accurately predicts the matrix block
préssures, over all ranges of time,.for both the step-function and ramp-function boun-
dary conditions. Furthermore, since the Vermeulen equation reduces to the Warren-
Root equation for “‘large times”, (i.e., when P,, is close to Py), it should be accurate
in the quasi-steady-state ‘regime. Moreovér, we can also show, analytically, that the
Vermeulen equation predicts thé correct small-time exponent for P_m,.for quite general
types of variations in P;. To do this, assume first that for small times Py varies as

Bt™, where B is some constant, and m is either an integer or a half-integer:

P; =P, +Bi™ . (28)

For small times, Fm —P; will be of higher order than Pr —P;, and so eq. (19) can be

integrated to yield the small-time approximation

P,=P; + |——= ‘ V2 29
mod [(bmucma,f} V2m+1) @)

"The exact small-time approximation can be found from the solution given by Crank
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[1975, p. 34] for diffusion into a semi-infinite media, which applies to any geometry at

sufficiently small times:

o ]2
P =P,-+[ = ] 3BIAL) m+12 - (30)

Onhic,al| Tim+3/2) ’

.- where I'(z) is the gamma function [Ghez, 1988, p. 118]. The Warren-Root equation

(14) can be integrated in this case to give

k 2P ' :
m }"Bt"‘“. (31)

OmHenal | m+l

As §vas found in the specific cases of ramp-function (m=1) and step-function (which
can bé approximated by letting m — 0) boundary 'pressurés, the Warren-Root method
predicts an exponc;nt for the matrix pressure that is too high by 1/2, whereas the Ver-
meulen equation predicts the correct exponent. The numerical constant in eq. (29) is
somewhat smaller than the exact value given by eq. (30), and depends on the
coefficient m. In the limit as m — 0, the constant is too low by 7%, and in the limit
m—>oo it ié tob low by 26%. This second. limit is found by using Stirling’s approxi-
mation [Ghez, 1988, p. 119] to show that as m — es, _I’(m+1)/F?m+3/2)= 1/‘/—(;1_ . This
slight érror in the numerical constant, but with the correct exponent, leads to more
accurate pressure predictions than does the Warren-Root method, which predicts
entirely incorrect exponents for the time dependence. |

As a further test of the Vermeulen equation, we consider the case where the frac-
ture pressure Py at first increases linearly with time, and then aéymptotically levels off

to some new value, according to
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Pf =Pi + (Po _Pi)[l—exp(—ﬁnzkmt/¢mucman%)] ’ | (32)

‘where [} is some dimensionless constant. This type of variation in P, approximates, to
some )extent, a diffusive pressure front such as might exiSt near a wellbore during
injection or withdrawal of fluid. This is the first type of P variation we have dis-
cussed that includes its own intrinsic timc.scale, and hence the results cannot be plot-
ted in dimensionless form without considering the value of . This parameter reflects
the rate at which pressure diffuses through the fracture system, relative to the rate at
which it diffuses through a ma‘ltn'x' block (since the other terms in the exponent in eq.
(32) represent the natural time scale for matrix diffusion). Consider the case where
B=100, which corresponds to, very ropghly speaking, a matrix block whose permea-
bility is 100 times less than the effective permeability of the fracture continuum. Fig.
3 shows the averagevmatrix block pressures that were computed from eqgs. (14) and
(19), as well as the exact solution for this boundary condition, which is [Crank, 1975,

p- 92]:

P, -P; 6B = exp(—n’n?k,t/¢,cna2)
14 =B
PP, Z 2 p) o
- -2— [1 -vB cot(m/B)] exp(-Bnk,, 1/, MC, a,2) . 33)
TP

This expression has a removable singularity whenever B is equal to the square of an v
| integer, such as when B=100. The principal parts of the two singular terms, one aris-
ing from cot(10w) and the other from the n =10 term in the summation, in fact cancel

out. If we take the limit of eq. (33) aslﬁ ~> 100, we arrive at an expression which is
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more convenient for computational purposes:

P 1 600 CXp(—-n21[2ka /O Cm an% )
— =1+ —
P,-P; n2 nzl0 n2(n2_100)

6exp(—100m2k,, £ /0, 1C,, 6,2) o )
o "~ 100r2 ’ Y
- where the summation is taken over all positive integers except n =10. Fig. 3 shows
that the Vermeulen equation is again far superior to the Warren-Root equation, in this
| case over almost the entire vyr’ange of times. »T_hel Warren-Root solution does not
. become accurate vuhtil flow into the matrix block is about 90% complete. A similar
compaxison’ was also carried out for a fracture pressure that varies exponentially with
the square of t, and the qualitativé conclusions, aS' well as the curvev shapes on a semi-
' "log plot, are very similar to the case ShoWn in Fig. 3. .
Each of the eXamplés discussed above shbwed that the Vermeulen equation accu-
" rately predicts the ‘mean m‘atrix pressures when the fracture pressures are known in
advance as specified functions of time. (We have aiéo verified that the Vermeulen
equation is reasonably accurate for the éase where the fracture pressure oscillates
sinusoidally in timé. This requires the insertion of absolute value signs in appropriate -
placés in eq; (19), and is discusséd in Appendix B.) We' interpret. these résults as justi-
fying the incorporation of | the Vermeulen equation as the fracturé/méﬁix flow interac-
tion term in a 'nu'merical reservoir simulator. We discuss this incorporation below, and
present a simulation for a te"s‘t’ prbi)lem in which both P, and P; are computed, in a

coupled manner, as part of the solution process.
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Coupled Dual-Porosity Simulator

Numerical reservoir simulators used for single-continuum systems typically solve
eq. (1) by discretizing the reservoir into a number of computational cells, and use
some numerical scheme such as finite-differences [Huyakorn and Pinder, 1983], finite
elements [Pinder and Gray, 19771, vor. integral finite-differences [Edwards, 1972;
Narasimhan and Witherspoon, 1976], to reduce the partial differential eciuation to a set
of algebraic equations. These algebraic equations are solved at each time-step, i,, in
order to yield the pressures in each cell at the next time-stép, tpy1 =1, +Ar. (We refer
to the computaﬁonal units as cells, in order. to avoid cbnfusion_ between ‘‘matrix
blocks’” and ‘‘computational grid-blocks’”). Our approach is to assign to the computa-
tional qells those propcrt_iés that correspond to the fractured continuum, averaged over
a suitably-large REV. Fluid that enters or leaves the fracture system from the matrix
blocks is then treated as a source/sink term, the magnitude of which is determined
from eqs; (6,19). A certain numberbfb matrix blocks will be associated vwith each
computational cell, with physical properties (%,,,9,,,a,,,andc,, } that must be entered
as input. In general, the matrix properties are allowed to vary from one corhputational
cell to the next, Each computational cell will have associated with it a new variable,
P,, which repfesents the average matrix pressure in those matrix biocks that are ;:on-

tained in that cell.

We have implemented this approach' into the TOUGH simulator [Pruess, 1987],
an integral-finite-difference code that has been shown o accurately simhlate three-
difnensional, single-phase, isothermal flow processes such as those discussed in this
paper (as well as non-isothermal and two-phase processes). TOUGH uses an implicit
formulation in which the ﬂuxés over the time interval ¢t =1 +Ar are calculated from
Darcy’s law in terms of the pressures af time ¢+ Ar. This leads to a system of 3N
algebraic equations that must be solved at each time-step, where N is the number of

computational cells, and the factor 3 arises from the fact that TOUGH solves a mass
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balance equation for water and air, as well as an energy balance equation, for each

cell. The fracture/matrix interaction equation has been incorporated as an option in a
subroutine which is hormally used’ for sources/sinks that represent injection or with-
drawal of fluid from a well, 'ctc. "We found that an explicit calculation of the
fracture/matrix flux, in terms of the current values of Fm and Pf at time 7, leads, as

might be expected [see Huyakorn and Pinder, 1983, p. 351], to numerical instabilities

for large time-steps. Rossen [1977] discusses this problem in the context of capillary-

~ driven flow in two-phase oil/water matrix blocks. Hence we treat the calculation of the.

fracture/matrix flow implicitly, to avoid numerical instabilities. This requires the calcu-

lation of additional contributions, stemming from the fracture/matrix flow, to the terms .

in the coefficient matrix of the algebraic equations. The total number of algebraic
equations to be solved, however, remains equal to three times the number of fracture

elements.

As a test of the use of our modified dual-porosity code, consider the problem of
linear one'-‘dimensional flow from a boundary that is maintained at some pressure P,,
into a semi;inﬁnitc: formation théf is initially at pressure P;. We Have also tested the
. modiﬁed.version of TOUGH on problems involving radial flow to a weH, and under
.cdﬁstant—ﬂux boundary éonditions. H/owever, the ‘problem. discussed here seems to
. most clearly illustrate the differeni time regimes, and the effects of fracthre/matn'x

flow, since a log-log plot of flux vs. time ‘will" exhibit straight-line segments. The

boundary and initial conditions for this problem are

Pr(xf,t=0)=P,(xs,t=0)=P; , 3 (35)
Py =01>0=P,, (36)

Xp => e

%
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The results of the simulation using the new semi-analytical dual-porosity version
of TOUGH, incorporating eq. (19) as the fluid coupling term, are presented in Fig. 4.
The figure shows the flowrate from the inlet feeding the fractures, as .a functibn of

2 and

time. In the simulation, the permeabilities’ were taken as ke = 105 m
k,, =1078m? the porosities as ¢ =0.001 and ¢,, =0.1; and the matrix block radii as
L, = 10m. ‘The 1nitial temperature was set >at 20°C, and the bbundary and initial pres-
Sure_s .were taken to be P; = 10MPa and P, = 11 MPa. Under these conditions, the
viscosity of water is roughly 0.001 Pa'-s, the .density' is roughly 1000kg/m3, and the
compressibility is roughly 4.5x107'%/Pa, although the TOUGH code actually uses

more accurate values that are computed at each temperature and pressure from

" empirically-derived equations of state. For simplicity, we assume that the rock is

- rigid, so that the compressibility term reflects only the compressibility of the water.:

The semi-infinite fracture continuum was broken up into fourteen computational cells,
of length 1m, 2m, 4m, etc. The total length of 16,383 m was Sufﬁciently large so as
to simulate a semi-infinite formation, for the duration of the process considered in this
problem (10%s).

At small times, ﬂow_takés place primarily in the fractures, and the flux varies as
172, as expected for oné-difnensional diffusion. ~ As time progresses, the leakage of
fluid into the matrix blocks has the effect of temporarily halting the décline of the flux
into the system According to the Warren- Root method, this leads to an intermediate-
time regime. in wh1ch the overall flux is essentially constant. This is 111ustrated in the
curve labclled ““MINC - 1 shell per matrix block’, which is a numerical implementa-
tion of the Warren-Root model; a regime in Wthh the flux is nearly constant is seen
for 10* <7 < 10°s. Also shown are the results calculated using a fully discretized
MINC—type approach, in which each spherical matrix block was broken up into ten

nested shells. As the number of shells in the MINC simulation increases, the pressure

gradients within the matrix blocks are more accurately simulated, and the overall flux
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into the formation approachcs that calculated with the new semi-analytical approach;
this agreement serves as a verification of the new method. The Warren-Root method
overestimates the time needed for flow into the matrix blocks to begin to appreciably
influence the overall flowrate into the formation, since it ﬁnderestimates the amount of
matrix influx at ‘small times.. As seen clearly in Fig. 4 for 10 <z < 10°s, the

Warren-Root model gives inaccurate flowrates at intermediate times.

The results of the new method can also be compared to the asymptotic analytical
- solutions developed by Nitao and Buscheck [1991]. They treated the mathematically
analogous problem of linearized capillary-driven flow into an unsaturated, fractured
foxmation, and found the Ieading—érder terms for the flux in each o\f the three time
regimes. These three time regimes are physically analogous to ‘the three regimes that
have been found to éxist.for the problem of radial, constant-ﬂowfate injection into a
dual—poro_sify formation [Streltsova; 1 983]. Following th'eir‘procedure, we can develop
the asymptotic solutions for the préscnt’ saturated ﬂow ‘problem. At small times the
solution corresponds 'to:’ﬂc‘)w into the fracture network with .the matrix blocks assumed

to be impermeable, which leads to a mass flowrate of

Cl'_

qearly = \/—

ko 12
o {.f_f_f_] (P; -P,)=3.78x10*t712 kg/m%s.  (38)
, )

T

In the late time régime, Nitao énd Buscheck [1991] showed that the problem becomes
asymptoticélly equivalent to one-dimensional flow into a porous formation whose per-
meability is essentially equal to k; (since k,, <k;), but whose porosity is equal to
O +0p. Since the compréssibility terms (which reflect only ¢4, ) iI'; both the matrix

and fractures are equal, the late-time flowrate is asymptotically given by

Qiate = 3 Y,

o [kf(¢f+¢,,.)cf
t w

12 :
] (P;—P,) =3.80x1073+7V2 kg/m’s .  (39)
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Nitaé and Buscheck [1991, eq. (90)] also showed the existence of an intermediate
time régime in which the flux drops off as C,¢™"4. The constant C, was found to be
equal to 232714 C,, where 1, is a certain characteristic time at which matrix leakage
begins td affect the overall flux into the system. This time constant must be
transformed into an analogous value appropriate for the present saturated flow prob-
lem. To do this, we first note that for their geometry of parallel fractures separated by
a distance 2a, the spéciﬁc fracture/matrix surface area is given by A/V =1/a, whereas
for the present geometry of spherical matrix blocks of radius a,, we have A/V =3/a,,
[Zimmerman et al., 1990]. If we further identify the hydraulic diffusivity of the matrix
blocks as D,, =k, /¢, Jic,,, we find that

4and,, c,, a2 | 2
= Ombonln |\ 97 | (40)
L Oy,
which leads to
e ke s cy nOm | 4
qinterm'=2 pw(Po_Pi) 2 2 t
. H 47tp‘cm¢fam
= 2.14% 1074~V kg/m?s. | @)

The three asymptotic expressions given by egs. (38,39,41) are compared in Fig. 5 to
the results calculated by our modified version of the TOUGH code. The close agfee-

ment over all time scales is further validation of the accuracy of our new method.
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The CPU time required for simulating a MINC-type problem with a code such as
'TOUGH grows linearly with the nurﬁbér of computational cells, since most of the
computing effort consists of a Gaussian—eiimination inversion of a relatively sparse
matrix [see also Gilman and Kazemi, 1983]. In the example discussed above, the
fully-discretized MINC-type simulation used 155 cells (14x 11, plus one large ““boun- -
dary’’ cell required to fix the boundary pressure at 11 MPa), whereas the semi-
analytical method required only 15 cells. We would expect the ratio of CPU times for
the two simulations to be about 155:15 = 10.3, f_or‘a savings Qf 90%, and in fact the
timé savings was 88%, the slight differencé probably attributable to the need to calcu-
late additional contributions to the coefficient matrix. A similar sa;ings is achieved in

the amount of computer memory required.

Cénclusions

We have devéloped a new dual-porosity model for 'singlé-phasé fluid flow in
porous/fractured media. The model uses a nonlinear ordinary differential equation to
calculate the fracture/matrix iritéraction term. This -equation has been shown to be
more accurate than the linear Warren-Root equation, .fqr a wide variety of matrix block :
boundary conditions. This differential equation has been incorporated into the numeri-
cal simulator TOUGH, to sérve as a source/sink term for the discretized fracture con-
tinnum. The a'ccurécy of the modified semi-analytical code has been verified by com-
parison with simulations_ in. which the matrix blocks ar'e"broken up into a number of
concentric shells. For the test problems we have simulated, »the modified TOUGH code
yields results that are more accurate than can be achieved using as many as te;n con-
centric’ shells in the matrix blocks. Since the matrix. blocks no longér need to be
discretized, the total number of cornputatiqnal cells required for a simulation decreases
by a factor of abbﬁt ten, le_adingv to approximately a _ten‘-fold increase in computational

. . T . f . - -
speed. This increase in computational speed, coupled with a decrease in the time and
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effort required for mesh discretization, allows more efficient simulation of fluid flow

problems in fractured/porous media.
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Appendix A

The anélysis of the fracture/matrix interaction equation described above was per-
formed for matrix blocks of spherical shape. This does not pose a loss of generality
for the Warren-Root method, since block geometry enters the calculations only through
the single parameter o in eqs. (7) and (8). This parameter has dimensions of area” !,
and is therefore inversely proportional to the square of sdmé suitably-defined charac-
teristic block gizc. If the blocks havé a known simple shape, such as cubical, cylindri-

“cal, or slab-like, o can be approximated in the same manner as for the spherical block,
which is by differentiating the most—slowly—décaying exponential term in the Fourier
series solution for the step-function response, eliminating ¢, and comparing the result-
ing equation_' with the general form 'given in eq. (8). Using the Fourier-series solutionsv

V given by Crank [1975] and Carsléw and Jaeger [1959], we find, for examplc; that
o = n%/L? for a thin slab of thickness L; (X,=31tz/L2 for a cubical block of length L;
and =z 2/a? for a long cylinder of radius a, where z,=2.405 is the first positive oot
of the Bessel function J,. A discussion of the relationship between o and block
geometry is given by deSwaan [1990], who derivedv slightly different values than those
given above by forcing the Warren-Root normalized matrix pressure to reach 0.50 at
the same vélue of t és does tl.le. exact normalized matrix pressure, under step-function
* boundary conditions. This approach has the effect of making the Warren-Root method
accurafe at some intermediate time regime, but caﬁses the asymptotic quasi-steady-state
flux to be off by some multiplicative constant. Warren and Root [1963] left o as an
open—parameter,' but proposed the valué 60_/L2 for a cube of length L, which agrees
with deSwaan’s valué. |

The nonlinear flow interaction term given by eq. (19) was derived for a spherical

inatrix block, 'énd so it is not immediately clear how to generalize it to other

geometries. " One approach would be to identify the termg 1:2/a,,% on the ﬁght—hand side

of eq. (19) with a of the Watren—Rodt equation, and substitute the ‘‘exact’’ Warren-
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" Root o values discussed above for cases of other block geometries. This would assure
that eq. (19) is accurate in the quasi-steady-state regime. As a test of the accuracy of
B this approabh, consider the problem of flow into a cubical matrix block of 1ength L,,
under step—function_boundary conditions analogous- to eqs. (9) and (10). If we use the
Verrneulen equation to predict P_m ns a function of time, we arrive at the expression
given in eq. (17), with nzla,,% replaoed by 37i:2/L”%. The exact expression for P, (x,,,t)

given by Carslaw and Jaeger [1959, p. 184] can be averaged over the cube to yield -

e)r_p[—kzkm 2 +m?+n¥tip,uc, L2 |
1?m?n? 7

P op 17 % 223 TS D

i T 1=1 m=1n=1

—

. where the summ‘ations take place over all odd positive integers. Fig. 6 shows that this
procedure of adapting the Vermeulen equation to another geometry by using the
Warren—Root o parameter in place of nzla,,% in eq. (19) is reasonably accurate. Due to
the manner in which o was defined, the approximate solution is asy-'mptotically exact
for large tirnes.' At small times, the average matrix block prcsSure is too high by a
multiplicative factor of \/Z/—3, which 1s an error of only 15%. In general, there is no -
method of choosing o for non-spherical block shapes that will render the Vermenlen
equation exactly correct in both the small-time and large-time limits; it ‘will, however,
yield the correct power-law exponents at sliort times, as is seen by comparing the

slopes of the curves in Fig. 6.

The approach described above could be taken if one were studying the effect of
matrix block shape on overall reservoir behavior. In simulations of a specific reser-
| Voir, the term '7t2/a in eq. (19) could also be left as an open parameter, with dimen-
sions of varea , whose value is chosen SO as to yield a good match between the
predicted and observed pressure response in the fractures. This approach was taken by

‘Moench [1984] in the context of the Warren-Root model.
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Appendix B

Eq. (19) governing the mean pressuré response in the matrix blocks is, as written,
applicable only to processes in which P, changes monotonically with time. For exam-
ple, if Pf starts at P; and increases with ¢, P,, will also increase, but will lag behind
P;. Henc,e (P; —P;)* will be greater than (P,, —P;%), and eq. (19) will correctly predict
an increase in P,,. Similarly, if P; decreases with ¢, P, will decrease but lag behind,
and so the numerator on the right side of eq. (19) will be positive, the denominator
will be negative, and the equation correctly predicts that P,, will decrease with .t.
Difficulties arise if the variation in Pf is not monotonic. Strictly_speaking, the sign of
dP,,/dt will depend only on the integral of oP,,/on over the outer boundary of the
block (see eq. (3)). When using oniy the mean value P,,, knowledge of dP,,/dn is
lost, so to speak. It seems plausible, however, that dl-’_,,l /dt should have the same sign
as Pf —Fm; Using the fact that a*-b%=(a-b)(a+b), we can recast eq. (19) in a
way- that leaves it unchanged if both Py —P; and P, —P; are of the same sign, and

which assures that dP, /dt has the same sign as P;—P,:

dP,, %,  (P;—P,)(P;~P;|+IP, —P;)
dt 2¢m ucma,,% ‘ If_’.m _Pi :I .

. (B1)

To test this form of the equation, consider a case where P, varies sinusoidally in

time:
P;(t)=P; + P,sinox . (B2)

Due to the form of eq. (Bl), we can set P; =0, without any loss of generality. An

exact solution for this problem can be developed from the step-function response using
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the convolution principle, which states that the pressure distribution in the sphere is

given by [Crank, 1975, p. 91]

t

P, (r.1)= %f_ Y (1) nusin(xr fa) fexpl-Dn2nXt —0/a?IP; (DdT, (B3)
) n=1 : 0 . . :

where D =k/¢uc is the hydraulic diffusivity, and for convenience we drop the sub-

'script m on all physical parameters. _ If Pf (t)=P,sinwt, eq. (B3) can be writtch as

- o

P,(r,t)= po Y. (-1)*nnsin(nnr /a)exp(-Dn 22t /a?)

n=1

t .
x_[exp(Dnznzt/a ZysinwrtdT. (B4)
0 .

i

The integrals in eq. (B4), which we denote by /,,, can be evaluated to yield

¥, sinwt e —wcoswt e™ + © v
I, = = — ; (B5)
Y+ ' |

where v, =Dn2n%a?.
~ The mean pressure P,,(¢) is found by integrating P,,(r, 1) through the sphere, and
dividing by the sphere volume 4na3/3. The averagev values of the space-dependeni

" terms in eq. (B4) are found to be

rsin(urr/a)dr = ——(=1y"*1 (B6)
T "

Oteammy R

' lsin(mtr/a) = —3?
r a
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Combining eqs. (B4-B6) leads to

P,() —6 Z n’n? sinot — Q cosor + Qexp(-Dn?n’t/a?)
P, Q? + nirt } ’

(B7)

where Q=wa?%D. If we rewrite each pair of trigonometric terms as a single sinusoid

with a nonzero phase angle, we arrive at

—

P, = sin(wr +3,) —Dn?nt/a? .
() _ 62 ( Qexp( -Dn“n“t/a“) ’ (BS)
P, 1VO? + it Q2 +n47t4 :

»

‘where o, =arctan (—Q/nznz). Carslaw and Jaeger [1959, p. 235] presented the solu-
tion to this problem, but expressed the oscillatory components of P, (r,7) in terms of
a magnitude and a phase angle. This leads to terms that contain an awkward depen-
dence on r, and‘ which are not easily integrated to find P, (¢). The sinusoidal portions

(X9

of eq. (B8) represent the ‘‘steady-state’” part of the solution, whereas the exponential

terms represent the transient portion.

The quasi-steady-state pai’t of the mean pressure response depends on the dimen-
sionless frequency .Q:ma?/D . Since the time needed for the sphere to equil_ibrate.
after-a step-function increase in P, is approximately a%D (see Fig. 1), and the time af
which P, sinwt stdps increasing is /20, we see that Q is approximately equal to the
ratio of thése two time scales. In order to test the applicability of the modified Ver-
meulen equation to sinusoidal boundary conditions, over a range of frequencies, we
can integrate eq. (B1) nume_ricélly, using eq. (B2) for P((z), and compare the results
to the exact values given by eq. (B8). At low frequencies, Q< 1, eq. (B1) was found
to be extremély accurate; the accuracy decreases as Q increases. Fig. 7 shows ﬁm for

=10, as computed by eq. (Bl) and eq. (B8); for comparison, P (z) is also plotted.
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‘The modxﬁed Vermeulen equation predicts the phase angle, which represents fhe lag
,betwéen P, and P;, very accurately. The maximum magnitude of P,, is predicted
within an error of about 9%. At a value of Q as large as 100, the error in the max-
imum vahié of P, reaches»ab.out 29%. For comparison, we note that for Q=100, the

Warren-Root equation underestimates the maximum value of P,, by 58%.
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Figure Captions

Fig. 1. Normalized average matrix pressure for a spherical block subjected to a step-
function increase in the pressure at its boundary, as given by the exact solu-
tion, the Vermeulen equation, and the Warren-Root equation. For comparison,

the pressure at the boundary (i.e., in the fractures) is also shown.

‘Fig. 2. Same as Fig. 1, for a ramp-function increase in the boundary pressure. The

diffusion coefficient D is defined here to be k,, /9, lc,, .

Fig. 3. Same as Fig. 1, for the case where the boundary pressure incrcaées according to

-eq. (32), with B=100.

Fig. 4. Total instantaneous flux for one-dimensional flow into a dual-porosity formation
with constant boundary pressure. The‘meaning's of the parameters, and their
values; are discussed in the text. MINC simulations were carried out usihg the
TOUGH code; ‘‘new method” simulation was carried out using TOUGH, with

the modifications described in the text.

Fig. 5. Same problem as in Fig. 4, with results of new method compared to the three
asymptotic expressions (egs. (38,39,41)) found foliowing the analysis of Nitao

and Buscheck [1991].

Fig. 6. Same as Fig. 1, but for a cube of length L,,. In both the Warren-root equation

(14) and the Vermeulen equation (19), the term_a,,% has been replaced by L,2/3.

Fig. 7. Same as Fig. 1,' but with the boundary pressure given by Py =P; +P,sinor.

The dimensionless frequency Q=wa?/D,, is taken to be 10.
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Normalized average matrix pressure for a spherical block subjected to a step-

function increase in the pressure at its boundary, as given by the exact solu-

tion, the Vermeulen equation, and the Warren-Root equation. For comparison,

the pressure at the boundary (i.e., in the fracmres) is also shown.
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Fig. 2. Same as Fig. 1, for a ramp-function increase in the boundary pressure. The

diffusion coefficient D is defined here to be km 10,,, LC,, -
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Fig; 3. Same as Fig. 1, for the case where the boundary pressure increases acco_rding to

eq. (32), with B=100.
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Fig. 4. Total instantaneous flux for one-dimensional flow into a dual-porosity formation

" with constant boundary pressure. The meanings of the parameters, and their

values, are discussed in the text. MINC simulations were carried out using the

TOUGH code; ‘‘new method’’ simulation was carried out using TOUGH, with

the modifications describéd in the text.
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Fig. 5. Same problem as in Fig. 4, with results of new method compared to the three -
asymptoﬁc expressions (egs. (38,39,41)) found from the analysis of Nitao and
Buscheck [1991].
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Fig; 6. Same as Fig. 1, but for a cube of length L,,. In both the Warren-Root equation

(14) and the Vermeulen equation (19), the term a,? has been replaced by L,,%/3.
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Fig. 7. Same as Fig. 1, but with the boundary pressure given by Py =P; +P,sine.
The dimensionless frequency Q=wa?D,, is taken to be 10. .
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