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A Numerical Dual-Porosity .Model 

with Semi-Analytical Treatment of Fracture/Matrix Flow 

Robert W. Zimmerman, Gang Chen, Teklu Hadgu, and Gudmundur S. Bodvarsson 

Earth Sciences Division 

Lawrence Berkeley. Laboratory 

University of California 

Berkeley, CA 94720 

Abstract 

A new dual-porosity model is developed for single-phase fluid flow in 

fractured/porous media. Flow is assumed to take place through the fracture netWork, 

and between ·the fractures and matrix blocks. The matrix blocks are treated in a . . 

lumped-parameter manner, with a single average pressure used for each matrix block. 

Rather th~ assuming that fracture/matrix flux is proportional to the difference between 

the fracture pressure and matrix pressure at each point, as is done in the Warren-Root 

model, we use a nonlinear equation which more accurately models the flux over all 

time regimes, including both early and late times. This flux equation is compared with 

analytical solutions for spherical blocks with prescribed pressure variations on their 

boundaries. The nonlinear flux equation is also used as a source/sink term in the 

numerical simulator TOUGH. The modified code allows more accura~e simulations 

than the conventional Warren-Root method, with a large savings (about 90%) in com

putational time compared to methods which explicitly discretize the matrix blocks. 

Revised version, submitted (2/22/93) to Water Resources Research 
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Introduction 

Numerical simulation of flow processes in fractured rock masses is a formidable 

task, due to the often complex geological and hydrological characteristics of such for

mations. The specific geometry and other characteristics of the fracture system are 

generally not known, so it is not possible to explicitly model individual fractures or 

individual matrix blocks. To circumvent this difficulty, so-called "double-porosity" 

models are often used [Barenblatt et al., 1960; Wa"en and Root, 1963]. In double (or 

dual)-porosity models, knowledge of the actual geometric and hydrological features of 

the fracture network is not required, but instead only "average" properties, such as a 

typical fracture spacing, are needed. In a numerical simulation of a flow process in a 

dual-porosity system, the individual computational cells are assumed to be sufficiently 

large so that it is meaningful to assign suitably-averaged "effective" properties to 

them. Despite this simplification, numerical modeling of dual-porosity reservoirs is 

still a complicated and costly process. In general, fairly fine spatial discretization is 

needed in the matrix blocks [cf, Pruess and Narasimhan, 1985] in order to resolve the 

matrix block pressure gradients. Hence modeling of a fractured reservoir requires 

about an order-of-magnitude more computational cells than would be needed for an 

unfractured porous medium simulation of a reservoir of the same overall size. 

In this paper we present a new method for modeling fluid flow in fractured reser

voirs that simulates reservoir behavior more efficiently and economically than methods 

in which the matrix blocks are discretized. The new method involves a semi-analytical 

treatment of fracture/matrix interfl.ow, eliminating the need for internal discretization of 

matrix blocks. This allows one to perform accurate dual-porosity simulations, using a 

substantially smaller number of cells than would be needed in a fully-discretized simu

lation. 
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Dual-Porosity Models 

When a single-phase, slightly compressible fluid flows through a 

macroscopically-homogeneous fractured medium, the fluid pressure in the fractures is 

·governed by the following diffusion equation used in reservoir engineering [Matthews 

and Russell, 1967]: 

(1} 

In this equation, t is the time, x1 is the position vector of a point in the fracture con

tinuum, k1 is the absolute permeability [m2] of the fracture continuum, cl>t is the total 

fracture porosity, and c1 [Pa-1] is the total.compressibility of the fractures and the 

fluid within them. Q is a volumetric source/sink term that represents the net addition 

of fluid to the fracture system from the matrix blocks, per unit of total volume; its 

dimensions are [m3/m3s]. The pressure P1 represents the fluid pressure in the frac

tures, averaged over some sufficiently large representative elementary volume [REV; 

see Chen, 1989]. (It is not clear that such a length scale will always exist [Long and . 
Witherspoon, 1985; see also Neuman and Orr, 1993], since heterogeneities in fracture 

spacing, aperture, etc. may occur at all length scales.. For our present purposes, we 

will consider only fractured formations which are macroscopically homogeneous on 

some scale). The V2 operator represents the Laplacian; which is the divergence of the 

gradient. The fracture , continuum is assumed to occupy all of the physical space 

spanned by the variable x1 , with the actual pore volume of the fractures accounted for 

by the porosity factor. 

A dual-porosity model can be formulated by first imagining that, at each point x1 , 

there is located a matrix block of some specified shape. Inside each block the fluid 

pressure P m will, in general, vary from point to point. Two position variables are 



- 4-

needed to identify a point inside a matrix block; Xm will locate the point within the 

block, relative to, say, the block's center of gravity, while x1 is needed as a label to 

· fix the location of that particular block within the fracture continuum. Fluid flow 

within each matrix block is governed by an equation of a similar form as ( 1 ), which 

can be written as 

(2) 

In this equation, the parameters have meanings analogous to those in eq. (1). The 

derivatives implicit in the ope'rator V2 are taken with respect tO the local variable Xm, 

while the variable x1 is merely used as a label. The fracture/matrix interfiow term Q 

does not appear explicitly in eq. (2) since, whereas the interfiow is assumed to be dis

tributed throughout the fracture continuum as a source/sink term, the interfiow enters 

the matrix blocks only at their boundaries. The pressures at the outer boundary of a 

given matrix block located at point x1 in the fracture continuum are always assumed 

to be equal to the fracture pressure at that point - i.e., if Xm is on the boundary of the . 
matrix block, then P m (xm, t; x1 ) = P 1 (x1 , t ). This is equivalent to ignoring the 

existence of fracture skin effects [see Moench, 1984], which if present would cause a 

finite pressure change across a small localized region of the matrix block adjacent to 

the fractures. 

The set of equations (1) and (2) actually represents a single equation for the frac-

ture continuum, along with a family of equations for the matrix blocks that are located 

at each point x1 . These equations are coupled through the term Q , which can be 

found by integrating the flux out of the boundary of each matrix block, using Darcy's 

law [see Duguid and Lee, 1977]: 
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(3) 

where. the derivative of P m is taken in the direction of the outward unit normal vector 

to the boundary av m of the block, and the integral is taken over the entire .boundary. 

A well-posed boundary-value problem for the system of equations (1-3) would typi

cally require initial conditions for P m ·and P 1 , as well as boundary conditions for the 
' 

pressures at the outer boundary ·of the macroscopic region under investigation, i.e., at 

the outer boundary of the x1 domain. If the initial state were one of local equilibrium, 

as would often be the case, we would have P 1 (x1 , t = 0) = P m (xm, t = 0; x1 ) at each 

point x1 . 

Dual-porosity models of the type discussed above, in which diffusion equations 

are solved in both the fracture and the matrix systems, are sometimes used in numeri-

cal simulations. An example is the MINC (Multiple .INteracting Continua) method 

[Pruess and Narasimhan, 1985], in which the matrix blocks are discretized into nested 

shell-like cells. This approach is much more efficient, and under most conditions as 

accurate, than using a three-dimensional discretization of the matrix blocks. In order to 

· achieve high accuracy over all time scales, however, we have found that about ten 

computational cells are needed in each matrix block. If only one cell is used to model . 

each matrix block, the approach is basically a numerical implementation of the 

Warren-Root model, which is discussed below. As is well known, when solving prob

lems in dual-porosity media, the Warren-Root model is inaccurate during a certain 

intermediate time regime [cf, Najurieta, 1980]. The MINC method approaches the 

exact response as the. number of nested matrix shells increases. The accuracy of the 

method we have developed, which treats fracture/matrix flow with a nonlinear ordinary 

differential equation, will be tested by comparison with MINC-type simulations. 

'~~ 
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Warren-Root Lumped.;.Parameter Models · 

The Warren and Root [1963] model is a simplified form of the dual-porosity 

model in which no attempt is made to solve the diffusion equation within each block, 

but instead the blocks are treated in a ''lumped parameter'' fashion. The pressure in 

the matrix blocks is governed by an ordinary, rather than partial, differential equation. 

If implemented in numerical simulators in the form of a source/sink term for the frac

ture elements, the amount of computational time spent on splving for the matrix block 

pressure, and the fluid-interaction term Q, becomes negligible compared to the time 

spent solving the diffusion equation (1) in the fracture continuum. This model can be 

derived by first replacing the pressure distribution in each block, P m (xm ,t; x1 ), by the 

average pressure within the block, 

(4) 

A more rigorous definition of P m would involve some sort of weighted average over 

the block, to account for the fact that the fluid compressibility varies with the thermo

dynamic state of the fluid. However, for isothermal single-phase flow, with moderate 
( 

pressure variations, the fluid compressibility is nearly constant, and definition (4) 

suffices. Eq. (1) can still be used for the pressure within the fracture network, but eq. 

(2) governing the pressure distribution within the matrix blocks is no longer meaning

ful, since the pressure P m is no longer defined at. each point Xm within the matrix 

block. Instead, we integrate eq: (2) over an entire matrix block centered at point x1 , 

use the divergence theorem to convert the volume integral of V2P m into a surface 

integral of ()p m /CJn, and divide the resulting equation by V m, to arrive at 

(5) 

:J 

•· 
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Comparison of eq. (5) with eq. (3) shows that the mean pressure in the matrix block is 

governed by the following ordinary· differential equation: 

(6) 

Equations (1) and (6) now govern. the behavior of a lumped-parameter type dual- · 

porosity model. Note that since the local variable Xm within each matrix block has 

been removed by integration, Q cannot be evaluated as in eq. (3), but must somehow 

be related to the two pressures P 1 and jim . 

In order to maintain the linearity and relative simplicity of the system of 

differential equations, Warren and Root [1963] chose to model the flux term Q by 

. assuming that it is directly proportional to the difference between P 1 and jim: 

(7) 

where a. is a parameter that depends on block shape, and has dimensions of area-l 

[m-2]. The governing equation (6) for jim then takes the form 

(8) 

Expressions (7) and (8) for the flux and the matrix pressure are often referred to as the 

"quasi-steady-state" approximation [Barker, 1985; Chen, 1989]. ThiS terminology can 

be understood by considering the basic problem in which · the fracture pressure P f , 

which serves as the boundary condition for the matrix block, increases abruptly at t = 0 
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from its initial value Pi to a new value P0 • In this example, and in much of the fol

lowing discussion, we assume that the matrix block is a sphere of radius am; extension 

to other block geometries is discussed in Appendix A. The exact pressure distribution 

within the block can then be found by solving eq. (2), subject to the conditions 

(9) 

P m ( lxm I~ am , t > 0) = P 0 • (10) 

The solution to this problem is found in many standard texts on diffusion or heat 

transfer, such as Crank [1975, p. 91]. The average pressure in the block is found by 

integrating the pressure distribution, as in eq. (4), to yield . 
·, 

(11) 

For sufficiently large times, say t > ct>m Jl.C m a,i !1t2km, all terms in the series beyond the 

first are negligible, and the pressure varies asymptotically as 

p -P· 
m ' 

p -P· 
0 ' 

(12) 

If we now differentiate eq. (12) with respect to t, and eliminate t from the resulting 

expression, we arrive at the following differential equation for fim: 



-9-

(13) 

We now make the assumption that eq. (13) will govern the mean pressure in the 

matrix block, regardless of whether or not P 1 varies with time, to arrive at 

(14) 

This equation is of the same form as eq. (8), and shows that, for a spherical block, the 

parameter a is equal to 1t
2/a;;. 

Potential difficulties with eq. (14) can be anticipated from the fact that this equa

tion only strictly holds for large times; and even then only for step-function boundary 

conditions. The errors incurred by using eq. (14) will generally be quite large at 

"small" times, for any type of boundary condition, as will be demonstrated below. 
) 

The aim of our work is to incorporate an equation analogous to eq. (14) into a dual-

porosity simulator, but which will be accurate over all ranges of time scales, and for 

more general boundary conditions .. 

Fully-Transient Coupling Term 

Interaction equations that are more accurate than the quasi-steady-state Warren

Root equation have appeared in the petroleum engineering literature in conjunction 

with the development of analytical solutions for problems such as flow to a well in a 

radially symmetric dual-porosity reservoir [deSwaan, 1976; Najurieta, 1980]. These 

interaction equations are usually found, for exaniple, by taking the Laplace transform 

of the step-function response, eq. (11). Step-function responses are typically much 

simpler in algebraic form when written in the Laplace domain, as opposed to the time 
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domain [cf, Barker, 1985]. These methods, however, seem to be restricted to simple 

reservoir geometries, in which case the solution can be developed analytically. Our 

intention is to develop the capability of solving dual-porosity problems in macroscopi- · 

cally irregular geometries, which requires a numerical simulator. We therefore want to 

maintain the computational simplicity inherent in a lumped-parameter formulation of a 

dual-porosity model, but with eqs. (7) and (8) replaced by equations that more accu

rately account for fracture/matrix flow interactions. This approach requires the deriva

tion of an equation for Q, which depends on P 1 and jim, as well as the various physi

cal parameters of the problem, but which does not necessarily have the same exact 

form as eqs. (7) and (8). 

One approach to achieving this goal is that taken by Dykhuizen [1990,1991], who 

used the "integral method" [see Goodman, 1964; Zimmerman and Bodvarsson, 1989] 

to derive an approximate solution for diffusion into a slab-like matrix block, under the 

same step-function boundary conditions given by eqs. (9) and (10). This solution is 

given by two separate algebraic expressions, the choice of which depends on whether 

or not t is greater or less than some critical value tc, which is the time at "'hich the 

diffusing front reaches the center of the block. Dykhuizen [1990] then found the 

differential equation satisfied by each solution, and assumed that one ot the other of 

these differential equations can be used for the general case of time-varying P 1 . The 

criterion for deciding which differential equation to use is whether or not jim is 

greater, in some normalized sense, than some critical value that corresponds to 

P m (t = tc) for the step-function response. This approach was found to be greatly supe

rior to the Warren-Root model for the step-function boundary condition, and somewhat 

superior for a ramp-function boundary condition, in which P 1 increases linearly with 

t. Dykhuizen [1990] treated only slab-like blocks, which have one dimension much 

smaller than the other two; extension of this approach to other geometries, such as 

spheres, would be considerably more complicated [see Zimmerman and Bodvarsson, 
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1989]. 

' 
Another approach to more accurate treatment of fracture/matrix flow in a dual-

porosity model was taken by Pruess and Wu [1989]. They used a version of the 

integral method that was developed by Vinsome and Westerveld [1980], in which the 

pressure distribution in a matrix block is approximated by a furictio:ri: of the form 

(15) 

where O=--./kmt/4<j>mJ.lCm is a measure Of the depth tO which the pressure disturbance 

has penetrated the matrix block, and zm is the distance from a point in the block to the 

outer boundary. The coefficients r and s are recalculated at each time-step so that the 

assumed profile (15) satisfies eq. (2) in an integrated sense over the entire matrix 

block, and at the outer boundary. The form chosen for the pressure profile in eq; (15) 

assures that no pressure change is felt ahead of the propagating pressure front, since 

the exponential term will be very small when zm >40. Pruess and Wu [1989] verifie~ 

the accuracy of this method for a step-function variation in the pressure at the boun

dary of a cubical block. Their approach also has the advantage of being extendable to 

blocks of various shapes, through the introduction of a ''proximity function'' that 

measures the amount of block volume within a certain distance from the outer boun-

dary .. Nevertheless; difficulties can be foreseen for certain types of boundary pressure 

variations, including cases in which the boundary pressure oscillates at a frequency 

high enough that the penetration distance of the pressure pulse into the block is much 

smaller than the block radius. At sufficiently long times, o will become much greater 

than zm at all points in the block, and exp(-zm/0)---? 1, so the approximate pressure 

profile (15) will essentially be an undamped quadratic polynomial. This type of func

tion can never be localized near the outer boundary of the block, as would be required 

to match the tnie pressure profile [cf, Carslaw and Jaeger, 1959, p. 81]. 
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Our approach is similar to that taken by Dykhuizen [1990], except that we would 

like to use a single differential equation for the coupling term, that would be valid for 

all times. An advantage of using a single differential equation is that it can be more 

readily incorporated into an implicit numerical reservoir simulator. The Warren-Root 

equation is of this form, but is only accurate in the quasi-steady-state regime. Since 

the Warren-Root interaction equation can be derived by differentiating the large-time· 

approximation to the step-function pressure response, it might be thought that a more 

general interaction equation could be derived by differentiating the exact step-function 

pressure response, which is [Crank, 1975, p.91] 

where Pi is the initial pressure in the block, and P 0 is the pressure imposed at the 

outer boundary of the block at t =0. Unfortunately, if we attempt this procedure, it is 

not possible to eliminate t from explicitly appearing in the resulting differential equa

tion. A related approach is to first find an algebraically simple approximation to the 

step-function response, and then find the first-order differential equation that it satisfies. 

The resulting equation would then necessarily be accurate over all time scales for the 

step-function boundary condition, but would still need to be tested for other boundary 

conditions. This approach was initiated by Vermeulen [1953], who was working on 

the problem of absorption in ion exchange columns, which is mathematically similar to 

that of diffusion in a dual-porosity medium. Vermeulen found that the exact step

function pressure response (16) could be approximated, over all time scales, by 

(17) 
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Differentiating eq. (17) with respect to t, and then eliminating t from the result, leads 

to 

(18) 

We now generalize eq. (18) by assuming that P 0 represents the fracture pressure P 1 , 

regardless of whether or not P 1 varies with time: 

(19) 

When fi m is very close to P 1 , eq. (19) can be shown to reduce to eq. ( 14 ), which 

shows that the quasi-steady-state response of the Vermeulen equation is the same as 

that of the Warren-Root equation, and so will be accurate in the large-time limit. We 

will demonstrate below that eq. (19) is also very accurate in the small-time limit, in 

which case it r~uces to a form very different from that of the Warren-Root equation. 

For the step-function boundary conditions, eq. (19) integrates to eq. (17), which is 

a very close approximation to the exact step-function response, eq. (16). This is illus

trated in Fig. 1, in which the exact step-function response, eq. (16)~ is compared to the 

"Vermeulen" step-function response, eq. (17). For comparison, we can also define 

the following "Warren-Root" step-function response as the solution of eq. (14) subject 

to boundary condition (10) and initial condition (9): 

(20) 
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This solution is not quite the same as the large-time approximation to the exact solu-

tion, eq. (12), since that approximation does not satisfy the intial conditions. Fig. 1 

shows that the Warren-Root step-function response is very. inaccurate at small times, 

since it does not predict the correct exponent for the variation of fim with t. This can 

be demonstrated by· expanding eqs. (19) and (20) for small times. The Vermeulen 

small-time step-function response is 

(21) 

The Warren-Root small-time step-function response is 

ji -P· m 1 

p -P· 
0 I 

(22) 

The exact solution (16) is not in a form that is easily intetpreted for small times, since 

in this limit each term in the series is non-negligible. However, a different form for 

the exact step-function response, in terms of error functions [Crank, 1975,' p. 91], can 

be used to show that 

(23) 

The numerical coefficient in the Vermeulen solution, which is 1t, is smaller than the 

exact numerical coefficient, 6/..fi, by only 7%. More importantly, the Vermeulen 

equation predicts the correct t 112 behavior for the matrix pressure. In contrast, the 
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Warren-Root differential equation predicts that the rise in matrix pressure will initially 

be proportional to t, instead of t 112• This incorrect exponent leads to large errors at 

very small times (see Fig~ 1). This error cannot be remedied by choosing a different 

numerical constant for a, as is sometimes done [cf, deSwaan, 1990], since this would 

merely alter the multiplicative constant in eq. (22). 

It can also be shown that the Vermeulen equation offers an improvement over the . 

Warren-Root equation for the case of a ramp-function increase in P1 ; this and oth~r 

boundary conditions were not considered by Vermeulen [1953]. Let the initial and 

"boundary conditions" for·the matrix block be 

ji (t =0) = p . . 
m · 1 ' 

(24) 

(25) 

where B is some constant with dimensions of pressure/time. The exact solution for 

Jim in this case is [Crank, 1975, p. 93] 

km(Pm -Pi) 

<Pm f.lCm a;;_B 

. ) 

The. ramp-function response predicted by the Warren-Root equation can be found by 

solving eq. (14), subject to conditions (24) and (25), to yield 

km(Pm -Pi) 

<Pm f.lCm a;;_B 
(27) 
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The Vermeulen equation cannot be solved in closed-form for the ramp-function boun-

dary. condition, but can be integrated numerically to yield the results plotted in Fig. 2. 

As was the case for the step-function boundary condition, the Vermeulen equation is 

more accurate than the Warren-Root equation in predicting the matrix block pressures. 

(Strictly speaking, in lumped-parameter formulations such as those embodied in the 

Warren-Root and Vermeulen equations, the boundary pressures enter directly into the 

differential equations as forcing functions, not as boundary conditions. However, in a 

physical sense, P 1 is still the pressure at the boundary of the matrix block). 

We have shown that the Vermeulen equation accurately predicts the matrix block 

pressures, over all ranges of time, for both the step-function and ramp-function boun

dary conditions. Furthermore, since the Vermeulen equation reduces to the Warren

Root equation for "large times", (i.e., when jim is close to P1 ), it should be accurate 

in the quasi-steady-state regime. Moreover, we can also show, analytically, that the 

Vermeulen equation predicts the correct small-time exponent for jim, for quite general 

types of variations in P 1 . To do this, assume first that for small times P 1 varies as 

Btm, where B is some constant, and m is either an integer or a half-integer: 

(28) 

For small times, jim -Pi will be of higher order than P1 -Pi, and so eq. (19) can be 

integrated to yield the small-time approximation 

p = p. + . tm+ - [ km ]2 1tB 1/2 
m. ' <l>m~cma,; ~(2m+l) . . 

(29) 

The exact small-time approximation can be found from the solution given by Crank 
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[1975, p. 34] for diffusion into a semi-infinite media, which applies to any geometry at 

sufficiently small times: 

(30) 

where r(z) is the gamma function [Ghez, ~988, p. 118]. The Warren-Root equation 

(14) can be integrated in this case to give 

(31) 

As was found in the specific cases of ramp-function (m=1) and step-function (which 

can be approximated by letting m-+ 0) boundary pressures, the Warren-Root method 

predicts an exponent for the matrix pressure that is too high by 1/2, whereas the Ver

meulen equation predicts the correct exponent. The numerical constant in eq. (29) is 

somewhat smaller than the exact value given by eq. (30), and depends on the 

coefficient m. In the limit as m -+ 0, the constant is too low by 7%, and in the limit 

m-+ oo it is too low by 26%. This second limit is found by using Stirling's approxi

mation [Ghez, 1988, p. 119] to show that as m-+oo, r(m+1)1f(m+3/2)= l!..Jin. This 

slight error in the numerical constant, but with the correct exponent, leads to more 

accurate pressure predictions than does the Warren-Root method, which predicts 

entirely incorrect exponents for the time dependence. 

As a further t.est of the Vermeulen equation, we consider the case where the frac

ture pressure P 1 at first increases linearly with time, and then asymptotically levels off 

to some new value, according to 



- 18 -

(32) 

where f3 is some dimensionless constant. This type of variation in P f approximates, to 

some !extent, a diffusive pressure front such as might exist near a wellbore during 

injection or withdrawal of fluid. This is the first type of P f variation we have dis

cussed that includes its own intrinsic time scale, and hence the results cannot be plot-

ted in dimensionless form without considering the value of f3. This parameter reflects 

the rate at which pressure diffuses through the fracture system, relative to the rate at 

which it diffuses through a matrix block (since the other terms in the exponent in eq. 

(32) represent the natural time scale for matrix diffusion). Consider the case where 

f3 = 100, which corresponds to, very roughly speaking, a matrix block whose permea

bility is 100 times less than the effective permeability of the fracture continuum. Fig. 

3 shows the average matrix block pressures that were computed from eqs. (14) and 

(19), as well as the exact solution for this boundary condition, which is [Crank, 1975, 

p. 92]: 

This expression has a removable singularity whenever f3 is equal to the square of an 

integer, such as when f3= 100. The principal parts of the two singular terms, one aris

ing from cot(101t) and the other from the n = 10 term in the summation, in fact cancel 

out. If we take the limit of eq. (33) as f3 ~ 100, we arrive at an expression which is 
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more convenient for computational purposes: 

Pm -Pi = 
1 

+ 600
2 

L exp(-n
2

1t
2
kmtl<l>mcma,;) 

Po -Pi 7t n~lO n2(n2 -100) 

2 . . 2 
6exp( -l007t km t I<J>m J.l.Cm am) 

1007t2 
(34) 

where the summation is taken over all positive integers except n = 10 .. Fig. 3 shows 

that the Vermeulen equation is again far superior to the Warren-Root equation, in this 

case over almost the entire range of times. The Warren-Root solution does not 

. become accurate . until flow into the matrix block is about 90% complete. A similar 

comparison was also carried out for a fracture pressure that varies exponentially with 

the square oft, and the qualitative conclusions, as well as the curve shapes on a semi- . 

log plot, are very similar to the case shown in Fig. 3. 

Each of the examples discussed above showed that the Ve~eulen equation accu

rately predicts the mean matrix pressures when the fracture pressures are known in 

advance as specified functions of time. (We have also verified that the Vermeulen 

equation is reasonably accurate for the case where the fracture pressure oscillates 

sinusoidally in time. This requires the insertion of absolute value signs in appropriate · 

places in eq. (19), and is discussed in Appendix B.) We interpret these results as justi

fying the incorporation of the Vermeulen equation as the fracture/matrix flow interac-

tion term in a numerical reservoir simulator. We discuss this incorporation below, and 

present a simulation for a test problem in which both Pm and P1 are computed, in a 
. . , I -

coupled manner, as part of the solution process. 
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Coupled Dual-Porosity Simulator 

Numerical reservoir simulators used for single-continuum systems typically solve 

eq. (1) by discretizing the reservoir into a' number of computational cells, and use 

some numerical scheme such as finite-differences [Huyakorn and Pinder, 1983], finite 

elements [Pinder and Gray, 1977], or integral finite-differences [Edwards, 1972; 

Narasimhan and Witherspoon, 1976], to reduce the partial differential equation to a set 

of algebraic equations. These algebraic equations are solved at each time-step, tn, in 

order to yield the pressures in each cell at the next time-step, tn+l = tn +At. r:+Ne refer 

to the computational units as cells, in order to avoid confusion between ''matrix 

blocks" and "computational grid-blocks"). Our approach is to assign to the computa-

tional cells those properties that correspond to the fractured continuum, averaged over 

a suitably-large REV. Fluid that enters or leaves the fracture system from the matrix 

blocks is then treated as a source/sink term, the magnitude of. which is determined 

from eqs. (6,19). A certain number of matrix blocks will be associated with each 

computational cell, with physical properties {km, <l>m, am, and em}' that must be entered 

as input. In general, the matrix properties are allowed to vary from one computational 

cell to the next~ Each computational cell will have associated with it a new variable, 
' 

fim, which represents the average matrix pressure 1n those matrix blocks that are con-

tained in that cell. 

We have implemented this approach into the TOUGH simulator [Pruess, 1987], 

an integral-finite-difference code that has been shown to accurately simulate three

dimensional, single-phase, isothermal flow processes such as those discussed in this 

paper (as well as non-isothermal and two-phase processes). TOUGH uses an implicit 

formulation in which the fluxes over the time interval t -7 t +At are calculated from 

Darcy's law in terms of the pressures at time t +At. This leads to a system of 3N 

algebraic equations that must be solved at each time-step, where N is the number of 

computational cells, and the factor 3 arises from the fact that TOUGH solves a mass 
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balance equation for water and air, as well as an energy balance equation, for each 
' ' 

cell. The fracture/matrix interaction equation has been incorporated as an option in a 

subroutine which is normally used for sources/sinks that represent injection or with-

drawal of fluid from a well, etc. · We found that an explicit calculation of the 

fracture/matrix flux, in terms of the current values of Pm and P f at time t, leads, as 

might be expected [see Huyakorn and Pinder, 1983, p. 351], to numerical instabilities 

for large time-steps. Rossen [1977] discusses this problem in the context of capillary

driven flow in two-phase oiVwater matrix blocks. Hence we treat the calculation of the 

fracture/matrix flow implicitly, to avoid numerical instabilities. This requires the calcu

lation of additional contributions, stemming from the fracture/matrix flow, to the terms 

in the coefficient matrix of the algebraic equations. The total number of algebraic 

equations to be solved, however, remains equal to three times the number of fracture 

elements. 

As a test of the use of our modified dual-porosity code, consider the problem of 

- ~ .... , . . , 

linear one-dimensional flow from a boundary that is maintained at some pressure P 0 , · :c".: .:.rJ 

into a semi-infinite formation that is initially at pressure Pi. We have also tested the 

modified version of TOUGH on problems involving radial flow to a well, and under 
/ 

constant-flux boundary conditions. However, the problem discussed here seems to 

most clearly illustrate the different time regimes, and the effects of fracture/matrix 

flow, since a log-log plot of flux vs. time will exhibit straight-line segments. The 

boundary and initial conditions for this problem are 

(35) 

(36) 

lim P1 (x1 ,t) =Pi . x, ~00 (37) 

I 
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The results of .the simulation using the new semi-aniilytical dual-porosity version 

of TOUGH, incorporating eq. (19) as the fluid coupling term, are presented in Fig. 4. 

The figure shows the flowrate from the inlet feeding the fractures, as a function of 

time. In the simulation, the permeabilities· were taken as k1 = 10-15 m2 and 

km = 10-18 m2; the porosities as <l>t =0.001 and <l>m =0.1; and the matrix block radii as 

am= lOrn. The initial temperature was set at 20°C, and the boundary and initial pres

sures were taken to be Pi = lOMPa and P0 = 11 MPa. Under these conditions, the 

viscosity of water is roughly 0.001 Pa·s, the density is roughly 1000 ~g/m3, and the 

compressibility is roughly 4.5 x 10-10 I Pa, although the TOUGH code actually uses 

more accurate values that are computed at each temperature and pressure from 

empirically-derived equations of state. For simplicity, we assume that the rock is 

rigid, so that the compressibility term reflects only the compressibility of the water. 

The semi-infinite fracture continuum was broken up into fourteen computational cells, 

of length 1m, 2m, 4m, etc. The total length of 16,383m was sufficiently large so as 

to simulate a semi-infinite formation, for the duration of the process considered in this 

problem (108 s). 

At small times, flow takes place primarily in the fractures, and the flux varies as 

r 112, as expected for one-dimensional diffusion. As time progresses, the leakage of 

fluid into the matrix blocks has the effect of temporarily halting the decline of the flux 

into the system. According to the Warren'-Root method, this leads to anintermediate

time regime in which the overall flux is essentially constant. This is illustrated in the 

curve labelled "MINC - 1 shell per matrix block", which is a numerical implementa

tion of the Warren-Root model; a regime in which the flux is nearly constant is seen 

for 104 < t < lOSs. Also shown are the results calculated using a fully cliscretized 

MINC-type approach, in which each spherical matrix block was broken up into ten 

nested shells. As the number of shells in the MINC simulation increases, the pressure 

gradients within the matrix blocks are more accurately simulated, and the overall flux 
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into the formation approaches that calculated with the new semi-analytical approach; 

this agreement serves as a verification of the new method. The Warren-Root method 

overestimates the time needed for flow into the matrix blocks to begin to appreciably 

influence the overall flowrate into the formation, since it underestimates the amount of 

matrix influx at small times. As seen clearly in Fig. 4 for 102 < t < loSs, the 

Warren-Root model gives inaccurate flowrates at intermediate times. 

The results of the new method can also be compared to the asymptotic analytical 

solutions developed by Nitao and Buscheck [1991]. They treated the mathematically 

analogous problem of linearized capillary-driven flow into an unsaturated, fractured 

formation, and found the leading-order terms for the flux in each of the three time 

regimes. These three time regimes are physically analogous to the three regimes that 

have been found to exist for the problem of radial, constant-flowrate injection into a 

dual-porosity formation [Streltsova, 1983]. Following their procedure, we can develop 

the asymptotic solutions for the present saturated flow problem. At small times the 

solution corresponds to flow into the fracture network with the matrix blocks assumed 

to be impermeable, which leads to a mass fiowrate of 

(38) 

In the late time regime, Nitao and Buscheck [1991] showed that the problem becomes 

asymptotically equivalent to one-dimensional flow into a porous formation whose per

meability is essentially equal to k1 (since km « k1 ), but whose porosity is equal to 

<l>t +<l>m· Since the compressibility terms (which reflect only cwater) in both the matrix 

and fractures are equal, the late-time fiowrate is asymptotically wven by 

(39) 

J,.; 
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Nitao and Buscheck [1991, eq. (90)] also showed the existence of an intermediate 

time regime in which the flux drops off as C 2 t-
114

• The constant C 2 was found to be 

equal to 2312 tb-114 C 1, where tb is a certain characteristic time at which matrix leakage 

begins to affect the overall flux into the system. This time constant must be 

transformed into an analogous value appropriate for the present saturated flow prob-

lem. To do this, we first note that for their geometry of parallel fractures separated by 

a distance 2a, the specific fracture/matrix surface area is given by A IV= lla, whereas 

for the present geometry of spherical matrix blocks of radius am we have A/V = 3/am 

[Zimmerman et al., 1990]. If we further identify the hydraulic diffusivity of the matrix 

blocks as Dm =kml<l>mJ.l.Cm, we find that 

(40) 

which leads to 

[
k tt-. ]

112
[ 9k tt-. ]114 . -· · = 2312 (P -P·) f'l'fcf m'l'm t-114 

qmterm Pw o z 7tll 4 tt-.2 2 . 
. ,.... 1tJ.l.Cm '+'Jam 

(41) 

The three asymptotic expressions given by eqs. (38,39,41) are compared in Fig. 5 to 

the results calculated by our modified version of the TOUGH code. The close agree-

ment over all time scales is further validation of the accuracy of our new method. 
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The CPU time required for simulating a MINC-type problem with a code such as 

TOUGH grows linearly with the number of computational cells, since most of the 

computing effort consists of a Gaussian-elimination inversion of a relatively sparse 

matrix [see also Gilman and Kazemi, 1983]. In the example discussed above, the 

fully-discretized MINC-type simulation used 155 cells (14 x 11, plus one large "boun-. 

dary" cell required to fix the boundary pressure at 11 MPa), whereas the semi

analytical method required only 15 cells. We would expect the ratio of CPU times for 

/ the two simulations to be about 155:15 = 10.3, for a savings of 90%, and in fact the 

time savings was 88%, the slight difference probably attributable to the need to calcu-

late additional contributions to the coefficient matrix. A similar savings is achieved in 

the amount of computer memory required. 

Conclusions 

We have developed a new dual-'-porosity model for ·single-phase fluid flow in 

porous/fractured media. The model uses a nonlinear ordinary differential equation to 

calculate the fracture/matrix iriteraction term. This equation has . been shown to be 

more accurate than the linear Warren-Root equation, for a wide variety of matrix block 

boundary conditions. This differential equation has been incorporated into the numeri

cal simulator TOUGH, to serve as a source/sink term for the discretized fracture con-

tinuum. The accuracy of the modified semi-analytical code has been verified by com-

parison with simulations in which the matrix blocks are broken up into a number of 

concentric shells. For the test problems we have simulated, the modified TOUGH code 

yields results that are more accurate than can be achieved using as many as ten con-

centric shells in the matrix blocks. Since the matrix. blocks no longer need to be 

discretized, the total number of computational cells required for a simulation decreases 

by a factor of about ten, leading to approximately a ten.c.fold increase in computational 
( . 

speed. This increase in computational speed, coupled with a decrease in the time and 
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effort required for mesh discretization, allows more efficient simulation of fluid flow 

problems in fractured/porous media. 
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Appendix A 

The analysis of the fracture/matrix interaction equation described above was per

formed for matrix blocks of spherical shape. This does not pose a loss of generality 

for the Warren-Root method, since block geometry enters the calculations only through 

the single parameter a in eqs. (7) and (8). This parameter has dimensions of area-l, 

and is therefore inversely proportional to the square of some suitably-defined charac

teristic block size. If the blocks have a known simple shape, such as cubical, cylindri

cal, or slab-like, a can be approximated in the same manner as for the spherical block, 

which is by differentiating the most-slowly-decaying exponential term in the Fourier 

series solution for the step-function response, eliminating t, and comparing the result

ing equation with the general form given in eq. (8). Using the Fourier-series solutions 

given by Crank [1975] and Carslaw and Jaeger [1959], we find, for example, that 

a = n 2/L 2 for a thin slab of thickness L; a= 3n2/L 2 for a cubical block of length L; 

and a= z l Ia 2 for a long cylinder of radius a, where z 1 = 2.405 is the. first positive toot 

of the Bessel function J 0 • A discussion of the relationship bet~een a -~d block 

geometry is given by deSwaan [1990], who derived slighdy different values than those 

given above by forcing the Warren-Root normalized matrix pressure to reach 0.50 at 

the same value oft as does the exact normalized matrix pressure, under step-function 

boundary conditions. This approach has the effect of making the Warren-Root method 

accurate at some intermediate time regime, but causes the asymptotic quasi-steady-state 

flux to be off by some multiplicative constant. Warren and Root [1963] left a as an 

open- parameter," but proposed the value 60/L 2 for a cube of length L, which agrees 

with deSwaan's value. 

The nonlinear flow interaction term given by eq. (19) was derived for a spherical 

matrix block, ·and so it is not immediately clear how to generalize it to other 

geometries. One approach would be to identify the terms n21a:/; on the right-hand side 

of eq. (19) with a of the Warren-Root equation, and substitute the "exact" Warren-
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Root a values discussed above for cases of other block geometries. This would assure 

that eq. (19) is accurate in the quasi-steady-state regime. As a test of the accuracy of 

this approach, consider the problem of flow into a cubical matrix block of length Lm ,_ 

under step-function boundary conditions analogous, to eqs. (9) and (10). If we use the 

Vermeulen equation to predict jim as a function of time, we arrive at the expression 

given in eq. (17), with x2/a~ replaced by 3rc2/L~. The exact expression for P m (xm ,t) 

given by Carslaw and Jaeger [1959, p. 184] can be averaged over the cube to yield 

(A1) 

where the summations take place over all odd positive integers. Fig. 6 shows that this 

procedure of adapting the Vermeulen equation to another geometry by using the 

Warren-Root a parameter in place of x2/a~ in eq. (19) is reasonably accurate. Due to 

the manner in which a was defined, the approximate solution is asymptotically exact 

for large times. At small times, the average matrix block pressure is too high by a 

multiplicative factor of ..J4/3, which is an error of only 15%. In general, there is no 

method of choosing a for non-spherical block shapes that will render the Vermeulen 

equation exactly correct in both the small-time and large-time limits; it will, however, 

yield the correct power-law exponents at short times, as is seen by comparing the 

slopes of the curves in Fig. 6. 

The approach described above could be taken if one were studying the effect of 

matrix block shape on overall reservoir behavior. In simulations of a specific reser

voir, the term x2/a~ in eq. (19) could also be left as an open parameter, with dimen-

sions of are~-l, whose value is chosen so as to yield a good match between the • 

pr~dicted and observed pressure response in the fractures. This approach was taken by 

Moench [1984] in the context of the Warren-Root model. 
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Appendix B 

Eq. (19) governing the mean pressure response in the matrix blocks is, as written, 

applicable only to processes in which P1 changes monotonically with time. For exam

ple, if P 1 starts at Pi and increases with t, P m will also increase, but will lag behind 
~, 

P1 . Hence (P1 -Pi)2 will be greater than (Pm -Pl), and eq. (19) will correctly predict 

an increase in fim. Similarly, if P1 decreases with t, jim will decrease but lag behind, 

and so the numerator on the right side of eq. (19) will be positive, the denominator 

will be negative, and the equation correctly predicts that fim will decrease with t. 

Difficulties arise if the variation in P 1 is not monotonic. Strictly speaking, the sign of 

dfim!dt will depend only on the integral of 'dP m!'dn over the outer boundary of the 

block (see eq. (3)). When using only the mean value fim, knowledge of 'dP ml'dn is 

lost, so to speak. It seems plausible, however, that dfimldt should have the same sign 

as P1 -fim. Using the fact that a 2-b 2=(a -b)(a +b), we can recast eq. (19) in a 

way· that lea~es it unchanged if both P1 -Pi and Jim -Pi are of the same sign, and 

which assures that dfimldt has the same sign as P1 -Jim: 

(B1) 

To test this form of the equation, consider a case where P f varies sinusoidally in 

time: 

(B2) 

Due to the form of eq. (B1), we can set Pi =0, without any loss of generality. An 

exact solution for this problem can be developed from the step-function response using 
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the convolution principle, which states that the pressure distribution in the sphere is 

given by [Crank, 1975, p. 91] 

where D =kl<j>~c is the hydraulic diffusivity, and for convenience we drop the sub

script m on all physical parameters. If P 1 (t) = P 0 sin rot, eq. (B3) can be written as 

t 

x Jexp(Dn 21t2't/a 2)sinOYtd 't. 
0 

The integrals in eq. (B4), which we denote by In, can be evaluated to yield 

'(, t . . '(, t 
'Yn sinrot e " --: ro cosrot e " + ro _ 

In= 2 2 
'Yn +ro 

(B4) 

(B5) 

The mean pressure P m (t) is found by integrating P m (r, t) through the sphere, and 

dividing by the sphere volume 41ta 3/3. The average values of the space-dependent 

terms in eq. (B4) are found to be 

a 

· _!_sin(n1tr/a) = 3
3 

Jrsin(n1trla)dr = - 3
-(-l)n+l. 

r a 0 n7ta-. 
(B6) 
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Combining eqs. (B4-B6) leads to 
' 

(B7) 

where Q=roa 2/D. If we rewrite each pair of trigonometric terms as a single sinusoid 

with a nonzero phase angle, we arrive at 

(B8) 

where on =arctan(-Q!n 21t2). Carslaw and Jaeger [1959, p. 235] presented the solu-

tion to this problem, but expressed the oscillatory components of P m (r, t) in terms of 

a magnitude and a phase angle. This leads to terms· that contain an awkward depen

dence on r, and which are not easily integrated to find jim (t ). The sinusoidal portions 

of eq. (B8) represent the "steady-state" part of the solution, whereas the exponential 

terms represent the .transient portion. 

The quasi-steady-state part of .the mean pressure response depends on the dimen

sionless frequency Q=roa 21D. Since the time needed for the sphere to equilibrate 

after a step-function increase in P f is approximately a 2/D (see Fig. 1), and the time at 

which P 0 sinrot stops increasing is 7t/2ro, we see that Q is approximately equal to the 

ratio of these two time scales. In order to test the applicability of the modified Ver-

meulen equation to sinusoidal boundary conditions, over a range of frequencies, we 

can integrate eq. (B1) numerically, using eq. (B2) for P1 (t), and compare the results 

to the exact values given by eq. (B8). At low frequencies, 0.< 1, eq. (B1) was found 

to be extremely accurate; the accuracy decreases as Q increases. Fig. 7 shows P m for 

0.=10, as computed by eq. (B1) and eq. (B8); for comparison, P1 (t) is also plotted. 



- 35 -

The modified Vermeulen equation predicts the phase angle, which represents the lag 

between jim and P 1 , very accurately. The maximum magnitude of jim is predicted 

within an error of about 9%. At a value of Q as large as 100, the error in the max

imum value of jim reaches about 29%. For comparison, we note that for Q= 100, the 

Warren-Root equation underestimates the maximum value of jim by 58%. 
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Figure Captions 

Fig. 1. Normalized average matrix pressure for a spherical block subjected to a step

function increase in the pressure at its boundary, as given by the exact solu

tion, the Vermeulen equation, and the Warren-Root equation. For comparison, 

the pressure at the boundary (i.e., in the fractures) is also shown. 

Fig. 2. Same as Fig. 1, for a ramp-function increase in the boundary pressure. The 

diffusion coefficient D is defined here to be km lcl>m ~em. 

Fig. 3. Same as Fig. 1, for the case where the boundary pressure increases according to 

. eq. (32), with ~= 100. 

Fig. 4. Total instantaneous flux for one-dimensional flow into a dual-porosity formation 

with constant boundary pressure. The meanings of the parameters, and their 

values, are discussed in the text. MINC simulations were carried out using the 

TOUGH code; ''new method'' simulation was carried out using TOUGH, with 

the modifications described in the text. 

Fig. 5. Same problem as in Fig. 4, with results of new method compared to the three 

asymptotic expressions (eqs. (38,39,41)) found following the analysis of Nitao 

and Buscheck [1991]. 

Fig. 6. Same as Fig. 1, but for a cube of length Lm. In both the Warren-root equation 

(14) and the Vermeulen equation (19), the term a;;, has been replaced by L;;,/3. 

Fig. 7. Same as Fig. 1, but with the boundary pressure given by P1 =Pi +P0 sincot. 

The dimensionless frequency 0=roa 21Dm is taken to be 10. 
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" 

Fig. 1. Normalized average matrix pressure for a spherical block subjected to a step-

function increase in the pressure at its boundary, as given by the exact solu

tion, the Vermeulen equation, and the Warren-Root equation. For comparison, 

the pressure at the boundary (i.e., in the fractures) is also shown. 

';j, \ 
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FRACTURE PRESSURE 

EXACT SOLUTION 

VER~ELL~EN JON_._ __ , 

~ARB_EN.=RQ.9T .f.Ot'i:_ 

10-1 10° 1d 
DIMENSIONLESS TIME. kt/ cpJ.Lca2 

Fig. 2. Same as Fig. 1, for a ramp-function increase in the boundary' pressure. The 

diffusion coefficient D is defined here to be km l<l>m I..I.Cm. 
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Fig. 3. Same as Fig. 1, for the case where the boundary pressure increases according to 

-· 
eq. (32), with ~= 100. 
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-- NEW METHOD 
<> MINC: 1 SHELL PER MATRIX BLOCK . 
o MINC: 10 SHELLS PER MATRIX BLOCK 

~ 1 o-
51 

1 o-"t 

1 o- 7 -itr------+---+: ------1:__-+: --l----+1--+----'li----+-
1 o- 1 1 o 1 1 o3 1 o5 1 o7 

TIME (sec) 

Fig. 4. Total instantaneous flux for one-dimensional flow into a dual-porosity formation 

with constant boundary pressure. The meanings of the parameters,. and their 

values, are discussed in the text. MINC simulations were carried out using the 

TOUGH code; "new method" simulation was carried out using TOUGH, with 

the modifications described in the text. 
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o NEWMETHOD 

ASYMPTOTIC SOLUTIONS 

...-... 
(/) 

(IJ 

E 1 o- 4 -0> 
..::t:. ..._... 

w 
~ a: 
~ 1 o~ 5 

9 
LL 

10-7~----~---+----+----+1----4---~----~----~---+ I 

1 o- 1 1 o 1 1 o3 

TIME (sec) 

Fig. 5. Same problem as in Fig. 4, with results of new method compared to the three · 

asymptotic expressions (eqs. (38,39,41)) found from the analysis of Nitao and 

Buscheck [1991]. 
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FRACTURE PRESSURE 

EXACT SOLUTION ....•................... 

10-2 ~--~~~~'~~~~~~~--~~--~------~ 1 1 I IT 1 1 

10-4 10-3 10-2 10-1 

DIMENSIONLESS TIME, 3kt/ cpJ.LcL 2 

Fig. 6. Same as Fig. 1, but for a cube of length Lm. In both the Warren-Root equation 

(14) and the Vermeulen equation (19), the term a;;; has been replaced by L;;;/3. 
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Fig. 7. Same as Fig. 1, but with the boundary pressure given by Pt =Pi +P0 sinrot . 
• 
•. \- The dimensionless frequency fJ.=roa 21Dm is taken to be 10 .. 

•. 
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