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Approaching the Basis Set Limit in Gaussian-Orbital-Based Periodic Calculations with
Transferability: Performance of Pure Density Functionals for Simple Semiconductors

Joonho Lee,1, ∗ Xintian Feng,2 Leonardo A. Cunha,3 Jérôme

F. Gonthier,3 Evgeny Epifanovsky,2 and Martin Head-Gordon3

1Department of Chemistry, Columbia University, New York, NY, USA
2Q-Chem Inc., Pleasanton, CA, USA

3Department of Chemistry, University of California, Berkeley, CA, USA

Simulating solids with quantum chemistry methods and Gaussian-type orbitals (GTOs) has been
gaining popularity. Nonetheless, there are few systematic studies that assess the basis set incom-
pleteness error (BSIE) in these GTO-based simulations over a variety of solids. In this work, we
report a GTO-based implementation for solids, and apply it to address the basis set convergence
issue. We employ a simple strategy to generate large uncontracted (unc) GTO basis sets, that we
call the unc-def2-GTH sets. These basis sets exhibit systematic improvement towards the basis set
limit as well as good transferability based on application to a total of 43 simple semiconductors.
Most notably, we found the BSIE of unc-def2-QZVP-GTH to be smaller than 0.7 mEh per atom
in total energies and 20 meV in band gaps for all systems considered here. Using unc-def2-QZVP-
GTH, we report band gap benchmarks of a combinatorially designed meta generalized gradient
functional (mGGA), B97M-rV, and show that B97M-rV performs similarly (a root-mean-square-
deviation (RMSD) of 1.18 eV) to other modern mGGA functionals, M06-L (1.26 eV), MN15-L (1.29
eV), and SCAN (1.20 eV). This represents a clear improvement over older pure functionals such as
LDA (1.71 eV) and PBE (1.49 eV) though all these mGGAs are still far from being quantitatively
accurate. We also provide several cautionary notes on the use of our uncontracted bases and on
future research on GTO basis set development for solids.

I. INTRODUCTION

Condensed phase simulations using quantum chem-
istry tools originally developed for molecules have gained
popularity over many years,1–9 with the hope of enabling
development of new systematically improvable tools that
can go beyond standard density functional approaches,10

as well as existing Green’s function methods11,12 in the
field. These simulations can be broadly categorized into
two clsses: (1) large Γ-point calculations to describe spa-
tial inhomegeneity as found in gas, liquid, and surface
simulations and (2) calculations with a relatively small
unit cell and a large number of k-points as relevant for
simulations of solids. The former category resembles
large cluster calculations that are routinely performed in
the molecular community and the use of Gaussian-type
orbitals (GTOs) as a computational basis is not uncom-
mon, as well exemplified by many existing GTO-based
quantum chemistry programs with the periodic bound-
ary condition capability.13–16 The use of GTOs to reach
the thermodynamic limit (TDL) of solids often faces nu-
merical difficulties associated with overcompleteness of
GTOs that leads to a severe linear dependency among ba-
sis functions towards the TDL.17–20 Nonetheless, many
studies have employed Gaussian basis sets either using
those developed for molecular calculations, those devel-
oped for periodic mean-field calculations,19,20 or those
optimized system-specifically without much in the way
of transferability guarantees21–23.

The development of compact GTO basis sets24,25 has a
long history in molecular quantum chemistry.26,27 Since
McWeeny’s first proposal28 and Boys’ early attempt29

to use GTOs for molecular systems, many developments

on contracted Gaussian basis sets such as atomic nat-
ural orbital30, correlation-consistent31 and polarization-
consistent32,33 basis sets have made high-accuracy quan-
tum chemistry calculations practical. However, these
highly optimized contracted basis sets are usually not
considered applicable to solids due to emerging linear
dependencies.20 In the early days of basis set devel-
opment, even-tempered34,35 and well-tempered36 bases
were explored as a means to obtain high-quality results
using only primitive GTOs reducing the complications
in sophisticated optimization procedures for exponents
and contraction coefficients. In the even-tempered bases,
one employs three parameters for each angular momen-
tum shell l to define a set of “even-tempered” primitive
GTOs by

φlmk(r) ∝ exp(−ζlkr2)rlSlm(Ω) (1)

where φlmk is an atomic orbital, l and m are angular mo-
mentum quantum number, Slm(Ω) are the real spherical
harmonics at a solid angle Ω, k sets the total number of
primitive GTOs for l,m, and ζlk is parameterized by a
geometric series,

ζlk = αlβ
k−1
l , αl, βl > 0, βl 6= 1 (2)

In the well-tempered variants, a more sophisticated form
is used for ζlk. In the even-tempered basis, one needs
to pick a total of three parameters k, αlk, and βlk. The
appropriate values may be obtained by looking at atoms
and small molecules though finding these values can gen-
erally be tedious.35 Even-tempered basis sets are gener-
ally much larger than contracted GTOs and thus they are
rarely used in modern quantum chemistry calculations.



2

Nonetheless, these bases have not yet been explored in
the context of solid-state applications.

In this work, we propose an even simpler basis set gen-
eration protocol than that of even-tempered bases which
does not involve any optimizations. Our procedure is
to generate large uncontracted GTO bases that yield
density functional theory (DFT) total energies per cell
within 0.7 mEh per atom in the unit cell from the com-
plete basis set limit obtained by planewave (PW) ba-
sis. The idea is to take two existing GTO bases (one
from the def2-series37 and SZV-MOLOPT-SR-GTH19),
uncontract these bases, and take the union of the result-
ing primitive GTOs while removing core orbitals that are
treated by the underlying GTH pseudopotential. Like
the even-tempered bases, our sets are much larger than
typical contracted GTOs available in the literature, but
they are not optimized for specific systems and/or mean-
field methods so they should naturally bear transferabil-
ity.

As an application of these bases, we focus on the ba-
sic goal of quantifying the basis set error of Gaussian-
based DFT calculations. This goal is even more impor-
tant to reach when considering correlated wavefunction
calculations. However, the basis set incompleteness er-
ror (BSIE) in correlation energies can be quantified and
characterized only after the underlying mean-field energy
is converged to the basis set limit. The BSIE was di-
rectly quantified by employing the same pseudopoten-
tial proposed by Hutter and co-workers (called the GTH
pseudopotential)38,39 in both the new Gaussian-based
program developed in this work and a PW-based code,
Quantum Espresso (QE).40

Furthermore, we also apply our basis set to vali-
dating the performance of ten selected pure exchange-
correlation (XC) functionals. These ten XC func-
tionals consist of one local density approximation
(LDA) functional,41,42 five generalized gradient ap-
proximation (GGA) functionals (PBE,43 PBEsol,44

revPBE,45 BLYP,46,47 B97-D48), and four meta GGA
(mGGA) functionals (SCAN,49 M06-L,50 MN15-L,51

B97M-rV52,53). Our benchmark set has a total of 43
semiconductors where 40 of them were taken from the
SC40 set54 and the remaining 3 (LiH,55–57 LiF,58,59 and
LiCl58,59) were taken from other places. The perfor-
mance of LDA and PBE on the majority of these sys-
tems using GTOs was already documented in ref. 54
though the underlying BSIE of the associated GTO ba-
sis sets is unclear. Many PW-based codes including QE
have LDA, GGA, and SCAN functionals available so it is
not very difficult to assess their performance using PW-
based codes.40 In fact, the performance of LDA and GGA
functionals, as well as the SCAN mGGA, is relatively
well understood for band gap problems.60,61 However,
the recently developed functionals that were combina-
torially optimized for main group molecular chemistry,
ωB97X-V,62 ωB97M-V,63 and B97M-V,52,53 have rarely
appeared in condensed phase studies64–68 and are rel-
atively less common and less used in PW-based codes.

The same is true for the Minnesota functionals (M06-L
and MN15-L). Replacing the -V tail with the -rV tail
(the rVV10 van der Waals (vdW) correction69 instead of
the VV10 vdW correction70), an efficient implementation
of the -rV tail is now available in some planewave-based
codes.40 Aside from the computational cost associated
with the long-range exact exchange, an efficient imple-
mentation of these functionals should be readily possible.
These combinatorially optimized functionals were found
to be statistically the best XC functionals at each rung of
Jacob’s ladder for main group chemistry problems,71, and
they have performed very well in other molecular bench-
marks also.72,73 In the condensed phase, the mGGA,
B97M-rV appears to describe properties of liquid water
as accurately as far more computationally demanding hy-
brid functions.65 However, the performance of B97M-rV
for band gap problems is largely unknown at present.
Motivated by this, we report the performance of B97M-
rV for band gaps here.

This paper is organized as follows: (1) we first re-
view basic formalisms of periodic mean-field calculations,
the gaussian planewave (GPW) density fitting scheme,
and an efficient implementation of rVV10, (2) we then
describe our strategies for generating transferable GTO
bases for simulating solids towards the TDL, (3) we dis-
cuss computational details, (4) we present results for ba-
sis set convergence of DFT total energies and band gaps
using the proposed bases, (5) we assess the performance
of pure XC functionals comparing against experimental
band gaps, (6) we deliver cautionary notes on using our
bases and on the future basis set development for solids
featuring striking failures of existing GTH bases, and (7)
we then conclude.

II. THEORY

Periodic mean-field calculations using a linear combi-
nation of atomic orbitals have been well-documented in
many places.74,75 Nonetheless, we aim to give a peda-
gogical review of the relevant theories on periodic DFT
calculations within the GPW implementation and the im-
plementation of rVV10 since these are the key compute
kernels in our new implementation. Experienced readers
may skip some of the subsequent sections and start from
Section II D.

A. Periodic Mean-Field Calculations

As a consequence of real-space translational symme-
try, crystal momentum (k) is a good quantum number.
Periodic mean-field (PMF) calculations with GTOs are
hence done with crystalline molecular orbitals (CMOs),
{ψk

i },76

ψk
i (r) =

∑
µ

Ck
µiφ

k
µ(r) (3)
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where crystalline atomic orbitals (CAOs) are defined
with a lattice summation,

φkµ(r) =
∑
R

φRµ (r)eik·R (4)

In PMF calculations, analogously to their molecu-
lar counterparts, the PMF energy is minimized when
the CMO coefficient matrix obeys a self-consistent
Roothaan-Hall equation,

FkCk = SkCkεk (5)

where Fk is the Fock matrix at k, Sk is the overlap matrix
of CAOs at k defined as

Sk
µν =

∑
R

〈φ0µ|φRν 〉eik·R =
∑
R

S0R
µν e

ik·R, (6)

and εk is the band energy at k.
In periodic calculations with GTOs, it is very com-

mon to observe linear dependencies of the CAOs which
makes the metric (overlap) matrix Sk poorly conditioned.
Within finite precision computer arithmetic, the resulting
truncation error in the inverse metric can lead to numer-
ical instability, convergence issues, and non-trivial errors
in the PMF energies. Therefore, handling exact and near
linear dependencies is crucial in GTO-based periodic cal-
culations especially when one attempts to get to the basis
set limit where linear dependencies become progressively
severe. In this work, we adopted the canonical orthogo-
nalization procedure.77 The canonical orthogonalization
procedure is defined as follows:

1. The diagonalization of Sk is performed for each k:

Sk = Uksk(Uk)† (7)

2. For a given threshold εlindep, one retains the Nk
CMO

eigenvalues in sk above εlindep along with their cor-
responding eigenvectors. We refer these subsets of
eigenvalues and eigenvectors to as s̃k and Ũk, re-
spectively.

3. We then define the orthogonalization matrix Xk,

Xk = Ũk(s̃k)−1/2 (8)

The dimension of Xk is NCAO-by-Nk
CMO and Nk

CMO
is the dimension of the effective variational space
after removing numerical linear dependencies. We
note that we then have

(Xk)†SkXk = INk
CMO

(9)

The choice of εlindep should be made so as to balance
between numerical stability (i.e., removing enough basis
functions to avoid excessive roundoff error and precision
loss) and quality of the resulting basis set (i.e., keeping
as many basis functions as possible). We picked εlindep to
be 10−6 which is the default value of our molecular com-
putations in Q-Chem.78,79 We note that this linear de-
pendency threshold is chosen to be reasonable for double
precision, and could be tightened up if one could afford
quadruple or higher precision arithmetic.

B. Review of the GPW algorithm

The GPW density fitting algorithm was first proposed
by Hutter and co-workers80 and has been popularized
via the implementation in CP2K.16,81 The central idea
of the algorithm is that one employs planewaves as the
auxiliary basis set for density-fitting while using GTOs
as the primary computational basis set. This strategy is
particularly well-suited for solid-state calculations since
periodic boundary conditions are naturally imposed and
planewave density fitting can be done efficiently.

Among various terms in Fk, in this work, we focus
on the Coulomb matrix, Jk, because this contribution
is typically the computational bottleneck in pure DFT
calculations. We want to compute the Coulomb matrix
element between a basis function φµ located in a unit cell
R = 0 (denoted as φ0µ) and a basis function φν located

in a unit cell R (denoted as φRν ),

J0R
µν ≡

∫
r

φ0µ(r)VJ(r)φRν (r)

=
∑
R′

∫
r∈R′

φ0µ(r)VJ(r−R′)φRν (r) (10)

where VJ(r) is the Coulomb potential defined as

VJ(r) =

∫
r′

ρ(r′)

r− r′
(11)

and we used the fact that VJ(r) is periodic in the unit
cell displacements. We note that r ∈ R′ implies that the
domain of the integration is restricted to the unit cell
centered at R′.

The evaluation of VJ(r) can be done with O(Ng logNg)
complexity via the fast Fourier transform (FFT) algo-
rithm for discrete Fourier transform whereNg is the num-
ber of grid points within the simulation cell. In reciprocal
space,

VJ(G) =
4π

|G|2
ρ̃(G) (12)

where

ρ̃(G) =
1

Ω

∫
r

ρ(r)eiG·r (13)

with Ω being the volume of the computational unit cell.
Using these, the GPW algorithm computes Jk as follows:

1. Compute ρ(r) within a unit cell via

ρ(r) =
1

Nk

∑
k

∑
i

∑
µν

Ck
µi(C

k
νi)
∗φkµ(r)(φkν (r))∗ (14)

where Nk is the number of k-points.

2. Fourier transform ρ(r) to obtain ρ̃(G). This is the
“density-fitting” step using a planewave auxiliary
basis set.
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3. Compute the Coulomb potential in reciprocal space
via Eq. (12) and inverse Fourier transform to obtain
VJ(r). Note that we ignore the |G| = 0 component.

4. Compute Jk via

Jk
µν =

∫
r∈U.C.

(φkµ(r))∗VJ(r)φkν (r) (15)

where the quadrature is performed only within the
unit cell (U.C.).

Our implementation computes φkµ(r) once in the begin-
ning and stores these in memory. Therefore, our GPW
implementation for the J-build has O(NkNg) storage cost
(due to storing φkµ(r)) and O(NkNg+Ng logNg) compute
cost assuming sparsity of CAOs. Since Ng scales with
the unit cell volume while Nk does not, this algorithm
approaches O(N) scaling. Diagonalization is performed
by dense linear algebra with O(N3) scaling.

C. Summary of implementation of rVV10

Some of the more modern density functionals use the
VV10 vdW correction, but the cost of evaluating VV10
scales quadratically with system size. Using ideas from
the work of Román-Pérez and Soler,82 Sabatini and
others proposed an alternative functional form called
rVV1069 which can be implemented efficiently with linear
complexity for planewave codes while retaining similar
accuracy as VV10. Subsequently, the use of rVV10 was
verified for combinatorially optimized density functionals
(B97M-V, ωB97X-V, and ωB97M-V) leading to B97M-
rV, ωB97X-rV, and ωB97M-rV.53 We are interested in
investigating the performance of these combinatorially
optimized functionals for band gaps so an efficient im-
plementation of rVV10 is highly desirable.

The rVV10 energy functional reads69,70

ErVV10 = Elocal
rVV10 + Enon-local

rVV10 (16)

where the local part can be absorbed into the local den-
sity approximation terms and the non-local part poses
implementational challenges with a náıve quadratic scal-
ing cost. The non-local contribution is defined as

Enon-local
rVV10 =

1

2

∫
r

∫
r′
ρ(r)κ(r)−3/2ρ(r′)κ(r′)−3/2Φ(r, r′)

(17)
where ρ(r) is the electron density, and the kernel Φ(r, r′)
is

Φ(r, r′) =
−1.5

(q(r)R2 + 1)(q(r′)R2 + 1)(q(r)R2 + q(r′)R2 + 2)
(18)

with R = |r− r′|. The remaining terms are

q(r) = κ(r)−1

√
C|∇ρ(r)

ρ(r)
|4 +

4

3
πρ(r), (19)

and

κ(r) = 1.5bπ(
ρ(r)

9π
)1/6. (20)

The fixed parameters b and C are a part of the definition
of each XC functional that includes the rVV10 contribu-
tion. The evaluation of this leads to an overall quadratic
scaling in Ng due to its six-dimensional double integral
in Eq. (17).

As discussed in ref. 82, we first use cubic splines to
interpolate Φ such that

Φ(r, r′) ≈
∑
α,β

Φ(qα, qβ , R)pα(q(r))pβ(q(r′)) (21)

where qα and qβ are interpolation points and pα and pβ
are interpolating polynomials. This makes the evaluation
of Φ computationally convenient because Φ becomes a
function of only |r− r′|. Its dependence on qα and qβ
is easy to handle as qα and qβ are fixed interpolation
points. The number of the interpolation points is also
very manageable as it is typically set to 20.69 We now
define an intermediate,

θα(r) = ρ(r)κ(r)−3/2pα(q(r)) (22)

and use it to recast the non-local energy contribution into
a convolution form:

Enon-local
rVV10 =

1

2

∑
α,β

∫
r

∫
r′
θα(r)θβ(r′)Φαβ(|r− r′|)

=
1

2

∑
α,β

∫
G

θ̃α(G)θ̃β(G)Φ̃αβ(|G|) (23)

Since Φαβ(|r− r′|) = Φαβ(R) is spherically symmet-
ric, its Fourier transform can be computed by one-
dimensional Fourier-sine transformation. The values of
Φ̃αβ(|G|) on a pre-defined set of |G| points can be pre-
computed and tabulated. These tabulated values are
then used for interpolation to perform the convolution in
Eq. (23) for a specific set of |G|. We note that the convo-
lution in Eq. (23) can be performed in O(Ng logNg) time
as opposed to the quadratic-scaling runtime of the náıve
algorithm. A similar approach can be used to compute
the Fock matrix contribution associated with rVV10.

D. Strategies for assessing the basis set error for
simple solids and generating transferable GTOs

Our goal in this work is to access the near basis set
limit of pure density functionals for solids using GTOs.
For this purpose, it is critical to have well-defined ba-
sis set limit reference values. A popular planewave
code, Quantum Espresso (QE), also implements the GTH
pseudopotential38 developed by Hutter and co-workers,
which was originally developed for use in the CP2K
program.16 We have adopted the same GTH pseudopo-
tential for use in our code as well. This allows for a direct
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comparison between QE and our code, which is particu-
larly useful because QE can converge the total energy to
the basis set limit almostly completely by increasing the
planewave cutoff.

We considered the 40 semiconductors benchmark set
(SC40) first proposed by Scuseria and co-workers54

along with three rocksalt solids (LiH,55–57 LiF,58,59

LiCl58,59). For these compounds, all-electron GTO ba-
sis sets have been proposed but their accuracy remains
largely unknown.54 Moreover, to be used with the GTH
pseudopotential, we need a basis set without core elec-
trons. Unfortunately, the standard GTH basis set series
does not have a broad coverage of the periodic table be-
yond its minimal basis set (SZV-GTH).19 To access the
basis set limit for a variety of solids considered in this
work, we propose a simple way to generate a large basis
set which yields the total energy per cell close to the basis
set limit (errors smaller than 0.7 mEh per atom for DFT
calculations performed here, as will be shown later). We
also note that this same strategy of uncontracting ex-
isting GTO bases can be applied to the generation of
all-electron bases as well.

To generate the basis set, we follow a straightforward
procedure:

1. We take the existing def2-bases and uncontract the
contracted GTOs therein. We then remove GTOs
with an exponent greater than 20 since they cor-
respond to core electrons that are already covered
by the GTH pseudopotential. This cutoff of 20 was
empirically determined and we expect that the re-
sults are not sensitive to the precise value of the
cutoff given the large size of our final basis set (see
below for more discussion).

2. We take the union of these uncontracted def2 bases
and the uncontracted SZV-MOLOPT-SR-GTH ba-
sis set to enhance the resolution within the minimal
basis set space defined by the GTH pseudopoten-
tial. This final basis set will be referred to as unc-
def2-X-GTH where X can be SVP, TZVP, QZVP,
etc.

One may think that having a fixed cutoff of 20 for all ele-
ments could be unphysical because increasing the atomic
number tends to increase all of GTO exponents. In our
case, however, the GTOs from def2 bases with an expo-
nent larger than the largest exponent in SZV-MOLOPT-
SR-GTH belong to the core region that is already treated
by the GTH pseudopotential. Inspecting the range of ex-
ponents in SZV-MOLOPT-SR-GTH basis, one finds that
the largest ones are smaller than 20 with the exception
of Na (23.5) and Mg (30.7) up to atomic number 86.
Based on our results on solids involving Mg, the cutoff
of 20 works well for this element as well. Overall, the
contraction of electron density due to the increase in the
nuclear charge is reflected appropriately and there is no
sensitivity stemming from this cutoff. We also note that
when taking the union of two bases some of the expo-
nents can be very close in value, but for simplicity we do

not remove those obvious near-linear-dependencies. In-
stead we let the canonical orthogonalization procedure
take care of them. We report these unc-def-GTH bases
(unc-def2-SVP-GTH, unc-def2-SVPD-GTH, unc-def2-
TZVP-GTH, unc-def2-TZVPD-GTH, unc-def2-TZVPP-
GTH, unc-def2-TZVPPD-GTH, unc-def2-QZVP-GTH,
unc-def2-QZVPD-GTH, unc-def2-QZVPP-GTH, unc-
def2-QZVPPD-GTH) through the Zenodo repository,83

as well as in the text files included in the final publica-
tion.

With regard to the existing GTH-based contracted
GTO basis sets, at present neither the range of Gaus-
sian exponents nor the contraction coefficients have been
specifically optimized to approach the basis set limit:
rather they have been designed to offer a good trade-
off between compute cost and accuracy for solid-state
applications. The use of uncontracted basis functions in
this work is an attempt to probe the suitability of us-
ing a broad range of Gaussian exponents and angular
momenta while obtaining the contraction coefficients via
variational energy minimization (i.e., the MO coefficients
are the contraction coefficients in our case). As a con-
sequence of decontraction, our proposed basis sets range
from quite large to very large and are heavily linearly de-
pendent. Nonetheless, this brute force approach will per-
mit us to assess systematic convergence of our total ener-
gies towards the basis set limit energies obtained through
QE. We emphasize that potential numerical instability
issues are quite well handled by the simple canonical or-
thogonalization procedure.

Last but not least, we note that our Gaussian basis
set generation procedure does not utilize any system-
dependent parameters or optimization protocols. As ev-
idenced by even-tempered bases,34,35 this is particularly
important for ensuring transferability. Our exponents re-
tain both tight exponents that are effective for condensed
phase and relatively diffuse exponents that are effective
for atomic (or molecular) limits. Therefore, we expect
that the BSIE is relatively insensitive to the underlying
geometry. Nonetheless, when atoms come too close to-
gether, GTOs are expected to perform more poorly due
to the higher degree of linear dependence as will be shown
later in Section V C.

III. COMPUTATIONAL DETAILS

We implemented a GPW-based periodic DFT code
in a development version of Q-Chem.78,79 Our imple-
mentation assumes overall O(N2) memory storage that
amounts to storing Fock, density, and CMO coefficient
matrices. For the systems examined in this work, our
memory strorage is dominated by keeping the GTO basis
function values evaluated on the FFT grid despite its for-
mal linear scaling based on sparsity. In the future, this
practical memory bottleneck can be removed by com-
puting these on the fly. We also note that our GPW
algorithms scale linearly with the system size to produce
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the Fock matrix and our SCF program scales cubically
with system size due to linear algebra functions such as
matrix diagonalization. We control the resolution of the
PW density fitting basis with a single parameter: the ki-
netic energy cutoff (Ecut). Each auxiliary basis PW can
be indexed by 3 integers, (n1, n2, n3) which reside on a
(2nmax

1 − 1)× (2nmax
2 − 1)× (2nmax

3 − 1) grid where each
integer ni ∈ {−nmax

i , · · · , nmax
i } with

nmax
i =

√
8Ecut

||bi||
(24)

where bi denotes one of the reciprocal vectors. For our
GPW calculations, we used Ecut of 1500 eV for every-
thing except those that contain Ba (2000 eV) and Mg
(4500 eV). The resulting density fitting error was found
to be smaller than 100 µEh per atom in the unit cell,
which is negligible for the purpose of this paper.

The reference planewave basis calculations were all
performed with QE where we used Ecut (for the wave-
function itself) of 1200 Ry for total energy calculations.
For the band structure calculations, we used Ecut of 1200
Ry for systems containing Mg and Ecut of 750 Ry for ev-
erything else.

The lattice constants were fixed at experimental
values54 and experimental band gaps for the SC40 set
were taken from 54. The experimental band gaps and lat-
tice constants of LiH, LiF, and LiCl were taken from refs.
55–59. We used the GTH-LDA pseudopotential in all cal-
culations for both GPW and PW (through QE) calcula-
tions to enable direct comparison of total energies. We
used the Monkhorst-Pack84 k-mesh to sample the first
Brillouin zone and ensured the convergence of the total
energy per cell to the TDL for all solids examined here.
We found that a 6× 6× 6 k-mesh is enough to converge
the total energy per cell to an error of smaller than 0.1
mH for all solids considered. Therefore, for band struc-
ture calculations and cold curve calculations, we used a
6×6×6 Monkhorst-Pack k-mesh. Since the GPW imple-
mentation is also available in other open-source packages
such as CP2K16 and PySCF,85 we also used these two
packages to validate our implementation in the initial
stage of this work.

We examined a total of ten XC functionals, LDA
(Slater exchange41 and PZ81 correlation42), PBE,43

PBEsol,44 revPBE,45 BLYP,46,47 B97-D,48 SCAN,49

M06-L,50 MN15-L,51 and B97M-rV.52,53 For 11 solids in
our benchmark set (C, Si, SiC, BN, BP, AlN, MgO, MgS,
LiH, LiF, LiCl), widely used GTH basis sets19 are avail-
able: DZVP-GTH, TZVP-GTH, TZV2P-GTH, QZV2P-
GTH, and QZV3P-GTH. We therefore assessed the ac-
curacy of those existing bases only over a smaller subset
of our benchmark set, but our proposed basis sets were
examined for all 43 solids considered in this work. The
basis set convergence study against PW was carried out
only for LDA and PBE while the overall band gap accu-
racy was examined for all ten functionals.

IV. RESULTS AND DISCUSSION

A. Basis set convergence of total DFT energies
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FIG. 1. Root mean square deviation (RMSD) of DFT total
energies (mEh) per cell with respect to that of QE over 11
solids as a function of the number of k-points for (a) LDA and
(b) PBE functionals using GTH and unc-def2-GTH bases.

We first examine the subset of 11 solids for LDA and
PBE functionals as presented in Fig. 1. In particular,
Fig. 1 shows the root-mean-square-deviation (RMSD) of
total energies compared to QE total energies (namely to-
tal energies in the basis set limit) as function of the size
of the k-mesh. Nk = 216 (6 × 6 × 6) is enough to reach
the TDL. For all k-mesh sizes, the GTH basis set se-
ries shows systematically more accurate results relative
to the basis set limit as cardinality (and the size of the
basis set) increases. We note that Nk = 1 (just including
the Γ-point) shows the largest basis set error in all exam-
ples considered here. This is because the local expressive
power of GTOs also increases as one increases the size
of k-mesh due to the non-orthogonality of GTOs. While
the systematic improvement of GTH bases is very ap-
pealing, we note that the residual basis set error with
QZV3P-GTH is still about 5 mEh which is quite large
considering how small the simulation cells are (2 or 4
atoms total).

The unc-def2-GTH basis series also shows a systematic
improvement with cardinal number, with much smaller
errors than the corresponding contracted GTH basis re-
sults. As an example, the performance of unc-def2-SVP-
GTH is nearly on par with TZV2P-GTH except at the
Γ-point. The larger bases, unc-def2-TZVP-GTH and
unc-def2-QZVP-GTH, both perform excellently on this
set, including the Γ-point result. In particular, unc-def2-
QZVP-GTH is able to deliver total energies in the TDL
that are all within 1 mEh of the basis set limit. This
shows the completeness of our proposed bases though of
course these are much bigger in size than standard GTH
bases, and therefore far more computationally demand-
ing. We provide more detailed information on selected
elements in Section V A. Finally, we note that Fig. 1 (a)
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for LDA and (b) for PBE show virtually no difference,
which suggests that our conclusions do not depend on
functional (of course functionals that depend particularly
strongly on fine details of the density may be far harder
to converge to the basis set limit using GTOs86).
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FIG. 2. Root mean square deviation (RMSD) of DFT total
energies (mEh) per cell with respect to that of QE over 43
solids as a function of the number of k-points for (a) LDA
and (b) PBE functionals using unc-def2-GTH bases.

In Fig. 2, we repeat the same analysis but over the
entire benchmark set of 43 solids. As before, unc-def2-
GTH bases struggle for Nk = 1 but work well for larger
k-meshes. RMSD systematically decreases as we in-
crease the size of the basis set. With the largest ba-
sis set, unc-def2-QZVP-GTH, we achieve better than 1
mEh accuracy in the TDL for the LDA and PBE func-
tionals, as measured by the RMSD values. Systems with
the largest error in the TDL are SrSe (1.2 mEh) in the
case of LDA and GaP (1.4 mEh) in the case of PBE.
As observed in the case of even-tempered bases, we ex-
pect that the result can be systematically made bet-
ter by adding more exponents and increasing the maxi-
mum angular momentum.34,35 For instance, in the case
of SrSe/LDA, employing unc-def2-QZVPP-GTH (adding
two additional f functions to both Sr and Se), we observe
an error of 0.4 mEh which is three times smaller than
that of unc-def2-QZVP-GTH. While we can obtain over-
all better results by using unc-def2-QZVPP-GTH, we will
mainly focus on the use of the unc-def2-QZVP-GTH basis
set for the rest of the paper for simplicity. In summary,
these benchmark calculations suggest that unc-def2-GTH
basis sets can achieve near basis set limit DFT total en-
ergies reliably towards the TDL. This result implies that
the range of exponents and angular momenta in our bases
is quite appropriate for solids.

B. Basis set convergence of DFT band gaps

In many materials applications, DFT calculations are
used not just to compute the ground state energy but to
obtain spectral information through Kohn-Sham orbital

energies.60 In doing so, one uses information from virtual
orbitals in addition to that from occupied orbitals. In
the case of total energies presented in Section IV A, only
occupied orbitals affect the results. Here, we are assessing
the quality of the difference between the lowest energy
virtual orbital (i.e., the conduction band minimum) and
the higher energy occupied orbital. It is possible that
some BSIEs may cancel when taking energy differences.

In Fig. 3, we present the RMSD of band gaps using
GTO bases compared to the basis set limit results for
LDA and PBE functionals. To compare unc-def2-GTH
bases with GTH bases, we limit ourselves to the subset of
11 solids for the time being. Somewhat surprisingly, we
observe almost no improvement in the band gap when
going from DZVP-GTH to TZVP-GTH. By contrast,
Fig. 1 shows a reduction in the RMSD of total energies
of about 8 mEh when increasing the basis set size from
DZVP-GTH to TZVP-GTH. However, this total energy
improvement does not result in any band gap improve-
ment. Nonetheless, past TZVP-GTH, the GTH bases do
show systematic improvement in the band gap estima-
tion. With the largest GTH basis set (QZV3P-GTH),
RMSD in the band gap is 18-20 meV depending on the
XC functional. Consistent with the total energy bench-
mark presented in Section IV A, unc-def2-GTH bases also
exhibit systematic improvement. While the quality of
unc-def2-SVP-GTH was on par with TZV2P-GTH in
Fig. 1, its band gap is clearly worse than that of TZV2P-
GTH highlighting favorable error cancellation in TZV2P-
GTH. Nonetheless, unc-def2-TZVP-GTH is similar to
QZV3P-GTH and unc-def2-QZVP-GTH has RMSD of
5.8 meV and 4.2 meV, respectively for LDA and PBE,
showing its ability to converge band gaps to the basis set
limit.

Encouraged by these results, we also analyzed the
BSIEs in band gaps over all 43 solids using unc-def2-GTH
bases as presented in Fig. 4. With unc-def2-SVP-GTH,
the RMSD value is about 40 meV and it becomes less
than 20 meV when using unc-def2-TZVP-GTH. Lastly,
with unc-def2-QZVP-GTH, the RMSD value becomes 6.9
meV and 6.3 meV, respectively, for LDA and PBE. How-
ever, we note that the largest deviation is about 20 meV
in both functionals, which corresponds to the band gap
of SrSe. SrSe is the system with the largest total en-
ergy error for LDA as noted in the discussion of Fig. 2 in
Section IV A. Again, this remaining error can be further
reduced by adding more GTOs to unc-def2-QZVP-GTH
(e.g., using unc-def2-QZVPP-GTH), but we do not pur-
sue this here. The central message of this section is that
the BSIE in the band gap reported in this paper using
unc-def2-QZVP-GTH is smaller than 20 meV based on
the numerical data. This is about 50 times smaller than
the intrinsic errors in standard functionals for band gaps,
so unc-def2-QZVP-GTH should be suitable for bench-
marking purposes.
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FIG. 3. Root mean square deviation (RMSD) of DFT band gaps (meV) with respect to those of QE over 11 solids (a) LDA
and (b) PBE functionals using GTH and unc-def2-GTH bases.
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FIG. 4. Root mean square deviation (RMSD) of DFT band
gaps (meV) with respect to those of QE over 43 solids (a)
LDA and (b) PBE functionals using unc-def2-GTH bases.

C. Performance of pure DFT functionals

Having established the accuracy of unc-def2-GTH
bases, we assess the performance of pure DFT function-
als over these simple solids. Unfortunately, some of the
43 solids considered here do not have experimental band
gaps. These solids are BSb, CaS, CaSe, CaTe, SrS, SrSe,
and SrTe. Leaving aside these seven cases, we have a
total of 36 experimental band gaps. unc-def2-QZVP-
GTH is used with all XC functionals considered in this
section. The DFT band gaps over 43 solids along with
the available experimental gaps are presented in Table I.
For an overall summary, it may be more instructuve to
look at statistics of the band gap results as shown in
Fig. 5. Looking at the mean-average-deviation (MAD),

it is immediately evident that all pure functionals exam-
ined here exhibit the infamous band gap underestimation
problem of pure functionals.60 Nonetheless, one can still
find systematic improvement for going from the simplest
functional, LDA, to more modern meta GGA function-
als, SCAN, M06-L, MN15-L, and B97M-rV in terms of
the root-mean-square-deviation (RMSD) values. While
the performance of B97M-rV is not great for those band
gaps, it still stays as one of the more accurate pure func-
tionals for these problems. This is encouraging because
B97M-rV is statistically the most accurate pure XC func-
tional in main group chemistry applications.71

For simplicity and due to the unavailability of
functional-specific GTH pseudopotentials for most XC
functionals considered here, we employed the GTH-LDA
pseudopotential for all functionals in this section. Since
this is not ideal, we checked the sensitivity of our con-
clusions with respect to the choice of the pseudopotential
by testing GTH-LDA, GTH-PBE, and GTH-BLYP pseu-
dopotentials with the BLYP functional. In all cases the
RMSD and MAD are affected by less than 0.1 eV, which
is a smaller energy scale than that of the band gap errors
by roughly a factor of 10. For completeness, we provide
the relevant numerical data in the Supplementary Infor-
mation (see Table S1). In the future, all-electron calcula-
tions could be done with all-electron basis sets generated
via a similar protocol presented here. Alternatively, one
could generate functional-specific GTH pseudopotentials
for the modern XC functionals considered here.

V. OUTLOOK FOR FUTURE BASIS SET
DESIGN

In this section, we would like to deliver cautionary
notes on using our proposed bases and some discussion
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LDA PBE PBEsol revPBE BLYP B97-D SCAN M06-L MN15-L B97M-rV Exp.
C 4.12 4.33 4.16 4.38 4.60 4.57 4.64 4.84 4.24 4.67 5.48
Si 0.49 0.66 0.52 0.72 0.94 0.91 0.93 1.12 0.96 0.92 1.17
Ge 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.46 0.43 0.26 0.74
SiC 1.33 1.50 1.35 1.54 1.85 1.95 1.81 1.83 1.92 2.07 2.42
BN 4.36 4.64 4.42 4.71 5.03 5.07 5.03 4.94 4.98 5.28 6.22
BP 1.20 1.38 1.23 1.42 1.66 1.62 1.67 1.95 1.61 1.70 2.4
BAs 1.16 1.34 1.19 1.40 1.60 1.59 1.57 1.85 1.55 1.66 1.46
BSb 0.76 0.91 0.78 0.96 1.15 1.17 1.06 1.21 1.08 1.15 N/A
AlP 1.47 1.67 1.50 1.75 1.98 2.04 1.99 2.20 2.12 2.16 2.51
AlAs 1.36 1.58 1.40 1.66 1.89 1.95 1.86 2.00 1.99 2.03 2.23
AlSb 1.17 1.36 1.20 1.45 1.57 1.58 1.56 1.78 1.63 1.63 1.68
bGaN 1.61 1.79 1.68 1.85 1.86 1.96 1.86 1.88 1.43 1.86 3.3
GaP 1.44 1.66 1.50 1.75 1.70 1.72 1.85 1.89 1.84 2.05 2.35
GaAs 0.29 0.51 0.41 0.58 0.44 0.46 0.62 0.92 0.72 1.01 1.52
GaSb 0.00 0.17 0.08 0.23 0.08 0.08 0.21 0.50 0.36 0.64 0.73
InP 0.42 0.61 0.52 0.68 0.57 0.56 0.57 0.86 0.36 0.88 1.42
InAs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.41
InSb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.23
ZnS 1.80 2.12 1.94 2.24 2.15 2.24 2.38 2.56 2.00 2.36 3.66
ZnSe 1.01 1.33 1.15 1.45 1.35 1.43 1.60 1.80 1.31 1.67 2.7
ZnTe 1.07 1.38 1.22 1.49 1.38 1.43 1.60 1.83 1.40 1.79 2.38
CdS 0.85 1.15 0.98 1.27 1.16 1.22 1.22 1.34 0.77 1.23 2.55
CdSe 0.34 0.64 0.48 0.76 0.66 0.70 0.72 0.88 0.34 0.82 1.9
CdTe 0.52 0.81 0.66 0.93 0.81 0.82 0.84 1.07 0.52 1.06 1.92
MgS 3.27 3.57 3.39 3.73 3.71 3.88 4.14 4.03 4.06 4.17 5.4
MgTe 2.30 2.59 2.43 2.75 2.72 2.89 3.16 3.18 2.99 3.23 3.6
MgO 4.68 4.93 4.79 5.06 5.17 5.49 5.59 5.01 5.69 5.55 7.22
MgSe 1.70 2.01 1.89 2.16 2.10 2.47 2.58 2.66 3.20 2.70 2.47
CaS 2.17 2.41 2.27 2.51 2.52 2.64 2.92 2.56 3.03 3.05 N/A
CaSe 1.90 2.14 2.00 2.24 2.27 2.38 2.63 2.28 2.73 2.78 N/A
CaTe 1.42 1.65 1.51 1.74 1.80 1.90 2.08 1.74 2.19 2.27 N/A
SrS 2.22 2.49 2.33 2.61 2.62 2.74 2.92 2.57 2.86 2.95 N/A
SrSe 2.01 2.28 2.12 2.40 2.43 2.54 2.69 2.35 2.63 2.74 N/A
SrTe 1.57 1.83 1.66 1.94 2.00 2.10 2.20 1.87 2.17 2.29 N/A
BaS 2.01 2.26 2.11 2.38 2.36 2.44 2.58 2.25 2.38 2.51 3.88
BaSe 1.83 2.07 1.92 2.19 2.19 2.26 2.39 2.07 2.21 2.35 3.58
BaTe 1.49 1.74 1.58 1.85 1.87 1.93 2.03 1.74 1.90 2.03 3.08
LiH 2.64 3.01 2.78 3.15 3.44 3.69 3.61 3.87 4.52 4.39 4.9
LiF 8.92 9.33 9.11 9.56 9.49 9.92 10.08 9.64 10.27 9.77 14.2
LiCl 6.01 6.40 6.18 6.61 6.56 6.83 7.21 7.08 7.48 7.22 9.4
AlN 4.25 4.38 4.25 4.43 4.66 4.78 4.87 4.75 4.94 5.24 6.13
GaN 1.86 2.05 1.94 2.12 2.12 2.21 2.12 2.13 1.68 2.11 3.5
InN 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.69
RMSD 1.72 1.50 1.64 1.41 1.39 1.28 1.20 1.26 1.27 1.17 N/A
MAD -1.46 -1.23 -1.37 -1.14 -1.10 -1.02 -0.95 -0.90 -0.99 -0.84 N/A
MAX 5.28 4.87 5.09 4.64 4.71 4.28 4.12 4.56 3.93 4.43 N/A

TABLE I. Experimental and theoretical band gaps (eV) from various functionals over 43 solids. N/A means “not available”.
RMSD, MAD, and MAX denote, respectively, root-mean-square-deviation, mean-average-deviation, and maximum deviation
in reference to experimental values.

on future research in basis set design for solids.

A. Our basis set is accurate but very large

While our proposed unc-def2-GTH bases are of high
quality, these bases are very large due to the decon-
traction from the original contracted GTO bases. This
large size carries a significant computational cost. This is
the major drawback of even-tempered and well-tempered

bases, and it is one that our unc-def2-GTH bases also
share. To be more concrete, we provide the number of
basis functions for selected elements (Si, C, O, Mg) in
Table II. unc-def2-SVP-GTH is about three times big-
ger than DZVP-GTH while our unc-def2-TZVP-GTH is
roughly three times bigger than TZV2P-GTH. Similarly,
our largest basis set unc-def2-QZVP-GTH is about 2.5–3
times larger than QZV3P-GTH.

Because of compute cost and memory demand, there is
a need to compress these bases for practical calculations.
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FIG. 5. Band gap (eV) comparison over 36 solids between DFT (ten different functionals) and experiments: Blue: root-mean-
square-deviation (RMSD) of DFT band gaps (eV) with respect to those of experiments and Red: mean-average-deviation
(MAD) of DFT band gaps (eV) with respect to those of experiments

Si C O Mg
SZV-GTH 4 4 4 5

DZVP-GTH 13 13 13 14
TZVP-GTH 17 17 17 18
TZV2P-GTH 22 22 22 23
QZV2P-GTH 26 26 26 27
QZV3P-GTH 31 31 31 32

unc-def2-SVP-GTH 40 41 40 53
unc-def2-TZVP-GTH 62 58 57 68
unc-def2-QZVP-GTH 90 83 81 86

TABLE II. Number of basis functions in the basis sets used
in this work for selected elements (Si, C, O, and Mg).

Perhaps, the most difficult (but most effective if done cor-
rectly) way to compress them is to obtain transferable
contraction coefficients. One could start by inspecting
the molecular orbitals (or Bloch orbitals) that our calcu-
lations produce for those simple solids. Another strategy
is to take these mean-field molecular orbitals and com-
press the virtual space for subsequent correlation calcula-
tions, for instance using the random phase approximation
(RPA). The use of natural orbitals to compress the vir-
tual space was shown to be effective, and would be a good
starting point for making our basis more compact87. We
note that it is also unclear whether our proposed bases
exhibit any scaling properties which will allow for higher
accuracy by using basis set extrapolation for correlation
energy calculations, which could be further investigated
in the future.

B. Even low-lying virtual orbitals can be difficult
to describe well
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FIG. 6. LDA band structure of MgO: (a) comparing QZV3P-
GTH against QE and (b) comparing unc-def2-QZVP-GTH
against QE. The band energies are shifted such that the high-
est valence band energy is located at zero. The red circle in
(a) highlights the qualitative failure of QZV3P-GTH virtual
orbitals.

Basis sets that are optimized for mean-field calcula-
tions such as GTH bases often behave erratically in corre-
lated calculations.21 Since these bases tend to yield good
occupied orbitals, the poor performance of correlation
calculations can be attributed to virtual orbitals. Fur-
thermore, low-lying virtual orbitals play important roles
in describing optical properties and related excited states.
Therefore, high-quality basis sets should produce quali-
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tatively accurate virtuals. As an example, we present the
band structure of MgO using QZV3P-GTH and unc-def2-
QZVP-GTH and compare them against that of QE. MgO
has a total of 8 occupied orbitals and we computed up to
the 16-th band in QE for comparison purposes. We note
that the challenge of MgO conduction bands for GTOs
was noted before in ref. 88, but we focus on a wider range
of conduction bands here. The pertinent band structures
are presented in Fig. 6.

In both bases, the valence bands and the first few con-
duction bands are in an excellent agreement with those of
QE. However, the higher-lying virtuals of QZV3P-GTH
(in Fig. 6(a)) start to deviate significantly from those of
QE. The most striking failure is the lack of the 5-th vir-
tual orbital highlighted under a red circle in Fig. 6 (a).
On the other hand, the virtuals from unc-def2-QZVP-
GTH have visually indistinguishable energies when com-
pared to QE highlighting its potential utility for cor-
related calculations as well. We also tried a smaller
unc-def2-GTH basis set, namely unc-def2-TZVP-GTH.
It turns out that even unc-def2-TZVP-GTH misses the
same virtual that QZV3P-GTH misses as well. This ex-
ample emphasizes that more attention to the low-lying
virtual orbitals should be paid when designing GTO ba-
sis sets for applications such as conduction band struc-
ture, time-dependent DFT and correlated methods such
as RPA. Existing GTO bases designed primarily to de-
scribe the occupied space may likewise exhibit qualitative
failures like this case.

C. Transferability across different lattice constants
is challenging

Cold curves of solids are often of great interest for
experimentalists. Cold curves are analogous to poten-
tial energy curves (PECs) in molecular quantum chem-
istry. Similar to PECs, as one shrinks the lattice constant
and brings atoms close to one another, a larger num-
ber of near linear dependencies occur, and the quality
of the underlying GTO basis degrades because of dis-
carding such functions by canonical orthogonalization.
Furthermore, system-dependent optimization strategies
can struggle for cold curves because basis sets are usu-
ally optimized for one specific geometry (usually equi-
librium geometries).21,22 As a result of this, varying lat-
tice constants can be challenging using GTO basis sets
as the system approaches its high-pressure configuration
(shorter lattice constants) or atomic limits (longer lattice
constants).

As an example to illustrate this point, we computed
a cold curve of SiC using PBE and the GTH-LDA
pseudopotential with TZV2P-GTH, QZV3P-GTH, unc-
QZV3P-GTH, unc-def2-TZVP, and unc-def2-QZVP. The
Brillouin zone was sampled with 6 × 6 × 6 k-points via
the Monkhorst-Pack algorithm. Here unc-QZV3P-GTH
is the basis obtained from decontracting QZV3P-GTH.
Using unc-QZV3P-GTH, we can quantify the error com-
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FIG. 7. Investigation of a SiC cold curve using PBE: (a) Basis
set error with respect to QE as a function of lattice constant
for various basis sets. (b) Average number of linearly inde-
pendent AOs as a function of the lattice constant for various
basis sets.

ing from the contraction coefficients of QZV3P-GTH. As
before, the QE results (the same functional and pseu-
dopotential) serve as the basis set limit reference values.
The pertinent results are presented in Fig. 7.

Fig. 7 (a) shows that TZV2P-GTH, QZV3P-GTH, and
unc-QZV3P-GTH bases make a large error especially
when compressing the lattice. It is also instructive to
quantify the nonparallelity error (NPE) over the range
of lattice constants examined here as a means to mea-
sure error cancellation. The NPE is 25.7 mEh, 10.6
mEh, 8.3 mEh, 3.0 mEh, and 0.9 mEh, respectively,
for TZV2P-GTH, QZV3P-GTH, unc-QZV3P-GTH, unc-
def2-TZVP-GTH, and unc-def2-QZVP-GTH. Interest-
ingly, unc-QZV3P-GTH reduces the basis set error by
only a small amount, which implies that the contrac-
tion coefficients of QZV3P-GTH for those elements are
transferable over a wide range of lattice constants. It
also suggests that the range of exponents in QZV3P-
GTH becomes inappropriate for smaller lattice constants.
Comparing the exponents of unc-QZV3P-GTH and unc-
def2-TZVP-GTH, we find that unc-def2-TZVP-GTH has
more compact exponents for spd shells and has an f shell
for Si that is not present in unc-QZV3P-GTH. These
more compact GTOs likely become more important at
closer distances and hence explain the differences be-
tween two bases.

The main cause of these generally large NPEs is the
fact that at closer distances the quality of those GTO
bases degrades as shown in Fig. 7 (b) which quantifies
the number of orthogonalized basis functions retained af-
ter canonical orthogonalization. Since each k-point has a
slightly different number of linearly independent AOs, we
present the average values over 216 k-points as a func-
tion of lattice constant. Evidently, the number of lin-
early independent AOs decreases as the lattice constant
decreases, which in turn increases the basis set incom-
pleteness error. Nonetheless, the largest basis set, unc-
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def2-QZVP-GTH, is able to achieve a satisfying NPE in
this case, which highlights the utility of this basis set for
accurate cold curve simulations.

VI. CONCLUSIONS

In this manuscript, we discussed strategies for gener-
ating large and accurate uncontracted Gaussian bases
(unc-def2-GTH bases) which do not resort to system-
or method- specific optimizations. Using a new imple-
mentation of the Gaussian atomic orbital plus planewave
density fitting approach in Q-Chem, the basis set incom-
pleteness error in our proposed bases were then assessed
over 43 prototypical semiconductors by comparing the
pure density functional theory total energies per cell and
band gaps against those from fully converged planewave
results. We found that the basis set incompleteness error
in total energy and band gap with our largest GTO ba-
sis (unc-def2-QZVP-GTH) is smaller than 0.7 mEh per
atom in the unit cell and less than 20 meV, respectively,
verifying the validity of the range of exponents and an-
gular momenta in the proposed bases.

In the application of our bases, we focused on the as-
sessment of ten pure density functionals for predicting
the band gaps of 36 semiconductors whose experimental
gaps are well documented. Not surprisingly, we found
that all examined pure functionals (LDA, PBE, PBEsol,
revPBE, BLYP, B97-D, SCAN, M06-L, MN15-L, B97M-
rV) significantly underestimate the band gaps of these
materials. The combinatorially optimized mGGA func-
tional, B97M-rV, performs as well as do other modern
mGGA functionals. Our work suggests that combinato-
rially optimized range-separated hybrid functionals such
as ωB97X-rV and ωB97M-rV will be highly interesting to
study since they may also exhibit better accuracy com-
pared to other relatively older range-separated hybrid
functionals or even short-range hybrid functionals.

We also made several cautionary remarks on our GTO
bases as well as on the future research in GTO basis

design for solids:

1. Our basis sets are accurate but large so there is a
need for a way to compress our basis sets further
for both mean-field and correlation calculations.

2. The widely used GTH bases may qualitatively fail
for describing low-lying virtual orbitals which will
affect the subsequent correlation and optical cal-
culations. At much greater compute cost, our unc-
def2-QZVP-GTH basis set was shown to accurately
capture all of the low-lying virtual orbitals of MgO
including the one missed by QZV3P-GTH.

3. Reducing the non-parallelity error of the basis set
incompleteness error is challenging particularly due
to the high pressure region of cold curves that ex-
hibits a higher number of near linear dependencies.

In the future, we will test several ways (e.g., find-
ing universal contraction coefficients and frozen natural
orbitals87) to compress our unc-def2-GTH bases and in-
vestigate the basis set convergence of correlation and op-
tical methods with these bases in the future.
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S1. SENSITIVITY OF PSEUDOPOTENTIALS

We confirm the sensitivity of our numerical results with respect to the choice of GTH pseudopotentials. Specifically,
we test the band gap performance of BLYP functional with GTH-LDA, GTH-PBE, and GTH-BLYP pseudopotentials
using the unc-def2-QZVP basis.
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GTH-LDA GTH-PBE GTH-BLYP
C -0.88 -1.05 -1.00
Si -0.23 -0.31 -0.33
Ge -0.74 -0.72 -0.65
SiC -0.57 -0.70 -0.67
BN -1.19 -1.36 -1.32
BP -0.74 -0.86 -0.85
BAs 0.14 -0.02 0.00
BSb N/A N/A N/A
AlP -0.53 -0.61 -0.63
AlAs -0.34 -0.49 -0.48
AlSb -0.11 -0.22 -0.21
bGaN -1.44 -1.61 -1.58
GaP -0.65 -0.67 -0.71
GaAs -1.08 -1.11 -1.14
GaSb -0.65 -0.73 -0.73
InP -0.85 -0.80 -0.87
InAs -0.41 -0.41 -0.41
InSb -0.23 -0.23 -0.23
ZnS -1.51 -1.55 -1.61
ZnSe -1.35 -1.43 -1.48
ZnTe -1.00 -1.12 -1.17
CdS -1.39 -1.39 N/A
CdSe -1.24 -1.27 N/A
CdTe -1.11 -1.16 N/A
MgS -1.69 -1.70 -1.72
MgTe -0.88 -0.98 -0.97
MgO -2.05 -2.22 -2.18
MgSe -0.37 -0.54 -0.54
CaS N/A N/A N/A
CaSe N/A N/A N/A
CaTe N/A N/A N/A
SrS N/A N/A N/A
SrSe N/A N/A N/A
SrTe N/A N/A N/A
BaS -1.52 -1.56 -1.58
BaSe -1.39 -1.48 -1.49
BaTe -1.21 -1.34 -1.34
LiH -1.46 -1.46 -1.46
LiF -4.71 -4.86 -4.84
LiCl -2.84 -2.87 -2.89
AlN -1.47 -1.59 -1.56
GaN -1.38 -1.56 -1.53
InN -0.69 -0.69 -0.69
RMSD 1.39 1.46 1.47
MEAN -1.10 -1.19 -1.18
MAX -4.71 -4.86 -4.84

TABLE S1. The deviation of BLYP band gaps (eV) from experimental values over 43 solids. N/A means “not available”.
RMSD, MAD, and MAX denote, respectively, root-mean-square-deviation, mean-average-deviation, and maximum deviation.
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