
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Mathematical Theory of Opinion Dynamics with Applications

Permalink
https://escholarship.org/uc/item/8xn4r7xc

Author
Simonson, Daniel

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xn4r7xc
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Mathematical Theory of Opinion Dynamics with Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Daniel Vincent Simonson

Dissertation Committee:
Professor Natalia Komarova, Chair

Professor German Enciso
Professor John Lowengrub

2022



© 2022 Daniel Vincent Simonson



DEDICATION

To Gabriela, without whom I would not be where I am today.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION ix

1 Introduction 1

2 The effects of opinion weighting, (dis)agreement, and external influence on
social group formation 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Dynamics of faction formation with weighted issues . . . . . . . . . . . . . . 8

2.3.1 One weighted issue: patterns of behavior . . . . . . . . . . . . . . . 8
2.3.2 Agreement-disagreement score . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Multiple weighted issues . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Individual weight distributions . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Opinion dynamics in the presence of an influencer (small vs. large commu-
nities) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Faction sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Time to fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Larger communities . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The ODE theory of weighted opinion dynamics 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Solutions of the ODE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 The uniform solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Example: Solutions for J = 3 issues . . . . . . . . . . . . . . . . . . 33

iii



3.3.3 Examples: J = 4 issues . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 The structure of the HPV vaccine re-tweet network 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Data set and network definition . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Finding communities in the network . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Analysis of tweet contents in sub-components . . . . . . . . . . . . . . . . . 51

4.4.1 Survey data and initial analysis . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Cultural consensus construction . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Comparison between key and derived correct answers . . . . . . . 57

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 60

Appendix A Agreement-disagreement score: additional calculations 62

iv



LIST OF FIGURES

Page

2.1 Faction size shifts and α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Switch counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Result heat plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 δ plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Individual weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Opinion dynamics in heterogeneous populations . . . . . . . . . . . . . . . 19
2.7 Opinion dynamics in the presence of an influencer N = 10 . . . . . . . . . . 21
2.8 Opinion dynamics in the presence of an influencer N = 100 . . . . . . . . . 24
2.9 Meetings to fixed state with influencer . . . . . . . . . . . . . . . . . . . . . 25

3.1 3d hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Comparison of opinion type proportions for small α . . . . . . . . . . . . . . 36
3.3 Comparison of opinion type proportions for large α . . . . . . . . . . . . . . 40
3.4 Opinion types represented as 4d hypercube . . . . . . . . . . . . . . . . . . 41
3.5 Opinion type dynamics when δ = 0.60 . . . . . . . . . . . . . . . . . . . . . 42

4.1 The constructed re-tweet network G . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The largest connected component of G . . . . . . . . . . . . . . . . . . . . 48
4.3 Results of label propagation algorithm . . . . . . . . . . . . . . . . . . . . . 50
4.4 The Left and Right communities of nodes . . . . . . . . . . . . . . . . . . . 51
4.5 Survey 1 response distributions . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Survey 2 response distributions . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Histograms of survey 1 responses . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Histograms of survey 2 responses . . . . . . . . . . . . . . . . . . . . . . . 55

v



LIST OF TABLES

Page

2.1 Switch counts and δ by region . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vi



ACKNOWLEDGMENTS
I would like to thank the Department of Mathematics at University of California, Irvine,
for their support, without which none of this would have been possible. I also thank my
daughter for her love and patience with me as I split time between being a father to her
and the work involved that culminated in the present dissertation. Additionally, I thank
Professor Chen Li and his research team for gathering and sharing with me the data set
used in chapter 4. Furthermore, I wish to thank my friend Rachel, with whom I’ve had
many conversations about this project, and for the different perspectives from which she
helped me to consider in this work. Most of all I wish to thank my advisor, Professor Natalia
Komarova for her on-going encouragement, advice, and kindness throughout this entire
journey.

vii



VITA

Daniel Vincent Simonson

EDUCATION

Doctor of Philosophy in Mathematics 2022
University of California, Irvine Irvine, California

Master of Science in Mathematics 2017
University of California, Irvine Irvine, California

Bachelor of Science in Statistics 2014
Sonoma State University Rohnert Park, California

Bachelor of Arts in Mathematics 2014
Sonoma State University Rohnert Park, California

TEACHING EXPERIENCE

Teaching Associate 2021
University of California, Irvine Irvine, California

Teaching Assistant 2015–2021
University of California, Irvine Irvine, California

viii



ABSTRACT OF THE DISSERTATION
Mathematical Theory of Opinion Dynamics with Applications

By

Daniel Vincent Simonson

Doctor of Philosophy in Mathematics

University of California, Irvine, 2022

Professor Natalia Komarova, Chair

Opinion dynamics can be modeled by using agent-based simulations, where agents in a

population are characterized by binary opinions on a number of different issues. They

engage in pairwise interactions, whereby if the agreement level is high, the interlocutor is

recognized as an “ally” and the individual will flip one of their opinions to coincide with the

interlocutor; if the agreement is low, they will switch away from the interlocutor. While it is

usually assumed that all issues in the opinion vector are equally important, in chapter 2 we

investigate how breaking this symmetry influences the dynamics. We find that the model

outcomes can be predicted by a single Agreement-Disagreement Score (ADS) in [−1, 1].

ADS characterizes how likely individuals in the population are to regard an interlocutor as

an ally; low-ADS (very “cautious”) populations tend to converge to a two-faction system

with exponentially high convergence times, while high-ADS (very “trusting”) populations

tend to converge to a single-faction system relatively fast. In heterogeneous populations

characterized by individual issue weighting, individuals that are more “trusting” are more

likely to join the majority group compared to those that are more “cautious”. In the pres-

ence of an influencer, for ADS both near −1 and 1, a single faction tends to emerge, but

in the former case it coincides with the influencer’s opinions, while in the latter case it is

the opposite. Time to fixation is also affected by the presence of an influencer, especially

for negative-ADS populations, where it no longer experiences such a large increase near
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−1. One can say that an influencer unifies the population to align with the source of in-

fluence if ADS> 0 and to disagree with it if ADS< 0, and consensus is reached relatively

fast for both extremely “trusting” and extremely “cautious” populations. In chapter 3 we

introduce a system of ordinary differential equations (ODEs) which govern the behavior of

the discrete stochastic model studied in chapter 2. We find a neutrally stable solution to

the system which, when it is the only stable solution, provides a mathematical description

for the extremely long times to fixation observed in the stochastic model under certain

conditions. Chapter 4 turns to a real world example as we analyze the so-called re-tweet

network of tweets concerning the HPV vaccine on the social network Twitter. Community

detection algorithms provide a way to split the nodes of a network into two or more com-

munities. Using a label propagation method, survey data, and a construction of cultural

consensus for survey response data we find a natural division in this network into two

distinct communities, one of which is pro-HPV vaccine and the other is anti-HPV vaccine.
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Chapter 1

Introduction

In 1997, Robert Axelrod introduced his highly influential opinion dynamics model [1] in an

effort to show, under a minimal set of assumptions, that pockets of differences can persist

within an overall systemic tendency towards uniformity. Axelrod was interested in cultural

diffusion, so in his model, “agents” were cultural units, such as villages, which were located

on a square grid, and opinions on issues were expressions of cultural traits. Each village

was represented as an F -dimensional vector where each of the F components was a

cultural feature taking on an integer value in {1, . . . ,M}. The value of a cultural feature

was called a trait. Under the assumptions that (1) similarities arise from interaction, and

(2) interaction is more likely between agents who are relatively more similar, the state of

the system was updated thus: at each discrete unit in time, a random village was chosen

to be active, and one of its neighbors was chosen at random. With probability equal to

the fraction of common features the active village decided to interact with the neighbor,

whereby it chose a random feature whose value disagreed with the neighbor, and switched

to agree with the neighbor. The model showed that more traits per feature resulted in

larger numbers of distinct cultural regions, while trials with fewer traits per feature tended

to result in consensus. Allowing for larger neighborhoods of interaction also resulted in a
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tendency towards consensus.

Opinion dynamics is an active field of study that has been developing in several different

directions, see e.g. an excellent review [25]. The wealth of models studied in this context

can be roughly classified as those containing a one- vs several-dimensional opinion vector;

those with discrete vs continuous opinion values; and those with or without an external

information source. Here we focus on models with opinion vectors that contain more than

one discrete-valued component. In Axelrod’s original model and many of its extensions,

the dynamics are characterized by the active site’s tendency to interact with its neighbors,

weighted by similarity. Under this assumption [11] showed that if F = M = 2, then the

majority of the population forms one cultural cluster, and if F < M then fragmentation of the

population persists. [12] found parameters for fixation of the process in a unidimensional

region. Here fixation is taken to mean that each site/agent updates a finite number of times

before the system freezes and no further updates are possible. [2] performed a thorough

analysis of the Axelrod model, and found a phase transition from a culturally polarized

(ordered) state to one which was culturally fragmented (disordered) state, as well as a

distribution of the sizes of cultural regions. In [7, 18] the dynamics were governed by

agents who formed their opinions based on the averaging (of different types) of opinions

of those agents who were not too far from them in the opinion space (that is, within a

certain confidence bound). [8] analyzed the model in the non-spatial case of a complete

network. The assumption that similar individuals are more likely to interact was modeled

as an influence graph on the set of types. Individuals of similar types were connected

by a relatively higher weight than dissimilar types. It was shown that all initial conditions

lead to a fixation in which the population evolves to separate non-interacting groups. [19]

introduced disagreement dynamics, in which a parameter α ∈ [0, 1] is fixed and attractive

dynamics (as in the Axelrod’s model) are used if similarity is greater than or equal to α.

Otherwise repulsive dynamics are used where the active site chooses a random feature

that is in agreement with the neighbor, and changes it. These simulations were run on a
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2-dimensional space (a grid as in Axelrod’s original model). Plotting the average size of

the largest cultural region against the number of traits per feature revealed near vertical

transitions at different points for different values of α.

Several groups studied the influence of external sources and other inhomogeneities of

behavior on the opinion dynamics. [24] introduced “committed” individuals, whose opin-

ion cannot be changed. This was done in conjunction with the assumption of co-evolving

networks, which is a way to account for homophily, the tendency to connect with similar

individuals. It was shown that adding committed individuals at a fraction above a thresh-

old could lead to an increase in time to consensus. Several papers introduced access

to external information where at each step, instead of interacting with peers, each agent

could interact with an information source [6, 4, 16, 17]. A large probability to be exposed to

an information source lead to a larger degree of fragmentation of the system, or a “nega-

tive publicity” effect, where the population became homogenized “against” the information

source. More sophisticated ways to set up interactions between individuals and external

information sources were also implemented [5]. In [21], the relevance of each source to

an individual was quantified, representing in a stylized fashion the targeting of different

groups by the media. This produced a number of regimes, one resulting in the population

homogenization where the individuals were aligned with the information source. Cultural

ordering was also found (in the case where noise was below a threshold) in [14]. In [22],

the concept of “social influence” was investigated to study the effects of mass media; dif-

ferent regimes were observed, from a monoculture to a fragmented population, depending

on the initial diversity level.

Throughout these studies, the weights of different components of an agent’s opinion vector

were always assumed identical. In reality, each individual holds opinions about a variety

of issues, but not all of them are equally important. For example, when comparing one’s

opinion vector to another agent’s opinion vector, it appears more realistic to weigh some
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issues more than others. In chapter 2 we introduce an opinion dynamics model where the

issues are not all weighted equally. We study whether or not consensus occurs, how large

the largest group is, and how long fixation takes under different parameter choices. We

compare the case in which the individuals all weigh issues the same with that in which the

individuals weigh the issues differently; finally we study the effects of outside influence on

this model. In chapter 3 we introduce a system of ODEs which are a deterministic analog

of the model developed in chapter 2 and use this system to further explain some of the

behavior observed in the model. Finally, chapter 4 analyzes the resulting network arising

from opinion dynamics in interactions concerning the HPV vaccine on the social media

platform Twitter.
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Chapter 2

The effects of opinion weighting,

(dis)agreement, and external influence

on social group formation

2.1 Introduction

In the present chapter we introduce an agent-based model of opinion dynamics in which

the issues are not all weighted equally. We allow for both agreement and disagreement

dynamics, i.e. we allow for conditions in which agents in the community may either change

opinions to agree or to disagree with an interlocuter. We define a parameter called the

Agreement-Disagreement Score (ADS) which measures how likely a community member

is to undergo agreement or disagreement dynamics and explore the extent to which ADS

explains the resulting fixed state for communities in which all individuals weigh the issues

the same versus communities where individuals weigh issues differently; communities in

which there is no outside influence versus communities with an external influence; and

small communities versus large communities.
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2.2 The model

Consider a population ofN individuals (we will use the term “community”) with opinions on

a set of J topics or issues. Each individual is represented as a J-dimensional binary vec-

tor with components in {0, 1} which we will call an opinion type. There is a J-dimensional

vector, w = (ω1, . . . , ωJ), whose components are the positive weights placed on each

issue. This weight vector represents the way in which the community weighs the impor-

tance of the issues against each other. There is also a threshold parameter α ∈ [0, 1].

The agreement level Ax,y between any two individuals x, y is the weighted average of

their agreements on all the issues. Let us denote the binary opinion vectors of the two

individuals as (σ
(x)
1 , . . . , σ

(x)
J ) and (σ

(y)
1 , . . . , σ

(y)
J ). We define

Ax,y =

∑J
j=1 ωjδσ(x)

j ,σ
(y)
j∑J

j=1 ωj

, (2.1)

where δa,b is the Kronecker symbol: δa,b = 1 if a = b and δa,b = 0 otherwise. At each

discrete time step a random individual is chosen to be active, and an “interlocutor” is

randomly picked among the rest of the community, as well as a random issue j. If the

agreement level is sufficiently high, such that Ax,y ≥ α, then the active individual changes

their opinion on issue j to match the interlocutor, if it is currently different. We will call this

a type one change. If on the other hand, the agreement is sufficiently low, Ax,y < α, then

the active individual changes their opinion on issue j to be different from the interlocutor, if

it is currently the same. We will call this a type two change. In all other cases no changes

occur. These dynamics capture the idea that relative similarity leads to greater similarity,

and relative dissimilarity leads to greater dissimilarity. The threshold parameter α defines

what level of agreement is considered “low” or “high”.

The absorbing states of this system have the following structure. The population consists

of two subgroups of individuals of sizes N1 and N2 respectively, with 0 ≤ N1 ≤ N and
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N2 = N −N1. In both subgroups (which we call “factions”), all individuals agree with each

other on all of the issues. The opinion vectors of the two factions are complimentary (that

is, they differ on all of the issues). If 0 < N1 < N , we call the equilibrium a two-faction

equilibrium. Otherwise, we call it a one-faction equilibrium. All absorbing states (or “final

states”) are characterized by an N × N agreement matrix (whose elements are pairwise

agreements), which consists entirely of 0′s and 1′s.

It is clear that once in a one-faction equilibrium, no further change is possible under the

rules described above, because Ax,y = 1 for all pairs of individuals, and the only action

would be to change opinions to becomemore similar, which is impossible because they are

already identical. Similarly, in a two-faction equilibrium, no further change is possible. This

is because if two interacting individuals belong to the same faction, no action is taken as

explained above; if two interacting individuals belong to different factions, their agreement

isAx,y = 0, and the only possible action of the active individual is to switch an issue to differ

from the interlocuter, but all the issues are already different, so no action is taken. Finally,

we can show that no other fixed point is possible. Let us suppose for example that there

are three individuals in the population such that their opinion types are different. Then

there will be a pair of individuals whose agreement score is 0 < Ax,y < 1, such that they

agree on some issues and disagree on others. In this case, if Ax,y ≥ α and j is an issue

where the pair disagrees, a change towards agreement may take place; if Ax,y < α and j

is an issue where the pair agrees, a change towards disagreement may take place. This

shows that there are nonzero transition probabilities away from this state, and therefore it

is not absorbing.

The simulations proceed as follows. The weight ωJ on the J th issue will always be set

equal to 1 and serves as a referenceweight for the other issues. A parameter set (ω1, . . . , ωJ−1, α)

is chosen, which consists of the weights on the other J−1 issues, and the value of α. Each

individual begins as a randomly generated J-dimensional vector with components taking
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values in {0, 1}. After a meeting has occurred and the vectors are updated, the system

checks to see if the final state has been reached (by checking that the agreement matrix

consists of only zeros and ones). If a final state has been reached, the simulation ends;

otherwise the simulation continues. The process of generating meetings until the system

reaches a final state will be called a trial.

2.3 Dynamics of faction formation with weighted issues

2.3.1 One weighted issue: patterns of behavior

Let us assume that the weighting vector takes the form

(ω1, ω2, . . . , ωJ) = (X, 1, . . . , 1),

where X is a positive real number. The effect of 0 < X < 1 is to model a situation where

the weighted issue is not as important as the others. X > 1 models a situation where one

issue is more important than the others, and the case X = 1 corresponds to a situation

where all issues are equally weighted, similar to what has been done before in variations

of the Axelrod model.

We first take the number of issues to be J = 4, such that the weights are given by

(X, 1, 1, 1). We are interested in the long-term behavior of the system, so for each value

of X, we run multiple trials and record the statistics of the following measures:

1. The size of the larger faction at the final state,

2. The number of factions at the final state (which is related to (1)), and

3. The number of meetings required to reach the final state.

8



If we fix the threshold parameter α, we observe that the mean largest faction size depends

on X in a stepwise manner, and for some values of α are non-monotonic in X, see figure

2.1(a). The other characteristics such as the convergence time and the proportion of runs

that result in two factions, are also stepwise-constant functions of X (not shown).

Figure 2.1: (a) The mean largest faction size evaluated over 20,000 trials, plotted as a
function of X (the weight of the first issue), for several values of α, with N = 10, J = 4. (b)
Agreement scores for different configurations of individuals, with J = 4, plotted as a func-
tion ofX. Blue: functions a00, a01, a02, a03 (equations (2.2)); green: functions a10, a11, a12, a13
(equations (2.3)). The horizontal dashed line denotes the level 1/3; the vertical dashed
lines show at which values of X the line α = 1/3 intersects the aij lines. The numbers
between the agreement score curves are the region labels used in simulations.

This behavior can be explained by noting that the agreement functions for a fixed value of

X, can take only a small number of values, depending on the set of issues with coinciding

(and opposing) opinions. Let us denote by aij(X) the agreement function corresponding

to the situation where i weighted opinions and j unweighted opinions coincide (in our

case, 0 ≤ i ≤ 1, 0 ≤ j ≤ 3). If all the opinions between two individuals are different,

the agreement function is a00(X) = 0. If 1, 2, or 3 opinions coincide, all of which are

9



non-weighted (not opinion 1), then the agreement functions are given by

a01(X) =
1

X + 3
, a02(X) =

2

X + 3
, a03(X) =

3

X + 3
, (2.2)

respectively. If 1, 2, or 3 opinions coincide such that one of them is weighted (opinion 1),

then the agreement functions are given by

a10(X) =
X

X + 3
, a11(X) =

X + 1

X + 3
, a12(X) =

X + 2

X + 3
. (2.3)

Finally if all of the opinions between two individuals are the same, then the agreement

function is a13(X) = 1. These 8 functions partition the space (X,α) into 13 regions (see

figure 2.1(b)). Observe that given any point (X,α), for each pair (i, j), either aij ≥ α or

aij < α, i, j = 0, . . . , 3. Since the agreement functions determine the switching behavior

of the model given fixed (X,α), we conclude that for any points (X,α) in the same region

the long-term behavior of the model will be (statistically) the same. To illustrate this, take

the example of α = 1/3 (the dashed horizontal line in figure 2.1(b)). Observe that when

0 < X < 3/2 then the model is in region 4; then forX ∈ [3/2, 3] the model is in region 3; for

X ∈ (3, 6] it is in region 5, and finally for X > 6 it is in region 8. Looking at the simulation

results in figure 2.1(a) corresponding to α = 1/3, we observe that the behavior changes in

a step-wise manner as X changes through these region boundaries; the behavior of the

mean largest faction size remains constant inside each of these regions.
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Figure 2.2: An example demonstrating the counting algorithm to determine how many
different interlocutor types can lead to a type 1 and type 2 changes in an active individual of
type (1111) (center). Here we assume that the system is in zone 6. Types with agreement
score that is “high” are shaded red and those with a “low” agreement score are shaded
blue. See text for details.

2.3.2 Agreement-disagreement score

In figure 2.3 we present the mean time to fixation, the two faction proportion, and the mean

largest faction size as heat plots in the X − α space. If X = 1, all three quantities are

monotonic functions of α: time to fixation and the proportion of two-faction solutions both

increase with α, and the mean largest faction size decreases with α. When weighting is

added to one of the issues, patterns becomemore complex. While all three characteristics

are clearly (in a statistical sense) determined by the region, the dependence on X and α

is non-monotonic and difficult to interpret. In order to make sense of the inter-regional

variability of behavior, we have implemented the following procedure of quantifying the

11



switching behavior of the model.

Figure 2.3: A model where J = 4 with a single weighted issue: the mean time to fixation
(a), two faction proportion (b), and mean largest faction size (c) are shown as heat plots in
the X − α space. The dashed lines help notice the non-monotonic behavior with respect
to X and α.

We are interested in the long-term behavior of the model, randomized over different initial

conditions. Observe that in the current setting (J = 4 issues) there are 24 = 16 different

opinion types. Without loss of generality, let us suppose that an active individual has

opinion string (1, 1, 1, 1) (figure 2.2, the middle circle), and count how many interlocutor

configurations can result in different types of switches. We are interested in type 1 switches

(that is, switches to agree), and type 2 switches (switches to disagree). In figure 2.2 we

illustrate how to quantify the switching behavior by using a specific example of region 6.

This region (see figure 2.1(b)) is defined by the following inequalities:

a01(X) < α ≤ a02(X) a11(X) < α ≤ a12(X).

These inequalities state that in order to score a “high” level of agreement, an interlocutor

must coincide with the active individual on at least two non-weighted issues.

Let us first count how many types of interlocutor will cause the active individual to perform

a type 1 change on the weighted issue. This will happen if (1) the interlocutor disagrees

with the active individual on the weighted issue, and (2) the agreement score qualifies as

12



“high”. In figure 2.2, all types that disagree with the active individual on the 1st issue are

listed in the bottom left region, and the ones with a high agreement score (for region 6)

are colored red. There are four such types, meaning that there are four type 1 changes

for issue 1.

To count type 2 changes for issue 1, we note that this type of switch happens if (1) the

interlocutor agrees with the active individual on the weighted issue (left top region in figure

2.2), and (2) the agreement score qualifies as “low” (blue shade). Again, there are four

such types, meaning that there are four type 2 changes for issue 1.

Similarly, to count type 1 switches on issue 2 (or any non-weighted issues), we select

types that disagree with the active individual on issue 2 (bottom right) and have a high

agreement score (red), resulting in 2 possibilities. For type 2 switches on issue 2, we

select types that agree with the active individual on issue 2 (top right) and have a low

agreement score (blue), resulting in 2 possibilities. Since the same calculation applies to

any of the 3 non-weighted issues, we conclude that there are 2 × 3 type 1 changes and

2×3 type 2 changes on non-weighted issues. Adding everything up, we can see that there

are a total of 10 type 1 and 10 type 2 changes for region 6.

The number of type 1 and type 2 changes depends only on what region (figure 2.1(b))

the system is in. A composite measure that turns out to be a very useful correlate for the

system’s long term dynamics is what we call “Agreement-Disagreement Score” (ADS),

δ =
total type 1 changes− total type 2 changes
total type 1 changes+ total type 2 changes

(2.4)

Table 2.1 presents the numbers of type 1 and type 2 changes as well as ADS for all the

regions in figure 2.1(b) (see also table A.1 in the appendix for more details).

By definition, ADS satisfies δ ∈ [−1, 1]. It quantifies the behavior of the model by giving
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Region Total type 1 switches Total type 2 switches ADS, δ
1 28 0 1
2 25 1 0.92
3 19 3 0.73
4 16 4 0.60
5 13 9 0.18
6 10 10 0
7 10 10 0
8 12 12 0
9 9 13 -0.18
10 4 16 -0.60
11 1 25 -0.92
12 3 19 -0.73
13 0 28 -1

Table 2.1: The switch configurations for different regions, see figure 2.1(b).

the relative proportion of type 2 changes to type 1 changes. Values of δ close to 1 indicate

that in such a region the proportion of type 2 changes to type 1 changes is small, that is,

the population can be characterized as being “trusting,” and individuals are often willing

to change their opinions to agree with their interlocutors. When δ is near −1, the switch

behavior consists of mostly type 2 switches, which means that more often than not, indi-

viduals view others as “opponents” and are willing to switch their own behavior just to be

different.

In figure 2.4 we show how the three system features of interest (the mean time to fixation,

the two-faction proportion, and the mean largest faction size) depend on the ADS, δ. The

results for a system with a single weighted issue are depicted by blue points. Let us first

examine the probability to end up with two factions (figure 2.4(a)) and the mean larger

faction size (figure 2.4(b)). For negative values of δ (which corresponds to having more

ways to disagree than to agree with an interlocutor), all simulations always result in two

factions, and the system is more balanced (similar faction size) for larger negative ADS.

Increasing values of δ from 0 to 1 leads to a decay of the probability of the two-faction

outcome and the existence of one dominant faction. Region 1, which has δ = 1 is char-
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acterized by a 100% convergence to one faction, because the only way to switch in this

system is to agree with the interlocutor.

Next we turn to the graph of the mean convergence time, figure 2.4(c). We observe that

time to fixation increases dramatically as δ → −1 (please note the log scale on the figure).

This is because for negative values of δ, individuals tend to switch away from each other,

which in contrast to switching towards each other, precludes agreement, and thus delays

convergence. However, this does not imply in general that greater proportions of type 1

changes correspond to shorter convergence times. Note that the graph in figure 2.4(c)

has a shallow minimum at δ = 0, such that convergence takes a slightly shorter time for

systems that are balanced (have the same number of type 1 and type 2 switches) com-

pared to say region 1, where individuals can only switch to agree. This can be explained

by noticing that having δ = 1 “forces” the system to converge to a single-faction equilib-

rium, and the dynamics can only stop when a one-faction system is achieved. Since on

average, such a state is farther from the (random) initial condition than a two-party system,

this trades-off to slightly increase the convergence time.

Figure 2.4: The two faction proportion (a), mean largest faction size (b), and the mean time
to fixation (c), plotted against δ. Blue points correspond to a system with a single weighted
issue; each blue point is labeled with the region is represents. Red points correspond to
the more general system where all issues could have a different weight. Other parameters
are N = 10, J = 4. Each point represents the mean over 20,000 independent simulations.
Standard errors are too small to be visible; see figure A.2 for standard deviation bars. See
figure A.1 that shows similar results for a system of a larger size.
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2.3.3 Multiple weighted issues

Here we will generalize our findings by allowing more than one of the weights to vary. Let

s be a binary string of length J : (s1, . . . , sJ). For each string s we define

as(ω1, . . . , ωJ−1) =

∑J−1
j=1 sjωj + sJ∑J−1
j=1 ωj + 1

,

a function of J − 1 variables ω1, . . . , ωJ−1. For fixed values of ω1, . . . , ωJ−1, these functions

for all binary vectors s represent all possible agreement scores that can exist in the popu-

lation. The 2J functions as(ω1, . . . , ωJ−1) partition (0,∞)J−1× [0, 1], and each parameter set

(ω1, . . . , ωJ−1, α) will lie inside a region bounded by some of the functions as. The statistical

properties of the system with fixed parameters are uniquely defined by which region the

parameter set (ω1, . . . , ωJ−1, α) belongs to.

As an example, consider the case with J = 4 issues, where all issuesmight have a different

weight. We fix the weight on the 4th issue at ω4 = 1 to serve as a reference weight and

allow ωj, j = 1, 2, 3 to vary. Now the agreement functions

as(ω1, ω2, ω3) =

∑3
j=1 sjωj + s4∑3
j=1 ωj + 1

partition (0,∞)3 × [0, 1] into distinct regions. In each of these regions, as we observed

above, the numbers of type 1 and type 2 changes is constant from point to point, and δ

is constant inside each region. In the system with 4 issues each of which could have a

different weight, we have a total of 148 different regions, which are difficult to visualize.

Instead, we can calculate the ADS for each of the regions, which creates a one-dimensional

parameter to characterize the system’s properties (see Appendix A for details). Figure 2.4

(red dots) plots the two-faction proportion, the mean largest faction size, and the mean

time to fixation, as a function of ADS for this more general system. We observe that the
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tendencies are exactly the same as those identified in a previous system (which comprises

a subset of different cases in the more general system). In particular, relatively more type

2 opinion switching corresponds to longer convergence times and a greater proportion of

fixed states resulting in 2 factions, while the mean largest faction size in the fixed state

tends to be smaller.

2.3.4 Individual weight distributions

Finally, we modify the above framework to include individual weight distributions. For sev-

eral different fixed values of α, we assumed that individuals in the population each have

their own weighting scheme; those were picked at random and independently from the uni-

form distribution (5 different choices of random weighting schemes per α). This represents

the model where relative importance of issues could vary from person to person. Results

of such simulations are presented in figure 2.5 (see also figure A.2 for larger population

size simulations).

Figure 2.5: Individual weighting of the issues. Same as figure 2.4, but showing results for
simulations where each person assigned weights individually (purple). The horizontal axis
is the population average of individual ADS values. Plotted are: the two faction proportion
(a), mean largest faction size (b), and the mean time to fixation (c), plotted against δ. As
in figure 2.4, red points correspond to weights being the same for all individuals in the
population (all weighted issues). Other parameters are N = 10; each point represents the
mean over 20,000 independent simulations. Standard error is too small to be visible on
the graph.

In this model, we calculated a “personal” ADS, δi, for each individual i for 1 ≤ i ≤ N , by
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using the algorithm described in figure 2.2, and the found the population ADS by averaging

these values over all the individuals. Figure 2.5 plots the population dynamic observables

(proportion of runs resulting in two factions, mean largest faction size, and time to fixation)

as functions of the ADS averaged over the population. We can see that the results are very

similar (although not identical) to the case where uniform weighting was implemented for

all individuals in the population. We observe that despite heterogeneity in issue weights,

the mean ADS places the system on the spectrum from most “cautious” to most “trusting”,

which can approximately predict the characteristics of the population dynamics.

Apart from the mean ADS, it is instructive to consider individual ADS values and determine

if they influence the expected behavior of the individuals in the population. To investigate

this, we traced each individual to see if they ended up in the larger of the two factions

(including the situation when only a single faction was formed or the two factions were

exactly the same size; both of these ambiguous outcomes were counted as “belonging to

the larger of the factions”). Figure 2.6(a) plots the probability for each person to end up

in the largest faction, as a function of the individual value of δ. These are grouped and

color-coded by the α-value. We find a statistically significant trend that the probability of

joining the larger of the groups grows with the individual ADS. In other words, individuals

that are more trusting are more likely to join the majority group compared to those that are

more cautious.

18



Figure 2.6: Opinion dynamics in heterogeneous populations. (a) Individual weights, com-
mon agreement threshold: The probability for individuals to join the majority group is plot-
ted against the individual ADS values, grouped and color-coded by the value of α. The
linear fit for each set is presented by dashed lines; in all these cases p < 10−3; N = 20,
1000 simulations per parameter set. (b) Individual agreement thresholds and weights:
The probability for individuals to join the majority group is plotted against the individual
agreement threshold values, α (the average and the standard deviations are presented
for each α). (c) The same as (b) but plotted as a function of the difference between the
individual and the population ADS. The rest of the parameters are the same as in figure
A.2. For (b),and (c), N = 10, 400 parameter combinations were used, 1000 simulations
each.

Finally, we considered the highest degree of population heterogeneity where not only the

weighting of the issues, but the agreement thresholds were different for different individ-

uals. In these simulations, the individual α values were chosen uniformly from a discrete

set of values {0.1, 0.2, . . . , 0.9}, and the issue weights, as before, were chosen from a uni-

form probability distribution in [0, 1]. Figure 2.6(b) groups the simulations results by the α

values and shows the mean probability of individuals to end up in the larger of the factions

(the error bars show the standard deviation). We observe that larger individual agreement

threshold values result in a lower probability to join the majority. A similar result is shown

in panel (c) of figure 2.6, where the same data are replotted differently. Instead of group-

ing individuals by their agreement thresholds, we plotted the probability to end up in the

larger faction as a function of the δ-difference, which is the individual ADS of each indi-

vidual minus the population average of the ADS. In this graph, the horizontal axis informs

us on how “trusting” or “cautious” each individual was compared to the other members of
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the same population. We can see that individuals that are more trusting than their peers

(positive ADS difference) are more likely to join the majority compared to those whose

ADS is lower than the average.

2.4 Opinion dynamics in the presence of an influencer

(small vs. large communities)

Next, we study what happens when the community is affected by the presence of an

outsider who we will call the influencer. We will also see how a larger community (N =

50, N = 100) effects the results, both with, and without the presence of an influencer. As

with the other members of the community, the influencer has a binary opinion on each of

the J issues. In contrast to regular community members, the influencer never changes

their opinions (that is, they are never chosen as an active individual), but instead they play

the role of an interlocutor disproportionately often. At each meeting time, in the absence

of an influencer, the chance that each regular individual is chosen as the interlocutor to an

active individual is given by 1/(N − 1). We assume that the influencer has a probability p

to be chosen as the interlocutor. We will call this the influence probability The probability

of the rest of the individuals to be chosen is uniform and scales accordingly: for influence

probability p the probability of any other community member to be chosen is (1−p)/(N−1).

The case of p = 0 corresponds to the dynamics in the absence of an influencer.

Since the influencer’s opinions never change, while other community members’ opinions

can switch, the presence of an influencer significantly reduces the space of possibilities

for the final state: the system must converge to a fixed state, in which one faction agrees

with the influencer on all the issues, and one faction disagrees with the influencer on all

the issues. One of these factions may have size zero.

20



2.4.1 Faction sizes

First, we study which parameter values result in the largest faction having the same opin-

ion vector as the influencer. In figure 2.7(a) we depict the proportion of trials in which

the largest faction matches the influencer against the variable δ for influence probabilities

0.1, 0.4, 0.7, 1.0. We observe that at each influencer probability the plots monotonically

increase with δ. When the community is more likely to switch to agree (disagree), then any-

time the active individual meets with the influencer, they are more likely to switch to agree

(disagree) with the influencer. Larger influence probabilities amplify this effect. At p = 0.1,

the proportion of runs where the larger faction matched the source is about 0.5 at δ = −1

and increases to 1 at δ = 1. At p = 0.4 this proportion begins at 0 and increases in an

approximately linear fashion to 1. At levels greater than p = 0.4 the match proportion has

a more “logistic” appearance. For p = 1.0, active individuals can only have the influencer

as their interlocutor, which corresponds to the extreme case where the whole population

converses with a single source of influence. For δ near −1, the presence of this extremely

influential opinion source, however, has a negative effect, because the population always

converges to a set of opinions that is a polar opposite of those of the influencer.

(a) % runs where the larger faction 
matches the influencer

(b) Mean largest faction size (c) Log10 (time to fixation)

ADS, δADS, δ ADS, δ

Figure 2.7: Opinion dynamics in the presence of an influencer. (a) The fraction of runs
where the largest faction matches the opinion vector of the influencer; (b) the mean largest
faction size; (c) log10 of the time to fixation. All of these measures are presented as func-
tions of ADS, δ, and the different colors represent the influencer level. Parameters are
N = 10, J = 4, all issues could be weighed.
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Consistent with these observations, the dependence of the mean largest faction size on

δ changes as we change the influence probability p. Figure 2.7(b) shows that for small

values of p, the mean largest faction size is a monotonically increasing function of δ, much

like was the case in the absence of an influencer. As p increases, however, the mean

largest faction size becomes larger for negative and smaller for positive values of δ. For

the highest influence probability, it is a symmetric function of δ, with the very unbalanced,

or a 1-faction, steady state for δ = ±1. This means that a strong influencer significantly

changes the opinion dynamics of a community with a strong tendency to disagree (large

negative δ): in the absence of an influencer, such a community tends to converge to a

balanced two-faction system, but the presence of a strong influencer leads to the creation

of a single faction with opinions that are opposite of those of the influencer. In other words,

in the case of large negative ADS, an influencer tends to unite the community against itself.

2.4.2 Time to fixation

In this section, we study how the time to fixation changes as the influence probability

increases, see figure 2.7(c). We observe that as we first introduce a low-p influence, the

convergence time at all values of δ increases compared to the system in the absence of an

influencer. As the influence level becomes higher, however, the convergence time drops

significantly and becomes shorter compared to that in the absence of an influencer.

These trends have a clear intuitive explanation. First let us compare a population without

an influencer with a population with a influence probability p = 0.1. In the latter case, the

probability to meet with an influencer is as high as to meet with any other person. Without

an influencer, the population will converge to a steady state which, statistically speaking, is

close to its initial opinion distribution. In the presence of an influencer, however, the system

will not stop changing until the two factions are the one coinciding with the influencer and

the opposite of this, which for most initial conditions is a state that is fartherfrom the initial
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opinion distribution, and thus takes longer to reach.

If, on the other hand, the influence probability is very high, this leads to a different tendency:

because of frequent meetings with the influencer, a large proportion of the changes will

point in the same direction, and the population will relatively quickly reach convergence

to a state defined by the influencer (or is opposite to that of the influencer). This explains

the drop in the convergence time as p increases. It is tempting to think that time to fixation

maximizes at p satisfying

1− p

N − 1
= p. (2.5)

So in this case where N = 10 we would expect the time to fixation at p = 0.1 to be the

maximum. However, we must recall that there may be other individuals with the same

opinion type as the influencer and a meeting with any one of these members of the com-

munity. Therefore, the value of p satisfying (2.5) is likely only a good guideline for finding

a maximum time to fixation due to the randomness of the system and the value of δ since,

as we have seen, the number of persons of the same type as the influencer depends on

δ. We will look into this more closely in the next section.

2.4.3 Larger communities

Lastly, we study how communities of larger populations affect the results we have seen

above, with and without an influencer. We will look at communities of sizes N = 100

and N = 50. Due to extremely long convergence times for some values of δ at these

population sizes, we adopt the following conventions for this section: (1) the simulations

have an additional stop condition: if 107 meetings occur without reaching a fixed state,

the simulation stops; and (2) we record the number of meetings at the end of a simulation

whether or not convergence occurs, but we do not record the mean largest faction size,
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nor whether the larger faction matches the influencer.

ADS, δ

(a) % runs where the larger faction 
matches the influencer

ADS, δ

(b) (Mean largest faction size)/N

ADS, δ

(c) Log10 (time to fixation)

Influencer probability 0
Influencer probability 0.1
Influencer probability 0.4
Influencer probability 1.0

Figure 2.8: Opinion dynamics in the presence of an influencer. (a) The fraction of runs
where the largest factionmatches the opinion vector of the influencer; (b) Themean largest
faction size/N; (c) log10 of the time to fixation. All of these measures are presented as func-
tions of ADS, δ, and the different colors represent the influence probability. Parameters
are N = 100, J = 4, all issues could be weighed, and values are based on 500 trials.

We see that figures 2.8(a) and (b) have the same general shape as in those of figures

2.7(a) and (b). The differences can be accounted for by the much larger variability in

considering 500 trials per point as compared to 20,000 trials, as well as the conventions

adopted for this section mentioned above.

The difference in time to fixation, figure 2.8(c) is more curious. Observe that at δ =

0.6, −0.6 there are jumps when the influence level is low. We will analyze the reasons for

this in chapter 2. However, larger influence probabilities rapidly diminish this effect. We

also observe that for the given influence probabilities (0, 0.1, 0.4, 1.0) we do not see time

to fixation appearing to increase before monotonically decreasing in the left pane. How-

ever, this is due to p = 0.1 being larger than 1/100 by a factor of 10. In figure 2.9 we see in

the left pane that time to fixation appears to have a maximum in the influencer probability

interval of [0.005, 0.015] and monotonically decreases thereafter. We also observe similar

behavior when δ = 0.60 in the right pane of figure 2.9. Here, we use N = 50 so that the

system reaches a fixed state prior to 107 meetings. The maximum occurs in [0.015, 0.025].

Time to fixation tends to decrease monotonically from there. This can also be seen in

figure 2.8(c) by comparing those values of δ for which the time to fixation reaches the
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imposed threshold of 107 against the others.
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Figure 2.9: Mean time to fixation in the presence of an influencer.
Left pane: N = 100, δ = 1, Log-Log scale. Right pane: N = 50, δ = 0.6, Log-Linear scale.
Point values are based on 500 trials per point. Error bars depict standard deviation. In
some cases standard deviation is too small for the error bar to appear.

2.5 Discussion

We considered a stylized model of opinion dynamics, where people are characterized

by a string of J binary opinions. They interact in random pairs, and change their binary

opinions according to the agreement score, A, that they have with their interlocutor. If

the agreement score is relatively high (above a certain threshold, A ≥ α), they swap

a randomly chosen opinion to coincide with their interlocutor. If the agreement score is

lower than the threshold, A < α, they swap a randomly chosen opinion away from their

interlocutor.

In this system, only two long-term outcomes are possible: either all the individuals become

identical in all the opinions, or they form exactly 2 groups of shared opinions, with all the

opinions exactly opposite between the groups. If all the issues are weighted in the same

way (that is, they are equally important for the calculation of the agreement score), an

increase in agreement threshold (parameter α) increases the likelihood of the two-faction

outcome. If, however, one of the issues is more important than the rest, more complex pat-
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terns are observed, and the probability of the two-faction outcome, the mean largest party

size and the time to fixation become non-monotonic functions of the agreement threshold,

α, and/or issue weights.

In order to explain the variety of observations, it is helpful to define a scalar parameter, δ,

which we called the agreement-disagreement score (ADS). This score depends on both

the issue weighting and the agreement threshold. It is calculated by counting the number

of different types of interlocutors that will cause a target individual to switch toward the

interlocutor (type 1 switch) and to switch away from the interlocutor (type 2 switch). Then

the proportions of type 1 and type 2 changes is calculated and the difference between the

two gives the agreement-disagreement score. This is a quantity that can range between

−1 and 1, with values near 1 corresponding to situations where individuals tend to switch

to agree most of the type, signaling a relatively low agreement threshold and a “friendly”

or “trusting” disposition of the community. Values of δ near −1 correspond to the oppo-

site situation where individuals tend to switch away, to increase the difference with the

interlocutors, which represents a very “unfriendly” or “cautious” community.

In the absence of issue weighting (that is, all weights are equal), agreement-disagreement

score is a monotonically decaying function of the threshold parameter α (and thus is re-

dundant). In the presence of issue weighting however it provides a scalar parameter that

places a system on an interval [−1, 1] and allows for predicting important observables of

the behavior, such as convergence time and faction structure. For example, for societies

with negative δ, a two-faction outcome is a certainty. For positive δ, the probability of a

one-party outcome gradually increases and reaches 1 with δ = 1. The time to fixation

increases exponentially as δ approaches −1.

In communities with external influence, the fixed state is determined by the influencer’s

opinions - any faction in the steady state will agree with the influencer on all the issues, or

disagree on all the issues. In a community with negative δ values (that is, a “cautious” com-
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munity), the largest faction tends to consist of individuals that disagree with the influencer,

and the tendency is the opposite for positive-δ, “trusting” communities. The size of the

effect clearly grows with the influencer level (that is, with the frequency of communication

with the influencer). Further, the population faction structure is affected by the presence

and the level of the influencer. In the absence of an influencer, negative δ values are as-

sociated with two balanced factions in steady state, and an increase in δ > 0 leads to an

increase on one-faction outcomes (and a larger mean largest faction size). Increasing the

level of an influencer breaks this pattern and leads to an increasing frequency of one-party

outcomes for negative δ values, especially for δ close to −1, such that a more symmetric

picture emerges: both for very “trusting” (δ ≈ 1) and very “cautious” (δ ≈ −1) populations,

a single party tends to emerge, but in the former case it coincides with the influencer’s

opinions, while in the latter case it is characterized by the opposite set of opinions. Inter-

mediate populations (δ near zero) retain the same mean largest faction size regardless of

the influence level.

Time to fixation again is significantly affected by the presence of an influencer, especially

for negative-δ population and also at values of δ at which larger populations have extremely

long convergence times, until the influencer power is large enough that time to fixation no

longer experiences such a large increase as δ → −1. One can say that the presence of an

influencer unifies populations to align with the source of influence if δ > 1 and to disagree

with it if δ < 1, and consensus is reached relatively fast for both extremely “trusting” and

extremely “cautious” populations. Furthermore, without a community influencer, larger

populations greatly affected the shape of the time to fixation plot at certain points. As

mentioned above, we will study this phenomenon in Chapter 2.

Finally, we investigated further inhomogeneities of populations, such as different weights

assigned to issues by different individuals. It was found that the population mean ADS

continues to be a reasonably good proxy for the opinion dynamics, where large negative
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ADS values predict very long fixation times and an almost certain balanced two-faction

outcome, whereas large positive ADS values result in a quicker convergence and a single-

faction steady state. Moreover, individual ADS values reflect individual behavior. Agents

with relatively higher δ-values are more likely to end up in the majority faction whereas

more “cautious” (lower δ) individuals are less likely to join the larger faction.

This study is a first step toward understanding complexities of social opinion dynamics as-

sociated with variable importance, or “weight”, of different issues that comprise individuals’

opinion profile. Even though populations characterized by different agreement thresholds

(α) and different weights associated with the J issues “live” in a J-dimensional parameter

space (J−1 dimensions for the issue weights that sum up to one, and an extra dimension

for α), it was possible to find a simple index-type variable that described the behavior of

such populations. This variable had the power to predict the steady state solution statis-

tics and structure and convergence type. Extensions of this work will include interaction

networks other than a complete graph, e.g. spatial networks, or networks where individu-

als are more likely to interact with those who are similar to them (homophily). Further, it

would be interesting to investigate the effect of multiple influencers.
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Chapter 3

The ODE theory of weighted opinion

dynamics

3.1 Introduction

In chapter 2 we introduced and studied a weighted opinion dynamics model which used

both agreement and disagreement dynamics. In the current chapter, we study a determin-

istic system of ODE’s whose discrete/stochastic analog is said model. We demonstrate

that the deterministic system has a neutrally stable solution which exists for all values of

the parameters N, J, α, and weights. We argue that if this solution is the only stable one,

the behavior in the corresponding stochastic system leads to extremely long times to a

fixed state. Furthermore, we demonstrate that the cases observed in the previous chap-

ter (δ near −1, and for J = 4, δ = ±0.6 with larger populations) are precisely those in

which this solution exists as the only stable solution. We also give an algorithm for finding

solutions to this system when α is small relative to the possible agreement scores implied

by the issue weights.
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3.2 The set-up

Suppose in a community of N individuals we have J binary opinions so that the total num-

ber of opinion strings isNop = 2J . We denote by Y (s) the s−th opinion string, s = 1, . . . , Nop

where the opinion strings are indexed as Y (1) = (0, . . . , 0), Y (2) = (0, . . . , 0, 1), . . . , Y (Nop) =

(1, . . . , 1) so that Y (s) and Y (Nop−s) are opinion strings which disagree on every issue.

We will also refer to opinion strings as opinion types. The opinion weights are given

by {wi}, i = 1, . . . , J . We shall assume that
∑J

i=1 wi = 1. As in chapter 1, we define

the weighted agreement, or similarity between two opinion strings s, s′ to be the weighted

average number of issues on which string s and string s′ agree:

σ(s, s′) =
J∑

i=1

wi · δ(Y (s)
i , Y

(s′)
i ),

where δ denotes the usual Kronecker delta. The threshold value α (0 ≤ α ≤ 1) separates

strings which are considered friends from those which are considered enemies so that

opinion strings s, s′ are considered friends if σ(s, s′) ≥ α and are enemies otherwise.

When a focus individual of type s meets with an interlocuter s′ the focus individual’s type

is replaced with one of J (not necessarily distinct) types according to which issue is being

discussed. We define the vector of change F (s, s′) = (s1, . . . , sJ) to be the J-dimensional

vector such that si is the type that a focus individual of type s becomes after meeting with

an individual of type s′ concerning issue i. We assume that each issue is equally likely to

be considered. To avoid ambiguity we will refer to the ith component of F (s, s′) as F (s, s′)i

rather than si. Note that F is determined by both α and the weights wi.

For each opinion type s, let the proportion of individuals be denoted by xs. Then we have
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Nop∑
s=1

xs = 1. (3.1)

The ODEs that govern their dynamics depend on the weights and the α threshold. We

have

ẋs =
1

J(N − 1)

(
−

Nop∑
s′=1

J∑
i=1

xsxs′ [1− δ(F (s, s′)i, s)] +
∑
s′ ̸=s

Nop∑
k=1

J∑
i=1

xs′xkδ(F (s′, k)i, s)

)
, (3.2)

for 1 ≤ s ≤ Nop, where the first term in the large parentheses in equation (3.2) represents

the proportion of the population of type s which becomes a different type and the second

term represents the proportion of all other types which become type s.

Note that by (3.2),
Nop∑
s=1

ẋs = 0, (3.3)

that is, the total population of the community does not change.

Given J issues, the similarity function σ(s, s′) evaluated for all possible pairs of opinion

types can take a maximum of Nop distinct values. This is because the value of σ(s, s′)

is determined by which issues the two strings, s and s′, have in common, as well as the

weights on these issues. This maximum occurs if the weights are all different, and if, for

any subset of weights {wni
}mi=1, we have the following conditions:

m∑
i=1

wni
̸= wp, p = 1, . . . , J and

∑
i

wni
=

∑
k

wmk
=⇒ {wni

} = {wmk
}. (3.4)

That is, the sum of the weights in the subset is not equal to any of the weights, and if the

sum is equal to the sum of any other subset of weights then the subsets are in fact equal.

The maximum occurs in this case because there are
(
J
j

)
ways in which s and s′ can have
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j issues in common. Under the conditions above, each of the
(
J
j

)
ways gives a unique

value for σ over all j = 0, 1, . . . , J . Therefore we have

J∑
j=0

(
J

j

)
= 2J

distinct values for the similarity function. The particular values depend on the weights.

The minimum number of distinct values occurs when all of the weights are the same. In

this case, the value of the similarity function is the same for each of the
(
J
j

)
ways in which s

and s′ have j issues in common. This results in J +1 total values of the similarity function.

Suppose, for some choice of weights, there are a total ofM distinct values of the similarity

function. Let us arrange them in order from least to greatest:

0 = σ1 < σ2 < · · · < σM = 1. (3.5)

Here, σ1 = 0 and σM = 1 correspond to zero and J issues being the same between the

two individuals, respectively. The values of σk represent the thresholds in the set of α

values. The behavior of the system (3.2) is identical for all values α, σk−1 < α ≤ σk,

1 ≤ k ≤ M . Therefore, beginning with α = 0, the behavior of the system changes as α

increases through each of the thresholds yielding M different model behaviors.

3.3 Solutions of the ODE’s

3.3.1 The uniform solution

It can be shown that system (3.2) has a steady state,

xs =
1

Nop

. (3.6)

32



This steady state is neutrally stable for all values of α, that is, λ = 0 is an eigenvalue of the

Jacobian corresponding to this uniform solution (3.6). The presence of a zero eigenvalue

results from from the solution symmetry, equation (3.3), and corresponds to the eigen-

vector (1, . . . , 1). Let M0 be the multiplicity of the zero eigenvalue. M0 changes with α. If

M0 = 1 then from (almost) any initial condition satisfying (3.3) the system will converge to

solution (3.6). In this case, every opinion is equally represented and any deviation from

this solution will tend to decrease. In the stochastic equivalent of such a system will be

characterized by oscillations around solution (3.6) and convergence to a one- or two-party

final state will take a very long time.

If M0 > 1, this indicates that, in the deterministic system, a neutral manifold of solutions

is present. In the stochastic system of chapter 1, there will be neutral drift within this

manifold, which eventually results in convergence to a fixed state. This happens on a

much faster time-scale as compared to the situation described above where solution (3.6)

is attracting.

In subsection 3.3.2, we study the behavior of the system (3.2) in the case that J = 3.

Specifically we will derive solutions for α ∈ (0, σ2] using an algorithm that can be gener-

alized to any J ≥ 2. We will also show that these solutions also satisfy the system when

α = 0. Finally we will demonstrate that the only stable solution the deterministic system

has is (3.6) for α in the largest agreement score interval. In section 2.3 we will look at

some cases for J = 4 issues. In particular, we will show that only solution (3.6) holds

when δ = ±0.6 which will explain the behavior of the stochastic model observed at these

points in chapter 1 when the population is large.

3.3.2 Example: Solutions for J = 3 issues

In this section we assume throughout that J = 3. When examining α is in the largest

agreement score interval we will assume that the weights are the same for notational
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conveniences. While solution (3.6) is always an equilibrium, depending on the regime it

belongs to different neutral solution manifolds.

For α in the interval (0, σ2] the following equalities characterize the equilibrium:

x1x4 = x2x3, x1x7 = x3x5, x1x6 = x2x5,

x3x8 = x4x7, x5x8 = x6x7, x2x8 = x4x6. (3.7)

To visualize this solution, create a “hypercube” network where the nodes are the Nop = 2J

opinion types and the edges connect the types that are different by exactly one opinion,

see Figure 3.1. In this network, each node is part of J square faces of the hypercube.

The only pairs of enemies are those corresponding to pairs of opposing vertices. The

particular weights on each issue play no role here. The expressions (3.7) state that for

each of the J faces, the products of the opposite corners are equal to each other. Note

that clearly, solution (3.6) is a subset of this solution. Also, it is easy to show that the

following equations are a consequence of equations (3.7):
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Figure 3.1: An example of a hypercube corresponding to J = 3, where each node is an
opinion string and edges are drawn between nodes of Manhattan distance 1.

x1x8 = x2x7 = x3x6 = x4x5 (3.8)

which state that the products of the opposite corners of the hypercube (that is, the types

that are complete opposites of each other) are equal to each other.

Not all equalities in (3.7) are needed to uniquely define this solution, some are conse-

quences of others. It is possible to show that the following equations imply all of equations

(3.7):

x2x8 = x4x6, x1x7 = x3x5, x2x7 = x4x5 = x3x6. (3.9)

The first two equalities describe two opposite 2D faces of the hypercube, and the last

two are about pairs of opposite vertices. Figure 3.2 plots the products x1x4 and x2x3 in

the stochastic model of chapter 1. Observe that these products tend to follow each other

closely, just as we would expect from (3.7).
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Figure 3.2: Plot of x1x4 and x2x3 in the stochastic model of chapter 1. Parameters are
N = 300, J = 3, weight on each issue is 1/3, and α = 0.17.

We demonstrate a substitution algorithm to arrive at equations (3.9) in steps. Instead of

using x1, x2, . . . , x8 it will be helpful to use the actual opinion strings for each opinion type,

so, x000, x100, . . . , x111.

Step 1: Choose vertex 1 in figure 3.1 and note its opinion type (000).

Step 2: Note all the vertices (opinion types) which are Manhattan distance 2 from vertex

1 (101, 011, 110).

Step 3: Formally add the strings corresponding to the opinion types of vertex one’s neigh-

bors (100, 010, 001) to get each of the opinion types noted in Step 2. For example,

101 = 100 + 001. Next, in system (3.2) make the formal substitution

x101 =
x100 · x001

x000
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That is,

Step 4: For each opinion type si from step 2, if nj + nk = si (where nj, nk are neighbors

of 000) substitute

xsi =
xnj

· xnk

x000

into equations (3.2). Note that by only using neighbors of the vertex corresponding

to type 000 the equation nj + nk = si is unique.

Step 5: Now add opinion strings of neighbors of 000 to get all (one) opinion types Man-

hattan distance 3 from 000: 111 = 100 + 010 + 001.

Step 6: From 111 = 100 + 010 + 001 make the substitution

x111 =
x100 · x010 · x001

x2
000

These substitutions solve system (3.2) for α ∈ (0, σ2]. Furthermore, these substitutions

imply (after changing back to type numbers as indices)

x1x4 = x2x3, x1x6 = x2x5, x1x7 = x3x5, x1x8 = x2x7 = x4x5 (3.10)

which are equivalent to (3.9). This can be generalized to other numbers of issues:

Let J be the number of issues. On a hypercube of dimension J if si is Manhattan distance

2 ≤ d ≤ J from the vertex corresponding to the string of all 0’s (call this vertex 1) then there

exists a unique set of neighbors of vertex 1 with corresponding strings nk1 , nk2 , . . . , nkm so

that

si =
m∑
j=1

nkj .
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Furthermore, the substitution

xsi =

∏m
j=1 xnkj

(x1)m−1
(3.11)

for all vertices si Manhattan distance d (2 ≤ d ≤ J) from vertex 1, solves system (3.2) for

α ∈ (0, σ2].

Returning to J = 3, we now show that the solution (3.9) derived above also solves the

system when α = 0. Let ẋ(0)
s and ẋ

(0,σ2]
s be equations (3.2) for the two respective cases.

Assume first that ẋ(0,σ2]
s = 0 for all s so that we have equalities (3.8). In the α = 0 regime

if type s and type s′ disagree on all three issues (they lie on opposing vertices in figure

3.1) ẋ(0)
s will have a −3xsxs′ term in it since types s and s′ are friends and the strings

corresponding to these types differ in all three issues. It also follows, for each neighbor n

of s, there will be an xnxn′ term. In fact, we have

ẋ
(0)
1 = ẋ

(0,σ2]
1 − 3x1x8 + x2x7 + x3x6 + x4x5

ẋ
(0)
8 = ẋ

(0,σ2]
8 − 3x1x8 + x2x7 + x3x6 + x4x5

ẋ
(0)
2 = ẋ

(0,σ2]
2 + x1x8 − 3x2x7 + x3x6 + x4x5

ẋ
(0)
7 = ẋ

(0,σ2]
7 + x1x8 − 3x2x7 + x3x6 + x4x5 (3.12)

and so on such that if s and s′ are opposing opinion types ẋ
(0)
s and ẋ

(0)
s′ have the same

coefficients for the terms x1x8, x2x7, x3x6 x4x5.

Consider ẋ(0)
1 . By equations (3.8), −3x1x8 = −x2x7−x3x6−x4x5 so ẋ

(0)
s = 0 By analogous

arguments ẋ
(0)
s = 0 for all s.

However, the system ẋ
(0)
s has other solutions. For example, setting x1, x2, x7, x8 = 0.25

provides a solution which violates (3.8).

Next we consider α ∈ (σ3, 1], where we have assumed that the three weights are equal
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so that there are four distinct values of σ. We will call this the highest α regime. Observe

that in this regime, if t and t′ are opposing types, we have

ẋt − ẋt′ = −2(1− xt − xt′)(xt − xt′).

Therefore, if ẋs = 0 for each s then there are two cases. In the first case, (1− xt − xt′) = 0

for some t so that xt+xt′ = 1. Therefore xs = 0 for each s ̸= t, t′. However, this solution is

unstable due to the Jacobian associated with this solution having a positive eigenvalue.

In the second case (1− xt − xt′) ̸= 0 for each t. Therefore the following holds:

x1 = x8, x2 = x7, x3 = x7, x4 = x5 (3.13)

Substituting these into ẋs, s = 1, . . . 4 and adding pairs of the resulting equations yield the

following relations:

x1x4 = x2x3, x1x3 = x2x4, x1x2 = x3x4 (3.14)

Now, each of xi, i = 1, . . . 4 is nonzero. Indeed, suppose e.g. x1 = 0. Then by the first

equation in (3.14) either x2 = 0 or x3 = 0. If x2 = 0 then the third equation implies that

x3 = 0 or x4 = 0. However, both cannot be zero by (3.1). Therefore, supposing x3 = 0

and x4 ̸= 0 we must have x4 = x5 and all other population proportions are zero, contrary

to our assumption that (1− xt − xt′) ̸= 0 for each t.

By making substitutions implied by (3.14) we have that x1 = x2 = x3 = x4 and by (3.13) it

is seen that this is the uniform solution.
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Figure 3.3: Plots of x1, x8 and x2, x7 in the stochastic model of chapter 1. Parameters
are N = 300, J = 3, weight on each issue is 1/3, and α = 0.90.

In figure 3.3 we plot the behavior of four of the type proportions in the stochastic model

for the highest alpha regime. This corresponds to a point for which δ = 1 in chapter 1.

We have paired together enemies x1, x8 in the left pane, and x2, x7 in the right pane.

Observe the behavior is as expected - each of the type proportions oscillates about 1/8,

the uniform solution for the duration of the time that the simulation was allowed to run. The

time it takes for the stochastic model to reach a fixed state will be, on average, extremely

high.

3.3.3 Examples: J = 4 issues

We now turn to some examples when the community interacts with each other regarding

four issues. For α ∈ (0, σ2] the algorithm presented in section 3.3.2 yields the following

relations to solve the system:

x1x4 = x2x3, x1x7 = x3x5, x1x6 = x2x5 (3.15)

x1x10 = x2x9, x1x13 = x5x9, x1x11 = x5x9
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x1x8 = x4x5 = x2x7, x1x12 = x4x9 = x2x11 (3.16)

x1x14 = x6x9 = x2x13, x1x15 = x7x9 = x3x13

x1x16 = x8x9 = x5x12 = x3x14 = x2x15 (3.17)

Referring to figure 3.4, (3.15) says that for each of the 6 faces to which vertex 1 belongs,

products of diagonal vertices are equal; (3.16) says that for each of the 4 prisms vertex

1 belongs to, products of opposing vertices are equal; finally (3.17) says that products of

vertices on the outer cube with the corresponding opposite vertices on the inner cube are

equal.
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Figure 3.4: An example of a hypercube corresponding to J = 4, represented as a cube
embedded in a cube. Each node is an opinion string and edges are drawn between nodes
of Manhattan distance 1 as in figure 3.4. The blue and red edges connect vertices of the
outer and inner cubes, respectively. The black edges connect vertices of the outer cube
with vertices of the inner cube.

We also have a similar relationship between the α = 0 and α ∈ (0, σ2] regimes here, as
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when J = 3. Since, for example, it can be shown that

ẋ
(0)
1 = ẋ

(0,σ2]
1 − 4x1x16 + x2x15 + x5x12 + x8x9

it can also be shown that the solution manifold for the system ẋ
(0,σ2]
s also solves ẋ

(0)
s ; fur-

thermore, just as with the J = 3 situation, so also does ẋ
(0)
s have other solutions.

Also, the largest α regime has only the uniform solution as a stable solution. However the

method for deriving this conclusion in J = 3 does not have an obvious analog here. That

is to say,

ẋ1 − ẋ16 ̸= C(x1 − x16)(1− x1 − x16)

as would be expected if the method from J = 3 were to translate here. However, the

multiplicity of the eigenvalue λ = 0 of the Jacobian corresponding to the uniform solution

is M0 = 1 indicating that (3.6) is the only stable solution.

This is also the case with parameters corresponding to δ = ±0.6. As we saw in chapter

2 the number of meetings to reach a fixed state increased rapidly at higher populations.

The presence of the uniform solution as the only stable one explains why this is the case,

see figure 3.5.

Figure 3.5: Plots of x1, x16 and x4, x13 in the stochastic model of chapter 1. Parameters
are N = 300, J = 4, weight on each issue is 1/4, and α = 0.375.
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3.4 Conclusion

In this chapter we developed a system of ODEs as an analog to the stochastic model

studied in chapter 2. The main result here was the discovery of a neutrally stable solution

that exists in all cases such that when this uniform solution is the only stable solution, the

opinion type population proportions in the stochastic model will oscillate about this solution.

This behavior explains the extremely long times to fixation seen in certain situations. If δ

is close to −1, there is an intuitive explanation for this phenomenon. However, the result

presented here gives an explanation which is derived from the mathematical properties

of the underlying deterministic system. Such an explanation is helpful when the same

phenomenon occurs (δ = ±0.6 at larger populations in the stochastic system), but there

is no clear, intuitive explanation based on the switching properties for these values of δ.

We also presented an algorithm which solves the system of ODEs for any number of J ≥ 2

issues when α ∈ (0, σ2] and demonstrated that these solutions also solve the system

corresponding to α = 0 when J = 3, 4.
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Chapter 4

The structure of the HPV vaccine

re-tweet network

4.1 Introduction

Major problems that are faced by society today include protecting our health, and making

sure that there is enough food, water, and energy on the planet for us, our children, and

future generations. The rise of social media platforms such as twitter provide a forum

where these problems are increasingly discussed by members of society - to such an

extent that individual, and collective opinions are greatly influenced by those discussions.

Public opinion and individual beliefs are crucial for our ability, as a society to solve these

crucial challenges. And a problem that is detrimental to the process is the spread of

misinformation through social media.

For example, the spread of misinformation counters our ability to limit and control infectious

diseases, e.g. through preventing the effective implementation of vaccination (given the

doubt about vaccination that is being propagated). Similarly, misinformation about the
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human role in climate change is harmful for any measure that aims at limiting the negative

impact of humans.

The dynamics of information andmisinformation spread across social networks is currently

not well-understood. Improving our understanding in this respect and designing effective

intervention measures to prevent the spread of misinformation are vital for devising strate-

gies that shift the dynamics in favor of the spread of true information. It is also a necessary

step in any attempt to solve the large-scale problems faced by the society.

Mathematical/computational approaches that aim to predict the spread of true and false in-

formation and that can potentially suggest intervention strategies to advance the adoption

of true, scientific information by populations, have so far been largely missing. At the same

time, mathematics can offer a solution to the problem of misinformation spread. There are

strong parallels betweenmathematical descriptions of information spread through commu-

nities, and the mathematical descriptions of infectious disease spread from host to host.

Information, or ideas, spread like memes, from the mind of one individual to the next,

through cultural transmission processes. In this process, different types of information

(e.g. true vs. false) can compete for susceptible minds, similar to the competition of two

pathogen strains for susceptible hosts. Here we build data-driven mathematical models

of information spread to fill this gap. This is done specifically in the context of HPV vacci-

nation, and study the spread of information through Twitter. The basic idea is to harvest

social media data to build networks, which will inform mathematical models of information

spread across these networks. Methodologies used here can be applied to further studies

of the competition between information and misinformation, and the identification of indi-

viduals that are “on the fence” and can thus be more effectively targeted by intervention

approaches.
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4.2 Data set and network definition

We begin with twitter meta data obtained from October 6, 2018 through November 28,

2019. These data were extracted from the Twitter Filtered Stream API v1.1, and Twitter

Retweet API v1.1 using keywords such as “hpv vaccine”, and “hpvvaccination”. Tweets

and retweets were extracted which contained any of the keywords, including those where

a keyword was a part of a “hashtag”. The data set contains 12, 171 tweets concerning the

HPV vaccine which were re-tweeted at least once. Included in the data is an encoded

user identification number of the original tweeter, the date and time of the original tweet,

the content of the original tweet, the number of times it was re-tweeted, the identification

number of the user that re-tweeted, and finally the date and time that the re-tweet occurred.

Each row in the data set corresponds to a unique re-tweet of a tweet so that if a particular

tweet were re-tweeted n times, there are n rows in which that tweet is the original tweet.

In order to analyze this data we define a network G whose nodes are users contained

in the data set, and if x, y are two nodes, there is an edge from x to y if y re-tweeted

a tweet by x signifying that information has traveled from x to y. We can denote such

an edge as an ordered pair (x, y) since information is traveling in one direction. By this

definition, the edges ofG are naturally directed. However, since our network is constructed

out of data which occurred in time, and since community detection within networks is

typically conducted by either assuming, or forcingG to be undirected [15] we construct the

network so that if there is an edge (x, y) or (y, x) we regard it to be an undirected edge,

signifying that there is an established information conduit between x and y irrespective of

the direction it occurred in the past. This network G is called the re-tweet network, see

figure 4.1.
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Figure 4.1: The constructed re-tweet network G.

We now further reduce the size of the network under analysis. First, observe that there is

one large connected component and dozens of much smaller connected components. We

focus on the underlying simple graph of the large connected component (see figure 4.2a).

Furthermore, note the many ‘flower’ shapes in figure 4.2a. These represent users who

either (1) only re-tweeted one user’s tweet and were not themselves re-tweeted; or (2) a

multitude of users which one and only one user re-tweeted. In either case, the underlying

47



(a) With ”flower” shapes (b) Without ”flower” shapes

Figure 4.2: The largest connected component of G. (a) before the “flower” shapes are
removed; (b) after the flower shapes are removed.

structure of the network is not affected by removing these ‘flower’ shapes. The resulting

network, G′, depicted in figure 4.2b, is composed of 1409 nodes, and 4185 edges as

opposed to 5304 nodes and 7169 edges in the network which includes the ‘flower’ shapes.

figure 4.2a.

4.3 Finding communities in the network

The network G′ shown in figure 4.2b was drawn by using software Mathematica, which

implements a force-directed graph drawing algorithm to present graphs in the most aes-

thetically pleasing way, with minimum edge intersection. This visually suggests the exis-

tence of two sub-communities, corresponding to a loosely connected left side and a more

densely connected right side. In what follows we (1) apply a systematic algorithm to

assign all nodes to one of two communities and (2) determine if these communities are

meaningful in the context of the tweets which the members of each community represents.
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In this section we use a label propagation algorithm developed by Raghavan, Albert, and

Kumara [20] to answer the first of these questions. Specifically, each of these methods

find distinct communities within the network. Afterwards, unions of these communities

then form the left and right communities mentioned above. The investigation of the sec-

ond question is visited in section 4.4.

The label propagation algorithm we use is based on the following idea [20]: if a node x in

the network G′ has neighbors x1, x2, . . . , xk and the nodes of G′ have a label denoting a

community to which each belongs, then the label of x is determined based on its neighbors.

Specifically, we initialize the algorithm by assigning each node in the network a unique

label. Then, in random sequential order, we select a node x and, if possible, the label of x

is updated to be the label carried by the majority of its neighbors, with ties broken uniformly

randomly. This process is performed iteratively, where at each iteration, the order in which

the nodes update their labels according to their neighbors is chosen randomly.

If l1, . . . , lp are the labels which currently exist in the network and n
(lm)
i is the number of

neighbors of node i with label lm then the algorithm stops if for each node i,

node i has label lm then n
(lm)
i ≥ n

(lj)
i 1 ≤ j ≤ p
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Figure 4.3: Results of label propagation algorithm. Different colored nodes depict com-
munities defined by the algorithm.

The communities are then the collections of nodes with identical labels. Of course, due to

the random initialization of the node labels, the random ordering of the nodes at each iter-

ation, and the random breaking of ties specific results may differ in each implementation.

However, figure 4.3 displays the typical result of the propagation algorithm. Observe that

the algorithm identifies nine sub-communities. The largest subcommunity (of 1123 nodes)

coincides with the dense right hand side of the network, and the rest of the communities

(containing the total of 286 nodes) comprise the left hand side. In other implementations

of the label propagation algorithm different numbers of subcommunities were found, but

the algorithm always identified a single community associated with the densely connect

right side of G′ and then smaller communities on the left side. Additionally, the middle

nodes which join the two sides have been placed into either the right side community or

into one of the communities on the left side. We define the ‘Right’community to be the

nodes with the cyan color and the ‘Left’community to be the union of the nodes of all other

colors, see figure 4.4.
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Figure 4.4: The Left (red) and Right (yellow) communities of nodes

4.4 Analysis of tweet contents in sub-components

We studied the results of the label propagation algorithm, to determine if the Left and

Right communities defined in section 3 weremeaningful with respect to the language of the

tweets which were retweeted. To this end, we used volunteers to read and classify a subset

of tweets from the Left and Right communities. Then Cultural Consensus methodology

[23] was employed to analyze the responses and classify the tweets. The details are

presented below.

4.4.1 Survey data and initial analysis

The ultimate goal of this analysis is to determine if the tweets re-tweeted by individuals

from the Left and Right communities are systematically different. To identify possible dif-

ferences, we took two random samples of 100 nodes from the network on figure 4.4 such

that 50 of the nodes are in the Left community and 50 of the nodes are in the right com-

munity. The content of each of the 100 tweets, in a randomized order, was then sent to

a number of volunteers. These individuals were asked label each tweet as P, A, or U
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depending on whether they thought the tweet was pro-HPV vaccine, anti-HPV vaccine,

or undecided, respectively. 15 individuals recorded their responses for the first survey

and 16 individuals recorded responses for the second survey. With the exception of one

person, everyone who participated in the first survey also participated in the second. Ad-

ditionally, all but two participants in the second survey also participated in the first survey.

In order to avoid population differences between the survey participants, we did not use

any data from participants who only took part in one survey. Thus our analyzed survey

data consists of the results from the 14 individuals who took both surveys. These 14 par-

ticipants were comprised of seven men and seven women. Their ages ranged from 18 to

66. The highest education level attained amongst these individuals is a doctoral degree;

the lowest is high school graduate.

Responses of the participants to the first survey are summarized in figure 4.5, and re-

sponses to the second survey in figure 4.6. This information is further presented in figures

4.8 and 4.8 as histograms, which show, for each survey, the distributions of participant

responses that classified the tweets as A (green), P(orange), or U (blue). The left pan-

els (marked as (a)) show data for the tweets that came from the Left community, and the

right panels (marked (b)) show tweets from the Right community. It is clear that for both

surveys, the majority of tweets that came from the Left community were categorized as

A, and the majority of tweets from the Right community were categorized as P. This gave

rise to the hypothesis that the Left community contains tweets that are against the HPV

vaccine, while the right community contains tweets that are pro-vaccine. Therefore, a key

was created that associated all the tweets from the Left community with response A, and

all the tweets from the right community with response P.

On the first survey, participants’ responses matched the key a minimum of 43 times and a

maximum of 94 times with a mean of 76.4 matches. On the second survey the minimum

number of matches was 39, the maximum was 95, and the mean number of matches was
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Participant P U A

1 0 17 33

2 4 18 28

3 1 10 39

4 1 16 33

5 2 0 48

6 3 2 45

7 5 19 26

8 4 4 42

9 1 9 40

10 3 4 43

11 8 0 42

12 1 10 39

13 2 18 30

14 0 13 37

Mean 2.5 10 37.5

Survey response distribution (Key = A)

(a) Tweets from the Left community, Survey 1.

Participant P U A

1 33 17 0

2 37 11 2

3 38 10 2

4 34 14 2

5 46 3 1

6 44 2 4

7 31 10 9

8 42 5 3

9 43 5 2

10 39 9 2

11 43 0 7

12 43 6 1

13 32 17 1

14 39 11 0

Mean 38.85714 8.571429 2.571429

Survey response distribution (Key = P)

(b) Tweets from the Right community, Survey 1.

Figure 4.5: Participant response distributions for survey 1. (a) Survey items for which the
key = A; (b) items for which the key = P.

81.1. In performing a paired t-test these means are statistically different at a significance

level of α = .10 (p = 0.083). This suggests that, perhaps, the first survey was ‘more difficult

’than the second. This is consistent with the number of U responses that were obtained:

the participants, on average, found more items ambiguous or undecided (response U)

from the left community than the right, and in survey 1 than in survey 2, see figures 4.7

and 4.8, blue bars. For both surveys, the mean number of matches (76.4 and 81.1 on

the two surveys, respectively) suggest that survey participants tend to agree that the Left

and Right communities separate tweets which are pro-HPV vaccine from those who are

anti-HPV vaccine.

4.4.2 Cultural consensus construction

In order to strengthen the evidence that the communities illustrated in figure 4.4 consist

of those who are pro and anti HPV vaccine, we use a data analysis method created by
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Participant P U A
1 0 7 43
2 2 1 47
3 2 5 43
4 3 4 43
5 1 7 42
6 1 1 48
7 3 27 20
8 6 3 41
9 2 5 43

10 3 15 32
11 18 13 19
12 2 5 43
13 3 8 39
14 0 14 36

3.285714 8.214286 38.5

Distribution of answers (key = A)

Mean

(a) Tweets from the Left community, Survey 2.

Participant P U A
1 48 2 0
2 48 0 2
3 45 4 1
4 43 2 5
5 45 5 0
6 47 1 2
7 35 12 3
8 45 3 2
9 48 1 1

10 39 9 2
11 20 10 20
12 45 3 2
13 42 7 1
14 47 3 0

42.64286 4.428571 2.928571

Distribution of answers (key = P)

Mean

(b) Tweets from the Right community, Survey 2.

Figure 4.6: Participant response distributions for survey 2. (a) Survey items for which the
key = A; (b) items for which the key = P.

(a) Key = A (b) Key = P

Figure 4.7: Histograms of survey 1 responses (a) items from left community (i.e. key =
A); (b) items from right community (key = P).
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(a) Key = A (b) Key = P

Figure 4.8: Histograms of survey 2 responses (a) items from left community (i.e. key =
A); (b) items from right community (key = P).

Romney, Weller, and Batchelder [23]. This methodology has been created to extract “cul-

tural consensus”, which allows for a more accurate knowledge representation compared

to more standard methods such as majority counts. The cultural consensus method is

especially useful when some of the questions are difficult or ambiguous, and when the

level of participants “expertise” is variable.

The basic idea is to use the survey responses to create a new response consisting of likely

correct answers. We can then compare this new list of responses to the key.

Before summarizing this method, we list the assumptions used in this analytical method

and simultaneously introduce some notation.

1. Common truth. Each item k on a survey has a correct answer, Zk. That is, there is

a fixed answer key which is applicable to all survey participants.

2. Local Independence. That is, we assume that each respondent’s answers are given

independently of each other respondent. If Xi,k is respondent i’s response to item

k, then mathematically the assumption is that the informant-item response random
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variables satisfy condition independence

Pr[(Xi,k)N×M |(Zk)1×M ] =
N∏
i=1

M∏
k=1

Pr(Xi,k|Zk)

where N is the number of respondents,M is the number of items, and as before, Zk

is the correct answer to item k.

3. Homogeneity of the Items. The assumption here is that each respondent i has a

fixed ‘cultural competence’, Di, over all survey items.

In this notation, our survey data yields two 14 × 100 matrices (Xi,k)14×100 (one for each

survey) composed of the values 1, −1, 0where these values indicate an answer to an item

is P,A, or U, respectively. We then infer the cultural competencies of each of respondents

from the proportion of matches among them whence we infer the list of correct answers

Zk using Bayes theorem. In what follows, we summarize how this is done. For details

refer to [23] and Comrey [3].

Recall from above that Di is the fixed cultural competence of respondent i over all items.

Define the random variables

Mij,k =


1 if i and j match on question k

0 otherwise,

and let Mij be the observed proportion of matches between respondents i and j over all

items. Then Pr(Mij,k) = DiDj+[1−DiDj]/Lwhere L is the number of possible responses

to each question. In our case L = 3. Since the right hand side is independent of k we

can replace the left hand side with Mij. As theMij are derived from survey data, we may
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solve for DiDj to obtain estimates for these products and define

M∗
ij = ˜DiDj = (LMij − 1)/(L− 1).

From this set of equations we may estimate the components of the factor vector < Di >
14
i=1

using the iterative method in [3]. It should be noted that so long as assumputions 1,2,3 are

reasonably satisfied, there is only one relevant factor that need be extracted [23], in this

case, the competencies with which each respondent categorizes the tweets as P, A, or

U. After getting estimates for each respondents cultural competency they are used along

with Bayes’ Theorem to compute the conditional probabilities

Pr(Zk = l| < Xi,k >
14
i=1)

for each possible l = 1, . . . , 3 and each k = 1, . . . , 100, where < Xi,k >14
i=1 denotes the

column vector of responses by all respondents to item k. It is here that the estimates for

the Di are used (the local independence assumption is also used here.) [23]. Choosing

Zk = l for the l which maximizes the equation above yields the list of derived ‘correct

answers.’

4.4.3 Comparison between key and derived correct answers

Now that we have our list of correct answers we can compare them to the survey keys. The

proportion of items on which the correct answers for survey 1match the key is 0.86 and that

same proportion for survey 2 is 0.93 indicating that there is strong agreement between the

derived correct answers and the keys for both surveys, especially considering that some

of the derived correct answers based on our survey data turned out to be U and there is

no such answer in the keys. Indeed, the derived correct answers include 13 U’s on survey

1 and 5 U’s on survey 2. That is, out of the 14 non-matching answers on survey 1 all but
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one came from an answer given as U. On survey 2, all but 2 of the non-matching answers

came from answers given as U.

The statistic which is typically used in the social sciences to measure the level of agree-

ment between a list coded annotations and that of an objective judge is Cohen’s Kappa

([9], [10])

κ =
πo − πe

1− πe

where πe and πo are, respectively, the expected and observed agreement frequencies

between the two lists. In words, κ measures the rate of agreement after removing from

consideration the expected rate of agreement. The annotation of Left and Right commu-

nities in section 2 is the list of coded annotations and the derived correct answers form

the list of annotations from an objective judge.

We report κ = 0.752 and κ = 0.867 for survey 1 and 2 respectively. These fall in the

“substantial” and “nearly perfect” agreement range [13]. However, when considering only

those tweets which the derived correct answers marked as P or A and ignore thosemarked

Uwe report κ = 0.989 for survey 1 based on 87 tweets, and κ = 0.962 for survey 2 based on

95 tweets, both of which fall in the “nearly perfect”range. Therefore we conclude that the

survey response data show that the results of the propagation algorithm do a remarkably

good job of placing tweet nodes in both the ‘pro’ and ‘anti’ HPV vaccine categories.

4.5 Conclusions

Our analysis shows that methods of network analysis can be used to study community

opinions. In particular, based purely on network structure, we used a network community

detection method (label propagation) to identify two subcommunities of twitters (Left and

Right). Furthermore, we were able to show that these two subcommunities are clearly
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meaningful with regards to the tweet contents associated with which node. The survey

response data we obtained suggested that the Left (resp. Right) side of the network could

be associated with anti- (resp. pro-) HPV vaccine twitters. Using the survey response

data, we then constructed a cultural consensus of likely correct answers to each survey

item. These corresponded nearly perfectly with anti- and pro- HPV vaccine twitters.
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Appendix A

Agreement-disagreement score:

additional calculations

In order to observe convergence time, two faction proportion, and mean largest faction

size, with respect to different values of δ we need to count how many regions there are

and then to pick a point in each region. We do this by associating points in the space

S = (0,∞)J−1 × (0, 1) with the 2J−1 (J − 1)-long sequences with terms in {0, 1}. Let {ai}

be the collection of all J − 1 agreement curves. Choose any point x̄ ∈ S. Notice that

for each i, x̄ = (X1, . . . , XJ−1, α) is either “above” or “below” ai in the following sense:

ai ≥ α or ai < α. In the former case we associate x̄ with a binary sequence whose i-th

term is 1 and in the latter 0. Thus every point x̄ ∈ S corresponds to a (J − 1)-long binary

sequence. It is clear that this correspondence is surjective and that two points x̄, ȳ in S

belong to the same region if and only if they correspond to the same sequence. In the

case at hand (weights ω1, ω2, ω3 vary, while ω4 = 1 is fixed) 148 regions were detected by

repeatedly sampling points from S as described above. Although 148 regions were found

by our algorithm, the various regions correspond to 22 different values of δ.
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Issue 1 Issue 2 Issue 3 Issue 4
Region Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2
1 7 0 7 0 7 0 7 0
2 7 1 6 0 6 0 6 0
3 4 0 5 1 5 1 5 1
4 4 1 4 1 4 1 4 1
5 1 0 4 3 4 3 4 3
6 4 4 2 2 2 2 2 2
7 1 1 3 3 3 3 3 3
8 0 0 4 4 4 4 4 4
9 0 1 3 4 3 4 3 4
10 1 4 1 4 1 4 1 4
11 1 7 0 6 0 6 0 6
12 0 4 1 5 1 5 1 5
13 0 7 0 7 0 7 0 7

Table A.1: The switch configuration of each region - one weighted issue
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Figure A.1: Same as figure 2.4, but showing results for a larger population size (N = 25).
Plotted are: the two faction proportion (a), mean largest faction size (b), and the mean
time to fixation (c), plotted against δ. Large cyan points correspond to the simulations with
N = 25 and one weighted issue. As in figure 2.4, blue (red) points correspond to the
N = 10 system with a single weighted issue (all weighted issues). Each point represents
the mean over 20,000 independent simulations. Standard error is too small to be visible
on the graph.
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Figure A.2: Individual weighting of the issues, larger population size. Same as figure
2.5, but showing results for simulations with N = 20, were each person assigned weights
individually (blue). This is compared with N = 10 results with uniform weighting (red).
Plotted are: the two faction proportion (a), mean largest faction size (b), and the mean
time to fixation (c), plotted against δ. As in figure 2.4, red points correspond to weights
being the same for all individuals in the population (all weighted issues). ForN = 20; each
point represents the mean over 1,000 independent simulations. Vertical bars are standard
deviations.
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