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ABSTRACT OF THE DISSERTATION 

 

Big data discovery of cancer immunotherapy targets arising from alternative splicing 

by 

 

Yang Pan 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2020 

Professor Yi Xing, Chair 

 

Alternative pre-mRNA splicing (AS) is a prevalent mechanism and a main source of 

transcriptomic and proteomic complexity in cells. Dysregulation of AS is widespread in 

tumor transcriptomes. Cancer immunotherapies have transformed the treatment of 

aggressive tumors, but identification of novel tumor antigens remains challenging. 

Petabytes of sequencing data in public domains presents unprecedented opportunities to 

exploit AS-derived peptides as a new category in the tumor antigen repertoire. In this 

dissertation, novel computational methods were developed to detect AS variations in 

cancers with significant biological or therapeutic implications. Utilizing these new tools, we 

demonstrated that we can characterize the key AS changes responding to oncogenic 

signals alterations, and more importantly, systematically identify splicing events that are 

potential tumor antigens for targeted immunotherapies. 

The first part of the dissertation describes Pathway Enrichment-Guided Activity 

Study of Alternative Splicing (PEGASAS), a novel computational framework identifying 
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key splicing changes associated with oncogenic signals during disease progression from 

large-scale RNA-seq data. Although aberrant AS are widely detected in cancer, causes 

and consequences of AS dysregulations during cancer progression remain elusive. 

PEGASAS uses a pathway-guided approach for examining the effects of oncogenic 

signaling on splicing. Applying it to study a comprehensive prostate cancer dataset, we 

identified a conserved set of AS events regulated by oncogenic pathways and establish a 

role for Myc in regulating RNA processing. PEGASAS provides a generic framework to 

connect AS changes with a wide range of oncogenic alterations in cancers. 

The second part of the dissertation presents Isoform peptides from RNA splicing 

for Immunotherapy target Screening (IRIS), a big data computational platform that 

integrates massive transcriptomic data along with proteomics data to characterize AS-

derived tumor antigens for cancer immunotherapy. Exiting frameworks of tumor antigen 

discovery are predominantly somatic mutation-based, leaving AS-derived targets largely 

unexploited. IRIS employs a comprehensive reference panel that determines tumor AS 

events by leveraging splicing patterns from tens of thousands normal and tumor 

transcriptomes. Applying IRIS to analyze RNA-Seq data from 22 glioblastomas from 

patients, we identified candidate epitopes and validated their recognition by patient T cells. 

This work demonstrates IRIS’s utility for expanding targeted cancer immunotherapy by 

enabling big data-informed discoveries of a variety of AS-derived tumor antigens.  
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Chapter 1 Introduction - RNA Dysregulation-Derived Antigen Targets for Cancer 

Immunotherapy 

 

1.1 Exploiting RNA Processing Dysfunctions as Targets in Cancer 

Immunotherapy 

Variations in the human transcriptome provide enormous diversity at the transcript and 

protein levels. RNA-level variations are generated from a wide range of tightly regulated 

processes, such as alternative pre-mRNA splicing and RNA editing, among others. 

Aberrant RNA processing is a major cause or contributor to many human diseases. 

Indeed, several large-scale cancer studies have reported elevated levels of recurrent 

RNA-processing dysregulations, many of which are key or driver alterations for cancer.  

Cancer immunotherapy has gained momentum in the clinic because of its success 

in treating various types of aggressive malignancy. A critical aspect in developing 

immunotherapies with long-lasting antitumor immunity is discovering targetable tumor 

antigens (TAs). Although shown to be effective in many clinical studies, current TA 

discovery approaches search a very limited fraction of tumor variations by only focusing 

on genome-level alterations, such as single-nucleotide variations (SNVs), insertion-

deletion mutations (indels), and, occasionally, genomic fusion events. This approach 

cannot be feasibly applied for designing targeted immunotherapy for patients with 

moderate or low numbers of somatic mutations.  

RNA variations in the tumor transcriptome can give rise to TAs, generating a 

potential new repertoire of emerging targets for cancer immunotherapy. Here, we review 
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the major types of RNA dysregulation that shape the tumor transcriptome landscape and, 

in turn, transform the tumor-cell immunopeptidome and surfaceome. We explore how 

these RNA dysregulation-derived alterations can be targeted for immunotherapy, 

highlighting the tools and resources required for their discovery. Finally, we discuss 

exciting works and new strategies that can be applied to facilitate the discovery of novel 

therapeutics. 

 

1.2 Cancer Immunotherapy and Tumor Antigens 

Cancer immunotherapy revolutionized the cancer treatment paradigm 

By harnessing and augmenting the patient’s antitumor immunity, cancer immunotherapy 

shifted the paradigm of treating human malignancies. Various cancer types, including 

aggressive cancers and those previously considered untreatable, have been effectively 

treated with immunotherapy, leading to improved survival, durable responses, and other 

benefits (1-3). 

One major type of immunotherapy works by augmenting the suppressed immune 

response in the tumor environment. This strategy, immune checkpoint blockade (ICB), 

includes a class of therapies that use immune checkpoint inhibitors, such as neutralizing 

antibodies against PD-1 or CTLA-4, to reactivate tumor-specific T cells (4). Another class 

of therapies, including therapeutic antibodies and adoptive cell therapies (ACTs) (5), work 

by directing or engineering immune cells to improve the anticancer response. For 

therapeutic antibodies (e.g., anti-CD20 rituximab), the therapy binds directly to the TA to 

direct the immune response (6). By contrast, in ACTs, the patient’s own immune cells are 
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removed and modified ex-vivo to enhance their antitumor ability. Successful cases of 

ACTs include using tumor-infiltrating lymphocyte (TIL) therapy to treat metastatic 

melanoma (7,8) and therapeutic cancer vaccines for metastatic prostate cancer (9). With 

engineered ACTs, which include T-cell receptor (TCR) (10) and chimeric antigen receptor 

T-cell (CAR-T) (11) therapies, the patient’s T cells are engineered ex-vivo for improved 

reactivity to known TAs. Use of engineered ACTs has led to promising clinical outcomes, 

including landmark studies in progressive metastatic melanoma (12,13) and an FDA-

approved CD19 CAR-T cell therapy for B-cell malignancies, such as large B-cell 

lymphoma (14) and leukemia (15). 

 

TAs and anticancer immunity are keys to immunotherapy success 

The choice of TA is an essential consideration for generating strong anticancer immunity 

for successful immunotherapy (16,17). TAs are formed from peptides generated from 

genetic, transcriptional, or translational alterations in the tumor, and ideally should be 

rarely or not expressed on normal cells. Both targeted immunotherapies and ICB 

therapies require that TAs be recognizable as foreign antigens to T cells (17-19). 

Specifically, for CAR-T and TCR therapies using engineered ACTs, TAs are recognizable 

through distinct pathways – either by extracellular domain expression or by presentation 

via major histocompatibility complex (MHC) molecules on the cell surface.  

A key feature of TAs for immunotherapy is its selectivity of expression or 

association with tumors. Based on this feature, TAs can be grouped into three major 

classes (17). Tumor-specific antigens (TSAs) are exclusively expressed by tumor cells. 

Among TAs, TSAs have the highest association with tumors. TSAs are often referred to 
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as neoantigens (2,19,20). Although difficult to identify, TSAs are ideal targets for 

immunotherapy because they offer the potential for effective, low-toxic targeting due to 

their highly specific tumor expression. Tumor-associated antigens (TAAs) are a common 

class of TAs that are overexpressed in malignant cells but also expressed (to a limited 

extent) in normal cells. TAAs can be useful targets because their presence can be generic 

across patients and even tumor types. One important TAA is ERBB2 (HER2/NEU). 

Expressed in normal adult tissues, ERBB2 is overexpressed in many epithelial tumors, 

including breast tumors (21). However, immunogenicity (22,23) and potential toxicity are 

major concerns for targeting TAAs (16,24). Lastly, cancer/testis antigens (CTAs) 

comprise a special class of TAs that are present at elevated levels in tumors and 

reproductive tissues, while showing limited expression in normal adult tissues. CTAs have 

been developed as therapeutic targets for tumors, by taking advantage of the fact that 

normal reproductive cells do not express MHC class I molecules (25). 

A key step for developing targeted immunotherapies is efficiently identifying 

targetable TAs. Advancements in genomic sequencing have allowed emergence of a 

consensus TA discovery framework, which is largely based on genome (mostly exome) 

sequencing (17,18,26,27). Multiple successful applications of this consensus discovery 

framework have been described (28-31). Genomic sequencing-based strategies primarily 

focus on TAs derived from SNVs, although TAs from indels (32), CNVs, and gene fusions 

(33) are also common.  

These strategies identify somatic variation-based antigens that are often highly 

tumor-specific and technically easy and robust to detect. However, one major problem is 

that somatic variation changes are specific to a very small subset of patients; therefore, 
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therapy needs to be determined on an individual (or “personalized”) basis (17). 

Furthermore, only a small proportion of somatic changes can alter the protein-coding 

sequence, preventing identification of TAs from tumors with moderate or low numbers of 

genetic mutations (18). In addition, many SNV-based antigens suffer from poor 

immunogenicity because the sequence is changed by only a few amino acids (34).  

Given the limitations of targeting TAs derived from somatic variations alone, new 

TA sources are required (35). Tumor alterations are not limited to genomic mutations. 

Thus, large numbers of transcriptomic variations in tumor are overlooked by using 

genomic sequencing-based methods, presenting huge opportunities for discovering novel 

targets. 

 

1.3 RNA Dysregulations in the Tumor Transcriptome 

RNA processing diversifies the human transcriptome  

Under tight cis- and trans-level regulatory control, RNA processing events generate 

diverse transcript and protein isoforms that are required for essential biological functions 

in humans (36). The transcriptome is governed by cis regulation (e.g., DNA mutations in 

a nearby genomic region) and trans regulation (e.g., binding of proteins with regulatory 

roles). Dysfunction of these RNA-related biological processes will result in abnormal cell 

functions, which can be a major source of and contributor to human diseases. In cancer, 

many RNA-related processes are often dysregulated. These dysregulations can reshape 

the landscape of the tumor transcriptome by changing the abundance and diversity of 

RNAs or transcripts. 
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In this section, we summarize current knowledge on the mechanisms and 

consequences of dysregulation of RNA-related processes, noting that there is frequently 

overlap among processes in their mechanisms/consequences of dysfunction. In 

particular, we review the effects of dysfunction on the tumor transcriptome, including how 

dysregulation can generate novel transcripts or RNA species (aberrantly expressed RNA) 

or alter the relative abundance of RNAs compared to the normal condition (differentially 

expressed RNA). 

 

Alterations in RNA expression 

Alterations in RNA abundance between two biological conditions are widely studied and 

commonly seen in human transcriptomes under both normal and disease conditions (37-

41). RNAs that are overexpressed in cancer but expressed at a baseline level in normal 

cells may play essential oncogenic roles and are a major source of variation in the tumor 

transcriptome (42). A common example in cancer is the overexpression of RNA for 

transcription factor-encoding oncogenes in tumors (43).  

RNA expression changes in tumors derive from cis regulatory effects caused by 

genetic differences (e.g., genetic polymorphisms between different individuals) or trans 

regulatory effects caused by differentially expressed upstream regulatory proteins (e.g., 

tissue-specific RNA expression) (37-39). Additionally, shifts in RNA expression can be 

caused by other types of transcriptional regulations. For instance, changes in RNA 

abundance can result from alterations in regulatory RNAs (44), such as microRNAs 

(miRNA) (45), piwi-interacting RNAs (piRNAs) (46,47), and long noncoding RNAs 

(lncRNAs) (48). Changes in RNA abundance might also be caused by alterations in RNA 
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splicing or other RNA-processing events (49). Thus, the dysregulation of RNA expression 

in cancer is the combined result of many alterations (36). Due to the relevance to protein 

product, RNA expression changes have important implications for the tumor phenotype. 

In detailing the types of RNA dysregulation that are found in cancer, we note that many 

of these dysfunctions can alter RNA expression in the tumor.  

 

Pre-mRNA alternative splicing  

As the major source of RNA and protein product diversity in human and other eukaryotic 

cells (36,50), alternative pre-mRNA splicing has fundamental physiological functions in 

tissue identity and development (50). There are five common forms of alternative splicing 

events: intron retention, exon skipping, mutually exclusive exons, and alternative 3′ and 

alternative 5′ splice site changes (51). More sophisticated forms are also detected in 

human cells (52). As with other RNA processing events, alternative splicing is tightly 

regulated via genetic (cis) and RNA/protein (trans) effects (53). 

Alternative splicing dysregulation contributes to every “hallmark of cancer” (54,55). 

Initially identified through genomic studies, the hallmarks of cancer are the key phenotypic 

and energetic characteristics of tumors compared to normal cells (56,57). Subsequent 

RNA sequencing (RNA-seq) reports found that every hallmark of cancer involves splicing 

dysfunctions (55). Aberrant alternative splicing can contribute to cancer development in 

various ways, such as by generating isoforms that promote tumorigenesis or metastasis, 

by inhibiting apoptosis, promoting growth signaling, or enabling epithelial-to-

mesenchymal transition (58).  
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Large-scale RNA-seq analyses have revealed shifts in the relative abundances of 

alternatively spliced isoforms across tumor types, with functional implications for cancer 

(59). Comparing tumor samples to tumor-matched normal tissues, researchers found 

increased numbers of novel splicing isoforms in tumor, with enrichment in unannotated 

skipped exon and alternative 3’ splice site events (60). Several studies reported 

dysregulation of intron retention as a common pathway in cancer (61,62). Indeed, certain 

splicing dysregulations have been shown to promote oncogenesis or cancer 

development, and may be used to predict cancer prognosis (55,63). 

 

Noncanonical splicing  

Dysregulated noncanonical splicing can form aberrant RNAs (64). Trans-splicing and cis-

splicing between adjacent genes (cis-SAGe) are rare RNA-processing events that can 

produce novel transcripts in the absence of DNA-level alterations (65-67). Generated 

transcripts are often called “chimeric RNAs” or “fusion transcripts” because they are 

comprised of exons from different genes (68). Although many chimeric RNAs have been 

identified as biomarkers or targets for cancers (65,69), trans-splicing and cis-SAGes have 

been found in embryonic stem cells (70) and other noncancer tissues and cells (71). 

Circular RNAs (circRNAs) are another cancer-implicated RNA product resulting 

from noncanonical splicing. These closed-loop RNAs result from the back-splicing of 

exons within pre-mRNA (72). Although circRNAs exhibit certain biological functions in 

normal cells (72), they are expressed at higher levels and show different patterns of 

isoform expression in various tumor types (73). At present, much remains unknown about 

the pathomechanisms underlying the increased expression of specific circRNA isoforms 



9 

in cancer(74). Researchers have begun to create databases of cancer-associated 

circRNAs (e.g., MiOncoCirc) with the hope that these isoforms can be used as diagnostic 

or therapeutic targets (73).  

Despite the intriguing implications for cancer identification and treatment, the 

current understanding of noncanonical splicing dysregulation is still limited. Thus, 

systematic evaluations of the patterns and roles of noncanonical splicing in the tumor 

transcriptome are needed.  

 

RNA editing  

RNA editing, an important mechanism whereby mRNA undergoes site-specific nucleotide 

modifications (75,76), has important regulatory roles in protein recoding, RNA activity 

(77), and RNA secondary structure (78). The most common type of RNA editing is 

adenosine (A)-to-inosine (I) editing, in which adenosine deaminase acting on RNA 

(ADAR) enzymes (79) catalyze conversion of A to I at discrete sites on mRNA. A-to-I RNA 

editing is functionally important in many human tissues, especially brain (77,80). Its 

dysregulation contributes to many human diseases, including cancer (81-83). For 

example, large-scale RNA-seq analyses comparing tumor to normal tissues revealed 

distinct RNA-editing patterns. Other studies have associated dysregulated RNA-editing 

activities with patient survival (83) and cancer development (84,85). 

 

Retrotransposons  

Retrotransposons, or class I transposable elements (TEs), are portions of the genome 
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that undergo transposition by converting RNA back into DNA via an RNA transposition 

intermediate. Examples of retrotransposons in humans include long terminal repeat (LTR) 

retrotransposons, non-LTR retrotransposons (e.g., Alu elements), and endogenous 

retroviruses (ERVs). In addition to their physiological functions and their importance in 

increasing transcript diversity, retrotransposons also play roles in human diseases such 

as cancer (86-88).  

Alu elements are among the most active retrotransposons in the human genome 

(89). As a family of short, primate-specific elements, Alu sequences are expressed in 

mature mRNA through a splicing-mediated process called exonization (90,91). 

Specifically, a genetically inserted Alu element can introduce novel splice sites for splicing 

machinery to recognize, which could lead to creation of a new exon. According to reports, 

Alu exonization is tissue-specific and can play regulatory roles (92,93). Recent studies 

have characterized thousands of retrotransposon-generated novel splicing sites in cancer 

genes (94). Genomic regions within Alu elements are enriched with splice site-creating 

somatic mutations across cancers (95), suggesting that cancer takes advantage of this 

mechanism during cancer genome evolution.  

 

Other posttranscriptional RNA-level events 

Dysfunctions in other steps of RNA posttranscriptional regulation have been studied in 

cancer, including dysfunctions in alternative polyadenylation (96) and RNA modifications 

such as m6a RNA methylation (97). These events typically result in changes to the RNA 

translational efficiency (96), RNA localization (98), or RNA stability (99) without creating 

novel transcripts or increasing the isoform diversity. Therefore, most likely these 
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dysfunctions are not observed to alter the observed RNA expression profile.  

 

1.4 Targeting RNA Dysregulation-Generated TAs for Immunotherapy 

Many dysregulated RNA processes have essential functions in cancer development. For 

example, aberrant products resulting from dysfunctional RNA processes may be 

translated into proteins carrying unique tumor-related signatures. Peptides derived from 

these proteins could be potential TAs if they are located on the protein extracellular 

domain or are able to be presented by MHC molecules on the cell surface.  

In this section, we discuss possible sources of TAs derived from the dysregulation 

of various RNA-level processes. Some sources for TA candidates have been studied 

computationally or by preliminary experimental works. Other promising TA sources 

derived from dysfunctional RNA-level processes have not yet been described in published 

works. 

 

RNA overexpression-derived TAAs 

In cancer, genes or transcript isoforms that are overexpressed can generate proteins that 

are enriched in tumor cells. If the protein is stably overexpressed across patients with the 

tumor of interest, or even across tumor types, and if the protein expression is sparse or 

limited in normal tissues, then this protein may be a candidate for a TAA. Clinical studies 

have been performed with several TAAs that show overexpression in tumors or specific 

expression in certain cell lineages (e.g. CD19-specific CAR, HER2/neu-specific CAR) 

(100-102). RNA overexpression-derived TAAs are commonly used as generic 
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(nonspecific) targets in immunotherapy. However, issues of limited immunogenicity and 

potential for toxicity remain to be solved (102,103). 

 

Alternative splicing-derived TAs 

Owing to its prevalence and protein diversification function, alternative splicing is a key 

source of TAs through shifting splicing patterns across different cancer types. TAs can 

result from any pattern of alternative splicing, whether basic (e.g., skipped exon, intron 

retention, etc.) or complex. Depending on whether the skipping or inclusion form is 

identified as the isoform in tumor, the corresponding skipping or inclusion splice 

junction(s) is used to generate the splice-junction peptides as TA candidates. For 

example, if inclusion of an exon (or intron, in the case of intron retention) is enriched in 

tumors, then the entire exon/intron body can be translated to peptides as TA candidates.  

There are two scenarios of splicing in cancer, leading to TAs with different tumor 

specificity. Differentially spliced isoforms in tumors, if translated, can be potential TAAs 

due to their expression in normal cells. Novel spliced isoforms that are specifically 

expressed in tumors can be TSA candidates. Possible sources of novel isoforms could 

be splice-junction region-derived peptides coming from a novel exon-exon combination 

or from completely novel splice sites.  

Early attempts at utilizing alternative splicing-derived TAs have been effective in 

treating lymphoma and ovarian cancers (104,105), but focused on very specific targets. 

A recent comprehensive re-analysis of RNA-seq data from The Cancer Genome Atlas 

(TCGA) evaluated putative splice junction-derived TAs from cancer-specific splicing 
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events by comparing tumor samples to normal tissues from the GTEx database 

(60). Researchers only included possible TSAs from the five simple alternative splicing 

types, and only considered splice-junction peptides as TA candidates. They cross-

validated a fraction of these peptides using mass-spectrometry (MS) data for protein 

expression. Around the same time, Smart et al. reported a more focused analysis to 

identify cancer-specific intron retention events in patent samples. They performed 

additional experimental validation for MHC presentation of intron retention-derived 

epitopes (not tumor-specific) (106), indicating potential immunogenicity. They used the 

sequence of the entire intron body to construct peptides. Tumor-specific expression of 

peptides was determined by comparing to a small cohort of manually selected normal 

samples using a database of known proteins. However, these studies have some 

limitations. For example, both use heuristic approaches in defining the tumor specificity 

of antigens due to the lack of a standardized reference of normal splicing pattern (107). 

They lack experimental evidence for the immunogenicity of alternative splicing-derived 

TSAs, and limit their scope to only TCR targets. Nevertheless, despite limitations, these 

pioneering studies provide evidence that alternative splicing is a promising source for TAs 

that can be used as targets for immunotherapy. 

 

Chimeric RNA- or circRNA-derived TAs 

Rare splicing events are found at increased levels in cancer compared to normal tissues 

(69). Theoretically, if a novel chimeric RNA generated by trans-splicing can be translated 

in the tumor cell, then the trans-spliced junction peptide could be used as a candidate 

TSA. If a new open-reading frame (ORF) is introduced to the downstream exon in the 
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tumor-specific chimeric RNA, then the entire translated peptide sequence from the 

downstream exon before the stop codon could be considered as a TSA source. However, 

one major concern is the quality of chimeric RNAs that are detected from RNA-seq, as a 

considerable proportion might result from sequencing artifacts. The tumor specificity of 

chimeric RNAs also must be thoroughly evaluated due to their expression in normal 

tissues (71,108). Although a few reports have targeted chimeric RNAs (109), to date, no 

study has performed a focused analysis of TA-derived chimeric RNAs. Thus, there is a 

need for additional systematic research, building on existing fusion transcript and fusion 

gene detection tools (33,110,111), to explore the expression landscape of chimeric RNAs 

in cancer. 

Similarly, circRNAs have been shown to be translated in cancer and normal tissues 

(112,113). With minor adaption from the canonical splicing antigen framework, peptides 

formed from these back-splice junctions could be a possible source of TAs to explore. 

Although some regulatory functions of circRNAs in cancer have been uncovered, there 

have been very limited studies looking at translated peptides from circRNAs or the 

potential of circRNAs to serve as TAs (114). To evaluate the level of tumor association, 

comprehensive analysis is needed, given the functional roles of circRNAs in normal cells.  

 

Edited RNA transcript-derived TAs 

The RNA-editing process can introduce protein variations (115) and, hypothetically, 

peptides derived from cancer-associated RNA-edited transcripts can be a source of TAs. 

Although many studies have shown that transcripts are differentially edited in tumor cells, 

edited transcripts and proteins are also expressed in normal cells (85). Therefore, edited 
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peptides can be either TAAs or TSAs. Owing to the site-specific nature of RNA editing, 

the resulting sequence change may be insufficient for desired immunogenicity. Using 

immunopeptidomic data and a T-cell–mediated cell-killing assay, a recent study 

demonstrated the first experimental evidence that RNA-edited peptides can be presented 

by MHC molecules and can elicit tumor responses (116). Notably, the study showed that 

RNA-derived TAAs are recognized by T cells that are physiologically present in cancer 

tissue, alleviating concerns regarding safety and toxicity of targeting TAAs. Despite the 

promising therapeutic implications of their findings, the authors acknowledged the need 

for a careful evaluation of toxicity. These reports highlight RNA editing as an emerging 

alternative source of TAs in cancer immunotherapy. Future studies should be aimed at 

the large-scale characterization and rigorous immunological validation of TAs derived 

from RNA-edited transcripts.  

 

Retrotransposon-derived TAs 

There is now extensive evidence that retrotransposons, especially exonized Alu 

elements, are translated into proteins in normal and cancer cells in a tissue-specific 

fashion (117). Thus, this process may represent a promising source of TAs (35). Splice 

site-creating somatic mutations are significantly enriched in Alu regions in tumors, 

suggesting the functional importance of these novel transcripts (95). After translation, 

newly exonized sequences can generate peptides that have never been exposed to the 

host’s immune system, offering the potential for strong immunogenicity. As very few 

studies have focused on identifying retrotransposon-derived exons (117), the scale and 

landscape of retrotransposon-derived TAs are unknown. Using RNA-seq data and 
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immunopeptidomic MS analysis, a recent study of TSAs found evidence of aberrantly 

expressed but nonmutated transcripts from endogenous retroelements (118). The 

authors hypothesized that these TSAs could be shared across multiple tumor types. 

Although retrotransposon-derived TAs offer the advantage of immunogenicity due 

to their foreignness, validation of their translation by tumors remains a difficult task. Full-

length sequences of retrotransposon-derived antigens are difficult to obtain by traditional 

short-read sequencing, and no tools are currently available to identify retroelement TSAs 

(35). Further technological advances, such as high-throughput third-generation 

sequencing, are needed to improve detection of TAs derived from retrotransposons in 

tumor cells.    

 

1.5 Multi-omic and Big-data Strategies to Discover RNA-derived TAs 

Any approach for discovering RNA dysregulation-derived TAs should be more detailed 

than existing frameworks for DNA-derived TAs and should include several key 

components. At minimum, an effective discovery strategy for RNA-derived TAs should 

include following features: 1) accurately characterize the sequences and abundances of 

tumor transcripts, 2) efficiently identify translated protein products, 3) robustly determine 

the tumor association and tumor-selective expression levels of targets with the tumor, and 

4) evaluate the likelihood that identified tumor peptides can be targeted by TCR, CAR-T, 

or other targeted immunotherapies.  

Nevertheless, several challenges exist in creating such a discovery strategy. For 

tumor transcripts that are unannotated or derived from complicated RNA-processing 
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events, identifying the exact or complete RNA sequence, splice site, and ORF used for 

translation can be difficult. Furthermore, it can be difficult to ascertain the tumor selectivity 

and association of the antigen (i.e., degrees to which the TA is selectively expressed by 

and associated with the tumor), which have critical immunological and clinical implications 

for immunotherapy success. Thus, due to the complexity of tumor transcriptomes, 

discovering RNA dysfunction-derived TAs that can be targeted for immunotherapy will 

require an integrated strategy incorporating multi-omics experimental and computational 

solutions. Based on existing DNA-derived TA identification frameworks, in this section, 

we review and preview the tools in our toolbox that can be used to discover RNA-derived 

TAs. Using these integrated tools, we discuss how possible solutions may be achieved 

to the outstanding issues mentioned above. 

 

Accurate RNA sequence characterization   

Dysregulations in RNA processes can result in tumor-specific RNAs having new, 

previously undescribed sequences. Therefore, a key component of any RNA 

dysregulation-derived TA discovery strategy is the capability to accurately detect various 

types of RNA-derived transcripts.  

RNA-seq (119). A powerful next-generation sequencing (NGS) technique, RNA-

seq is used to sequence the entire set of RNA molecules, or transcriptome, which is 

isolated from cells. With over a decade of development, RNA-seq and its variations have 

become the most commonly used tool to profile human transcriptomes. RNA-seq has 

been used extensively in large-scale studies to investigate various biological conditions 

(60,120). While capable of capturing expression-level changes at the genome level, RNA-
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seq uniquely detects alterations that are only seen at the transcriptome level. For this 

reason, RNA-seq is the primary approach used to study the diverse tumor-associated 

transcripts that arise from dysregulated RNA processes (121). When settings such as 

proper read length and sequencing depth are chosen(121,122), RNA-seq can capture 

important transcriptome events, including RNA splicing, RNA editing, and other RNA-

processing events.  

Sophisticated computational and statistical algorithms have been developed to 

accurately handle RNA-seq data. Algorithms have been developed to align and quantify 

RNA-seq reads, as well as to identify and characterize various transcriptome-level 

features, including alternatively spliced isoforms(122,123), RNA-editing sites(124), 

chimeric RNAs(110), and circRNAs(125). Combining RNA-seq with existing analytical 

tools, researchers can readily detect many putative RNA-derived TAs, as demonstrated 

in pioneering works (60,61,116). Construction of dedicated and standardized tools would 

enable the systematic utilization of RNA dysregulation-derived TAs (32).  

Despite the success of conventional RNA-seq technologies in cancer research, 

this NGS approach falls short in the inference of sophisticated or rare RNA transcripts 

(126), many of which have the potential to be strong TA candidates. Moreover, because 

RNA-seq is a short read-based sequencing technology, it only recovers a portion of the 

whole transcript. As a result, the ORF can remain unknown for unannotated or aberrantly 

expressed transcripts. This issue can lead to generation of an increased number of false 

targets, because all three ORFs must be used to generate putative peptide sequences 

for downstream antigen predictions. 

Long-read sequencing (127,128). Third-generation, or long-read, sequencing 
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technologies were designed to overcome inherent limitations of short-read sequencing. 

Whereas short-read technologies typically provide read lengths of up to 600 bases, long-

read sequencers provide read lengths exceeding 10 kb (129). Thus, long-read 

sequencing has become an emerging tool for sequencing genomes and transcriptomes 

(130-133), resolving sequences for very long or complicated events that could not be 

determined by short-read methods. For example, full-length transcripts can be used to 

infer ORF information for in silico translation of peptide sequences, information that is 

critical for controlling the number of false targets in a TA candidate list. 

Despite promising applications and rapid experimental (126) and 

computational(134) advances, long-read sequencing is still considered an 

underdeveloped technology. Limitations of current technologies including poor read 

accuracy, sometimes incomplete reads, and high cost with lower throughput than short-

read sequencing (126). Further developments to decrease the error rate, increase 

throughput, and improve mapping accuracy would transform this emerging technology 

into a powerful tool for comprehensively identifying aberrant and unique transcripts in 

tumors.  

 

Integrative detection of translation and protein expression 

In cancer, dysregulations of different RNA processes can result in many novel transcripts. 

Evidence of translation and protein expression can greatly boost the validity that an RNA-

level tumor event is an antigen. Transcriptome- or proteome-wide approaches may be 

applied to confirm translation of a transcript. 
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Ribo-seq. In this RNA-seq-based ribosome-profiling strategy (135,136), ribosome-

protected mRNA fragments are captured and sequenced to infer whether active 

ribosomes during translation are present in cells. This strategy has been widely used to 

profile association of ribosomes with different RNA species and to quantify translated 

RNA isoforms, providing insights into many important translational processes (137,138). 

In particular, Ribo-seq has proven to be a powerful tool for identifying novel translated 

ORFs (139,140). Evidence of translation or translated ORFs can greatly reduce the need 

for computation and limit uncertainty during the in-silico search for TA candidates. For 

these reasons, applying Ribo-seq to characterize various aberrantly expressed RNA 

species in tumors may greatly improve detection of RNA-derived TAs. 

MS-based proteomics. The primary approach to characterizing changes in 

translation at the proteome level is MS-based proteomics (141,142). Originating from MS 

techniques measuring the mass-to-charge ratio of ions, MS-based proteomics are used 

to characterize protein expression and modifications at a global scale in cells. Various 

sample preparation and labeling methods, combined with different MS instruments, have 

been described for analyzing protein expression, modifications, protein-protein 

interactions, and other features. More specifically, large-scale cancer studies have 

generated MS proteomics data to investigate direct protein changes and their roles in 

apoptosis and oncogenesis (143,144). These tumor-derived MS data with matched RNA-

seq data are invaluable resources for exploring the TAs expressed in tumor cells (60), 

especially for putative candidates derived from novel tumor RNAs. The major limitation of 

this method is low sensitivity, and some major technological bottlenecks have not yet 

been addressed (145). Furthermore, the current capability of MS-based proteomics for 
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detecting proteins and their variants is much lower than that of sequencing-based 

technologies at both the genome and transcriptome levels.  

Spectrum-searching approaches can help improve the sensitivity and accuracy of 

peptide identification. 

Proteogenomics is an emerging approach to improve the peptide-identification 

performance of MS-based proteomics (146). In proteogenomics, genomic and/or 

transcriptomic data from the same sample are used to augment the MS-based proteomic 

search (147). In contrast to NGS-based sequencing techniques, MS-based proteomics is 

an indirect approach that heavily relies on the completeness and accuracy of the MS 

search library (148). Customizing a standard library with sample-specific variations could 

dramatically increase detection. This data-driven approach can help avoid the inability to 

detect unannotated events, such as novel exons or mutated peptides, due to their 

absence from the library. RNA-seq data can be used to remove non expressed proteins 

from the MS library, avoiding the decreased detection power due to the inflated size of 

the MS library. Proteogenomics has been widely adopted by many large-scale studies to 

understand relationship between transcriptome and proteome (149), and has led to 

detection of numerous novel peptides in cancers (60,143,144). However, prospective 

works are needed to characterize RNA dysregulation-derived tumor peptides using this 

integrative approach. Explicitly integrating peptide sequences formed by dysregulated 

RNAs in cancer to guide the proteomic search may lead to novel discoveries. 

 

Confirmation of antigen presentation for immunotherapy 



22 

Not all peptides from expressed proteins in cells can be accessible to T cells via TCRs or 

CARs. To be recognized, a peptide must be presented by MHC (HLA in human) or located 

on the cell surface. To confirm peptide presentation, specialized proteomic data are 

required. 

Immunopeptidomic data. The immunopeptidome, or MHC/HLA 

peptidome/ligandome, refers to a collection of short peptides presented by MHC/HLA 

molecules on the cell surface (150). Immunopeptidomic profiling is an MS-based 

approach that differs from regular whole-call proteomics in that it considers intact peptides 

that are bound to antigen-presenting molecules (151). In this way, immunopeptidomic MS 

data offer a systematic perspective of the antigen landscape in cells and are considered 

evidence of antigen presentation. Immunopeptidomic profiling has gained popularity in 

immune-oncology as a tool to profile and validate TAs (106,118,152) and is often paired 

with NGS sequencing data in a proteogenomic workflow. However, as an MS-based 

approach, immunopeptidomic profiling suffers from low sensitivity. Nevertheless, 

immunopeptidomics holds promise for many applications in antigen discovery and 

validation for T cell-based immunotherapies. 

Surfaceomic data. The surfaceome, or cell-surface proteome, refers to the 

collection of proteins that are expressed on the cell surface. Specialized MS-based 

proteomic protocols enable the identification and quantification of cell surfaceomes (153-

155). As CAR-T therapies target extracellular antigens on tumor cells, using MS-based 

surfaceomics to profile expression of tumor-related cell-surface proteins can provide 

insight into their potential targetability as TAs for CAR-T therapies. In fact, this strategy 

has been used to prioritize TAs in advanced prostate cancers (156). Although limited by 
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low sensitivity, surfaceomic data could be useful for confirming dysregulated RNA-derived 

CAR-T targets.  

 

Big data-informed discovery 

Another path to gaining insights into the landscape of RNA-derived TAs is through 

integration of big data. Massive datasets containing NGS and proteomic data from normal 

tissues and cancer samples with rich annotations have been accumulated in publicly 

available repositories, offering a major resource for discovering tumor-related RNA events 

for therapeutic targets. Here, we summarize several large-scale multi-omics datasets that 

are available for cancer researchers. As shown in Table 1.1, these big-data repositories 

offer data for thousands of normal and tumor samples, with sequencing by various groups 

and consortiums. The availability of RNA-seq data across conditions, complemented by 

other omics data, enables RNA dysregulation-derived TAs and their targetability by 

immunotherapy to be systematically and comprehensively characterized. 

Evaluating tumor association of RNA-derived TAs. Tumor samples may harbor 

thousands of aberrantly expressed or differentially expressed RNAs. Thus, TA candidates 

must be robustly and efficiently prioritized. Similarly, to how a reference genome aids 

somatic mutation discovery, compiling big RNA-seq datasets across normal and tumor 

conditions could aid understanding of the selective expression of tumor-related RNA 

dysregulations. Knowing the expression pattern in normal samples could help to 

determine the tumor specificity and potential toxicity when targeting the antigen. Knowing 

the abnormal RNA expression pattern in tumor samples could help in evaluating how 

generalizable the target is among tumor patients. Future work is needed to compile a 
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standardized and comprehensive catalog of normal and tumor RNA events, which would 

improve the robustness and reproducibility of RNA-derived tumor antigens. Emerging 

single-cell RNA-seq approaches could elevate the resolution of reference data by adding 

cell-type-specific and spatial information. 

Despite the significant benefits and premises, big data also present many 

difficulties and analytical challenges. Firstly, the datasets do not equally represent 

different phenotypes and conditions. Certain tumor or normal tissues are 

underrepresented in datasets, posing issues for data analysis, integration, and 

interpretation. For example, no large-scale normal pediatric sample repository is currently 

available, which is a bottleneck to understanding changes in pediatric cancer. Secondly, 

when integrating biological big data, batch effects caused by various factors need to be 

addressed. Data from different sources need to be uniformly processed, harmonized, and 

evaluated for potential artifacts. Thirdly, standardized reproducible programs and best 

practices for integrating RNA-seq big data for TA discovery are lacking. Without such 

procedures, results from individual studies are not directly comparable, making big-data 

discovery unreliable. Thus, to complement the ever-growing list of tumor transcriptomic 

sequencing projects, advanced statistical models, efficient algorithms, and standardized 

computational pipelines need to be developed to address these challenges.  
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1.6 Tables 

Table 1.1: Publicly available genomic and transcriptomic datasets for cancer research 

Project 
name 

Sample source Phenotype Data types Sample size 

GTEx Tissue-derived 
& cell lines 

Adult normal WGS, WES, 
RNA-seq 

>10,000  
(from >600 
individuals) 

TCGA Tissue-derived Adult tumor & 
adjacent normal 

WES, RNA-seq, 
etc. 

>10,000 

CPTAC Tissue-derived A fraction of 
TCGA samples 

MS proteomics >1,000 samples 
(matched to 

TCGA) 
CCLE Cell line Adult tumor WES, RNA-seq ~1,000 samples 
ICGC Tissue-derived Adult tumor   

TARGET Tissue-derived Pediatric tumor WGS, WES, 
RNA-seq, etc. 

 

St. Jude 
PCGP(157) 

Tissue-derived Pediatric tumor WGS, WES, 
RNA-seq 

~2,000 samples 

HTAN(158) Tissue-derived Adult tumor scRNA-seq, etc.  
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Chapter 2 Pathway-guided analysis identifies Myc-dependent alternative pre-

mRNA splicing in aggressive prostate cancers 

 

2.1 Introduction 

Alternative pre-mRNA splicing is a regulated process that governs exon choice and greatly 

diversifies the proteome. It is an essential process that contributes to development, tissue 

specification, and homeostasis and is often dysregulated in disease states (1). In cancer, 

this includes growth signaling, epithelial-to-mesenchymal transition, resistance to 

apoptosis, and treatment resistance (2). In prostate cancer, our area of interest, the most 

notable splicing change is the emergence of the ligand-independent androgen receptor 

ARV7 isoform in response to hormone deprivation (3). Other examples include 

proangiogenic splice variants of VEGFA (4), tumorigenic variants of the transcription 

factors ERG and KLF6 (5,6), and antiapoptotic splicing of BCL2L2 (7,8). However, the 

intersection of upstream oncogenic signaling, pre-mRNA splicing, and the biological 

processes affected by those splicing events has not been defined at a global level. 

Prostate cancers progress from hormone-responsive, localized disease to 

hormone-independent, metastatic disease accompanied by changes in gene expression 

and mutations that confer cell-autonomous growth and therapeutic resistance (9). The 

study of disease progression from primary prostate adenocarcinoma (PrAd) to metastatic, 

castration-resistant prostate cancer (mCRPC) and treatment-related neuroendocrine 

prostate cancer (NEPC) has been aided by large-scale genomic and transcriptomic 

studies of patient samples representing each form of the disease (10-13). Examples of 
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driver alterations found in precursor lesions and primary tumors include TMPRSS2-ERG 

translocations and PTEN loss (14). Metastatic tumors are characterized by Myc and AR 

amplification (15,16). NEPC includes near-universal loss of TP53 signaling by inactivating 

mutation as well as chromosomal loss of RB1 (17). Sequencing efforts and subsequent 

functional experiments have identified prostate cancer driver alterations and defined the 

impact of gene expression networks on prostate cancer phenotypes. These studies have 

led to the successful development of new therapeutics targeting AR signaling and DNA 

repair in advanced disease (18,19). 

Prostate cancer progression is also associated with shifts in alternative pre-mRNA 

splicing patterns, but this process is not well understood (20). Investigations of global 

changes in exon usage in prostate cancer have focused on stage- or race-specific 

comparisons (21-25). Comparisons of tumor-adjacent benign material and PrAd identified 

intron retention and exon skipping events in the biomarkers KLK3 and AMACR, 

respectively (22). Others studying NEPC and PrAd have shown that a network of splicing 

events controlled by the serine–arginine RNA-binding protein SRRM4 contributes to the 

neuroendocrine phenotype (26-28). Comparisons of European American and African 

American (AA) PrAd samples identified an AA-specific splice variant of PIK3CD that 

enhanced AKT/mTOR signaling (23). How these splicing alterations connect to the driver 

alterations described above remains to be explored. 

The accumulation of RNA-sequencing (RNA-Seq) data in large databases presents 

a unique opportunity to conduct an analysis of alternative splicing across the full range of 

prostate cancer disease states. For our study, we prepared a unified dataset of large, 

publicly available RNA-Seq datasets representing normal tissue, tumor-adjacent benign 
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tissue, primary adenocarcinoma, metastatic castration-resistant adenocarcinoma, and 

treatment-related metastatic NEPC. However, handling datasets of this size requires 

splicing analysis software with greater efficiency than what is currently available. To 

analyze these hundreds of datasets, we created an improved version of our rMATS 

software (dubbed rMATS-turbo) that can handle this volume of RNA-Seq data (29,30). 

We identify a high-confidence set of exons whose incorporation varies across 

prostate cancer disease states. By combining expression-level and exon-level analyses, 

we developed a pathway-guided strategy to examine the impact of oncogenic pathways 

on incorporation of these exons. This correlational analysis implicates Myc, mTOR, and 

E2F signaling in the control of exon choice in spliceosomal proteins. To further investigate 

the contributions of Myc signaling to exon choice, we developed unique engineered human 

prostate cell lines with regulated Myc expression. Functional experiments in these cell 

lines identify Myc-dependent exons and experimentally confirm that cassette exon choice 

in many splicing regulatory proteins is responsive to Myc expression level. These exons 

often encode frameshifts or premature termination codons (PTCs) that would result in 

nonsense-mediated decay (NMD). We show that an ultraconserved, NMD-determinant 

exon in the RNA-binding protein SRSF3 is particularly responsive to Myc signaling. Our 

results implicate Myc signaling as a regulator of alternative splicing-coupled NMD (AS-

NMD) as part of a program of growth control. 

 

2.2 Results 

2.2.1 Exon-Level Analysis Defines the Landscape of Alternative Pre-mRNA 

Splicing Across the Prostate Cancer Disease Spectrum 



50  

We combined RNA-Seq data from disparate published datasets representing 876 samples 

of normal tissue, benign tumor-adjacent material, primary adenocarcinoma, metastatic 

castration-resistant adenocarcinoma (mCRPC), and treatment-related NEPC (Figure 

2.1A) (10-13,31,32). Metaanalyses of RNA-Seq data with gene- or isoform-level counts 

are subject to confounding batch effects and rely on existing isoform annotation (33). 

Exon-level analysis, however, uses a ratio-based methodology to estimate exon 

incorporation, which may be more robust against batch effects and confounding factors in 

large-scale RNA-Seq datasets (34-37). In addition, exon-level analysis can detect novel 

exon–exon junctions and is thus independent of previous annotation.  

To facilitate alternative splicing analysis in this and other large RNA-Seq datasets, 

we developed rMATS-turbo (also known as rMATS 4.0.2), a computational pipeline that 

permits the efficient capture, storage, and analysis of splicing information from very large-

scale raw RNA-Seq data. This improved pipeline refactors the original ratio-based rMATS 

software that we developed for splicing analysis in RNA-Seq data to optimize it for very 

large-scale RNA-Seq datasets and is now available for public use (29,30). It offers 

significant improvements in speed and data storage efficiency. 

We applied rMATS-turbo to the combined RNA-Seq dataset and identified over 

330,000 different cassette exons across all prostate samples. Previous estimates of the 

diversity of splicing events in human cells vary, but are generally of the same order of 

magnitude (38). We also identified tens of thousands of additional alternative splicing 

events (Figure 2.1A), including alternative 5′ and 3′ splice sites, mutually exclusive exons, 

and retained introns. For this study, we focused on cassette exons, as these are the most 

well-defined type of alternative splicing event. We should note that although the rMATS-
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turbo software detected numerous mutually exclusive exons, most of these events were 

in fact part of more complex alternative splicing events; thus, we did not include these 

mutually exclusive exons in downstream analyses. 

Filtering of these exons for coverage (≥10 splice junction reads per event), cross-

sample variance (range of percent-spliced-in [PSI] > 5%; mean skipping or inclusion > 5%) 

and commonality (events detected in ≥1% of all samples) produced a set of 13,149 high-

confidence exons with variable incorporation across samples (see 2.4 Methods). 

Principal-component analysis (PCA) of this exon usage matrix grouped samples of the 

same disease phenotype regardless of dataset (Figure 2.1B). By comparison, a similar 

unsupervised analysis of isoform-level count-based metric from the same metadataset 

grouped samples more by dataset of origin than disease phenotype (Supplementary 

Figure 2.7 A and B). This result is consistent with prior observations that the exon-level 

splicing analysis is more robust against batch effects and other confounding factors in 

large-scale RNA-Seq datasets (35-37). 

 

2.2.2 Combining Gene Pathway Analysis and Exon Usage Identifies Exon 

Correlates of Oncogenic Signaling 

Genomic studies of prostate cancer have identified driver alterations associated with 

disease progression (39). We sought to define how the variable cassette exons we 

identified and the biological processes they participate in might relate to these oncogenic 

signals. Instead of selecting single oncogenes for study, we developed PEGASAS 

(pathway enrichment-guided activity study of alternative splicing), a pathway-guided 

analytic strategy that uses gene signatures to estimate the activities of signaling 



52  

pathways and to discover potential downstream exon changes (Figure 2.2A). Gene 

signature-based analyses use an ensemble of features (a set of genes collectively) to 

estimate pathway activity and outperform single-gene measurements (40). To mitigate 

potential batch effects in the expression data, we utilized a rank-based metric to calculate 

the signature score, providing a more robust measure of pathway activity as it is in 

essence normalized on a per-sample basis (41). 

We employed the hallmark gene signature sets maintained by the Molecular 

Signatures Database (MSigDB) (42). These 50 sets represent a diverse and well-

validated array of cellular functions and signaling pathways. To assess the performance 

of these signatures in our combined dataset, we examined signature scores for the AR, 

Myc Targets V2, and MTOR gene sets across five different prostate phenotypes. 

Consistent with previously reported observations of pathway activation in prostate 

cancer progression, the androgen response gene signature scores we measured were 

lowest in NEPC samples (Supplementary Figure 2.8A). Similarly, MTOR and Myc 

signature scores were higher in mCRPC samples than in normal tissues. The Myc and 

MTOR signature scores increased between normal healthy donors (Genotype-Tissue 

Expression [GTEx]) and tumor-adjacent normal (TCGA-PRAD), consistent with field 

cancerization and tumor–stromal interaction effects on gene expression reported 

previously by others (43). 

We then scored each sample in our metadataset for all 50 pathways and 

correlated this score with the data matrix of over 13,000 variable cassette exons 

(Dataset S 2.1). After filtering for correlation strength and false-discovery rate (FDR), 

each pathway returned between 11 and 1,330 exon correlates (Dataset S 2.1). The 10 
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gene sets that returned the greatest number of exon correlates with a Pearson’s 

correlation coefficient greater than 0.3 or less than −0.3 are shown (Figure 2.2B). Nine 

out of 10 of these gene sets had exon correlates found in genes with strong functional 

enrichment by gene ontology (adjusted P value < 0.05). 

 

2.2.3 Cassette Exons Correlating with Myc, E2F, and MTOR Signaling Are 

Enriched in Splicing-Related Genes 

We next examined the biological processes specified by the genes containing the variant 

exons correlated with prostate cancer-relevant hallmark gene sets (Figure 2.2C). We also 

added a signature that describes transcriptional activity due to TMPRSS signaling as this 

common prostate cancer alteration is not represented by a hallmark gene set (44). Here, 

we represent the network of data as a hive plot to show how exons (left axis) correlate with 

signaling pathways (middle axis) and the functional enrichment of genes containing those 

correlated exons (right axis) (45). Gene ontology analysis indicated that the relatively small 

number of exons correlated with AR or Notch were modestly enriched in cell adhesion and 

chromatin remodeling processes. Surprisingly, the numerous exon correlates of Myc, E2F, 

and MTOR were strongly enriched in genes related to the spliceosome and alternative 

pre-mRNA splicing. In addition, the overlap in the exon sets correlated with Myc, E2F, and 

MTOR was striking, with 50 to 60% of exons held in common (Figure 2.2D). These 

pathways play central roles in growth control and are frequently codysregulated in human 

cancers, so a shared set of exons might be expected from a correlation analysis. 

 



54  

2.2.4 Myc-Correlated Exons Are Found in the Oncogenes SRSF3 and HRAS 

Given the centrality of Myc signaling in tumorigenesis, tumor maintenance, and tumor 

progression in a multitude of tissue lineages (46,47) including the prostate, this pathway 

was selected for further investigation (15,48,49). The validity of these correlational results 

critically depends on the integrity of the underlying gene signature used to produce them. 

We therefore performed additional validation steps on the “MYC Targets V2” hallmark 

gene set by examining its performance in The Cancer Genome Atlas prostate 

adenocarcinoma RNA-Seq dataset (TCGA-PRAD) that has accompanying patient 

outcomes data (32). We noted that samples with genomic amplifications of Myc had higher 

signature scores on average, as did samples that overexpressed Myc at the mRNA level 

(Supplementary Figure 2.9A). To examine whether these relatively small changes in 

signature score had clinical relevance, we performed Kaplan–Meier survival analyses 

using the “MYC Targets V2” signature, Myc genomic amplification status, or Myc single-

gene overexpression status as strata. The Myc gene signature was equally predictive of 

overall survival as genomic amplification status and outperformed single-gene expression 

stratification (Supplementary Figure 2.9B). 

Convinced of the performance of the Myc signature by these additional tests, we 

performed further analysis of the 1,039 Myc-correlated exons we identified in the prostate 

metadataset (Figure 2.3A and Dataset S 2.1). Unsupervised clustering of these 1,039 

exons also grouped the samples by phenotype (Supplementary Figure 2.9C), identifying 

patterns in Myc-dependent exon incorporation that varied accordingly. 

Two examples among the most strongly Myc-correlated cassette exons from our 

analysis are found in SRSF3 and HRAS (Figure 2.3B). Incorporation of the identified 
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alternative exon in SRSF3 is anticorrelated with the Myc signature score (Figure 2.3B, 

Left). When examined by cancer phenotype, incorporation of this exon decreases as 

prostate cancer progresses from normal tissue to primary tumor and is even lower in 

mCRPC samples (Figure 2.3C, Left). Incorporation of this exon in NEPC is slightly higher, 

consistent with the Myc signature scores in these samples (Supplementary Figure 2.8A). 

SRSF3 is a serine–arginine splicing factor that can act as a proto-oncogene and 

also participates in transcription termination and DNA repair (50-53). The exon in question 

is ultraconserved throughout evolution and contains an in-frame stop codon. Also known 

as a poison exon, this sequence functions as a PTC (Supplementary Figure 2.9D, Top). 

Incorporation of this PTC has been shown previously to reduce SRSF3 expression levels 

by inducing NMD of the transcript (54,55). These data suggest increased Myc signaling 

leads to increased exon skipping, reduced NMD, and increased expression of SRSF3. 

A cassette exon in HRAS was also anticorrelated with Myc activity (Figure 2.3B, 

Right). When examined by cancer phenotype, exon skipping increased with tumor 

progression (Figure 2.3C, Right). HRAS is a well-known oncogene that cooperates with 

Myc to induce carcinogenesis in multiple tissues (56,57). Inclusion of the cassette exon 

and the stop codon it contains results in the truncated HRAS p19 product instead of the 

p21 form (58). HRASp19 lacks the cysteine residues in the carboxyl-terminal domain of 

HRASp21 required for nuclear translocation and RAS-driven transformation and may 

function instead as a tumor suppressor (58,59). This exon is conserved in mammals 

(Supplementary Figure 2.9D, Bottom). Incorporation of this exon is anticorrelated with 

Myc activity, suggesting that Myc can drive increased expression of oncogenic HRAS by 

affecting its splicing. 
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2.2.5 Myc-Correlated Exons in Prostate Cancers Are Highly Conserved in Breast 

and Lung Adenocarcinomas 

To determine whether the observed effects of Myc activity on splicing were prostate cancer 

specific, we performed a similar correlation analysis on a second hormone-dependent 

malignancy, breast adenocarcinoma, as well as on a hormone-independent epithelial 

malignancy, lung adenocarcinoma. The normal tissue and cancer RNA-Seq datasets for 

this analysis were drawn from TCGA (TCGA-BRCA and TCGA-LUAD) datasets and the 

GTEx collection of normal tissue (31,60,61). We performed a similar correlation between 

Myc signature score and exon usage as described above (Figure 2.3D). The Myc 

signature scores in breast and lung tissues behaved similarly to those in the prostate 

tissues, with increases in score at each step when moving from normal to tumor-adjacent 

normal to carcinoma (Supplementary Figure 2.9E). We identified 2,852 Myc-correlated 

cassette exons in breast samples and 2,465 in lung samples using the same filtering 

criteria for the prostate study (Supplementary Figure 2.9F). The exon list includes the 

same anticorrelated exon in SRSF3, as shown for lung samples (Figure 2.3D, fourth 

panel). Intersecting this set with our previously defined set of Myc-responsive prostate 

cancer exons (Figure 2.3A), we found extensive overlap and similar exon incorporation 

behavior in the three sets (Figure 2.3E). The triple intersection was even more strongly 

enriched for RNA-binding proteins (Figure 2.3F). Our analysis suggests the exon 

incorporation response to Myc overexpression is conserved across these cancers. 

 

2.2.6 Creation of an Engineered Model of Advanced Prostate Cancer with 
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Regulated Myc Expression from Benign Human Prostate Cells to Define Myc-

Dependent Exon Events 

Correlation analysis strongly implicates Myc, E2F, and MTOR signaling in the control of 

exons related to alternative pre-mRNA splicing but cannot define the individual contribution 

of each pathway to the observed phenotype. We therefore sought to determine whether 

the Myc-correlated splicing effects we observed were indeed Myc dependent. 

Numerous studies of the effect of Myc overexpression have described large 

numbers of Myc target genes with significant tissue heterogeneity (62,63). The presence 

of complex background genetics, undefined driver alterations, and tissue culture-specific 

phenomena further complicate the study of Myc biology (64). We therefore constructed a 

model of advanced prostate cancer by the transformation of benign human prostate 

epithelial cells with defined oncogenes (Figure 2.4A) (65). We have previously shown that 

the enforced expression of Myc and myristoylated (activated) AKT1 (myrAKT1) generates 

androgen receptor-independent adenocarcinoma (66,67). MyrAKT1 is included to 

phenocopy the activation of AKT1 that follows deletion of the tumor suppressor PTEN, a 

common event in prostate cancer tumorigenesis. Here, we cloned the Myc cDNA into a 

doxycycline-inducible promoter lentiviral construct, whereas MyrAKT1 was constitutively 

expressed (Figure 2.4B and 2.6 Appendix). 

After lentiviral transduction of isolated human prostate basal cells (Supplementary 

Figure 2.10A), we initiated the organoid culture and subsequent subcutaneous xenograft 

tumor outgrowth in immunocompromised mice in the constant presence of the drug 

(Supplementary Figure 2.10 B and C). As previously reported, only doubly transduced 

cells resulted in tumor outgrowth (Figure 2.4C). The histologic appearance and marker 
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expression patterns of the xenograft outgrowths were similar to those previously published 

with constitutive constructs (Figure 2.4D and Supplementary Figure 2.10D). The 

xenograft outgrowths were dissociated, and plated in tissue culture conditions with 

doxycycline to initiate autonomously growing cell lines (Figure 2.4E). We repeated the 

entire procedure to generate three independent cell lines from the prostate epithelium of 

three different human specimens. 

 

2.2.7 Myc Withdrawal Affects Expression of Splicing-Related Genes 

Withdrawal of doxycycline from the Myc/myrAKT1 cell lines resulted in the rapid, dose-

dependent loss of Myc protein expression, consistent with its previously reported short 

half-life (Figure 2.5A and Supplementary Figure 2.11A) (68). The cells also rapidly 

slowed their growth with increased G0/G1 fraction at 24 h (Supplementary Figure 2.11 B 

and C). They adopted a senescent-like phenotype after prolonged Myc withdrawal with 

up-regulation of P21 (Figure 2.5A). A similar consequence of Myc withdrawal in 

oncogene-addicted transformed cells has been previously reported (69). 

We performed RNA-Seq on samples from Myc-high and Myc-low conditions to 

define Myc-dependent genes and exons in our model system. These samples were 

sequenced with high read depth (>100 M reads) to enable accurate quantification of 

alternative splicing in downstream analysis. Primary analysis of the RNA expression data 

showed that thousands of genes were highly responsive to Myc withdrawal (CuffDiff q-

value < 0.05) (Figure 2.5B). Gene ontology analysis identified enrichment of several 

growth-related biological processes among the Myc-dependent genes (Figure 2.5C). Of 

note, genes involved in RNA processing were among the most highly enriched in this 
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subset. This is consistent with previous reports of Myc’s broad control of the growth 

phenotype. The regulated Myc expression system also allowed us to independently 

validate the Myc signature score we used in our correlation analysis (Figure 2.5D). 

 

2.2.8 Experimentation Confirms Myc-Regulated Exons Are Enriched in Splicing-

Related Proteins and Often Encode PTCs 

We applied rMATS-turbo to analyze Myc-regulated exon usage in our engineered cell 

lines. To accommodate the paired nature of the dataset (comparing Myc-high and Myc-

low conditions for each), we employed the PAIRADISE statistical test to the rMATS-turbo 

output (70). After filtering for coverage (≥10 splice junction reads per event), effect size 

(|deltaPSI| > 5%), and FDR < 5%, this analysis yielded 1,970 cassette exons that 

significantly changed incorporation in response to Myc withdrawal (Figure 2.6 A and B 

and Dataset S 2.1). We note that, among the Myc-dependent exons, we again identified 

the alternative exons in SRSF3 and HRAS described above, experimentally demonstrating 

that their incorporation is dependent on Myc signaling (Figure 2.6C). The relative 

incorporation of the poison exon in SRSF3 increased when Myc was withdrawn, which 

would act to decrease the amount of SRSF3 protein in response to oncogene loss. We 

confirmed by immunoblotting that SRSF3 protein levels decreased relative to the 

housekeeping protein GAPDH in this experimental setting (Supplementary Figure 

2.12A). 

Similar to the correlational data from the patient specimens, the Myc-dependent 

exons were strikingly enriched in genes affecting RNA splicing-related processes (Figure 

2.6D). Intersecting this set of exons with the Myc-correlated exons in patient tissue 
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identified 147 common exons (Figure 2.6E), a highly significant overlap (P = 1.03 × 10−90). 

The remaining exons may not be responsive to short-term withdrawal of Myc in the cell 

line model or may be correlated with other signaling derangements that often accompany 

Myc deregulation in patient cancers (e.g., E2F or MTOR). 

Alternative pre-mRNA splicing can regulate transcript levels through the 

incorporation or skipping of NMD-determinant exons (71). We hypothesized that Myc-

driven exon choice in splicing proteins could contribute to the regulation of their expression 

levels. To examine the functional outcome of Myc-driven splicing changes on NMD, we 

annotated the 147 exons in the patient data–cell line intersection for PTCs and frameshifts 

(Figure 2.6F and Dataset S 2.1). These 147 exons correspond to 124 genes, 30 of which 

were RNA-binding proteins by gene ontology designation. We annotated all these exons 

using the Ensembl database to identify those that contained verified PTCs. We 

supplemented this annotation by parsing the remaining exons to identify those predicted 

to produce a frameshift within the coding sequence of the parent mRNA transcript. We 

found that 36 of the 43 exons in RNA-binding genes encode a PTC, a frameshift, or both 

(Dataset S 2.1). These exons represent a set of Myc-responsive sequences that act to 

regulate transcript abundance of proteins involved in alternative pre-mRNA splicing. 

 

2.3 Discussion 

This analysis was powered by rMATS-turbo, a fast, flexible, and extensible software 

package that allows rigorous examination of exon usage across disparate datasets. These 

public datasets have moderate read depth (50 to 75 M reads) and variable read length (50 

to 75 bp). Here, we have used rMATS-turbo to perform a comprehensive survey of exon 
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usage across the entire spectrum of prostate cancer disease progression. This exon-level 

analysis allows the correlation of exon matrices with any continuous metadata of interest. 

Our PEGASAS methodology identifies putative exon targets of cancer signaling networks. 

Its successful application to prostate, breast, and lung cancer datasets suggests that 

pathway-driven analysis of alternative splicing in pancancer data will also be of interest. 

The engineered human prostate cell lines we developed with regulated Myc 

expression represent a unique opportunity to examine the consequences of Myc 

withdrawal on a defined genetic background. We employed them to identify over a 

thousand exons that significantly altered incorporation rates in response to Myc 

withdrawal, again with a striking enrichment for splicing-related proteins. The effects of 

Myc overexpression have been shown in other cancer contexts to have deleterious effects 

on splicing (72,73). In Eu-Myc lymphoma cells, a Myc-target gene, PRMT5, is essential 

for maintaining splicing fidelity. Similarly, a component of the core spliceosome, BUD31, 

was shown to be a MYC-synthetic lethal gene in a human mammary transformation model. 

Others have shown that Myc-driven changes in splicing are in part accomplished by the 

induction of the canonical serine–arginine splicing factor SRSF1 (74). Further elucidation 

of the events downstream from Myc overexpression that lead to splicing changes is 

needed. 

We note that Myc dysregulates the splicing of the PTC-containing exon in the 

serine–arginine protein SRSF3 (54,55). This exon is Myc-correlated in both the prostate 

and breast cancer datasets, Myc-regulated in our tissue culture model, and 

ultraconserved. SRSF3 is known to alter the splicing of a number of downstream targets, 

as well as to autoregulate its own splicing. In a feedback loop, high levels of SRSF3 protein 
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bind to its pre-mRNA transcript and promote inclusion of the poison exon (55). However, 

in the transformed setting we examined, Myc-high states were associated with high levels 

of SRSF3 expression and low levels of poison exon incorporation. This suggests Myc 

signaling may allow escape from this autoregulatory mechanism and stabilize SRSF3 

transcripts despite high SRSF3 protein levels. SRSF3 itself has been recently shown to 

regulate splicing of NMD-determinant exons in chromatin modifier proteins during the 

induction of pluripotent stem cells (75). Given the role of Myc signaling in the acquisition 

of stem-like phenotypes and the stem-like state of advanced cancers, the mechanism that 

connects Myc overexpression to splicing changes in SRSF3 deserves further exploration 

(76,77). 

Furthermore, the phenomenon of Myc-regulated poison exons is not limited to 

SRSF3. We identified a number of exons in splicing proteins from patient tissues with 

experimentally validated Myc dependence in vitro that also contained PTCs. Alternative 

splicing coupled to NMD has been widely described as a mechanism controlling levels of 

splicing factors and other RNA-binding proteins (78). These splicing events are often 

autoregulated by the encoded protein or cross-regulated by a related paralog (79). Our 

data on Myc regulation indicate that this system of AS-NMD is also more globally regulated 

as part of a program of growth control. We postulate that these exons and regulation of 

them by Myc may be part of an adaptive response to alter spliceosomal throughput in 

response to high transcriptional flux. 

One limitation of our study is that RNA and protein levels of the same genes are 

often poorly correlated (80). The potential for premature stop codons introduced by 

alternative splicing to induce NMD could further skew this relationship. Further studies of 
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the relationship between Myc levels and NMD-determinant exons in splicing-related 

proteins should include proteomic measurements. 

Our study provides further insight into the relationship between Myc signaling and 

alternative splicing changes that could be used to guide the development of splicing-

targeted cancer therapy (81). Future work will need to establish the specificity of these 

exon events for cells with oncogenic levels of Myc expression to avoid simultaneously 

targeting rapidly dividing normal cell types. 

 

2.4 Methods 

Descriptions of the gene ontology analysis, overlap enrichment assessment, 

lentiviral constructs, organotypic human prostate transformation assay, xenograft 

outgrowth, cell line derivation, and other tissue culture experiments are available in 2.6.1 

Supplementary Methods. 

 

2.4.1 RNA-Seq Data Processing Framework 

A comprehensive RNA-Seq dataset was compiled from published prostate cancer and 

normal prostate datasets that reflect the full progression of prostate cancer. In total, 876 

samples were downloaded from different sources. RNA-Seq Fastq files of normal prostate 

samples [GTEx Consortium (31)] and prostate cancer samples [Beltran et al. study (10), 

Robinson et al. study (11), and Stand-Up-To-Cancer study (12)] were downloaded from 

dbGAP (82,83) via fastq-dump in SRA toolkit. RNA-Seq Fastq files from TCGA primary 

prostate cancer and adjacent benign samples were downloaded from GDC via gdc-client 
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(84). 

A unified RNA-Seq processing framework was constructed to perform read 

mapping as well as gene and isoform quantification on the collected multiphenotypic 

prostate RNA-Seq samples. Specifically, read mapping was done by STAR 2.5.3a (85) 

with a STAR 2-pass function enabled to improve the detection of splicing junctions. The 

STAR genome index was built with–sjdbOverhang 100 as a generic parameter to handle 

differences in read length of RNA-Seq samples from various sources. The genome 

annotation file was downloaded from GENCODE V26 (86) under human genome version 

hg19 (GRCh37). The subsequent gene/isoform expression quantification is performed by 

Cufflinks (87) with default parameters. 

RNA-Seq alternative splicing quantification is conducted uniformly with a newly 

engineered version (version 4.0.2) of the rMATS-turbo software package (29,30). An exon-

based ratio metric, commonly defined as PSI ratio, was employed to measure the 

alternative splicing events. The PSI ratio is calculated as follows: 

𝜓 =
𝐼/𝐿𝐼

𝑆/𝐿𝑆 + 𝐼/𝐿𝐼
 , 

where S and I are the numbrs of reads mapped to the junction supporting skipping and 

inclusion form, respectively. Effective length L is used for normalization. 

Customized scripts were applied to calculate PSI value for each individual 

alternative splicing event from the rMATS-turbo junction count output. To build a confident 

set of exon events, the splice junction of each event was required to be covered by no less 

than 10 splice junction reads. Additionally, each event was required to have a PSI range 

greater than 5% across the entire dataset (|maxPSI − minPSI| > 5%), with a mean skipping 
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or inclusion value over 5%. Events with missing values in the majority (over 99%) of 

samples were removed. 

 

2.4.2 Analysis and Evaluation of Alternative Splicing Profile of Prostate Cancer 

Metadataset 

PCA was applied to inspect the RNA-Seq–derived gene expression/alternative splicing 

profiles of our multiphenotypic prostate cancer dataset. First, the matrix of sample vs. 

fragments per kilobase of transcript per million mapped reads/PSI value was produced by 

customized scripts. Then, the matrix was completed and imputed by KNN method 

(knnImputation in DMwR package) (88) for missing values. Last, the matrix was mean 

centered and scaled (PSI matrix is not scaled). PCA was conducted via prcomp function 

in R. The top five PCs were inspected, but only the first two that describe the highest 

percentage of the variance are shown. 

In addition, silhouette width was applied to assess the fitness of PCA clustering 

results derived from alternative splicing or gene/isoform expression measurements (89). 

Specifically, disease conditions were used as sample labels to compute the silhouette 

width of each cluster. Average silhouette widths were compared between PCA clustering 

results with different metrics (90). The R package cluster (91) was used for Silhouette 

calculation based on PCA results and disease phenotype labels. 

 

2.4.3 PEGASAS 

In order to identify exon incorporation shifts that could correspond to oncogenic pathway 
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alterations during tumor progression, a correlation-based analysis was developed to 

define signaling pathway correlated alternative splicing events. It involves two major steps. 

The first step is to define signaling pathway activity and alternative splicing levels. 

The quantification of gene expression and alternative splicing is detailed in 2.4.1 RNA-

Seq Data Processing Framework. Signaling pathway activity can be characterized by 

assessing the expression level of its target genes as a set relative to other genes (42). The 

MSigDB (92) has compiled gene sets (42) for the use with gene set enrichment analysis 

(GSEA) (93) software or similar applications. Here, a group of well-defined gene sets, 

known as hallmarks (42), was selected to assess a wide range of pathways in prostate 

cancers. To measure the activity of a given signaling pathway gene set, all genes (both 

genes within the gene set as well as those not in the gene set) were ranked according to 

their gene expression values, then a weight was assigned to each gene based on the 

number of genes in the set (pathway or nonpathway) they belonged to. This was used to 

construct empirical distributions for both sets, and a two-sample Kolmogorov–Smirnov test 

statistic, which is the supremum of the differences between the two distributions, was 

computed as a measure of the activity of the signaling pathway, i.e., an “activity score.” 

Given the same gene set and gene annotation, the higher the score, the higher the activity 

of a signaling pathway in a sample. Note that the score should not be used to compare 

across signaling pathways as each gene set has distinct number of genes, which affects 

the score. 

The second step is to identify pathway activity-correlated alternatively spliced 

exons. For each pathway, the pathway activity score defined above was correlated with 

all of the AS events identified by rMATS-turbo. The Pearson correlation coefficient was 
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computed for each pathway–exon pair across samples in the dataset. A Pearson 

correlation coefficient with an absolute value >0.3 was considered as correlated. Data 

points for each pathway–exon pair were permutated 5,000 times locally to produce 

empirical P values to filter out faulty correlations caused by data structure or missing data 

points. A stringent empirical P value < 2 × 10−4 was required for this analysis. The 

analytical framework performs streamlined analysis of multiple gene sets (e.g., 50 hallmark 

gene sets). Customized scripts were implemented to generate the summary plot. 

 

2.4.4 Cell Line Gene Expression and Alternative Splicing Differential Analysis 

The same RNA-Seq processing framework described above was applied to quantify 

gene expression and alternative splicing of Myc cell line samples. Differentially 

expressed genes were identified and visualized by the Cuffdiff and cummeRbund 

pipeline with a threshold of q-value < 0.05. Skipped exon events quantified by rMATS-

turbo were analyzed by the PAIRADISE statistical model for conducting paired tests of 

between Myc +/− conditions (70,87). PAIRADISE with equal.variance = TRUE was 

used to perform the test. The resulting events were first filtered by the coverage and 

deltaPSI requirements (≥10 splice junction reads per event, |deltaPSI| > 0.05). Then, 

an FDR 5% cutoff was applied to identify significant differential alternative splicing 

events between the on and off states of the engineered Myc cell line. 

 

2.4.5 Code availability 

The computational pipeline of PEGASAS is available at 
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https://github.com/Xinglab/PEGASAS (94), and custom scripts used to perform filtering, 

analysis, and visualization have been deposited separately at 

https://github.com/Xinglab/Myc-regulated_AS_PrCa_paper (95) 

 

2.4.6 Data availability 

Raw sequencing files (fastq) from the engineered cell lines and gene expression matrices 

are available through Gene Expression Omnibus (accession no. GSE141633) (96). The 

PSI and gene expression matrices for the prostate metadataset are also available from 

the same source. The normal prostate expression data from GTEx used for the analyses 

described in the manuscript were obtained from dbGaP 

(https://www.ncbi.nlm.nih.gov/gap) accession no. phs000424 (accessed 1 October 2018). 

Data on primary prostate cancers were obtained from the TCGA Research Network and 

downloaded from the Genomic Data Commons 

(http://portal.gdc.cancer.gov/projects/TCGA-PRAD) accession no. phs000178 (accessed 

1 October 2017). Additional datasets on metastatic prostate cancers are available by 

controlled access through dbGaP with accession nos. phs000909, phs000673, and 

phs000915 (accessed 1 October 2018). 
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2.5 Figures 

 

Figure 2.1 A global, exon-level analysis of alternative pre-mRNA splicing in 

normal prostate and prostate cancers identifies patterns of exon usage in RNA-

binding proteins 

(A) Schematic with alluvial plot depicting the data-processing workflow combining RNA-

Seq data from various prostate tissue disease states (Left) and summary table depicting 

various exon events detected by rMATS-turbo before and after filtering for splice junction 

reads coverage, PSI range, and commonality (Right). The alluvial plot depicts the sorting 

of patient RNA-Seq datasets from individual studies on the Left into prostate phenotypes 
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on the Right. (B) Scatter plot depiction of an unsupervised PCA of exon usage matrices 

from eight different prostate datasets representing healthy tissue, tumor-adjacent benign 

tissue, primary prostate cancer, metastatic castration-resistant prostate cancer (mCRPC), 

and treatment-associated neuroendocrine prostate cancer (NEPC). 
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Figure 2.2 Pathway enrichment-guided activity study of alternative splicing 

(PEGASAS) analysis identifies exon correlates of oncogenic signaling in prostate 

cancers 

(A) Workflow diagram describing PEGASAS correlation of gene signature score with exon 
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usage. Each sample is scored for a gene expression signature of interest. Gene signature 

scores are correlated with exon usage matrices to identify pathway-correlated exon 

incorporation changes. (B) Heatmap of the correlation coefficients of the exon changes 

correlated with gene signatures in the Molecular Signatures Database (MSigDB) hallmark 

gene sets as generated by PEGASAS. The 10 signatures that returned the highest number 

of exon correlates are shown here. Each row depicts the results of the correlation to a 

single hallmark signature. Each column represents a single exon. The color represents 

the strength and direction of the correlation (red positive, blue negative) of a single exon 

with each pathway. Columns are sorted by hierarchical clustering. Rows are ranked by 

total number of exon correlates passing statistical metrics for each pathway (# Events, bar 

chart). The gene ontology term with the highest enrichment for the genes containing 

pathway-correlated exons and the corresponding P value are also depicted. The P values 

correspond to the gene ontology enrichment and are not a measure of significance of 

pathway–exon correlation. (C) Hive plot depiction of exons correlated with selected 

prostate cancer-related gene signatures and the biological processes associated with 

genes containing those exons. All pathway-correlated exons are displayed on the left axis. 

Seven well-known prostate cancer driver pathways are represented as nodes on the 

middle axis. The area of these nodes reflects the number of exons correlated with each 

pathway. The right axis depicts four summary gene ontology terms. The width of the edges 

connecting the nodes on the middle axis to the nodes on the right axis is proportional to 

the enrichment of each pathway for each biological process. The size of the nodes on the 

right axis is proportional to the total number of exons associated with each biological 

process. (D) Area-proportional Venn diagram depicting the intersection of Myc-, E2F-, and 
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MTOR-correlated exons in prostate cancer. Exons must share the same correlation 

direction (positive or negative) to appear in the intersection. AS, alternative splicing; K-S, 

Kolmogorov–Smirnov; SE, skipped exon.  
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Figure 2.3 Exon incorporation events correlated with Myc activity are strongly 

enriched in RNA-binding proteins and are conserved in prostate and breast 

cancers 

(A) Heatmap depiction of exon usage of 1,039 Myc-correlated exons across prostate 
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cancer datasets in healthy tissue, primary adenocarcinoma, metastatic adenocarcinoma, 

and neuroendocrine prostate cancer (NEPC). Columns represent samples ordered by 

disease phenotype and sorted by Myc Targets V2 signature score within each group. The 

Myc score annotation is colored from white (low) to black (high) based on the rank-

transformed signature score of patient samples across the datasets. Rows represent 

exon inclusion events ordered by hierarchical clustering. (B) Scatterplots depicting 

examples of cassette exons in SRSF3 and HRAS transcripts whose incorporation is 

negatively correlated with Myc gene signature score. (C) Sashimi plots depicting average 

cassette exon incorporation levels of exons in SRSF3 and HRAS in prostate cancer 

datasets separated by cancer phenotype. Sashimi plots depict density of exon-including 

and exon-skipping reads as determined by rMATS-turbo analysis. (D) Workflow diagram 

for performing pathway-guided alternative splicing analysis on normal and cancerous 

breast and lung tissues. Each sample is scored for the Myc Targets V2 signature and 

correlated with the exon usage matrix to identify pathway-correlated exon incorporation 

changes. (E) Venn diagram indicating the intersection between Myc-correlated exon sets 

in prostate cancers with breast and lung adenocarcinomas. Exons must share the same 

correlation direction (positive or negative) to appear in the intersection. (F) REVIGO chart 

depicting the gene ontology of genes containing the 492 Myc-correlated exons from the 

triple intersection described above. SE, skipped exon.  
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Figure 2.4 Enforced expression of activated AKT1 and doxycycline-regulated c-

Myc initiates AR-negative PrAd in human prostate cells 

(A) Workflow diagram for derivation of Myc/myrAKT1-transformed human prostate cells 

from benign epithelium. “B” = Trop2+/CD49fhi basal cells; “L” = Trop2+/CD49flo luminal 

cells. (B) Depiction of lentiviral vectors used to enforce doxycycline-regulated expression 

of Myc and constitutive expression of myrAKT1. Histologic sections of transduced 

organoids. (C) Photomicrographs and fluorescent overlay of recovered grafts and tumor 

outgrowth after lentiviral transduction and subcutaneous implantation in NSG mice. A, 

myrAKT1 transduction (RFP); C, c-Myc transduction (GFP); CA, dual transduction with c-

Myc and myrAKT1 (GFP and RFP merge depicted as yellow); UT, untreated. (D) 

Hematoxylin and eosin (H&E) stain of histologic sections of recovered grafts and tumor 

outgrowths. (E) Photomicrographs of cell lines ICA-1, ICA-2, and ICA-3 derived from 
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tumor outgrowths growing as suspended rafts in tissue culture. 
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Figure 2.5 Myc loss in the engineered cell lines produces a senescent-like 

phenotype and strongly affects the expression of RNA binding proteins 

(A) Western blot of lysates from ICA1 cells withdrawn from doxycycline in a time course 

examining Myc expression and changes in proteins related to cell cycle state. Each of the 

three cell lines was examined in this manner, and the data shown are representative of all 

three. (B) Volcano plot of gene-level expression changes after Myc withdrawal. Genes 

down-regulated upon Myc loss appear on the left-hand side of the plot. Gene expression 

changes with the Cuffdiff q-value of <0.05 appear red. (C) Selected top gene ontology 

terms from the gene ontology analysis of Myc-dependent gene expression changes 

displaying strong enrichment for RNA binding. BP, Biological Process; CC, Cellular 

Component; MF, Molecular Function. (D) Comparison of Myc Targets V2 signature score 

levels in engineered cell lines in the presence and absence of doxycycline.  
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Figure 2.6 Exon-level splicing analysis of c-Myc/myrAKT1 transformed human 

prostate cells identifies Myc-dependent exon incorporation events in splicing 

regulatory proteins 

(A) Summary table of exon incorporation changes occurring after Myc withdrawal. (B) 

Heatmap depicting changes in exon incorporation of 1,970 Myc-dependent cassette 

exons in three independent engineered cell lines. (C) Sashimi plots depicting the change 
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in splice junction RNA-Seq reads in SRSF3 and HRAS exons in the engineered cell lines 

following Myc withdrawal. Sashimi plots depict density of exon-including and exon-

skipping reads as determined by rMATS-turbo analysis. (D) REVIGO scatter plot 

depicting gene ontology terms enriched among genes containing exons whose 

incorporation is responsive to Myc withdrawal. Semantic distance is a measurement of 

relatedness between gene ontology terms calculated by REVIGO. Representative gene 

ontology terms have been selected to describe each cluster. The dashed line indicates 

adjusted P = 0.05. (E) Venn diagram depicting the overlap between Myc-dependent 

exons (purple) and Myc-correlated exons identified in patient tissues (green). Exons must 

change incorporation level with Myc in the same direction as the correlation (positive or 

negative) in order to appear in the intersection of the two sets. (F) Heatmap depicting the 

annotated outcome of exon changes in validated Myc-dependent exons. The annotation 

identifies exons likely to produce PTCs (orange) or frameshifts (green). SE, skipped exon. 
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Supplementary Figure 2.7 Comparison of count-based and ratio-based isoform-

level analyses of prostate RNA-Seq datasets 

(A) Unsupervised analysis of count-based isoform expression from a combined prostate 

cancer dataset (left panel). The same methodology applied to the ratio-based 

alternative splicing approach from Figure 2.1B in the main text is shown for comparison 

(right panel). (B) Silhouette width-based comparison of clustering fitness for each of the 

principle component analyses shown above. Mets, metastatic.  
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Supplementary Figure 2.8 Gene signature analysis identifies a common set of 

exons correlated with Myc, E2F, or mTOR pathways 

Violin plot depiction of gene signature scores of AR, Myc Targets V2, and mTOR sets 

across prostate cancer datasets. Dashed lines indicate averages across datasets 

profiling a disease phenotype (normal prostate, benign prostate, primary prostate 

cancer, mCRPC, and NEPC). 
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Supplementary Figure 2.9 Validation of Myc signature score and exon 

conservation across phylogeny and tumor type 

(A) Box-and-whisker plot depiction of Myc signature scores in benign prostate tissues and 

primary prostate cancers stratified by Myc status. Samples with genomic amplifications of 
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the Myc locus or single-gene overexpression are compared to samples without these 

alterations and adjacent benign tissues. (B) Kaplan-Meier disease-free survival plots of 

prostate cancers stratified by Myc signature score (first panel), Myc amplification status 

(second panel), or single-gene Myc expression (third panel). (C) Unsupervised two-way 

hierarchical clustering heatmap depiction of exon usage of 1,039 Myc-correlated exons 

across prostate cancer datasets in healthy tissue, and in primary, metastatic, and 

neuroendocrine prostate cancers. Columns depict patient samples. The Myc score 

annotation is colored from white (low) to black (high) based on the rank-transformed 

signature score of patient samples across the data sets. Rows represent exon inclusion 

events. Both are ordered by hierarchical clustering. (D) UCSC Genome Browser tracks 

depicting ultraconservation of Myc-regulated exons in SRSF3 (top panel) and HRAS 

(bottom panel) from humans to lamprey. (E) Box-and-whisker plot depiction of the Myc 

Targets V2 signature scores for breast and lung tissues. Left panel depicts normal breast 

(GTEx), tumor-adjacent normal breast (TCGA-BRCA), and breast adenocarcinomas 

(TCGA-BRCA). Right panel depicts normal lung (GTEx), tumor-adjacent normal lung 

(TCGA-LUAD), and lung adenocarcinomas (TCGA-LUAD). (F) Heatmap of Myc-

correlated exons in the prostate meta-dataset alongside tissues from normal breast and 

lung as well as breast and lung adenocarcinomas. Dashed line indicates separation 

between two cancer types. The Myc score annotation is colored from white (low) to black 

(high) based on the rank-transformed signature of patient samples across the datasets. 
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Supplementary Figure 2.10 Establishment of engineered human tumor model with 

regulated Myc expression 

(A) Representative scatterplot from florescence-activated cell sorting isolation of CD49f-

high/Trop2-high basal cells from total dissociated benign human prostate. (B) Florescent 

photomicrograph of doubly transduced prostate organoids as well as single and 

untransduced controls. “UT” = untreated, “C” = c-Myc transduction (GFP), “A” = myrAKT1 

(RFP), “CA” = c-Myc and myrAKT1 (merge = yellow). (C) Photomicrograph of fixed 

organoids to show histology. Hematoxylin and eosin staining. (D) Immunohistochemical 

staining of transformed xenograft outgrowth compared to normal prostate tissue controls.  
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Supplementary Figure 2.11 Characterization of the response to Myc withdrawal in 

vitro 

(A) Immunoblot of Myc expression levels in engineered cell line ICA1 in response to 

doxycycline titration. Data are representative of all three cell lines. (B) Growth response 

of ICA1 cell line in response to doxycycline titration as measured in a luciferase-based 

assay. (C) Stacked column chart depicting the change in cell cycle distribution over time 

after doxycycline withdrawal as measured by flow cytometry.  
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Supplementary Figure 2.12 Individual exon incorporation changes in response to 

Myc withdrawal 

(A) Semi-quantitative immunoblot of SRSF3 protein levels in response to Myc 

withdrawal for 24 h. Quantitation is the average reduction in SRSF3 levels measured in 

each cell line over the three independent replicates shown.  
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2.6 Appendix 

2.6.1 Supplementary Methods 

Gene Ontology (GO) analysis with background correction for expressed genes  

The GO annotation was queried via the EnrichR API in R (97). A customized background 

gene list is required for the proper calculation of over- and under-representation of a GO 

term (98). For the alternative splicing analysis in this study, the background genes were 

selected by having sufficient coverage at splice junctions to meet the filtering criteria 

described above. With this customized background list, a corrected p-value can be 

computed using the hypergeometric test. The Benjamini-Hochberg procedure was used 

to control for the false discovery rate (FDR) at 5%. To reduce complexity, the resulting 

GO terms were required to contain at least 10 genes, with an exception for Figure 2.2B, 

where the minimum term size was increased to 100 to display the most representative 

terms. To visualize GO results, the REVIGO web server was employed with customized 

R plotting scripts for Figures 2.3 and 2.6 (99). 

 

Overlap enrichment assessment 

Hypergeometric test p-value is used to measure the significance of the overlap between 

two groups of alternative splicing events. The triple intersection p-value is calculated by 

R package “SuperExactTest” based on hypergeometric test (100). 

 

Breast cancer and lung cancer Myc-correlated alternative splicing analysis 
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The RNA-Seq processing framework described above was applied to quantify gene 

expression and alternative splicing of GTEx normal breast and lung samples, and TCGA 

BRCA and LUAD tumor-adjacent normal samples and tumor samples that are matched 

to tumor-adjacent normal samples. These datasets are de-identified. The Myc pathway-

dependent splicing analysis was performed as described above. 

 

Lentiviral constructs 

The myrAKT1 lentiviral vector has been described previously (101). The inducible Myc 

lentiviral vector was cloned by inserting MYC into the BamHI site of the PSTV lentiviral 

backbone. Lentiviruses were prepared and titered as described (101). 

 

Organotypic human prostate transformation assay 

This assay was conducted as previously described (65,102) with de-identified 

human prostate samples. Doxycycline (1 ug/mL, Calbiochem 324385) was added to all 

culture media and renewed every 3 days. 

 

Xenograft outgrowth of transformed cells and cell line derivation 

The xenograft and cell line derivation protocols have been previously described and were 

modified only to accommodate the doxycyline-inducible vector (65,102). Mice were fed 

sterile doxycycline chow (Bio-Serv S3888) continuously starting 3 days before xenograft 

implantation. Cell line initiation was performed on harvested tumors with the addition of 1 

ug/mL doxycycline to all media. 
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Cell line exon annotations 

Exon annotations of known stop codons and the middle exon length were generated 

based on the same GENCODE gene annotation file used for alignment. Potential 

frameshift annotation is determined if the middle exon length cannot be divided by three. 

Potential RNA binding proteins were labeled according to the GO annotation term ‘RNA 

binding’. 

 

Cell line propagation 

The engineered cell lines were grown in stem cell media, composed of advanced 

DMEM/F12K (Gibco 12634028) base media with addition of B27 (Gibco 17504044), EGF 

(10 ng/mL, Peprotech 100-47), and FGF2 (10 ng/mL, Peprotech 100-18B) as well as 

Glutamax (Gibco 35050061). Doxycycline (1 ug/mL) was added to cultures to maintain 

MYC expression. Media was renewed every 3 days. 

 

Myc withdrawal experiments 

Cells were collected by centrifugation and washed with media three times to remove 

doxycycline. 1 million cells were plated for each condition. Doxycycline was added back 

to the appropriate wells and then harvested at the appropriate time point (0-24 h). 

 

Histology 
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Portions of xenograft outgrowths were fixed in formalin overnight and transferred to 70% 

ethanol solution before submission for further processing by the Tissue Procurement 

Core Laboratory at UCLA (TPCL). Organoids were collected by dispase dissociation from 

Matrigel, washed three times with PBS, and then formalin-fixed for 30 min at room 

temperature. The fixed organoids were again collected by centrifugation and 

resuspended in HistoGel and submitted to TPCL. All samples were paraffin-embedded, 

sectioned at 4 μm, and mounted on glass slides. Hematoxylin and eosin staining was 

conducted according to standard protocols. 

 

Immunohistochemistry 

Immunohistochemical studies were conducted as previously described (102). Briefly, 

unstained slides were subjected to deparaffinization, rehydration, and heat-activated citric 

acid antigen retrieval. Rehydrated slides were blocked with 1% horse serum in PBS 

before overnight incubation with primary antibodies also diluted in 1% horse serum/PBS. 

Primary and secondary antibodies and their dilutions are listed below. Antibody binding 

was detected using an HRP-conjugated secondary antibody and a chromogenic 

substrate. 

 

Immunoblotting 

Portions of tumor xenografts or 10 million cultured cells were placed in 8M urea lysis 

buffer with protease inhibitors (Sigma-Aldrich 4693159001) and homogenized with a 

Dounce apparatus. The lysate was cleared by ultracentrifugation at 30,000 x g for 30 min. 
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Samples were denatured by boiling in SDS loading buffer under reducing conditions for 

1 min and subjected to polyacrylamide gel electrophoresis. Wet transfer to nitrocellulose 

membrane was followed by blocking in 1% milk/0.1% Tween/PBS and overnight primary 

antibody incubation at 5 °C in the same buffer. HRP-conjugated secondary antibodies 

were applied after washing and the blot visualized with a pro-luminescent substrate. 

Semi-quantitative blots of SRSF3 protein levels used PVDF membrane. Fluorescence 

levels were measured by Typhoon scanner and normalized to GAPDH levels. Antibody 

sources and dilutions are described below. 

 

Antibodies for flow cytometry, immunohistochemistry and immunoblotting 

Antibodies used for flow cytometry were the fluorochrome conjugates CD49f-PE (12-

0495-82; eBiosciences) and Trop2-APC (FAB650A; R&D Systems). 

Primary antibodies used for immunohistochemistry included CK8 (1:1,000, 

Covance MMS-162P), AR (1:250, Santa Cruz sc-816), PSA (KLK3) (1:2000, Dako 

A0562), CK5 (1:1000, Covance PRB-160P), and p63 (1:250, Santa Cruz sc-8431). 

Secondary antibodies used were ImmPRESS anti-rabbit Ig peroxidase and anti-mouse 

Ig peroxidase (Vector Labs). Liquid DAB+ substrate reagent (Dako) was used to perform 

direct chromogenic visualization. 

The following primary antibodies were used for immunoblotting (all at 1:1000 

dilution, unless otherwise noted): Myc (Abcam ab32072), pan-AKT (Cell Signaling 4691), 

p53 (Cell Signaling Technology 2527), PARP1 (AbCam ab32138), cleaved PARP1 

(AbCam, ab32064), anti-Cdk2 (AbCam ab32147), anti-Cdk2 (phospho Y15) (AbCam 
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ab76146), p21 anti-p21 [EPR3993] (ab109199), and GAPDH (1:5,000, GeneTex GT239). 

HRP-conjugated goat anti-rabbit and goat-anti-mouse secondary antibodies (BioRad) 

were used for luminescent detection. For semi-quantitative Western blots, goat anti-

mouse-cy5 (1:5000, Sigma-Aldrich GEPA45009) was used. 

 

Cell cycle analysis 

One million cells were withdrawn from doxycycline as described above and harvested by 

centrifugation at the appropriate time-point. Cell pellets were washed three times with 

PBS and then singly dissociated with trypsin prior to fixation in 10% cold ethanol. After 

overnight fixation at 5° C, cells were pelleted and rehydrated in PBS. RNAse was added 

and the suspension incubated at room temperature for 4 h before staining with 20 ng/mL 

7AAD and analysis by flow cytometry. 

 

Cell growth assay 

Cells were washed with PBS, withdrawn from doxycycline, and plated at a density of 

100,000 cells per well. Cells were lysed with CellTiterGlo luciferase reagent at the 

appropriate time and submitted for luminometry. 

 

Whole transcriptome sequencing analysis 

Total RNA was isolated by guanidinium thiocyanate-phenol-chloroform extraction, 

followed by column clean-up. Isolated RNA was submitted for RNA integrity number (RIN) 

analysis. Only samples with RIN > 9 were carried forward. cDNA libraries were prepared 
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from isolated RNA after poly-A selection using the TruSeq RNA Sample Prep Kit v2 

(Illumina). High-throughput sequencing with 150 bp paired-end reads was performed 

using an Illumina HiSeq 2500. At least 100 million reads were collected for each sample. 

 

Cell line exon annotations 

Exon annotations of known stop codons and the middle exon length were generated 

based on the same GENCODE gene annotation file used for alignment. Potential 

frameshift annotation is determined if the middle exon length cannot be divided by three. 

Potential RNA binding proteins were labeled according to the GO annotation term ‘RNA 

binding’. 

 

2.6.2 Supplementary Datasets 

Dataset S 2.1 

Excel spreadsheet with four tabs. (A) Matrix of pathway correlation scores for skipped 

exon events in the prostate metadataset. (B) Skipped exon events from prostate tissues 

with corresponding delta PSI in engineered cell lines alongside annotation for stop 

codon and NMD prediction. (C) Myc-dependent skipped exon events in engineered cell 

lines with NMD annotation. (D) Intersection of Myc-correlated skipped exon events in 

prostate tissues with Myc-dependent events in engineered cell lines with NMD 

annotation. 
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Chapter 3 IRIS: Big data-informed discovery of cancer immunotherapy targets 

arising from pre-mRNA alternative splicing 

 

3.1 Introduction 

Cancer immunotherapy has gained tremendous momentum in the past decade. The 

clinical effectiveness of checkpoint inhibitors, such as neutralizing antibodies against PD-

1 and CTLA-4, is thought to result from their ability to reactivate tumor-specific T cells (1). 

Meanwhile, adoptive cell therapies use genetically modified T-cell receptors (TCRs) or 

synthetic chimeric antigen receptor T cells (CAR-T) for tumor-specific antigen recognition 

(2). The finding that cancer cells express specific T-cell-reactive antigens has galvanized 

epitope discovery in recent years (3-6). Nevertheless, the identification of tumor antigens 

remains a major challenge (7,8). Although somatic mutation-derived antigens have been 

successfully targeted by cancer therapies (9-12), this approach remains largely ineffective 

for tumors with low or moderate mutation loads (7,13). 
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3.2 Results 

3.2.1 IRIS: A big data-powered platform for discovering AS-derived cancer 

immunotherapy targets 

Various types of dysregulation at the RNA level can generate immunogenic peptides in 

cancer cells (13-15). Notably, tumors harbor up to 30% more alternative splicing (AS) 

events than normal tissues, and the resulting peptides are predicted to be presented by 

human leukocyte antigen (HLA) (16). However, there are no integrated methods to 

systematically identify AS-derived tumor antigens. Therefore, we leveraged tens of 

thousands of normal and tumor transcriptomes generated by large-scale consortium 

studies (e.g. GTEx, TCGA) (17,18) to build a versatile, big data-informed platform for 

discovering AS-derived immunotherapy targets. Our in silico platform, named ‘IRIS’ 

(Isoform peptides from RNA splicing for Immunotherapy target Screening), incorporates 

three main components: processing of RNA-Seq data, in silico screening of tumor AS 

isoforms, and integrated prediction and prioritization of TCR and CAR-T targets (Figure 

3.1a). 

IRIS’s RNA-Seq data-processing module uses standard input data to discover and 

quantify AS events in tumors using our ultra-fast rMATS-turbo software (19,20). Identified 

AS events are fed to the in silico screening module, which statistically compares AS 

events against any combination of samples selected from large-scale (>10,000) reference 

RNA-Seq samples of normal and tumor tissues (Supplementary Figure 3.3) to identify 

AS events that are tumor-associated, tumor-recurrent, and potentially tumor-specific (3.4 

Methods). Tumor specificity is a key metric for evaluating potential tissue toxicity, which 

is an important side effect of targeting lineage-specific antigens that are expressed by 
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both tumor and normal cells (21). In addition to screening multiple patient samples 

simultaneously in the default ‘group mode’, IRIS can be performed in the ‘personalized 

mode’ to identify targets for a specific patient sample (3.4 Methods). Potential false-

positive events are removed by using a blacklist of AS events whose quantification across 

diverse RNA-Seq datasets is error-prone due to technical variances such as read length 

(3.4 Methods and Supplementary Figure 3.4). IRIS’s target prediction module first 

constructs splice-junction peptides of predicted tumor isoforms and then predicts AS-

derived targets for TCR/CAR-T therapies (3.4 Methods). This module performs tumor 

HLA typing using RNA-Seq data and then integrates multiple HLA-binding prediction 

algorithms for predicting TCR targets and/or peptide vaccines. In parallel, protein 

extracellular domain annotations are used for predicting CAR-T targets (Supplementary 

Figure 3.5). IRIS also includes the option to confirm predicted AS-derived targets using 

mass spectrometry (MS) data via proteo-transcriptomics data integration. This option 

provides an orthogonal approach for target discovery and validation by integrating RNA-

Seq data with various types of MS data, such as whole-cell proteomics, surfaceomics, or 

immunopeptidomics data (3.4 Methods and Supplementary Figure 3.6a).  

 

3.2.2 Proteo-transcriptomic analysis of HLA presentation of AS-derived epitopes in 

normal and tumor cell lines 

We performed a proof-of-concept analysis and preliminary confirmation of AS-derived 

epitopes by applying IRIS to RNA-Seq and MS-based immunopeptidomics data of cancer 

and normal cell lines. We identified hundreds of AS-derived epitopes that were supported 

by both RNA-Seq and MS data (Supplementary Figure 3.6b, Supplementary Data 3.1). 
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MS-supported epitopes were enriched for transcripts with high expression levels and 

peptides with strong predicted HLA-binding affinities (Supplementary Figure 3.6c-e), 

consistent with the expected pattern of HLA-epitope binding (22). 

 

3.2.3 Identification of AS-derived cancer immunotherapy targets from 22 GBM 

samples 

To explore IRIS’s ability to discover AS-derived immunotherapy targets in clinical samples, 

we generated RNA-Seq data from 22 resected glioblastomas (GBMs) and analyzed these 

data by IRIS. Candidate epitopes were then validated based on their recognition by patient 

T cells. Figure 3.1b (top) summarizes the stepwise IRIS results. After uniform processing 

of RNA-Seq data by rMATS-turbo, IRIS discovered 190,232 putative skipped exon (SE) 

events from the 22 GBM samples. Using the in silico screening module, we compared 

these AS events against reference normal and tumor panels to evaluate tumor 

association, recurrence, and specificity (3.4 Methods). Specifically, AS events were 

compared against: normal brain samples from GTEx (tissue-matched normal panel, for 

evaluating tumor association), two cohorts of brain tumor samples - GBM and lower-grade 

glioma (LGG) - from TCGA (tumor panel, for evaluating tumor recurrence), and 11 other 

selected normal (nonbrain) tissues from GTEx (normal panel, for evaluating tumor 

specificity). After initially screening against the tissue-matched normal panel and removing 

blacklisted events, IRIS identified 6,276 tumor-associated AS events in the 22 GBM 

samples (‘Primary’ set, Figure 3.1b). Of these, 1,738 events were identified as tumor-

recurrent and tumor-specific based on comparison with the tumor panel and normal panel, 

respectively (‘Prioritized’ set, Figure 3.1b; Supplementary Data 3.2).  
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Next, for each AS event, splice junctions of the tumor isoform (i.e. the isoform that 

was more abundant in the tumor samples than in the tissue-matched normal panel) were 

translated into peptides, followed by TCR/CAR-T target prediction (Figure 3.1b). For the 

GBM dataset, IRIS predicted 4,153 ‘primary’ tumor-associated epitope-producing splice 

junctions. Of these, 1,127 were tumor-recurrent and tumor-specific compared to the tumor 

panel and normal panel, respectively, and were therefore predicted to be ‘prioritized’ TCR 

targets. In parallel, IRIS identified 416 ‘primary’ tumor-associated extracellular peptide-

producing splice junctions, of which 87 were predicted to be ‘prioritized’ CAR-T targets. 

IRIS generates an integrative report for predicted immunotherapy targets 

(Supplementary Data 3.3). Representative examples for six prioritized TCR targets are 

shown in the bottom panel of Figure 3.1b (see Supplementary Figure 3.5b for prioritized 

CAR-T target examples). Violin plots depict exon inclusion levels across the 22 GBM 

samples (‘GBM-input’) and different sets of reference panels using the percent-spliced-in 

(PSI) metric (23). Tumor isoforms can be either the exon-skipped (low PSI) or the exon-

included (high PSI) isoform compared to the tissue-matched normal panel. As illustrated 

by the darker dots in the ‘Summary’ column, all six epitope-producing splice junctions were 

tumor-associated compared to the tissue-matched normal panel (‘Brain’), and tumor-

recurrent compared to the tumor panel (‘GBM’ and ‘LGG’). Two AS events (in TRIM11 and 

FAM76B) consistently showed distinct PSI values in tumors compared to normal brain and 

nonbrain tissues, indicating high tumor specificity. For candidate splice junctions, IRIS also 

calculates the fold-change (FC) of tumor isoforms between tumor samples and the tissue-

matched normal panel (3.4 Methods). For example, the tumor isoform in TRIM11 had an 

average isoform proportion of 8.60% in the 22 GBM samples and 0.13% in normal brain 
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samples, representing an FC of 65.6 in tumor samples versus the tissue-matched normal 

panel. We should note that, as shown under ‘Predicted HLA-epitope binding’, a single 

splice junction can give rise to multiple putative epitopes with distinct peptide sequences 

and HLA binding affinities. 

 

3.2.4 IRIS-predicted AS-derived TCR targets recognized by CD3+CD8+ T cells in 

tumors and peripheral blood from patients 

Finally, we sought to validate the immunogenicity and T-cell recognition of IRIS-identified 

candidate TCR targets using an MHC class I dextramer-based assay(12,24). We focused 

on predicted AS-derived tumor epitopes with strong putative HLA-binding affinity to 

common HLA types found in at least five of the 22 patients. We selected seven AS-

derived tumor-associated epitopes (five HLA-A02:01 and two HLA-A03:01) for dextramer-

based T-cell recognition testing (Supplementary Data 3.4). All but one epitope (last one 

in the table) showed some degree of tumor specificity when evaluated in normal 

(nonbrain) tissues (‘vs. Normal’, see Figure 3.2a). We obtained customized HLA-

matched, fluorescently labeled MHC class I dextramer:peptide (pMHC) complexes for 

each candidate epitope. We conducted flow cytometry to detect CD8+ T-cell binding with 

the pMHC complexes using available peripheral blood mononuclear cells (PBMCs) and/or 

ex vivo-expanded tumor-infiltrating lymphocytes (TILs). Based on the binding of each AS-

derived tumor epitope to a patient’s CD3+CD8+ T cells, we classified epitope reactivity as 

‘positive’ (binding > 0.1% of cells), ‘marginal’ (binding 0.01-0.1% of cells), or ‘negative’ 

(binding < 0.01% of cells). Epitopes that showed at least marginal reactivity were 

considered to be ‘recognized’ by patient T cells. We analyzed samples from two HLA-
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A02:01 and four HLA-A03:01 patients, as well as samples from three HLA-A02:01 and 

three HLA-A03:01 healthy donors (Supplementary Data 3.5).  

Both predicted HLA-A03:01 tumor epitopes were recognized by patient T cells. In 

particular, one epitope (KIGRLVTRK, in PLA2G6) was recognized by T cells from all four 

tested patients but only one of the three tested healthy donors. In one patient (LB2867), 

recognition of tumor epitope KIGRLVTRK was marginal in PBMCs but positive in the 

expanded TIL population, with epitope-reactive T cells representing 0.03% of T cells in 

PBMCs and 1.69% of T cells in TILs. This patient had been previously treated with 

neoadjuvant anti-PD-1 and anti-CTLA-4 checkpoint blockade immunotherapy. These 

results suggest epitope KIGRLVTRK as a promising immunotherapy target in HLA-A03 

patients from our GBM cohort. T cells from another patient (LB2907) showed positive 

reactivity to both tested HLA-A03:01 epitopes. All four predicted HLA-A02:01 epitopes 

were recognized by T cells from tested patients and healthy donors. The non-tumor-

specific epitope (YAIVWVNGV, bottom row in Figure 3.2a) was tested in two patients and 

three healthy donors and was recognized by T cells in only one healthy donor (marginal 

reactivity, 0.013% of CD3+CD8+ T cells). Taken together, our dextramer-based assay 

results indicate that the AS-derived TCR targets predicted by IRIS can be recognized by 

tumor-infiltrating and peripheral CD3+CD8+ T cells.   

Dextramer-positive T cells are expected to contain many clonotypes, only a few of 

which are dominant. To discover and quantify which TCR clonotypes comprise the 

epitope-reactive T cells, we sorted the TILs from one patient (LB2867) for cells that 

reacted positively with the KIGRLVTRK pMHC complex (Figure 3.2b), and performed 

V(D)J immune profiling using single-cell RNA-Seq (scRNA-Seq) on the sorted population 
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(Figure 3.2c). Of the 325 unique TCR clonotypes, the 10 most abundant TCRs 

represented 86.3% of all clonotypes (Supplementary Data 3.6), with the most frequent 

clonotype comprising 38.9% of all epitope-reactive T cells. This result suggests that there 

was clonal expansion of a select few dominant TCR clones within the tumor that were 

able to recognize the AS-derived epitope. To further validate our findings using 

complementary approaches, we analyzed bulk expanded TILs using immunoSEQ and 

pairSEQ assays (Figure 3.2c, Supplementary Figure 3.7). We confirmed that the top 

10 reported clonotypes from scRNA-Seq were present in the bulk TIL population based 

on the TCR β-chain CDR3 region. In addition, the pairSEQ assay, which uses statistical 

modeling to predict pairing of TCR α and β chains, found identically paired TCRs for seven 

of the top 10 TCRs from scRNA-Seq. Together, these data suggest that a select few TCR 

clones dominantly recognize the AS-derived epitope KIGRLVTRK in this patient. 

3.2.5 Discover diverse forms of AS-derived tumor antigens from 22 GBM samples 

using upgraded IRIS platform  

Since the last release, IRIS has been updated with improved reference databases and 

additional functionalities. In addition to existed tumor reference for GBM and LGG, 14 

more major TCGA cancer types are included to the reference database using the 

uniform RNA-seq processing pipeline provided by IRIS for generating reference 

database (3.4 Methods). Collectively, splicing pattern of 30 normal tissue types and 16 

tumor types based on more than 17,000 transcriptomes were summarized in IRIS 

reference database (Supplementary Table 3.1-3.2). The global landscape of AS in 

normal tissues and tumors are profiled (Supplementary Figure 3.8). An unsupervised 

representation showed PSI value based AS quantification can capture differences 
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between tissues or tumors, with brain and brain tumors standing out from other tissue 

and tumors. This underlies the importance of utilizing AS pattern references to 

determine the frequency and specificity of a splicing events in cancer. 

As shown in the Supplementary Figure 3.9, stepwise results of updated IRIS to identify 

AS-derived cancer immunotherapy targets from 22 GBM samples are summarized. In 

addition to skipped-exon (SE) events, 5,919 alternative 5’ splice site (A5SS), 8,619 

alternative 3’ splice site (A3SS), and 5,285 retained intron (RI) events were identified 

with proper filtering by IRIS (3.4 Methods), including both annotated and unannotated 

AS events in the genome annotation file. Using the in silico screening module, we 

compared these AS events against reference normal and tumor panels to evaluate 

tumor association, recurrence, and specificity (3.4 Methods). Specifically, AS events 

were compared against: normal brain samples from GTEx (tissue-matched normal 

panel, for evaluating tumor association), two cohorts of brain tumor samples - GBM and 

lower-grade glioma (LGG) - from TCGA (tumor panel, for evaluating tumor recurrence), 

and 11 other selected normal (nonbrain) tissues from GTEx (normal panel, for evaluating 

tumor specificity). After initially screening against the tissue-matched normal panel and 

removing blacklisted events, IRIS identified 9,945 tumor-associated SE events, 919 

A5SS events, 1,384 A3SS events and 1,780 RI events in the 22 GBM samples (‘Primary’ 

set, Figure 3.1b). Of these, 1,184 SE events, 273 A5SS events, 493 A3SS events and 

1,014 RI events were identified as tumor-recurrent and tumor-specific based on 

comparison with the tumor panel and normal panel, respectively (‘Prioritized’ set, Figure 

3.1b; Supplementary Data 3.2).   

Followed by inference based on normal and tumor reference, two translation strategies 
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were used: translating based on known ORFs in proteome database or using all three 

ORFs. For each AS event, splice junctions of the tumor isoform (i.e. the isoform that 

was more abundant in the tumor samples than in the tissue-matched normal panel) 

were translated into peptides. 

IRIS predicted 6,140 SE-derived, 265 A5SS-derived, 953 A3SS-derived and 1,281 RI-

derived ‘primary’ tumor-associated epitope-producing splice junctions. Of these, 713 SE-

derived, 80 A5SS-derived, 334 A3SS-derived and 784 RI-derived epitope-producing 

splice junctions were tumor-recurrent and tumor-specific compared to the tumor panel 

and normal panel, respectively, and were therefore predicted to be ‘prioritized’ TCR 

targets. In parallel, IRIS identified 655 SE-derived, 39 A5SS-derived, 84 A3SS-derived 

and 107 RI-derived ‘primary’ tumor-associated extracellular peptide-producing splice 

junctions, of which 60 SE-derived, 14 A5SS-derived, 22 A3SS-derived and 60 RI-derived 

junctions were predicted to be ‘prioritized’ CAR-T targets. 

 

3.2.6 An independent cohort of 53 GBM samples were sequenced and analyzed by 

IRIS to cross-validate discovered tumor antigens 

To evaluate IRIS-predicted targets from 22 GBM samples, we replicate the analysis 

using an independent cohort of 53 GBM samples (Supplementary Figure 3.10). RNA-

seq data from 53 GBM samples were sequenced and processed through the same 

uniform pipeline to serve as a validation cohort to evaluate targets discovered by the 

discovery cohort of 22 GBM samples. Subjected IRIS to analyze this validation cohort, 

we identified 1,187 SE-derived epitope-producing splice junctions as ‘Prioritized’ TCR 

targets. Due to the difference of HLA types in patients from the two cohorts, the number 
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of TCR targets are not directly comparable. Aiming to search for generic tumor antigens 

for TCR therapies, we focused on common HLA types (HLA*01:01, HLA*02:01, 

HLA*03:01). This reduced number of SE-derived epitope-producing splice junctions to 

249 for the discovery cohort and 439 for the validation cohort. A shared set of 219 SE-

derived epitope-producing splice junctions were identified for further selection. Next, 

important features for tumor targets like tumor-specificity were leveraged along with 

expression level of the gene of AS events, HLA types and HLA predicted binding 

affinities to rank the 219 shared TCR target candidates by the two cohorts. As shown in 

Supplementary Figure 3.10 b, top ten candidates are selected for dextramer-based T-

cell recognition assay. All ten selected candidates are predicted binding to HLA*02:01 in 

order to minimize the variance introduced by the HLA type of the dextramers. This study 

is still ongoing and the result of this experiment will help to evaluate IRIS-predicted TCR 

targets and inform the design of future target discovery procedures. 

3.3 Discussion 

In summary, we have developed IRIS, a big data-powered platform for discovering AS-

derived tumor antigens as an underexploited source of immunotherapy targets. Using 

IRIS followed by a dextramer-based assay, we discovered and validated AS-derived 

tumor epitopes recognized by T cells in patients. Our results provide experimental 

evidence for the immunogenicity of tumor antigens arising from AS and reveal novel 

potential targets for TCR and CAR-T therapies. The IRIS software can be downloaded 

from https://github.com/Xinglab/IRIS. 

 

3.4 Methods 

https://github.com/Xinglab/IRIS
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3.4.1 IRIS module for RNA-Seq data processing 

IRIS accepts standard formats of raw RNA-Seq FASTQ files and/or tab-delimited files 

of quantified AS events (from rMATS-turbo) as input data (Figure 3.1a). For raw RNA-

Seq data, IRIS provides a standalone pipeline that aligns RNA-Seq reads to the 

reference human genome hg19 using the STAR 2.5.3a (25) two-pass mode, followed 

by Cufflinks v2.2.1 (26) and rMATS v4.0.2 (rMATS-turbo) (19,20) for quantification of 

gene expression and AS events, respectively, based on the GENCODE (V26) (27) 

gene annotation. To quantify AS events, we converted splice-junction counts in rMATS-

turbo output into PSI (23) values. For each dataset, we removed low-coverage AS 

events, defined as events with an average count of less than 10 reads for the sum of 

all splice junctions across all samples in that dataset (tissue/tumor type). We applied 

this procedure to the 22 GBM samples from the UCLA cohort (BioProject: 

PRJNA577155), as well as to the normal and tumor samples of the reference panels 

used by IRIS. For the GTEx normal samples, aligned BAM files downloaded from the 

dbGAP repository were used directly for AS quantification. 

 

3.4.2 Constructing big-data reference panels of AS events across normal human 

tissues and tumor samples 

IRIS’s big-data reference panels of normal and tumor samples are available as pre-

processed, pre-indexed databases for fast retrieval by the IRIS program (Supplementary 

Figure 3.3). Specifically, 9,662 normal samples from the GTEx project (V7) (17) 

representing 53 tissue types of 30 histological sites were uniformly processed as 

described above. As shown in Supplementary Figure 3.3a-b, exon-based quantification 
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of AS events was able to distinguish samples by tissue type. Selected TCGA (16,28) 

tumor samples (Supplementary Figure 3.3c) were processed similarly to form the tumor 

panel. Additionally, IRIS provides a stand-alone indexing function for users to include 

custom normal and tumor samples in their reference panels. 

 

3.4.3 IRIS module for in silico screening of tumor AS events  

IRIS performs in silico screening using two-sided and one-sided t-tests to identify 

tumor-associated, tumor-recurrent, and tumor-specific AS events in group 

comparisons. To define an AS event as significantly different from a reference group 

(i.e., to identify tumor-associated/tumor-specific events), IRIS sets two requirements: 

1) a significant p-value from the two-sided t-test (default: p < 0.01), and 2) a threshold 

of PSI value difference (default: abs(Δψ) > 0.05). With a minor modification, to define 

an AS event as tumor-recurrent, IRIS compares a reference tumor panel with the 

tissue-matched normal panel and requires: 1) a significant p-value from the one-sided 

t-test in the same direction as the corresponding ‘tumor-associated’ event (default: p < 

0.01/number of ‘tumor-associated’ events; Bonferroni correction applied due to large 

sample sizes in reference panels), and 2) a threshold of PSI value difference (default: 

abs(Δψ) > 0.05). In addition, as the normal or tumor reference panel may include 

multiple individual groups (e.g. tissue types), a threshold of the number of significant 

comparisons against groups in the normal or tumor reference panel is used to 

determine whether AS-derived antigens are tumor-specific or tumor-recurrent. For 

each AS event, IRIS defines the ‘tumor isoform’ as the isoform that is more abundant 

in tumors than in the tissue-matched normal panel. Optionally, to rank or filter targets, 
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IRIS estimates the ‘fold-change (FC) of tumor isoform’ as the FC of the tumor isoform’s 

proportion in tumors compared to the tissue-matched normal panel. In addition to the 

default ‘group mode’, IRIS can be used to screen targets for a specific patient sample 

through the ‘personalized mode’. This mode uses an outlier detection approach, 

combining a modified Tukey’s rule (29) and a user-defined threshold of PSI value 

difference. 

 

3.4.4 Identification of AS events that are prone to measurement errors due to 

technical variances across big-data reference panels 

IRIS’s big-data reference panels were constructed by integrating various large-scale 

datasets with distinct technical conditions, such as RNA-Seq read length (30). Such 

technical variances across datasets could introduce discrepancies in the quantification of 

AS events (30). To identify error-prone AS events, we employed a data-based heuristic 

strategy to assess the effects of RNA-Seq read length (48 bp vs. 76 bp) and aligner 

(STAR vs. Tophat) on AS quantification (PSI value) (Supplementary Figure 3.4a). For a 

given tissue type (in this study, brain tissue), 10 randomly selected 76-bp RNA-Seq files 

from GTEx were artificially trimmed to 48 bp, and both 76- and 48-bp RNA-Seq files were 

aligned with STAR2.5.3a. Corresponding Tophat (v.1.4.1)-aligned 76-bp BAM files were 

directly downloaded from GTEx. AS events were quantified by rMATS-turbo. Events with 

significantly different PSI values (p < 0.05, abs(Δψ) > 0.05 from paired t-test) among RNA-

Seq datasets with distinct technical conditions were included in a blacklist. Results of this 

analysis for GTEx normal brain samples are shown in Supplementary Figure 3.4b. 
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3.4.5 IRIS module for predicting AS-derived TCR and CAR-T targets 

To obtain protein sequences of AS-derived tumor isoforms, IRIS generates peptides 

by translating splice-junction sequences into amino-acid sequences using known ORFs 

from the UniProtKB (31) database. Within each AS event, the splice-junction peptide 

sequence for the tumor isoform is compared to that of the alternative normal isoform, 

to ensure that the tumor isoform splice junction produces a distinct peptide. 

For TCR target prediction, IRIS employs seq2HLA (32), which uses RNA-Seq 

data to characterize HLA class I alleles for each tumor sample. IRIS then uses IEDB 

API (33) predictors to obtain the putative HLA binding affinities of candidate epitopes. 

The IEDB ‘recommended’ mode runs several prediction tools to generate multiple 

predictions of binding affinity, which IRIS summarizes as a median IC50 value. By 

default, a threshold of median (IC50) < 500 nM denotes a positive prediction for an AS-

derived TCR target. 

For CAR-T target prediction, IRIS maps AS-derived tumor isoforms to known 

protein extracellular domains (ECDs), as potential candidates for CAR-T therapy 

(Supplementary Figure 3.5a). Specifically, IRIS generates pre-computed annotations 

of protein ECDs. First, protein cellular localization information was retrieved from the 

UniProtKB (31) database (flat file downloaded in April 2018). ECD information was 

retrieved by searching for the term ‘extracellular’ in topological annotation fields, 

including ‘TOPO_DOM’, ‘TRANSMEM’, and ‘REGION’, in the flat file. Second, BLAST 

(34) was used to map individual exons in the gene annotation (GENCODE V26) to 

proteins with topological annotations. Third, the BLAST result was parsed to create 

annotations of the mapping between exons and ECDs in proteins. These pre-computed 
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annotations are queried to search for AS-derived peptides that can be mapped to 

protein ECDs as potential CAR-T targets. 

 

3.4.6 Proteo-transcriptomics data integration for MS validation 

IRIS includes an optional proteo-transcriptomics data integration function that 

incorporates various types of MS data, such as whole-cell proteomics, surfaceomics, 

or immunopeptidomics data, to validate RNA-Seq-based target discovery at the protein 

level (Supplementary Figure 3.6a). Specifically, sequences of AS-derived peptides 

are added to canonical and isoform sequences of the reference human proteome 

(downloaded from UniProtKB in September 2018). For immunopeptidomics data, 

fragment MS spectra are searched against the RNA-Seq-based custom proteome 

library with no enzyme specificity using MSGF+(35). The search length is limited to 7-

15 amino acids. The target-decoy approach is employed to control the false discovery 

rate (FDR) or ‘QValue’ at 5%. 

 

3.4.7 IRIS analysis of immunopeptidomics data 

Published matching RNA-Seq and MS immunopeptidomics data of B-LCL-S1 and B-LCL-

S2 cell lines (B lymphoblastoid cell lines from two individual donors) were retrieved from 

Laumont et al.(36) (GEO: GSM1641206, GSM1641207, and PRIDE: PXD001898). Raw 

RNA-Seq data of the JeKo-1 lymphoma cell line were obtained from the Cancer Cell Line 

Encyclopedia via the NCI Genomic Data Commons (https://portal.gdc.cancer.gov/legacy-

archive/). Corresponding immunopeptidomics MS data of JeKo-1 were retrieved from 

https://portal.gdc.cancer.gov/legacy-archive/
https://portal.gdc.cancer.gov/legacy-archive/
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Khodadoust et al. (37) (PRIDE: PXD004746).  

RNA-Seq data of the normal (B-LCL-S1, B-LCL-S2) and cancer (JeKo-1) cell lines 

were analyzed by IRIS as described above, with minor modifications. Specifically, AS 

events identified by the IRIS RNA-Seq data processing module were not subjected to the 

in silico screening module, but instead were directly used for the MS search. For MSGF+, 

FDR was set at 5%, which had the best concordance with predicted binding affinities 

(Supplementary Figure 3.6c-d). For comparison of predicted HLA binding and 

nonbinding peptides (Supplementary Figure 3.6d), a set of nonbinding peptides was 

created by randomly selecting peptides with median(IC50) > 500 nM to the same number 

of binding peptides (median(IC50) < 500 nM).   

 

3.4.8 IRIS discovery of candidate TCR and CAR-T targets from 22 GBM samples 

RNA-Seq samples were processed by IRIS. Detected skipped exon (SE) events were 

analyzed by using the IRIS screening and target prediction modules with the 

aforementioned default parameters. For reference panels, the ‘tissue-matched normal 

panel’ comprised normal brain tissue samples from GTEx; the ‘normal panel’ comprised 

other normal (nonbrain) tissue samples of 11 selected vital tissues (heart, skin, blood, lung, 

liver, nerve, muscle, spleen, thyroid, kidney and stomach) from GTEx; and the ‘tumor 

panel’ comprised two cohorts of brain tumor samples (GBM and LGG) from TCGA. The 

blacklist of AS events created for brain was applied before in silico screening by IRIS to 

eliminate error-prone AS events (Supplementary Figure 3.4).  

In screening for the ‘Primary’ set of AS events, we considered an event to be ‘tumor-
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associated’ if it was significantly different from the tissue-matched normal panel, using the 

default criteria described in ‘IRIS module for in silico screening of tumor AS events’. In 

screening for the ‘Prioritized’ set, we prioritized an AS event if it was both ‘tumor-recurrent’ 

(significantly different from the tissue-matched normal panel, in the same direction as input 

GBM samples, in at least 1 of 2 groups in the GBM/LGG tumor panel) and ‘tumor-specific’ 

(significantly different from multiple of 11 groups in the normal panel in the same direction 

as the tissue-matched normal panel). Here, we used at least 2 groups but this threshold 

can be user-defined to allow for higher stringency. 

When selecting potential TCR targets for dextramer validation, we applied three 

additional criteria: 1) predicted median(IC50) ≤ 300 nM; 2) predicted binding to common 

HLA types, including HLA-A02:01 and HLA-A03:01; and 3) predicted binding to at least 

five patients in the GBM cohort. After excluding targets with low gene expression (average 

FPKM < 5), we selected seven epitopes to test for T-cell recognition by dextramer assays. 

 

3.4.9 Patients.  

Tumor specimens were collected from 22 consenting patients with GBM who underwent 

surgical resection for tumor removal at the University of California, Los Angeles (UCLA; 

Los Angeles, CA). From these patients, we also obtained PBMCs and TILs from two HLA-

A02:01+ and four HLA-A03:01+ patients. All patients provided written informed consent, 

and this study was conducted in accordance with established Institutional Review Board-

approved protocols. 
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3.4.10 PBMC collection.  

Peripheral blood was drawn from patients before surgery and diluted 1:1 in RPMI media 

(Thermo Fisher Scientific, cat. no. MT10041CV). PBMCs, extracted by Ficoll gradient 

(Thermo Fisher Scientific, cat. no. 45-001-750), were washed twice in RPMI media. 

Collected PBMCs were frozen in 90% human AB serum (Thermo Fisher Scientific, cat. no. 

MT35060CI) and 10% DMSO (Sigma, cat. no. C6295-50ML) and stored in liquid nitrogen. 

In parallel, PBMCs from healthy HLA-A02:01 and HLA-A03:01 donors were purchased 

from Bloodworks Northwest (Seattle, WA) or Astarte Biologics (Bothell, WA). 

 

3.4.11 TIL collection.  

Surgically resected tumor samples were digested with a brain tumor dissociation kit 

(Miltenyi Biotec, cat. no. 130-095-42) and gentle MACS dissociator (cat. no. 130-093-235). 

After digestion and myelin depletion, collected cells were labeled with CD45 microbeads 

(cat. no. 130-045-801) and separated on Miltenyi LS columns (cat. no. 130-042-401) and 

MidiMACS Separator (cat no. 130-042-302). Collected CD45+ cells were cultured at 1×106 

cells/mL in X-VIVO 15 Media (Fisher Scientific, cat. no. BW04-418Q) containing 2% 

human AB serum with 50 ng/mL anti-CD3 antibody (BioLegend, cat. no. 317304), 1 μg/mL 

anti-CD28 antibody (BD Biosciences, cat. no. 555725), 1 μg/mL anti-CD49d antibody (BD 

Biosciences, cat. no. 555501), 300 IU/mL IL-2 (NIH, cat. no. 11697), and 10 ng/mL IL-15 

(BioLegend, cat. no. 570302). Cells were expanded for 3-4 weeks and replenished with 

fresh media and cytokines every 2-3 days. Before freezing, expanded cells were placed 

in media containing 50 IU/mL IL-2 for 1-2 days and then frozen in the same freezing media 

as PBMCs. 



129  

 

3.4.12 Collection of tumor RNAs and RNA sequencing.  

RNA from freshly collected or flash-frozen tumor specimens was extracted by using the 

RNeasy Mini Kit (Qiagen, cat. no. 74014). Paired-end RNA-Seq was performed at the 

UCLA Clinical Microarray Core using an Illumina HiSeq 3000 at a read length of 2×100 bp 

or 2×150 bp. 

 

3.4.13 Dextramer flow-cytometric analysis of PBMCs and TILs 

For each AS-derived peptide selected for validation, custom-made HLA-matched MHC 

Class I dextramer:peptide (pMHC) complexes were purchased from Immudex 

(Copenhagen, Denmark). Immudex also provided pMHC complexes for common 

cytomegalovirus (CMV) epitopes (cat. nos. WB2132 and WC2197) and for a nonhuman 

epitope (NI3233) as a negative control. Each pMHC complex was purchased with two 

separate tags for APC or PE fluorescence labeling, to increase specificity to targeted T 

cells with dual labeling. 

To facilitate proper gating of CD8+ T cells from PBMC and TIL populations, the 

following panel of antibodies (from BioLegend) was set up: CD3 BV605 (cat. no. 300460), 

CD8 FITC (cat. no. 344704), CD4 BV421 (cat. no. 317434), CD19 BV421 (cat. no. 

302234), CD56 BV421 (cat. no. 362552), and CD14 BV421 (cat. no. 301828). For single-

color compensation controls, OneComp eBeads were used (Thermo Fisher Scientific, cat. 

no. 01-1111-41). 

For each set of pMHC complexes, at least 3×106 cells were stained according to 
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manufacturer’s guidelines. Briefly, cells were thawed in a 37°C water bath and washed 

with RPMI and D-PBS (Fisher Scientific, cat. no. MT21031CV) before staining for cell 

viability with the Zombie Violet Viability Kit (BioLegend, cat. no. 423113). Next, the 

appropriate amount of each pMHC complex in a staining buffer of D-PBS with 5% fetal 

bovine serum (Fisher Scientific, cat. no. MT35016CV) was added to each sample. After 

10 min, the aforementioned antibody cocktail was added. After a 30-min incubation period, 

cells were washed twice in the same staining buffer. All samples were tested in a BD LSRII 

flow cytometer, and data were analyzed with FlowJo (Treestar). For gating, the lymphocyte 

population was first selected using forward and side scatter, and then the BV421-negative 

population was gated out (i.e. excluding dead cells and the CD14, CD19, CD56, and CD4 

populations) before selecting the CD3+CD8+ population. To set for proper gating of 

dextramer-positive cells, we used cells that were stained with the full antibody panel but 

no pMHC complexes, and cells that were given the nonhuman pMHC complex.  

 

3.4.14 TCR sequencing using scRNA-Seq  

Cells were stained by following the dextramer procedure with PE-conjugated pMHC 

complexes only. Cells were sorted by using the BD FACSAria flow cytometer, and PE+ 

cells were collected. V(D)J immune profiling of sorted cells was done with scRNA-Seq, 

using the 10X Genomics Chromium Single Cell Immune Profiling Workflow at the UCLA 

Clinical Microarray Core. Each T cell was encapsulated in an oil emulsion droplet with a 

barcoded gel bead, and reverse transcription was performed to create a barcoded cDNA 

library. The V(D)J-enriched and gene expression libraries were sequenced using the 10X 

Genomics Chromium Controller. After sequencing, the Cell Ranger pipeline was used to 
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align reads, filter, count barcodes and assign unique molecular identifiers.  

 

3.4.15 Next-generation immune repertoire sequencing using the immunoSEQ 

platform 

To assess the T-lymphocyte repertoire of bulk expanded TIL populations, we used the 

immunoSEQ assay (Adaptive Biotechnologies). This multiplex PCR system uses a mixture 

of primers that target the rearranged V and J segments of the CDR3 region to assess TCR 

diversity within a given sample. Genomic DNA from each sample was extracted by using 

the QIAamp DNA Blood Midi Kit (Qiagen, cat. no. 51185). We provided at least 1 μg of 

DNA (~60,000 cells) from each sample to Adaptive Biotechnologies for sequencing at a 

deep resolution. Resulting sequencing data were analyzed with the immunoSEQ Analyzer 

Platform (Adaptive Biotechnologies). 

 

3.4.16 High-throughput αβ TCR pairing using the pairSEQ platform.  

We provided Adaptive Biotechnologies with frozen bulk expanded TIL samples for their 

pairSEQ assay, to predict which α and β chains may pair to form a functional TCR. Briefly, 

T cells were randomly distributed into wells of a 96-well plate. The mRNA was extracted, 

converted to cDNA, and amplified by using TCR-specific primers. The cDNA of T cells 

from each well was given a specific barcode, and all wells were pooled together for 

sequencing. Each TCR sequence was mapped back to the original well through 

computational demultiplexing. Putative TCR pairs were identified by examining whether a 

sequenced TCR α chain was frequently seen to share the same well with a specific 
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sequenced TCR β chain, above statistical noise. 

 

3.4.17 Updated IRIS module for RNA-seq data processing 

The snakemake-based framework is used to build IRIS. IRIS offers pipelines to perform 

streamlined RNA-seq processing, HLA inference, target screening and prediction.  

The updated IRIS RNA-seq processing module offers a new option allowing filtering AS 

events based on junction read coverage by individual samples. For each sample in a 

dataset, we removed low-coverage AS events, defined as events with splice junction reads 

less than 10. In comparison to the existing group/dataset-based average read coverage 

filtering, this new option gives flexibility of examining events with selective expression in a 

subset of dataset, which may be removed by group-based filtering.  

We applied this procedure to normal and tumor samples of the reference panels used by 

IRIS, increasing the number of AS events in the reference. The 22 GBM samples from the 

UCLA cohort (BioProject: PRJNA577155) remain as the previous group filtering mode 

described in the above section to the small sample size. 

FASTQ files of GTEx V7 RNA-seq samples and TCGA tumor samples were downloaded 

and uniformly processed and quantified by STAR aligner, Cufflinks and rMATS-turbo 

(4.0.2) as described above.  

For PCA, IRIS reference database is further filtered by group mode, plus a PSI range 

greater than 5% across the entire reference dataset, with a mean skipping or inclusion 

value over 5% missing value less than 5%. 
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3.4.18 Updated IRIS AS reference database 

The updated IRIS’s big-data reference panels of normal and tumor samples are available 

as pre-processed, pre-indexed databases for fast retrieval by the IRIS program 

(Supplementary Table 3.1-3.2). Specifically, 9,561 normal tissue samples from the 

GTEx project (V7) (17) representing 30 histological sites and additional three cell lines 

and 7,900 tumor samples from TCGA(18) (major tumor types with tumor sample n > 300) 

were uniformly processed as described above to form normal and tumor panels. 

Additionally, IRIS provides a stand-alone indexing and formatting function for users to 

include custom normal and tumor samples in their reference panels. 

 

3.4.19 Additional options for IRIS module for in silico screening of tumor AS events 

In addition to existing options, the IRIS screening module now supports both parametric 

and non-parametric tests in order to account for outliers in AS pattern in both input data 

and reference panels. AS events unique in input samples will be output in a separate file 

due to now available information in the reference.  

IRIS translation can now be performed as an integrated step during IRIS screening. IRIS 

translation supports translating based on either known ORF in UniProtKB or three ORF 

translation, which can be useful in searching for AS events from unknown ORF or novel 

transcripts. An option is provided to remove the entire truncated splice junction peptides 

due to stop codons. 

 

3.4.20 Updated to stringent threshold for IRIS discovery of candidate TCR and CAR-
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T targets from 22 GBM samples 

As we noted in the previous analysis, the threshold we used for prioritizing targets with 

high tumor specificity can be user-defined to allow for higher stringency. In the updated 

analysis, we applied more stringent threshold: 

In screening for the ‘Primary’ set of AS events, we considered an event to be ‘tumor-

associated’ if it was significantly different from the tissue-matched normal panel, using the 

default criteria described in ‘IRIS module for in silico screening of tumor AS events’. In 

screening for the ‘Prioritized’ set, we prioritized an AS event if it was both ‘tumor-recurrent’ 

(significantly different from the tissue-matched normal panel, in the same direction as input 

GBM samples, in at least 1 of 2 groups in the GBM/LGG tumor panel) and ‘tumor-specific’ 

(significantly different from 7 of 11 groups in the normal panel in the same direction as the 

tissue-matched normal panel). Here, we used at least 7 groups, but this threshold can be 

user-defined to allow for higher stringency. 

 

3.4.21 Replication analysis using 53 GBM samples 

53 GBM samples were sequenced to generate RNA-seq data with paired reads of 150bp 

read length. The same RNA-seq processing pipeline described above in IRIS RNA-seq 

data processing module was applied. IRIS analysis was performed using the same 

parameters for 22 GBM analysis. 

The shared events of SE-derived epitope-producing splice junctions between 53 GBM 

cohort and 22 GBM cohort was defined by AS events with the same tumor isoform 

(skipping or inclusion). 
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3.4.22 Code Availability 

IRIS source code is accessible on GitHub at https://github.com/Xinglab/IRIS. 

 

3.4.23 Data Availability 

The 22 UCLA GBM RNA-Seq data generated for this study were uploaded to BioProject 

database (BioProject: PRJNA577155). RNA-Seq data used to construct IRIS’s normal and 

tumor reference panels of AS events are available from the GTEx project 

(https://gtexportal.org/) and The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/legacy-archive/). For the IRIS proteo-transcriptomics 

analysis, matching RNA-Seq data and MS immunopeptidomics data of B-LCL-S1 and B-

LCL-S2 cell lines were retrieved from Laumont et al. (GEO: GSM1641206, GSM1641207 

and PRIDE: PXD001898). Raw RNA-Seq data of the JeKo-1 lymphoma cell line were 

obtained from the Cancer Cell Line Encyclopedia via the NCI Genomic Data Commons 

(https://portal.gdc.cancer.gov/legacy-archive/). Corresponding immunopeptidomics MS 

data of JeKo-1 were retrieved from Khodadoust et al. (PRIDE: PXD004746). 
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3.5 Figures 
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Figure 3.1 IRIS: A big data-powered platform for discovering AS-derived cancer 

immunotherapy targets 

(a) Workflow for IRIS, integrating computational modules, large-scale reference RNA-Seq 

panels, and dedicated statistical testing programs. IRIS has three main modules: RNA-

Seq data processing (top), in silico screening (middle), and TCR/CAR-T target prediction 

(bottom). The prediction module includes an option for proteo-transcriptomics integration 

of RNA-Seq and MS data. (b) Stepwise results of IRIS to identify AS-derived cancer 

immunotherapy targets from 22 GBM samples (top). Identified skipped-exon (SE) events 

from the IRIS data-processing module were screened against tissue-matched normal 

panel (‘Normal Brain’) to identify tumor-associated events (‘Primary’ set), followed by 

tumor panel and normal panel to identify tumor-recurrent and tumor-specific events, 

respectively (‘Prioritized’ set). After constructing splice-junction peptides of tumor isoforms, 

TCR/CAR-T targets were predicted. As an illustrative example, IRIS readouts for 

prioritized candidate TCR targets are shown (bottom). Violin plots (left) show PSI values 

of individual AS events across GBM (‘GBM-input’) versus three reference panels. Dots 

(middle) summarize screening results. Darker-colored dots indicate stronger tumor 

features (association/recurrence/specificity) versus each reference panel. FC is estimated 

fold change of tumor isoform’s proportion in GBM (‘GBM-input’) versus tissue-matched 

normal panel (‘Brain’). Predicted HLA-epitope binding (right) is output of prediction module. 

Preferred features for immunotherapy targets in this study are shown in blue. Amino acids 

at splice junctions in epitopes are underlined. ‘Best HLA’ is HLA type with best predicted 

affinity (median IC50) for given splice-junction epitope. ‘#Pt. w/HLA’ is number of patients 

with HLA type(s) predicted to bind to a given epitope. Three epitopes in TMEM62 and 
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PLA2G6 (blue) were predicted to bind to common HLA types (HLA-A02:01 and HLA-

A03:01) and were selected for experimental validation. 
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Figure 3.2 IRIS-predicted AS-derived TCR targets recognized by CD3+CD8+ T 

cells in tumors and peripheral blood from patients 

(a) Summary of dextramer-based validation of IRIS-predicted AS-derived epitopes. 

PBMCs and/or TILs from four HLA-A03 and two HLA-A02 patients were tested for 

recognition of IRIS-predicted epitopes. Within each HLA type, epitopes are listed by order 

of tumor specificity (high to low) versus normal panel (11 normal nonbrain tissues). 

Reactivity (‘Positive’, ‘Marginal’, or ‘Negative’) in assay was evaluated as percentage of 

dextramer-labeled cells among PBMCs/TILs (>0.1%, 0.01%-0.1%, or <0.01% of 

CD3+CD8+ cells, respectively) after subtracting negative control (nonhuman peptide). 

'Dextramer assay summary' was determined by the mean percent reactivity of CD3+CD8+ 

cells across individual tests. (b) Flow cytometric analysis showing that ex vivo-expanded 

TILs from one HLA-A03 patient (LB2867) contained T cells that recognized epitope 

KIGRLVTRK. Rows correspond to cells that recognize APC- and PE-labeled dextramers 

(top), only PE-labeled dextramers (middle), or only APC-labeled dextramers (bottom). 
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Percentages of epitope-specific cells are shown. (c) Immune profiling results revealing 

immune repertoire composition of KIGRLVTRK-specific T cells from one patient 

(LB2867). The scRNA-Seq assay was performed on sorted KIGRLVTRK-specific T cells, 

whereas pairSEQ and immunoSEQ assays captured TCR clones from bulk TIL RNAs of 

same patient. Table (left) lists seven most abundant T-cell clones from scRNA-Seq, with 

percentages of matching CDR3 sequences from TCR β chains. *For pairSEQ and 

immunoSEQ, percentages are the best frequencies of matching TCR pair or β-chain 

clones. The 3D scatterplot (right) shows that these approaches converged on three 

dominant TCR clones. For comparison, the same epitope in the table and 3D scatterplot 

are identified by use of the same color for the sequence (table) and text box (plot). 

  



142  

 

Supplementary Figure 3.3 RNA-Seq big-data reference panels in IRIS 

(a) Exon-based principal component analysis (PCA) of RNA-Seq data of 9,662 samples 

from 53 normal tissues from the GTEx consortium. Samples from the same histological 
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site are grouped by color. Samples from different subregions of the same histological site 

are differentiated by different shapes. (b) Summary of 53 normal tissues from the GTEx 

consortium. Data for all 53 tissues are available to IRIS users as a reference panel of 

normal tissues. In the present study, 11 selected vital tissues (heart, skin, blood, lung, 

liver, nerve, muscle, spleen, thyroid, kidney, and stomach) were used for the ‘normal 

panel’. ‘Events Selected’ represent AS events with an average count ≥ 10 reads for the 

sum of all splice junctions across all samples in that tissue. (c) Summary of the tumor 

reference panel (TCGA tumor samples relevant to GBM). ‘Events Selected’ represent AS 

events with an average count ≥ 10 reads for the sum of all splice junctions across all 

samples in that tumor type. 
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Supplementary Figure 3.4 Identification of AS events that are prone to 

measurement errors due to technical variances across big-data reference panels 

(a) Computational workflow to create a ‘blacklist’ of error-prone AS events. Normal 76-bp 

RNA-Seq reads were artificially trimmed to 48 bp. RNA-Seq files (76- and 48-bp) were 

aligned by using two different aligners (Tophat and STAR). AS events were quantified by 

rMATS-turbo. AS events with statistically significant differences in PSI values among 

RNA-Seq datasets with distinct technical conditions were identified and included in a 

blacklist. (b) Scatter plots comparing PSI values of GTEx normal brain RNA-Seq data 

estimated under distinct technical conditions (read lengths: 48- and 76-bp, aligners: STAR 

and Tophat). ‘Significantly different’ AS events were defined as those with significantly 

different PSI values (p < 0.05, abs(Δψ) > 0.05 from paired t-test).  
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Supplementary Figure 3.5 CAR-T target prediction by IRIS 

(a) Computational workflow to annotate protein extracellular domain (ECD)-associated AS 

events for CAR-T target discovery. (b) Five examples of IRIS-identified AS-derived CAR-

T targets for 22 GBM samples. Position of the ECD in amino acid (aa) sequence was 

obtained from UniProtKB. 
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Supplementary Figure 3.6 Proteo-transcriptomic analysis of HLA presentation of 

AS-derived epitopes in normal and tumor cell lines 

(a) Proteo-transcriptomics workflow adopted by IRIS to discover splice-junction peptides 

in MS datasets. IRIS inputs MS data (right), such as whole-cell proteomics, surfaceomics, 

or immunopeptidomics (HLA peptidomics) data. RNA-Seq-based custom proteome library 

is constructed and searched using MSGF+. (b) Summary of HLA presentation of AS-

derived epitopes in JeKo-1 (lymphoma) and B-LCL (normal) cell lines. Peptide-spectrum 

matches (‘PSMs’) and ‘Unique peptides’ are provided by MSGF+ with a target-decoy FDR 

of 5%. ‘Predicted AS epitopes’ are generated by the IRIS prediction module, which utilizes 

IEDB predictors. AS epitopes that are predicted by IRIS and detected in the MS data are 

considered ‘MS-validated AS epitopes’. (c) Percentage of IRIS-predicted AS-derived 

epitopes among all MS-detected peptides. Graph shows the percentage of all MS-

detected peptides that are IRIS-predicted AS-derived epitopes (y-axis) as a function of the 

MSGF+ target-decoy FDR (x-axis). (d) Preferential detection of high-affinity AS-derived 

peptides in MS data. Graph shows the number of AS-derived peptides detected in JeKo-

1 MS data (y-axis) as a function of the MSGF+ target-decoy FDR (x-axis). Peptides with 

high (IC50 < 500 nM; Pred+, orange) and low (IC50 > 500 nM; Pred-, grey) predicted HLA 

binding affinities are shown. (e) Heatmap depiction of distribution of AS-derived epitopes 

in JeKo-1 MS immunopeptidome, as a function of predicted HLA binding affinity and 

transcript expression level. AS-derived peptides are binned by the corresponding 

transcripts’ expression levels and IEDB-predicted binding affinity scores. Heatmap is 

colored from red (high) to yellow (90th percentile) to blue (low), reflecting the proportion of 

IRIS-predicted AS-derived epitopes that are MS-detected in each bin.  
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Supplementary Figure 3.7 Consistent distributions of high-frequency TCR clones 

in one patient’s TIL population revealed by multiple TCR sequencing approaches 

 (a) Scatter plot comparing scRNA-Seq and bulk TIL pairSEQ for detection of high-

frequency TCR clones. Graph shows frequency detected from bulk TIL samples using 
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pairSEQ (y-axis) and scRNA-Seq on dextramer-positive sorted TIL samples (x-axis). As 

a complementary validation of scRNA-Seq, clonotypes from pairSEQ were matched to 

scRNA-Seq results by either CDR3 pairs or β chains, whichever matched best. The 10 

most abundant TCR clones by scRNA-Seq that overlapped with clones detected by bulk 

TIL pairSEQ are circled. (b) Table showing CDR3 amino acid sequences of the 10 most 

abundant TCR clones detected by scRNA-Seq and their corresponding detection 

frequencies by bulk TIL pairSEQ. As a complementary validation of scRNA-Seq, 

clonotypes from pairSEQ were matched to scRNA-Seq results by either CDR3 pairs or β 

chains, whichever matched best. (c) Scatter plot comparing bulk TIL immunoSEQ and 

bulk TIL pairSEQ for detection of high-frequency TCR clones. Graph shows frequency 

detected from bulk TIL samples using immunoSEQ (y-axis) and pairSEQ (x-axis). 

Clonotypes from immunoSEQ were matched to pairSEQ results by the best CDR3 β 

chains. Four high-frequency overlapping clones from both methods are circled and color-

coded, with β-chain CDR3 amino acid sequences and frequencies by each method shown 

in boxes. (d) Scatter plot comparing scRNA-Seq and bulk TIL immunoSEQ for detection 

of high-frequency TCR clones. Graph shows frequency detected from bulk TIL samples 

using immunoSEQ (y-axis) and scRNA-Seq on dextramer-positive sorted TIL samples (x-

axis). As a complementary validation of scRNA-Seq, clonotypes from immunoSEQ were 

matched to scRNA-Seq results by the best CDR3 β chains. Three high-frequency 

overlapping clones from both methods are circled and color-coded, with β-chain CDR3 

amino acid sequences and frequencies by each method shown in boxes.  
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Supplementary Figure 3.8 Updated RNA-seq big-data AS reference panels of IRIS 

(a) Exon-based principal component analysis (PCA) of RNA-Seq data of 9,561 samples 
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from 30 normal tissues and one cell lines from the GTEx consortium. Samples from the 

same histological site are grouped by color. Samples from different subregions of the 

same histological site are differentiated by different shapes. 

(b) Exon-based principal component analysis (PCA) of RNA-Seq data of 7,900 samples 

from 16 tumor types from the TCGA consortium. Samples from the same tumor type are 

grouped by color. Samples representing different disease stage of the same tumor type 

are differentiated by different shapes. 

  



154  

a 

 

Supplementary Figure 3.9 Discover diverse forms of AS-derived tumor antigens 

from 22 GBM samples using upgraded IRIS 

(a) Stepwise results of updated IRIS to identify AS-derived cancer immunotherapy 

targets from 22 GBM samples (top). Identified skipped-exon (SE), alternative 5’ splice 

site (A5SS), alternative 3’ splice site (A3SS), and retained intron (RI) events from the 

IRIS data-processing module were screened against tissue-matched normal panel 

(‘Normal Brain’) to identify tumor-associated events (‘Primary’ set), followed by tumor 

panel and normal panel to identify tumor-recurrent and tumor-specific events, 

respectively (‘Prioritized’ set). Followed by inference based on normal and tumor 

reference, two translation strategies were used: translating based on known ORFs in 

proteome database or using all three ORFs. After constructing splice-junction peptides 
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of tumor isoforms, TCR/CAR-T targets were predicted.  
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Supplementary Figure 3.10 A validation cohort of 53 GBM samples to prioritize 

IRIS-predicted TCR targets 

(a) A flowchart of TCR targets replication and prioritization for T-cell based assay. From 

top to bottom are steps from targets predicted from the discovery cohort (22 GBM 

samples) to shared targets from the validation cohort (53 GBM samples) and eventually 

ranked and nominated for dextramer-based T-cell recognition assay. ‘Prioritized TCR 

candidates’ in the flowchart refers to SE-derived epitope-producing splice junctions.  

(b) Venn diagram (top) showing numbers of Prioritized TCR candidates from both 

discovery and validation cohorts. (Bottom) A table of selected tumor antigen candidates 

shared by both discovery and validation cohorts and prioritized for FC of tumor isoform, 

common HLA type and gene expression of AS events. 
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3.6 Tables 

Supplementary Table 3.1 Summary of IRIS reference panel of normal tissues 
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Supplementary Table 3.2 Summary of IRIS reference panel of tumors 
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3.7 Supplementary materials 

Supplementary Data 3.1 

IRIS MS analysis of AS-derived epitopes in cell line immunopeptidomics datasets. 

a. JeKo-1 cancer cell line with FDR = 5%. 

b. B-LCL-S1 normal cell line with FDR = 5%. 

c. B-LCL-S2 normal cell line with FDR = 5%. 

Supplementary Data 3.2 

IRIS screening results of tumor AS events in 22 GBM samples. 

a. IRIS identified 6,276 tumor-associated AS events (Primary set) 

b. IRIS identified 1,738 tumor-recurrent AS events with high tumor-specificity in GBM 

samples (Prioritized set) 

 Supplementary Data 3.3 

IRIS prediction of AS-derived TCR and CAR-T targets for 22 GBM samples. 

a. Prioritized TCR targets listed by unique splice junction. 

b. Prioritized CAR-T targets listed by unique splice junction. 

 Supplementary Data 3.4 

Summary results for seven selected AS-derived tumor-associated epitopes for 

dextramer-based T-cell recognition testing. 

 Supplementary Data 3.5 

Summary results of dextramer-based T-cell recognition testing of seven AS-derived tumor 
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epitopes using PBMCs and TILs from six patients and six healthy donors with two different 

HLA types. Data are shown normalized to results with nonhuman epitope NI3233 as a 

negative control. A common virus found in 50-80% of the population, cytomegalovirus 

(CMV) was included as a control (Macguire et al., Methods, 2017). n/a, results not 

available. Green, 'positive' reactivity; yellow, 'marginal' reactivity; red, 'negative' reactivity. 

 Supplementary Data 3.6 

Summary results for TCR clonotypes of KIGRLVTRK-positive T cells from one patient, 

profiled by single-cell and bulk RNA-seq based approaches. Amino acid sequences of 

TCR CDR3 and frequencies of clonotypes by scRNA-seq, pairSEQ, and immunoSEQ are 

shown. 
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Chapter 4 Concluding Remarks 

 

The rapid development of high throughput sequencing technologies in the past decade 

has profoundly changed the face of biomedical research. Fueled by advanced sequencing 

technologies, cancer research has also witnessed tremendous progress in the past ten 

years. Large numbers of cancer drivers, signatures and predictive biomarkers were 

identified through large-scale deep sequencing efforts or functional genomics studies. 

Advances in cancer immunotherapy has led to breakthroughs in cancer treatment. 

Collectively, huge opportunities await in data-driven knowledge discovery in cancer 

research. 

The exponential growth of large-scale sequencing data of various types of cancer 

greatly empowers research for elucidating cancer mechanisms and developing therapies. 

However, the challenge remains in how to effectively utilize and mine gigantic sequencing 

datasets for knowledge discovery. This dissertation has been focused on leveraging novel 

big data frameworks to study tumor transcriptomes, in particular, on the roles of RNA 

alternative splicing in cancers and its therapeutic applications. Alternative splicing is a 

prevalent source of transcriptomic and proteomic diversity in cancer cells and exerts 

important functions during oncogenesis. Aberrant alternative splicing events have been 

extensively reported in cancers. Large-scale transcriptome analyses often find large 

amounts of splicing alterations in tumors with limited understanding of their roles in cancer 

development and therapeutic potentials. Seeking to translate sequencing big data to in-

depth understanding of alternative splicing in tumors, computational tools were developed 

to leverage the large-scale transcriptomic or multi-omics data to address fundamental or 
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translational questions in cancer research, with the following two components. 

In chapter 2, we aimed to study the roles of alternative splicing dysregulation during 

cancer progression. Large-scale RNA-seq analyses are able to detect thousands of 

altered splicing events in cancer, while the ability of distinguishing essential changes 

associated with oncogenesis from the large amount of detected passenger events is 

lacking. Therefore, we developed a novel analytical method, called PEGASAS, bridging 

the gap between alternative splicing to oncogenic signals using a pathway-guided 

correlation analysis to mine large-scale RNA-seq data. From the same sample, PEGASAS 

computes orthogonal and robust measurements of splicing level and oncogenic pathway 

activity, maximizing the use of RNA-seq data. Applying PEGASAS to study a 

comprehensive meta-dataset of prostate cancer samples, we revealed a group of splicing 

events tied to oncogenic signals alterations and established a regulatory role of Myc in 

RNA processing, which was validated experimentally. This study demonstrated a system 

biology approach coupling big data analysis with experimental perturbations to gain 

insights in RNA regulations in cancers. Expanding the PEGASAS analysis to two other 

epithelial tumors, we observed similar mechanisms. Our findings highlighted the capability 

of PEGASAS in mining massive RNA-seq data to uncover intrinsic mechanisms in 

cancers, which could lead to mechanistic discoveries as well as therapeutic targets. 

A natural extension of this study is to carry out a pan-cancer analysis of alternative 

splicing using this pathway-driven method. Pan-cancer analysis of alternative splicing and 

its genetic basis are extensive, while their interplay with oncogenic activations is less well 

characterized. In our published work, the successful application of PEGASAS to 

investigate prostate, breast, and lung malignancies suggests this framework can be 
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applied to elucidate conserved or tumor-specific interplays between splicing and 

oncogenic pathways. Moreover, PEGASAS presents a generic framework that can be 

used to robustly assess associations between gene signatures and other RNA-level 

dysregulations (e.g. RNA editing) in cancer through large-scale RNA-seq data integration. 

In chapter 3, the widespread dysregulated alternative splicing events in tumors 

were systematically examined for their potential as tumor antigens for cancer 

immunotherapy. One major limitation of the current paradigm of tumor antigen discovery 

is that they are mainly genomic variation-based, resulting in a limited number of targets for 

tumors with moderate or low mutation. Instead, alternative splicing dysregulations 

generate tumor isoforms, as suggested in chapter 2. To discover novel tumor antigens 

from this underexploited source, we developed a big data-powered platform, named IRIS, 

which harnesses large-scale cancer and normal transcriptomics data to infer potential 

targets that are common and specific to tumor cells. Aiming to provide an integrated 

solution, IRIS is built to provide a systematically identification and inference of tumor 

splicing isoforms along with a simultaneous prediction of both T-cell receptor (TCR) and 

chimeric antigen receptor T-cell (CAR-T cell) therapies. We subjected IRIS to study RNA-

Seq data from 22 patients with glioblastoma, we discovered thousands of candidate 

targets for TCR and CAR-T cell therapies, which would have been overlooked by existing 

immunotherapy target discovery strategies. We experimentally confirmed that predicted 

AS-derived tumor antigens were recognized by patient T cells, validating the utility of IRIS 

for discovery tumor antigens arising from alternative splicing.  

IRIS presented additional conceptual and technical advances. A recent review 

(Frankiw, L., et al. (2019). Nat Rev Immunol) specified one major issue in the existing 
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works attempting to utilize splicing-derived targets, which is the absence of methods for 

robust screening for tumor events. This underlined the need of building a uniformly 

processed, standardized and widely accessible reference database of alternative splicing 

patterns in normal and disease cells. The reference database established by IRIS contains 

splicing profiles from thousands normal and tumor transcriptomes, reflecting the dynamic 

of splicing events across individuals and the specificity between tissues. The IRIS 

reference is made public available along with the IRIS standalone program. Moreover, the 

proteomics MS validation module of IRIS adopted a proteo-transcriptomic approach 

(Nesvizhskii, A. I. (2014). Nat Methods), allowing identifying aberrantly expressed novel 

isoforms that are undetectable using a default known protein database for MS search. 

Altogether, IRIS provides a standardized multi-omics framework that not only performs 

robust inference of tumor specificity for splicing events, but also greatly promotes the 

reproducibility of the antigen discovery analysis.  

Furthermore, the big data-informed tumor antigen discovery framework proposed 

by IRIS is not limited to alternative splicing derived targets. With minor modification, the 

IRIS platform will be able to incorporate other types of tumor-specific or tumor-associated 

events resulting from dysregulated RNA processing in cancers. As reviewed in chapter 1 

and other articles (Smith, C. C., et al. (2019). Nat Rev Cancer), chimeric RNAs, circular 

RNAs, RNA editing events, Alu exons and many other RNA events that showed aberrant 

expression and can be translated in cancer cells could be leveraged as tumor targets. 

Some of these aberrant RNA molecules may introduce strong immunogenicity as their 

peptide sequences may have high foreignness to the immune system. Altogether, these 

novel categories of aberrant isoforms can further expand and diversify the repertoire of 
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tumor antigens, benefiting more cancer patients with transcriptome dysregulations.  

Moving forward, cancer target discovery and therapy development will significantly 

benefit from the fast evolving of detection technologies and big-data integration platforms. 

These new detection technologies will include but not limited to the third generation long-

reads sequencing technologies, single-cell manipulation and profiling technologies, etc. 

Undoubtedly, such emerging sequencing technologies will produce huge volumes of data 

requiring novel computational solutions. This opens doors for massive discovery of tumor 

specific targets. With the development of more enabling detection technologies in the next 

decade, the picture of dynamic interactions between cells will become more complete, 

which will help to better elucidate intriguing mechanisms of tumor-immune interaction or 

other involved biological systems. A system-level understanding enabled by high 

dimensional data integration will fundamentally improve the therapeutic targets search and 

treatment development in the future. 
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