UC Irvine
ICS Technical Reports

Title
Maintenance and porting of software by design recovery

Permalink
https://escholarship.org/uc/item/8xp0v8t3

Authors

Arango, Guillermo
Baxter, Ira
Freeman, Peter

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8xp0v8t3
https://escholarship.org/uc/item/8xp0v8t3#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

Technical Report #85-09

MAINTENANCE AND PORTING
OF SOFTWARE BY DESIGN RECOVERY

Guillermo Arango
Ira Baxter
Peter Freeman
Christopher Pidgeon

Reusable Software Engineering Project
. Department of Information and Computer Science
University of California at Irvine
Irvine, CA 92717

ABSTRACT

Enormous resources are invested in the construction of
software. As needs <change we would 1like to be able to
preserve these investments. In this paper we outline a wuni-
fied model for addressing the problem of change in software
systems for which the original specifications are not avail-
able. Our approach is derived from a much broader paradigm
for software construction. The approach is based on
recovery of abstractions and design decisions made during
implementation of the current version of a system. The paper
consists of two major parts. We begin with a discussion of
the Draco paradigm for software construction and how it can
be applied to maintenance and porting problems. We follow
with a discussion of our experience with a porting project
using prototype implementations of these ideas.

Support for this research has been provided by National
Science Foundation grant MCS-83-04439.

1. INTRODUCTION

Enormous resources are invested in the construction of
software [Lyon8l]. As needs change we would like to be able
to preserve these investments. Changes may be caused by the
desire of users to move the software to different environ-
ments, or by the need to alter the functionality or perfor-

mance of software.

Why does changing software prove to be so difficult?
For most software the original design is inaccessible: the
original requirements analysis and specifications, if
recorded, are out of date. The existing realization of the
software systems usually contain implicit assumptions about
their environments. 1Idioms corresponding to these environ-
mental idiosyncracies are scattered throughout the code of

the program.

Those parts of the design and environment that are
recorded in documents cannot be automatically processed
because they are not 1in ~hachine-processable form. Manual
processing is expensive and unreliable. There is also a
popular perceptioﬁ that-“small" changes in a system will
require correspondingly small, incremental efforts. Because
of our inability to 'estimate the cost of changes we optim-
istically assume that they can be easily done. When inap-
propriately "simple" changes are introduced, inconsistencies
occur that then require extensive testing and further

analysis to locate and debug. Changes made to a program in

February 2, 1985

the past leave "scar tissue": code not easily changed due
the ripple effect on the rest of the software. Along its
life time, a system is taken apart, twisted and sewn back
together beyond recognition (*). Horror stories about these
software Frankensteins are well known to the software prac-

titioners.

- We see three major reasons for change: enhanced perfor-
mance 1is needed, the program must be made to operate in a
different environment, or different functionality is
required. Many authors [Hague76] [Tanenbaum78] [Poole73]
treat these changes as requiring different solutions, as
evidenced by their varying definitions of portability, tran-
sportability, adaptability, etc. We propose a model that
unifies the management of change regardless of its cause. In
this sense, we share Boehm's general definition of mainte-
nance as "the process of modifying existing operational
software while leaving its primary functions intact"

[Boehm8l].

Our capacity to make changes to software systems is
limited if we must rely on manual systems. We are limited by
the sum of the maintenance team's ability, and only ‘“better
design" can be proposed as a means to amplify its capacity.
The alternative 1is to attack the fixed-change capacity

assumption by use of tools not limited by those abilities.

Shoow odeie whuea, v e et sl uen e s e et ot hvee e v adees o oo S s ot o v oz

(*) This sentence has been sewn back together beyond
recognition,

February 2. 1985

We propose a method for the re-implementation of programs by
recovering the design of such programs, and using the
recovered aesign, to re-implement the program in new
environments (porting), with different functionality
(maintenance), or with different performance (performance
enhancement). This method is based upon an emerging para-
digm for the automatic construction of software for which a

prototype, the Draco system. has been developed [Neigh-

bors84].

The paper has two majof parts. We begin with a discus-
sion of the Draco paradigm for software construction and how
it can be applied to maintenance and porting problems. We
follow with a discussion of our experience with a porting

project using prototype implementations of these ideas.
2. THE DRACO PARADIGM

The Draco paradigm for the generation of software.
assumes that an organization wishes to construct a number of
similar software programs. These programs will share the
property that they operate, in an abstract sense, on objects
from one or ﬁore doﬁains. Before program construction
begins, the domain areas of interest are formalized by

specifying, for each domain:

¢ an (informal) set of concepts composed of objects, opera-

tors and relations

¢ a formal external notation for specifying an instance of

February 2, 1985

the above: a domain language
& a recognizer for the notation. (a "parser")

¢ a formal internal representation for the hotation (an

abstract graph constructed from the parsing process)

¢ a set of transformations, which map internal representa-
tions in a domain to equivalent internal representations
in that same domain, generally used to effect optimiza-

tions

¢ a set of refinements, which map individual concepts in the

domain to one (or usually more) concepts in another,

domain.

The domains required to develop software for a given
application area can be viewed as constituting a "domain
structure graph" in which the nodes are domains and the set
of refinements between them are represented as arcs. Such a
network must provide for refinement paths to map high-level
specifications into low-lével implementation., Usually there
are multiple paths through the domain network from an

abstract domain node to an implementation domain node.

Software development starts with an abstract specifica-
tion written using a combination of existing domain
languages. The implementation process traverses a path
through a space of possible implementations of progresSively

lower abstraction until a concrete implementation is reached

February 2. 1985

(Figure 1). The space forms a(n enormous) directed acyclic
graph (DAG) called a "possible refinement DAG", with nodes
in the graph tepresenting specifications for the prdgram
written with notations from multiple domains. The single
root of the DAG is represented by initial specification,
Leaves of the DAG are concrete, executable specifications.
Arcs represent individual possible design choices (refine-
ments); the domains used by the specification at a node
limit the type of arcs which exit that node to precisely
those arcs emanating from the same domains found in the
domain structure graph. Usually, an individual node is
reachable by many paths, representing differing orders of
choice of tﬁe same set of design decisions. A path from the:
root to a leaf represents a particular choice of a set of
implementation design decisions, and constitutes what is
generally called "the design". Navigation through the graph
may be controlled by an implementation-style enforcing
mechanism called "tactics". Separate tactics can co-exist
for different purposes: implementation for speed, for

minimal space, for rapid prototyping, etc.

The refinéﬁent bAG is never constructed in its
entirety. Only the path needed to reach a desired leaf from
the root is explored. Once an implementation design path is
chosen, it is not kept as such, but the design decisions
that define the path are generally retained. A prototype
tool to handle domain specifications, and to construct

implementation paths from abstract program specifications

February 2, 1985

has been constructed.
3. A MODEL OF MAINTENANCE USING THE DRACO PARADIGM

WeAbelieve that one can use the Draco ‘paradigm to
accomplish maintenance activities. In this section, we
assume that a program has been derived from a specification
using the Draco paradigm, and that the specification, the
refinement DAG, and the implemented program are all avail-
able to a would-be maintainer. We will discuss the mainte-
nance problem in the the absence of the specification and

the refinement DAG in a later section.

Should a program need change, there are two methods for
accomplishing it. One possibility is to choose an entirely
new path through the refinement DAG from the initial specif-
ication to a different implementation. This method is gen-
erally not preferred, as many of the design decisions made
for the current implementation can be reused in the desired

implementation.

The other alternative is to start with the concrete
implementation chosen, reverse some of the design decisions,
moving up the refinement DAG towards the root, until a node
is reached which 1is the least common abstraction (LCA) of
the current implementation and the desired implementation.
The least common abstraction is the top node of an embedded
sub-DAG, and can be reached by any of several paths (as the

design decisions need not be reversed in the order origi-

February 2. 1985

- 8 =

nally made). A new path must then be chosen from the LCA to
the desired implementation (Figure 2). This method preserves

all of the implementation design decisions made above the

LCA and thus minimizes work required to accomplish change.

Performance enhancement is generally accomplished by
changing the underlying representations used by a program,
and using more efficient procedures made possible with the
changed representation. We assume that the revised represen-
tations and corresponding procedures are already contained
as refinements in the domains used to geherate the current
program (if this is not the case, then the domains must be
augmented accordingly), but were simply not used. Some set
of nodes in the refinement DAG are LCAs that allow re-
implementation of the «currently low-performance abstrac-
tions. Design decisions are reversed to travel from the
current implementation back to one of those LCAs. New deci-
sions are applied to arrive at a different implementation.
The change in refinement direction 1is accomplished by a

change in tactics.

Changes of-environment can be handled in a similar
fashion. The domains are first augmented with new refine-
ments specifying how the abstractions used in those domains
can be implemented by the new environment; this effectively
produces an implementation DAG which entirely contains the
original DAG (Figure 3). A suitable LCA is found and re-

refined using the revised refinements.

February 2. 1985

- 9 =

Different functionality is accomplished by changing the
specification. It 1is then straightforward, but possibly
inefficient, to re-refine the specification to a 'particular
implementation. Refining the new specification éreates a new

refinement DAG, different than the original.

A perhaps more efficient method for producing the

~

revised program requires several steps (Figure 4):

¢ determine a substitution S that «converts the original
specification to the revised specification (this can be
constructed automatically as the original specification is

revised).

¢ determine the largest subgraph G', of the new refinement
DAG, starting from the top node, that is isomorphic with a
subgraph G, of the o0ld refinement DAG under the substitu-
tion S. Each node n in G has a corresponding node n' in
G', obtainable by applying the substitution S to n. Note
that G' must include at least the root node (i.e., the

revised specification).

¢ find an LCA of P in G. The corresponding node in G' can be

refined to a concrete implementation P' which realizes the

revised specification.

To determine the isomorphism, and therefore the candidate
LCAs, the refinement DAGs need not be constructed in their

entirety. The work accomplished in the original refinement

history up to the <chosen LCA in G can be reused at great

February 2, 1985

- 10 -

savings. Refinements from the LCA in G' to the concrete
implementation P' must be applied; this constitutes the bulk
of the work. Design decisions used in the éath from the LCA
in G to P can perhaps be reapplied, reusing analysis done

for the original program.

If the specification is modular, then there will be a
refinement DAG for each part of the specification. The
implementation will consist of a set of 1leaves, one taken
from each DAG. A change to the specification will then then
affect only some of the specification modules, and so affect
only some of the refinement DAGs. Leaves nodes from DAGs
which do not change may be used in the new implementation
unchanged. The procedure outlined above can be used to gen-
erate new leaves for the changed DAGs. Modularity 1is then
séen simply as a method for making trivial the determination
of the isomorphism on portions (the unchanged DAGs) of the

what would otherwise be a single, large refinement DAG.
4. THE PROCESS OF DESIGN RECOVERY

In Figure 5 we present a view of the "conventional"
approach to maintenance. Arcs are represented by broken
lines to indicate that the refinement history, and thus the
original abstract specification are not available. What is

to guide the maintainer when going from program P to P'?

The Draco paradigm offers a model of maintenance

activities provided that the program specification and

February 2, 1985

..ll_..

design are available. If we do not have these, we can
recover them from the code, and then use the Draco paradigm
as the guide. The design recovery paradigm we propose pro-
vides a systematic way of carrying out the prdcess that we
think maintenance programmers apply informally: before per-
forming changes in a program to adapt them to new require-
ments, a higher-level ©plausible "ancestor™ specification

equivalent to the original program is informally developed.

Such an ancestral specification can be developed by
repeatedly performing a "design recovery step". Each step
consists of inspecting the specification recovered from the
previous step, proposing a set of possible abstractions of
the portion of interest, choosing ~the "most suitable"
abstraction, and constructing a specification containing the
new abstraction. Each abstraction proposed implicitly
selects some domains and refinements which must produce the
existing code when applied to the ancestor containing the
proposed abstraction. Design recovery steps are repeated

until a useful LCA is reached.

The design .recovery process is illustrated in Figure 6.
Starting with program P its plausible immediate ancestors
(broken-circles) are postulated. Selection of an appropri-

ate ancestor (solid circle) is based upon conjecture that

Ui ode Lo he pathe Trom 10 o o wultabile LUA,

Good choices of abstraction will use domains and

refinements recovered in earlier steps, or will augment them

Fehruarv 2. 198%

- 12 -

minimally; The iterative process induces 1learning in the
maintainer which can be captured in the resulting domains.
The choice of the appropriate ancestor is the result of a
generalization process based on the specification under con-
sideration. The implementation provides a very limited sam-
ple on which to base a generalization step. This has also
been recognized by Boyle et al. [Boyle84] "Transformations
that codify implementation decisions, ... , are frequently
irreversible, ... (furthermore) ... it 1is impossible to
tell from the program alone.” In other words, un-
refinements are possible only by using additional knowlédge:
we must rely on the maintainer's knowledge of the applica-
tion domain, intelligence, experience and educated guesses,
on common knowledge and on any additional information avail-
able on the current implementation (e.g., inputs from origi-

nal designer, existing documentation, environmental specifi-

cations, etc.).

Since quite often the maintainers are not the original
authors, and are usually distant in time from the original
implementation, maintainers are likely only to regenerate
APPROXIMATIONS oOf the original domains that were used. This
mismatch between the maintenance DAG obtained by design
recovery and an "ideal" DAG (Figure 7) reveals the crux of
the maintenance proslem. Avoiding approximations is very
hard, and the approximation errors are typically amplified
by repeated maintenance steps. The magnitude of the errors

is. increased when the recovery process is done informally.

February 2, 1985

- 13 =

The errors, generated by the limited sample used for the

abstraction step, can be substantially reduced by performing.

domain analysis.

Through domain analysis a more adequate, complete and
reusable set of abstractions of a knowledge domain can be
produced, thus enhancing the power of the design recovery
paradigm. Domain analysis is a the fundamental components of
tHe Draco technology and one of the central research con-

cerns of our Project.

5. ADVANTAGES AND LIMITATIONS OF A DESIGN RECOVERY APPROACH

A discussion of the advantages and limitations of the
proposed approach should be based on some considerations on

economy of scale and reusability of software engineering

workproducts,

It could be argued that a systematic application of the
design recovery approach to small programs is like killing
gnats with a sledge-hammer. Recovering the design of a
large application using the method outlined will require
that the source for the application program be read and pro-
cessed. Since these programs are written in conventional
computer languages, capture of this information may require
an effort comparable to writing the semantic analysis of a
compiler. While this would seem to limit the utility of the
process to only very big programs, such programs do exist

and the payoff is large. In large organizations, the

February 2, 1985

- 14 -

recovery of the design of one program will probably lead to
the discovery of many domains and domain relationships that
can be used to recover the the designs of others, thus amor-

tizing the recovery costs.

A key notion supporting the economy of scale is that of
reusability of analysis and design information [Freeman83].
In the framework of the Draco technology, the analysis and
design knowledge 1is formalized through networks of domain
specific languages. These languages enable software develop-
ers and maintainers to reuse the expensive processes of
analysis and design and to avoid a costly learning experi-
ence., Once the (archeological) ahalysis is performed on an
application, new modifications and ports are easier, and
resource requirements to accomplish these actions are more
predictable. Given that the system is fbrmal, we can make
explicit predictions about the effects of certain kinds of
changes. Consider, for example, attempting to reimplement a
system using linked lists structures instead of arrays. For
most current programs, we cannot even predict whether it 1is
possible to re—imp}ement such programs this way. With the
design recover§ paradigm, all we need do 1is redefine the

implementation of data accesses to use lists, and re-refine

to ground.

We believe that we can still benefit from the the
economic and intellectual advantégés derived from the reuse

of the analysis and design processes, even if we have to

February 2, 1985

- 15 =

start by recovering them from a concrete implementation. Our
conjecturee coincides with that of Boyle et al. [Boyle84]:
"The fact that concrete programs have a plethora of such
POSSIBLY, but not PROVABLY irrelevant properties makes them
difficult to modify, extend, adapt, and transport. ...
abstract programs contain ... only such information as is
necessary to show that they solve the problem for which they
were written. Therefore, modifying, extending, adapting and

transporting is much easier that it is for concrete pro-

grams., "

The model proposed has the attractive property of pro-
viding a unified solution to a variety of problems: the need
to implement changes in the functionality or performance of
a system or its interfaces with the environment. Once the
infrastructural domain network has been defined for an
application area, the updates to programs in that area are
easy to accomplish and re-deliver to all customers, includ-
ing the original. This approach allows for an economic and
practical configuration cdntrol and distribution system for

software applications.

6. RELATION TO OTHER WORK

The power of this approach is based in the formal mani-
pulation of problem domain knowledge and software design
knowledge. Haque in [Hague76] proposes the idea of a "super"
lanquage customized for the application domain which would

map down onto a real language. He <claims that gain in

February 2, 1985

- 16 =

flexibility may be lost because that language may not com-
pile on a real machine, and thus rejects the idea. The
Draco paradigm shows how to perform the mapping, and thus

makes the idea appropriate to re-consider,

[BoyleB84], following an approach similar to that of
Hague, employs an extended version of FORTRAN as a single
"base” language. By extending FORTRAN, new classes of
abstractions can be expressed. In our paradigm these would
qualify for separate notations. We will not dwell here on
the limitations implicit in wide spectrum languages, but we
must acknowledge the fact that the use of a s8ingle base
language 1limits the transformation (refinement) alterna-
tives. In any case FORTRAN is a poor base for a wide spec-

trum approach.
7. THE EXPERIENCE

The Reusable Software Engineering Project at UCI is
conducting research on the reuse of Software Engineering
artifacts and knowledge. One of our principal research tools
is the Draco prototype system outlined here. This tool was

coded in UCI Lisp [Méehan79] running on DEC 2020s.

The need to port this system arose as a result of the
Computer Science Department's decision to migrate from
Decsystem-20 computers running TOPS-20, to DEC VAXen under
Unix (Berkeley 4.2). We needed to change the environment of

our program., As UCI Lisp is not available on this new confi-

February 2, 1985

- 17 =

guration, we were faced with the issue of porting Draco or

UCI Lisp.

At the time, spring '84, DEC was rumored to be ready to
announcev general availability of Common Lisp [SteeleB4]. As
one of our industry sponsors desired a VAX-VMS-Common Lisp
version of Draco, we considered Common Lisp as a potential
target Lisp in addition to Franz Lisp available for Unix. We
quickly dropped any idea of porting UCI Lisp, leaving us
with the problem of porting Draco. We chose Franz because it
was available, stable, and wide-spread in the research
world. It appeared that Franz was a reasonable stepping
stone on the way to a Common Lisp version of Draco. The
implications were that we were to produce more than one new

implementation of Draco, making the idea of hand-conversion

particularly repugnant.

The version of Draco to be moved has a complex kernel
coded in Lisp. The balance of Draco cdnsists primarily of
some specialized domains (not coded in Lisp!) used to con-
struct domains; it was obvious (to us, anyway) that these
could be eaéily’moved_using the Draco paradigm, so we will

not further discuss converting the balance of Draco.

Being a research prototype, Draco was constructed
single-handedly, and the author has since moved on and was
generally unavailable. The other members of the research
team were inexperienced with the mechanims used by Draco. We

had the makings of a classic maintenance problem.

" February 2, 1985

- 18 -

It was decided to apply the Draco paradigm to accom-
plish the port (this was before the ideas on design recovery
had become more clear). To minimize the impact of new code
on the porting process, we imposed the following iron-clad
rule: there would be NO changes to the UCI Lisp source for

Draco. The side effect is that we were forced to treat the

kernal as a specification.

Our first discovery (and in retrospect, very obvious)
was that Draco used only parts of the UCI Lisp dialect.
This enabled us to design a limited domain which was
specific to the Draco functionality. Thus we could capture
the meaning of Draco-specific UCI Lisp idioms effectively in
an abstract form and discard the concrete syntax. The
recovery of the meaning from the concrete syntax is an exam-
ple of reversing the design decisions to implement those
abstractions with the particular UCI Lisp incantation. The

captured abstraction corresponds to the LCA described in

previous sections.

The Lisp idioms captured fell into 3 classes:

¢ classic LISP functions and S-Expresssions

¢ UCI-Lisp idioms (generally related to enviromental inter-

face, such as 1/0)

® Draco-specific abstractions implemented as procedures

(Initialize, etc.)

February 2, 1985

- 19 =

To re-implement the Draco kernal in Franz Lisp, we coded new
refinements for the abstractions captured in the previous
step (this corresponds to moving down from the LCA to a new
implementation in Figure 3). A typical example is shown in

Figure 8.

The abstractions for the Input/Output used by Draco in
UCI-Lisp turned out to be very difficult to refine directly
to Franz Lisp. We concluded that the semantic gap was too
large, and were forced to defined a "bridging" domain to
implement these abstractions by a virtual machine technique,
with some consequent inefficiencies (not expected when using
the general Draco paradigm) in the final implementation. We
expect this problem to re-appear when we retarget for Common
Lisp. In retrospect, we feel that we did not capture these
abstractions at a high enough level. The implications are
that one should should capture the design at as an abstract

level as possible to make re-implementation easier.

8. SOME QUANTITATIVE RESULTS

We include here some statistics about the conversion
effort. The cénvertéd code consists of approximately 2400
lines of UCI Lisp code divided among some 170 functions.
Approximately 280 abstractions were identified in four
domains; refinements were implemented for each. About 45% of
the abstractions refined directly (most of these were gen-
eric Lisp); 14% of the abstractions were implemented by
simulation in the target environment. The balance of the

1

February 2, 1985

- 20 =

abstractions were not complex. The entire 2400 lines of the
Draco kernal were automatically converted by the process,
using 19 hours of CPU. Code expansion is estimated to be
10%. About 8 man-months were expended. We expect that much

of the human effort expended can be re-used if we decide to

proceed with a Common Lisp implementation.

9. CONCLUSION

We have outlined a model of the méintenance process
based on the construction of software by components philoso-
phy. This process requires the program specifications at
some abstract 1level and the set of design decisions that
were made to implement the program. We believe that the
model can be formalized, and that the formalized version can
be used, with human aid, to recover the design of concrete

code, and can then be applied to make changes to the result-

ing design.

February 2, 1985

- 21 -

REFERENCES

[Boehm8l1] B. W. Boehm, Software Engineering Economics, pp.
54-55, Prentice-Hall, Inc. Englewood Cliffs, New

Jersey, 1981.

[Boyle84] J. M. Boyle and M. N. Muralidharan, Program Reus-
able through Program Transformation, Transactions

on Software Engineering, Vol. SE-10(5), pp. 574-
588, Sep. 1984.

[Freeman83]P. Freeman, Reusable Software Engineering: Con-
cepts and Research Directions, Proc. ITT Workshop

on Reusability in Programming, pp. 2-16, Stanford,
CT., 1983.

[Hague76] S. Hague and B. Ford, Portability -- Prediction
and Correction, Software Practice and Experience,

Vol. 6(1), pp. 61-69, 1976.

[Lyon8l] M. J. Lyon, Salvaging your Software Asset (tools
based nmaintenance), AFIPS Conference Proc., Vol.

50, pp. 337-341, 198l.

[Meehan79]J. R. Meehan, The New UCI Lisp Manual, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1979.

[Neighbors84]
J. M. Neighbors, The Draco Approach to Construct-

ing Software from Reusable Components Transactions
on Software Engineering, Vol. SE-10(5), pp. 564-
573, Sep. 1984.

[Poole73] P, C. Poole and W. M. Waite, Portability and Ada-
pability, in Advanced Course on Software Engineer-
ing, F. L. Bauer Ed., Springer-Verlag, Berlin,

1973.

[SteeleB4]G., L. Steele, Jr., Common Lisp, Digital Press,
Burlington, Mass., 1984.

[Tanenbaum?7 8]

February 2, 1985

A. S. Tanenba
for Software

- 22 -

um, P. Kling and W. Bohm, Guidelines
Portability, Software-Practice and

Experience, Vol. 8(6), pp. 681-698, 1978.

[Wilensky#84]
R. Wilensky,
York, N.Y., 1

LISPcraft, W.W. Norton and Co., New
984,

February 2, 1985

Abstract Specification

Concrete
Program P

Construction of program from specification

Figure 1.
Refinement decisions rl, r2 and r3

Abstract Specification

Figure 2. Maintenance
General choice r is preserved

Abstract Specification

Figure 3. Changing Environment:

r3b 1s a new refinement

S UOTINITISqns

i9pun 9 03 S1ydiaowost st |9
‘UOT3IEDTITOadg Buplueyn

‘% 9andtyg

A
d -
.
] '.
;
K \
K s
K A
; s
; A
’ A
. .
; 5
J 5
s
.
.
AN
P! 2 3
A
/ s . '
° I . .
» . . P ‘o
i . * .
4 g K 3
] ’ ; *
» A v . ‘..
g . s . .
I . I . ‘e
v e 4 H *
. . . .
|
. . s
i . . . 0
N 3 ¢ s .,
A * 0‘ .o
;
i .

Figure 5. Conventional Maintenance:
With no background, What guides the changes?

Least Common Abstraction

New -

Figure 6. The Process of Design Recovery

-—-—— Implementations using

v Discarded piausible

abstractions

Ideal LCA

Implementatiors using
chosen abstractions

Ideal P'
Implementation

Figure 7. Recovered design vs. ''ideal' design:
the approximation error.

Original UCI Lisp Abstractions Refined Franz Lisp
Code Captured Code
(DEF DRACO INITIALIZE ...) (SETQ #READP NIL)

(SIGNAL2 '(SETO #READP T))

//’——#-CHECK—FOR~OPERATOR—INTERRUPT -——\g\

(COND (READP) ...) (COND (PROGN (X)

' (SETO X {/READP)
(SETQ #READP NIL)
(RETURN X)) ...

DRACO-INITIALIZE was concrete SIGNAL2 causes its argument
code to initialize DRACO. to be executed when CTRL-C
is typed.

READP is a predicate which determines
if any keys have been struck by operator.

Figure 8. Example of an Abstraction

