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Analog reservoir computing via ferroelectric
mixed phase boundary transistors

Jangsaeng Kim 1,2,3,6, Eun Chan Park1,6, Wonjun Shin 3,4,6, Ryun-Han Koo3,
Chang-Hyeon Han1, He Young Kang1, Tae Gyu Yang1, Youngin Goh5, Kilho Lee5,
Daewon Ha5, Suraj S. Cheema 2 , Jae Kyeong Jeong 1 &
Daewoong Kwon 1

Analog reservoir computing (ARC) systems have attracted attention owing to
their efficiency in processing temporal information. However, the distinct
functionalities of the system components pose challenges for hardware
implementation. Herein, we report a fully integrated ARC system that levera-
ges material versatility of the ferroelectric-to-mixed phase boundary (MPB)
hafnium zirconium oxides integrated onto indium–gallium–zinc oxide thin-
film transistors (TFTs). MPB-based TFTs (MPBTFTs) with nonlinear short-term
memory characteristics are utilized for physical reservoirs and artificial neu-
ron, while nonvolatile ferroelectric TFTs mimic synaptic behavior for readout
networks. Furthermore, double-gate configuration of MPBTFTs enhances
reservoir state differentiation and state expansion for physical reservoir and
processes both excitatory and inhibitory pulses for neuronal functionality with
minimal hardware burden. The seamless integration of ARC components on a
single wafer executes complex real-world time-series predictions with a low
normalized root mean squared error of 0.28. The material-device co-optimi-
zation proposed in this study paves the way for the development of area- and
energy-efficient ARC systems.

In the landscape of contemporary computing, deep neural networks
(DNNs) have gained prominence by enabling breakthroughs across
various applications from image classification to healthcare
technologies1–6. Although DNNs and their feedforward configurations
have shown remarkable success in executing static tasks such as pat-
tern recognition7–10, they are unsuitable for processing dynamic data.
In this context, recurrent neural networks (RNNs), specifically analog
reservoir computing (ARC) systems, have emerged as pivotal
solutions11–14. An ARC system employs a dynamic reservoir that pro-
jects the input data nonlinearly into a high-dimensional feature space
(Supplementary Fig. 1). Thismapping, facilitated by the intrinsic short-

termmemory capabilities of the reservoir, enables the transformation
of complex inputs into linearly separable states within the system14,15.
The linearly weighted summation of these states is then processed
using a trainable readout network, making ARC an efficient and robust
framework for temporal data processing and prediction tasks.

However, conventional ARC systems based on complementary
metal-oxide-semiconductor (CMOS) platforms suffer from a defi-
ciency in inherent dynamic response characteristics16. This necessi-
tates the use of complex algorithms along with large-scale integrated
devices to handle nonlinear dynamic tasks, thus hindering the com-
plete realization of the potential of ARC17. To overcome this limitation,
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the exploration of hardware-based ARC systems utilizing novel mate-
rials and device configurations has garnered research interest; speci-
fically, materials and devices that exhibit distinct volatile and
nonvolatile switching characteristics to implement the reservoir and
readout networks, respectively. Various devices, including two-
terminal memristors5,18–27, ferroelectric devices28–32, spintronic
oscillators33, electrochemical transistors34–36, photonic module
devices37–39, and quantumdevices40, have been studied for the possible
candidate. Despite the advantages of these hardware-based ARC sys-
tems, the full integration of the reservoir, readout network, and
additional circuit components with artificial neuron functionality
remains a challenge due to the utilization of different materials for
each component (detailed in Supplementary Note 1). Zhong, Y. et al.
presented anARCsystembasedon two-terminalmemristors; however,
the realization of the reservoir and readout network necessitated dif-
ferent materials–TiOx for the physical reservoir and TaOx/HfAlOy for
the artificial synapse in the readout network18. Consequently, the
seamless integration of these components was unattainable, promting
separate fabrication of each component connected through wiring
afterward. Moreover, in most studies, the integration of neuron cir-
cuitry for the readout network in ARC has not been adequately
explored.

Hafnium oxide (HfO2)-based thin films present a promising solu-
tion to address these challenges by leveraging the material versatility
of hafnia. HfO2 has traditionally served as a high-κ dielectric in con-
ventional CMOS technology since the mid-2000s41. Following the
discovery of its ferroelectricity originating from the orthorhombic (o)-
phase in 2011, its applications have expanded to nonvolatile func-
tionalities formemory and artificial synaptic devices42–46. Furthermore,
through material engineering, anti-ferroelectricity, suitable for
dynamic response in ARC, can also be realized. Recent advancements
include the utilization of hafnium zirconium oxide (HZO) thin films
near the mixed phase boundary (MPB) between the ferroelectric
o-phase and tetragonal (t)-phase47,48. Although there have been no
prior attempts to exploit the HZO thin films near the MPB for ARC, its
volatile memory characteristics and higher polarization magnitude at
lower voltages compared to anti-ferroelectric filmsmake it suitable for
both the physical reservoir and artificial neuron (Fig. 1a). Therefore, by
carefully engineering HfO2-based films from ferroelectric to MPB,
comprehensive integrationof physical reservoir, artificial synapse, and
neuron functionalities can be achieved (Supplementary Note 2a). In
addition to material engineering, optimizing device configuration can
further enhance the performance of ARC (Fig. 1a). While two-terminal
devices are commonly employed, double-gate (DG) transistors with
four terminals offer advantages in terms of enhanced controllability
and reliability. Unlike two-terminal devices, which pose significant
constraints in implementing neuronal functionality, DG transistors
provide a broader range of design possibilities for artificial neurons.
Furthermore, DG transistors facilitate a clearer differentiation between
reservoir states, thereby overcoming the poor resolution and limited
number of reservoir states (3 or 4 bits)16,22,28,29,49–52. Although various
attempts have beenmade tomitigate these challenges in two-terminal
devices, such as employing input encoding with various pulse
intervals22,50, they require additional circuitry, inevitably increasing
area and power consumption. Control of electrical characteristics
utilizing additional electrodes in four-terminal transistors can improve
the resolution between the states without the burden of additional
circuit.

In this study, we propose a material-device co-optimization
method for the area- and energy-efficient ARC system utilizing HZO-
based thin-film transistors (TFTs). The seamless integration of physical
reservoir, readout network, and leaky integrate-and-fire (LIF) neuron is
achieved by meticulously engineering the material versatility of HZO
(Fig. 1b). HZOwith the o-phase is utilized for nonvolatile andmultilevel
conductances of the ferroelectric TFT (FeTFT)-based artificial synapse,

while HZO near the MPB serves as both the physical reservoir and LIF
neuron (Fig. 1c–e). All thesematerials are integrated into the TFTswith
an indium–gallium–zinc oxide (IGZO) channel. The device configura-
tion of DGMPB-based TFT (MPBTFT) improves the performance of the
ARC system by leveraging the electrical characteristics of DG to clearly
distinguish between the 16 reservoir states without overlapping, and
successfully demonstrates 5-bit reservoir states. For neuronal func-
tionality, DG MPBTFT processes both excitatory and inhibitory pulses
within a single device, unlike previously reported ferroelectric-based
three-terminal LIF neurons53–55. Importantly, the adoption of similar
fabrication processes for volatile and nonvolatile TFTs with HZO films
enables their co-integration on a single wafer, a milestone previously
unattainable. Various tasks, ranging from handwritten digit recogni-
tion tasks to waveform classification and complex time-series pre-
dictive tasks in the real world, were performed to evaluate the
performance of the proposed ARC system. The integration of volatile
and nonvolatile TFTs into an ARC system overcomes the limitations of
previous hardware-based ARC systems and sets a new standard for
energy efficiency, scalability, and versatility in ARC systems.

Results
Device Structures
Two distinct types of HZO-based TFTs were fabricated to implement
an ARC system: nonvolatile FeTFT for the synaptic device in the
readout network and volatile MPBTFT for the physical reservoir and
LIF neuron. While both TFTs utilize HZO thin films as ferroelectric
materials, variations in the material composition of the HZO thin films
impart the TFTs with either volatile or nonvolatile characteristics,
diversifying their functionality within the system. Both TFTs incorpo-
rate an IGZO channel within a metal–ferroelectric–metal–insulator–
semiconductor (MFMIS) structure, achieving enhanced electrical
characteristics (Supplementary Note 3). In particular, an MPBTFT was
designed as a DG device, enabling its operation to be modulated not
only by the bottom-gate (BG) but also by the top-gate (TG). TG can be
utilized to refine the reservoir states of MPBTFTs and execute inhibi-
tion operations in LIF neurons. The structural similarities between
FeTFT andMPBTFT facilitate the integration of both types of TFTs on a
single wafer using a self-align etching process. The fabrication process
for both TFTs is detailed in the Methods section and Supplemen-
tary Fig. 2.

Nonvolatile synaptic FeTFT for readout network
Figure 2a shows a schematic illustration and cross-sectional view of a
nonvolatile FeTFT with an MFMIS structure. The cross-sectional
transmission electron microscopy (TEM) images of the fabricated
FeTFTs are shown in Fig. 2b. The structure of the FeTFT with a Mo/
HZO/TiN/ZrO2/IGZO stack was examined using energy-dispersive
spectroscopy (EDS) analysis (Supplementary Fig. 3). The crystallinity
of the HZO (Hf:Zr = 2:1) thin films were investigated using grazing
incidence X-ray diffraction (GIXRD) analysis (Supplementary Fig. 4a).
Figure 2c shows the top optical images of the FeTFT array for the
readout network within the ARC system. Each FeTFT functions as a
synaptic device within the readout network by leveraging the inherent
nonvolatile memory effects of ferroelectric materials.

Capacitors with a metal–ferroelectric–metal (MFM) structure
subjected to identical fabrication processes as the FeTFTs were uti-
lized to verify the ferroelectric properties of the FeTFTs. The ferro-
electric switching current is distinguished from non-ferroelectric
switching currents, such as displacement and leakage currents,
through positive-up-negative-down (PUND) measurements–wherein
100 kHz triangular pulses are applied. The switching current and
polarization as a function of the applied voltage are depicted in Fig. 2d.
The HZO film exhibits themagnitude of remanent polarization (2Pr) of
approximately 37.7 μC/cm2 in the sweep range from –3.8 V to 3.8 V.
Figure 2e illustrates thehysteretic transfer characteristicsof the FeTFT.
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The transfer characteristics demonstrate a counterclockwise hyster-
esis loopwith awidememorywindow (MW)of approximately 2.2 V at a
constant drain current (ID) of 10 nA.

The nonvolatile FeTFTs can emulate the plasticity of biological
synapses through the partial polarization switching of the HZO
film31,32,55,56. The long-term potentiation (LTP) and long-term depres-
sion (LTD) characteristics of the FeTFTwere investigated by applying
program (PGM) and erase (ERS) pulses (Fig. 2f). The pulse widths
were consistently maintained at 10 μs, and PGM pulse amplitudes
increased from 3.5 V to 4.1 V in steps of 0.04 V, while ERS pulse
amplitudes decreased from –4.35 V to –5.1 V in steps of –0.05 V.
Multilevel synaptic weights were obtained through the FeTFT exhi-
biting a highly linear conductance response, characterized by coef-
ficients βp = 0.04 and βd = 1.956. Figure 2g illustrates the LTP and LTD
characteristics of the FeTFT over 20 cycles. Low cycle-to-cycle var-
iation is observed (σ/μ < 0.025, σ and μ are the standard deviation
and average value, respectively), indicating consistency and relia-
bility in the operation of the FeTFT over multiple operational cycles.

The retention characteristics of the FeTFT with various memory
states are depicted in Fig. 2h, showing its nonvolatile memory char-
acteristics. The FeTFT preserves the stored information for 103s with
a slight degradation, verifying the robustness and reliability of the
device. The device-to-device variation, endurance characteristics,
and selective PGM/ERS operations within the FeTFT array were
investigated (Supplementary Figs. 5 and 6). The results confirm the
suitability of the nonvolatile FeTFTs for synaptic devices. Note that
by further optimizing the measurement conditions, a larger dynamic
range can be obtained for enhanced system performance (Supple-
mentary Fig. 7).

Volatile double-gate MPBTFT for physical reservoir
Thedistinguishing feature of theARC system is the reservoir,which is a
network of nonlinear dynamic nodes that transform input signals into
a high-dimensional space, enabling the system to process temporal
information. In an MPBTFT-based ARC system, these nodes are
represented by volatile DG MPBTFTs, which are physical reservoirs

Fig. 1 | Fully integrated MPBTFT-based ARC system. a Material-device co-opti-
mization method for an area- and energy-efficient ARC system. HZO thin film near
the MPB provides volatile memory characteristics suitable for physical reservoir
and artificial neuron. Double-gate configuration of MPBTFT improves the resolu-
tion between the reservoir states and facilitates neuronal functionality.b Schematic
of an MPBTFT-based ARC system utilizing c volatile MPBTFTs for physical reser-
voirs, d nonvolatile FeTFTs for synaptic devices in readout network, and e volatile
MPBTFTs for leaky integrate-and-fire (LIF) neurons. MPBTFTs are identified as

suitable candidates for physical reservoirs and LIF neurons within ARC systems,
primarily owing to their inherent nonlinearity and short-term memory character-
istics. FeTFTs are distinguished by their ability to represent multilevel synaptic
weights with stability over time, making them ideal components for the readout
network within ARC systems. By integrating these TFTs, ARC systems can harness
the transient data processing capabilities of MPBTFTs with the long-term data
retention properties of FeTFTs.
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characterized by nonlinear and dynamic responses to input stimuli.
Figure 3a shows a schematic illustration and cross-sectional view of a
DG MPBTFT featuring two different gates: BG and TG. The BG side
operates as an MPBTFT with an MFMIS structure, while the TG side
functions as a TFT with a metal–insulator–semiconductor (MIS)
structure. This DG configuration affords versatile control and mod-
ulation of the electrical characteristics of theMPBTFT. Figure 3b shows
the cross-sectional TEM images of the fabricated DG MPBTFTs. The
structure of the DG MPBTFT with a Mo/HZO/Mo/ZrO2/IGZO/ZrO2/Mo
stack was examined by EDS analysis (Supplementary Fig. 8). A GIXRD
analysis was conducted for the HZO (Hf:Zr = 3:5) thin films (Supple-
mentary Fig. 4b). Figure 3c shows the top optical images of the DG
MPBTFT array for the physical reservoirs within the ARC system. The
GIXRD analyses of both volatile and nonvolatile HZO thin films are
detailed in Supplementary Note 2b.

The capacitors featuring an MFM structure, which underwent
identical fabrication processes to the DG MPBTFTs, were used to
confirm the polarization properties of the DG MPBTFTs. Through tri-
angular pulses with 100 kHz, the switching current and polarization as
a function of the applied voltage are depicted in Fig. 3d. The HZO film
exhibits the magnitude of saturation polarization (2Ps) of approxi-
mately 66.6 μC/cm2 in the sweep range from –2.0V to 2.0V. A high

polarization magnitude at a relatively low voltage is obtained through
the HZO film near the MPB. The switching current demonstrates a
partial hysteresis of the HZO film within the DG MPBTFT. The polar-
ization of the HZO film reverts to a non-polarized state at 0 V, indi-
cating the capability of the HZO film to transition between the
polarized and non-polarized states. The symmetric switching current
peaks observed near 0 V highlight that the coercive voltage (Vc) and
the energy barriers between the phases are sufficiently small to rapidly
reset the polarization state. The HZO thin film near the MPB exhibits a
high dielectric constant (Supplementary Fig. 9). The polarization
within the HZO film is switched when an electric field is applied,
whereas it returns to the initial non-polarized state in the absenceof an
electric field. Figure 3e presents the hysteretic transfer characteristics
of the DG MPBTFT under various TG voltage (VTG) conditions. The
transfer characteristics exhibit a counterclockwisehysteresis loopwith
a MW of approximately 0.5 V at a constant ID of 10 nA when
VTG = –3.0V. The endurance characteristics of the DG MPBTFT were
investigated (Supplementary Fig. 9).

To verify the volatilememory characteristics of the DGMPBTFT, a
single PGM pulse was applied to the device, followed by a read
operation at a constant voltage for a specific duration. Figure 3f illus-
trates the dynamic response of the ID in the DG MPBTFT over time,

Fig. 2 | Device characteristics of nonvolatile FeTFT for readout network.
a Schematic illustration and cross-sectional view of the nonvolatile FeTFT with an
MFMIS structure. bCross-sectional TEM images of the fabricated FeTFT.Magnified
TEM image of the red dashed square region presents the thickness of each layer:
metal (M), ferroelectric (FE), inner metal (IM), interlayer oxide (IL), and IGZO
channel. c Top optical images of the FeTFT array. The FeTFT array has an AND-type
array configuration, characterized by bit-lines (BLs) and source-lines (SLs) parallel
to each other yet perpendicular to word-lines (WLs). The gate (G), source (S), and
drain (D) electrodes of each FeTFT within the array are accessible via WL, SL, and
BL, respectively. The width (W) and length (L) of a channel are both 20 μm.
d Switching current and P-V hysteresis loop through the PUNDmeasurements with

100kHz triangular pulses. e Hysteretic transfer characteristics (ID-VGS) measured
with a bidirectional direct current (DC) sweep of the gate voltage (VGS), ranging
from –4.0 V to 4.0 V. A drain-source voltage (VDS) is 0.1 V. The FeTFTexhibits awide
memory window (MW) of approximately 2.2 V at a constant ID of 10 nA. f LTP and
LTD characteristics of the FeTFT with the number of applied pulses. The insets
show the schematics of applied PGMandERS pulses. The FeTFT achievesmultilevel
synaptic weights with a highly linear conductance response. g LTP and LTD char-
acteristics over 20 cycles, with each cycle containing 32 applied pulses. The FeTFT
exhibits low cycle-to-cycle variation. h Retention characteristics of eight different
conductance states at room temperature.
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subsequent to the application of a PGM pulse with a width of 100 μs.
PGM pulses with different amplitudes were applied at the same initial
state. As the amplitude of the PGM pulse (VPGM) increased, the corre-
sponding ID increased. Following the removal of the PGM pulse, IDs
decayed toward the initial state in all cases. This relaxation process
fitted well with the double exponential function (red lines in Fig. 3f).
The dynamic response of IDs in the DG MPBTFT to successive PGM
pulses with various VPGMs was investigated (Supplementary Fig. 10). ID
increases significantly as VPGM increases, while ID decays back to its
initial state in the absence of a PGM pulse. The fitting parameters for
these volatile memory characteristics are shown in Supplementary
Fig. 11. Note that the volatile DG MPBTFTs exhibit a rapid current

relaxation process, ensuring fast data processing capabilities of the
ARC system.

The changes in ID when a PGM pulse is applied to the BG varies
depending on the TGbias (Supplementary Fig. 12). The formation of an
accumulation layer in the IGZO channel, crucial for efficiently coupling
the voltage applied to the BG to the ferroelectric layer during PGM
operation, is affected by the TG bias57,58. Specifically, applying a posi-
tive voltage to the TG can inhibit the formation of an accumulation
layer in the IGZO channel, diminishing the PGM efficiency and the
amount of change in ID. Figure 3g shows the ID response according to
various TG pulse amplitudes when a constant pulse train of 4.0 V
amplitude is applied to the BG. As the TG pulse amplitude increases,

Fig. 3 | Device characteristics of volatile DG MPBTFT for physical reservoir.
a Schematic illustration and cross-sectional view of the volatile DG MPBTFT. The
DGMPBTFToperates as anMPBTFTwith anMFMIS structure and aTFTwith anMIS
structure at the BG and TG sides, respectively. bCross-sectional TEM images of the
fabricated DG MPBTFT. c Top optical images of the DG MPBTFT array. The DG
MPBTFT array has WL pairs (WLB and WLT) parallel to each other, each connected
to the BG and TG electrodes of the DGMPBTFT within the array. The width (W) and
length (L) of a channel are both 20 μm. d Switching current and P-V hysteresis loop
through triangular pulses with 100kHz. e Hysteretic transfer characteristics (ID-
VBG) for various TG voltage (VTG) conditions. Bidirectional DC sweeps of the BG
voltage (VBG), ranging from –2.0 V to 2.0 V,wereperformed at aVDS of0.1 V. fDecay
characteristics of the ID over time, subsequent to the application of a 100 μs PGM

pulse. The relaxation processes are well-fitted for various VPGMs through a double
exponential function (red lines). g ID response according to various VTGs when a
constant pulse train (4.0 V, 100 μs) is applied to the BG. ID evolutions in response to
16 different input pulse trains (4.0 V, 100 μs) h without and i with TG utilization.
Each input pulse train comprises 4 timeframes with a 3ms time interval between
successive pulses. The upper panel shows the pulse schemes for the BG and TG
(e.g., input ‘1111’). By applying gradually decreasing voltage pulses across 4 time-
frames to the TG, clearly distinguishable reservoir states are generated for various
input data. j ID evolutions in response to 32 different input pulse trains (4.0 V, 100
μs), each comprising 5 timeframes. The upper panel shows the pulse schemes for
the BG and TG (e.g., input ‘11111’). The utilization of the TG effectively expands the
reservoir states.
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the amount of change in ID decreases. The dynamic interaction
between the BG and TG enables modulation of the sensitivity of the
physical reservoir to the input signals. This inherent flexibility in the
DG configuration improves physical reservoir characteristics.

For a physical reservoir within an ARC system to function effec-
tively, the reservoir state, manifested as the ID of the volatile DG
MPBTFT, must evolve dynamically over time in response to an input
signal. Distinct reservoir states for different temporal inputs are
essential for transforming and expanding input signals across the high-
dimensional state space of the reservoir5,18–40. Figure 3h demonstrates
the ID evolutions of the DG MPBTFTs in response to 16 different input
pulse trains, each comprising 4 timeframes. For each timeframe, a
pulse with an amplitude of 4.0 V and a width of 100 μs was applied to
the BG, while a fixed voltage of 0 V was applied to the TG. The time
interval between successive pulses is 3ms (see Supplementary Fig. 13
for ID evolutions over various time intervals). The device-to-device
variations of the DG MPBTFTs were further investigated (Supplemen-
tary Fig. 14). The results verify the capability of the DG MPBTFT to
effectively distinguish input pulse trains. Nevertheless, some input
pulse train configurations exhibit similar final conductance states. To
address this states overlap issue, the TG of DG MPBTFT is utilized in
this study.

Figure 3i illustrates the ID evolutions of the DG MPBTFTs in
response to various input pulse trains with TG utilization. The pro-
posedpulse scheme for TG is depicted in theupper panel of Fig. 3i. The
utilization of TG enhances the distinctness between reservoir states
compared to the case in which TG is not employed and clearly dis-
tinguishes each state. The enhanced distinction between reservoir
states is attributed to PGM efficiency affected by VTG. Gradually
decreasing VTG across 4 timeframes augments the influence of the
input data in the latter timeframe (see Supplementary Note 4 for
details). Supplementary Fig. 15 contrasts the normalized difference
between the reservoir states of the DG MPBTFT with and without TG
utilization. Note that the final reservoir states can be further optimized
by adjusting the pulse scheme for TG (see Supplementary Fig. 16 for ID
evolutionswith different TGpulse scheme). The utilization of TG inDG
MPBTFTs not only clearly distinguishes reservoir states but also
enables the expansion of reservoir states. A demonstration of 32 dis-
tinct reservoir states (5 bits) in response to input pulse trains with 5
timeframes is shown in Fig. 3j. The proposed strategy effectively
leverages the TG to modulate the electrical characteristics of DG
MPBTFTs, thereby enhancing the performance and area/energy effi-
ciency of the ARC system by ensuring sufficiently distinct reservoir
states or expanding the states.

Volatile double-gate MPBTFT for leaky integrate-and-
fire neuron
Within the ARC system, the versatility of volatile DG MPBTFTs extends
to their application as LIF neurons, facilitating the seamless integration
of physical reservoirs, readout networks, and LIF neurons. DGMPBTFTs
utilize the inherent polarization volatility and partial polarization
switching capabilities of the HZO film to implement the leaky effect and
integrate-and-fire function of LIF neurons. Figure 4a shows a schematic
of the DG MPBTFT-based LIF neuron, which eliminates the need for
capacitors and complex circuits that are typically associated with larger
footprints. The DG MPBTFT-based LIF neuron exhibits high area effi-
ciency and functional versatility.Moreover, theDGMPBTFT canprocess
both excitatory and inhibitory pulses through BG and TG, respectively,
within a single device. This characteristic negates the necessity for
additional devices or connections, streamlining the composition of the
neuron53–55. The pulse schemes for the BGandTGare shownon the right
side of Fig. 4a. The implementation and measurement setup for the DG
MPBTFT-based LIF neuron are detailed in Supplementary Fig. 17.

Figure 4b illustrates the ID response of the DG MPBTFT when
excitatory pulses are applied to the BG. During this time, a fixed

voltage of –3.0 V is applied to the TG. The DG MPBTFT demonstrates
neuronal behavior with self-reset characteristics. The application of
excitatory pulses to the BG induces gradual polarization switching of
the HZO film, increasing ID. When ID exceeds a specific threshold cur-
rent (Ith) required for the neuron to fire, the neuron self-resets to its
initial state, which is attributed to the inherent leaky effect. This
characteristic eliminates the necessity for an external reset circuit.
Neuronal behaviors with various reset times are shown in Supple-
mentary Fig. 18. The roles of base voltage (Vbase) and high voltage
(Vhigh) in modulating neuronal behavior are further investigated. As
Vbase increases, the polarization of the HZO film is preserved, thereby
decelerating the leaky effect (Fig. 4c). A high Vbase maintains the
polarization of the HZO film during the delay between pulses, thus
strengthening the integration function of the neuron. In addition, even
if the same reset time is given, the neuronal behavior varies distinctly
with Vbase. The neuron is completely reset to its initial state under low
Vbase conditions. By contrast, under higher Vbase conditions, the neu-
ron cannot be reset to its initial state within the same reset time, thus
requiring an extended reset time for complete initialization. Figure 4d
shows the neuronal behavior as a function of Vhigh. An increase in Vhigh

results in more significant polarization switching in the HZO film and
increases the ID change. However, an insufficient Vhigh (e.g.,
Vhigh = 1.0 V) barely switches the polarization of the HZO film, thus
impairing the integration function of the neuron. These results high-
light the critical roles of Vbase and Vhigh in modulating neuronal beha-
vior. The impact of the delay between pulses on neuronal behavior is
depicted in Supplementary Fig. 19.

Figure 4e–g show the neuronal behavior when inhibitory pulses
are applied after a sequence of excitatory pulse trains. Notably, even
with a shorter reset time (1.0ms) compared to Fig. 4b–d, the appli-
cation of sufficient inhibitory pulses facilitates the complete reset of
the neuron to its initial state. This is particularly evident as the inhi-
bitory voltage (Vinh) intensifies, enhancing the inhibitory efficiency of
the neuron and requiring a greater number of excitatory pulses for the
neuron to fire (Fig. 4e). These results highlight the potent inhibitory
efficiency of higher Vinh levels. Furthermore, modulation of the width
or quantity of inhibitory pulses significantly influences the inhibitory
efficiency of neurons. Inhibitory pulses with extended pulse widths
inhibit the neuron (Fig. 4f). The application of numerous inhibitory
pulses also inhibits the neuron, leading to a complete reset to its initial
state (Fig. 4g). These results verify the suitability of volatile DG
MPBTFTs as LIF neurons, emphasizing their ability to finely modulate
neuronal behavior in response to varying excitatory or inhibitory
pulses (see Supplementary Note 5 for details). Figure 4h depicts the
neuronal behavior of DG MPBTFT-based LIF neurons, demonstrating
its three primary functions: integration, firing, and resetting functions.
As input pulses are applied to the neuron, the voltage at node A
increases,mimicking the integration function of the neuron.When the
voltage at node A exceeds a certain threshold voltage (3.0V), the
neuron fires and generates an output spike. Following neuron firing,
the neuron spontaneously resets to its initial state when no further
input pulses are applied.

While the DG MPBTFT-based LIF neurons are not completely
similar to the ideal behavior of LIF neurons, which reset to their initial
state following a single firing action, they are well-suited for applica-
tions addressed in thiswork. This is because the digit corresponding to
the output neuron that fires first is identified as the correct answer
since a binary input pulse train is used in the digit recognition tasks
(see Methods section). Enhancing the spontaneous reset speed of LIF
neurons could significantly improve the latency of ARC systems.

MPBTFT-based analog reservoir computing system for digit
recognition
An ARC system utilizing volatile DG MPBTFTs and nonvolatile FeTFTs
is shown in Fig. 5a. Volatile DG MPBTFTs are employed as physical
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reservoirs and LIF neurons, while nonvolatile FeTFTs constitute the
readout network. The MPBTFT-based ARC system operates through
unique interactions between the physical reservoir, readout network,
and LIF neurons, as detailed in Supplementary Note 6.

A handwritten digit recognition task was performed using the
MNIST dataset to evaluate the performance of theMPBTFT-based ARC
system. The images are preprocessed prior to their introduction into

the reservoir (see Fig. 5b and Methods section). The encoded input
pulse trains are applied to the volatile DG MPBTFT-based physical
reservoir. The state of each physical reservoir evolves over time, and
the state in the last timeframe is transmitted to the readout network.
The reservoir states in the last timeframe are shown for the physical
reservoirs based on DG MPBTFTs and linear resistors (right side of
Fig. 5b). The response of the linear resistor is solely contingent on the
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magnitude of the input pulse applied at any given instant, thereby
lacking the capacity to retain information regarding previous states.
The absence of memory effects in linear resistors leads to an inability
to distinguish between similar images. By contrast, the DG MPBTFTs

exhibit well-distinguishable reservoir states. This attribute significantly
enhances the ability of the system to discern subtle differences in
inputs, thereby facilitating accurate pattern recognition. Note that the
configuration of the size and number of sections in the input encoding

Fig. 4 | Characteristics of volatile DGMPBTFT-based LIF neuron. a Schematic of
the volatile DG MPBTFT-based LIF neuron (left panel) and excitatory/inhibitory
pulse schemes for the BG/TG (right panel). The DG MPBTFT-based LIF neuron
exhibits high area efficiency and functional versatility as it can process both exci-
tatory and inhibitory pulses within a single device. Excitatory pulses applied to the
BG increase the ID of the DGMPBTFT, whereas inhibitory pulses applied to the TG
decrease the ID. The voltageof the excitatorypulses ranges fromVbase toVhigh, while
the voltage of the inhibitory pulses ranges from –3.0 V to Vinh. Every neuronal
behavior was investigated under a VDS of 0.1 V. b Demonstration of the neuronal
behavior with self-reset characteristics of the DG MPBTFT when excitatory pulses
are applied. The neuron can still fire in response to the excitatory pulses after the

self-reset. Modulation of neuronal behavior through the c Vbase and d Vhigh. As the
Vbase increases, the leaky effect of the neuron is decelerated, and the integration
function is strengthened. An increase in Vhigh leads to more significant polarization
switching in the HZO film and increases the ID change. On the contrary, insufficient
Vhigh degrades the integration function of the neuron. Neuronal behaviors in
response to the application of both excitatory and inhibitory pulses with various
e Vinh, f inhibitory pulse width (twidth,inh), and g the number of inhibitory pulses (N).
The inhibitory efficiency of the neuron is enhanced asVinh, twidth,inh, andN increase.
h Neuronal behavior of DG MPBTFT-based LIF neuron. The inset represents the
input pulse train. The neuron demonstrates three primary functions: integration,
firing, and resetting functions.

Fig. 5 | MPBTFT-based ARC system for handwritten digit recognition.
a Schematic of the ARC system utilizing volatile DG MPBTFTs and nonvolatile
FeTFTs. In the system, input pulses are applied to the DG MPBTFT-based physical
reservoirs. The generated reservoir states are fed into the readout network,which is
comprised of FeTFT-based synaptic devices. Subsequently, the output currents
from the readout network are transmitted to the DG MPBTFT-based LIF neurons,
which produce the final outputs of the ARC system. b Preprocessing step of the
MNIST dataset. Input images are cropped and encoded into input pulse trains. The
image divided into five distinct sections along the rowdirection, each comprising 4
pixels, is shown as an example. Each of these encoded input pulse trains is then

applied to the DGMPBTFT-based physical reservoirs. The obtained reservoir states
from both the DG MPBTFT- and linear resistor-based physical reservoirs are
depicted on the right side. c Classification accuracy for the MNIST dataset utilizing
several different device-based physical reservoirs. Each result signifies the average
accuracy derived from performing the task five times, ensuring a robust perfor-
mance evaluation by mitigating the influence of outliers and variability. The DG
MPBTFT-based physical reservoirs achieve the highest accuracy, particularly when
utilizing the TG. d Average accuracies achieved for various physical reservoirs.
e Confusion matrix for the MNIST digit recognition task. The MPBTFT-based ARC
system accurately distinguishes ten types of handwritten digits.
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process can be adjusted. A comprehensive explanation of the input
encoding process is detailed in the Methods section.

Figure 5c shows the results of performing a digit recognition task
utilizing several different device-based physical reservoirs: volatile DG
MPBTFTs, nonvolatile FeTFTs, and linear resistors. Linear resistor-
based physical reservoirs, limited by their capacity to retain informa-
tion solely from the last timeframeof the input signal, demonstrate the
lowest level of accuracy (~83.63%). When FeTFTs are utilized as phy-
sical reservoirs, the system lacks the capacity to process temporal
information. However, these FeTFT-based physical reservoirs exhibit
different responses depending on the number of input pulses applied.
This characteristic results in a slight enhancement in accuracy
(~85.45%) over linear resistors, which is attributable to the increased
number of reservoir states (five states per reservoir). In contrast, DG
MPBTFT-based physical reservoirs facilitate temporal information
processing. This allows 16 reservoir states (4 bits) for each physical
reservoir, significantly increasing the accuracy (~89.42%). In particular,
the highest accuracy (~90.23%) is achieved when utilizing TG, which
effectively differentiates between the reservoir states without any
overlap. This distinct advantage demonstrates the suitability of the DG
MPBTFT as a physical reservoir, highlighting its potential for accu-
rately handling complex computing tasks through enhanced reservoir
state discrimination. The system utilizing 32 reservoir states (5 bits)
significantly enhances the area efficiency (~20% enhancement) with a
slight degradation in accuracy (~88.25%). This enhancement is attrib-
uted to the reduction in the number of physical reservoirs required for
input encoding and the subsequent number of synaptic devices that
constitute the readout network. The flexibility of the MPBTFT-based
ARC system enables for a significant reduction and optimization of
hardware resources with slight accuracy adjustments. The average
accuracies achieved for the various physical reservoirs are shown in
Fig. 5d. Figure 5e shows the confusion matrix obtained using the
MPBTFT-based ARC system. The system accurately distinguishes ten
types of handwritten digits. These results substantiate the proficiency
of DG MPBTFTs utilizing TG to distinguish each reservoir state with
remarkabledistinction and even expand reservoir states. TheMPBTFT-
based physical reservoir consumes ~22.5 pJ per input, while the FeTFT-
based synaptic device consumes ~0.2 pJ per input (Supplementary
Note 7). Benchmarking analysis against previous studies is presented
in Supplementary Table 1.

MPBTFT-based analog reservoir computing system for wave-
form classification and time-series prediction
In addition to the handwritten digit recognition task, where the origi-
nal static image data are converted to temporal data, waveform clas-
sification and time-series prediction tasks were performed to further
evaluate the capabilities of the MPBTFT-based ARC system for pro-
cessing temporal signals59. The quintessential applications of ARC
systems lie in their proficiency in processing temporal data59,60. In an
MPBTFT-based ARC system, the implementation of the waveform
classification and time-series prediction tasks relies heavily onmasking
techniques. This technique augments input information and increases
the number of virtual nodes within the temporal domain, enhancing
the computational capabilities18,19,21,28–30. A comprehensive explanation
of the masking process is detailed in the Methods section.

Through themasking process, each DGMPBTFT createsM virtual
nodes in response to the application of an M-timeframe input pulse
train. The state of each virtual node is characterized by the ID response
of theDGMPBTFTwithin each corresponding timeframe. These virtual
nodes of the DGMPBTFTs effectively expand the reservoir size fromN
to N × M, significantly enhancing the computational density without
requiring additional hardware. The expanded reservoir states are
subsequently fed into an (N × M) × 1 fully connected single-layer
readout network. The readout network is trained using a linear
regression method and outputs the classification or prediction results

through a linear combination of all the reservoir states. A detailed
description of the linear regression method can be found in the
Methods section. An MPBTFT-based ARC system that utilizes the
masking process is illustrated in Fig. 6a.

In the waveform classification task, the input data contain ran-
domly arranged sine and square waveforms (Fig. 6b). The target out-
put is a binary sequence of 0 and 1, representing sine and square
waveforms, respectively. TheMPBTFT-basedARC system classified the
waveforms with a normalized root mean squared error (NRMSE) of
0.0044 (Fig. 6c). This indicates a sufficiently low classification error,
demonstrating the proficiency of the system in handling classifica-
tion tasks.

In addition to the waveform classification task, a time-series pre-
diction task was performed to comprehensively assess the perfor-
mance of theMPBTFT-based ARC system in handling temporal signals.
A benchmark task is focused on Hénon map prediction, which is a
typical discrete-time dynamic chaotic system prediction61. A detailed
description of the Hénon map prediction task can be found in the
Methods section. Figure 6d shows the target values (black line) and
outputs of theMPBTFT-based ARC system after training (red line). The
ARC systempredicts a time-series dataset and achieves a lowNRMSEof
0.035. Figure 6e shows a two-dimensional (2D) representation of the
Hénon map, which exhibits excellent consistency between the target
and predicted values. This result demonstrates that the ARC system
can effectively reconstruct strange attractors of the Hénon map.

In this study, complex real-world data that extend beyond theo-
retical models are addressed to further evaluate the applicability and
effectiveness of the MPBTFT-based ARC system in practical scenarios.
The number of confirmed coronavirus disease 2019 (COVID-19) cases
from January 2020 to March 2023, provided by Johns Hopkins Uni-
versity, was used for the evaluation62. The MPBTFT-based ARC system
forecasts the futurenumber of confirmedCOVID-19 cases basedon the
historical data of previously confirmed cases. Figure 6f shows the
actual number of confirmed cases (black line) and the predicted
number of confirmed cases (red line). The remarkable concordance
between the predicted and actual numbers of confirmed cases verifies
the exceptional precision of the system in forecasting outbreak pro-
gression. Despite the complexity of real-world predictive tasks, a low
NRMSE of 0.28 is achieved. The impressive system performance is
primarily attributed to the polarization dynamics inherent in DG
MPBTFTs, which result in a robust ability to process temporal features.
This result demonstrates the potential of the MPBTFT-based ARC
system in public health analytics and response strategies, providing a
valuable tool for predictivemodeling in epidemiology by leveraging its
sophisticated temporal data processing capabilities.

Discussion
In this study, we demonstrated an ARC system by leveraging volatile
DGMPBTFTs and nonvolatile FeTFTswith an IGZO channel andMFMIS
structure, which can be easily integrated on a single wafer using a
similar fabrication process. The synaptic characteristics of the non-
volatile FeTFTs were validated, showcasing their suitability as synaptic
devices within the readout network. The volatile DG MPBTFTs suc-
cessfully demonstrated the generation of 32 distinct reservoir states (5
bits), verifying their suitability as physical reservoirs for processing
temporal information. The strategic utilization of the TG in DG
MPBTFTs enhances the differentiation of the reservoir states and
expands the states, thereby significantly enhancing the performance
and area efficiency of the MPBTFT-based ARC system. The DG
MPBTFT-based LIF neuron demonstrated the integrate-and-fire func-
tion with self-reset characteristics while processing both excitatory
and inhibitory pulses with a single device. The performance evaluation
of the MPBTFT-based ARC system was conducted using a handwritten
digit recognition task, which achieved a high classification accuracy
(~90.23%). Moreover, the system successfully predicted the future
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number of confirmed COVID-19 cases, which is complex real-world
data, thereby ensuring the temporal data processing capability of the
system. The ability to accurately process and predict temporal data
highlights the potential of the MPBTFT-based ARC system, which
could open new avenues for the development of advanced computing
technologies.

Methods
Fabrication process of volatile DG MPBTFTs and
nonvolatile FeTFTs
Volatile MPBTFTs and nonvolatile FeTFTs were fabricated on a buffer
oxide (SiO2, 300 nm). A 40nmMo layerwas deposited as theBGviaDC
sputtering and patterned using dry etching. Initially, a thin film with

nonvolatile memory characteristics, 8 nm HZO (Hf:Zr = 2:1), was
deposited via thermal atomic layer deposition (ALD). Subsequently,
20 nm TiN was deposited via plasma-enhanced ALD (PEALD) and pat-
terned to serve as a floating gate (FG). The FG acted as a mask during
the subsequent wet etching process using a DHF solution, isolating the
nonvolatile thin film. Following the isolation step, a volatile thin film,
6.5 nm HZO (Hf:Zr = 3:5), was deposited via thermal ALD. Subse-
quently, 20 nmMowas deposited via DC sputtering, and the FG of the
volatile transistor was patterned and isolated using the same method.
Through the process, transistors with thin films of different char-
acteristics were formed. Note that BG and FG have a proportional area
ratio (AR) to control capacitance matching between the ferroelectric
layer and insulator.

Fig. 6 | Demonstration of waveform classification and time-series prediction.
a Schematic of the MPBTFT-based ARC system utilizing the masking process. Fol-
lowing the masking process, the virtual node states created by each volatile DG
MPBTFT are fed into the readout network and generate outputs. The time interval
(τ) indicates the total durationof each input pulse train consistingofM timeframes.
The weights (wout) of the readout network are trained through a linear regression
method.b Inputs and c classification results of sine and squarewaveformsobtained
from the MPBTFT-based ARC system. Each waveform is composed of eight-time
steps. The input data with the initial 300-time steps are used for training, while the
rest are used for testing. d Time-series prediction results obtained from the
MPBTFT-based ARC system. The initial 300 data points are used for training, while

the rest are used for testing. The system successfully predicts the time-series
dataset, achieving a lowNRMSEof 0.035.eTwo-dimensional (2D) representation of
the Hénon map. The results exhibit excellent consistency between the target and
predicted values. f Results of complex real-world predictive task: the number of
confirmed COVID-19 cases prediction. The black and red lines represent the actual
and predicted number of confirmed cases, respectively. The data from January
2020 to February 2022 are used for training, while the rest are used for testing. The
MPBTFT-based ARC system demonstrates an ability to forecast the future number
of confirmed COVID-19 cases by leveraging historical data on previously
confirmed cases.
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The subsequent fabrication processes for both TFTs were per-
formed without any distinction. To induce crystallinity in the depos-
ited thin film, rapid thermal annealing (RTA) was performed at 500 °C
under N2 ambient conditions. Subsequently, an 8 nm ZrO2 layer was
deposited via thermal ALD as the insulator layer. For the channel
material, 30 nm of amorphous IGZO was deposited via PEALD and
subjected to a wet etching process using a diluted HCl solution.
The width (W) and length (L) of the formed channels were both
20 µm. Ti and Al were deposited using a DC sputtering process
and patterned as source (S) and drain (D) using dry etching. Both
TFTs were annealed at 350 °C for 1 h under O2 ambient conditions
to induce conduction in the IGZO channels by forming oxygen
vacancies. Additionally, some of the oxygen vacancies formed in
this process moved to the interface between IGZO and the metal
of the S/D, thereby reducing the contact resistance. Finally, an
8 nm ZrO2 layer was deposited via thermal ALD to form a DG for
the volatile transistor. Following isolation, the Mo TG was
deposited using DC sputtering and patterned via dry etching.
Refer to Supplementary Fig. 2 for more details.

Electrical measurements
A probe station and a semiconductor parameter analyzer (Keithley
4200-SCS) were used to investigate the ferroelectricity of the fabri-
cated volatile and nonvolatile FeTFTs. The direct current (DC) ID-VGS
measurements were performed using a semiconductor parameter
analyzer (Keysight B1500A). A B1500A equipped with a waveform
generator/fast measurement unit (WGFMU) module was used for the
pulse measurements. To evaluate the electrical characteristics of the
devices within the array, a probe station, custom-made probe
card, semiconductor parameter analyzer (Keysight 4156B), and
pulse generator (Keysight 81110 A) were used. The inputs from
each source were distributed on the probe card using a switching
matrix (Keysight E5250A). All the electrical measurements and
characterizations were performed in ambient air at room tem-
perature. Detailed experimental setup for electrical measure-
ments are shown in Supplementary Fig. 20.

To evaluate the retention characteristics of fabricated FeTFTs, the
devicewas initially erased completely. Subsequently, a PGMpulse with
an amplitude of VPGM and a width of 10 μs was applied, followed by a
read operation performed at VGS = 0 V and VDS = 0.1 V conditions. The
VPGMs applied for each conductance state are 2.0, 2.4, 2.8, 3.2, 5.3, 5.65,
6.0, and 6.35 V, increasing from the lowest to the highest conductance
state. The retention characteristics for a broad range of conductance
states ensure reliable operations across the full spectrum of LTP/LTD
characteristics along with a potentially wider range of conductance
states. The eight conductance states shown in Fig. 2h are equally
spaced on a logarithmic scale and encompass all the conductance
states in the LTP/LTD characteristics (Fig. 2f), demonstrating that the
retention characteristics are sufficiently reliable for employing FeTFTs
as synaptic devices.

Handwritten digit recognition task
(1) Preprocessing step of the MNIST dataset: The images were pre-
processed before being fed into the reservoirs (Fig. 5b). The original
grayscale images were transformed into a binary format with super-
fluous border regions trimmed away, resulting in a streamlined 22 × 20
pixel representation. This conversion and cropping process retains the
essence of the image, while optimizing it for subsequent reservoir
processing. The preprocessed image, now structured into 22 rows,
each containing 20 pixels, was further segmented into five distinct
sections along the row direction, each comprising 4 pixels. Each sec-
tion is encoded into an input pulse train with 4 timeframes and applied
to a volatile DG MPBTFT-based physical reservoir.

(2) Input encoding process: The size and number of sections play
pivotal roles in the input encoding process, which determines the

performance and efficiency of the ARCsystem. Decreasing the number
of sections results in each section comprising a greater number of
pixels, which exponentially increases the number of states that each
physical reservoir should represent. This can make it difficult to dis-
tinguish between each state of the physical reservoir, potentially
degrading the system performance. Nevertheless, this modification
can enhance the area efficiency of an ARC systemby reducing the total
number of physical reservoirs and the readout network size. Con-
versely, increasing the number of sections reduces the number of
pixels per section, making it easier to accurately identify the individual
states of the physical reservoirs. However, this modification requires
an increase in the total number of physical reservoirs and readout
network size to accommodate a larger number of sections, thereby
degrading the area efficiency of the ARC system. Therefore, the input
encoding processmust bemeticulously designed, including setting an
appropriate number of sections for an efficient and effective ARC
system.

(3) ARC system architecture: The ARC system, which utilizes 16
reservoir states (4 bits), requires input pulse trains with 4 timeframes
alongside 110 (22 × 5) physical reservoirs. A 110 × 10 fully connected
single-layer readout network was used. When the system utilizes 32
reservoir states (5 bits), 5-timeframe input pulse trains and 88 (22 × 4)
physical reservoirs are required. Therefore, an 88× 10 readout network
is used, reducing the required number of synaptic devices. Similar to
the other neural networks, the performance of the ARC system
improves when a large-scale readout network is used (see Supple-
mentary Fig. 21 for the performance of the ARC system for different
readout network sizes)16,22,63,64.

During ARC system operations, a pulse train encoded from
binarized input image pixels is applied to the BG of the DG MPBTFT-
based physical reservoir, while a consistent sequential pulse train is
repeatedly applied to the TG independent of the input image (see
Fig. 3i and j). Despite the necessity for additional circuitry to generate
the sequential pulse train with decreasing amplitude for the TG, the
overall hardwaredemand isminimized becauseonly one such circuit is
required globally. This is feasible since the same pulse train is repeat-
edly applied to all TGs for each input image, regardless of the image.
This results in a relatively minor hardware burden compared to the
circuitry typically required for individual BGs, which encode the
binarized input image pixels.

Input neurons are activated at the last timeframe for each input
image through a clock signal, following the approach used in previous
studies18,22,28,29,50. They gather the ID response from each DG MPBTFT-
based physical reservoir at the last timeframe and transmit it to the
readout network. Output neurons receive the BL current from the
readout network through a current mirror and switch the polarization
of DG MPBTFTs. Subsequently, ten output neurons generate distinct
outputs, and the digit corresponding to the output neuron that fires
first is identified as the correct answer.Note that differentmethods are
required to identify the digits depending on the utilized encoding
method, such as rate coding, temporal coding, and phase coding.

For the handwritten digit recognition task, the simulation incor-
porates various experimental data crucial for different layers of the
system. In the reservoir layer, the final reservoir states of the DG
MPBTFT-based physical reservoir at the last timeframe of the input
pulse train are utilized. In the readout layer, the multilevel synaptic
weights of the FeTFT-based readout network are utilized. Lastly, for
neuron activation, the integrate-and-fire function and the reset/leaky
characteristics of the DGMPBTFT-based LIF neuron are utilized. These
components are crucial for accurately performing the digit
recognition task.

Masking process
The initial step of the masking process involves the application of a
predefined mask to the input data, thereby effectively expanding the
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dimensionality of the data. The input data are multiplied by the mask,
which is typically a random but fixed one-dimensional (1D) binary
vector of length M. N masks are utilized to diversify the input data,
ensuring that the system can generate a wide array of reservoir states
from simple inputs29,50. Therefore, each input data point is converted
into N input pulse trains with M timeframes and fed into N parallel
volatile DG MPBTFTs. Both the number (N) and length (M) of masks
employed in the input encoding process should be optimized to
enhance the system performance19,21,29. The amplitude of the input
pulse train is linearly scaled proportional to the input data and ranges
from 3.5 V to 5.0V. The masking process expands the dimensions of
the inputdata, thereby enhancing the richness anddiversity of thedata
fed into the reservoir. For thewaveformclassification task, parameters
M and N are set to 6 and 8, respectively. For the number of confirmed
COVID-19 cases prediction tasks, parametersM andN are optimized to
3 and 15, respectively.

Time-series prediction task
The Hénon map represents a nonlinear 2D mapping that converts a
point (x(n), y(n)) on a plane into a newpoint (x(n + 1), y(n + 1)) following
the equations below61,65:

x n+ 1ð Þ= y nð Þ � 1:4xðnÞ2 ð1Þ

y n+ 1ð Þ=0:3x nð Þ+wðnÞ ð2Þ

wherew(n) represents Gaussian noise with a mean value of zero and a
standard deviation of 0.05. The task is to predict the point (x(n + 1),
y(n + 1)) at the subsequent time step n + 1, given the points (x(n), y(n))
up to the time step n. By combining the Eqs. (1) and (2), theHénonmap
is reformulated into a 1D representation as follows:

x n + 1ð Þ=0:3x n� 1ð Þ+wðn� 1Þ � 1:4xðnÞ2 ð3Þ

Consequently, the task is refined to predict the value of x(n + 1)
based on the known values of x(n) and x(n − 1). For Hénon map pre-
diction, a dataset with a length of 500 consisting of x(n) following the
above equations was utilized.

The masking process generates N input pulse trains, each con-
sisting of M timeframes, for both input x(n) and x(n − 1). Therefore, a
total of 2N volatile DG MPBTFT-based physical reservoirs generate
2N × M virtual node states. These virtual node states are fed into a
(2N ×M) × 1 fully connected single-layer readout network. The readout
network outputs a predicted value of x(n + 1) by linearly combining all
the reservoir states. The parameters M and N are set to 3 and 15,
respectively.

Readout network training
The readout network establishes effective mapping between high-
dimensional reservoir states and outputs. The readout network within
the ARC system was trained using the stochastic gradient descent
(SGD) method for handwritten digit recognition tasks. For waveform
classification and time-series prediction tasks, a linear regression
method was used to train the readout network. The weight matrix
(Wout) of the readout network was obtained using the following
equation66:

Wout =YX
y =YXTðXXTÞ�1 ð4Þ

where X and Y represent the input and target matrices, respectively.
The symbol † represents the Moore–Penrose pseudo-inverse. In
handwritten digit recognition, waveform classification, and time-
series prediction tasks, pre-trained synaptic weights are transferred

to the conductance of FeTFTs within the readout network and remain
unchanged throughout system operations.

Error analysis
The error in the output results obtained using the FeTFT-based ARC
system was calculated using the NRMSE function65 defined as follows:

NRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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k

P
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k
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where piðkÞ and yiðkÞ represent the predicted outputs of the ARC
system and the target output, respectively.

Data availability
All the relevant data are available within the article and the Supple-
mentary Information. The source data generated in this study is pro-
vided in the Source Data file. All other data are available from the
corresponding authors upon request. Source data are provided with
this paper.

Code availability
All the relevant codes used for the simulation are available within the
article and the Supplementary Information. All other codes are avail-
able from the corresponding authors upon request.
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